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Abstract 
Lab-on-a-chip (LOC) technologies enable the development of portable analysis devices 
that use small sample and reagent volumes, allow for multiple unit operations, and couple 
with detectors to achieve high resolution and sensitivity, while having small footprints, 
low cost, short analysis times, and portability. Droplet microfluidics is a subset of LOCs 
with the unique benefit of enabling parallel analysis since each droplet can be utilized as 
an isolated microenvironment.  This work explored adaptation of droplet microfluidics 
into a unique, previously unexplored application where the water/oil interface was 
harnessed to bend electric field lines within individual droplets for insulator 
dielectrophoretic (iDEP) characterizations. iDEP polarizes particles/cells within non-
uniform electric fields shaped by insulating geometries. We termed this unique 
combination of droplet microfluidics and iDEP reverse insulator dielectrophoresis 
(riDEP).  This riDEP approach has the potential to protect cell samples from unwanted 
sample-electrode interactions and decrease the number of required experiments for 
dielectrophoretic characterization by ~80% by harnessing the parallelization power of 
droplet microfluidics.  Future research opportunities are discussed that could improve this 
reduction further to 93%. 

A microfluidic device was designed where aqueous-in-oil droplets were generated in a 
microchannel T-junction and packed into a microchamber. Reproducible droplets were 
achieved at the T-junction and were stable over long time periods in the microchamber 
using Krytox FSH 157 surfactant in the continuous oil FC-40 phase and isotonic salts and 
dextrose solutions as the dispersed aqueous phase. Surfactant, salts, and dextrose interact 
at the droplet interface influencing interfacial tension and droplet stability.  Results 
provide foundational knowledge for engineering stable bio- and electro-compatible 
droplet microfluidic platforms. 

Electrodes were added to the microdevice to apply an electric field across the droplet 
packed chamber and explore riDEP responses. Operating windows for droplet stability 
were shown to depend on surfactant concentration in the oil phase and aqueous phase 
conductivity, where different voltage/frequency combinations resulted in either stable 
droplets or electrocoalescence. Experimental results provided a stability map for 
strategical applied electric field selection to avoid adverse droplet morphological changes 
while inducing riDEP. Within the microdevice, both polystyrene beads and red blood 
cells demonstrated weak dielectrophoretic responses, as evidenced by pearl-chain 
formation, confirming the preliminary feasibility of riDEP as a potential characterization 
technique. 

Two additional side projects included an alternative approach to isolate electrode surface 
reactions from the cell suspension via a hafnium oxide film over the electrodes.  In 
addition, a commercially prevalent water-based polymer emulsion was found to 
adequately duplicate microchannel and microchamber features such that it could be used 
for microdevice replication.

xvii 
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1 Introduction 

1.1 Introduction and Outline 

In recent years, technology miniaturization has become a prominent research interest that 
has increased access to data by the average member of society. Micro-total analysis 
systems (µTAS) were introduced in the 1980s with the idea of miniaturizing multiple 
analytical process steps and combining them into a single flow system [15]. Since then 
(µTAS), microelectromechanical systems (MEMS) [16], and Lab-on-a-chip (LOC) 
devices have provided a means for researchers to develop analysis systems that require 
small (microliter) sample and reagent sizes; allow for multiple unit operations including 
separations, dilutions, concentrations, and mixing; and incorporate detectors with high 
resolution and sensitivity, while having a small footprint, low cost, short analysis times, 
and portability [17-26].  

As a subset of sought-after LOC device applications, medical microdevices are emerging 
technologies that enable portable, low cost, sensitive, selective, less invasive, and fast 
measurements and manipulations for medical diagnostics and treatment management. 
Droplet microfluidics, one technology used in LOCs and medical microdevices, has 
become well established over the last decade. The ability to generate monodisperse 
droplets where each droplet acts as its own isolated microenvironment allows for flexible, 
high throughput kinetics, analytical chemistry, and biological cell manipulations within 
portable microdevices [27-29]. Another key advantage of droplet microfluidics is the 
ability for parallel experimentation that allows multiplexation of multiple 
microenvironment experiments into one.  

Electrokinetic tools are also widely utilized in µTAS and LOC applications because they 
have the ability to selectively focus [30], separate [31], or transport molecules [32], 
bioparticles [33], cells [34], or droplets [35]. The use of electric fields to manipulate and 
reproducibly distinguish charged cells, proteins, DNA, and other molecules has 
substantially impacted knowledge of fundamental biological processes [36]. A valuable 
technique for cell/particle characterization within microfluidic platforms is 
dielectrophoresis (DEP). Dielectrophoresis is a powerful electrokinetic tool because it 
can polarize any particle/cell based on its insulative and charge storage characteristics. 
Although there are many advantages to DEP characterizations, there are disadvantages, 
including unwanted sample-electrode ion interactions and the number of experiments 
required to obtain a single particle or cell’s dielectric spectra. Insulator dielectrophoresis 
(iDEP), a subset of DEP, addresses the unwanted sample-electrode interactions by using 
solid, insulating obstacles or protrusions into fluid channels to alter electric field path 
lines, thus creating spatially variant electric field gradients that can be used to manipulate 
and separate polarizable particles or cells. DEP is highly dependent upon the media 
conditions, and while each individual media condition gives property classes, testing at 
multiple media conditions is necessary to calculate cell/particle dielectric properties. 
Traditional approaches utilize one media condition to generate a single DEP 
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curve/spectrum across a large range of frequencies. It can take months to accurately 
generate one DEP curve.  

1.2 Reverse Insulator Dielectrophoresis 

This dissertation systematically explores a novel approach that combines iDEP with 
droplet microfluidics to harness iDEP’s advantageous separation between samples and 
electrodes with the multiplexing abilities of droplet microfluidics. This approach is novel 
within our lab, and we have termed this technique ‘reverse insulator dielectrophoresis’ 
(riDEP) because the electric field is being generated within the droplets instead of around 
insulating geometries. Droplets were generated in a T-junction microfluidic device with 
an aqueous dispersed phase (electrically conductive) and a continuous oil phase 
(electrically insulative) and then packed into a microchamber. Due to the droplet to 
droplet proximity of the insulative/conductive fluids, the fluid interfaces shape a spatially 
non-uniform electric field within the droplets packed into the microchamber. This work 
explored not only the formation of those non-uniform fields but also the polarization of 
dielectric particles/cells within the droplets. Established polystyrene bead and red blood 
cell DEP published data were used to benchmark this technique. 

A novel, new dielectrophoresis technique termed ‘reverse insulator DEP’ was 
systematically explored. riDEP combines principles of droplet microfluidics and insulator 
dielectrophoresis to create a microdevice for parallel characterization of particles/cells 
that protect the samples from unwanted sample-electrode interactions via utilization of 
droplet microfluidics. The use of droplet interfaces to shape non-uniform electric fields 
needed for DEP characterizations is novel and is presented for the first time within this 
dissertation. First, a device was designed and prototyped to generate aqueous-in-oil 
droplets in a T-junction and subsequently collect them in a microfluidic chamber. Each 
droplet served as an isolated microenvironment that acted as its own experiment. This 
allowed completion of simultaneous replicate trials of the same sample solution. 
Independent repeat experiments were also completed. Surfactants were investigated to 
optimize the stabilization of the entire droplet microfluidic system, resulting in 
monodispersed, non-coalescing droplets. Parallel electrodes were designed to fit on the 
opposite walls of the microfluidic chamber within which droplets were packed. The oil 
surrounding each droplet acted as an insulator, shaping a nonuniform electric field within 
each conductive aqueous droplet.  Electric field characteristics (applied voltage, DC, AC, 
frequency) could be tuned based on the droplets and their packing within the 
microchamber. Close, ordered packing was found to be important for riDEP for the 
electric field to be able to divert around the oil and traverse through the narrowest 
interfacial distance from aqueous droplet to aqueous droplet; further, the ordered droplet 
packing enabled a consistent electric field gradient within each droplet. This riDEP 
microdevice was explored by utilizing knowledge from previous work completed by 
µM.D.-ERL on the ABO-Rh blood typing system to test the viability of the riDEP 
technique. 
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1.3 Dissertation Objectives and Aims 

The first objective of this project was to experimentally generate monodisperse droplets, 
100-200 µm in diameter, and pack them into a microfluidic chamber. This objective was
broken down into two main aims, one engineering based and one science-based. The first
aim (engineering) was to design, fabricate, and prototype a microfluidic device for stable
droplet generation and packing within a chamber. The goal in implementing a droplet
system was to enable parallelization of experiments to increase experimental throughput,
as shown in Figure 1.1.  The second aim (science) was to study the effect of additives on
the droplet formation and stability in the microfluidic system. Dielectrophoretic
responses of particles and cells are highly dependent on media conditions, which means
varied amounts of salt ions, as well as dextrose in the aqueous phase to achieve a range of
DEP spectra for the characterization of particles/cells while maintaining solution
isotonicity. The second aim of objective one systematically studied how surfactant
concentration, salt concentration, dextrose concentration, and the combination of salt and
dextrose affected the generated droplet size and stability. Chapters 4 and 6 present the
results from objective one.

Figure 1-1. The potential impact of the new technique, riDEP, on reducing the amount of 
time needed to complete experiments by up to 80%. 
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The second objective of this project was to explore reverse insulator dielectrophoresis 
within droplets. This objective was broken down into three main aims, one engineering 
based and two science-based. The first aim (engineering) of objective two was to design 
and implement parallel electrodes within the microchamber of the microfluidic device. 
The second aim (science) was to study the effect of an applied electric field on droplet 
stability because it was important for the droplets to remain intact for the parallelization 
of DEP experiments within droplets. The third aim (science) was to seed particles/cells 
into the droplets to explore riDEP performance for cell characterizations. Chapter 7 
presents the results of objective two.  

The third objective was to use simulations to inform experimental matrices and to 
compare to experimental results in order to more fully understand the underlying physics 
behind the droplet behaviors. Chapter 5 presents the set up and results of three types of 
COMSOL simulations: droplet generation in a T-junction, shaping non-uniform electric 
fields within droplets, and dielectrophoretic responses within droplets. This work was 
completed in tandem with objectives one and two. 

As mentioned previously, a disadvantage of traditional dielectrophoresis includes 
unwanted sample-electrode ion interactions.  The insulative nature of riDEP prevents 
direct contact between the aqueous microenvironments and the electrode.  In addition, a 
second technique for isolating experimental samples from electrodes to prevent unwanted 
sample-electrode interactions was explored.  The strategy was electrode passivation via a 
thin non-reactive film of hafnium oxide. For some experimental configurations, droplet 
microfluidics may not be possible, so hafnium oxide was explored and characterized as a 
material to physically isolate samples from electrodes while still allowing the electric 
field to penetrate into the samples. Chapter 8 presents hafnium oxide as an alternative 
method for eliminating unwanted sample-electrode interactions. 

All microchannel and microchamber designs within this work relied on microfabrication 
of high-aspect ratio features. Microfabrication of high-aspect ratio features is challenging 
and can result in features losing adhesion to master silicon wafers after only two or three 
elastomer castings over the wafer. Chapter 9 presents the creative use of Puffy Paint, a 
water-based polymer emulsion as a tool to replicate microfluidic features without 
compromising the original master silicon wafer. 

The future work from this project is to further multiplex experiments. This goal is broken 
down into two main aims, one engineering, and one science. The first aim (engineering) 
of objective three involves designing and modeling microdevices with microfluidic tree 
structures. Simultaneous investigation of multiple experimental conditions is possible by 
adding branching or tree structures to the microdevice design. The second aim (science) 
of objective three would be to study the riDEP responses for two or more experimental 
conditions (additional aqueous phase conductivities, etc.) simultaneously. Chapter 10 
presents the results of future work. Chapter 11 presents the key findings and conclusions 
from all objectives and analysis.  
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2 Project Background/Literature Review 

2.1 Droplet Microfluidics 

The following sections discuss the applications of droplet microfluidics; methods and 
applications for droplet handling techniques including fusion/fission/mixing and 
sorting/trapping; droplet formation techniques; and the role of surfactants.  

2.1.1 Applications and Advantages of Droplet Microfluidics 

The first microfluidic technique utilized in this work is droplet microfluidics. Droplet 
microfluidics utilizes the capability of monodisperse droplet formation and manipulation 
within a microfluidic device. The use of microfluidic structures to generate droplets 
began in the 1950s when Skeggs used air bubbles to separate an aqueous stream [37] but 
exploded in the early 2000s after the seminal work of S. Anna, which investigated the 
physics involved in droplet generation [38-41].  

Droplet microfluidics is a growing field, due to the numerous applications that 
encompass a range of fields of study. A range of techniques are used to achieve specific 
tasks. These techniques include fission, fusion, mixing, sorting, trapping, as well as 
formation. The high throughput possible in droplet microfluidics provides a platform for 
biological and chemical research [37]. Along with high throughput, parallel analysis 
allows applications including large-scale polymerase chain reaction (PCR) and cell 
culturing techniques to be completed [37, 42].  

By adjusting the upstream composition, drug discovery, protein crystallization, and 
enzymatic assays are possible [13, 28, 29, 37]. Other applications include irregular 
particles, double emulsions, hollow microcapsules, microbubbles, single cell analysis, 
synthesis of biomolecules, drug delivery, therapeutics, biomedical imaging, diagnostic 
testing, and others [28, 29, 37, 42-49]. These applications come from the ability of 
droplets to mimic micro reactors such that reactions and molecular processes can be 
observed in greater time and spatial resolution. Complex fluids can also be used in 
droplet microfluidics, including liquid crystals, lipids, polymeric solutions, and most 
relevant to the work described herein, surfactants [50].  Phase changes within droplet 
microfluidics have also been investigated due to the need for gels or solids in many 
biomedical applications. One way to achieve a phase change is by ultra violet (UV) light. 
UV light initiates polymerization of soluble particles into solid particles and activates 
photo initiators which cause monomers to link and solidify [29]. Use of chemical agents 
and solvent evaporation/extraction can also achieve the phase change from liquid to solid 
[29]. Other applications that use emulsions include foods, personal care products, and 
topical delivery of drugs [38, 51]. Simple Boolean logic functions have been performed 
via droplet microfluidics, making microfluidic computer chips feasible [29].  When 
droplets come to a branch in the channels, the path they take is governed by the number 
of droplets already in the two branches, resulting in a complex sequence of choices that 
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can be reversed [52]. In this dissertation we present droplet microfluidics for applications 
in diagnostics, harnessing many of the advantages of droplet microfluidics including 
targetable size, monodispersity, isolation, minimum cross-contamination, and their 
ability to be neatly packed within a chamber. 

One of the key challenges in continuous flow microfluidics is that as the number of 
parallel experiments increases, the size of the device increases almost linearly [29]. 
Droplet microfluidics is one effective method of addressing this challenge. In droplet 
microfluidics, the complexity and size of the device do not have to increase to increase 
the number of parallel experiments. Droplet microfluidics can generate non-spherical, yet 
monodispersed, droplets due to physical confinement in the channels. This is difficult to 
achieve on a macro scale because droplets are formed by agitating a mixture of two or 
more immiscible fluids [29]. This results in polydispersed droplets, where the size and 
number of droplets produced vary considerably. Droplet microfluidics controls the 
formation of each droplet and can reproduce uniform droplets within the nano- to micro-
meter diameter range [29] with only a 1-10 % dispersity [28, 53, 54]. Each droplet can 
contain its own experiment, allowing for parallel experimentation within the same device. 
This results in increased throughput, scalability, and the ease of collecting large data sets. 
Other advantages of droplet microfluidics include monodisperse droplets, independent 
control, and high surface area to volume ratios [29]. 

Each droplet acts as its own isolated microenvironment, which is an attribute extensively 
leveraged in this research. Droplets can also exist on a scale relevant to biological 
conditions [37]; this work focused on droplets on the order of 100-200 microns in 
diameter to enable numerous particles/cells on the order of 5-10 microns in diameter to 
be seeded within the monodispersed droplets. Homogeneous controlled conditions, such 
as external temperature and humidity, are present in droplet microfluidics, which makes 
droplets ideal chemical reactors [55] or cell chambers [56]. Droplets provide 
miniaturization and compartmentalization of pico- to micro-liter volumes with high 
throughput device configurations [28, 37, 55], which leads to low consumption of 
reagents, cells, and samples. The high surface area to volume ratio results in faster 
reaction times, as short as a few milliseconds [55], due to shorter diffusion distances as 
well as faster heat and mass transfer [14, 29]. 

Isolated chambers,  separated by the immiscible carrier fluid [28], are advantageous due 
to stable reaction conditions, parallel reactions, batch and continuous capabilities, no 
cross contamination, no dilution, control over evaporation, and high throughput 
possibilities [28, 37, 57]. Reactions can also be followed in time by imaging at different 
positions in the microfluidic chip. The effect of initial concentration on the overall yield 
and kinetics is of interest in the field of reaction kinetics. Chemical composition at any 
point along the channel can be determined using methods such as Raman spectroscopy 
[58], which allows whole kinetic mapping to be completed [55]. Other methods of 
content characterization include in situ fluorescence microscopy, in situ electrochemical 
detection, secondary mass spectroscopy, and secondary electrophoresis  [28]. Table 2.1 
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compares attributes of droplet microfluidics for chemical reactors and for the 
electrokinetic microenvironments in this work.  

Table 2-1. Comparison of attributes of droplet microfluidics for chemical reactions and 
electrokinetic microenvironments. 

Attribute Chemical reactors 
Electrokinetic 
microenvironments 
(this work) 

Ability to adjust 
upstream composition 

Concentration dependent 
kinetics 

Media dependent 
responses 

Isolated 
microenvironment 

Does not have to be stationary 

Minimal cross contamination 

Parallel experimentation 

High throughput 

Fewer evaporation effects 

Scale relevant to 
biological conditions 

Mimic biological reactions and molecular processes 

Small sample requirements 

Uniform size distribution Reproducibility 

Homogeneous controlled 
conditions 

Reproducibility 

Parallel experimentation 

2.1.2 On-Chip Droplet Manipulation Techniques 

One of the advantages of droplet microfluidics is the ability to manipulate the droplets by 
sorting, trapping, fission, fusion, and mixing. Droplet sorting is important for the 
separation of specific droplets of interest. Droplets can be sorted based on size using only 
channel geometry where smaller side channels will take smaller droplets as the larger 
droplets flow through the main channel [29]. Dielectrophoresis (DEP), magnetophoresis, 
and electrowetting-on-dielectrics (EWOD) can be used to sort droplets based on contents 
[28]. Using DEP to sort droplets based on the contents should not be confused with the 
research presented herein; performing DEP characterizations on particles/cells seeded 
within the droplets. The first uses the electric fields to manipulate the whole droplet while 
the second uses DEP to manipulate particles within individual droplets. DEP and 
magnetophoresis sort whole droplets by using an electric or a magnetic field. Under the 
field conditions, droplets will behave differently and move toward either the high or low 
field regions based on the whole droplet’s dielectric properties [59]. Fluorescence-
activated separation is capable of separating 2000 droplets per second by optically 
detecting specific droplets and using either valves or lasers to “push” the desired droplets 



8 

into a separate channel [28]. Other methods include surface acoustic waves and laser-
induced localized heating which alter the interfacial tension [28]. Abbyad et al. utilized 
focused laser heating and surface patterning for moving droplets in a specific manner [2, 
8]. The localized heating from the laser causes a pushing force due to the change in 
density from the temperature shift, and the surface pattering causes a force due to a 
change in surface tension as shown in Figure 2.1. 

A change in surface tension can not only be used for droplet sorting but droplet trapping 
as well, as shown in Figure 2.1. Droplet trapping can be beneficial for increasing 
residence time. Normally, microdevices have a residence time of only seconds to 
minutes, but many reaction or cell culturing circumstances require several hours or days 
[28]. The simplest way to increase residence time is to increase the length of the channel. 
Other methods that require less space on a microdevice include reservoirs, drop spots, 
and surface patterning. A disadvantage to reservoirs is that the original generation order 
of droplets is lost [43, 60]. Drop spots create arrays of round chambers connected with 
narrow constrictions that will hold one droplet each [12, 57]. The drop spots investigated 
by Schmitz et al. could trap thousands of droplets for time-lapse studies and allowed for 
droplet recovery. Surface patterning is a trapping technique that uses grooves in the 
device to hold a droplet in place or to guide a droplet to a specific location by altering the 
surface tension of the droplet, (essentially allowing the droplets to take the path of least 
resistance) [2, 8]. Surface patterning can, in some cases, retain droplet generation order. 

Droplet fission is another droplet manipulation technique used in droplet microfluidics. It 
can scale up the number of parallel experiments by splitting previously formed droplets. 
Droplet fission can also be used to control the concentration of the droplets’ contents. 
Passive splitting geometries include T-junctions, branching channels, and channel 
obstructions [5, 29, 37]. Abate et al. used the branching channels of a microfluidic tree 
structure for faster droplet generation by splitting larger droplets at each branch down to 
the desired droplet size, as shown in Figure 2.2a [5]. Asymmetrical droplets are possible 

Figure 2-1. (a) and (b) Droplet sorting via laser force [2] , droplet trapping via (c) surface 
patterning [8] and (d) dropspots [12]. 
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by altering the lengths of the branching channels [28]. Active methods of droplet fission 
include electrical, magnetic, and thermal methods [37]. EWOD alters the interfacial 
tension, and thermal methods alter both the interfacial tension and viscosity since both 
properties are temperature dependent [29]. 

As droplet fission has advantages, droplet fusion does as well. Many reactions require 
reactants to be kept separate until the correct conditions or have multiple steps that 
require the addition of reagents at specific times [28, 56, 61]. Droplet microfluidics can 
keep reactants in individual droplets, and then fuse them together at a prescribed time. 
Droplet fission can be utilized to combine the contents within a droplet. Electrical, 
magnetic, thermal, optical, and chemical methods can achieve active fusion [11, 29, 37]. 
Some examples of achieving droplet fusion via electrical coalescence can be seen in 
Figure 2.2b [11]. The channel geometry can achieve passive fusion, where collision, film 
drainage, and film rupture occur [11, 29, 37].  

