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Abstract 
Modulators within Microwave photonic links (MPLs) encode Radio Frequency (RF) signal 

information to the optical domain for transmission in applications such as wireless access 

networks and antenna remoting exploiting advantages optical fiber offers over RF coaxial 

cables including bandwidth, loss, size, weight, and immunity to electromagnetic 

interference. A critical figure-of-merit in MPLs is spur-free-dynamic-range (SFDR) 

defining the range of RF signal power a MPL transmits without distortion. Current Mach-

Zehnder Interference (MZI) modulators used in MPLs limit the SFDR because of the 

associated nonlinear sinusoidal transfer function. 

A rigorous theoretical method is developed followed by design, fabrication, and testing to 

investigate a linear ring resonator modulator (RRM) modulator for MPLs. The linear nature 

of the Lorentzian transfer function for the RRM is utilized over the sinusoidal transfer 

function within MZI modulators offering significant improvement in MPL SFDR. A novel 

bias voltage adjustment method is developed for practical implementations improving 

SFDR of 6 dB versus MZI at 500 MHz noise bandwidth. RRM is shown to be applicable 

for applications requiring high operational frequencies while in a limited operational 

bandwidth such as millimeter-wave wireless networks. To improve RRM SFDR in wide 

operational bandwidths a novel dual ring resonator modulator (DRRM) design is 

demonstrated. DRRM suppresses the third order intermodulation distortion in a frequency 

independent process removing SFDR limits of RRM. 
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Chapter 1: Microwave Photonics 

1.1 Analog fiber optic communication  

The invention of laser as the coherent source of light [1] and optical fiber for transporting 

light [2] opened a door to the fiber-optic communication era. Significant effort has been 

devoted to develop and implement fiber-optic communication systems for transmitting, 

processing, and detecting electronic signals. Fiber-optic communication systems provides 

highly efficient and flexible data communication systems due to compelling advantages of 

optical fibers. Optical fibers tremendously reduce system weight, size, and signal loss [3]. 

For example, coaxial cables typically weigh 567 kg/km while posing 360 dB/km loss (at 2 

GHz) [3]. In contrast, common optical fibers weigh and loss are 1.7 kg/km and 0.5 dB/km 

respectively [3]. Optical fibers have THz bandwidths in comparison to GHz bandwidth 

capacity of coaxial cables [3]. Optical fibers are immune to electromagnetic interference 

(EMI) effects providing a more compact routing in a noisy RF environment. 

To convey electrical signals using optical fibers there are two fundamental building blocks 

in either digital or analog applications as shown in Figure 1-1. The first block is to encode 

the data signal from the electrical domain to optical domain in a process known as 

modulation. The second block is to recover the original electrical data signal from optical 

domain at the end of the link referred to as de-modulation.  

 

Figure 2-1 A basic schematic of a fiber-optic communication link. 



 

2 

 

Fiber-optic communication links are widely implemented for a multitude of digital 

applications, large capacity links for long-haul applications [4], fiber-to-home network 

deployments [5], and rack-to-rack and module-to-module interconnects within data centers 

[6]. However digital links have limited success in conveying analog signals because of 

required digitization process using analog-to-digital converters (ADC). Operational 

bandwidths of ADCs are in the range of 1 GHz, limited primarily by the electronic 

sampling rate [7]. To convey analog signals with bandwidths beyond capabilities of ADCs 

multiple units of frequency down-conversions and ADCs are needed which makes the link 

complex, power hungry, bulky, and costly [8]. Analog fiber-optic links are critical for 

application such as antenna remoting where digital signal transmission is difficult to apply 

or even not possible. As shown in Figure 1-2 analog link yields wider bandwidth with 

simpler, smaller and less power consuming antenna sites by removing ADCs and 

downconverters.  

 

Figure 2-2 Comparison of fiber optic link component requirements using (a) digital fiber optic link, and (b) 
analog fiber-optic link. 
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Analog fiber-optic links which are referred to as microwave photonic links (MPLs) is the 

main part of a broader multidisciplinary field named as microwave photonics (MWP) with 

applications in various optical and microwave systems such as wireless access networks 

[9], cellular [10] and satellite communication [11], radars [12], cable television [13], 

antenna remoting [14], optical signal processing [15], and medical imaging [16]. MWP 

consists of photonic devices operating at microwave frequencies and has evolved 

traditional microwave systems by introducing photonic unique capabilities, enabling key 

functionalities in microwave systems which are very complex or even not possible in the 

microwave domain. MWP contributes in microwave systems through various critical 

functions including generation [17, 18], distribution [19, 20], and processing [15] of 

microwave signals.  

Initially MPLs in the commercial sector were driven by analog cable TV networks (CATV) 

where MPLs were commercialized and many CATV networks deployed utilizing MPLs in 

1990s [13, 21-23]. However by advancing digital TV networks CATV networks have 

replaced by digital networks. Currently radio-over-fiber (RoF) applications are considered 

as drivers of MPLs with rapid advancing applications in wireless access networks and 

distributed antenna systems [9, 24-26]. The proliferation of mobile devices and ever-

increasing demand for broadband multimedia services has led a worldwide interest to 

pursue solutions providing multi-Gb/s data rates for large number of users. The RoF 

techniques can be used for wireless access networks installed in large buildings such as 

shopping malls, airports, stadiums, etc with large number of internet users [3]. In addition 

RoF is being actively pursued for cellular networks [9]. Wireless signals due to high loss 

in high frequency ranges pushes wireless network architectures towards using large number 

of antennas covering small areas. Utilizing MPLs to feed large number of antennas is a 

viable solution to increase capacity and reduce cost. 
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1.2 Microwave photonics links figure of merits 

A MPL performance is evaluated utilizing figure-of-merits commonly used to evaluate RF 

components performances. The most critical figure-of-merits are gain (gMPL), noise figure 

(NF), and spur-free dynamic range (SFDR) [27]. These parameters should meet the system 

level figure-of-merits dictated by each application in the required operational bandwidth.  

To obtain figure-of-merits a MPL is considered as a unit with RF power entering and 

exiting the unit as shown in Figure 1-3. MPL figure-of-merits are dominated by the 

modulation and demodulation blocks. The intrinsic link therefore is a link solely consisting 

of modulation and demodulation stages while excluding any amplifiers or signal processing 

steps either in RF or optical domain [19, 27].  

 

Figure 2-3 Simplified microwave system with MPL to calculate figure-of-merits.    

1.2.1 Gain 

The amount of RF input power passed by the MPL and delivered at the output is defined 

as the gMPL. In a MPL modulation and demodulation performances have dominant effects 

in the gMPL which can be defined according to Equation (1.1) [27] 

 2 2
MPL m pdg S R=   (1.1) 

where Sm is the modulation slope efficiency and Rpd is the photodetector responsivity factor. 

The units for Sm and Rpd are watts per ampere and amperes per watt respectively. To 
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characterize gMPL using Equation (1.1) the MPL is impedance matched to Rs and RL as 

shown in Figure (1-3) assuming RS = RL.  

Common MPLs can limit gMPL in the range of -20 dB and -40 dB [28]. Various methods 

have been proposed and utilized to improve gMPL such as using low noise amplifiers (LNA), 

high power lasers, reducing MPL optical and electrical losses, and improving modulation 

and demodulation efficiencies [29]. LNAs diminish the considerable bandwidth advantage 

of using MPLs and add to the power consumption, system size, and vulnerability to 

electromagnetic interference effects. It is desired to improve gMPL by removing the need 

for LNA [19, 29, 30] specially in applications such as compact antenna sites [31, 32], 

optoelectronic oscillators [18], and handling high power electromagnetic pulse effects [33]. 

Research efforts have made considerable progress improving gMPL using MPL intrinsic 

elements [29]. 

1.2.2 Noise figure 

One of the important figure-of-merits in MPLs is the noise figure (NF) which characterize 

signal-to-noise ratio (SNR) degradation by MPL [27]. NF is defined as the ratio of total 

output noise of MPL (Nout) and the portion of output noise because of the MPL input noise 

as described in Equation (1.2) [27]. The input noise to MPL is considered as thermal noise 

formulated by 0Bk T B  where kB is Boltzmann’s constant, T0 is the temperature, and B is the 

instantaneous bandwidth [34]. The input noise is either amplified or attenuated due to the 

intrinsic MPL gain (gMPL). The output noise of MPL (Nout) is formulated as Equation (1.3) 

showing the MPL contribution to the microwave system noise level due to the relative 

intensity noise (RIN) of laser, photodetector shot noise, and MPL thermal noises. The RIN 

noise power appears in the electrical signal after the photodetector as 2
D DI R RIN  where 

DI  is the average photodetector current and RD is the detector terminating resistor [27]. 

The photodetector shot noise is a result of the statistical nature of random photon arrival 
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causing random fluctuations in the photodetector current and can be modeled as 2 D Dq I R  

where q is the charge of an electron [35]. 

 
0

10 log out

MPL

NNF
kT B g
 

=  
 

  (1.2) 

  ( )2
0 02out D D D D MPLN I R RIN I R q kT g kT B= + + +   (1.3) 

Initial MPLs without amplification impose more than -30 dB NF to the microwave system 

which is considered as a critical issue hindering MPLs advancement [19, 29, 36]. Similar 

to gMPL a traditional way to improve the NF is to use LNAs which is not a viable solution 

for applications such as antenna remoting as mentioned in Section 1.2.1. Various methods 

have been developed to enhance NF of intrinsic MPLs including high power lasers with 

low RIN [37-41], suppressing DI  [19, 42-47], and improving gMPL [19, 29, 30]. 

Depending on the application requirements and practicality these techniques can be 

implemented either individually or in combination to improve NF [48].  

1.2.3 Spur-free dynamic range 

SFDR defines the maximum and minimum RF power limits that can be transmitted or 

processed by a microwave system by quantifying the nonlinearity involved in microwave 

components. Nonlinearities cause harmonic distortions and intermodulation distortions. 

Harmonic distortions are at multiples of RF input signal frequency as shown in Figure 

1-4(a). Intermodulation distortions happen when signals with different frequencies are 

mixed. For example by applying two signals with frequencies f1 and f2 distortion signals 

are generated at various frequencies such as 1 2f f±  or 2 12 f f±  as shown in Figure 1-4(b). 

Among various type of distortions the third order intermodulation distortion (IMD3) with 

frequencies 2 12 f f±  or 1 22 f f±  is the most critical distortion because IMD3 is always 

located inside the bandwidth and filtering out is either impossible or impractical [27]. In 

applications with multi-octave bandwidths ( 2high lowf f> ) in addition to IMD3 the second 
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order intermodulation distortion (IMD2) at frequencies 1 2f f±  and the second order 

harmonics at 12 f  are inside the band and therefore need to be considered in SFDR 

characterization of MPLs.  

 

Figure 2-4 Distortions, (a) harmonic distortions, (b) third order intermodulation distortion (IMD3).  

SFDR is the difference between maximum and minimum usable RF input signal powers as 

shown by P1 and P2 in Figure 1-5. The minimum useable input RF signal power (P1) is 

determined when output RF signal power reaches the noise level meaning that if input RF 

power is decreased further the output signal power will no longer be distinguishable from 

the noise. On the other hand maximum RF input signal power (P2) is defined when RF 

output distortion powers reach the noise level. If the input RF power is increased beyond 

P2 the output RF power is distorted and link performance is degraded. 
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Figure 2-5 SFDR diagram of a microwave system.  

SFDR is measured in dB according to MPL output noise level (Nout). Since Nout is related 

to noise bandwidth (B) as shown in Equation (1.2) a common practice is to calculate SFDR 

at 1 Hz noise bandwidth and report SFDR in the unit of dB.Hz(m-1)/m where m is the slope 

of intermodulation distortion power change versus input RF power. SFDR at different noise 

bandwidths is calculated using Equation (1.3). It is worth mentioning that Equation (1.3) 

is useful when m is constant through the whole RF input power range of interest [49] 

otherwise SFDR needs to be characterized at each required noise bandwidth.  

 ( ) ( ) ( )11 10mSFDR B SFDR Hz Log B
m
−

= − × ×   (1.4) 

SFDR of typical MPLs is ~110 dB.Hz2/3 hindering MPL advancements for applications 

such as RoF [48, 50] demanding 10-20 dB higher SFDR. While all figure-of-merits of 

gMPL, NF, and SFDR are critical for MPLs the SFDR holds a unique position in setting 

applicability of MPLs [27]. Various methods are utilized to improve gMPL and NF of MPLs 

with success [45-47, 51, 52]. Despite vast amount of efforts, SFDR improvements have 

been with limited success and resulted MPLs are complex, difficult to implement and 

limited in bandwidth [19, 20, 27, 30, 48, 53]. Therefore SFDR remains as the main 
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drawback of MPLs full scale implementation and solving this problem is the top priority 

for MPW research and development [48, 50].  

SFDR is critically limited by the nonlinearity of modulation process and a sole promising 

solution is to increase the modulation linearity. All existing modulation techniques are 

studied and fundamental limitations of current technologies are identified as described in 

the Chapter 2. Novel modulation methods are developed theoretically and verified 

experimentally which can improve SFDR of MPLs in the range of 10-20 dB. Proposed 

modulation techniques are promising for MPLs such as RoF application of wireless access 

networks. 
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Chapter 2: Electro-optic Modulation 

2.1 Electrical-to-Optical modulation strategies 

To modulate an electrical signal onto an optical wave several methods can be utilized 

including intensity [36], phase [54], frequency [55], and polarization [56]. Intensity 

modulation, where the light-wave intensity is modulated in proportion to an applied RF 

signal, is by far the most studied and implemented technique in MPLs since photodetectors 

detect intensity variations of light [19, 20, 29, 36, 57]. All other modulation types need to 

be converted to intensity modulation before photodetection yielding complexity and 

potential complications in the de-modulation scheme [54, 55, 58]. 

The intensity modulation links as shown in Figure 2-1 are called intensity modulation direct 

detection (IMDD) links [27] which can be conducted directly on the laser (direct 

modulation) as seen in Figure 2-1(a) or externally through a modulator separate from the 

laser as illustrated in Figure 2-1(b). The external modulation can be implemented in a wider 

application ranges versus direct modulation due to higher link figure-of-merits including 

gain (gMPL), and bandwidth [19, 20, 36, 48]. The gMPL in direct modulation is limited by 

laser diode efficiency and optical loss in the link [59] while external modulation provides 

higher gMPL which can be controlled by the laser power and the modulation index of the 

external modulator. In addition the bandwidth in direct modulation is limited to few GHz 

because of frequency chirping [35].  
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Figure 2-1 MPL schematic of intensity modulation and direct detection, (a) direct modulation, (b) external 
modulation.    

2.2 External modulator materials 

External modulators consist of electro-optically active materials which are utilized to 

fabricate light-wave transmission mediums (optical waveguides) while responding 

efficiently to the applied external voltage [60]. The refractive index of the electro-optically 

active materials changes according to electric field amplitude changes passing through the 

material [60]. The most implemented electro-optic effect in external modulators is the 

linear electro-optic effect or Pockel’s effect where refractive index of material changes 

linearly versus applied electric field [60]. The refractive index change with linear 

polarization input light and the applied electric in one direction is simplified to Equation 

(2.1). The refractive index change is n∆ , r  is the electro-optic coefficient with regards to 

the electric field direction, n  is the refractive index, and E is the applied electric field 

component.  

 31
2

n n rE∆ = −   (2.1) 
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Few types of materials are known so far that can present sufficient and applicable linear 

electro-optic properties [61]. One type of materials are inorganic crystals without inversion 

symmetry such as LiNbO3 and III-V semiconductors [61]. Another type is especially 

designed organic materials named as electro-optic polymers [61]. 

The most studied and implemented electro-optic material is LiNbO3 [61]. Modulators with 

LiNbO3 are reliable devices able to be operational for years while tolerating the operational 

temperatures [62]. Commercial LiNbO3 modulators pass the 10000 hours at 85oC operation 

tests and they can stand up to 125oC [62]. In addition LiNbO3 modulators tolerate high 

optical power as much as 500 mW [19]. Optical waveguides fabricated by LiNbO3 have 

low propagation loss (less than 0.2 dB/cm) and waveguides can be efficiently pigtailed to 

single mode optical fibers [63]. However LiNbO3 advancement for MPL applications is 

hindered because of high power consumption, limited bandwidth, and bulky size. The 

LiNbO3 maximum electro-optic coefficient is 30.8 pm/V which limits the modulation index 

causing high power consumption. The bandwidth is limited because of the large refractive 

index differences in microwave and optical frequencies as well as RF electrode loss [64]. 