Droplet contents need to be well mixed to facilitate chemical reactions. Due to the nature 
of laminar flow and the length scale in which droplet microfluidics occurs, diffusion 
times are very long [28, 37]. To overcome slow diffusion, active and passive mixing 
methods have been researched. Droplets being sandwiched between or laying on top of 
electrodes can facilitate active mixing. An advantage to electric methods is that mixing 
can occur in a confined space [29], however, electrodes require at least one extra layer of 
fabrication. Um et al. demonstrated droplets of varying concentrations being passively 
achieved by first splitting droplets of two concentrations and then fusing different 
numbers of the smaller droplets of the two concentrations together and passively mixing 
them using channel geometry, as shown in Figure 2.2c [13]. An effective passive method 

Figure 2-2. Examples of (a) passive droplet fission using tree structures [5] , (b) active 
droplet fusion using electric fields [11] , (c) droplet fission for mixing droplets of varied 
concentration [13] , and (d) mixing within droplets via channel geometry [14]. 
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is to have long winding channels, as shown in Figure 2.2d [14].  Recirculation flows 
within the droplets are caused by the shear interaction of the channel wall with the 
droplet interface. This mixes the contents or two halves of the droplet, but diffusion 
governs mixing between the two halves. Long winding channels overcome this by 
making the recirculation flows uneven [28]. Disadvantages of this are that it takes 
significant space, pressure drops for fluid flow, and time. However, with strategic 
geometry designs, complete mixing can be achieved in milliseconds [28]. 

2.1.3 Methods and Theory of Droplet Formation 

Droplet manipulation has many advantages, but first requires the generation of droplets. 
“Top-down” generation occurs by direct agitation. This turbulence-enhanced generation 
provides little control over individual droplets [28, 38]  and results in an undesirable 
broad size distribution [29, 62]. “Bottom-up” methods control the formation of individual 
droplets. There are both active and passive forms of droplet generation within the 
“bottom-up” category. Active forms of droplet generation include DEP and EWOD 
which both use electric means to generate droplets. DEP can pull electrically neutral 
droplets out of a reservoir on the microdevice [29]. EWOD uses an electric field to 
manipulate the interfacial tension between the surface and the droplet. The advantages of 
EWOD are that it is compact and does not require external pumps [29]. Other active 
generation methods for droplet generation include centrifugal [63], thermal capillary 
valving via a laser [64], and pneumatic microvalving [65]. 

Passive means of droplet generation consist of two or more immiscible fluids and laminar 
fluid flow. Common geometries for passive droplet generation include flow-focusing, co-
flowing, Y-junction, and T-junction geometries [29, 37, 66]. T-junctions form droplets by 
intersecting the dispersed phase in a channel perpendicular to the continuous phase, as 
shown in Figure 2.3a. With a large enough flow rate [37] the dispersed phase elongates as 
it enters the main continuous phase channel until the shear force and pressure gradient 
formed pinching off droplets at the junction [29]. Due to the multiple advantages and 
high presence in literature, the work presented here utilized the T-junction geometry. 

T-junctions, the most common droplet generation geometry, are adaptable to a wide
range of velocities and pressures and are useful in chemical reactions and cell
encapsulations [44, 67-70]. Y-junction and K-junction (not shown in Figure 2.3) are
variations of the T-junction geometry, using angled channels instead of the 90-degree
channels [71]. Flow-focusing forces both the dispersed and the continuous phase through
a smaller orifice. Droplets are broken off downstream [28, 29, 57, 60, 72-75]. In flow-
focusing geometry, as the flow rate increases, production rate increases and droplet size
decreases [28, 29]. Figure 2.3c shows the set-up for flow-focusing geometry. Co-flowing
geometries use a smaller channel such as a capillary within a larger channel to break-off
droplets [51].

Droplet formation is governed by the Capillary number (𝐶𝐶𝐶𝐶),  Equation 2.1, where 𝜂𝜂 is 
the continuous phase viscosity, 𝑣𝑣 is the continuous phase velocity, and 𝛾𝛾 is the interfacial 
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tension [29]. For a Capillary number less than 10-2, interfacial forces dominate over 
viscous forces and the ratio of the volumetric flow rates of the two phases govern droplet 
breakup [37] and above 0.1 the main influencer is the competition between shearing 
effect from the continuous phase and the interfacial tension [76].  

𝐶𝐶𝐶𝐶 =
𝜂𝜂𝜂𝜂
𝛾𝛾 2.1 

There is a competition between the viscous and capillary forces in a T-junction [55]. 
Viscous forces tend to draw fluid along the channel, and capillary forces tend to reduce 
the total interface between two fluids by forming droplets. Joanicot et al. found droplet 
size to be comparable with the channel width [55]. It can be concluded that droplet size 
depends on the type of geometry used to generate the droplets [40, 55]. A variety of 
models/simulations for the prediction of droplet break-up in a T-junction have been 
developed [68, 69, 77].  

2.1.4 Material Properties, Geometry, and Flow Rate Effects on Droplet 
Generation 

Different droplet formation geometries have demonstrated different regimes of droplet 
formation [40, 54, 66, 69, 77-79]. Droplet breakup regimes are analogous to flow 
regimes. As the Reynolds number increases, the fluid flow goes from laminar, to 
transition, to turbulent. Similarly, as the Capillary number increases, droplet breakup 
goes from squeezing, to dripping, to jetting [40, 80].  Figure 2.4 shows examples of each 

Figure 2-3. Schematics showing droplet break-up in (a) T-junction, (b) Y-junction, (c) 
flow-focusing, and (d) co-flowing geometries. 
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droplet breakup regime. Droplet formation in the squeezing regime, with a Capillary 
number less than 10-2 [40, 78], is governed by pressure buildup upstream whereby the 
dispersed phase extends into the flow of the continuous phase squeezing the neck and 
pinching off a droplet [80]. An increase in Capillary number decreases the size of the 
droplets and an increase in flow rate or channel depth increases the droplet length. In the 
jetting regime, with a Capillary number greater than 0.1 [40, 78], droplets experience a 
combination of end pinching and capillary wave instabilities [80]. Thread formation, 
common in flow-focusing devices, is where thread formation occurs in which a primary 
droplet forms and then pulls a thin thread of the dispersed phase behind it. Interfacial 
tension then causes the thread to breakup into small, uniform droplets that are orders of 
magnitude smaller than the primary droplet [39-41]. 

As previously mentioned, the geometry and flow rates within a device affect the 
formation of droplets. Surface properties are also important to consider for droplet 
generation [28, 74, 81]. How droplet formation occurs depends on the wetting conditions 
of the microdevice walls. Poly(dimethylsiloxane), or PDMS, is one of the most common 
materials used in the fabrication of droplet microfluidic devices. Advantageous properties 
of PDMS include ease of use, mechanical/chemical stability, biocompatibility, and low 
cost [82, 83]. A disadvantage of PDMS is that swelling and deformation can occur within 
the device in the presence of organic solvents [29]. Other materials, with a higher solvent 
resistance, such as glass, silicon, and thiolene are used to eliminate this challenge [29]. 
Glass can be either hydrophobic or hydrophilic, but the fabrication of glass devices is 
time-consuming and costly [28]. Flow-focusing and co-flowing geometries alleviate 

Figure 2-4. Droplet break-up regimes; a) squeezing, b) dripping, c) jetting, and d) 
coflowing [1]. 
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some surface problems due to the continuous phase shielding the dispersed phase [62]. 
Roberts et al. investigated surface properties for both water-in-oil and oil-in-water 
droplets, showing that the contact angle between the fluids and the channel affect droplet 
production [74]. For this work, PDMS was used with a compatible fluorinated oil and 
glass microscope slides that were treated to become hydrophobic before running 
experiments. 

Controlling how droplets are generated can be very important depending on the 
application. It is important that the size, shape, and monodispersity are controlled while 
the droplets form. For drug delivery and biosensing, well-defined volumes and 
compositions are necessary to achieve the correct dosing and manufacturing. Further, the 
biological and chemical properties of microparticles are strongly affected by the size and 
morphology [29]. For example, as droplet size decreases the ratio of surface area to 
volume increases. For an application such as drug delivery, a decrease in droplet size 
would lead to a higher drug release rate due to the decreased amount of transport 
necessary. Uniformity and size are important to this project because of how they pack 
within the microfluidic chamber, and Chapters 4 and 5 discuss the implications of poor 
uniformity and packing. Chapter 4 presents investigations into materials and 
experminetal set-up which play important roles in droplet size determination [29]. 

2.2 Surfactants for Control of Droplet Uniformity/Size/Stability 
in Droplet Microfluidics 

The use of surfactants can be very advantageous in microfluidic devices, as discussed in 
the following sections.  

2.2.1 Introduction to Surfactants 

As previously mentioned in Section 2.1.4, it is important to be able to control droplet 
generation. One way to aid in this control is to add a surfactant into the system. 
Traditionally, a wide range of applications use surfacants including motor oils, 
pharmaceuticals, cleaning/laundry detergents, petroleum drilling muds, and ore 
beneficiation floatation agents [84]. More recently surfactants are being used in 
technologies including microelectronics, viral research, and biotechnology. The term 
surfactant comes from surface-active agent. Surfactants have an amphipathic structure; a 
lyophobic group that has little attraction to the solvent and a lyophilic group with a strong 
attraction to the solvent. The hydrophobic group is generally a long chain hydrocarbon 
residue, but it can also be a halogenated or oxygenated hydrocarbon or siloxane chain. 
The hydrophilic group is an ionic or highly polar group and is also sometimes referred to 
as the surface active portion [84].  

There are four classifications of the surface active portion based on the charge; nonionic 
has no apparent ionic charge, zwitterionic has both positive and negative charges, 
cationic has a positive charge, and anionic has a negative charge. Because of their nature, 
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there are many different surfactants available and can be chosen based on the specific 
application. Table 2.2 contains a list of surfactants and their applications in microdevices. 
This work focuses on surfactants for the application of stabilizing emulsions within a 
microdevice for biological/medical applications. After testing multiple surfactants 
(discussed in Chapter 4), Krytox 157 FSH (perfluoroalkyl polyether carboxylic acid), an 
anionic surfactant was chosen to aid in system stabilization.  

2.2.2 Surfactants in Microfluidics 

Surfactants play a major role in emulsions because the phase boundary area is very large 
with respect to the volume. This means that a substantial fraction of the total mass present 
is at the boundaries [84].  In most microfluidic applications they reduce the interfacial 
tension, aiding in droplet breakup and stability [76, 85]. At low concentrations, 
surfactants can absorb to surfaces and interfaces. The desired outcome is usually a 
decrease in surface/interfacial tension, although some applications desire an increase. 
This is done using the nature of interfacial tension, the interfacial free energy per unit 
area, by decreasing the interfacial energy we are decreasing the minimum amount of 
work required to create an interface, thus stabilizing droplet formation [84].  Due to the 
amphiphilic nature of surfactant molecules, in an immiscible aqueous/oil solution, they 
are attracted to the fluid interface, with the hydrophobic portion of the molecule going to 
the oil phase and the hydrophilic portion of the molecule going to the aqueous phase [85]. 
This layer of molecules at the interface of each droplet acts as a repulsive barrier helping 
the droplets resist coalescence [86, 87].  

The Gibbs adsorption isotherm describes the decrease in surface tension for dilute 
solutions (Equation 2.2), where 𝛾𝛾 is the surface tension, 𝑐𝑐 the surfactant  concentration, Γ 
the surface concentration, 𝑅𝑅 the gas constant, and 𝑇𝑇 the temperature [85].  

Γ = −
𝐶𝐶
𝑅𝑅𝑅𝑅

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

2.2 

The surfactant concentration is important in this equation due to the nature of surfactants. 
As the concentration of surfactants increase, there comes a point when the molecules 
come together to form micelles. This point is referred to as the critical micelle 
concentration (CMC). The CMC also corresponds to the limiting interfacial tension 
achievable since the interface is homogenously covered maintaining constant interfacial 
tension [88]. Above the CMC, surfactant molecules have to dissociate from the micelles 
to diffuse to the interface between the aqueous and oil phases [76].  

In addition, droplet size and time to collision with other droplets also affects coalescence 
due to kinetic mechanisms of surfactant adsorption. Adsorption/desorption surfactant 
interface kinetics dominate in smaller droplets, while diffusion dominates in larger 
droplets. The more time droplets have between formation and collision, the more time the 
surfactant molecules have to diffuse to the aqueous/oil interface. 
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Table 2-2. Surfactants and uses in literature 
Solubility Surfactant Dissolved Phase Concentration Used Bio-

compatible* Ref. 

oil 

Krytox 157 FSL HFE-7500 2 % (w/w) - [89] 
FC40 0.5% (w/w) - [2] 

PFPE-PEG /PEG based 

HFE-7500 2% (w/w)  [90] 
HFE-7500 0.5% (w/w)  [91] 

FC40 0.5% (w/w)  [92] 
FC40 or R (Raindance Technologies) 1.8% (w/w)  [47] 

FC40 0.01% (w/w) - [2] 
FC-3283 (3M) 2% (w/w) - [93] 

DMP-PFPE FC40 0.5% (w/w)  [8, 92] 

Span80 
hexadecane 2% (w/w) - [94, 95] 
hexadecane >cmc=0.02wt% (HLB=4.3) - [96] 

Decane, tetradecane, and hexadecane - - [29] 
PGPR 90 Benzyl benzoate and SO (1:1 v/v) 2-5 % (w/v) - [72] 

PFO FC-40 9:1 (oil:surfactant) - [79] 
Span80 and Tween20 Mineral oil 0-10% (w/w) - [76] 

water 

SDS 

0.01 M fluorescein sodium salt in DI water >cmc=0.2 wt% (HLB=40) - [96] 
Milli-Q water 0.03, 0.15, 0.25, 1.5, 3.0% (w/w) - [71] 

deionized water 0.001-1.0% (w/w) - [97] 
water 8 mM - [98] 
water - - [29] 
water 0.5-4.0 wt% - [76] 

Tween80 0.01 M fluorescein sodium salt in DI water >cmc=0.1 wt% (HLB=15) - [96] 

Tween20 water - - [29] 
water 6-18 wt% - [76] 

Synperonic PEF108 Milli-Q water 0.025, 0.25, 1.25, 5.0% (w/w) - [71] 
Phospholipids water - - [29] 
Pluronic F-127 5-10 % (w/v)  glycerol aqueous solution 1% (w/v) - [72] 

octaethylene glycol 
monododecyl ether  deionized water 2.5*cmc (cmc=100µM) - [40] 

* key:  - not mentioned   biocompatible
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Not only can surfactants increase the ease of formation and stability of droplets, but they 
can also aid biocompatibility [40, 47, 62, 87, 99, 100]. Biocompatibility is important for 
this project because we are completing particle/cell characterization, which requires the 
cells to stay alive. Other applications in medical microdevices that require 
biocompatibility include applications such as polymerase chain reaction (PCR), cell 
culturing, and single cell analysis [28, 29, 37]. The addition of surfactants can prevent the 
adsorption of biomolecules at the aqueous/oil interface [47]. Surfactants can be tailored 
to a system by strategically choosing a molecule, changing the head or tail group, or even 
just by having other molecules present in the solution. By simply changing the head 
group from a carboxylic acid to polyethylene glycol (PEG), there is an improvement in 
biocompatibility [47]. The interaction between a carboxylated perfluoropolyether from a 
surfactant head group and a heterocyclic, nitrogenous base in a fluorous solvent or a 
primary amine can create a similar biocompatible effect [87]. Table 2.2 contains a list of 
oil phase/aqueous phase/surfactant combinations that have been used in droplet 
microfluidic applications. 

2.3 Electrokinetic Particle/Cell Characterization via 
Dielectrophoresis 

The following sections detail particle/cell characterizations. 

2.3.1 Current Methods of Particle/Cell Characterizations (Advantages and 
Disadvantages) 

As mentioned in the introduction, this work utilized two microfluidic techniques. So far 
droplet microfluidics has been introduced. The second portion of this project was related 

Figure 2-5. Mechanisms of surfactant transport for droplet microfluidics. a) micelle: self-
assembly of surfactant molecules, b) surfactant molecules transport to the interface, c) 
micelle molecules must diffuse apart in order for the molecules to transport to a droplet 
interface, d) a longer channel length allows more time for diffusion to the interface, e) 
partially coated droplet = not stable = coalescence, e) fully coated droplet = stable = very 
little coalescence. 
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to particle/cell characterization. There are many methods of particle/cell characterization. 
One method is flow cytometry and microscopy imaging, which detect markers that 
require fluorescent labeling [101]. Another method, magnetophoresis, uses magnetic 
nanoparticles for characterization and separation [102]. Electrokinetic methods, such as 
electrorotation, electrical impedance spectroscopy, and dielectrophoresis provide label-
free methods of characterization [101]. Electrokinetics are discussed further in the 
following sections on dielectrophoresis and insulator dielectrophoresis.  

2.3.2 Previous µM.D.-ERL research for Characterizing Polystyrene Beads 
and Red Blood Cells 

µM.D.-ERL has completed a multitude of experiments for characterizing new device 
designs by using polystyrene beads (PS) and red blood cells (RBC). To characterize a 
new device, it is desirable to verify DEP responses of particles with ideal behavior. 
Before adding complex particles/cells into a system, many researchers benchmarked new 
dielectrophoretic devices using polystyrene beads [103-109]. Polystyrene beads are 
highly uniform, behave ideally in many systems, and come in a large variety of sizes. 
Prior Minerick lab research has explored the dielectrophoretic behavior of 6 µm 
polystyrene beads and experimentally quantified the DEP response of all eight blood 
types (A+, B+, AB+, O+, A-, B-, AB-, and O-). The ABO-Rh blood typing system is the 

Figure 2-6. Native AB+ and B- red blood cells in 0.1 S/m dextrose buffer and subjected 
to a 2.5 Vpp AC signal swept from 100 kHz to 1.9 MHz over 400 seconds. Both AB+ and 
B- experience p DEP and nDEP, although the range differs. This demonstrates
differences in cell motion by ABO antigen expression on red blood cell membranes.
Figure courtesy of µM.D.-ERL researchers K. Leonard and H. Moncada Hernandez.
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dominant antigen classification system for RBCs characterized by antigen 
polysaccharides expressed on the membrane surface, a transmembrane protein, and 
plasma antibodies [110, 111]. 

RBC membranes [112-120] are essentially non-conducting [121-125], vary from 50 to 90 
nm thick depending on exerted force [114], and are the reason RBCs exhibit a low 
electrical conductivity (they behave as a dielectric) [34, 123]. In contrast, RBC interiors 
are conductive [125-127] and how conductive they are varies with hemoglobin and 
cytoplasm molecules [125, 128, 129].  RBCs have a biconcave shape, ranging from 6 to 8 
μm in diameter and 0.5 μm (center) to 2 μm (edge) in thickness. RBCs vary dynamically 
in response to solvent conditions, pH, tonicity, and temperature [127].  Blood cell 
molecular expression varies by person; ABO-Rh type dominates its classification based 
on antigen polysaccharides expressed on the membrane surface and plasma antibodies 
[112, 113].   

Prior µM.D.-ERL research quantified cell movement in a batch DEP device, shown in 
Figure 2.6 [36, 130, 131], interrogated insulator DEP blood cell deflection at a 
microfluidic bifurcation in a continuous DEP device [132], and demonstrated that ABO-
Rh expression shifts cross-over frequencies. The cross-over frequency is the frequency at 
which there is zero cell motion in the transition between movement up the electric field 
gradient to movement down the electric field gradient or vice versa. Lastly, systematic 
experiments and automated intensity profile analysis revealed that ABO-Rh expression 
alters the entire cell dielectrophoretic frequency spectra. These experiments were 
completed batch-wise consuming considerable resources and person-hours. The use of 
droplet microfluidics flowing into a DEP chamber allows simultaneous completion of 
multiple experiments. With the established red blood cell typing database, the reliability 
and reproducibility of reverse-insulator dielectrophoresis (riDEP), was explored, as 
discussed in Chapter 7.  

2.3.3 Other Cell/Particle Systems 

There is a wide range of particle/cell systems that can be characterized via 
dielectrophoretic techniques. DEP characterizations have been completed for biological 
cells [24, 33, 133-142], whole blood [127, 128, 143-158], erythrocytes (RBCs) [31, 36, 
121, 125, 126, 130-132, 147, 149, 152, 154, 156, 157, 159-178], leukocytes [148, 179-
187], and peripheral blood [188, 189]. As mentioned, previous µM.D.-ERL work has 
shown ABO-Rh blood typing using DEP [131, 132, 190, 191]. A change in cholesterol 
level changes human RBC morphology [192]. High cholesterol alters human RBC 
membrane thickness, sickle cell anemia changes human RBC shape [193], stem cells 
change shape/size/properties as they differentiate into their different progeny [194, 195], 
and more. The new electrokinetic technique presented in this dissertation, riDEP, takes 
the field of medical microdevices one step closer to being able to characterize 
particle/cell systems without requiring any labeling/alterations to the particles/cells and 
with minimal sample volume and time required. 
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2.4 Dielectrophoresis 

Dielectrophoresis, the characterization method used for this work, is discussed in the 
following sections. 

2.4.1 Background: Electrokinetics to Dielectrophoresis 

Electrokinetics is the use of electric fields to induce motion. Three of the most common 
types of electrokinetics are electrophoresis, isoelectric focusing, and dielectrophoresis. 
Electrophoresis is the migration of charged objects within a solution when under the 
influence of an electric field. Both the size and charge density of the object contribute to 
the migration speed. Isoelectric focusing is object migration in pH gradients to its iso-pH 
(iso-electric) point. Amphoteric molecules (proteins, amino acids) can act as an acid or a 
base, either donating or accepting a proton. In isoelectric focusing, an electric field is 
applied across a channel. Amphoteric molecules will move toward the cathode when in 
acidic conditions and toward the anode when in basic conditions. There is a point where 
the electrophoretic force will become zero, and the amphoteric molecule will no longer 
move. This occurs at the isoelectric point where the molecule’s charge is neutral. 
Dielectrophoresis is object motion due to its electrical properties in non-uniform electric 
fields. The electrical permittivity and conductivity of the object and the surrounding 
solutions determine the direction of motion either up or down the electric field gradient. 
These electrical properties along with the size of the object and the magnitude of the 
electric field also determine the size of the dielectrophoretic force experienced. Other 
types of electrokinetics include electroendosmosis, electrolysis, and capillary 
electrophoresis.  All of these techniques can be applied to aspects of particle/cell 
characterization and separation. In this dissertation, dielectrophoresis (DEP) was chosen 
as a particle/cell characterization technique due to its versatile, fast, noninvasive, and 
nondestructive qualities [132].  

2.4.2 Applications/Advantages of Dielectrophoresis for Particle/Cell 
Characterization 

Dielectrophoresis is a fast, noninvasive, and nondestructive technique for the 
manipulation/characterization of bioparticles such as yeast, cancer, stem, and blood cells 
[132]. Dielectrophoresis has many practical applications in the fields of engineering, 
medicine, atmospheric sciences, space explorations, industry, life sciences, and more 
[196]. In the field of life science, manipulation of particles is important for diagnostic and 
clinical applications. Disease detection, separation of cancerous from normal cells, 
separation of living from dead bacteria, and ABO-Rh human blood typing are examples 
of the applications of DEP in the life sciences [4].  

Advantages to using DEP for particle manipulation include instrumentation simplicity, 
favorable scaling effects, and label-free operation. Another key advantage is that, unlike 
electrophoresis, DEP is applicable to any polarizable particle or cell, even those with no 
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net charge.  Depending on the size and electrical properties of both the suspending 
medium and the particles, both positive and negative forces can be induced by DEP. DEP 
microdevices can integrate sample injection, sample preparation, and analysis including 
trapping, concentration, separation, focusing, and characterization within a single device 
[197]. For biological applications specifically, benefits of DEP microdevices include 
small samples, minimal waste, low costs, high-resolution separation and detection, and 
short analysis times [197].  

DEP uses the spatial gradient of a non-uniform electric field to induce a particle dipole 
and thus cause particle movement up or down the electric field gradient [196]. Particle 
size, shape, and electrical properties as well as suspending media properties, and the 
frequency of the electric field influence the DEP force [132, 198].  DEP force, Equation 
2.3, also depends on the sign and magnitude of the Clausius-Mossotti factor (fCM), K(ω) 
shown in Equation 2.4. The complex permittivities (𝜀𝜀𝑖̃𝑖) are calculated using the relative 
permittivities (𝜀𝜀𝑖𝑖), the conductivities (𝜎𝜎𝑖𝑖), and the angular frequency (𝜔𝜔) as shown in 
Equation 2.5. For a fCM greater than zero, particles are attracted to the electric field 
maxima (positive DEP, p-DEP) and for a fCM less than zero, the particles are attracted to 
the electric field minima (negative DEP, n-DEP) [196].   

�𝐹𝐹�𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)� = 2𝜋𝜋𝜀𝜀𝑚𝑚𝑟𝑟3Re[𝐾𝐾(𝜔𝜔)]∇|𝐸𝐸�𝑟𝑟𝑟𝑟𝑟𝑟|2  2.3 

𝐾𝐾(𝜔𝜔) =  
𝜀𝜀𝑝̃𝑝 − 𝜀𝜀𝑚̃𝑚
𝜀𝜀𝑝̃𝑝 + 2𝜀𝜀𝑚̃𝑚

2.4 

𝜀𝜀𝑖̃𝑖 = 𝜀𝜀𝑖𝑖𝜀𝜀0 −
𝑗𝑗𝑗𝑗
𝜔𝜔

2.5 

Dielectrophoretic force is influenced by particle size, electric properties of the particles 
and the suspending medium, and the electric field frequency and amplitude [132, 198]. 
This allows DEP to characterize particles/cells based on their size, membrane/cytoplasm 
permittivities and conductivities, and shape characteristics [36, 130, 132, 133, 159]. This 
is advantageous over linear electrophoresis, which can only characterize particles/cells by 
size and surface charge [34, 199, 200]. Electrokinetic characterization results are 
dependent upon the supporting media conditions. Therefore a different DEP spectra curve 
is needed for each media condition, such as conductivity. Until recently, each point on 
the DEP spectra needed a separate experiment at a different frequency. Previous µM.D.-
ERL research overcame this by implementing a frequency sweep, allowing multiple 
frequencies to be combined into one experiment [201]. The time and sample 
requirements for generating DEP spectra for different media conditions limit the 
practicality of using DEP characterizations for medical diagnostics. The new riDEP 
technique presented herein takes one step closer to overcoming this limitation. The utility 
of the new electrokinetic technique presented was benchmarked against known data. 
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2.4.3 Formation of Non-Uniform Electric Fields 

Dielectrophoresis can be completed using either direct current (DC) or alternating current 
(AC) fields [196, 202]. In DC-DEP non-uniform electric fields are created by the device 
geometry. Common geometries include parallel or interdigitated, castellated, oblique, 
curved, quadrupole, microwell, matrix, extruded, top–bottom patterned, and side-wall 
patterned, which can be seen in Figure 2.7 (all except side-wall patterned) [7]. An 
advantage to using DC-DEP is that the fCM is dependent on the electrical conductivities of 
the particles and the suspending medium as shown in Equation 2.3. Living cells are 
weakly conductive. The electric field drops across the cell membrane causing the fCM to 
be negative, allowing the DEP motion of cells to be modeled by n-DEP [196]. Due to 
their complexity, electric and physical properties of the cytoplasm, cellular and nuclear 
membranes affect the DEP response of living cells [198]. The high voltages necessary to 
generate sufficient DEP force can cause Joule heating effects inside the channel [196]. 

Figure 2-7. Schematics of common DEP geometries. (a) parallel or interdigitated, (b) 
castellated, (c) oblique, (d) curved, (e) quadrupole, (f) microwell, (g) matrix, (h) 
extruded, and (i) top–bottom patterned [7]. 
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Joule heating effects are unwanted due to the temperature increase associated with them. 
An increase in temperature can cause a disturbance in the operation of the device due to 
bubble formation or changes in cell viability and physiology, even cell death [196].  

 In AC-DEP, the non-uniform electric fields are generated by an embedded electrode 
array [203]. Fabrication of such electrode arrays is complex, expensive, and time-
consuming. This makes AC-DEP devices less economically feasible as system scale 
increase [196]. The fCM for AC-DEP is dependent not only on the electrical conductivities 
of the particles and the suspending medium but also the permittivities [196]. A 
disadvantage to AC-DEP is that there may be a disturbance in the operation of the device 
due to fouling of the electrodes. An advantage of AC-DEP over DC-DEP is the 
prevention of Joule heating by using low voltages [196]. The work presented herein 
eliminates some of the complexity of the electrode designs due to the electric field 
gradient being formed by the droplet interfaces instead of the electrode configuration. 

2.4.4 2D versus 3D Electrodes 

Two types of electrodes for DEP experiments have been presented in the literature, two-
dimensional (planar) and three dimensional (3D). Planar electrodes are more common 
than 3D electrodes due to microfabrication complexity and cost [204]. Planar electrodes 
require fewer steps, time, and materials for microfabrication. However, 3D electrodes can 
provide a more effective electric field, and many researchers are finding cheaper, 
alternative methods for fabrication such as alternating layers of conductive (aluminum 
foil) and insulative (epoxy resin) materials and drilling a well through them [205],  
spacing wires using Scotch tape [206], weaving stainless steel wires with polyester yarn 
cloth [207], using deep reaction ion etching for silicon electrodes [9], Using a base layer 

Figure 2-8. Simulation comparison of 2D (a) and 3D (b) electrodes [3]. Experimental 
comparison of 2D (c) and 3D (d) electrodes [9]. 
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(such as silicon or photoresist) to form the 3D structure before metal deposition [3, 208], 
carbonizing photoresist structures [209-211], and electroplating [212].  

With planar electrodes, the distance up into the chamber that the electric field traverses is 
limited [3]. With 3D electrodes, the electric field can be present throughout the entire 
chamber. A simulation comparison [3] and an experimental comparison [9] are shown in 
Figure 2.8. For riDEP, three-dimensional electrodes are necessary to get the electric 
field close enough to the droplet interface to traverse through the droplets.  

2.5 Insulator Dielectrophoresis 

2.5.1 Advantages 

For the new DEP technique that we are presenting herein droplets shape the electric 
field instead of electrodes. This is similar to insulator dielectrophoresis, although in a 
reversed fashion. Insulator dielectrophoresis (iDEP) is a subset of DEP that shapes the 
electric field lines by adding insulator geometries within the microfluidics. There are 
many advantages to utilizing insulator dielectrophoresis, including the ability to trap and 
sort particles/cells, fouling reduction, reduced cost of materials and fabrication [4, 132, 
196, 202]. Using trapping and streaming for particle/cell separation is very common in 
insulator dielectrophoresis, but due to the batch nature of the work presented here 
trapping and streaming are not discussed. One key iDEP advantage is the ability to create 
a device tailored to a particular task. Obstructing features positioned within channel or 
chamber geometries can achieve trapping or sorting [4]. A wide variety of materials and 
geometries may be utilized with iDEP allowing devices to be more specific to a certain 

Figure 2-9. Schematics showing common iDEP geometries  [4]. 
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task or more general for a variety of tasks. Another advantage of using insulating features 
over complex electrode arrays when shaping electric fields is that they do not foul as 
electrodes do [202].  

Srivastava et al. compiled common insulating geometries showing where the particles 
undergo the maximum effect under DC fields, shown in Figure 2.9 [4]. The cost of iDEP 
fabrication is reduced from electrode DEP because microfabricated iDEP devices use 
only a single material and two remotely positioned electrodes [202]. Only having two 
electrodes is beneficial because it decreases electrode complexity and reduces material 
costs. Remotely positioned electrodes also render the device more electrochemically inert 
[196].  

Gallo-Villanueva et al. utilized the insulating post geometry in their experiments. Three 
geometry variables were studied; insulating post diameter, size of the gaps between posts, 
and the number of gaps. Along with COMSOL simulations, the experiments showed that 
device geometry has an important effect [203]. Experiments completed by Srivastava et 
al. observed DEP forces by varying medium conductivity, particle size, and field strength 
[132]. Results of these experiments show promise to accurately predicting particle paths 
and designing effective devices for trapping and sorting. In this dissertation, we present a 
new method of insulator dielectrophoresis that is essentially the reverse of traditional 
iDEP. Instead of having solid insulating features shape the electric field, we show how 
the electric field can be shaped within isolated droplets by the surrounding insulative oil.  

Streaming and trapping are the two iDEP regimes observed during continuous flow 
experimentation. Cell/particle characterization and separation can be achieved by using 
streaming/trapping. This can be achieve by applying electric fields of different 
magnitude/frequency. Both regimes have a large dependence on the device geometry, the 
most common being an array of posts [213]. Streaming occurs when the dielectrophoretic 
force acting upon a cell/particle is less than the other forces (such as forces from fluid 
flow). Trapping occurs when the dielectrophoretic force is stronger than the other forces 
acting on a cell/particle. 

 In combination streaming and trapping can be used to separate particles based on size, 
shape, or electric properties such as polarizability and charge [197]. Experiments 
conducted by Baylon-Cardiel et. al. showed an increase in DEP force with an increase in 
applied electric field, an increase with an increase in suspended medium conductivity, 
and a decrease with an increase in pH [214]. These results are consistent with theory and 
simulation. An increase in the suspended medium conductivity yields lower 
electroosmotic flow. A decrease in the suspended medium pH also yields lower 
electroosmotic flow. With lower electroosmotic flow particle immobilization is easier 
[214]. Trapping occurs when the dielectrophoretic forces overcome the electrokinetic 
forces. 

In both trapping and streaming the diffusive forces are weaker than both the 
electrokinetic and dielectrophoretic forces [202]. Experiments and simulations completed 
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by Camacho et. al. demonstrate large agreement. This implies that the theory is reflected 
in the experiments for both regimes [215]. Trapping can be used to concentrate a sample 
by immobilizing the target particles as they enter the system [197]. This is done by using 
a high electric field to trap the particles and after sufficient time switch to a low electric 
field to allow the release of the now concentrated particles [213]. Streaming can also be 
used to concentrate particles but in a continuous fashion. By using an electric field that is 
lower than that required for trapping and high enough to cause particle movement within 
the fluid, particles can be concentrated in a stream [213].  Figure 2.10 shows an example 
of using a combination of trapping and streaming in order to separate live (blue) and dead 
(red) THP-1 cells [137]. When utilizing droplet microfluidics, where each droplet is its 
own isolated environment, use streaming and trapping cannot be used. For these types of 
applications, hafnium oxide use as a physical barrier between samples and electrodes 
was investigated as an alternative to riDEP and is presented in Chapter 8.  

2.5.2 DC vs. AC vs. DC-Offset AC for iDEP 

Traditionally iDEP is conducted using a DC electric field [216]. This is advantageous 
over the traditional AC field used for DEP due to single material fabrication, reduced 
fouling, and remote electrodes [4].  Srivastava et al. presented a comprehensive review of 
DC-iDEP applications. Disadvantages of DC-iDEP include high DC voltages needed and
joule heating which can affect the viability and physiology of cells [216].  Joule heating
causes a rise in temperature of the fluid and then forms a temperature gradient throughout
the device by thermal diffusion [217]. This can cause adverse effects such as the
reduction of the ability to trap and focus particles [217]. By introducing an AC
component to the electric field three key benefits are observed; contribution to the
dielectrophoretic force acting on the particles, suppressed electroosmotic flow, and no
electrophoretic motion [216]. Experiments conducted by Lewpiriyawong et al. using DC-
offset AC iDEP to observe the electrokinetics concentration of particles and cells by
negative iDEP showed a reduction in the DC field component and the Joule heating
[216].

2.5.3 Electrocoalescence 

The riDEP microdevice presented in this dissertation used the continuous oil phase 
around the droplets as an insulator, shaping a non-uniform electric field to within each 
droplet. A possible challenge when combining dielectrophoresis with droplet generation 
is that electric fields can impact the droplet interface itself, thus influencing droplet 
transport, deformation, fission, and fusion of droplets within microdevices [28, 29, 35, 
37, 218]. There have been numerous studies on droplet deformation in a uniform electric 
field, including a handful in non-uniform electric fields [218]. Coalescence occurs when 
the electric field destabilizes the thin film between droplets [85] and has been shown to 
depend on the materials present in the two phases [11, 85, 219, 220]. Operating 
conditions must be carefully chosen to avoid splitting and coalescence. Research has 
shown that electrocoalescence depends on the materials present in both phases [11, 85, 



26 

219, 220]. Experiments for this dissertation had multiple aqueous phases with multiple 
salts and dextrose additives and continuous phases with multiple surfactants as additives. 
Phase diagrams exist for droplet coalescence in a static fluid and AC fields as a function 
of frequency [6, 220]. This type of data illustrated that electric fields can achieve electric 
field effects within the droplets without destabilizing the interface between droplets [6, 
11, 219, 220]. Figure 2.10 a and b show the coalescence of two droplets in a static fluid 
for both sine and square wave AC field as a function of frequency [6]. The effects of 
voltage and frequency on contact angle have also been studied and used to target droplet 
fusion and fission, as shown in Figure 2.10 c, d, and e [10]. These examples of previous 
research provided the means to reduce the range of experimental parameters 
investigated. Correct experimental conditions to reduce fluid shear and control droplet 
coalescence in applied electric fields were found via a systematic study of the effects of 
the applied voltage on droplet destabilization, presented in Chapter 7. 

2.6 Conclusions 

One of the key limitations to current DEP devices is the amount of time it takes to 
generate DEP curves. This project aimed to eliminate this by implementing parallel 
experimentation. This was accomplished by using droplet microfluidics, which provided 
isolated microenvironments to multiplex the number of experiments. An electric field 
was applied across the chamber resulting in non-uniform electric fields within each 
droplet that can be used for DEP interrogations. 

Figure 2-10. Droplet coalescence phase diagrams for (a) sine and (b) square waves [6]. 
Contact angle dependence on (c) frequency and (d) voltage, along with (e) the utilization 
of electric field induced contact angle change to enable droplet fusion and fission [10].  
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Research shows that droplet microfluidics can control the formation of droplets within 
the nano-micrometer diameter range with high monodispersity that act as isolated 
microreactors [28, 29]. This work used T-junctions due to their high presence in the field, 
adaptability to a wide range of velocities and pressures, and useful in chemical reactions 
and cell encapsulations [44, 67-70]. Surfactants can be tailored to a specific purpose in a 
system, such as increasing droplet stability or biocompatibility [31, 67, 112, 131, 191, 
198]. Krytox FSH 157 was chosen herein, for its high molecular weight and similarity to 
a biocompatible surfactant (which was not chosen due to cost), to form a layer of 
molecules at the interface of each droplet to act as a repulsive barrier helping the droplets 
resist coalescence [86, 87]. Multiple works showed that the droplets formed can be 
packed within a larger microfluidic chamber [43, 60].  

In this dissertation, dielectrophoresis (DEP) was chosen as a particle/cell characterization 
technique due to its versatile, fast, noninvasive, and nondestructive qualities [132]. An 
electric field was applied across the microfluidic chamber shaping a non-uniform electric 
field within each droplet. Previous research showed that the presence of an electric field 
destabilizes the film between droplets [11, 85, 218]. Therefore, operating conditions were 
carefully chosen to avoid splitting and coalescence. The non-uniform electric field shaped 
within each droplet can be used for dielectrophoretic characterizations. Before adding 
complex particles/cells into a system, many researchers benchmarked new 
dielectrophoretic devices using polystyrene beads [103-108]. Prior Minerick lab research 
explored the dielectrophoretic behavior of 6 µm polystyrene beads and experimentally 
quantified the DEP response of all eight blood types (A+, B+, AB+, O+, A-, B-, AB-, and 
O-). Both polystyrene beads and the ABO-Rh blood typing system were used to test the 
viability of the reverse insulator dielectrophoretic technique. 
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3 Materials and Methods 

3.1 Microdevice Fabrication 

This section describes, in detail, the fabrication processes used for device fabrication. 

3.1.1 Fluidic Layer 

Microdevices used for this work were microfabricated in the Michigan Technological 
University’s Microfabrication Facility (MFF) by customized soft lithography techniques 
[221, 222]. Entrance to the MFF required safety training on all hazards that were or could 
be present. To gain qualification to use any piece of equipment, a series of at least three 
watches and three hands-on followed by a qualification exam were completed. This 
ensured safe and proper use of the different types of equipment and chemicals present. 
Devices consisted of either a fluidic layer or an electrode layer with a fluidic layer, both 
with a standard microscope slide as the substrate. Poly-dimethyl siloxane (PDMS), a 
clear polymer, was used for the fluidic layers.  The clear PDMS and glass slide allowed 
optical observations and measurements. A master silicon wafer was microfabricated and 
used for making castings of the PDMS fluidic layers. The desired fluidics were 
designed/drawn in AutoCAD (AutoDesk Inc, San Rafael, CA). They were translated into 
a film mask by either sending to Output City (Bandon, OR) or by hand in the dark room 
of the MFF. In the dark room, an AutoCAD file was transferred to a transparency using a 
laser photoplotter and standard development techniques.  

To get the desired features from the film to a silicon master wafer, the clean room of the 
MFF was used. SU-8 processing information [223], along with literature [224] and 
µM.D.-ERL personnel experience informed the fabrication recipes used. Throughout the 
project, multiple recipes were utilized. The different recipes were used to either improve 
the outcome of the microfabrication or target a different thickness. Table 3.1 documents 
these recipes. There were three main parts in the process of adding features to the silicon 
master wafer; cleaning, photoresist crosslinking, and feature development. The following 
three paragraphs discuss the details and reasoning behind each step of the process. 