The refractive index of LiNbO3 at optical frequency is 2.15n =  while at microwave 

frequency is 4.2n =  causing phase velocity mismatch of propagating fields degrading the 

modulation index at high frequencies [65]. Various velocity matching techniques comes 

with the price of modulator index degradation, modulator length increase, higher RF 

electrode loss [65]. Moreover LiNbO3 modulators, due to the limited modulation index, are 

bulky with lengths in the order of centimeters that can be used only as discrete component.  

III-V semiconductors, compound of elements from III and V groups of periodic table, are 

considered as one of alternative platforms for electro-optic modulators especially for the 

purpose of integration. Two types of common III-V semiconductor modulators are based 

on GaAs and InP compounds that are widely used in other active devices such as amplifiers, 

lasers, photodetectors, and transistors [61]. Recently InP platform is gaining attentions for 

integration in MPLs [66, 67]. Electro-optic coefficients obtained from III-V semiconductor 
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compounds are low (~20 times less than LiNbO3) however relatively efficient modulation 

is obtained due to large refractive indexes (InP: 3.2, GaAs: 3.4) small area of waveguide 

structure (2-3 µm) [63]. However low electro-optic coefficient, low optical power handling 

(<50 mW), and high optical power loss (20 dB/mm) need to be improved for full 

implementation of III-V semiconductors in MPLs.  

A type of syntactic organic materials called electro-optic polymers are designed to have 

strong linear electro-optic effects [68, 69]. A common type of electro-optic polymers is 

called guest-host polymers that consist of amorphous polymers as the host while nonlinear 

optical molecules called chromophores are doped into the host polymer as the active 

element. Various types of chromophores and host materials have been utilized so far to 

form electro-optic polymers [70]. Electro-optic polymers initially do not exhibit an electro-

optic effect. Poling where an electric field is applied through the polymer to align 

chromophore dipoles inside the host polymer matrix creates an electro-optic effect [70]. 

Electro-optic polymers have very distinctive advantages that make them an attractive 

alternative to more mature structures. A prominent advantage is easy thin film fabrication 

process which can be applied on various types of substrates to form an active optical layer. 

This makes polymers promising candidates for integration to combine the active layer with 

various types of electronics and electro-optic components [71, 72]. Polymers can have high 

electro-optic coefficient (>100 pm/V) which is critical parameter in modulators 

functionality. The electro-optic effect of polymers can respond to high frequencies in mm 

ranges making polymers as one of the widest bandwidth electro-optic materials. In addition 

very low refractive index difference in microwave and optical frequencies (~0.1) is another 

reason to make polymers very suitable for high frequency applications [73]. The optical, 

physical and chemical properties of polymers can be engineered to meet specific 

application requirement. This capability is possible because of various options of host and 

chromophores available to make polymers. In addition polymers have refractive indexes 
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around 1.6-1.7 which is lower than other electro-optic materials yielding an easier 

impedance matching process. 

Main drawbacks of electro-optic polymers are their high optical power loss, low tolerance 

for optical power and environmental conditions. Polymers can get permanent damage at 

high optical powers (tens of milliwatts) [61, 74]. Polymers functionality is sensitive to the 

temperature and the humidity. High temperatures close to polymers glass transition 

temperature (Tg) can damage polymers [61]. Polymers are facing fast aging problem that 

chromophores in time lose their orientation degrading the electro-optic coefficient and 

polymer can get oxidized [61]. Optical waveguides fabricated with polymers have more 

than 2 dB/cm insertion loss. Electro-optic polymers are still in research stage and there are 

just a few examples of commercialized electro-optic polymers and the cost is relatively 

high [75]. Research in polymers is rapidly progressing to solve limitations mentioned [69, 

70]. Specifically recent advances are moving towards solving problems of thermal stability 

and high optical power handling. New electro-optic polymers capable of standing up to 100-

200 C and handling 100 mW are reported [74, 76].  

2.3 Mach-Zehnder Interference (MZI) modulators  

The most dominating and widely implemented type of modulator is intensity modulators 

based on MZI modulators [63]. A general schematic of MZI modulators is shown in Figure 

2-2(a) where the input light is divided equally between two branches and recombines at the 

output. By applying voltage to branches the phase of optical wave passing through the 

branches are modulated versus each other. At the output the phase modulation translates to 

the intensity modulation due to the interference effects between two branches. When light-

waves in two branches are in-phase the whole optical power transmits showing normalized 

transmission coefficient of one while output optical power is zero when light-waves are π 

radians out-of-phase. The MZI operational principle can be translated to a simple 

sinusoidal transfer function as Equation (2.2) and shown in Figure 2-2(b) [27]. Vπ  is the 

required voltage to bring the MZI modulator from “on” to “off” state by imposing π  radian 
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phase difference between two branches. Vπ  determines the modulation index of MZI 

modulator and lower Vπ  yields higher modulation index improving link figure of merits of 

gMPL and NF. 

 

Figure 2-2 (a) A general schematic of MZI modulator, (b) sinusoidal transfer function of MZI modulator 
with showing common quadrature bias point. 

 ( )
2

cos
2

dc
dc

VY V
Vπ

π  
=   

  
  (2.2) 

Main advantages of a MZI modulator are the relative simple structure and well-defined 

transfer function. If material with linear electro-optic effect is utilized in MZI modulator 

Equation (2.2) is sufficient to accurately model MZI modulators in a MPL [49]. In addition 

MZI modulators specially with LiNbO3 are reliable and enduring in time and working 

conditions.  

However MZI modulators encounter substantial drawbacks which limit MZI modulator 

implementations in MPLs demanding high operational frequency, low power consumption, 

smaller foot-prints, and higher linearity. The modulation index decrease beyond 3 dB at 
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operational frequency ranges higher than 50 GHz due to the electrode loss and velocity 

mismatch between optical and RF frequencies as shown in Figure 2-3 which make MZI 

modulators not suitable for high frequency applications [73].  

 

Figure 2-3 Normalized modulation index of MZI modulator versus RRM considering velocity mismatch 
factor of Δn = 0.1 in electro-optic polymer modulators.  

Another main drawback of MZI modulator is its nonlinearity originated from sinusoidal 

transfer function limiting MPL SFDR [27]. Improving the MZI modulator linearity has 

been one of prominent targets in the last two decades and various types of linearization 

techniques have been proposed [42-47, 49, 52, 77-101]. A basic method to alter SFDR of 

MZI modulator is to adjust bias voltage [42-47, 52, 82]. The most common bias voltage is 

the quadrature point ( 2Vπ ) where the second harmonic distortion is minimized and the 

third order harmonic distortion is maximized limiting SFDR [49]. If the application 

required bandwidth is sub-octave then one method to increase the SFDR, which is also 

accompanied by decreasing the noise level, is to bias the modulator away from quadrature 

point. However by moving away from quadrature bias point the fundamental signal is also 

suppressed causing the gMPL degradation. To improve SFDR through the distortion 
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cancellation in optical domain several approaches have been pursued including parallel 

MZI [46, 49, 83-85], series MZI [86-88], dual-wavelength [102], and dual-polarization [89, 

91]. Another category is to utilize a ring resonator to increase linearity of sinusoidal transfer 

function [79-81, 97-101]. In this approach a ring resonator is coupled to one or both arms 

of MZI using nonlinear phase response of ring to improve the linearity of the transfer 

function.   

While proposed methods show SFDR improvements in theoretical analysis there are a few 

experimental demonstrations because of structures complexity in fabrication and 

implementation. Proposed linearization methods for the MZI modulator inherit sinusoidal 

transfer function, required size, and power requirements form MZI structure. MZI 

modulator is known for its robust and reliable operation however linearization techniques 

cause MZI modulator to be sensitive to structure properties and implementing conditions. 

For instance ring assisted MZI modulators limit the bandwidth and are sensitive to the loss 

factor of ring and coupling coefficient [81, 99]. 

2.4 Ring resonator modulators (RRM) 

Electro-optic modulator applications of ring resonator structures named as ring resonator 

modulators (RRM) offer potentials for low power consumption, high modulation index, 

small foot-print [73, 103]. In addition ring resonator structures have become potential 

building blocks of integrated photonic devices for various applications such as optical 

filters [104-106], switches [107, 108], lasers [109, 110], and sensors [111, 112].  

A general schematic of ring resonator structure is shown in Figure 2-4(a) where a circular 

ring waveguide is coupled to a base waveguide [113, 114]. The waveguide and the ring are 

located close enough to each other that power transfer can take place between them in the 

coupling region where a portion of propagating light-wave inside straight path is coupled 

to the ring waveguide and vice versa. When the wave inside the ring has a roundtrip phase 

shift for 2π times an integer number the wave propagating around the looped path interferes 
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constructively leading to the ring resonance state which builds up high intensity field inside 

the ring. While ring waveguide is in the vicinity of resonance mode the wave passing 

through the straight waveguide is suppressed due to the destructive interference between 

intensified field inside ring waveguide and straight waveguide as shown in Figure 2-4(b). 

The level of field suppression inside the straight waveguide and methods to control 

suppression level is the essential property that introduced ring resonator structures for 

various applications from filtering to modulating [104-112, 115-117]. 

 

Figure 2-4 (a) A basic schematic of ring resonator structures, (b) Ring resonator structure transmission 
versus operating wavelength. Inside field profiled show light-wave propagations in resonance and out-of-

resonance states. 

In RRM the effective index of propagation mode inside the ring waveguide is controlled 

by applying voltage to the electrodes as shown in Figure 2-5. As the result the resonance 

frequency of ring resonator is altered which changes the filtering passband frequency 

yielding the optical transmission change in the shape of Lorentzian transfer function as 

shown in Figure 2-5(b).  
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Figure 2-5 (a) general schematic of intensity RRM, (b) Lorentzian transfer function of RRM. 

The ring resonator transfer function is derived theoretically by describing the relation 

between electromagnetic waves in the straight waveguide before and after coupling region 

according to Equation (2.3) where siE and soE are normalized mode amplitudes at the input 

and output of straight waveguide respectively as noted in Figure 2-4(a) [118]. The optical 

power exchange process between ring and base waveguide is considered to be lossless, 

meaning the total power entering and exiting the coupling region are equal. In addition 

single mode, unidirectional, and one polarization is excited inside ring resonator. 

 so si

ri ro

E E
E E

τ κ
κ τ∗ ∗

    
=    −    

  (2.3) 

The mode amplitude excited inside the ring before circulating the ring is riE  and after one 

round trip is roE . The coupling coefficient in the straight waveguide is τ and κ is the 

coupling coefficient from ring to straight waveguide. The * is for conjugated complex 
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values of τ and κ. Since the coupling condition is lossless leading a unitary coupling matrix 

the relation between τ and κ is defined according to Equation (2.4).  

 2 2 1τ κ+ =   (2.4) 

The relation between riE and roE is defined according to the loss factor of ring (α) and the 

round trip phase shift (θ) according to Equation (2.5). 

 i
ro riE e Eθα=   (2.5) 

θ is related to the physical ring circumference (L) and the propagation constant of wave (β) 

according to Equation (2.6) where 0n  is the effective refractive index of the light-wave 

mode propagating inside the ring, λ  is the wavelength of light, and r is the radius of ring. 

 
2

0 4n rL πθ β
λ

= =   (2.6) 

The transfer function of ring resonator is derived as Equation (2.7) using Equations (2.3) 

to (2.6) [119]. Equation 2.7 is an essential equation in analyzing ring resonator structure 

showing that the transmission can be controlled by the phase shift factor of ring defined by 

θ and coupling conditions determined by α and τ. While maximum suppression of 

transmission factor happens at the exact resonance frequency in order to reach zero 

transmission coefficient at the resonance frequency a coupling condition α τ= , which is 

named as critical coupling condition, needs to be satisfied [119, 120].  

 
2 22

22

2 cos
1 2 cos

so

si

E
E

α τ α τ θ

α τ α τ θ

+ −
=

+ −
  (2.7) 

The ring resonator transfer function is periodic in frequency since the phase shift factor (θ) 

is periodic and the ring resonator resonance repeats in frequency as shown in Figure 2-6. 

The wavelength difference between two successive resonance states is called Free Spectral 

Range (FSR) [113]. The periodic Lorentzian resonance characteristic of RRM yields 

enhanced modulation index compared to MZI modulators in a limited bandwidth around 



 

21 

 

the resonance frequency as shown in Figure 2-3. The modulation index enhancement of a 

RRM is dependent to the Q-factor of the resonator. The higher Q-factor results in higher 

modulation index enhancement because of steeper Lorentzian transfer function and small 

change of applied voltage produce large resonance frequency shift. The RRM advantage 

of enhanced modulation index mitigates the RF electrode loss and phase velocity mismatch 

factors in the modulation index degradation at high frequencies that commonly perturb 

MZI operation [73, 103]. Due to the enhanced modulation index functional RRM has been 

reported to be operated at multiples of the FSR, up to 165 GHz fabricated by electro-optic 

polymer material [73]. 

The resonance characteristic of RRM dictates limited operational bandwidth around 

resonance frequency. The operational bandwidth is related to the resonance Q-factor as the 

operational bandwidth gets narrower when Q-factor gets higher [121]. The RRM 

operational bandwidth imposes frequency dependent MPL figure-of-merits determining 

MPL operational bandwidth. So far effects of RRM resonance bandwidth have been 

studied on the modulation index defining bandwidths for gMPL and NF [121]. However 

RRM bandwidth in terms of linearity and SFDR has not been addressed yet.  

 

Figure 2-6 Periodic transmission coefficient of ring resonator in frequency domain. 
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Despite promising features of RRMs for MPLs, there are limited studies on RRM 

functionalities in MPLs [73, 103, 122-124]. While initial studies have shown that RRM is 

capable of providing higher SFDR versus MZI modulator [122, 125], which can be a 

notable advantage in advancing MPLs the limits and applicability of this advantage has not 

been fully investigated. A rigorous theoretical approach is developed to analyze RRM 

linearity incorporated in MPLs proving that RRM can provide higher SFDR compared to 

MZI modulator as described in Chapter 3. However it is shown that superior performance 

of RRM is not sustainable in a wide bandwidth and the bandwidth limitation due to linearity 

is more severe than previously defined bandwidths according to the modulation index 

based on resonance linewidth [121]. Possible methods to improve operational bandwidth 

of RRMs are discussed in Chapter 3 and it is shown RRM is an appealing choice for 

applications in need of high frequency operations > 50 GHz while in a limited bandwidth 

(a few GHz). One of these applications can be RoF implementation for wireless access 

networks in 57-64 GHz frequency range to feed multi-Gb/s data rates to the large number 

of wireless access points for network architectures featuring significantly smaller cell sizes 

(pico-cells) [9, 24-26].  
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Chapter 3: Nonlinearity Analysis of a Ring Resonator 

Modulator  

While RRM can be a promising alternative for MPLs the linearity of RRM has not been 

fully investigated. To analyze a RRM two models namely static [119] and dynamic models 

[120] have been developed. The static model is limited in characterizing frequency 

response of RRM due to the resonance nature of RRM [120]. To capture a full frequency 

behavior of RRM the dynamic model is required. The dynamic model has been addressed 

for modulation index of RRM [73, 126] however the linearity of RRM has been mostly 

limited to the static model [124, 125].  

Static and dynamic models are reviewed for RRMs and a rigorous analytical method 

originated from dynamic method is developed to analyze linearity of RRM. The higher 

SFDR in RRM versus MZI modulator is examined showing operational bandwidth limits 

of the RRM SFDR. It is shown that the linearity of RRM imposes stricter limits on 

operational bandwidths than previously presented based on the modulation index of RRM 

[121]. The practical implementation conditions of RRM SFDR is studied in terms of noise 

bandwidth and ring-waveguide coupling conditions. A novel method of bias voltage 

adjustment is proposed and analyzed to improve the SFDR of RRM according to the noise 

bandwidth and ring-waveguide coupling conditions. RRMs are shown to be promising for 

applications with relatively narrow bandwidth (a few GHz) while operating in high 

operational frequency (millimeter-wave) such as high speed wireless access networks.  

3.1 Static analysis  

The RRM transfer function in the steady-state is similar to Equation (2.7) however the 

round trip phase shift (θ) is altered by the applied voltage as formulated in Equation (3.1) 

[73] 
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3
0 dcn r VL L

g
πθ β

λ
Γ

= +   (3.1) 

where 0n  is the effective refractive index of the propagating mode, L  is the perimeter of 

the ring, r  is the electro-optic coefficient of material, dcV  is the bias voltage, λ  is the 

optical wavelength, Γ is the electrical-optical overlap integral, and g  is the electrode gap.  