Cleaning: A 4-inch silicon wafer was sonicated in acetone for 5 minutes, followed by 
isopropyl alcohol (IPA) for 5 minutes then deionized (DI) water for 5 minutes. The wafer 
was immediately rinsed with DI water to ensure removal of all contaminated solvents 
before the wafer had a chance to dry, reducing the chance of leaving contaminants on the 
wafer. The wafer was dried via nitrogen. A second cleaning step was completed to ensure 
no contaminants were deposited during the drying process. This step was completed on 
the polymer spin station (Laurell, North Wales, PA). First, the polymer spin station was 
set up for the desired two-step spin cycle. For the SU-8 2025 and 2035 recipes, the wafer 
was placed on the spin coater and secured via vacuum. During the spin cycle, the silicon 
wafer was cleaned by rinsing with acetone, to remove any organic impurities, followed   
by isopropyl alcohol (IPA), to remove the contaminated acetone. The silicon wafer was
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Table 3-1. SU-8 recipes used to target different structure thicknesses 
Desired Thickness 70 µm 70 µm 70 µm 120 µm 75 µm 
Photoresist SU-8 2025 SU-8 2025 SU-8 2025 SU-8 2035 SU-8 2075 
Cleaning Acetone, IPA 

on spin coater 
Acetone, IPA 
on spin coater 

Acetone, IPA 
on spin coater 

Acetone, IPA 
on spin coater 

Sonicate in acetone, IPA, and DI water, 5 
min each 
Heat at 150°C, 30 min, slowly cool 

Additional 
preparation steps 

none 65°C, 1 min 65°C, 5 min none HDMS adhesion promoter 
3000 rpm, 600 rpm/s, 30 sec, 
Heat at 150°C, 1 min, slowly cool 

Spin Conditions 800 rpm, 100 
rpm/s, 15 sec 
1750 rpm, 
300 rpm/s, 30 
sec 

750 rpm, 100 
rpm/s, 15 sec 
1500 rpm, 
300 rpm/s, 30 
sec 

500 rpm, 100 
rpm/s, 10 sec 
1250 rpm, 
300 rpm/s, 45 
sec  
Relax 5 min 

500 rpm, 100 
rpm/s, 10 sec 
1000 rpm, 300 
rpm/s, 45 sec 

500 rpm, 10 rpm/s, 55 sec 
3000 rpm, 150 rpm/s, 47 sec 
Relax 20 minutes 

Prebake 65°C, 6 min 
95°C, 12 min 

65°C, 3 min 
95°C, 6 min 

65°C, 3 min 
95°C, 8 min, 
slowly cool 

65°C, 5 min 
95°C, 25 min, 
slowly cool 

65°C, 10 min 
95°C, 25 min, slowly cool 

Exposure 10 sec 20 sec 196.5 mJ/cm2 240 mJ/cm2 196.5 mJ/cm2 
Postbake 65°C, 4 min 

95°C, 7 min 
65°C, 6 min 
95°C, 12 min 

65°C, 2 min 
95°C, 7 min 
Cool 30 min 

65°C, 6 min 
95°C, 12 min 

65°C, 5 min 
95°C, 25 min, cool 30 minutes 

Development SU-8 
developer 
10 min 

SU-8 
developer 
7 min 

SU-8 
developer 
3 min 

SU-8 
developer 
7-10 min

SU-8 developer 
3 min 

Hardbake none none 80°C, 30 min 
Slowly cool 

none none 
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placed on a hot plate at 65 °C for 5 minutes to remove any volatiles. For the SU-8 2075 
recipe, the wafer was placed on a hotplate at 65 °C for 20 minutes directly after the 
rinsing with DI water post sonication cleaning. The heating of the wafer post cleaning 
ensured that the substrate was dry, which aided in the success of the proceeding steps.  

Photoresist coating: The wafer was secured back onto the spin coater to undergo the spin 
cycle a second time. For the second spin cycle, 4 ml of the negative photoresist, SU-8 
(MicroChem, Westborough, MA), was placed on the wafer. The first step of the spin 
cycle spread the SU-8 out over the entire wafer and the second step of the spin cycle 
targeted the desired thickness of the SU-8 layer. After the spin cycle was complete, the 
wafer was removed, set on a flat surface, and allowed to relax for 5 minutes to minimize 
edge beading. While the wafer relaxed, the polymer spin station was thoroughly cleaned. 
Chemical gloves were worn, and the chemical hood sash was kept as low as possible for 
protection against the chemicals used for cleaning. First, acetone was used to remove the 
SU-8 and then IPA was used to ensure all SU-8 and acetone were removed. The SU-8, 
acetone, and IPA were sent down the drain in the polymer spin station into a waste 
collection tank to later be properly disposed of by university safety personnel. The tank 
was checked before each use to ensure that there would be no possibility of 
overflow/chemical spill. 

Photoresist crosslinking: The silicon wafer was then pre-baked to evaporate any solvents 
present on the wafer and densify the photoresist layer. The wafer was slowly cooled to 
room temperature to avoid any temperature shock to the substrate and photoresist layer. 
The wafer was carefully slid off of the hotplate onto a pad of cleaning wipes that would 
allow the wafer to cool without any thermal shock. To see if the pre-bake was sufficient 
the wafer was placed back on the 95 °C hot plate [223]. If wrinkles appeared the wafer 
was kept on the hot plate until they disappeared and was then cooled back down to room 
temperature. This was repeated until wrinkles no longer appeared in the SU-8 layer. The 
wafer was allowed to relax as the EVG 620 Aligner (EVG, Austria) was turned on and 
set up for exposure. The desired thickness determined the optimal exposure dose. To 
achieve the correct dosage, the intensity of the UV lamp within the aligner was measured 
and an amount of time for exposure was calculated using Equation 3.1. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 3.1 

The intensity and uniformity of the UV lamp were measured using a five-point 
measurement system. UV protective safety glasses were worn during the measurements 
to prevent any possible eye damage from the UV lamp. The resulting intensity was used 
in Equation 3.1 along with the desired dose to calculate the correct exposure time. Over 
time the intensity of the UV lamp decreases, so it was checked each time to ensure proper 
exposure. The software was set-up for a top-down, soft contact process. The mask was 
inspected to ensure that it was particle free. If anything was present on the mask, it was 
cleaned using nitrogen. If nitrogen was not effective a cloth swab was used with acetone 
and IPA followed by rinsing with DI water and drying with nitrogen. Before the mask 
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was loaded it was “dusted” using a pressurized stream of nitrogen. The mask was loaded 
with the emulsion side down to ensure that the desired features were as close to the 
substrate as possible during processing, followed by the wafer, and the process allowed to 
run. While the process ran, users faced away from the equipment to ensure that they 
weren’t exposing their eyes to high doses of UV light, which can be damaging. During 
UV exposure, the formation of a strong acid occurs in the areas exposed. A check to 
ensure correct exposure time was if the latent image of the features were visible in the 
first 5-15 seconds of the post-bake [223]. If no image had appeared after a minute into the 
post-bake the photoresist was under-exposed.  During the post-bake, an acid-catalyzed, 
thermally driven epoxy crosslinking occurred in areas that underwent UV exposure. Once 
the post-bake was completed the wafer was slowly cooled to room temperature and then 
allowed to relax for 30 minutes to relieve any residual stresses present in the photoresist.  

Feature Development: The wafer was then ready for development. It was placed in the 
SU-8 developer (MicroChem, Westborough, MA ) and gently agitated to improve the 
development of the higher aspect ratio features [223]. Every two minutes the wafer was 
removed from the developer and rinsed with IPA and then re-submerged in the developer. 
The development was complete when the white film was no longer generated when 
rinsing with IPA. After development was complete, the wafer was rinsed with deionized 
water and dried using nitrogen. A hard bake was completed to help ensure the photoresist 
features were fully cross-linked and would be permanent on the silicon wafer [223]. The 
wafer was then gradually cooled to room temperature to avoid any deformation of the 

Figure 3-1. Flow diagram of microfabrication process. 



32 

features  [224]. As the wafer cooled, the chemicals and containers used for the 
development were properly disposed of and cleaned according to the MFF facility safety 
manual. The developer and IPA were sent down the drain of a second spin station to 
another waste collection tank. Each container was rinsed in triplicate with DI water, 
which was also sent down the drain to the waste collection tank. As with the other 
collection tank, the level in the tank was checked before each use to ensure that there was 
no chance of overflow/chemical spill. If the tank was close to the allowable fill line, MFF 
management was contacted. Figure 3.1 shows the process flow of fabricating a silicon 
wafer via soft lithography, along with an image of a completed master wafer. 

Fluidic layer casting and bonding: The silicon master wafer could then be used for a 
casting of the fluidic layer. Foil was carefully placed around the wafer to form a structure 
to contain the PDMS during the casting. A base/curing agent combination (Sylgard 184, 
Dow Corning, Auburn MI) was used to get the desired PDMS properties. A 10/1 ratio of 
base to curing agent was well mixed, and vacuum was applied to remove any air bubbles 
generated during the mixing process. It was carefully poured over the silicon master 
wafer and placed in an oven at 70 °C for 4 hours. The silicon master wafer was removed 
from the oven. The foil was carefully removed, and the PDMS layer slowly peeled off. A 
scalpel was used to cut out each feature. Ports were then punched at the inlets and outlets 
using a 360-micron biopsy punch (Harris Uni-core, Sigma Aldrich, St. Louis, MO). The 
PDMS layer was bonded to a glass slide via air plasma (Harrick Plasma). A clean glass 
slide and the desired feature were placed in the plasma chamber with the sides that were 
to come in contact facing up. The system was pumped down for 4 minutes and then 
exposed to generated plasma with medium radio frequency (RF) for 60 seconds. The 
PDMS layer and the glass slide were immediately pushed together and placed in the oven 
at 70 °C for 24 hours. Over time the strength of the RF weakened and the system was 
pumped down for 3 minutes and then exposed to generated plasma with high RF for 75 
seconds. This increase in the time and strength of the plasma treatment helped maintain 
the strength of the bond resulting from the plasma treatment.   

3.1.2 Electrode Layer 

Dielectrophoretic experiments used 50-micron platinum wire (Goodfellow, Coraopolis, 
PA) for electrodes. 360-micron holes were punched in all four corners in the microfluidic 
chamber. The 50 µm platinum wire was pulled through the holes to form two parallel 
electrodes. Uncured PDMS was placed at the top of each hole to make a watertight seal. 
The PDMS with the electrodes were cleaned with Scotch tape® and bonded to a glass 
slide as described in Section 3.1.1. 

Addition of external electrodes: To connect the platinum electrodes to an external electric 
field source (AC generator, Agilent, Santa Clara, CA) silver conductive epoxy 
(MGChemicals, Surrey, B.C., Canada) was used to bond copper wires to the platinum 
wires as shown in Figure 3.2. The copper wires (22 GA Gauge AWG 2, local hardware 
store) were connected to alligator clips attached to the ground and potential; the copper 
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wires provided a stronger connection than the fragile platinum wire alone. The silver 
conductive epoxy was a two-part mixture that was combined and well mixed in equal 
proportions. The epoxy was placed around the copper wire on the seed layer. The 
microdevice was then placed in the oven at 70°C overnight to allow the epoxy to cure. 

3.2 Solution Preparation 

3.2.1 Continuous phase: oil and surfactant 

Silicone oil: Preliminary experiments were completed with materials readily available in 
the lab that are also present in the literature. Sodium dodecyl sulfate (SDS) and Triton X-
100 are two surfactants, and silicone oil is an oil phase that are commonly used in droplet 
microfluidics [29, 71, 76, 96-98]. SDS (Sigma Aldrich, St. Louis, MO) and Triton X-100 
(Sigma Aldrich, St. Louis, MO) were added to the water and silicone oil, respectively, to 
make solutions ranging from 0 to 10 w/w% and 0 to 1.0 w/w%, respectively. These 

Figure 3-2. Three dimensional representations of a completed microdevice a) without and 
b) with electrodes. 50 micron platinum wire electrodes were positioned on either side of
the chamber allowing an electric field to be applied across the chamber. c) Picture of real,
completed microdevice on a 25 x 75 mm glass slide.



34 

concentration ranges were determined based on the critical micelle concentrations of the 
two surfactants; 0.25 w/w% for SDS, and 0.016 w/w% for Triton X-100 [225]. 

FC-40: After completing preliminary experiments investigating stability it was 
determined that a surfactant with a higher molecular weight might provide a more stable 
system (See Chapter 4). Since the project required a change in material, at the same time 
research into biocompatibility was completed to account for both stability and 
biocompatibility concerns. A fluorinated oil, FC-40 (3M, Maplewood, MN) was chosen 
as the oil phase and perfluoropolyether carboxylic acid, Krytox FSH 157 (DuPont, 
Wilmington, DE), was chosen as the surfactant. Krytox or perfluoropolyether carboxylic 
acid is an anionic surfactant that contains a perfluoropolyether tail and a carboxylic acid 
head. Although itself it not truly biocompatible, Krytox contains the same tail group and 
a similar head group to a biocompatible surfactant [47]. This study used Krytox over a 
commercially available biocompatible surfactant (Ran BioTechnologies, Beverly, MA) 
due to the large cost difference. Krytox was added to the FC-40 to make solutions with 
concentrations ranging from 0.33 mM to 2.35 mM. 

3.2.2 Aqueous phase: different conductivities, dextrose only, salt only, 
particles 

Due to the desired dielectrophoretic experiments, it was paramount that the aqueous 
phase was isotonic to protect the cells seeded within. Epure water (Millipore, Billerica, 
MA) was used as an aqueous phase throughout the project. It was used not only to ensure 
that the fluidics were working properly and for cleaning the microdevices but also as a 
control to aid in determining the chemistry and physics of the system. Multiple phosphate 
buffer saline (PBS) solutions were used to explore the effect of conductivity on the 
results. The PBS solutions were comprised of epure water, a salt stock (containing 1.1696 
grams NaCl, 2.7223 grams KH2PO4, and 3.4961 grams K2HPO4), and dextrose (Sigma 
Aldrich, St. Louis, MO). Conductivities of 0.0000055 S/m (epure water), 0.05 S/m, 0.1 
S/m, 0.5 S/m, and 1.0 S/m were used for this project. These solutions were also broken 
down into their separate components for the stability study to investigate not only the 
effect of conductivity but also the individual effects of dextrose and salt stock on the 
stability of the system. Table 3.2 details the recipes for each of these solutions. 

Particles: Polystyrene beads (Spherotech, Lake Forest, IL) ranging from 3 to 9 microns 
were added into the aqueous dispersed phase. These were used to explore the 
dielectrophoretic capabilities of the new riDEP technique and compare the results with 
other dielectrophoretic techniques in the literature. Red blood cells were also seeded into 
the aqueous dispersed phase to compare riDEP with previous work completed by µM.D.-
ERL. A phlebotomist collected blood from a donor into EDTA Becton Dickinson 
vacutainers, following IRB approved protocols. The red blood cells were separated from 
the rest of the blood by centrifugation at 132 relative centrifugal force (rcf) for 10 
minutes. The packed RBCs were re-suspended in the desired aqueous phase, for each 
conductivity. Chapter 7 presents the results of the polystyrene bead and RBC 
experiments. 
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Table 3-2. Amounts of each component in each aqueous phase solution 
Control Solution Epure Water (ml) Salt Stock (µl) Dextrose (g) 

Epure water 20.000 0.0 0.0000 
0.960 mM 24.976 24.0 0.0000 
2.616 mM 24.935 65.4 0.0000 
13.892 mM 24.653 347.2 0.0000 
24.122 mM 24.397 603.0 0.0000 

Dextrose-only Solutions Epure Water (ml) Salt Stock (µl) Dextrose (g) 
58.837 mM 25.000 0.0 0.2650 
161.108 mM 25.000 0.0 0.7256 
273.845 mM 25.000 0.0 1.2334 
290.404 mM 25.000 0.0 1.3080 

Conductivity Solution Epure Water (ml) Salt Stock (µl) Dextrose (g) 
0.05 S/m 24.976 24.0 1.3080 
0.1 S/m 24.935 65.4 1.2334 
0.5 S/m 24.653 347.2 0.7256 
1.0 S/m 24.397 603.0 0.2650 

3.3 Device set-up: equipment uses and settings 

Device pretreatment: Two pretreatment steps were completed to aid in the successful 
flow through the device. The first step was to ensure hydrophobic channels (detailed in 
Appendix A). Rain-X®, a commercially available glass water repellent, was flushed 
through the microdevice. The microdevice was kept at room temperature until the Rain-X 
was completely evaporated. The microdevice was generally treated at the end of the work 
so that it would be ready for experiments the following morning. The second step ensured 
that the surfactant concentration with the oil solutions did not go to the solid-liquid 
interface at the channel walls. Filling the device with the desired surfactant/oil solution 
and allowing it to sit for ~one hour before experiments allowed the surfactant time to 
reach equilibrium in solution as well as at the solid-liquid interface minimizing 
interference during experiments. 

Experimental setup: The microdevice was loaded onto the stage of an SVM340 
synchronized video microscope (Labsmith, Livermore, CA). Each side of the microdevice 
was taped onto the stage to prevent movement during experiments. The aqueous and oil 
solutions were loaded into the syringe pumps. For early experiments, the aqueous and oil 
solutions were loaded into a two mL HPLC vial and pulled through a 360 micron 
capillary into microsyringe pumps (LabSmith). Before use, the syringe pumps were 
flushed with Epure water to check their functionality. The solutions were then withdrawn 
at 0.5 μl/min to avoid the formation of a vacuum within the pump. When the pumps were 
full, the capillaries were switched with a longer set and connected to the microdevice via 
T-connectors (Labsmith).
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For the remaining experiments, a Harvard Apparatus syringe pump (Harvard Apparatus, 
Holliston, MA) was utilized for pumping to reduce the polydispersity of the droplets 
(detailed in Chapter 4) as well as the time needed to load the pump. Both the aqueous and 
oil solutions were withdrawn into three mL syringes (Becton Dickinson, Franklin Lakes, 
NJ) and loaded onto the syringe pump. The syringes were connected to the device via 360 
micron PEEK tubing (Labsmith) and t-connectors. The microscope was then turned on, 
and the brightness, contrast, and focus were adjusted to the ideal settings for 
observing/recording the experiments at 4x magnification. The solutions were then infused 
into the device for 10 minutes to allow the system to reach steady state before beginning 
experiments (data for reaching steady state shown in Chapter 4). For the dielectrophoretic 
experiments, an AC generator was used to apply an electric field across the chamber. The 
applied voltage ranged from 1 to 10 volts, and the applied frequency ranged from 100 to 
1000 kHz. Figure 3.3 shows the experimental set-up. 

3.4 Video/Data Analysis: imaging software and analysis 
techniques 

Experiments were observed and recorded using the UScope software (Labsmith). The 
collected data was then analyzed using ImageJ, a free image analysis program from the 
National Institute of Health [226]. Droplet size analysis at generation, droplet 
monodispersity at generation, droplet generation regime, and droplet stability in the 

Figure 3-3. Experimental set-up. A syringe pump infused both the continuous oil and the 
dispersed aqueous phase into the microdevice. The microdevice was mounted on a 
Labsmith microscope for visual observation and recording. A ground and potential were 
applied via a high voltage sequencer. 
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chamber entrance are presented in Chapter 6, and electrical stability and dielectrophoretic 
responses are presented in Chapter 7. 

3.5 Modeling methods: COMSOL, Computing Cluster 

Computing: Superior and Portage, high-performance computing infrastructure at 
Michigan Technological University, were used in obtaining results presented in this 
dissertation. Superior has 92 compute nodes, each with 16 CPU cores and 64 GB of 
RAM, providing 30 TFLOPS. Portage is a smaller version of Superior with 3 TFLOPS of 
CPU. Preliminary, simple COMSOL simulations of droplet generation took 50+ hours to 
reach completion. Due to this large amount of time, a comparison was made between the 
same simulation run on a normal Michigan Tech computer and on Portage, a 
supercomputing cluster. The simulation took one-tenth the time to run on Portage (50 
hours on a normal computer vs. 5 hours on Portage). These resources allowed multiple 
simulations to be run simultaneously and in a much shorter amount of time. 145 
simulations, taking 9,679 CPU hours (749 wall hours) were run on Portage and 49 
simulations, taking 887 CPU hours (132 wall hours), were run on Superior.  On average, 
8 processors were used per simulation. The number of processors, wall time, CPU time, 
and memory for the largest simulations run on Superior are presented in Table 3.3, all 
simulation times and memory can be found in Appendix B. Chapter 5 describes the 
details of the simulations. 

Table 3-3. Number of processors, wall time, CPU time, and memory for the most 
memory intensive COMSOL simulations run on Superior. 

NPROC Wall Time CPU Time Memory (GB) 
6 98:36:11 606:46:31 5.37 
8 0:01:48 0:14:58 6.00 

13 3:07:42 40:21:27 6.05 
9 0:02:27 0:20:57 6.71 

15 0:57:05 14:38:13 6.71 
4 0:09:24 0:34:16  19.14 
8 1:26:58 11:27:43 24.30 
4 0:10:27 0:38:50 24.65 
8 1:56:55 15:46:18 25.08 
8 2:05:25 16:04:47 29.82 
9 1:40:22 14:42:03  30.70 
8 3:02:28 23:31:07 31.50 
8 1:55:53 15:32:56 32.81 
7 3:04:27 21:53:22 36.01 
8 13:53:25 104:47:30 50.89 
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4 System Stabilization 

4.1 Introduction 

4.1.1 Applications 

Droplet microfluidics is a growing research field due to the numerous microscale 
applications that encompass a range of fields from biotechnology (drug delivery and 
biosensing) to particulate synthesis. The high throughput possible in droplet microfluidics 
provides a platform for biological and chemical research [37]. Along with the high 
throughput, parallel analysis of the microenvironments allows large-scale polymerase 
chain reaction (PCR) and cell culturing techniques to be completed [37, 42]. By adjusting 
the upstream composition, drug discovery, protein crystallization, and enzymatic assays 
are possible [13, 28, 29, 37]. Other current applications include irregular particles, double 
emulsions, hollow microcapsules, microbubbles, single cell analysis, synthesis of 
biomolecules, drug delivery, therapeutics, biomedical imaging, and diagnostic testing 
[28, 29, 37, 42-49]. 

4.1.2 Advantages 

Each droplet acts as its own isolated microenvironment, on a scale relevant to biological 
conditions [37]. These isolated chambers, caused by the separation from the immiscible 
carrier fluid [28], are advantageous because the droplets enable a) relatively stable 
reaction conditions, b) the ability to run reactions in parallel, c) non-stationary reactions 
(e.g., reactions progressing along with droplet flow, d) no cross contamination, e) no 
dilution, f) control over evaporation, and g) high throughput possibilities [28, 37, 57]. 
These isolated microenvironments are key to riDEP because they eliminate direct contact 
between samples and electrodes, thus preventing unwanted sample-electrode interactions. 
The ability to reproducibly generate uniform droplets within the nano- to micro-meter 
diameter range [29] is also advantageous; however achieving stable, monodisperse 
droplets can be challenging.  If the interfacial tension is too low, some droplets will 
coalesce together forming larger droplets and increasing polydispersity, and if it is too 
high, some droplets will split, forming smaller droplets and increasing polydispersity. 
The interfacial tension is dependent on properties of the two phases as well as any 
additives/surfactants present in each phase that transport to the interface between the 
phases. 

4.1.3 Purpose and Motivation 

The monodispersity, size, and shape of the droplets formed is important for many 
applications, especially drug delivery and biosensing, where well-defined volumes and 
compositions are necessary to achieve the correct concentration. Further, the biological 
and chemical properties of microparticles are strongly affected by droplet size and 
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morphology [29]. Droplet size is affected by device geometry, material viscosity, 
interfacial tension, the use of surfactants, surface/fluid hydrophobicity or hydrophilicity, 
and pump stability, and flow rate. [29]. For this work, T-junction devices with two inlets, 
one for each phase, a junction where the two inlet channels combine into a single 
channel, and a chamber downstream were used. The devices were constructed with 
poly(dimethylsiloxane) (PDMS) and glass microscope slides. An example of a device is 
shown in Figure 4.1. 
This chapter describes the process of optimizing all of the aforementioned materials and 
experimental conditions used for the bulk of the research in this dissertation.  Parameters 
were highly informed by literature, but some required specific tuning to the resources 
available in the research lab. The materials were optimized for ideal droplet interfacial 
tension including the oil and surfactant combination and the microdevice treatment for 
obtaining hydrophobic channels. Experimental conditions, including the type of pump 

Figure 4-1. Design (a), realization (b), and operational images of a T-junction 
microdevice used to generate aqueous droplets in 0.125% Krytox 157 FSH in FC-40. a 
and b) Inlet flow rates are controlled by independent syringe pumps, while droplets are 
collected in the tapered chamber. c) T-junction droplet pinching at 1.0 µl/min and 0.15 
µl/min flow rates for the continuous and dispersed phases, respectively.  d) Stable 
droplets packed into chamber region. Larger droplets are from coalescence, which is 
being controlled via surfactants. 



40 

and capillary length, utilized impacted droplet generation and were optimized to 
minimize droplet size variation. The background, materials and methods, and results of 
each optimization are discussed in the remainder of this chapter.   

4.1.4 Surfactants 

Surfactants can benefit microfluidic systems in a variety of ways; increasing the ease of 
formation, lowering interfacial tension, hindering coalescence, maintaining wetting 
conditions, as well as controlling biocompatibility [40, 62, 99, 100]. Surfactants are 
surface-active agents that have an amphipathic structure, both a hydrophobic group and 
a hydrophilic group are present in the molecule. At low concentrations, in an immiscible 
aqueous/oil solution, they readily migrate to the interface between fluids, which 
decreases the interfacial tension, thus stabilizing the interface.  Within the context of the 
microfluidic system in this research, the surfactants stabilize the droplet interface against 
coalescence [85]. The Gibbs adsorption isotherm for dilute solutions decribes the 
decrease in surface tension, Γ = − 𝑐𝑐

𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, where 𝛾𝛾 is the interfacial tension, 𝑐𝑐 is the 
surfactant concentration, Γ is the surface concentration, 𝑅𝑅 is the gas constant, and 𝑇𝑇 is the 
temperature [84, 85]. When combined with the Laplace Pressure, γ = 𝑑𝑑∆𝑃𝑃

4
, this can be 

separated, integrated, and rearranged to show a natural log dependence of concentration 
on droplet size, as shown in Equations 4.1-4.3 where b is the constant of integration. 

Γ = −
𝑐𝑐∆𝑃𝑃
4𝑅𝑅𝑅𝑅
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𝑏𝑏 4.3 

Two readily available surfactants with differing properties, ionic sodium dodecyl sulfate 
(SDS) and non-ionic Triton X-100, were investigated. A large operating window of 
stability was desired because a wide range of dispersed phases, with additives known to 
alter interactions at the interface, were used in this work. The results of the investigation 
led to the purchase and experimentation of a higher molecular weight surfactant, Krytox 
FSH 157. Krytox was chosen for its high molecular weight and its similarity to a 
biocompatible surfactant (which was not chosen due to cost, ~$1.25/g versus ~$550/g), to 
form a layer of molecules at the interface of each droplet and act as a repulsive barrier 
helping the droplets resist coalescence [86, 87]. 

4.1.5 Hydrophobicity 

Channel wall properties can affect droplet microfluidic systems [74, 227] including how 
droplets are generated and ease of droplet motion within microfluidic device channels 
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and chambers. Different materials have been used both for fabrication and for altering the 
natural surface properties of a material to control wettability and other flow 
characteristics including materials, surface treatments, and surfactants. It is very common 
to see microscale PDMS fluidic features bonded onto glass microscope slides to form 
closed channels, chambers, and other fluidic components. The PDMS is hydrophobic, 
and the glass is hydrophilic. Sealing PDMS fluidics on top of a PDMS layer has been 
demonstrated to achieve uniform wettability on all surface/liquid interfaces within the 
device [67, 228, 229]. In work by Thompson, et al., a double-sided adhesive tape was 
used instead of plasma bonding for sealing PDMS to the glass with the benefit of 
achieving hydrophobicity on all interior surfaces [230].  

Surfaces of microfluidic features can also be treated to shift the phobicity of materials.  
For example, when PDMS is treated with oxygen plasma, bonded methyl groups are 
released and replaced with silonal groups [231].  This results in the PDMS becoming 
more hydrophilic after treatment.  The attribute is time-dependent with hydrophilicity 
declining as surface rearrangements occur, over the course of ~30 minutes returning to 
the native hydrophobic state [232].   However, if kept in contact with water or another 
polar organic solvent, the PDMS can be kept hydrophilic indefinitely [233].  In this work, 
the continuous phase was the oil phase, so hydrophobic surfaces were desirable for 
increased wettability. 

Since surfactants also migrate to liquid/solid interfaces, they can be utilized to alter the 
charge and/or hydrophobicity of microfluidic features within microchannels.  Multiple 
research groups use chemical compounds, such as Rain-X [79], Aquapel [47, 79, 109], 
octadecyltrichlorosilane [74], and photoreactive sol-gels [234] for altering naturally 
hydrophilic glass to be hydrophobic for optimal droplet generation and stability. Thus, in 
this work, the use of different bonding conditions and Rain-X were investigated. 

4.1.6 Pump Effects 

Passive droplet breakup in microfluidic channels can greatly increase the monodispersity 
of droplets as compared to active droplet breakup as discussed in Chapter 2 Section 2.1.3. 
Syringe pumps are commonly used in droplet microfluidics to precisely and 
independently deliver the continuous fluid and the fluid dispersed into droplets. However, 
the pumps used can affect the monodispersity [53]. Droplet generation causes intrinsic 
velocity fluctuations during the break-off process for both syringe pump-driven and 
applied pressure-driven methods [53]. Syringe pumps also experience pressure 
fluctuations due to mechanical oscillations [53, 228, 235-237]. In addition to fluctuations 
caused by the generation method, factors including channel material and droplet 
generation rate can also affect droplet polydispersity [53]. PDMS, a soft polymer, was 
used to fabricate channels, as it is a common material used in microfluidics and softer 
materials have been shown to reduce polydispersity [53, 229, 238]. Longer, flexible 
tubing has also been shown to decrease polydispersity from syringe pump-driven flow. In 
this work, two lengths of tubing droplets were tested and compared using Labsmith 
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syringe pumps with the goal of generating reproducible monodispersed droplets. Two 
types of syringe pumps Labsmith and Harvard Apparatus, were also tested and compared. 

4.2 Materials and Methods 

4.2.1 Surfactants 

To understand droplet coalescence and polydispersity, a parametric study on surfactants 
was initiated. First, sodium dodecyl sulfate (SDS), an ionic surfactant (MW=288.38), was 
investigated with concentrations from 0 to 10 w/w% in the aqueous dispersed phase. 
After investigating the surfactant concentrations in the dispersed phase, surfactant in the 
continuous oil phase was investigated. Triton X-100, a non-ionic surfactant (MW=647) 
was added to silicone oil (Sigma Aldrich, St. Louis, MO) at concentrations ranging from 
0 to 1.0 w/w%.  These surfactant concentrations were chosen to cover a range that 
included the critical micelle concentrations, CMC, of ~0.25 w/w% and ~0.016 w/w% for 
SDS and Triton X-100, respectively [225]. Larger molecule surfactants, with longer tails, 
have demonstrated long term stability, even in large droplets [47]. For this reason, an 
anionic surfactant Krytox FSH 157 (MW=7000-7500) was investigated at concentrations 
ranging from 0.125 to 0.76 w/w%, with FC-40, a fluorinated carbon oil, as the continuous 
phase.  

A microfluidic device consisting of an aqueous phase inlet, continuous phase inlet, T-
junction, large chamber, and a single outlet was used for this study, as shown in Figure 
4.1. Aqueous-in-oil droplet generation (Figure 4.1 a and b) was achieved passively via 
the T-junction in the device geometry and observed optically as shown in Figure 4.1 c. 
Two microsyringe pumps (Labsmith, Livermore, CA) independently controlled the flow 
rates of the continuous and dispersed phases. SDS experiments were completed in device 
1, with 200 µm and 100 µm channel widths and 2.5 µl/min and 0.5 µl/min flow rates for 
the continuous and dispersed phases, respectively.  Triton X-100 experiments were 
completed in device 2, with 300 µm and 200 µm channel widths and 3.0 µl/min and 1.5 
µl/min flow rates for the continuous and dispersed phases, respectively. Both devices 
were 70 µm in height. Since the dimensions were different for the two devices, flow rates 
were chosen so that the overall velocity entering the chamber was the same at 2.5x105 
µm/min. The Krytox experiments were completed in device 3, with 100 µm and 50 µm 
channel widths and 1.0 µl/min and 0.5 µl/min flow rates for the continuous and dispersed 
phases, respectively. Note that this was an exploratory study until a system was located 
(device dimensions as well as materials) with broad stability for the conductivity research 
in future chapters. As structured, trends were discerned, but not rigorous quantitative 
comparisons.    

The droplets generated at the T-junction traversed down the channel and packed into the 
chamber, as shown in Figure 4.1 d. Droplet size and stability were measured optically 
upon entrance to the chamber. A Labsmith microscope and corresponding Uscope 
software were used to record videos at 30 fps of experiments under 4x bright field 
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magnification. ImageJ software [226] was used to extract still images and analyze droplet 
size and coalescence behaviors. Droplet areas were translated to an effective droplet 
diameter by converting the area from pixels squared to square microns. The effective 
diameter, in microns, was calculated using Equation 4.1 where 𝒅𝒅𝒉𝒉 was the effective 
droplet diameter, 𝑨𝑨 was the cross-sectional area, and 𝑯𝑯 was the chamber height (70 µm). 
Depending on droplet volumes generated and the device dimensions, both spherical and 
disc-like droplets were possible. Equation 4.2 was used for spherical droplets and 
Equation 4.3 was used for disc-like droplets. Droplets were assumed spherical if the 
observed diameter was less than the chamber height and disc-like if the diameter was 
greater than the chamber height. 

𝑑𝑑ℎ = �4
𝜋𝜋
𝐴𝐴 4.2 

𝑑𝑑ℎ = �6
𝜋𝜋
𝐴𝐴 ∙ 𝐻𝐻

3
 4.3 

The effective droplet diameters were averaged to obtain an average effective droplet 
diameter (with standard deviation) for each parameter condition. The monodispersity and 
reproducibility within a single experiment (repeats), as well as a set of independent 
experiments (replicates), were investigated. Coalescence was measured for each 
experiment to quantify droplet stability. The percent of primary droplets that coalesce 
within the first 1000 µm of the chamber were measured, then experiments were averaged 
and compared using statistical techniques similar to those with the effective droplet 
diameter analysis.  

4.2.2 Hydrophobicity 

Four methods of increasing device hydrophobicity were investigated; 1) air plasma 
bonding followed by 24 hours in a 70°C oven, 2) air plasma bonding followed by 45 
seconds at 120°C, 3) air plasma bonding followed by 24 hours in a 70°C oven followed 
by surfactant treatment by filling the device with pure Rain-X and allowing it to 
evaporate overnight, and 4) sealing the PDMS fluidics to the glass slide via double-sided 
tape (Scotch, 3M, Maplewood, MN). Hydrophobicity was determined by visual 
observation of how the aqueous phase interacted with the device walls. Experiments were 
recorded at the T-junction, where the aqueous and oil phases met. Poor hydrophobicity 
resulted in the aqueous phase being attracted to the device walls, and good 
hydrophobicity resulted in the aqueous phase being repelled by the device walls. The 
latter resulted in very clear droplet formation. 
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4.2.3 Pump Effects 

A comparison between two lengths of 360-micron diameter PEEK capillaries (Labsmith) 
was made to determine if polydispersity could be decreased by lengthening the distance 
between the two Labsmith pumps and the microdevice. Two lengths were tested, 20 cm 
and 40 cm. A comparison of two pumps, a Labsmith micro syringe pump and a Harvard 
Apparatus, was also quantified for droplet quality and consistency. The same device, 
device 3, was used with both pumps. For the Labsmith, flow rates of 1.0 µl/min and 0.5 
µl/min for the continuous and dispersed phase flow rates, respectively were used. For the 
Harvard Apparatus, 0.5 µl/min was used for both phases. A single pump was used for 
both phases, so the flowrates for each phase were equal. Both comparisons, between 
capillary length and between pump types, were made by looking at the polydispersity of 
the droplets. Droplet polydispersity was measured as described in Section 4.2.1. Note that 
the flow rate was changed from 0.5 µl/min to 0.25 µl/min for Chapter 6 for ease of 
visibility. 

Data regarding the effect of different surfactants, surface treatments, and pumping setups 
was collected via bright field microscopy.  To ascertain surfactant efficacy, data was 
compiled as a function of surfactant concentration for two surfactants, SDS and Triton X-
100, with constant aqueous and oil phase flow rates for each surfactant. To ascertain the 
optimum method of achieving the desired wettability/hydrophobicity, four methods of 
treating devices for increased hydrophobicity, 1) plasma bonding followed by 24 hours at 
70°C, 2) plasma bonding followed by 45 seconds at 120°C, 3) plasma bonding followed 
by 24 hours at 70°C and Rain-X treatment, and 4) double-sided tape, were tested and the 
resulting hydrophobicity/wettability was visually observed.  To ascertain pump effects, 
two pumps, Labsmith and Harvard apparatus, and two capillary lengths, 20 and 40 cm, 
were compared via droplet size analysis.   

4.3 Results and Discussion 

4.3.1 Surfactants 

Droplets size and percent coalescence were measured in preliminary experiments and the 
results compiled as a function of SDS and Triton X-100 concentration (Figure 4.2) to 
assess monodispersity and stability. Experimental observations revealed that different 
SDS concentrations impacted both droplet stability and size. This was consistent in 
magnitude and trend with previous research [40, 41, 85].  Similar to the results of the 
SDS experiments, the preliminary Triton X-100 experimental results also revealed 
concentration affects droplet stability and size.  

Both SDS (Figure 4.2a) and Triton X-100 (Figure 4.2c) showed a trend of decreasing 
droplet size with an increase in surfactant concentration. The trend of decreasing droplet 
size with increasing surfactant concentration was consistent with predictions from 
Equation 4.1. Figure 4.2 also illustrates the percent coalescence of droplets for each 
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surfactant concentration. The lowest percentage of coalesced droplets (highlighted yellow 
in Table 4.1 and highlighted blue in Figure 4.2b and d) occurred at concentrations greater 
than the critical micelle concentration (CMC marked with bold * in Table 4.1) for both 
SDS and Triton-X. Increased droplet polydispersity and coalescence were attributed to 
non-optimal surface tension. 

The experimental results of SDS and Triton X-100 yielded too narrow of an operating 
region for these studies with only the 2.5 w/w% SDS resulting in droplets that did not 
coalesce within the first 1000 µm of the chamber. 1.25 w/w% SDS and 0.05 w/w% 
Triton X-100 did yield fairly stable droplets, as less than 10 percent of the droplets 
coalescenced within the first 1000 µm of the chamber. However, packing uniform 
droplets within the chamber was still a rare occurrence. Future experiments required both 
well packed, uniform droplets and multiple additives, the salts and dextrose needed to 
make isotonic solutions of various conductivity, that are known to alter the interfacial  

Figure 4-2. Data for 30<N<100 droplets. (a) Average droplet diameter and (b) percent 
coalescence as a function of SDS in the continuous phase at flow rates of 2.5 µl/min and 
0.5 µl/min for the continuous and dispersed phase flow rates, respectively.  (c) Average 
droplet diameter and (d) percent coalescence as a function of Triton X-100 in the 
continuous phase at flow rates of 3.0 µl/min and 1.5 µl/min for the continuous and 
dispersed phase flow rates, respectively. (Blue=CMC) 
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Table 4-1. Surfactant conditions explored with 31<N<100 droplets. SDS experiments had 
flow rates of 2.5 and 0.5 µl/min for the continuous and dispersed phases, respectively, 
while Triton-X experiments (shaded grey) had flow rates of 3.0 and 1.5 µl/min, 
respectively. The trends of decreasing droplet size with increasing surfactant 
concentration are consistent with surface tension expectations. The lowest percentage of 
droplets coalescing (highlighted yellow) is greater than the critical micelle concentration 
(CMC, marked with bold *) for both SDS and Triton-X.   

Continuous Phase 
(Silicon Oil) 

Dispersed Phase 
(water) Average Droplet 

Size ± Standard 
Deviation (µm) 

Percent droplets 
coalesced Surfactant:  

Triton X-100 
(w/w%) 

Surfactant:  
SDS (w/w%) 

- 10.0 121±6 60 
- 5.0 127±7 66 
- 2.5 136±6 0 
- 1.25 143±7 8 
- 0.25* 176±24 91 
- 0.125 195±3 100 
- - 162±6 21 
- - 179±18 **Δ flow 53 

0.001 - 163±7 80 
0.005 - 178±24 43 
0.01 - 166±7 83 

0.016* - 171±9 53 
0.05 - 167±11 7 
0.1 - 169±12 17 
0.5 - 159±16 37 
1.0 - 153±10 73 

tension [239-242] which may have resulted in unstable droplets if SDS or Triton X-100 
was used. Since the application of this project was bio-related, biocompatibility was 
taken into account. Exposure to SDS and Triton X-100 can lead to cell death. This, along 
with growing knowledge of literature results, a change in material was identified to 
overcome the shortcomings of the SDS and Triton X-100.  

A higher molecular weight surfactant would provide better stability because mass 
transport from and around the interface is slower. Therefore, Krytox FSH 157 (Dupont, 
MW = 7000-7500) was chosen as the surfactant instead of SDS (MW=288.38) or Triton 
X-100 (MW=647), and a fluorinated oil, FC-40 (3M) was chosen as the continuous
phase. Krytox 157 FSH, a surfactant containing a PFPE (perfluorinated polyether) tail
and a carboxylic acid head group [2, 47, 89] was chosen for this project due to benefits of
its high molecular weight and low cost. Krytox is similar in size/structure to an available
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biocompatible surfactant, (Ran Biotechnologies, Beverly, MA), but less than 1/100th the 
cost. This would allow for a smoother transition from using one surfactant to the other if 
a switch became necessary. Krytox showed promise as a stabilizer for a range of aqueous 
phases. At 0.38 w/w%, Krytox droplets of various aqueous phase composition resulted in 
the same size droplets, allowing direct comparison between dispersed phase 
compositions. The polydispersity at 0.38 w/w% was also within reported norms [53, 243] 
with coefficients of variance ranging from 2.7-10.3%. Thus a more thorough 
investigation of Krytox and the effect of additives on the Krytox system was studied and 
is presented in Chapter 6.  

4.3.2 Hydrophobicity 

Due to the significant influence of device wall wettability on droplet formation, four 
techniques were investigated to improve device hydrophobicity to aid the continuous oil 
phase. Technique 1 was air plasma bonding followed by 24 hours at 70°C. In the 
following experiments, observations of the aqueous phase attraction to device walls were 
made by recording the T-junction where the aqueous and oil phases met. Technique 2 
involved air plasma bonding followed by 45 seconds in an oven at 120°C; this resulted in 
an increased attraction between the device walls and the aqueous phase. Thus, the shorter 
time at a higher temperature did not yield the desired hydrophobic effect. Technique 3 
was air plasma bonding followed by 24 hours at 70°C followed by the Rain-X treatment. 
This resulted in the desired hydrophobicity. Technique 4 utilized double-sided tape 
between the glass slide and the PDMS and also yielded good hydrophobicity. However, 
the tape proved unreliable as it collected unwanted dust particles and did not display 
resiliency to long experiments or multiple uses as it became cloudy with time, interfering 
with image quality for data acquisition. Therefore, air plasma bonding followed by 24 
hours at 70°C and then Rain-X treatment was chosen as the standard technique 
throughout the remaining experiments.  

It was also observed that over time, exposure to the continuous oil phase with surfactant 
improved the hydrophobicity. This was most evident in the non- Rain-X treated devices 
suggesting that the surfactant was adsorbing to the microdevice surfaces. For this reason, 
before each experiment, the device was filled with the oil phase plus surfactant and 
allowed to sit for an hour to reach equilibrium within the continuous phase as well as 
with the device walls. 