The RRM in steady-state represents a transfer function of Lorentzian type (transmission 

versus applied DC voltage) as shown in Figure 3-1. Characteristics of the RRM transfer 

function depend on the coupling condition between ring and base waveguide defined by 

α  and τ . The critical coupling condition (α τ= ) yields maximum resonance extinction 

ratio providing maximum range of operation at the slopes of Lorentzian transfer function. 

The resonance bandwidth and modulation index are controlled by critical coupling 

condition number and ring radius as shown in Figure 3-2. The resonance bandwidth 

narrows by increasing the critical coupling condition number or ring radius. However 

narrower resonance bandwidth yields higher slope of transfer function improving MPL 

gain and noise figure. There is always a trade-off between resonance bandwidth and 

modulation index and resonance structure is designed according to system level figure-of-

merits requirements. 

 

Figure 3-1 RRM transfer function versus coupling condition changes. 
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Figure 3-2 RRM transfer function changes versus (a) critical coupling conditions, and (b) ring perimeter 
size (L).  

To analyze nonlinearity using steady-state method, the transfer function is expanded in 

Taylor series around the specific point of bias voltage (Vdc) according to Equation (3.2). 

The transfer function of the modulator is Y(v) where v represents the time varying function 

which is the applied RF signal to the modulator and ak are the expansion coefficients.  

 
( ) ( )

( )
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!
dc

k k
dc

k
k v V

k
k dc

k

v V d YY v
k dv

a v V

∞

= =

∞

=

−  
=  

 

= −

∑

∑
  (3.2) 

In order to drive the modulator nonlinearity and eventually the SFDR of MPL from the 

Taylor expansion the common method of single-tone and two-tone test is applied [27]. By 

applying a single-tone signal in the general form of ( )( ) cosdcv t V A tω= + , where A is the 

signal amplitude and ω is the angular modulating frequency, to Equation (3.2) and driving 

the Taylor series coefficients the output signal can be represented as the summation of 

signals in harmonic frequencies as presented in Equation (3.3).  
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  (3.3) 

To extract intermodulation distortions the two-tone signal in the form of Equation (3.4) is 

applied to the Taylor series of modulator transfer function. Using trigonometric functions 

as shown in Equation (3.5) the output signal can be obtained as shown in Equation(3.6). 

 ( ) ( ) ( )1 2cos cosdcv t V A t tω ω= + +     (3.4) 
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  (3.6) 

As seen in Equation (3.6) besides harmonic distortions the output signal consists of other 

components with frequencies resulted from linear combinations of two input frequencies. 

It can be shown that IMD3 distortion power can be expanded to the linear mixing of 

amplitudes in odd harmonics starting from 3rd harmonic utilizing multinomial theorem as 
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shown in Equation (3.7) where (a3, a5, a7,…) are Taylor series expansion coefficients 

[127]. Equation (3.7) shows that the third harmonic distortion has the highest contribution 

in forming the output power at IMD3 distortion. Therefore one type of efforts to improve 

SFDR in sub-octave applications have been devoted to suppress third order harmonic 

distortion.   

 3 3 5 7
3 5 7

3 25 735 ...
4 8 64

IMD
out m m mE a V a V a V= + + +   (3.7) 

The static method can be modeled using computational software to obtain MPL figure-of-

merits and is a sufficient approach when the modulator response is not highly frequency 

dependent. The static model is commonly utilized for MZI modulators [27] however the 

RRM function is highly frequency dependent due to the resonance characteristics. The 

frequency dependency of RRM is intensified when traveling-wave electrodes are utilized 

where the velocity-mismatch and electrode loss factors need to be taken into account. 

While the static model has been utilized to model RRMs linearity [124, 125], it is shown 

in the Section 3.2 that the nonlinearity in RRMs is highly dependent on the frequency and 

the static model is not capable for full analyzing of RRM especially in terms of nonlinearity 

and link SFDR. 

3.2 Dynamic analysis  

The dynamic transfer function shown in Equation (3.8) is based on the multiple round-trip 

approach where the optical wave inside the ring is modeled by refractive index modulation 

of ring resonator and summation of modulation effects of round-trips [73, 103, 120]. 

  ( )
( ) ( ) ( )( )

2 2
sin2 1

1
1 n mi n t nout n n

nin

E t
e

E t
θ δ ω ϕτ τ τ α

∞
− + −−

=

 = − − ×  
∑   (3.8) 

In Equation (3.8) ωm is the operating microwave angular frequency, t is the time, and n is 

the number of times the beam propagates inside the ring. m FSRϕ ω=  where FSR is 
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defined by c/(n0L) (c is the speed of light in free space, n0 is the effective refractive index 

of the propagating mode and L is the perimeter of the ring). The round trip phase shift (θ) 

due to the steady state refractive index of the ring and applied DC bias voltage is defined 

in Equation (3.1). The modulation index is δn which depends on the electrode type (lumped 

or travelling-wave) used in the modulator. In the case of lumped electrode with an applied 

microwave signal in the form of ( ) ( )sinm mV t V tω=  the δn is given by Equation (3.9) [60]. 

It is assumed that all parts of active waveguide in the modulator, for example the ring 

waveguide in case of RRM, experience equal refractive index change at time corresponding 

to the applied RF voltage. 
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sin
2sin sin

2
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n m m
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n r V nt n L t
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 
 Γ   − = × × −    
 
 

  (3.9) 

In traveling-wave type electrodes the RF-wave travels along the ring waveguide and 

depending on the electrode loss and velocity of the RF-wave the optical-wave experience 

different refractive index modulation related to the RF-wave intensity. Therefore optical 

field at time (t) and length of propagation in electrode region (x) experiences a voltage in 

the from of Equation (3.10) [128] 

 ( ), sinmL
m m

nV x t V e t x
c

α ω− ∆ = − 
 

  (3.10) 

where αm is the microwave electrode loss factor, Δn is the electro-optic material refractive 

index difference in optical and microwave frequencies, and L is the length of electrodes 

which in the case of ring resonator modulator it is assumed to be equal to the ring perimeter. 

δn for traveling-wave electrodes can be derived as Equation (3.11)where m nL cψ ω= ∆  is 

the velocity mismatch factor [73]. 
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  (3.11)  

Equations (3.8)-(3.11) are utilized to model RRM in a MPL extracting link figure of merits. 

To calculate SFDR the two-tone test and numerical Fourier method is utilized [27] and the 

RF input power is swept in a range to identify two RF input power levels, which bring 

fundamental signal and distortion powers to the noise level. A typical set of MPL 

parameters as presented in Table 3-1 [49] is used for modeling. In addition utilized 

parameters to model electro-optic polymer modulators are shown in the Table 3-2 [129].  

Table 3-1 MPL parameters used in the calculations 
Parameter  Value 
Laser power  0.1 W 
Laser wavelength   1.55 µm 
Laser RIN  -165 dB.Hz 
Modulator transmission  -10 dB 
Detector responsivity  0.7 A/W 
Modulator load resistance  50 Ω 
Detector load resistance  50 Ω 
Noise Bandwidth  1 Hz 

Table 3-2 Polymer modulator parameters  
Parameter  Value 
Electrode gap (g)  10 µm 
Electrical-optical overlap (Γ)   1 
Effective refractive index (n0)  1.60 
Polymer EO coefficient (r)  36 pm/V 

It should be noted that the RRM nonlinearity discussed here is the result of RRM structure 

itself therefore the analysis can be generalized to RRMs on other type of material platforms 
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such as LiNbO3. However it should be stressed that the effect of material on modulator 

linearity needs to be considered for material platforms such as silicon where the material 

effects is not negligible [123, 124]. Moreover link parameters selections do not limit the 

generality of study conducted in this research since the MZI modulator is used in the same 

link parameters for comparison.  

3.3 Harmonic distortions  

To analyze nonlinearity of RRM, an analytical method is developed based on a dynamic 

transfer function. Harmonic distortions are derived from the dynamic transfer function by 

expanding the ( )( )( )exp sinn mj n t nθ δ ω ϕ− + −  part of Equation (3.8) to harmonic 

frequencies. The exponential part is reformed as Equation (3.12) and then derived as 

presented in Equation (3.13) by utilizing Bessel functions equivalent of trigonometric 

functions as shown in Equation (3.14) and Equation(3.15). 
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 (3.15) 

According to the harmonics in Equation (3.13), a pattern is extracted where the exponential 

function is derived as Equation (3.16) for odd harmonics (h = 1, 3…) and Equation (3.17) 

for even harmonics (h = 2, 4 …).  
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By substituting above equations in Equation (3.8) and considering lumped electrode for the 

modulator as shown in Equation (3.9) following relations can be derived for output powers 

at even and odd harmonics: 
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3.4 SFDR and operational bandwidth 

Using Equations (3.18) and (3.19) , output powers for fundamental, second, third, and fifth 

harmonics are calculated in the range of bias voltages and in 1 Hz and 50 MHz frequencies 

as presented in Figure 3-3. Two critical bias voltages are well noticed (VA and VB) at 1 Hz 

operating frequency as shown in Figure 3-3(a). At bias point VA, second and fifth 

harmonics are suppressed while at VB, the third harmonic is suppressed. The Lorentzian-

shaped transfer function of RRM has a bias point where the output power in third harmonic 

is minimum while the fundamental signal has considerable amount of power, resulting in 

higher SFDR compared to MZI modulators. Therefore, VB is the optimum bias for the 

RRMs to obtain high SFDR in terms of IMD3. However, by increasing the RF operating 

frequency from 1 Hz to 50 MHz the suppressing of the harmonics at VA and VB is 

diminished considerably as shown in Figure 3-3(b). 
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Figure 3-3 Normalized output intensities in fundamental, second-harmonic, third-harmonic and fifth-
harmonic frequencies versus bias voltages in (a) 1 Hz, and (b) 50 MHz operating frequencies. Results are 

for input RF power of -20 dBm and a ring resonator with 6 mm perimeter. Output intensity is in 
logarithmic scale and normalized versus input RF power. 

According to the results in Figure 3-3 it is expected that the RRM linearity diminishes 

considerably by increasing RF frequency which results in MPL SFDR degradation. To see 

the effect of RF frequency on SFDR, the MPL with RRM is modeled in 1 Hz and 50 MHz 

RF frequencies while biasing at VB. As seen in Figure 3-4 at 1 Hz RF frequency the IMD3 
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power shows fifth order slope meaning third order harmonic cancellation which provides 

SFDR (~125 dB.Hz4/5). However by increasing input RF frequency the IMD3 slope moves 

toward third order slope showing the third order harmonic cancellation is suppressed 

confirming the results presented by harmonic behaviors as shown in Figure 3-3. 

 

Figure 3-4 Output fundamental and IMD3 powers against the RF input power for RRM. Lines are the 
results for 1 Hz RF frequency and dots are for 50 MHz. Results are for 6 mm rings biased at VB. Noise 

level is at ~-164 dBm in 1 Hz bandwidth. 

To obtain the frequency bandwidth of SFDR, Figure 3-5 presents the calculated SFDR for 

the RRM that is biased at VB in the range of RF operating frequency up to 5 GHz. Results 

show that biasing the single RRM at VB will provide relatively high SFDR at very narrow 

bandwidths versus MZI modulator. SFDR > 120 dB (1 Hz noise bandwidth) is obtained 

only in ~20 MHz operational frequency and SFDR drops below MZI level (~110 dB, 1 Hz 

noise bandwidth) in ~720 MHz operational frequency.  

Obtained results show that bandwidth limitation dictated by RRM on MPL applications 

due to the SFDR is more severe than bandwidth limitations due to the modulation index 

presented before [121]. For instance, the 3-dB modulation index bandwidth of the same 

RRM is 1.6 GHz using Equation (2.16). However in ~1440 MHz RRM SFDR drops below 

MZI eliminating one of main advantages of RRM. The modulation index directly impacts 

MPL gain and noise figure and bandwidth of modulation index is translated to the 
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bandwidth of link gain and noise figure. Therefore linearity of RRM defines the operational 

bandwidth of RRM which is in contrary with previously discussed in the literature where 

bandwidth of RRM has been calculated based on modulation index [121]. Optical 

resonance linewidth is the limiting factor in the modulator operational frequency 

bandwidth affecting modulation index [130] and linearity [131]. The frequency dependent 

linearity and thus the SFDR of MPL limits the operational bandwidth more than the 

modulation index frequency bandwidth [131]. Thus in order to advance RRM for a wide 

range of MPL applications it is necessary to investigate ways to increase the SFDR at wider 

bandwidths (Chapter 4).   

 

Figure 3-5 SFDR versus RF operating frequency for RRM, and MZI. SFDR is calculated for 1 Hz noise 
bandwidth. RRM is biased at VB. 

3.5 Noise bandwidth effects on SFDR 

In determining the SFDR of a MPL the noise bandwidth requirement by a targeted 

application has a crucial role because of direct impact of noise bandwidth on the noise level 

defining the maximum and minimum RF powers that can be transmitted or processed by 

the link [27].  

Although RRM can provide ~15 dB improvement versus MZI modulator at 1 Hz noise 

bandwidth, the more noise bandwidth increases towards higher bandwidths the RRM is 
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less effective in keeping the SFDR advantage versus MZI modulator according to Equation 

(1.4) due to the IMD3 power slop of five versus RF input power. For instance at 500 MHz 

noise bandwidth RRM offers SFDR ~55.6 dB versus ~51.9 dB obtained from MZI 

modulator yielding just ~3.7 dB improvement.   

A new bias voltage adjustment method is proposed to improve the SFDR of RRM for MPL 

noise bandwidth requirements. Figure 3-6(a) shows that IMD3 output power is cancelled 

at a single RF input power yielding a null point in output IMD3 power versus RF input 

power as shown by PA. The slope of IMD3 power to the right of PA is five showing the 

complete third order harmonic cancellation while the slope on the left of PA is three 

showing third harmonic contribution in IMD3. In order to have constant slope of five in 

the whole interest range of RF input power the null point needs to happen below the 

intersection of noise level and IMD3 power as shown in Figure 3-6(a). In this case SFDR 

for other instantaneous bandwidths can be calculated using Equation (1.4). However it is 

shown here that the SFDR can be improved further by shifting the null point to the vicinity 

of noise level. The null point of IMD3 power (PA) can be optimized by adjusting bias 

voltage as shown in Figure 3-6(b) and Figure 3-6(c) for 1 Hz and 500 MHz instantaneous 

bandwidths respectively. As seen at the vicinity of the IMD3 null point IMD3 power 

becomes less than fifth order intermodulation distortion (IMD5) power showing the need 

of IMD5 power consideration for the accurate SFDR calculation. By moving bias voltage 

from 2.409 to 2.412 the SFDR is improved from 125.2 dB to 127.9 dB in 1 Hz 

instantaneous bandwidth. Adjusting the bias voltage is more beneficial in maximizing the 

SFDR for higher noise bandwidths where the RRM advantage margin is narrower. By 

biasing the RRM at 2.6 (V) the PA point is optimized according to the noise level at 500 

MHz noise bandwidth as shown in Figure 3-6(c) yielding SFDR ~57.7 dB. With this bias 

voltage adjustment method the superiority margin of SFDR from RRM versus MZI 

modulator is increased from 3.7 dB to 5.8 dB. To analyze the bias voltage influence on 

SFDR at higher instantaneous bandwidths SFDR is calculated in the range of bias voltages 

at 10 MHz and 500 MHz noise bandwidths as shown in Figure 3-7. Results show that 
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depending on the required system level noise bandwidth the bias voltage of RRM can be 

adjusted to maximize the SFDR for the desired noise bandwidth. Increasing noise 

bandwidth yields wider bias voltage range before SFDR sharp drops as seen in Figure 3-7 

easing the bias controller required resolution For instance at noise bandwidth of 10 MHz 

the RRM maintains 8.3±0.1 dB SFDR margin versus MZI modulator considering ±10 mV 

bias voltage tolerance, however, at 500 MHz the RRM maintains 5.6±0.1 dB SFDR margin 

at ±30 mV tolerance. It should be noted that the bias voltage controller is a necessary 

component for MZI modulators due to the bias drift phenomena and precise bias controller 

with a few mV resolution have been developed that can be utilized for RRM [132].  