4.3.3 Pump Effects 

High polydispersity was present in the droplets initially generated. To maximize 
monodispersity, 360-micron diameter PEEK tubing capillaries were doubled in length 
from 20 cm to 40 cm to attenuate flow fluctuations originating from the pump.  Table 4.2 
contains the droplet size standard deviation for a range of Krytox concentrations at the 
same flow rates of 1.0 µl/min and 0.5 µl/min for the continuous and dispersed phases,  
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Table 4-2. Comparison of droplet size standard deviation between short and long 
capillaries 

Krytox 
Conc. 
(mM) 

Short 
capillaries 
stdev (µm) 

Long 
capillaries 
stdev (µm) 

Stdev 
Difference (µm) 

Stdev Percent 
Difference (%) 

0.162 59 45 14 24 
0.325 70 61 9 13 
0.434 107 69 38 36 
0.653 93 75 18 19 
1.307 95 67 28 29 

respectively. In each case, the longer capillary lengths yielded a desired decrease in 
polydispersity by decreasing the standard deviation from ~85 µm to ~60 µm. 

However, the longer capillary did sufficiently reduce the polydispersity issue, by an 
average of ~24%. Therefore switching the pumping system from Labsmith syringe 
pumps to a Harvard Apparatus syringe pump was explored as a means to further reduce 
droplet polydispersity. The Harvard Apparatus syringe pump has a flow rate accuracy of 
±0.25% and reproducibility of ±0.05% [244]. It also has a larger operating range (0.0001 
µl/hr to 216 ml/min [244]) and capacity (0.5 µl to 140 ml [244]) compared to the 
Labsmith flow rate accuracy of ±1.0% and lower capacity (0.05-5600 µl/min,  and 5-100 
µL [245]).  At the desired flow rates for this work, the very low end of the Labsmith’s 
range of operation was being utilized, likely contributing to the unacceptable droplet 

Figure 4-3. Average droplet size, with standard deviation, versus time. Within the first ten 
minutes, the system reached steady state. 
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polydispersity. The Harvard Apparatus syringe pump minimizes flow pulsation by 
utilizing a microprocessor-controlled, small step angle stepping motor to drive the lead 
screw and pusher block [244]. The droplet diameter standard deviation with the Harvard 
Apparatus (~6 µm) was an order of magnitude smaller than the Labsmith syringe pump 
(~60 µm). 

Time-dependency experiments were then conducted with the Harvard Apparatus pump to 
determine when the system reached steady state. The results showed that after 10 
minutes, droplet size stabilized to 240 ± 6 µm at 0.5 µl/min for both the continuous and 
dispersed phases (Figure 4.3). Therefore, 10 minutes was chosen as the standard time to 
achieve steady state before beginning to collect data. 

4.4 Conclusions 

As outlined in this chapter, experimental parameters and equipment optimizations were 
completed to achieve highly reproducible, monodispersed droplets over a broad operating 
range.  First, the oil phase and surfactant were optimized for this T-junction system by 
utilizing droplet diameter and stability, keeping biocompatibility in mind.  Experiments 
with SDS and Triton X-100 suggested that higher molecular weight surfactants needed to 
be explored because the operating windows for SDS and Triton X-100 were not sufficient 
to allow changes in interfacial tension while maintaining droplet stability. A fluorinated 
oil, FC-40, was chosen as the oil phase due to its biocompatibility and a fluorosurfactant, 
Krytox FSH 157, was chosen as the surfactant due to the high molecular weight, low 
cost, and similarity to a biocompatible surfactant. This resulted in the most promising 
system with reproducible droplets (standard deviation of 6 µm for droplet size) and 
improved packing within the chamber and thus was chosen for further experiments. 
Chapter 6 presents a further exploration of Krytox FSH 157. 

Optimizations were also explored for the experimental setup. Longer microcapillaries 
were chosen because they attenuate pump-induced perturbations to increase flow stability 
before the fluid reached the T-junction.  A Harvard Apparatus syringe pump was chosen 
because of its observed steady, reproducible flow. The capillary and pump improvements 
increased the monodispersity of the droplets generated; the standard deviation was 
decreased from ~85 µm to ~6 µm.  

Improvements in the continuous oil phase, the surfactant, fluidics, and pump enable the 
broadest range of aqueous phase conductivities to be explored for droplet generation.  In 
addition, the effect of additives needed for isotonic solutions was optimized in Chapter 6, 
which was critical for subsequent research in Chapter 7 exploring droplet stability in 
electric fields as well as particle and cell loading into the droplets for micro-environment 
characterization, and future work multiplexing experiments in Chapter 10.   
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5 Simulations via COMSOL Multiphysics 
Work from this chapter on droplet generation was presented as a poster: 

J.L. Collins and A.R. Minerick, “Comparison of simulations and experimental water-in-oil
droplet formation in a microfluidic T-junction,” 2nd Annual Chemical Engineering Research 
Symposia, Michigan Technological University, Jan 2014. [Author earned a 1st place Award]. 
Also presented at: Private Poster Viewing for Bill Colton, VP Exxon Mobil Corporation. Jan. 
2014, 2014 Graduate Research Colloquium. Feb. 2014, 10th Annual Biotechnology Research 
Center (BRC) Student Research Forum. Mar. 2014, Alumni Reunion Graduate Research 
Poster Session. Aug. 2014 

5.1 Introduction 

Simulations can be used to design experiments, check experimental results versus theory, 
and to investigate unexplained phenomena encountered in experiments. For design of 
experiments, simulations can be completed for a range of operating conditions and 
parameters to help narrow down the set of experiments to hone in on the desired effect or 
phenomena.  Throughout this dissertation, simulations on droplet generation, electric 
fields within droplets, and dielectrophoretic responses within droplets were run either to 
inform or to support the experimental results. Simulations were completed in COMSOL 
Multiphysics®. More complex simulations were run on one of the super-computing 
clusters (Portage and Superior) as discussed in Chapter 3, Section 3.5. 

5.2 Droplet Generation 
One of the main technologies used in this research was droplet microfluidics. T-junction 
dimensions affect droplet generation as discussed in Chapter 2 Section 2.1.3. [29, 40, 50, 
55, 68, 69, 77] and a variety of models for the prediction of droplet break-up in a T-
junction have been developed [68, 69, 77].  Previous published work demonstrated 
effective droplet diameter could be predicted through simulation before starting 
experiments [69, 70, 246-249].  Using one of the published models [68], the effect of the 
continuous and dispersed phase channel widths and flow rates were investigated 
(parameters in Table 5.1).  
The results shown in Figure 5.1 demonstrate the same trends expected based on the 
predictive model [68].  For an increase in continuous phase flow rate, the droplet size 
decreased and for an increase in dispersed phase flow rate, the droplet size increased. The 
predicted droplet size and the experimental size differed by 9.8, most likely because the 
model only took geometry into account [68], while other factors including the presence of 
additives also affect droplet size as demonstrated in Chapters 4 and 6.  
To help understand the mechanism behind droplet break-up at the T-junction, as well as 
to inform the experimental work completed, three-dimensional droplet generation 
simulations for a microfluidic T-junction were completed. These simulations were run 
using the computational fluid dynamics (CFD) and microfluidics modules in COMSOL  
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Table 5-1. Parameters for predicting droplet size 
Parameter Description Value 

wc width of continuous channel 225 µm 
wd width of dispersed channel 150 µm 
h height 70 µm 
ε corner correction 50 µm 

qc continuous phase flow rate 1-5 µl/min
qd dispersed phase flow rate 0.5-2.5 µl/min 

qgutter continuous phase flow rate around forming droplet 
Rfill filling radius 

Rpinch pinching radius 
α fitting parameter 

Vfill size of droplet at end of filling period 
V final calculated droplet volume 

Figure 5-1. a) Predicted droplet diameter from a model and b) experimental effective 
diameter and COMSOL simulation results as a function of both continuous phase (CP) 
and dispersed phase (DP) flow rates for continuous and dispersed phase channel widths 
of 300 µm and 200 µm, respectively. Droplet size decreased with an increase in 
continuous phase flow rate and droplet size increased with an increase in dispersed phase 
flow rate. The predictive model and experimental results followed similar trends. Black 
dots in b) correspond to COMSOL simulation results for a single dispersed phase flow 
rate of 2.5 µl/min and continuous phase flow rates of 2, 3, and 4 µl/min. Experiments and 
COMSOL results were in close agreement with only 1.4% difference.   
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Table 5-2. Parameters/variables used in the droplet generation simulations 
Parameter Description Value or Equation 

φ level set function 0.5 
ρ density (kg/m3) ρ = ρ1 + (ρ2 – ρ1)φ 
μ viscosity (Pa∙s) μ = μ1 + (μ2 – μ1)φ 
u velocity (m/s) based on geometry and flow rate 
t time (s) 0.08 (s) 
P pressure (Pa) from simulation 
Fst surface tension force (N/m3) 5e-3 
σ surface tension coefficient 5e-3 (N/m) 
γ numerical stabilization parameter 0.05 
ε numerical stabilization parameter 6.25e-6 
Ω left most part of the channel x < -0.2 (mm) 
deff effective droplet diameter (mm) from simulation 
ρ1 continuous phase density 967 (kg/m3) 
ρ2 dispersed phase density 1000 (kg/m3) 
μ1 continuous phase viscosity 0.1 (Pa∙s) 
μ2 dispersed phase viscosity 0.001 (Pa∙s) 
u1 continuous phase volume flow (varied 0.5-5.0) (µl/min) 
u2 dispersed phase volume flow (varied 0.25-2.5) (µl/min) 
C continuous phase channel width (varied 100-300) (μm) 
D dispersed phase channel width (varied 50-200) (μm) 
H channel height 70 (μm) 

Multiphysics®. The laminar two-phase flow and level set interface physics packages were 
used with prescribed geometry (dimensions of real devices) and volume flows (matched 
experiments), In addition, boundary conditions of the pressure, a no viscous stress 
condition at the outlet as well as a wetted wall condition for all boundaries were 
implemented. The four main equations utilized within the simulations were the 
momentum transport equation (Equation 5.1), the equation of continuity (Equation 5.2), 
the level set equation (Equation 5.3), and the effective droplet diameter (Equation 5.4). 

𝜌𝜌
𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝒖𝒖 ∙ 𝛻𝛻𝒖𝒖 = −𝛻𝛻𝛻𝛻 + 𝜇𝜇𝛻𝛻2𝒖𝒖 + 𝑭𝑭𝒔𝒔𝒔𝒔 5.1 

𝛻𝛻 ∙ 𝒖𝒖 = 0 5.2 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒖𝒖 ∙ 𝛻𝛻𝛻𝛻 = 𝛾𝛾𝛾𝛾 ∙ (−𝜙𝜙(1 − 𝜙𝜙)
𝛻𝛻𝛻𝛻

|𝛻𝛻𝛻𝛻| + 𝜀𝜀𝜀𝜀𝜀𝜀 5.3 

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 = 2 ∙ �
3

4𝜋𝜋
� (𝜙𝜙 > 0.5)𝑑𝑑𝑑𝑑
𝛺𝛺

3
 5.4 



53 

Parameters not pulled from experimental conditions were based on a demo available 
within the COMSOL program. After designing, fabricating, and testing the T-junction 
microdevice, a comparison of the droplet formation within the device to simulation 
results was completed. Four frames from a recorded experiment were matched with four 
frames from a simulation animation. The simulation used the parameters presented in 
Table 5.2. Figure 5.2 depicts the agreement between an experiment and the 
corresponding simulation, with only 1.4% difference. 
Consistent with previous research, the results presented herein demonstrated qualitative 
agreement between the COMSOL simulations and experimental droplet generation 
during steady-state operation. Relative quantitative results could also be gleaned from the 
simulations.  The results from the predictive model, experiments, and COMSOL 
simulation comparisons provided insight into the selection of controllable experimental 
parameters, device geometry and flow rates, that targeted a specific droplet size between 
100 to 200 µm.  For all subsequent experiments, continuous and dispersed channel widths 
of 100 and 50 µm were utilized, respectively. 

5.3 Electric Fields 

This dissertation details the combination of droplet microfluidics with dielectrophoresis 
(DEP). In particular, insulator DEP, which uses insulator-shaped electric fields to 
manipulate polarizable particles or cells [34, 199]. Classical dielectrophoretic theory 
predicts particle behavior based on the particle’s polarizability relative to the medium’s 
polarizability [34, 199]. Therefore, medium ion distributions surrounding 
particles/cells are of paramount importance to the cell’s response in a DEP field. 
Current flux lines are drawn through particles more polarizable than the medium [250] 
and charges realign inducing a particle dipole aligned with the field [251]. Field lines 
diverge around less polarizable particles creating ion depletion at the particle poles 
inducing a particle dipole aligned against the field [251]. When multiple particles are in 

Figure 5-2. Comparison of droplet break-up in a T-junction in experiments (top row) and 
COMSOL simulations (bottom row) for continuous and dispersed phase widths of 200 
µm and 300 µm as well as flow rates of 3.0 µl/min and 0.5 µl/min, respectively. 
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close proximity, their induced dipoles interact, and particle pearl chains form along field 
lines [131, 252-258]. Due to the dependence on a non-uniform electric field, both two 
and three-dimensional simulations of the electric fields within droplets were completed 
using the AC/DC module in COMSOL Multiphysics®.  

Table 5-3. Parameters/variables used in the electric field simulations 
Parameter Description Value or Equation 

V Potential 20 (V) 
σd Dispersed phase conductivity (varied 0.028-1.0) (S/m) 
σc Continuous phase conductivity 1.0e-8 (S/m) 
εd Dispersed phase relative permittivity 78 
εc Continuous phase relative permittivity 2.7 

Both alternating current (AC) and direct current (DC) electric fields are used for DEP  
[34, 199]. To reduce simulation complexity, a DC field was used.  Parameters for the 
electric field simulations are listed in Table 5.3. The 2D simulations investigated two 
dependencies; a) the droplet packing scenario and b) the conductivity of the aqueous 
phase within the droplets. A 20 V DC electric field was applied across 100 µm diameter 
droplets packed within a chamber. The droplets were comprised of an aqueous phase with 
a conductivity ranging from 0.028-1.0 S/m and with a relative permittivity of 78; the 
continuous phase was FC-40 with a conductivity of 1.0e-8 S/m and a relative permittivity 
of 2.7 [259, 260]. Five packing scenarios were investigated; square packing with no space 
between droplets, offset packing with zero μm, two μm, and three μm spacing between 
droplets, and non-uniform droplet size/packing. 
The droplets’ interfacial shaping of the electric field to yield spatially non-uniform 
electric field gradients was demonstrated in the simulations as shown in Figure 5.3. For 
the 1.0 S/m aqueous phase, shown in Figure 5.3, current traveled from droplet to droplet 
provided the oil gaps between droplets were less than 3 μm. Further, square packing 
yielded two high field density regions (red in the heat map in Figure 5.3) per droplet 
while the minimal void space offset packing yielded four smaller high field density 
regions per droplet. The offset packing scenarios showed similar electric field patterns 
from droplet to droplet, when the droplets are close enough for the electric field to 
penetrate from droplet to droplet (less than three microns). The non-uniform droplet 

Figure 5-3. Electric field gradients (color map) in 1 S/m aqueous droplets packed 5 
different ways (square, offset, offset with gaps, and random) in a 20 V DC field applied 
from top channel wall and grounded at the bottom channel wall. White space is insulative 
oil. 
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size/packing showed irregular electric field gradient patterns due to unpredictable contact 
points and droplet size. Each conductivity yielded these same results. These simulations 
demonstrated the importance of achieving monodisperse droplets and uniform packing of 
droplets in the chamber to get the same non-uniform electric field distribution within 
each droplet.  

A three-dimensional simulation was used to further investigate the formation of non-
uniform electric fields within droplets. A 20 V DC field was applied to a single 1.0 S/m 
droplet with two electrical contacts on either side of the droplet. The simulation showed 
the electric field gradient was greatest at the contacts (red in the heat map in Figure 5.4) 
and smallest in the middle (dark blue in the heat map in Figure 5.4).  

Both the 2D and 3D simulations demonstrated the ability for the droplets to shape a non-
uniform electric field within them, allowing dielectrophoretic characterizations of the 
particles/cells seeded within the droplets. The simulations also demonstrated how the 
packing arrangement could affect the shape of the electric field formed.  

5.4 Dielectrophoretic Movement 

Theoretical dielectrophoretic particle responses within droplets were investigated by 
using the particle tracing and AC/DC modules in COMSOL Multiphysics®. As 

Figure 5-4. Electric field gradient (color map slices) within a 1 S/m aqueous 100 μm 
diameter droplet surrounded by 10-8 S/m oil.  A 20 V DC potential is applied from one 
pole and grounded on the opposite pole. The electric field gradient is greatest at the poles 
(dark red on color map, where particles/cells move to during pDEP) and smallest in the 
middle (dark blue on color map, where particles/cells move to during nDEP). This 
illustrates the formation of a non-uniform electric field shaped by the droplet interface. 
For each plane, the view is perpendicular to that plane. 
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previously discussed, DEP manipulates polarizable particles or cells [34, 199]. Clausius 
and Mossotti developed a frequency (ω) dependent factor, K(ω), [261, 262] that 
dynamically reflects a perfectly spherical, homogeneous particle’s polarizability in a 
conductive medium. It is a ratio of complex permittivities, 𝜀𝜀, for the particle, 𝑝𝑝, and 
medium, 𝑚𝑚, where ω is frequency and σ is electrical conductivity [34, 199, 250, 262, 
263]. The complex quantity K(ω) has an imaginary component out of phase with the 
applied electric field while the real component is in phase [264]. Equations 5.5 and 5.6 
are the complex permittivity and real portion of the Clausius-Mossotti factors, 
respectively. The DEP force is dependent on the in-phase, or real component of the 
Clausius-Mossotti factor, which estimates the particle’s induced dipole or effective 
polarizability in a dielectrophoretic field [265]. The dielectric force expression, which is 
time dependent due to K(ω)’s dependency on frequency, with particle volume expressed 
via radius, 𝑟𝑟, is shown in Equation 5.7. 

𝜀𝜀𝑖̃𝑖 = 𝜀𝜀𝑖𝑖𝜀𝜀0 −
𝑗𝑗𝑗𝑗
𝜔𝜔

5.5 

𝐾𝐾(𝜔𝜔) =  
𝜀𝜀𝑝̃𝑝 − 𝜀𝜀𝑚̃𝑚
𝜀𝜀𝑝̃𝑝 + 2𝜀𝜀𝑚̃𝑚

5.6 

�𝐹𝐹�𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)� = 2𝜋𝜋𝜀𝜀𝑚𝑚𝑟𝑟3Re[𝐾𝐾(𝜔𝜔)]∇|𝐸𝐸�𝑟𝑟𝑟𝑟𝑟𝑟|2 5.7 

Table 5-4. Parameters/variables used in the dielectrophoresis simulations 
Parameter Description Value or Equation 

V Potential (varied 5-20) (V) 
σd Dispersed phase conductivity (varied 0.0001-1.0) (S/m) 
σc Continuous phase conductivity 1.0e-8 (S/m) 
σp PS conductivity 5e-7 (S/m) 
εd Dispersed phase relative permittivity 78 
εc Continuous phase relative permittivity 2.7 
εp PS relative permittivity 2.55 
r PS radius 3 (µm) 

The resulting DEP force pushes particles toward regions of high field or low field 
depending on whether Re[K(ω)] is positive or negative. When the particle is more 
polarizable than the medium, Re[K(ω)] is positive and the resulting dipole moment 
causes a force toward high electric field regions, a phenomenon described as positive 
DEP (pDEP), red regions at the poles in Figure 5.4. When a particle is less polarizable 
than the medium, Re[K(ω)] is negative and negative DEP (nDEP) pushes the particle 
toward regions of low field density [34], blue regions in Figures 5.3-5.6.  Effective 
polarizability is dependent on cell permittivity and conductivity through cellular 
components; cell membranes impact the ability of charges to penetrate the cell while 
intracellular proteins and cytosol molecules impact charges conducted through the cell 
[34, 128, 159, 199, 266, 267]. 
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For the sake of keeping simulations as simple as possible while still reflecting the 
experimental system, particle-particle interactions were not programmed into the 
simulation. A single 100 µm droplet was generated with 216 particles seeded within. Two 
dependencies were investigated; a) the applied voltage and b) the aqueous phase (droplet) 
medium conductivity. Simulations were completed using previous µM.D.-ERL research 
parameters for red blood cells. Parameters for the simulations are presented in Table 5.4 
with the buffer solution conductivity ranging from 0.028-1.0 S/m and with a relative 
permittivity of 78 for the media conditions.  Polystyrene beads (PS) were introduced as 
the particles then potentials were applied at various applied potentials to investigate both 
positive and negative dielectrophoretic responses at multiple conductivities. 

The simulations in Figures 5.5 and 5.6 studied pDEP and nDEP PS particle motion due to 
solution/particle conductivity differences within a 100 µm droplet. Particles were initially 
positioned in a cubic grid circumscribed inside the droplet. Figure 5.5 demonstrates both 
the voltage and medium conductivity dependences of DEP responses as a function of 
time, shown in the zx plane (labeled in Figure 5.4). The zx plane was chosen for Figure 
5.5 due to the high contrast between the particles and the color map of the electric field 
gradient. It was seen from the top and middle rows that an increase in voltage quickened 
the dielectric response of the particles. The middle and bottom rows demonstrate that 

Figure 5-5. Voltage and medium conductivity comparisons in an aqueous 100 μm droplet. Time 
points from three cases are shown for the zx plane (gradient radiates from center) shown in Figure 
5.4. Top: 5 V DC field across a 1 S/m droplet. Middle: 20 V DC field in a 1 S/m droplet. Bottom: 
20 V DC in 0.0007 S/m droplet. Changing voltage (note gradient change too) does not change 
nDEP particle behavior but does increase behavior speed. Changing medium conductivity alters 
particle behavior from nDEP to pDEP. 
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with a change in medium conductivity the particles shift from positive to negative DEP as 
evidenced by motion either to the poles versus motion to the center or “equator”.  