 

Figure 3-6 Output fundamental, IMD3, and IMD5 powers against the RF input power at three bias voltages, 
(a) bias voltage is 2.409 (V), and PA is below noise level, (b) bias voltage is 2.412 (V), PA is optimized to 

maximize SFDR for 1 Hz instantaneous bandwidth, (c) bias voltage is 2.6 (V), and PA is optimized to 
maximize SFDR for 500 MHz instantaneous bandwidth. Results are for a ring with L = 6.2 mm and α = τ = 

0.8. 
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Figure 3-7 SFDR of RRM versus bias voltages at 10 MHz and 500 MHz instantaneous bandwidths in 
comparison with SFDR of MZI modulator. 

3.6 Ring-waveguide coupling condition tolerances 

The RRM transfer function is sensitive to the coupling condition between ring and base 

waveguide as described in Section 2.4. To achieve desired critical coupling condition 

physical dimensions of the RRM need to be designed and optimized utilizing numerical 

electromagnetic methods. However achieving the exact designed coupling condition in 

fabrication is challenging and requires high precision fabrication steps. Small tolerance in 

RRM physical dimensions can move α and τ considerably away from desired critical 

coupling condition [133]. By considering ±0.05 range of tolerance for α and τ around 

critical coupling condition α = τ = 0.8 the variation of SFDR versus α and τ tolerances is 

studied as seen in Figure 3-8(a). Results show dropping of SFDR as low as 46.7 dB (~5 dB 

less than MZI modulator) with just 0.05 tolerance in α and τ showing that RRM is highly 

vulnerable to lose its prominent advantage because of fabrication tolerances hindering 

RRM consideration as highly linear modulator. The solution proposed here is to adjust bias 

voltage according to the obtained α and τ from fabricated RRM. The optimum bias voltage 

to have maximum IMD3 power suppression is subjected to change by variations in α and 

τ. Therefore optimum bias voltage to maximize linearity of RRM needs to be adjusted in 

the application stage according to the fabricated α and τ values. Considering the capability 



 

39 

 

of bias voltage adjustment in 1 mV resolution the SFDR of RRM presented in Figure 3-8(a) 

is recalculated as shown in Figure 3-8(b). Results show with the bias voltage adjustment 

method the linear capability of RRM is restored keeping SFDR > 57 dB despite ±0.05 

tolerance in α and τ. The bias adjustment method can also be used with dynamic bias 

voltage controllers [132] in order to mitigate environmental and operational effects such as 

heat on RRM SFDR. 

 

Figure 3-8 Contour plot of SFDR versus ring resonator modulator fabrication tolerances according to loss 
factor (α) and coupling coefficient (τ) tolerances around critical coupling condition at α = τ = 0.8. (a) bias 

voltage is kept fixed at 2.6 (V) for all α and τ values while (b) bias voltage is optimized according to each α 
and τ values. 



 

40 

 

3.7 Ring resonator modulator for radio-over-fiber applications  

Despite narrow operational bandwidth of RRM due to the bandwidth of linearity, the RRM 

can be a promising choice for applications such as 60 GHz wireless access networks which 

are in need of high frequency operations while in a relatively narrow band. The RRM 

feasibility in terms of operational bandwidth is examined for RoF application of 60 GHz 

as shown in Figure 3-9. The 60 GHz wireless access networks will support frequency 

ranges from 57.240 GHz to 65.880 GHz according to the ratified IEEE 802.15.3c standard 

[134]. The allocated frequency range is divided into four channels with 2.15 GHz 

frequency bandwidth each. The RRM is for the channel from 59.40 GHz to 61.56 GHz 

with central frequency at 60.48 GHz. 

 

Figure 3-9 Fundamental setup of Radio-over-fiber signal transport using analog fiber optic links between 
antenna base-station (BS) and central office (CO). A ring resonator modulator (RRM) is shown as electro-
optic modulator. Amp: amplifier, BPF: band-pass filter, RFin: radio frequency signal applied to the RRM, 

OE: optical to electrical converter (photodetector), RFout: radio frequency signal at the photodetector 
output, IF: intermediate frequency, ADC: analog to digital converter. 
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To design a RRM for a desired frequency band the resonance frequency is adjusted at a 

multiple of FSR located at the center of the desired spectrum. For a 60.48 GHz central 

frequency and according to the effective refractive index of the optical propagating mode 

(n = 1.6) the ring perimeter (L) can be 6.2 mm in order to have a FSR = 30.24 GHz and 

thus the central frequency of the frequency band is matched with 2×FSR of the RRM. By 

considering critical coupling condition at α = τ = 0.8 the SFDR of link is calculated at 500 

MHz noise bandwidth and operational bandwidth (59.40 GHz to 61.56 GHz) as presented 

in Figure 3-10. As seen the SFDR of link using this RRM diminishes to the MZI modulator 

level in the desired frequency band.  

The optical resonance linewidth can be altered by either ring radius or coupling conditions 

in a way that smaller ring perimeters (L) or lower coupling conditions yields wider 

resonance linewidth as described in Section 2.4. To observe the ring perimeter and coupling 

condition influences on the SFDR, the SFDR of link is calculated for a ring with 3.2 mm 

perimeter with α = τ = 0.8 and α = τ = 0.7 coupling conditions. As shown by altering ring 

perimeter and coupling condition the SFDR bandwidth is considerably improved and the 

RRM with L = 3.2 mm and α = τ = 0.7 can provide SFDR > 54 dB (~2 dB improvement 

versus MZI modulator) for the whole frequency band of interest.  

 

Figure 3-10 SFDR versus operational frequency around 60.5 GHz for ring resonator modulator in 
comparison with MZI modulator. 
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It should be noted that a RRM with wider resonance linewidth is needed in order to take 

advantage of the RRM ~5.8 dB SFDR improvement versus MZI modulator in the whole 

band of interest. In the case of simulated RRM the ring perimeter cannot be reduced further 

since the FSR will be larger than the targeted frequency band. The coupling condition can 

however be decreased further targeting maximum achievable improvement in the whole 

band. However obtaining wide range of coupling conditions can be challenging in the 

physical structure design step of RRM resulting in physical dimensions causing fabrication 

difficulties [133]. In addition polymers have limited range of refractive indexes (typically 

1.5-1.7) and waveguides fabricated with polymer materials as their core and cladding 

experience weak mode confinement inside the core region leading to high bending loss in 

the ring waveguide [135]. Therefore polymer RRM have perimeters magnitudes on the 

order of millimeters [73, 103, 133]. Using materials with higher refractive indexes can 

provide more freedom in engineering RRM bandwidth. More options of refractive indexes 

exist by designing RRM within an silicon platform [124, 136] or hybrid waveguide 

structure consist of silicon as core and electro-optic polymer as cladding of waveguide 

[135, 137]. It should be stressed that wider resonance linewidth comes with the price of 

lower modulation index reducing link gain and noise figure along with higher DC bias 

voltage required by the modulator. However since the linearity of modulator in a MPL is a 

dominant factor in achieving application required SFDR it is beneficial to increase 

operation bandwidth of SFDR with a slight degradation in gain and noise figure. 

3.8 Summary  

Limitations of RRM frequency response modeling with static method required use of 

dynamic method to show complete behavior of RRM in MPLs. An analytical approach 

based on dynamic method is developed for harmonic distortions of RRMs pointing out the 

suppression of harmonic distortions at specific operational points of the Lorentzian transfer 

function. 
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The RRM third harmonic distortion suppression provides high SFDR of 125 dB.Hz4/5 in a 

MPL which is ~15 dB SFDR improvement versus MZI modulators. The RRM SFDR 

superiority fades rapidly at wider operational bandwidth. For instance the RRM with 

chosen parameters can keep the SFDR > 120 dB (1 Hz noise bandwidth) at just ~40 MHz 

of operational bandwidth and SFDR drops below MZI modulator level at ~1.4 GHz. The 

bandwidth limitation of SFDR is tighter than the modulation index dictated bandwidth and 

thus for analog applications the SFDR required bandwidth needs to be considered for RRM 

design.  

Increasing SFDR utilizing RRM is the result of third order harmonic cancellation. The 

SFDR increase considerably diminishes with requirements of noise bandwidth. A bias 

voltage adjustment method is proposed and assessed maximizing SFDR for various noise 

bandwidths. Adjusting the RRM bias voltage a SFDR ~57.7 dB is achieved for 500 MHz 

noise bandwidth that is ~5.8 dB more than MZI modulators. While the SFDR shows high 

vulnerability to the coupling condition tolerance resulting from fabrication it is shown 

using a second level bias voltage adjustment the RRM can maintain a SFDR > 57 dB 

despite coupling condition tolerance of ±0.05. Results are summarized in Table 3-3 to point 

out the effectiveness of bias voltage adjustment in improving the SFDR of RRM versus 

MZI. The developed bias adjustment method can be expanded to dynamic bias voltage 

controlling in order to mitigate imposed conditions of wavelength tolerance and thermal 

effects.  

Table 3-3 SFDR comparison of RRM and MZI in various instantaneous bandwidths 
 SFDR (dB) 
 RRM MZI 
 With bias voltage adjustment Biased at Vπ/2 
B = 1 Hz,  127.9 109.9 
B = 10 MHz 71.6 63.2 
B = 500 MHz 57.7 51.9 
B = 500 MHza 57-57.7 ------ 

a Including ±0.05 tolerances for coupling conditions (τ and α) in RRM. 
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This bias adjustment method for noise bandwidths and fabrication tolerances opens the 

path for RRM advancement in MPL applications which require high operation frequency 

while in a limited band. RoF application of 60 GHz wireless access network is targeted as 

an example to examine operational bandwidth of RRM dictated by the SFDR. By 

engineering a ring resonator structure the RRM is a promising alternative electro-optic 

modulator providing higher SFDR in comparison with MZI modulator in the range of 

operational bands for the next generation wireless communication using millimeter-wave 

wireless access networks.  

Although the developed bias voltage adjustment method and ring structure engineering 

open the path for RRM advancement in some MPL applications, still the SFDR narrow 

bandwidth is the main drawback of RRM for most of MPL applications. To exploit the 

RRM advantages of high SFDR, high modulation index, smaller size, and less power 

consumption in MPLs it is appealing to investigate methods providing high SFDR in wider 

bandwidths. 
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Chapter 4: Dual Ring Resonator Modulator 

The high SFDR advantage of RRM discussed in Chapter 3 is promising for some 

applications with limited operational bandwidths. In order to advance RRM for a wider 

range of applications the improvement of SFDR bandwidth is inevitable to provide more 

than 15 dB (1 Hz noise bandwidth) improvements in GHz operational bandwidths versus 

MZI modulator. To improve SFDR bandwidth the IMD3 distortion needs to be suppressed 

in wider bandwidths. Dynamics of IMD3 distortion in a RRM are analyzed by further 

developing the theoretical model for two-tone test. The IMD3 power is analyzed versus 

fundamental signal power showing that IMD3 power has cubic modulation index 

dependence however the fundamental signal power has linear modulation index 

dependence. The developed theoretical model leads to a novel strategy to suppress IMD3 

power independent of operational frequency by dividing the RF and optical powers in 

specific ratios between two RRMs in a structure shown in Figure 4-1 and named as dual 

ring resonator modulator (DRRM). The RF power splitting ratio (F) between two RRMs is 

set according to the optical power splitting ratio. Electrodes can be designed in either 

lumped or traveling-wave types and depending on the utilized electro-optic material type 

electrodes locate side-by-side or top-bottom of the optical waveguide. By adjusting RF and 

optical power ratios, RRMs generate equal powers of third harmonic distortions but out-

of-phase that are cancelled after recombining the outputs of photodetectors in electrical 

domain. The third harmonic cancelation approach is frequency independent yielding ~15 

dB SFDR improvement (1 Hz noise bandwidth) versus MZI modulators. The impact of the 

modulator on microwave photonic link figure of merits is analyzed and compared to RRM 

and MZI modulators.  
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Figure 4-1 Schematic of a MPL with dual ring resonator modulator. 

4.1 IMD3 suppression strategy   

A Dual Ring Resonator Modulator (DRRM) is proposed to cancel the 3rd order harmonic 

portion of the IMD3 in order to maintain SFDR over a large bandwidth. Equal powers of 

the 3rd order harmonic are produced by the DRRM with 180° phase difference allowing 

cancellation of the 3rd order harmonic. However, the cancellation process of the 3rd 

harmonic slightly suppresses the fundamental signal as quantified later in Section 4.2. To 

yield the maximum SFDR the optical and RF powers are divided with a specific ratio 

between the two RRM paths providing minimum cancellation of the fundamental signal. 

To develop a strategy for IMD3 suppression in wide bandwidths the dynamics of IMD3 

power are analyzed versus fundamental signal. The analytical approach presented in the 

Chapter 3 is developed further by applying two-tone test to the RRM dynamic transfer 

function and extracting the fundamental signal and IMD3 signal powers. Similar to the 

single tone test, see Section 3-3, the ( )( )( )exp sinn mj n t nθ δ ω ϕ− + −  part is expanded to 

frequency components. The exponential part shown as E can be written as Equation (4.1) 

with real and imaginary parts shown in Equations (4.2) and (4.3). 
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By using Bessel function expansions presented in Equation (3.14) and (3.15) the Re(E) and 

Im(E) are given by Equation (4.4) where Bessel functions are considered up to the third 

order. 
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By multiplying the components in Equation (4.4) and Equation (4.5) and using 

trigonometric identity functions, Re(E) and Im(E) can be written as presented in Equations 

(4.6) and (4.7).   
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From Equation (4.6) and Equation (4.7) various harmonics and intermodulation distortions 

can be recognized. By extracting fundamental signal and IMD3 amplitudes at real and 

imaginary parts of (E) Equation (4.8) and Equation (4.9) are given. By replacing these 

relations in RRM transfer function [Equation (3.6)] finally Equation (4.10) and Equation 

(4.11) are obtained for output RF signal and IMD3 powers. 
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Obtained relations for fundamental and IMD3 powers show that the fundamental signal 

power is proportional to the ( ) ( )0 1n nJ Jδ δ  product, however the IMD3 signal power is 

related to the product of Bessel functions ( ) ( )1 2n nJ Jδ δ . In analog modulation the applied 

RF signal is in small signal criteria with one or more orders of magnitude smaller than DC 

operational points yielding the 1nδ   and hence the ( ) ( )0 1n nJ Jδ δ  and ( ) ( )1 2n nJ Jδ δ  

products can be expanded as shown in Equation (4.12) and Equation (4.13).  

 ( ) ( )0 1n n nJ J higher ordersδ δ δ= − +   (4.12) 

 ( ) ( ) 3
1 2

1
16n n nJ J higher ordersδ δ δ= − +   (4.13) 
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The output fundamental signal power has approximately linear modulation index 

dependence according to Equations (4.12) and (4.13) while the IMD3 signal power has 

approximately the cubic modulation index dependence. Derived relations provide a method 

to suppress IMD3 power by utilizing third harmonic cancellation while maintaining 

fundamental signal suppression at a minimum level. Dividing RF and optic powers 

between two RRMs in order to produce equal powers of third harmonic with 180° phase 

difference at the detectors yields complete third harmonic cancellation.  

To illustrate, consider dividing the RF input power between two modulators such that RF 

input voltage amplitude for one modulator (main) is two times of the RF voltage amplitude 

for another modulator (secondary). Then the output third harmonic power from the primary 

modulator is eight times of the third harmonic power from the secondary one. If the optic 

power is divided between two modulators that primary modulator receives eight times optic 

power less than the secondary modulator the third harmonic powers from primary and 

secondary modulators are expected to be equal. By having 180° phase difference in the 

third harmonic signals from the modulators the third harmonic signal is completely 

cancelled after combining the outputs of the detectors as shown in Figure 4-1.  

The suggested method can be formulated as following that to cancel the third order 

harmonic of IMD3 two RRMs are utilized with divided RF power at ratio F2:1 while optical 

power ratio needs to be the inverse cube of the RF power ratio, i.e. 1:F3. The main 

modulator is fed by higher RF power while receiving less optical power and the secondary 

modulator receives less RF power but it is driven with higher optical power. The optical 

power ratio (1:F3) between the modulators is set by the coupling ratio between the base 

waveguides of the main and secondary modulators. If the RF and optical power are held at 

the previously mentioned ratios the third harmonic produced from two modulators is equal 

and exactly canceled at the output.  

The output power vs. input power for the fundamental and the IMD3 for RRM and DRRM 

(both biased at VA according to Figure (3.1)) with F = 3 are shown in Figure 4-2. In the 
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DRRM IMD3 power is suppressed more than fundamental signal yielding an enhancement 

in SFDR as marked in Figure 4-2. It is worth mentioning that the IMD3 power versus input 

power in the RRM has a slope equal to 3 showing third order harmonic contribution in 

IMD3. Having a linearization process in the DRRM the slope of IMD3 increases to 7, 

therefore by biasing the modulators at the proper voltages and having DRRM with the 

proper power ratio of RF and optical powers both third and fifth order harmonics are 

cancelled.  

Figure 4-2 Output fundamental and IMD3 powers against the RF input power. Lines are the results for 
single RRM and dots are for the DRRM. Results are for 6 mm rings biased at VA. Noise level is at ~-164 

dBm in 1 Hz bandwidth. 

To take advantage of the fifth order harmonic suppression modulators are biased at voltages 

that the fifth order harmonic is suppressed (VA) as shown in Figure (3.1). However in order 

to produce 180° degree phase difference between IMD3 signals at the output, the ring 

modulators branches need to be biased at voltages that are symmetric versus the center of 

the Lorentzian transfer function as shown in Figure 4-3(a) by ±VA. To confirm third order 

harmonic cancellation in DRRM harmonic distortions are calculated and compared to the 

RRM as shown in Figure 4-3(b). The third harmonic is suppressed in the range of ~130 dB 

while the fundamental signal is decreased by ~14 dB showing the capability of DRRM to 

suppress IMD3 and enhance SFDR.  
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Figure 4-3 (a) Lorentzian transfer function of a RRM versus bias voltage showing the symmetrical bias 
points (±VA), (b) fundamental and 3rd harmonic distortion in DRRM and RRM versus bias voltage. 

4.2 DRRM figure of merits 

The DRRM provides the third order harmonic cancellation process which is independent 

of frequency. Variation of the SFDR versus operating RF frequency is shown in Figure 4-4 

for DRRM and compared to the RRM. When the operating RF frequency is at resonance 

frequency the complete suppression of the fifth order harmonic comes with biasing at VA. 

Working at frequencies away from resonance the fifth harmonic contribution in IMD3 

power increases reducing SFDR, however DRRM maintains complete cancellation of the 

third harmonic regardless of the operating frequency. Therefore DRRM provides SFDR > 

129 dB (1 Hz noise bandwidth) in a relatively narrow operational bandwidth around the 

resonance frequency (~40 MHz) while keeping SFDR > 124.6 dB (1 Hz noise bandwidth) 

at unlimited operational bandwidth. The nondispersive third harmonic cancellation using 

DRRM is a great advantage in comparison with ring assisted MZI modulators where the 

linearization process is highly sensitive to the operating frequency [81, 98]. 
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Figure 4-4 SFDR versus RF operating frequency for RRM, DRRM and MZI. SFDR is calculated for 1 Hz 
noise bandwidth. RRM is biased at VB and DRRM is biased at VA. 

It is inevitable that with the DRRM there will be some reduction of the fundamental signal 

affecting system level figure of merits mainly gain and noise figure. The reduction of the 

fundamental signal is not linearly related to the F-ratio therefore the link figure of merits 

is analyzed by sweeping the F-ratio as shown in Figure 4-5. Optimum figure of merits is 

obtained at F ~ 2.4 when minimum cancellation of the fundamental signal occurs yielding 

improvement in SFDR, gain and noise figure. According to this ratio optical power splitter 

should be designed to split optical power at 1:2.43 while RF power is divided in 2.42:1 ratio. 

The main challenge in order to maximize link figure of merits is to design and fabricate 

optical and RF power splitters precisely. The optical power splitter ratio is set in the 

fabrication process and no control is accessible after fabrication step within the current 

design. Moreover, depending on the material used in the fabrication, optical power splitter 

can be vulnerable to the device thermal fluctuations. RF power splitting can be controlled 

in the application step and the RF splitting ratio can be tuned to the desired number after 

obtaining measurements of optical power splitter in order to satisfy the ratio relations 

between RF and optical powers. The DRRM imposes a very high tolerance of the SFDR 

to the RF signal splitting ratio accuracy as shown in Figure 4-6. Results are calculated for 

F = 3 meaning the RF voltage amplitude should be divided in 75% to 25% between the  
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Figure 4-5 Link figure of merits versus F-ratio (a) SFDR, (b) noise figure and gain. 

main modulator and the secondary modulator respectively. In order to analyze the tolerance 

of the DRRM to splitting ratio the voltage amplitude receiving by the second modulator is 

swept around 25% ratio while keeping the fixed 75% voltage amplitude receiving by the 

main modulator. To keep the SFDR > 120 dB the RF voltage amplitude needs to be divided 

in a resolution finer than 0.2% of the input amplitude. To control RF dividing ratio with 

this high accuracy active control will likely be necessary where an active feedback feed by 

distortion of a pilot tone can be used [49]. In addition dividing RF signal with high accuracy 

can be achieved utilizing integration techniques to minimize the fabrication and application 

tolerances [67]. 
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Figure 4-6 SFDR change versus RF voltage amplitude received by the secondary modulator. 

Although the DRRM can provide high SFDR in wide bandwidth, the DRRM inherits 

operational bandwidth limits from the RRM in terms of the modulation index affecting 

gain and noise figure. The RRM and consequently the DRRM impose bandwidth limitation 

to the modulation index based on optical resonance line-width (BWres). The BWres can be 

controlled by the optical resonator structure including size of the ring and coupling 

parameters and is the trade-off for an increasing in modulation index as discussed in 

Chapter 3. High-Q optical resonances result in an increased modulation efficiency, but 

more limited RF bandwidth. In Figure 4-7 variation of the link figure of merits, gain and 

noise figure versus operating RF frequency up to 5 GHz is shown for RRM and DRRM. 

While SFDR improvement in DRRM is clear in Figure 4-4, gain and noise figure is slightly 

diminished due to the fundamental signal reduction as shown in Figure 4-7. Since SFDR 

is not a bandwidth limiting factor for DRRMs, unlike RRMs, the ring resonators in DRRM 

can be designed according to bandwidth requirements of gain and noise figure.   
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Figure 4-7 Link figure of merits versus operational bandwidth using RRM and DRRM, (a) gain, and (b) 
noise figure. 

By using traveling-wave electrodes the capacitance and the photon transit-time bandwidth 

limitations due to the lumped electrodes are removed [128] and the DRRM can operate at 

multiples of FSR. A DRRM with lumped electrode can be only operated in baseband up to 

BWres/2. However a DRRM with traveling-wave electrodes can work at multiples of FSR 

with BWres around the resonance frequency. By utilizing traveling-wave electrodes the 

DRRM inherits the advantages in enhanced modulation index from RRM for high 

frequency operations. RRM modulators provide higher modulation index in a bandwidth 

around the resonance frequency in comparison to the MZI based modulators when the 

velocity mismatch and RF loss are taken into account as described in Chapter 2 [73]. 

Although the SFDR of DRRM reported here is calculated based on the lumped electrode 

the results can be generalized to the traveling-wave electrodes since the type of electrode 

does not affect the linearization process in DRRM. However for the gain and noise figure, 

similar to RRM as discussed in Chapter 3, microwave electrode loss and velocity mismatch 

factors must be taken into account since these factors can have detrimental effect on 

modulation index at multiple FSR operating frequencies [73, 103].  
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For practical implementations SFDR versus the noise bandwidth is a critical link parameter 

as discussed for RRM in Section 3-5. As seen in Figure 4-2 IMD3 power shows constant 

slope in the RF input power range of interest and Equation (1.4) is utilized to calculate 

SFDR at noise bandwidths other than 1 Hz. For DRRM operating at frequencies close to 

the resonance frequency both third and fifth order harmonics are cancelled yielding m = 7 

while at frequencies away from the resonance just the third order harmonic is cancelled 

yielding m = 5. In Figure 4-8 variation of SFDR versus instantaneous bandwidth is 

presented for the DRRM in comparison with MZI. In order to show the operational 

frequency effect on SFDR versus noise bandwidth the results for DRRM are presented in 

1 Hz and 5 GHz frequencies. The DRRM in comparison with MZI presents ~7–9 dB SFDR 

improvement in 1 MHz instantaneous bandwidth while improving ~3 dB at 1 GHz 

instantaneous bandwidth. Results show that DRRM loses its SFDR superiority by large 

margin in high noise bandwidths because of harmonic cancellations similar to the RRM. 

Proposing a method, similar to the developed method for RRM in Section 3-5, to restore 

the DRRM advantage of high SFDR at high noise bandwidths would be beneficial in future 

application implementations.  

Figure 4-8 SFDR versus instantaneous bandwidth in MZI and DRRM. 

A comparison between DRRM, RRM, and MZI modulators is summarized in Table 4-1. 

Operational bandwidths and noise bandwidths are considered ±5 GHz around the 
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resonance frequency and 1 GHz respectively. Since the RRM and DRRM have frequency 

dependence, due to the resonance, the figure of merits is defined in a range for ±5 GHz 

operational bandwidth around the resonance frequency. DRRM can provide ~4–15 dB and 

~15–20 dB SFDR improvement versus RRM and MZI respectively in 1 Hz instantaneous 

bandwidth. In 1 GHz instantaneous bandwidth the DRRM maintains ~3 dB SFDR 

improvement versus MZI. The low improvement in 1 GHz instantaneous bandwidth is 

related to the higher order harmonic cancellation method yielding higher m in Equation 

(1.4). The presented SFDR improvement comes with the price of the gain and noise figure 

deteriorating as quantified in Table 4-1. However it should be stressed that the SFDR is a 

prevalent figure of merit for increasing performance metrics and wide scale 

implementation. While linearity of the modulator has the direct critical effect on the SFDR 

of MPL there are other mechanisms to mitigate degradation of the gain and noise figure 

including use of higher laser power, higher detector responsivity, and lower laser relative 

intensity noise. In addition, resonator structure in the DRRM can be modified to address 

gain and noise figure requirements since SFDR is not a limiting factor while the narrow 

bandwidth of SFDR is the main limiting factor of RRM as described in Chapter 3.  

The DRRM requires lower DC bias voltage compared to RRM and MZI modulator as 

quantified in Table 4-1. The lower bias voltage helps in reducing the power consumption 

in DRRMs however for a complete assessment of the power consumption other factors 

such as optical power loss, power consumptions in photodetectors, and gain reductions 

need to be considered which can be a subject for future studies. 

Table 4-1 DRRM, RRM and MZI figure of merits comparison 
Figure-of-merits MZI RRM DRRM 
SFDR (dB)a 109.9 109 – 125.6 124.6 – 130 
SFDR (dB)b 49.9 49 – 53.6 52.6 – 52.9 
Gain (dB) -24.2 -24.2 – -21.1 -39.5 – -34.2 
Noise figure (dB) 37.1 34 – 37.1 43.8 – 49 
DC Bias (V) 4.44c 2.49 1.44 

a1 Hz instantaneous bandwidth, b1 GHz instantaneous bandwidth, c1 cm branch length 
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4.3 Summary 

To investigate possible methods to suppress IMD3 power independent of frequency the 

theoretical analysis of RRM is expanded for two-tone test in order to analyze dynamics of 

IMD3 power versus fundamental signal. It is shown that IMD3 signal power has cubic 

modulation index dependence while the fundamental signal has linear modulation index 

dependence leading to a novel dual ring resonator modulator to obtain high SFDR at wide 

operational bandwidths. By dividing the RF and optical powers in specific ratios between 

two RRMs and proper DC biasing the 3rd harmonic distortion signals at the output have 

equal powers but 180oof phase yielding the IMD3 power suppression independent of the 

operational frequency. The design takes advantage of fifth harmonic cancellation by proper 

biasing the modulators at narrow operational bandwidth around the resonance frequency 

in order to reach SFDR ~ 130 dB.Hz6/7 while the 3rd order cancellation method maintains 

the SFDR > 124.6 dB.Hz4/5 in frequencies away from the resonance frequency. The gain 

and noise figure of the DRRM design are degraded by ~14 dB and 12 dB respectively 

compared to the RRM because of the fundamental signal reduction. The gain and noise 

figure degradation can be mitigated by optimizing other link parameters such higher laser 

power, higher detector responsivity, and lower laser relative intensity noise. The resonator 

structure of DRRM also can be optimized to maximize the modulation index improving 

gain and noise figure.  

The DRRM provides a platform to cancel 2nd, 3rd, and 5th harmonics simultaneously. The 

second and fifth harmonic cancellations are frequency dependent based on the resonance 

bandwidth however the 3rd harmonic cancellation is independent of frequency. The DRRM 

yields ~15 dB SFDR (at 1 Hz noise bandwidth) improvement versus MZI and RRM 

regardless of operational frequency. The high SFDR of DRRM is a promising factor for 

future advancements of MPLs.  
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Chapter 5: Ring Resonator Modulator Design 

To fabricate electro-optic modulators, physical dimensions of modulators need to be 

chosen and optimized utilizing numerical simulation techniques. To succeed in realization 

of optimized electro-optic modulators the design process is critical and requires 

information from material properties, fabrication process/tolerances, and targeted 

applications.  

RRMs are more complicated to design and fabricate in comparison with MZI modulators 

because the RRM functionality is highly related to the ring-waveguide coupling condition 

as discussed in Sections 3-1 and 3-6. The coupling condition is directly related to material 

properties and fabrication tolerances. To realize RRMs operating in the desired ring-

waveguide coupling condition precise design and fabrication processes are required. The 

design process is optimized by obtaining feedback from the fabrication process to take into 

account the fabrication tolerances.   

A design procedure is developed to obtain physical dimensions of RRM. Different 

computational electromagnetic methods are studied and examined to identify the best 

capable method. Designs are conducted according to fabrication plans on an all-polymer 

platform however the developed design procedure can be useful in designing RRMs in 

other types of material platforms. 

5.1 Photonic device simulation methods 

To design optical waveguides for the electro-optic modulators simulation tools are utilized 

to simulate light-wave propagation within the structures. The light-wave propagation 

inside waveguides is described by electromagnetic theory and is solved through numerical 

methods known as computational electromagnetic methods [138]. 
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Numerical methods that directly solve the Maxwell equations without considering any 

approximations are called full-wave methods which are the most accurate solvers and are 

applied to wide range of problems. Finite Difference Time Domain (FDTD) as a time 

domain solver [139] and Finite Element Method (FEM) as a frequency domain solver [138] 

are powerful full-wave algorithms that are popular for photonic devices. However full-

wave solvers are computationally intensive. In this work FDTD and FEM have been 

available through commercial software packages of RSOFT and COMSOL respectively. 

Attempts made to simulate the desired RRM using FDTD and FEM are shown that the ring 

resonator simulation in three dimension with ring radius sizes in mm ranges is very 

demanding and not practical with the available computational resources of 256 GB 

memory. 

Some types of approximations can be utilized to ease the computation requirements for 

optical waveguides. In optical waveguides for electro-optic modulators the light-wave 

propagation direction is known and unidirectional. In addition the light-wave is considered 

as slowly varying wave throughout the optical waveguide. According to these assumptions 

two types of computational electromagnetic methods have been developed namely beam 

propagation method (BPM) and beam envelope method (BEM) [140, 141]. BPM is based 

on finite difference method while BEM is based on finite element. BPM and BEM are 

common methods in designing various types of planar photonic devices including 

directional couplers, splitters, multimode interference devices, and modulators [142]. In 

this work BPM and BEM included in RSOFT and COMSOL packages have been available 

respectively.  

The approximations involved in BPM and BEM limit their implementation criteria 

specially for structures including discrete structure, fast changes, evanescent waves, 

scattering, and propagation in wide angles [143]. Wave propagation simulation inside the 

ring waveguide is also not possible utilizing standard BPM and BEM. However COMSOL 

BEM module can be modified in order to simulate ring resonator by defining the phase of 
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propagation wave (φ) inside the ring according to Equation (5.1) where β is the propagation 

constant, R is the ring radius, and (x, y) represents the coordinates of ring waveguide in the 

XY plane. By defining the phase of propagating wave inside the ring the COMSOL BEM 

solver is shown to be capable of simulating ring resonator structure while with much lower 

requirements of the computational memory and rings up to 2.5 mm radius are simulated in 

3D with the available 256 GB memory. 