In Figure 5.6 at an applied electric field of 20 V DC and at an aqueous droplet 
conductivity of 1 S/m, simulations predicted nDEP at the low-frequency limit as 
observed via motion to the droplet “equator” (second row). Similarly, at low 
conductivities (0.0001 S/m), pDEP was predicted, and particle motion progressed to the 
high electric field poles (third row). As noted in Equations 5.1 and 5.3, DEP 
directionality and strength is also determined by applied frequency, such that simulations 
(data not shown) also predict nDEP at low AC frequencies (kHz), pDEP at middle range 
frequencies (1 MHz), and nDEP at high (6-10 MHz) frequencies. Conductivity results are 
shown in Figure 5.6 to reinforce how critically important controlling this variable is to 
map out DEP responses and thus back-calculate cell dielectric properties. 

Figure 5-6. DEP particle tracing simulations in an aqueous 100 µm diameter droplet with 20V 
DC applied at the droplet poles to create a non-uniform field. Particles are white dots above the 
electric field gradient (color map); particles are driven up or down electric field gradient based 
upon their polarizability. Comparison of starting positions (top row, time=0.0s) to particle 
trajectory inside the droplet during nDEP (middle row, medium conductivity = 1 S/m) and pDEP 
(bottom row, 0.0001 S/m). When experiencing nDEP, particles travel to low field (dark blue) and 
for pDEP, particles move to high fields (dark red). 
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5.5 Conclusions 

Simulations of droplet generation, non-uniform electric fields within droplets, and 
dielectrophoretic responses within droplets were completed. Experimental results 
followed the qualitative trends predicted by the simulations, but quantitative comparisons 
differed slightly, especially at the lowest flow rates. Droplet generation simulations were 
in close agreement to experimental results. Droplet size decreased with an increase in 
continuous phase flow rate, and droplet size increased with an increase in dispersed phase 
flow rate. The comparison of a predictive model, simulations, and experimental results 
informed a methodology for targeting specific droplet sizes, however, as discussed in 
Chapter 4, the composition of the two phases also affect the droplet size, and thus 
discrepancy in droplet size from a predicted value was anticipated and ultimately 
observed.  

Two and three-dimensional simulations demonstrated how the droplet interfaces shaped a 
non-uniform electric field, which is a necessary condition for dielectrophoresis. Insulative 
oil surrounding aqueous droplets did allow the electric field to pass through from droplet 
to droplet, provided the droplets remained in close enough proximity (e.g. less than three 
microns apart). This result demonstrated that the droplet interface can shape a non-
uniform electric field, generating the electric field gradients needed for dielectrophoresis.  

Three-dimensional simulations demonstrated both positive and negative dielectrophoresis 
of simulated particles in agreement with theory. The droplet interface shaped a non-
uniform electric field. The electric field gradient was greatest at the poles, or the points of 
contact between droplets where the electric field traverses from one droplet to the next. 
This is where particles migrated in the simulations when experiencing positive 
dielectrophoresis. The electric field gradient was smallest in the middle, around the edge 
of the droplet, the furthest distance from the high electric field gradient areas. This is 
where particles migrated when experiencing conditions for negative dielectrophoresis. 
Varying the voltage did not change the particle behavior but did change the speed of the 
behavior. Varying the conductivity within the droplet revealed a change in particle 
behavior consistent with that expected from theory and the literature. This suggests the 
ability to change particle behavior in different droplets in the same experiment by simply 
changing the conductivity of the media in the dispersed phase. The simulations outlined 
herein informed experimental conditions.  Results showed qualitative agreement between 
experiments and simulations as well as quantitative deviations due to the limitations in 
chemistry and resulting interfacial physics possible within the COMSOL platform.   
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6 Effects of Additives on Droplet Size and Stability in a 
Microfluidic T-junction Device 

Pieces of this chapter were presented as posters. This work will be submitted to 
Biomicrofluidics or similar. 

J.L. Collins, and A.R. Minerick, “Effect of Surfactant on Droplet Size and Stability in a
Microfluidic T-junction Device, a mini-study,” ASME 4th Global Conference on 
Nanoengineering for Medicine and Biology, Minneapolis MN, April 2015. 

J.L. Collins, and A.R. Minerick, “Effect of Surfactant on Droplet Size and Stability in a
Microfluidic T-junction Device,” External Advisory Board (EAB) Poster Session, 
Michigan Technological University, Oct. 2014. Also presented at: Biotechnology 
Research Center (BRC) Research Forum. Oct. 2014. 

6.1 Introduction 

Surfactant transport mechanisms, because of their efficiency and elegance are valuable in 
microelectronics, microfluidics, and biotechnology as they influence/dominate interface 
behaviors [84]. This work explores the complex interactions between surfactants as well 
as salts and dextrose in aqueous-droplet-in-oil microfluidic systems. A subclass of 
applications require isotonic, biocompatible aqueous solutions for the investigation of 
biological fluids, molecules, and cells. These complex surfactant interactions can be 
measured by changes in interfacial tension observable in droplet size behaviors. Since 
surfactants strongly influence droplet formation, stability, and biocompatibility, the effect 
of surfactants and other additives on droplet size and stability were explored as a simple, 
high reproducible tool to enable droplet microfluidic interrogation of particle and cells 
possible over a broad range of isotonic salt solutions.  

Bodies of work have demonstrated that surfactants ease droplet formation and stability 
[62, 76, 78, 99, 100], and dominate emulsions where phase boundary area is large with 
respect to volume [84].  Decreasing interfacial tension, the interfacial free energy per unit 
area, decreases the interfacial energy and thus the work required to create an interface 
which manifests in stable droplet formation [84]. Due to the amphiphilic nature of 
surfactants in immiscible aqueous/oil solutions, surfactants align at the fluid interface 
with the hydrophobic portion of the molecule in the oil phase and the hydrophilic portion 
in the aqueous phase [85]. Surfactant molecules at each droplet interface act as shields 
(free energy minima) that help droplets resist coalescence [54, 86, 87]. Decreases in 
interfacial tension are dependent on the amount of molecules absorbed at the interface, 
which can be described by the Gibbs isotherm for dilute solutions (Equation 6.1; Γ is the 
surface concentration, c is the surfactant bulk concentration, γ is interfacial tension, R is 
the universal gas constant, and T is the temperature) [85]. At a specific concentration, 
surfactants begin to form micelles. This concentration is referred to as the critical micelle 
concentration (CMC), and above the CMC the interfacial tension is constant [88].   



61 

Γ = −
𝑐𝑐
𝑅𝑅𝑅𝑅

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

6.1 

Surfactants play a key role in droplet biocompatibility [40, 47, 62, 87, 99, 100]. Because 
their addition can impact the adsorption of biomolecules at liquid-liquid and solid-liquid 
interfaces [47], surfactant biocompatibility has been shown to be important for 
polymerase chain reaction (PCR), cell culturing, and cell analysis applications [28, 29, 
37, 268].  An electrical technique, electrowetting-on-dielectrics (EWOD), has sorted 
droplets based on contents [28], completed glucose assays [269], cell-based and enzyme 
assays [270], proteomic sample processing [271], and biomolecule investigations, such as 
proteins and DNA [272] for serum, plasma, urine, saliva , and tear samples [151]. These 
biological samples generally require the presence of electrolytes, which influence 
electrical properties of the solution.  These electrical properties of droplets are 
foundational to EWOD responses, which has prompted the study of electrolytes within 
droplets [273]. In EWOD biofluid applications [151], biomolecule adsorption onto the 
bottom solid surface affects EWOD performance by altering the contact angle hysteresis 
and Young’s equilibrium contact angle [272]. Previous work found that the use of a 
surfactant aided in controlling interfacial tension by hindering biomolecule absorption to 
maintain performance. While electrolyte-surfactant interactions were explored in EWOD, 
this air/droplet/solid surface system is different from the continuous oil, dispersed 
aqueous droplet system of interest in this manuscript. 

Another area of microfluidics that extends to biological applications is electrokinetics, 
which encompasses linear electric field phenomena such as electrophoresis and nonlinear 
electric field phenomena such as dielectrophoresis (DEP) [130, 159, 190, 191]. 
Electrokinetic cell characterizations are closely dependent upon the supporting media 
conditions; precise control of electrolyte concentrations and thus conductivities are 
advantageous. Aqueous solution conductivities, while maintaining isotonic pressures for 
cells, are most easily controlled via a combination of buffer salts and sugars. When 
interrogating cells electrokinetically, isotonic media of different conductivities are 
essential to more precisely ascertain cell membrane permittivities and other cell 
characteristics [132, 194, 274]. Isotonicity is achieved by using non-ionic molecules such 
as dextrose to compensate for conductivity changes when altering salt concentrations. 
Isotonic, aqueous solutions with conductivities spanning 2-3 orders of magnitude have 
been used in electrokinetic research involving cells [222, 275, 276].  This work explores 
surfactant stabilization of such droplets over a broad range of media conditions. 

Strategic tailoring of surfactants for specific applications can be achieved via molecule 
selection, head or tail group alterations, or via interactions with other molecules present 
in the solution. Research has shown a decrease in CMC with increasing salt concentration 
[239-241]. Sandoz et al. showed that addition of a surfactant increased droplet stability as 
desired, but an undesired side effect occurred; fluorescent resorufin derivatives added for 
enzymatic signal amplification leaked through the interface into the surrounding oil phase 
[242]. Further, interfacial transport was inhibited by adding sugar into the aqueous phase 
[242]. Addition of both salt and sugar to the aqueous phase, a condition needed for 
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isotonic media for many biological and electrokinetic applications, has not previously 
been explored. A preliminary exploration of this dependency is reported herein. A 
surfactant, Krytox FSH 157 was used to aid in stabilizing aqueous droplets containing the 
components needed for isotonic phosphate buffer saline/dextrose solutions (NaCl, 
K2HPO4, KH2PO4, and dextrose).  Microfluidic T-junction generation of droplets was 
utilized to explore the effects of these components in combination with the surfactant on 
droplet formation and stability.  

Measuring droplet sizes from a microfluidic T-junction indirectly measures the effect of 
interfacial tension, and hence surfactant efficacy [85]. This can be related to the droplet 
size by the Laplace pressure. Multiple equations for describing both static and dynamic 
interfacial tension via the Laplace pressure have been presented and are shown in Table 
6.1 where d is the droplet diameter, r is the droplet radius, γ is the interfacial tension, and 
ΔP is the pressure difference between the two sides of the interface.  

Table 6-1. Relationship between Laplace pressure, interfacial tension, and droplet size 
Reference Type of interfacial tension Equation 

[277] static ∆𝑃𝑃 =
4 ∙ 𝛾𝛾
𝑑𝑑

[243, 
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static 
𝑟𝑟𝑎𝑎, radius in axial direction 
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[76] 

dynamic 
𝑅𝑅𝐴𝐴, curvature of droplet head in width direction 
𝑟𝑟𝐴𝐴, curvature of droplet head in depth direction 
𝑅𝑅, curvature of droplet tail in width direction 
𝑟𝑟, curvature of droplet tail in depth direction 
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Assuming the pressure difference to be constant, the Gibbs isotherm and the simplest 
form of the Laplace pressure relationship can be combined and rearranged into a 
relationship between surfactant concentration and droplet size, as shown in Equations 
6.2-6.4 where b is the constant of integration. 

Γ = −
𝑐𝑐∆𝑃𝑃
4𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 6.2 

1
𝑐𝑐
𝜕𝜕𝜕𝜕 = −

Δ𝑃𝑃
4Γ𝑅𝑅𝑅𝑅

𝜕𝜕𝜕𝜕 6.3 

𝑑𝑑 = −
4Γ𝑅𝑅𝑅𝑅
Δ𝑃𝑃

ln 𝑐𝑐 −
4Γ𝑅𝑅𝑅𝑅
Δ𝑃𝑃

𝑏𝑏 6.4 
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This equation was fit to diameter dependence from three types of additives. Generation, 
size, and stability of aqueous-in-oil droplets were measured for a range of aqueous phase 
compositions and surfactant concentrations in the oil phase. Control experiments for the 
salt and sugar concentrations present in each aqueous phase conductivity are also 
reported. Implications from the data are noted, including behaviors of isotonic 
conductivities, which are a complex combination of salt and dextrose interactions with 
the droplet interface. These observations of the interactions between salts, sugar, and 
surfactant add to the knowledge of additive effects on droplet interfacial tension, 
allowing for more precise tailoring of materials to desired experimental conditions within 
droplet microfluidic applications. 

6.2 Materials and Methods 

6.2.1  Materials 

Devices were microfabricated using SU-8 features on a silicon wafer templating for 
PDMS castings, which were bonded to glass slides for fluidics.  Devices were pretreated 
for hydrophobicity (as described in Chapter 4), then loaded with a continuous oil phase 
and a dispersed aqueous phase comprised of isotonic salts and dextrose.  Droplets were 
imaged with video microscopy and analyzed for trends.    

6.2.2 Device Fabrication 

Microdevices were fabricated in Michigan Tech’s Microfabrication Facility using 
customized soft lithography techniques [221, 222]. To make features on a master silicon 
wafer, SU-8 2025 (MicroChem, Westborough, MA) photoresist was masked and 
photopolymerized. Polydimethylsiloxane (Sylgard-184, Dow Corning, Midland, MI) was 
used to replicate fluidics from the SU-8 structures. PDMS castings were exposed to air 
plasma treatment (Harrick Plasma, Ithica, NY) to facilitate sealing to glass slides. The 
PDMS/glass slide devices were placed in an oven at 70°C for 24 hours to allow the 
PDMS to revert to its native hydrophobic state after the generation of silanol groups at 
the expense of methyl groups during oxygen plasma exposure [231]. 

6.2.3 Solution Preparation 

The continuous oil phase was Fluorinert FC-40 (Sigma Aldrich, St. Louis, MO) with 
varying amounts (0-2 mM) of Krytox 157 FSH surfactant (Dupont, Morton Grove, IL). 
Krytox 157 FSH contains a PFPE (perfluorinated polyether) tail and a carboxylic acid 
head group [2, 47, 89] and was chosen for this project due to benefits of its high 
molecular weight and low cost.  Three types of aqueous phases were investigated as the 
dispersed phase: salt only, dextrose only, and salt+dextrose. Each dispersed aqueous 
phase was made using epure water (Millipore, Billerica, MA) along with sodium chloride 
(NaCl, Sigma Aldrich), dibasic potassium phosphate (K2HPO4, Sigma Aldrich), 
monobasic potassium phosphate (KH2PO4, Sigma Aldrich), and dextrose (Sigma 
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Aldrich). Isotonic solutions of different conductivity were made of epure water 
containing a salt stock (equimolar amounts of NaCl, K2HPO4, and KH2PO4), and 
dextrose. To increase the conductivity, yet maintain constant tonicity, more salt stock and 
less dextrose were added. The five conductivities were 0.0000055 S/m (epure water), 
0.05 S/m (0.960 mM salt, 290.4 mM dextrose), 0.1 S/m (2.616 mM salt, 273.8 mM 
dextrose), 0.5 S/m (13.892 mM salt, 161.1 mM dextrose), and 1.0 S/m (24.122 mM salt, 
58.8 mM dextrose).  For each molar concentration, control solutions contained salt-only 
(0.960-24.122 mM) or dextrose-only (58.8-290.4 mM) with the amounts corresponding 
to the amounts used for each conductivity solution. 

6.2.4 Device Set-up: Equipment Uses and Settings 

Device pretreatment: Two pretreatment steps were completed to aid in reproducible 
flows through devices. Rain-X®, a commercially available water repellent from glass, 
was used to treat PDMS devices before use. Rain-X® was flushed through the 
microdevice and left overnight at room temperature to evaporate. The device was then 
filled with the respective surfactant/oil solutions and allowed to sit for at least one hour 
before experiments to ensure proper wetting of the solid-liquid interface. 

Experimental setup: A Harvard Apparatus syringe pump (PHD Ultra, Holliston, MA) 
was utilized to precisely control flow rates. The PHD Ultra pump has a flow rate 
accuracy of ±0.25% and reproducibility of ±0.05% [280]. Both the aqueous and oil 
solutions were infused into the microfluidic T-junction at a flow rate of 0.25 µL/min for 

Figure 6-1. Diagram depicting the equipment setup. The microdevice was set on the 
microscope stage and PEEK tubing was used to connect the device to the syringe pump. 
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15 minutes to allow the system to reach steady state before beginning experiments. This 
15-minute wait time was determined by measuring droplet size from 1 to 75 minutes;
steady state was ascertained from droplet size consistency, as shown in Section 4.3.3 and
Appendix A.6. A diagram of the equipment setup is shown in Figure 6.1, and the
microfluidic device is shown in Figure 6.2a.

6.2.5 Imaging Software and Analysis Techniques 

Experiments were recorded at 4x magnification and 30 frames per second via an 
SVM340 Synchronized Video Microscope using the UScope software (Labsmith, 
Livermore CA). Image data were analyzed using ImageJ [226]. 

Droplet Size Analysis: The effect of each additive, and the combination of additives, on 
droplet size, was analyzed using a temperature adjusted droplet size approach. For each 
experiment, 100 droplets were measured at the T-junction location shown in Figure 6.2a. 
The number of frames necessary to generate each droplet was counted by noting the 
break-up point as shown in Figure 6.2b-f. The number of frames was converted to the 
temperature adjusted droplet diameter as shown in Figure 6.3a. The number of frames 
was converted to time via the frame rate and the time was converted to the volume via the 
set volumetric flow rate. Volume was converted to an effective hydraulic diameter using 
the formula for sphere diameter. The diameter was then converted to a “temperature 
adjusted droplet size” by dividing by device temperature during the experiment.  

Figure 6-2. a) Fabricated microdevice (filled with food coloring to show fluidics). 
Continuous channel = 100 µm in width, dispersed channel = 50 µm in width, height = 
100 µm, and chamber = 1 x 3 mm. b)-f) droplet break off within the T-junction (images 
from 72.45 mM salt-only in 0.66 mM Krytox at 0.25 µl/min), used for droplet size 
measurement, dotted lines drawn present for ease of distinguishing the liquid-liquid 
interface. 
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An increase in temperature increases the extent of solubilization [84], and thus the effect 
was removed to yield a more accurate representation of additive effects based on Gibbs 
isotherm and Laplace pressure. The temperature was measured via an infrared 
thermometer (Fischer Scientific, Waltham, MA) and ranged from 60°F to 77°F. Outliers, 
identified via the quartile method, were excluded from subsequent calculations to allow 
the monodispersity and reproducibility of one experiment as well as a set of experiments 
to be investigated. The temperature adjusted droplet sizes for 100 droplets in each 
experiment were averaged, and the standard deviation and coefficient of variance were 
calculated.  

Droplet generation regime:  Effects from additive combinations on the droplet generation 
regime were analyzed by visual determination. Five generation regimes [69, 77] were 
used for classification informed by previous research cataloging surfactant concentrations 
of interfacial equilibrium shifts where the different regimes occur [78, 79]. Recorded 
videos were assessed to ascertain which of the five flow regimes the flow exhibited: 

Figure 6-3. a) Algorithm for converting number of frames to temperature adjusted 
diameter. b) Examples of i) squeezing (2.616 mM salt in 1 mM Krytox in FC-40 at 0.25 
µl/min), ii) dripping (0.05 S/m in 1 mM Krytox in FC-40 at 0.25 µl/min), iii) jetting (0.5 
S/m in 0.66 mM Krytox in FC-40 at 0.25 µl/min), and iv) coflow (24.122 mM salt in 1 
mM Krytox in FC-40 at 0.25 µl/min).  c) Examples of i) stable droplets in the 
microfluidic chamber (13.899 mM salt-only droplets in 2.62 mM Krytox in FC-40, each 
at 1.0 µl/min), ii) droplets coalescing in the chamber entrance (161.108 mM dextrose-
only droplets in 2.35 mM Krytox in FC-40, each at 1.0 µl/min), and iii) droplets splitting 
in the chamber entrance (0.05 S/m droplets in 1 mM Krytox in FC-40, each at 0.25 
µl/min).   
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squeezing, dripping, thread formation, jetting, or co-flow. Thread formation was not 
observed in this system; examples of the four other regimes are shown in Figure 6.3b. 

Droplet coalescence and splitting: Just as surfactants have been shown to alter the 
generation regime, they have also been shown to alter droplet stability [78]. Droplet 
stability was assessed as a function of additive concentrations by analyzing droplet 
behavior upon entrance into the microfluidic chamber shown in Figure 6.2 a) with a 
linear 35° pitch expansion from the 100 µm wide channel to the 1000 µm wide chamber. 
The tendency to coalesce (interfacial tension too high) and split (interfacial tension too 
low) within the first 1000 microns of the chamber was observed and tabulated from the 
recorded videos. Coalescence and splitting examples are visualized in Figure 6.3c. 

6.3 Results and Discussion 

Droplet characteristics were compiled to ascertain trends as a function of surfactant 
concentration in the continuous phase as well as compiled as a function of different 
composition and conductivities in the dispersed aqueous phases. Each dependency was 
determined by measuring droplet diameter, calculating the coefficient of variance, and 
cataloging generation and stability regimes.  Physical mechanisms of additive 
interactions and their role in interfacial tension are inferred from the results.   

Surfactant effects: The droplet size at generation, the observed generation regime, the 
stability entering the chamber, and the coefficient of variance were used to investigate the 
effect of surfactant in a microfluidic T-junction. Controls were completed with the 
Krytox surfactant as the only additive to the epure water/FC-40 system.  The range of 
Krytox concentrations explored were below or near the CMC because leveling off of the 
expected natural log curve indicates homogeneous spreading of surfactant, which occurs 
at and above the CMC [79].  As available surfactant molecules increase, the interfacial 
tension between the two immiscible phases decreases and causes droplets to break off at 
smaller sizes. Temperature droplet diameter as a function of surfactant concentration for 
epure water can be seen individually in Figure A.1 and combined with additives in 
Figures 6.4a, 6.5a, and 6.6a, and the coefficients of variance for all experiments can be 
found in Table A.5 of Appendix A.  