( )1tanR x yϕ β −= × ×  (5.1) 

5.2 Single mode optical waveguides 

Optical waveguides in electro-optic polymer modulators are based on a platform of stacked 

layers of passive and active polymer materials as shown in Figure 5-1. The electro-optic 

polymer material as core layer is sandwiched between cladding layers of non-active 

polymer materials for mode confinement while providing refractive index changes due to 

the applied electrical signal [144]. The propagating light-wave is confined due to the 

refractive index difference between core and cladding layers where nclad < ncore and the 

waveguide cross section structure [142]. Depending on the refractive indices of utilized 

materials and the operational wavelength the waveguide cross section is designed to 

support only single propagation mode in the desired polarization [144]. The polarization 

of propagating light-wave is chosen according to the direction of electro-optic coefficient 

and applied electric field. The TM polarization is the common polarization utilized for 

electro-optic polymer modulators and electrodes are located on the top and bottom of the 

waveguide as shown in Figure 5-1. 
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Figure 5-1 Cross section schematics of (a) a rib waveguide, and (b) a channel waveguide.  

Waveguide cross section in electro-optic modulators can be in the form of channel and rib 

waveguides as shown in Figure 5-1 [145]. While the channel type waveguide shown in 

Figure 5-1(b) can provide better optical mode confinement, which can improve modulation 

efficiency, the rib type waveguide shown in Figure 5-1(a) is utilized [144]. Rib waveguides 

are chosen since larger mode sizes can be supported in single mode operation resulting in 

easier in/out light couplings. In addition for a ring resonator type structure the rib 

waveguide cross section is beneficial because of less mode confinement loosening the 

design constraints for ring resonator coupling conditions shown by g and R in Figure 5-2. 

Rib waveguide cross section can be fabricated utilizing common lithography followed by 

shallow etching steps yielding straight forward fabrication procedures. Rib waveguides are 

focused on hereafter. 

 

Figure 5-2 Top view of ring resonator structure. 
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Single mode criteria is calculated in a range of waveguide cross section dimensions of W, 

H, and h as shown in Figure 5-1(a). Single mode criteria in rib waveguides is determined 

according to the common higher order radiation method in shallow etched rib waveguides 

where   /   0.5r h H= ≥  in order to take advantage of the large mode sizes [144]. In the 

higher order radiation method the rib section of the waveguide can be multimode, however, 

higher order modes in the rib area have an effective refractive index less than nearby slab 

waveguide modes [144]. Therefore the higher modes of rib area radiate horizontally into 

the slab modes and transform to evanescent modes.  

To determine single mode criteria in shallow etched rib waveguides a relation of 

21
W rK
H r

< +
−

is often utilized where K is a dimensionless constant [146, 147]. 

However the relation is an approximate and it was shown that in the case of polymer rib 

waveguides the resulted single mode criteria can be misleading and numerical analysis is 

required [148]. To simulate single mode criteria the mode solver modules from COMSOL 

and RSOFT packages are used.   

The single mode criteria is calculated considering materials and fabrication properties. 

Commercially available materials of SEO100C from Soluxra LLC and NOA73 from 

Norland Products Inc. are utilized for core and cladding layers respectively. Refractive 

indexes of SEO100C and NOA73 are used in design process as ncore = 1.7 and nclad = 1.55 

respectively. The core thickness (H) and the cladding thickness (d) are chosen according 

to properties of materials, fabrication, and implementation.  

The core layer thickness range is limited due to the film uniformity degradation causing 

higher propagation loss. The SEO100C film thickness in the range of 2-2.7 µm is 

recommended by the manufacturer for a uniform layer. A thin core layer decreases the 

optical mode size causing difficulty in the light in/out coupling process [144]. In addition 

a thin core layer can add vulnerability from fabrication tolerances [144]. The core layer 
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thickness is chosen to be 2.7 µm in the design and confirmed by measurements utilizing 

profilometer technique.  

The thickness of cladding layers is critical in poling and modulation efficiencies. Cladding 

layers are modeled as resisters around the core layer in determining voltage levels across 

the core layer during poling and modulation. Decreasing the cladding layer thickness is 

desired in order to increase the voltage levels across the core. However there is a trade-off 

in the cladding thickness since thinner cladding layers add to the optical mode loss due to 

the optical mode coupling to the bottom and top metallic layers serving as electrodes [144]. 

Simulation optimization results in a 4 µm maximum cladding thickness provides negligible 

optical mode loss (less than 0.1 dB/cm), while maintaining reasonable poling efficiency. 

The single mode criteria is determined by calculating the effective refractive indices of slab 

modes as shown in Figure 5-3(a). A slab waveguide with 2.7 µm thickness can propagate 

three modes with refractive indices of (nr0, nr1, nr2) as marked in Figure 5-3(a). In order to 

make single mode rib waveguide the refractive indices of higher order modes inside the rib 

need to be lower than the fundamental mode of surrounding slab layer. For instance a rib 

with 0.7 µm height formed in 2.7 core thickness (surrounding slab thickness is 2 µm) 

results in an effective refractive index of ns0 for slab mode, which is higher than nr1 and nr2 

yielding horizontally radiation of higher order modes into the slab modes. To obtain single 

mode criteria the higher order radiation pattern is examined for a range of waveguide width 

as shown in Figure 5-3(b). The boundary between single mode and multimode region 

shows the maximum waveguide width (W) which results in single mode condition for each 

rib height ratio (h/H). The single mode criteria identifies a range of W and h that can be 

chosen however the exact values of W and h are designed according to the ring-waveguide 

coupling condition as described in Section 5.3.  
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Figure 5-3 (a) Effective refractive indices of propagation modes of slab waveguide, (b) single mode criteria 
of rib waveguide.   

5.3 Ring resonator coupling condition design 

The ring resonator structure is designed to operate at critical coupling condition where the 

ring loss factor (α) is equal to the coupling coefficient between ring and waveguide (τ) 

maximizing the resonance extinction ratio [118]. The coupling coefficient (τ) is determined 

by the coupling area between ring and waveguide and the mode confinement factor. The 

coupling area is defined by the gap size between ring and waveguide (g) and the coupling 

length determined by the ring radius (R) as shown in Figure 5-2. The mode confinement 

factor is defined by the waveguide cross section design (W, H, h) as shown in Figure 5-1(a). 

However the mode confinement factor and the ring radius affect the ring loss factor (α) as 

well and hence α and τ are interrelated and need to be analyzed together.  

The critical coupling condition number for a polymer RRM is dictated by the ring loss 

factor because of high propagation losses in electro-optic polymers. Initial propagation loss 

measurements in the fabricated straight waveguides show ~5 dB/cm loss yielding loss 

factor of 0.5 for a ring with 2 mm radius (if the bending loss is negligible). Therefore in 

order to reach maximum possible critical coupling condition (~0.6) an optimum way is to 
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design the ring resonator with negligible bending loss and adjusting other dimensions to 

obtain τ as close as possible to α. 

To initiate the design process the mode confinement factor is considered to be fixed by 

choosing waveguide cross section dimensions from single mode criteria. For instance W = 

3 µm is chosen according to H = 2.7 µm core layer thickness in order to have a propagation 

mode shape close to circular improving fiber in/out coupling using tapered fibers. τ and α 

are calculated in a range of ring radii while the τ is simulated in gap sizes 1-3 µm as shown 

in Figure 5-4. In these simulations the structure is simulated with r = 0.6 from single mode 

criteria and ignoring propagation insertion loss. As seen in Figure 5-4 a ring with radius 

>1.5 mm has minimal bending loss. Gap sizes of 1.5 µm- 2 µm shows results close to the

critical coupling condition with ring radius sizes (1.5 mm- 2.5 mm). In order to choose the

proper gap size the fabrication process and capability must be taken into account.

Achieving a gap size smaller than 1 µm is challenging on the utilized lithography machine

(EVG®620).

Figure 5-4 Coupling coefficient (τ) and ring loss factor (α) versus ring radius. The Solid line is for α and 
dashed lines are for τ with gap sizes1 µm, 2 µm, and 3 µm. Simulated waveguide cross section dimensions 

are W = 3 µm, H = 2.7 µm, and h = 1.9 µm.  

To analyze waveguide cross section W and r parameters in relation to the coupling 

condition α and τ are simulated for three different values of W and r as shown in Figure 
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5-5. The performed analysis is helpful to understand the proper dimensions for critical

coupling condition as well as understanding fabrication tolerance impact. As seen by

increasing ring radius α is less sensitive to the changes in W and r while τ becomes more

sensitive in larger ring radius. It is clear that the mode confinement factor defined by W

and r plays an important role in determining α and τ. Results show the challenges in

designing and fabricating a RRM with success and importance of feedbacks from

fabrication process in order to tune the design parameters accordingly.

Figure 5-5 τ (dashed lines) and α (solid lines) change versus (a) rib height ratio r while W=3 µm and (b) 
waveguide width (W) while r=0.7 

After designing α and τ in separate simulations a complete ring resonator structure is 

simulated to check the accuracy of the simulation versus theoretical results. This step can 

be a preliminary step towards analyzing active RRM for MPLs through COMSOL 

Multiphysics package. As presented in Figure 5-6 there is a close match between 

theoretical and simulation and the discrepancy can be reduced by improving mesh 

resolution. Simulation of the complete RRM is challenging because of required computing 

power and memory. Special attention needs to be paid in proper meshing techniques in 
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order to optimize computing time as well as required resources but not to sacrifice the 

accuracy. To obtain the results presented  

Figure 5-6 Ring resonator resonance function versus light wavelength, comparison between results 
obtained from analytical equation and numerical simulation. 

in Figure 5-6 the number of elements is ~600000 which requires ~200 Gb memory (The 

computing resources required for this project is provided by Superior cluster computing at 

MTU). Capability of the complete RRM simulation provides the opportunity to include all 

characterizes of the materials as well as fabrication tolerances in obtaining modulator 

figure of merits for MPLs.  

5.4 Optical power splitter design for DRRM 

The RRM design can easily be extended to the DRRM structure discussed in Chapter 4 by 

adding optical power splitter as shown in Figure 5-7. The power splitter consists of S-bends 

and a directional coupler. The directional coupler divides the input optical power between 

two RRMs in desired ratios while S-bend segments branch out the optical power from 

directional coupler to the individual RRM. 
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Figure 5-7 2D Optical path of DRRM divided in power splitter and ring resonator sections. 

The S-bend of power splitter is designed to have minimum possible propagation insertion 

loss due to bending loss and material insertion loss. The bending loss is determined by the 

mode confinement factor and the bending radius. Since the waveguide cross section is 

already designed according to the ring resonator design the only remaining parameter for 

designing S-bend is the bending radius as shown in Figure 5-8. Increasing the bending 

radius decreases the bending loss however the material insertion loss must be taken into 

account for an optimum bending radius. For instance adding 1 mm to the bending radius 

adds ~1.2 cm to the S-bend length causing ~6 dB more propagation loss considering 5 

dB/cm material insertion loss. A bending radius of ~ 5 mm is a compromise between 

material and bending losses. 
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Figure 5-8 (a) Transmission of S-bend versus bending radius, and (b) Power splitting ratio versus coupling 
length in three rib height ratios and 5 µm gap size. 

To split the optical power properly the directional coupler length and the gap size between 

waveguides must be determined. Figure 5-8(b) shows the power splitting ratio changes 

versus coupling length. The power splitting ratio is vulnerable to the waveguide cross 

section dimensions as shown in Figure 5-8(b) for different rib height ratios. It is worth 

mentioning that power splitting ratio is affected by fabrication tolerances and it could be 

challenging to obtain the exact power dividing ratio in the fabricated samples. By obtaining 

fabrication process feedback the design can be optimized to mitigate fabrication tolerances. 

If there is discrepancy between desired optical power dividing ratio and fabricated results, 

as described in the Chapter 4, the RF power dividing ratio between two modulators can be 

tuned in order to have correct ratio between RF power divider and optical power divider. 

5.5 Summary 

The RRM physical structure based on all-polymer platform is designed and optimized 

utilizing numerical electromagnetic solvers. Different types of available numerical 

methods are examined and a design procedure is developed using COMSOL BEM module 
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while attention is given to optimize required computing resources and time due to the 

structure complexity and size.  

The ring resonator structure is designed to operate at the critical coupling condition using 

an iterative procedure in order to tune the geometrical dimensions. Properties of utilized 

materials and fabrication process is investigated and included in the design. It is shown that 

critical coupling condition number in all-polymer RRM is limited due to the high material 

insertion loss of electro-optic modulator. Effects of fabrication tolerances are studied 

showing the requirement of multiple fabrication and metrology runs in order to tune the 

design according to the fabrication tolerances. The RRM design process is extended to 

DRRM by designing optical power splitter to divide optical power between two RRMs in 

specific ratio.  
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Chapter 6: Fabrication of All-polymer Electro-optic 

Modulation Devices 

Fabrication of electro-optic polymer RRMs for MPLs is challenging and there are only a 

couple of reported fabrication samples [73, 103]. Fabrication procedures are highly 

dependent upon material properties and the majority of electro-optic polymer materials are 

still in the research stage [68, 69] and not well documented in the literature causing 

difficulties in accessing material sets and developing fabrication procedures.  

A fabrication process is developed to fabricate electro-optic modulators on an all-polymer 

platform. Research and characterizations are conducted on commercially available 

materials for core and cladding layers and a set of materials are identified that are 

compatible according to materials properties and fabrication process. A feasible fabrication 

process on the selection of material set is developed by examining different types of 

fabrication process. RRM, and DRRM structures are fabricated and physical dimensions 

are characterized using metrology techniques. A summary of faced challenges and 

identified solutions are documented while more details are given in Appendix 1.  

6.1 Material selection  

Limited types of electro-optic polymer materials were identified to be commercially 

available at the time of this project. Initially a polymer compound named as DR1-PMMA 

was found to be commercially available [149, 150]. DR1-PMMA is a guest-host type 

electro-optic polymer consisted of dispersed red-1 (DR1) chromophore synthesized in a 

host polymer of polymethylmethacrylate (PMMA). Initially DR1-PMMA was 

commercialized by IBM [75, 149] however currently DR1-PMMA is available through 

Sigma Aldrich and Specific Polymer companies. DR1-PMMA has modest electro-optic 

coefficients of ~12 pm/V [75, 149] while recently an electro-optic coefficient of ~60 pm/V 

has been reported using DR1-PMMA from Specific Polymer [150]. Initially in this project 
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the DR1-PMMA from Specific Polymer was characterized as described in Appendix 

however the thin-film deposition process could not yield a uniform layer. It is worth 

continuing the work on DR1-PMMA in the future since it is relatively an accessible and a 

low cost electro-optic polymer material.  

Recently high performance electro-optic polymer materials have been commercialized by 

Soluxra LLC. A polymer compound named SEO100C is chosen which is a guest-host type 

electro-optic polymer with chromophores doped into the host polymer of polycarbonate 

(PC). High electro-optic coefficients of 140 pm/V have been reported using SEO100C 

[150-152]. A successful fabrication process was developed using SEO100C as described 

in Section 6.2. 

Among various types of polymer materials that can be utilized as cladding layers NOA73 

from Norland Products Inc. is identified as a compatible cladding material for SEO100C 

in terms of optical/electrical properties and fabrication process. Refractive indexes of 

SEO100C and NOA73 are measured using ellipsometry as 1.7 and 1.55 respectively. 

NOA73 can be fabricated in thin films with acceptable uniformity and surface roughness. 

Solvents in NOA73 do not damage SEO100C and the temperature and UV energy needed 

for NOA73 curing process is within the toleration limits of SEO100C. The resistivity of 

cladding layers is a crucial factor affecting the electro-optic polymer poling process 

outcome as well as modulation efficiency [153, 154]. The resistivity of NOA73 is measured 

as ~3x1010 (135oC) which is in the same order of SEO100C resistivity ~3.3x1010 at 135oC 

[155]. The stack of NOA73/SEO100C/NOA73 is strong enough that can go through post 

fabrication steps of end-facet preparation and measurements. 

6.2 Fabrication Procedure 

A developed fabrication process is summarized in Figure 6-1 and more details of the 

fabrication process are given in Appendix. The fabrication procedure can be divided in 

three critical sections that are: thin film deposition, rib waveguide patterning, and electrode 



77 

fabrication. Devices are fabricated in a clean-room on silicon wafers after standard RCA 

cleaning.  

Figure 6-1 Schematic of fabrication steps for all-polymer electro-optic modulator. 

Thin films of NOA73 are deposited by spin coating followed by UV radiation curing and 

thermal baking. NOA73 comes in liquid form and it is ready to spin coating without further 

treatment. The spin speed/film thickness curve is obtained for NOA73 as shown in Figure 

6-2 and ~4 µm thin film is deposited at 3000 spin speed.
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Figure 6-2 Thickness of NOA73 thin film versus spin coating speed. 

The curing step of NOA73 layer is crucial in setting the surface roughness, the thin rigidity, 

and the adhesion. It was determined that NOA73 is sensitive to the UV exposure power 

and high power UV exposure causes serious damages to the thin film uniformity as shown 

in Figure 6-3. Lowering the UV exposure power while increasing the UV exposure time 

solves the problem as detailed in Appendix. In addition the top cladding layer of NOA73 

needs to be hard baked otherwise the top electrode metal deposition step using e-beam 

evaporation technique results in cracks on top cladding as seen in Figure 6-4. On the other 

hand the hard baking of lower cladding layer weakens the adhesion between lower cladding 

and core layers causing delamination in dicing step and hence the hard baking step for 

lower cladding layer is to be avoided. 

Figure 6-3 Microscope image of NOA73 thin film surface after high power UV exposure. 
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Figure 6-4 Microscope image of the top cladding layer surface after gold deposition for top electrode 
fabrication.  

The thin film of SEO100C is fabricated using spin coating and hard baking inside a vacuum 

oven. SEO100C comes in powder and solutions of SEO100C is prepared according to the 

manual provided by Soluxra LLC. The SEO100 powder is mixed with Dibromoethane at 

the mass ratio of 7%. The powder is dissolved thoroughly in to the solvent using a rotator 

mixing the solution overnight. The solution is then filtered using 200 nm pore size filter 

and after 30 min rest time the solution is ready for spin coating process. A ~2.7 µm film 

thickness is achieved at 1000 rpm spin speed. The film is baked inside vacuum oven at 

75oC overnight.  

The rib waveguide patterning step in SEO100C thin film is a crucial step which is 

conducted by the UV lithography technique followed by a dry etching step as shown in 

Figure 6-1. The reactive ion etching (RIE) technique with Oxygen is used as detailed in 

Appendix 1. Etch rates of SEO100C thin film are measured as shown in Figure 6-5. The 

PR1-1000 positive photoresist from Futurex was identified to be a proper photoresist. PR1-

1000 does not interact with SEO100C and solvents in PR1-1000 are compatible with 

SEO100C. PR1-1000 can be deposited in a thin layer (~2 µm) uniformly and it is suitable 

to pattern features as small as 1 µm. PR1-1000 withstands the etch process to transfer the 

pattern to SEO100C thin film. 
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Figure 6-5 Etch rates of SEO100C thin film. 

The bottom electrode is fabricated using sputtering technique to deposit 10 nm Cr layer 

followed by 100 nm Au layer. The Cr layer is used to increase the Au layer adhesion to the 

silicon wafer. The top electrode is deposited using electron-beam physical vapor deposition 

(EBPVD) technique similar to the bottom electrode in 10 nm Cr and 100 nm Au layer. To 

pattern top electrode common Au/Cr wet etching is utilized (Appendix 2). To open 

windows for accessing the bottom electrodes the RIE Oxygen etching is used (Appendix 

2).  

Fabricated structures were analyzed using atomic force microscope (AFM) and optical 

microscope as shown in Figure 6-6 and Figure 6-7 respectively. Results show that the 

developed fabrication process can pattern features with acceptable fabrication tolerance 

while there is still room to optimize the fabrication process and minimize the tolerances.  
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Figure 6-6 AFM measurement of the rib waveguides fabricated on SEO100C 

Figure 6-7 Images using optical microscope of a rib design patterned on SEO100C (a) Cross section image 
of rib waveguide, (b) top view of ring and waveguide at the coupling area. 

Complete structures of electro-optic modulators were successfully fabricated on a 4 inch 

silicon wafer as shown in Figure 6-8. Individual samples are separated from the wafer and 

are taken through poling and measurement processes as described in Chapter 7. To test 

device samples a butt-coupling technique is utilized to couple light from an optical fiber 

into and out of the waveguides requiring the end-facet of waveguides to be as free from 

imperfection as possible to minimizing the coupling loss. A dicing saw is used for 

preparing device samples on end-facets see Appendix for further details. Methods such as 

cleaving and polishing fail to provide clear end-facets due to the lack of crystalline 

symmetry and low rigidity of polymer layers. The quality of end-facets are improved by 
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lowering the longitudinal cut speed during dicing. In addition a layer of photoresist such 

as PR1-1000 is used as a protective layer minimizing the damage caused by the dicing saw 

to the polymer structure. Removal of the photoresist also serves to clean the end-facets 

after the dicing. 

6.3 Summary  

A complete fabrication procedure is developed for an all-polymer electro-optic modulator 

structures using commercially available polymer materials. Commercially available 

electro-optic materials are characterized and SEO100C from Soluxra LLC is utilized for 

the core layer. NOA73 is identified to be a compatible cladding material for SEO100C 

based on optical/electrical properties and fabrication process. Complete structures of RRM 

and DRRM are successfully fabricated and examined using metrology techniques 

including the optical microscope and AFM showing close agreement between fabricated 

and designed geometrical dimensions. 

 

Figure 6-8 Fabricated RRM and DRRM using SEO100C material on 4 inch silicon wafer. 

 



83 

Chapter 7: RRM Characterizations 

In MPLs where the modulator linearity is a prominent factor, the theoretical studies 

presented in Chapter 3 have shown that the Lorentzian transfer function of RRM improves 

the SFDR of MPLs versus the sinusoidal transfer function of MZI modulators. The 

resonance characteristic of RRM yields enhanced modulation index as well compared to 

MZI modulators improving gain and noise figure of MPLs as described in Chapter 2. The 

RRM advantage of enhanced modulation index is less susceptible to microwave electrode 

loss and phase velocity mismatch factors at high frequencies that commonly perturb MZI 

operation. The resonance characteristics of RRM repeats at multiples of FSR while with a 

limited bandwidth and hence RRMs are promising candidates for applications which 

require modest bandwidth (a few GHz) while operated at high frequencies > 50 GHz such 

as MPL applications of wireless access networks as described in Section 3-7. 

RRM can be fabricated on various platforms including silicon [115, 124], polymers [73, 

103], and hybrid materials [137, 156, 157]. Polymers are platform candidates for advanced 

generations of high-speed electro-optic modulators. The frequency bandwidth of electro-

optic response in polymers is up to millimeter frequency ranges [149]. In addition polymers 

pose low refractive index differences in microwave and optical frequencies minimizing the 

velocity mismatch factor which enhances the modulator operational bandwidth [73]. 

Polymers can have considerably high electro-optic coefficients > 100 pm/V making 

polymer suitable to improve modulator sensitivity [69]. The spin coating capability of 

polymers provides relatively easier fabrication process of thin films which can be spin 

coated on top of other types of materials such as silicon forming hybrid platforms [137, 

156]. 

Despite all-polymer RRM promising advantages, implementation of all-polymer RRMs to 

surpass other modulator structures for MPL applications are limited to a few reported 

samples. Reported RRMs have been examined in terms of modulation index while the 
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RRM linearity for the analog signal modulation has not been studied thoroughly and 

validated with experimental results.  

Fabricated all-polymer RRMs are characterized in terms of the resonance since the 

resonance function of ring resonator structure has detrimental impacts on RRM 

functionality including modulation index and operational bandwidth. The resonance is 

characterized by testing RRMs in the passive form (no electrical signal applied). The 

resonance figure-of-merits including resonance extinction ratio, resonance bandwidth, and 

FSR are measured. The ring-waveguide coupling coefficient and the ring loss factor are 

calculated according to the measured resonance figure-of-merits. Resonance 

characterizations of RRMs show successful design and fabrication processes described in 

Chapters 5 and 6 while providing valuable feedback from fabrication tolerances and design 

parameters that can be utilized for next generation of devices.  

Fabricated all-polymer RRMs are shown to be functional in the active mode by applying 

electrical signal to devices testing the modulation index. Electro-optic coefficient of the 

polymer is characterized through the modulation index of the RRM. The realization of all-

polymer RRM shows success in the developed all-polymer platform as well as fabrication 

and poling processes.  

Targeting RRM implementations in RF photonic links the nonlinearity of analog signal 

modulation is characterized through Harmonic distortions and SFDR. Suppression of the 

harmonic distortions at specific operational points of the RRM Lorentzian transfer 

function, as described in Chapter 3, is experimentally proven. The third harmonic distortion 

behavior shows the unique capability of RRMs in enhancing microwave photonic links 

SFDR in terms of third order intermodulation distortion (IMD3). The SFDR of RRM is 

measured and compared to theoretical results and roots of discrepancies between theory 

and experiments are discussed. 
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7.1 Resonance  

The transmission spectrum of ring resonator structures in optical domain is critical for 

evaluating fabricated RRMs. The transmission spectrum reveals the resonance behavior of 

ring resonator extracting the resonance characteristics including resonance bandwidth, 

FSR, resonance extinction ratio, and ring-waveguide coupling condition. The resonance 

have detrimental impacts on RRM system level figure-of-merits including operational 

bandwidth, operational frequency, modulation index, and linear operational point as 

discussed in Chapter 3.  

The resonance function of ring resonator structures is characterized utilizing the test setup 

shown in Figure 7-1. A tunable laser source with 1 pm wavelength resolution in the range 

of 1480-1580 nm is coupled into and out of the waveguides using lensed fibers with 2.5 ± 

0.5 µm mode diameter at focal distance 14 ± 2 µm. Polarization of light is controlled using 

manual paddle polarization controller.  

 

Figure 7-1 Measurement setup used for passive characterizations of RRM. 

The transmission spectrum of the ring resonator with a 2.5 mm radius is shown in Figure 

7-2. The measured FSR is ~85 pm which is compared to the theoretical FSR calculated 

using Equation (7.1) [113] 

 
2

eff

FSR
n L
λ

≈   (7.1) 

where λ is the light wavelength, neff is the effective refractive index of propagation mode, 

and L is the ring perimeter [113]. The effective refractive index of propagation mode neff is 
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calculated as 1.67 using Comsol mode solver as described in Section 5.2 where the core 

refractive index is 1.7 and the cladding refractive index is 1.54. The theoretical FSR for a 

2.5 mm ring radius at 1550 nm wavelength is 91 pm which is in agreement with measured 

results. The discrepancy between measured and theoretical FSRs is due to the neff  

tolerances due to either tolerances in the waveguide cross section dimensions or in the 

material refractive indexes. The FSR is 11 GHz in the frequency domain showing that 

fabricated RRMs can be operational at multiples of 11 GHz if traveling-wave electrode is 

utilized to remove electrode related bandwidth limitations of photon transit time and 

electrode capacitance effects as described in Section 3.2. 

Figure 7-2 Measured transmission spectrum of a fabricated ring resonator. 

The resonance line-width is characterized using full-width half maximum (FWHM) 

measured as ~35 pm. The FWHM of the passive ring resonator determines the 3 dB 

bandwidth of the ring resonator filtering property as 4.4 ± 0.2 GHz. Besides FWHM and 

FSR the loaded Q-factor defined as FWHMλ and the resonance fineness defined as 

/FSR FWHM  are used to describe the sharpness of the filtering property of ring 

resonators. Fabricated ring resonators present loaded Q-factor of 4400 ± 500 and resonance 

fineness of 2.4 ± 0.15. It is worth mentioning that a higher Q-factor or fineness of resonance 

yields higher modulation index in RRM while decreases the operational bandwidth of 

RRM.  
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The operational bandwidth of RRM can be calculated from passive response of RRM. The 

3 dB bandwidth of modulation index in RRM is calculated using Equations (7.2) and (7.3) 

[121] 
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where Tp is the photon transit time around the ring and τ is the ring-waveguide coupling 

coefficient. The fabricated ring-waveguide coupling condition is calculated by fitting the 

measured optical transmission spectrum (Figure 7-2) to the ring resonator transfer function 

of Equation (2-7). Fabricated RRM operates at a coupling condition with α ~ 0.31 and τ ~ 

0.44 showing the under-coupling situation (τ > α). Using measured neff (1.65) and τ (0.44) 

the 3 dB modulation index is calculated as 450 MHz using Equations (7.2) and (7.3). For 

MPLs the operational bandwidth of SFDR is more limited than the modulation index 

bandwidth as discussed in Chapter 3. By modeling the fabricated RRM in a MPL described 

in Chapter 3 the SFDR bandwidth is ~350 MHz in order to have SFDR > 110 dB (1 Hz 

noise bandwidth). The operational bandwidth of fabricated RRMs are limited mainly due 

to the large size of rings. Decreasing the ring size in the utilized material platform adds to 

the ring bending loss due to the relatively low refractive index differences between core 

and cladding materials. To design RRMs with wider operational bandwidths different types 

of material platforms can be used to provide higher refractive index differences between 

core and cladding.  

The ring waveguide propagation loss is calculated as ~6.5 dB/cm from obtained loss factor 

(α ~ 0.31) using Equation (7.4). 

 ( )
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surface/sidewall roughness due to the etching process is a critical factor in propagation loss 

of polymer waveguides [158, 159]. The propagation loss studies of developed 

NOA73/SEO100C/NOA73 waveguides and investigating possible methods to decrease the 
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Since the ring is expected to have negligible bending loss according to the simulations as 

described in Section 5.3 the propagation loss of ring waveguide is due to the material and 

surface roughness. Previous studies on different polymer waveguides have shown that the 

loss is critical for future implantations. The impact of sidewall roughness can be mitigated 

by designing and fabricating shallower etched waveguides. In addition the etching 

procedure can be optimized to minimize sidewall roughness. 

Decreasing the propagation loss in electro-optic polymer modulators is beneficial in 

designing RRMs. The ring structure and fabrication procedure can be optimized to achieve 

ring-waveguide coupling conditions closer to the critical coupling conditions in order to 

maximize the resonance extinction ratio. However as shown here and Chapter 5 the 

coupling condition in polymer RRMs is dictated by the ring loss factor and the range of 

achievable critical coupling conditions is limited due to the high propagation loss of 

fabricated waveguides. 

7.2 Modulation index 

The modulation response of fabricated RRMs is tested utilizing the test setup shown in 

Figure 7-3. Tests are conducted at 1550 nm by applying a triangular electrical voltage with 

20 Vpp and a 2 second period as shown in Figure 7-4(a).  
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Figure 7-3 Measurement setup used for modulation response of RRM. 

The RRM transmission in the response of the applied voltage is shown in Figure 7-4(b). 

As seen in Figure 7-4(b) the voltage amplitude of 20 V transfers the ring resonator state 

from out of the resonance state to the resonance state meaning a π radian phase shift in the 

round trip phase (θ) according to Equation (3.1). Based on Equation (3.1) the electro-optic 

coefficient of the polymer is calculated from Equation (7.5). 

3
eff

gr
Ln V
λ

=
Γ

(7.5) 

The electro-optic coefficient is calculated as ~84 pm/V. To calculate the electro-optic 

coefficient (r) the utilized parameters are λ = 1550 nm, g = 2.7 µm (thickness of core layer), 

L = 0.0143 (m) (perimeter of the ring with electrode), neff = 1.65 (measured effective 

refractive index of mode), Γ = 1 (electrical-optical overlap integral), and V = 3 (volt). The 

voltage (V) that brings ring resonator from out of resonance state to the resonance state is 

the voltage applied across the 2.7 µm of core layer. V is calculated from total applied 

voltage (20 volt) and using measured resistivity values of core and cladding layers as 

~3.3x1010 (135oC) and ~3x1010 (135oC) respectively [155].  
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Figure 7-4 The modulated light with a triangular electrical signal. 

Measured RRMs are polled by applying 800 (V) using a contact poling process developed 

for electro-optic polymer modulators [155]. Utilized poling process is critical for the 

measured electro-optic coefficient. Crucial parameters in the poling process are the applied 

voltage and device temperature to align chromophore dipoles efficiently in the direction of 

applied voltage. In the poling process, devices are heated to 135oC while applying voltage. 

7.3 Analog modulation 

The analog modulation of RRM is characterized by measuring harmonic distortions and 

SFDR. Harmonic distortions are measured by applying a 20 KHz signal to the RRM and 

the output signal of the photodetector is amplified and recorded using a Lock-in amplifier 

as shown in Figure 7-5. To show the harmonic power suppressions versus the RRM 

Lorentzian transfer function the optical wavelength is swept around 1550 nm in 1 pm 

resolution.  
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Figure 7-5 Measurement setup used for harmonic characterizations of RRM. 

Results presented in Figure 7-6 show that second harmonic is suppressed at λ1 while third 

harmonic is suppressed at 11 pm apart from λ1 as shown by λ2 in the figure as theoretical 

studies described in Chapter 3 have shown. The optimum operational point of Lorentzian 

transfer function occurs at λ2 to maximize the SFDR for RRM while λ1 can be exploited in 

dual ring resonator modulator (DRRM) to maximize the SFDR for IMD3 and 2nd harmonic 

as discussed in Chapter 4.  

Figure 7-6 Harmonics power versus wavelength for a RRM with 2.5 mm radius. 

To characterize the SFDR of a MPL with RRM a two tone test with 1 MHz and 0.950 MHz 

is applied to the RRM and optical wavelength is set to λ2 as shown in Figure 7-7.  
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Figure 7-7 Measurement setup used for SFDR measurements. 

The powers of fundamental signal and third order intermodulation (IMD3) are measured 

using RF spectrum analyzer in several input RF powers as presented in Figure 7-8 where 

the measured SFDR is ~74 dB considering -165 dBm noise level. In the measurements the 

noise level on the spectrum analyzer is limited to -130 dBm in 1 MHz frequency range 

however it is a common practice to report SFDR based on the noise level achievable in 

MPLs [7].  

Figure 7-8 RF output fundamental signal and IMD3 powers versus input RF power. 

To compare measured SFDR with theoretical SFDR the RRM is modeled in a MPL 

yielding SFDR of ~93 dB according to 1 pm optical wavelength resolution and -12 dBm 

optical input power to the photodetector. RRM requires wavelength locked operation 
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however the vulnerability to the wavelength tolerance can be mitigated by increasing the 

resonance bandwidth as well as controlling the bias voltage. To increase resonance 

bandwidths, rings with smaller sizes can be designed by having higher refractive index 

differences between core and cladding layers and platforms such as polymer-silicon hybrid 

platform can be considered for future advancements [10]. Moreover to reach theoretical 

SFDR of > 120 dB (1 Hz noise bandwidth) requires 10 dBm optical power at the 

photodetector which requires using laser power of 20 dBm and considering 10 dB 

modulator insertion loss as used in theoretical studies described in Chapters 3 and 4. 

Therefore decreasing modulator insertion loss while utilizing high optical power is 

necessary in future studies.  

7.4 DRRM characterizations 

Similar to RRM characterizations, ring resonators on DRRM are characterized in passive 

form utilizing a tunable laser as shown in Figure 7-9. Output power of each ring resonator 

is measured separately. Ring resonators show close optical output power spectrum versus 

wavelength as seen in Figure 7-10. FSR of resonances are measured at 85 ± 2 pm and 

FWHM are measured at 35 ± 2 pm. Coupling conditions are measured with α = 0.32 ± 0.05 

and τ = 0.45 ± 0.05. Achieving close optical properties from two rings is promising for 

DRRM full implementation in MPLs. 

 

Figure 7-9 Measurement setup for DRRM. 
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Figure 7-10 Transmission spectrums of ring resonators in a DRRM. 

The optical power splitting ratio between two ring resonators is measured at 1:3 ratio while 

direction couplers were designed for 1:27 ratio showing a considerable discrepancy 

between designed and measured ratios. The power splitting ratio is affected by fabrication 

tolerances and it could be challenging to obtain the exact power dividing ratio in the 

fabricated samples. By obtaining fabrication process feedback the design can be optimized 

to mitigate fabrication tolerances. In full implementation of DRRM in MPLs the RF power 

dividing ratio between two modulators can be tuned according to the optical power splitting 

ratio as described in Chapter 4. However it should be intensified that a close optical 

splitting ratio between two RRMs adds to the fundamental signal suppression degrading 

link SFDR, gain, and noise figure as discussed in Chapter 4.  

Each RRM in a DRRM is tested separately for modulation responses. A sinusoidal signal 

with 1 (Vpp) and 1 Hz frequency is applied to RRMs. The RRM which receives higher 

optical power provides signal with larger amplitude as shown in Figure 7-11. By having π 

radian phase difference between applied electrical signal between two RRM the π radian 

phase difference is also produced between outputs showing the capability to subtract the 

outputs in order to suppress IMD3 power. In full implementation of DRRM an optimum 

way is to utilize balanced photodetectors in order to subtract signals. 
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Figure 7-11 Modulation function of each RRM in DRRM.  

While fabricated DRRMs are characterized in both passive and active forms, in order to 

fully characterize DRRMs showing IMD3 suppression the outputs of RRMs need to be 

detected simultaneously. In addition, RF power between two rings need to be divided 

precisely with ± 0.01 dBm tolerations as discussed in Chapter 4. Dividing RF signal with 

high accuracy is challenging while can be achieved utilizing integration techniques to 

minimize the fabrication and application tolerances. 

7.5 Summary 

Fabricated all-polymer RRMs are characterized showing ~13 dB resonance extinction ratio 

and ~4400 Q-factor. The over-coupled condition is measured by α~0.31 and τ~0.44 

coupling conditions. The coupling condition is able to be improved by adjusting the 

fabrication process taking into account the fabrication tolerances and material properties. 

The loss factor of ring presents ~6.5 dB/cm of propagation insertion loss in waveguides 

due to the material insertion loss and scattering loss of surface roughness. The measured 

electro-optic r33 is ~84 pm/V using contact poling which can be improved by optimizing 

the poling process.  

The analog signal modulation is characterized by measuring harmonic distortion powers 

and SFDR measurements for IMD3. Suppressions of second and third order harmonics are 
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experimentally presented at specific operational points of Lorentzian transfer function as 

predicted by theoretical studies. The third harmonic distortion is suppressed by ~37 dB 

while fundamental signal is degraded by ~4 dB showing the unique advantage of RRM to 

enhance SFDRs of MPLs in comparison to MZI modulators. SFDR of 74 dB at -165 dB 

noise level is measured. To further improve the SFDR utilizing high power laser while 

reducing RRM insertion loss is proposed for future work. In addition the vulnerability of 

RRM linearity is shown versus the operational point of Lorentzian transfer function 

showing the requirement of wavelength locked lasers for RRMs. Operational point 

vulnerability can be mitigated by designing the ring resonator with wider resonance 

bandwidths and controlling the operational point using dynamic controlling of bias voltage. 

Fabricated DRRMs are characterized in passive and active forms. Ring resonators in 

DRRM show close optical transmission spectrum with close resonance behaviors. Testing 

of DRRMs by each RRM separately in active form show feasibility of the device and 

provide necessary fabrication feedback for next generation of devices.  
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Future work 
This research has substantial progress in advancing RRMs for microwave photonic 

applications through the design, fabrication, testing, and operation. Considerable amount 

of research and improvement remains on both materials and structures in order to fully 

implement RRMs in practical applications.  

The linearity of RRM is proved to surpass the MZI modulator, the RRM linearity is shown 

to be sensitive to the operational point of the transfer function. The level of sensitivity is 

related to the designed ring resonator structure and the utilized material sets. The fabricated 

all-polymer RRMs are shown to require 1 pm accuracy in the optical wavelength in order 

to exploit the high SFDR of RRM. While controlling the optical wavelength in that 

accuracy could be challenging, the operational point of the transfer function can be 

controlled using other mechanisms such as bias voltage adjustment or thermal effects. 

Investigating an applicable method to control operational point of RRM is critical for future 

advancements.  

The optical power that RRM can sustain is an important factor in improving RRM figure-

of-merits including gain, noise figure, and SFDR. As discussed in Chapter 7 in order to 

reach a SFDR>125 dB.Hz in a MPL with RRM the input optical power of photodetector 

needs to be in the level of 10 dBm which can be achieved by 20 dBm optical power into 

the RRM considering 10 dB insertion loss. Polymer modulators can be vulnerable to high 

optical powers depending on the utilized material platform. The optical power tolerance of 

developed modulator platform needs to be determined. An insertion loss of 10 dB is 

challenging in the fabricated modulators due to the high propagation loss and fiber-

waveguide in/out coupling loss. Decreasing the RRM insertion loss is critical for future 

implementations. The surface/sidewall roughness due to the etching process is a crucial 

factor in propagation loss of fabricated polymer waveguides. Investigating the impacts of 

etching process on the sidewall roughness and optimizing the etching process is important 

to minimize the propagation loss of developed modulators. In addition in polymer RRM 
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the coupling condition is dictated by the ring loss factor due to the high propagation loss 

in electro-optic polymer materials as discussed in Chapter 7. Decreasing propagation loss 

of electro-optic polymer can improve the coupling conditions in RRMs. 

While impacts of ring-waveguide coupling condition tolerances on SFDR is mitigated by 

optimizing the operational point of RRM, the coupling condition tolerances can decrease 

modulation index degrading gain and noise figure. Critical coupling conditions are the best 

conditions to obtain maximum resonance extinction ratio, however, obtaining critical 

coupling condition is challenging due to the fabrication tolerances. Investigating tolerances 

of coupling conditions due to fabrication tolerances is beneficial.  

It is worth mentioning that most of RRM characteristics are determined by the utilized 

material sets. Electro-optic polymers have unique advantages such as wide bandwidth and 

high electro-optic coefficient, however electro-optic polymers are still in the research stage. 

To advance electro-optic polymer implementations improvements are required on the 

issues of optical power handlings and temperature tolerations. Recent progress on electro-

optic polymers have shown promising advancements in optical power tolerations of 100 

mw and operational stability up to 85 C [74, 76]. Investigating the operational dependence 

of developed modulators on optical power and temperature is critical for future 

implantations. 

In this dissertation the loss and dispersion effects of optical fiber, which connects the 

modulator to the photodetector, are considered negligible that is a correct assumption for 

relatively short fiber connections (< 1 Km) [19]. However for long-haul links the 

impairments of optical fiber on the microwave photonic links need to be included [20]. In 

addition it is critical to decrease the modulator insertion loss by minimizing the fiber 

waveguide in/out coupling loss through optimizing the design and end-facet preparation 

process. 
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It is valuable to investigate RRM design and fabrication on other material platforms such 

as silicon, III-V semiconductors, and LiNbO3. Total insertion loss of a modulator and 

maximum optical power handling are critical factors in choosing the material platform. A 

material platform with wider range of refractive index differences between core and 

cladding is beneficial to realize RRMs with smaller foot-prints and wider operational 

bandwidths. Wider operational bandwidths will also improve RRM figure-of-merit 

tolerations versus the transfer function operational point as discussed in Chapter 7. A 

material platform with lower propagation loss is also beneficial for easing constrains on 

designing ring-waveguide coupling conditions. While all desired characteristics would be 

challenging to achieve from a single material platform, materials can be used as hybrid 

platforms such as silicon/polymer or silicon/LiNbO3 in order to combine advantages of 

different materials.   

The proposed DRRM improves the operational bandwidth limits of RRM SFDR by 

cancelling third order harmonic distortion in a frequency independent method. However 

the DRRM implementation is challenging because of the dual output ports. It is worth 

investigating possible methods to design DRRM with single output. Another limiting factor 

of DRRM is the decreasing of fundamental signal degrading MPL gain and noise figure. 

Altering DRRM design or proposing new design that can improve SFDR without 

degrading gain and noise-figure is more appealing for wider range of applications. In 

addition DRRM is sensitive to the RF dividing ratios between two ring resonator 

modulator. Implementation of an active controlling system for the RF divider is an 

inevitable option which will add to the complexity of DRRM. Decreasing DRRM 

sensitivity to the RF power dividing ratio eases the implementation complexity. 
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Appendix 
A. Dr1-PMMA thin film fabrication process

DR1-PMMA comes in powder form and needs to be dissolved in a proper solvent. Solvents 

with higher viscosity, lower evaporation rate are desirable to obtain uniform layer using 

spin coating. Several solvents are experimented as shown in Table A-1. Dioxane is shown 

better results in compared to other solvents. Various mixing ratios, mixing methods and 

optimizing the spin coating process are tested. Solutions with 10% and 15% mass ratio 

yield thicknesses (2-3 µm), as shown in Figure A-1. The solution with 15% mass ratio 

shows a better surface quality because of higher spin speed. Overnight mixing in oil bath 

at 70°C with magnetic bid is used. After mixing the solution is filtered using nylon type 

filter with 200 nm pore size. After spin coating the thin film is baked overnight in a 

vacuumed oven at 75 C. 

Table A-1 List of the solvents used for dissolving Dr1-PMMA powder 
Solvent Viscosity (mm²/s, 25°C) Relative Evaporation rate (Butyl acetate = 1) Solubility 

Dichloromethane 0.15 (20°C)  27.5  

1-4 Dioxane 1.17(25°C) 2.7  

Dibromomethane 0.39(25°C) Not available  
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Figure A-1 Spin curves of DR1-PMMA thin film in 10% and 15% ratios dissolved in Dioxane. 

To pattern DR1-PMMA the PR1805 photoresist from Shipley is a compatible photoresist. 

The etch rate of 15% DR1-PMMA using RIE with (Oxygen pressure: 50, ICP power: 100, 

and RIE power: 50) is shown in Figure A-2. Rib structures are fabricated using the 

developed process as shown in Figure A-3. 

Figure A-2 Etch rates of DR1-PMMA (15%) thin film. 
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Figure A-3 Rib waveguide structure fabricated using DR1-PMMA. 

Despite considerable progress in developing fabrication process using DR1-PMMA a main 

problem is still remained which is existence of some pinholes in thin films as shown in 

Figure A-4.  

 

Figure A-4 Surface image, using optical microscope, of a DR1-PMMA layer. 
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B. Developed fabrication procedure using Soluxra SEO100C and NOA73

- Silicon Wafer: RCA cleaning process and normal cleaning process with acetone, IPA,

and DI water before using the wafer

- Bottom cladding: Deposit Cr (10 nm) and Au (100 nm) using sputtering technique.

- Lower cladding layer: thin film deposition of NOA73 using spin coating:

o Spin speed: 3000 rpm, 40 sec, static speed (~4 µm thickness),

o Uniform UV exposure: 30 min using uniform low power UV exposure

 The flood exposure of EV620 Lithography with ~ 10 mW/cm2 power at

350 nm wavelength caused very rough surface as shown in Figure 6-3.

A UV source with much lower power ( ~ 0.3 mW/cm2 ) at 350 nm

wavelength yield a smooth thin film with low surface roughness.

o Hard baking process of bottom cladding decreases the adhesion between the

core and cladding layers causing delamination problem during dicing and

sample preparation steps.

- Core layer: thin film deposition of SEO100C using spin coating

o Spin speed: 1000 rpm, 40 sec, static speed (~2.7 µm thickness)

o Hard baking: over-night under vacuum at 75 C

- Photoresist: type PR1-1000A Futurex

o Spin speed: 1500 rpm, 40 sec

o Prebake: hotplate 30 sec at 120 C

o UV exposure: 120 mJ using EM620 aligner

o Post-bake: hotplate 30 sec at 120 C

o Develop: RD6 is used, developing time is related to the feature size: ~6 sec

followed by DI water wash

- Etch: RIE oxygen plasma etch using

o Oxygen pressure: 50

o ICP power: 100

o RIE power: 50
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o Etch time: 150 sec for ~800 nm rib height

- Remove photoresist:

o Uniform UV exposure: 30 sec using EV620 aligner

o Developer: RD6 for 30 sec, wash with DI water

- Top clad thin film deposition similar to the bottom cladding

o Baking: Over-night under vacuum at 75 C

- Top electrode: Deposit Cr (10 nm)-Au (100nm) using E-beam evaporation

- Top electrode patterning: Deposit PR1-1000A Futurex

o Spin speed: 1500 rpm, 40 sec

o Prebake: hotplate 30 sec at 120 C

o UV exposure: 120 mJ using EM620 aligner

o Post-bake: hotplate 30 sec at 120 C

o Develop: RD6 ~12 sec followed by DI water wash

o Etch: Wet etching technique

 Gold etch: ~40 sec

 Cr etch: ~5 sec

- Remove photoresist:

o Uniform UV exposure, 30 sec

o Developer: RD6 for 30 sec, wash with DI water

- Etch for bottom electrode access pads: A patterned FR4 is used for masking

o RIE oxygen plasma etch

 Oxygen pressure: 200

 RF power: 100

 Total effective etch time: 2 hours with 10 min etch steps (5 min cool

down in between due to the overheating the sample)
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