The droplet size increased with an increase in Krytox concentration, until 0.66 mM 
Krytox, at which point the droplet size decreased with an increase in Krytox 
concentration. For the epure water control, the generation regime of squeezing and the 
stability of complete coalescence were observed. Also, the coefficients of variance 
ranged from 4.1% to 15.4%, which was similar to the polydispersity of droplets generated 
in a T-junction generally reported between 2% to 10% [53, 243].  Trends observed with 
increases in surfactant concentration included that the size of the droplets at generation 
follow an overall natural log trend, which is consistent with Laplace pressure and Gibb’s 
Isotherm, as discussed in Table 6.1 and Equations 6.1-6.4. For concentrations of 0.66 
mM and greater, a natural log trend line R2 value of 0.7515 was observed. The lower R2 
value was due to an unexplained divergence from the natural log trend at 1.75 mM 
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Krytox. The addition of Krytox FSH 157 into the epure water/FC-40 system altered the 
interfacial tension as expected, verifying the use of Laplace pressure and Gibb’s Isotherm 
as an indirect measure of surface tension for the main experiments. 

Salt effects: Control experiments were conducted with salt concentrations of 0, 0.96, 
2.616, 13.892, and to 24.122 mM to investigate the effect of salt on droplet generation. 
The droplet size at generation, the observed generation regime, the stability entering the 
chamber, and the coefficient of variance were tracked for each concentration. 
Temperature adjusted droplet diameter was plotted as a function of Krytox concentration 
for each salt concentration, as shown in Figure 6.4. When compared to epure water, the 
presence of salt, at any concentration, decreased the droplet size. There was less of a 
decrease in droplet size at the highest surfactant concentration. At lower Krytox 
concentrations, there is a trend of decreasing droplet size with increasing salt 
concentration. At higher Krytox concentrations, the size of the droplets for all salt 
concentrations are not statistically different, as their standard deviations overlapped, as 
seen by the error bars in Figure 6.4. The addition of salt in the form of a phosphate buffer 
saline had an observable effect on the resulting droplets formed. For each salt 
concentration, the expected trend of decreasing droplet size with increasing surfactant 
concentration was observed, with natural log trend line R2 values ranging from 0.7274 to 
0.8767, as shown in Figure A.2.   

The presence of salt decreased the temperature adjusted droplet size when compared to 
the epure water (0 mM salt) control experiments at the same surfactant concentrations, as 

Figure 6-4. Compilation of curves for five salt concentrations. The error bars indicate that 
a surfactant concentration of 2 mM Krytox in FC-40 results in the lowest coefficient of 
variance. 1 mM and 2 mM Krytox in FC-40 also results in the point where all salt 
concentrations result in the same temperature adjusted droplet size.  
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Figure 6-5. a) Stability, b) generation regime, and c) combined stability and generation 
regime diagrams for the salt-only aqueous phases. There is decrease in interfacial tension 
in the presence of salt, shifting the generation regimes and stability. 
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shown in Figure 6.5.  This trend indicates an interfacial tension decrease, which was 
consistent with the change in generation regimes observed. In the presence of salt, the 
regime remained squeezing at 0.66 mM Krytox, shifted from squeezing to dripping for 1 
mM Krytox, and shifted from squeezing to dripping/jetting for 2 mM Krytox. As the salt 
concentration increased, the system transitioned from complete coalescence (0 mM 
Krytox) to either partial coalescence, a mixture of coalescence and splitting, partial 
splitting, or stable droplets. The most stable droplets in the salt-only controls occurred at 
a Krytox concentration of 1.75 mM. This result also suggests that the presence of salt 
decreases the interfacial tension. In the presence of salt, as the surfactant concentration 
increased the droplet generation regime shifted from squeezing at 0.33 and 0.66 mM 
Krytox, to dripping at 1 and 1.75 mM Krytox, and a mixture of dripping and jetting at 2 
mM Krytox.  

The coefficient of variance (CV) of the droplet generation size was also evaluated for salt 
affects the aqueous/oil/surfactant system.  A full table of CV values is located in 
Appendix A. Figures 6.4-6.9 illustrate the average droplet size (averaged from multiple 
droplets (repeats) between multiple experiments (replicates)) with ± the standard 
deviation that resulted in each scenario. Data in Figure 6.4 revealed an overall trend of 
decreasing standard deviation with increasing surfactant concentration. This change in 
the monodispersity was tracked and compared to literature using the coefficient of 
variance. The presence of salt decreased the CV, as compared to the epure water control, 
for 68% of the experiments containing salt.  

The relationships between salt presence and droplet size, and capillary number and flow 
regime corroborate that the interfacial tension was decreased in the presence of salt, 
likely due to charge stabilization of Krytox’s carboxylic acid head groups. The decrease 
in CV in the presence of salt, and with increasing surfactant concentration also suggests 
that salt ions improve reproducibility by enabling charge stabilization of Krytox’s 
carboxylic acid head group yielding consistent, stable packing of the surfactant molecules 
at the interface.  When the Krytox molecules come in contact with the aqueous phase, a 
hydrogen ion dissociates, leaving a negatively charged particle, KryCOO-. The salts 
dissolved in the aqueous phase result in Na+, K+, Cl-, HPO42-, and H2PO4-. The Krytox 
molecules surround the droplet at the interface, creating a negatively charged layer, as 
shown in Figure 6.10a. The positively charged salt ions are attached to that layer, forming 
a thin Debye layer of positive counterions, as shown in Figure 6.10b.  

Dextrose effects: Control experiments were conducted, investigating the effect of 
dextrose on droplet formation for dextrose concentrations of 0, 58.8, 161.1, 273.8, and 
290.4 mM, corresponding to the amounts needed for 0.0000055, 1.0, 0.5, 0.1, and 0.05 
S/m conductivity solutions, via droplet size at generation, the observed generation 
regime, the stability entering the chamber, and the coefficient of variance. Similar to the 
addition of salt, the addition of dextrose had an observable effect on the droplets formed 
at generation and stability in the chamber. At the lower surfactant concentrations of 0.33 
and 0.66 mM Krytox, the presence of dextrose appeared to decrease the temperature 
adjusted droplet size. However, the resulting droplet sizes were not statistically different, 
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except the 273.8 mM dextrose solution at 0.66 mM Krytox deviated for an unexplained 
reason. At the higher surfactant concentrations of 1 and 2 mM, the presence of dextrose 
appeared to increase the temperature adjusted droplet size when compared to the epure 
water control, as shown in Figure 6.6. No statistically significant differences between 
dextrose solutions were noted at 1.0 mM Krytox, but the droplets with dextrose were 
statistically larger than the epure water control at 2.0 mM. For each dextrose 
concentration, the expected trend of decreasing droplet size with increasing surfactant 
concentration was observed, with natural log trend line R2 values ranging from 0.8312 to 
0.9385, except for 273.845 mM dextrose which had an R2 value of 0.2866, as shown in 
Figure A.3. 

There was a change in generation regime observed in the presence of dextrose, as shown 
in Figure 6.7. At surfactant concentrations of 1.75 mM and lower, squeezing was 
observed. At higher surfactant concentrations, a mixture of dripping and jetting was 
observed, indicating an increase in interfacial tension. All dextrose-only concentrations (0 
to 290.4 mM) yielded complete coalescence upon entering the chamber. This display of 
complete coalescence showed that the uncharged dextrose on its own was not able to 
stabilize the droplet interface in the same manner as the salt, but did interact through 
hydrogen bonding. 

There was also an observable change in CV in the dextrose only controls. There was a 
decrease in CV with an increase in surfactant concentration for all but the 58.8 mM 
dextrose with 1 mM Krytox, 273.8 mM dextrose with 0.33 mM Krytox, and 290.4 mM 

Figure 6-6. Compilation of curves for five dextrose concentrations. The error bars 
indicate that a surfactant concentration of 1 mM Krytox in FC-40 results in the lowest 
coefficient of variance. 1 mM Krytox in FC-40 also results in the point where all dextrose 
concentrations result in the same temperature adjusted droplet size.  
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Figure 6-7. a) Stability, b) generation regime, and c) combined stability and generation 
regime diagrams for the dextrose-only aqueous phases. There is an effect on the 
generation regime at higher dextrose concentrations, but all dextrose concentrations 
yielded no impact on droplet stability. 
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dextrose with 1 mM Krytox. The dextrose-only experiments also showed a decrease in 
CV, compared to the epure water control, for 88% of the experiments.  

The dextrose appeared to act as a buffer on the interfacial tension when compared to the 
epure water control (0 mM dextrose); identical shifts in surfactant concentration yielded 
smaller changes in droplet size at all concentrations of dextrose than the epure control. 
Since the droplet size was proportional to the interfacial tension between the two phases, 
this infers less of a shift in interfacial tension. Anionic surfactants have exhibited 
adsorption onto nonionic macromolecules [84], suggesting that surfactant molecules 
interact with the dextrose molecules, altering their transport at the droplet interface, as 
depicted in Figure 6.10c. Literature has also shown the presence of sugar derivatives (up 
to 25 w/v%) alter molecular transport through aqueous/oil interfaces [242].   

Combined salt and dextrose effects: The effect of combinations of salt and dextrose, to 
make isotonic solutions of varied conductivity (5.5E-6, 0.05, 0.1, 0.5 and 1.0 S/m), were 
investigated by tracking droplet size at generation, the observed generation regime, the 
stability entering the chamber, and the coefficient of variance.  The combination of salts 
and dextrose is necessary to maintain isotonic solutions at different conductivities. 
Isotonic solutions are essential for cellular and biological applications, while ion 
availability is a key control parameter for electronic manipulations. Figure 6.8 illustrates 
a combined effect of the presence of both salts and dextrose by comparing isotonic 
salts/dextrose solutions at different conductivities.  It should be noted that the 
concentrations of the salt-only and the dextrose-only experiments are identical to the 
concentrations needed for the combined conductivity solutions. At the lowest 0.33 mM 
Krytox condition, droplets for each conductivity, or salt and dextrose combination, were 

Figure 6-8. Compilation of curves for five conductivities. The error bars indicate that a 
surfactant concentration of 2 mM Krytox in FC-40 results in the lowest coefficient of 
variance. 0.66 mM Krytox in FC-40 results in the point where all conductivities result in 
the same temperature adjusted droplet size.  
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Figure 6-9. a) Stability, b) generation regime, and c) combined stability and generation 
regime diagrams for the conductivity aqueous phases. The combination of salt and 
dextrose in the isotonic PBS conductivity solutions affected both the generation regimes 
and stability in a combined interfacial tension reduction. 



75 

statistically larger than the epure-water control, except the 0.1 S/m whose standard 
deviation slight overlapped with the standard deviation of the epure water, as shown in 
Figure 6.8. For Krytox concentrations of 0.66, 1, and 2 mM, the presence of the salt and 
dextrose together showed a statistical decreased the temperature adjusted droplet size 
when compared to the control. 1.75 mM Krytox also showed a decrease in droplet size 
when compared to the epure water control, which was statistically different for all but the 
1.0 S/m conductivity solution. Overall, the conductivity solutions followed the expected 
natural log trend of decreasing droplet size with increasing surfactant concentration, with 
R2 values ranging from 0.6695 to 8876. Similar to the epure water control, the lower R2 
values are attributed to an unexplained deviation at 1.75 mM Krytox. 

The combined presence of salt and dextrose to make isotonic solutions of various 
conductivity resulted in different generation regimes at different Krytox concentrations. 
At 0.33 mM, squeezing and was observed. As the Krytox concentration increased, the 
generation regime shifted to a mixture of dripping and jetting (0.66 mM Krytox), then a 
mixture of squeezing and dripping (1 mM Krytox), and finally back to a mixture of 

Figure 6-10. Cartooned molecular diagrams (not to scale) of possible mechanisms for a) 
surfactant only, b) surfactant and salt, c) surfactant and dextrose, and d) surfactant, salt, 
and dextrose. 
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dripping and jetting (1.75 and 2 mM Krytox). Partial coalescence was observed at 0.33 
mM Krytox, and a mixture of coalescence and splitting at 0.66 mM Krytox. At 1 mM 
Krytox, a mixture of coalescence and splitting, was observed with the 0.05 S/m solution 
and partial splitting was observed for the 0.1, 0.5, and 1.0 S/m solutions.  At 1.75 and 2 
mM Krytox, a mixture of coalescence and splitting, partial splitting, and stable droplets 
were observed.  

The coefficient of variance of droplet diameter decreased compared to the epure water 
control for 45% of the conductivity experiments.  The overall trend of decreasing CV 
with increasing surfactant concentration held true for all conductivity solutions. 
Unexpectedly, CV was more favorable for salt-only and dextrose-only experiments than 
for the conductivity solutions further suggesting transport and molecular interactions are 
more variable in the more complex conductivity system.  72% of the CVs fell within the 
2-10% range seen in literature. However, 88% of the CVs fell in the 2-10% range for
Krytox concentrations of 1 mM and higher.

These behaviors suggest salt and dextrose interact with the Krytox to decrease the 
interfacial tension compared to epure water.  When in contact with water, a hydrogen ion 
from the Krytox molecule dissociates into the water. The salts in the aqueous phase also 
dissociate into positive and negative ions. The dissociated ions from both the Krytox and 
the salt would form a layer of ions along the interface, stabilizing the interface against 
coalescence. When dextrose is dissolved in water, hydrogen bonds form between the 
hydroxyl groups on the dextrose molecules and the water molecules. The observable 
effect from the dextrose suggested that the dissolved molecules directly interacted with 
the surfactant and salt ions at the interface, as depicted in Figure 6.10d. The combination 
of salt and dextrose in the isotonic conductivity solutions affected the droplet size at 
generation, the generation regime, and the droplet stability entering the chamber in a 
combined interfacial tension reduction. 

6.4 Conclusions 

To design a solution system for droplet microfluidics that was simultaneously 
biocompatible, isotonic, and variable conductivity, the effects of multiple additives in a 
droplet microfluidic system were investigated. Shifts in droplet generation regime, 
droplet stability, and droplet monodispersity were observed and quantified when 
additives, both individual and combined, were present in the aqueous phase. Surfactant 
concentration effects were consistent with the expected natural log trend, with R2 values 
ranging from 0.6848 to 0.9988, which agreed with the combination of the Gibbs Isotherm 
and Laplace Pressure, which assumes a dilute system and constant pressure difference.  

Controls were conducted with only epure water for the aqueous phase; droplets were not 
stable and complete coalescence was consistently observed. This indicated that Krytox 
alone was unable to effectively stabilize the interface to prevent coalescence in an epure 
water/FC-40 system. However, the simple addition of salt to the aqueous phase aided in 
stabilizing the interfacial surfactant distribution by reducing the interfacial tension, 



77 

resulting in zero experiments with complete coalescence; partial coalescence and 
splitting, along with some perfectly stable droplets, were observed.   Availability of ions 
likely decreased the repulsion between Krytox’s carboxylic head groups via a thin Debye 
layer of positive counterions.  This ionic charge stabilization would have enabled closer 
packing of the surfactant molecules at the interface. Droplet behaviors upon entering the 
chamber also supported improved droplet stability as coalescence, splitting, and stable 
droplets were observed for different concentrations.  

Separately, the addition of dextrose also reduced the interfacial tension and improved 
droplet stability at higher concentrations.  However, complete droplet coalescence upon 
entering the chamber was observed for all of the dextrose-only experiments. At lower 
surfactant concentrations, the dextrose had the opposite effect of increasing the interfacial 
tension resulting in increased droplet size. The effect of the dextrose may be an indication 
that the surfactant molecules adsorb onto the dextrose. The combination of salt and 
dextrose to form an isotonic solution resulted in a combination of effects. This suggested 
interactions at the interface between the surfactant and the salt/dextrose additives played 
a key role in realized surface tension and stability.  This work provided a map of droplet 
size, stability, and reproducibility along with regime tracking of coalescence and splitting 
to aid in engineering a stable bio-and electro-compatible droplet microfluidic platform.  

The combination of salt and dextrose in the isotonic PBS conductivity solutions affected 
both the generation regimes and stability in a combined interfacial tension reduction. The 
fact that both the salt and dextrose affected the size and stability of the droplets is 
important for a wide range of biological applications. In biological and electrical 
applications, liquid-liquid, liquid-solid, and liquid-gaseous interfaces are common, and 
surfactants are ubiquitously employed to maintain the stability of droplets while in 
contact with other phases.  This work provides a starting point to predetermining 
surfactants that can maintain stability and droplet size while altering aqueous phase 
composition can lead to more comparable and reproducible droplets for cellular and 
electrokinetic applications.  

6.5 Supplementary Material 

See Appendix A for supplementary material including complete tables of amounts of 
additives used along with their corresponding droplet size data, and a complete table of 
coefficients of variance for each combination. 
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7 Introduction to a New, Novel Dielectrophoretic 
Technique, Reverse Insulator Dielectrophoresis 
(riDEP) 

This work will be submitted to Biomicrofluidics or similar. 

7.1 Introduction 

This work explored the development of a new dielectrophoretic technique for 
multiplexing/parallel experimentation of cells or particles that utilized droplets in 
microfluidic channels to shape non-uniform electric fields. Dielectrophoresis (DEP) 
employs alternating current (AC) or insulator-shaped direct current (DC) fields to 
manipulate polarizable particles or cells [34, 199]. Classical dielectrophoretic theory 
predicts particle behavior based on the particle’s polarizability relative to the medium’s 
polarizability [34, 199]. Therefore, ion distributions within the medium surrounding 
particles/cells are of paramount importance to the particle/cell’s response in a DEP 
field. Particle polarizations transition with each half cycle of the AC field.  When 
particles polarize more readily than the surrounding medium, current flux lines are drawn 
into and through particles [250]. Charges within the particle realign to induce a particle 
dipole aligned with the field [251]. In a similar half cycle with particles less polarizable 
than the medium, field lines will diverge around the less polarizable particles creating ion 
depletion at the particle poles inducing a dipole aligned against the applied field [251]. 
These induced dipoles reverse orientation as the sinusoidal AC waveform switches 
polarity in the next half cycle [281]. The dipoles cause the particle to experience a 
translational force yielding particle motion within the non-uniform electric field. 

In a uniform field with a symmetric AC waveform, induced polarizations average out 
over time such that no net electrical forces act on the particles and no particle motion is 
observed [34]. When multiple particles are in close proximity, their induced dipoles 
interact, and particle pearl chains form along field lines [131, 252-258]. Non-uniform 
fields elicit a skewed charge dipole in polarizable particles. Due to the electric field 
gradients, current flux lines through and around particles are not uniformly spaced [34, 
199] inducing dipoles that are not equal and opposite in each half cycle. A net
polarization forms, based upon the particle’s volume and effective polarizability, causing
a dielectrophoretic force, FDEP, either toward regions of high field density or low field
density [34, 199]. Clausius and Mossotti developed a frequency (ω) dependent factor,
K(ω), [261, 262] that dynamically reflects a perfectly spherical, homogeneous particle’s
polarizability in a conductive medium. Equation 7.1 shows the ratio of complex
permittivities, 𝜀𝜀, for the particle, 𝑝𝑝, and medium, 𝑚𝑚, of the form 𝜀𝜀̃ = 𝜀𝜀 − 𝑖𝑖𝑖𝑖/𝜔𝜔, where ω
is frequency and σ is electrical conductivity, that makes up the Clausius-Mossotti factor
[34, 199, 250, 262, 263].
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𝐾𝐾(𝜔𝜔) =  
𝜀𝜀𝑝̃𝑝 − 𝜀𝜀𝑚̃𝑚
𝜀𝜀𝑝̃𝑝 + 2𝜀𝜀𝑚̃𝑚

7.1 

The complex quantity K(ω) has an imaginary component out of phase with the applied 
electric field while the real component is in phase [264]. The imaginary component 
manifests as a particle torque in electrorotation measurements [139, 140, 282-286]. The 
DEP force is dependent on the in-phase, or real component of the Clausius-Mossotti 
factor, which estimates the particle’s induced dipole or effective polarizability in non-
uniform electric fields [265]. Equation 7.2 is the dielectrophoretic force expression, 
which is time-dependent due to K(ω)’s dependency on frequency, with particle volume 
expressed via radius, 𝑟𝑟: 

�𝐹𝐹�𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)� = 2𝜋𝜋𝜀𝜀𝑚𝑚𝑟𝑟3𝑅𝑅𝑅𝑅[𝐾𝐾(𝜔𝜔)]∇|𝐸𝐸�𝑟𝑟𝑟𝑟𝑟𝑟|2 7.2 

FDEP is also dependent upon the electric field gradient squared, ∇𝐸𝐸�𝑟𝑟𝑟𝑟𝑟𝑟
2 , which means 

significant forces can be exerted on particles at relatively low voltages [199]. This DEP 
force pushes particles toward regions of high electric field or low field depending on 

Figure 7-1. Electric field gradient (color map slices) within a 1 S/m aqueous 100 μm 
diameter droplet surrounded by 10-8 S/m oil.  A 20 V DC potential is applied from one 
pole and grounded on the opposite pole. The electric field gradient is greatest at the poles 
(dark red on color map, where particles/cells move to during pDEP) and smallest in the 
middle (dark blue on color map, where particles/cells move to during nDEP). This 
illustrates the formation of a non-uniform electric field shaped by the droplet interface. 
For each plane, the view is perpendicular to that plane. 
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whether the real portion of the Clausius-Mossotti factor, Re[K(ω)], is positive or 
negative. When the particle is more polarizable than the medium, Re[K(ω)] is positive 
and the resulting dipole moment causes a force toward high electrical field regions, a 
phenomenon described as positive DEP (pDEP) and signified in red regions at the poles 
in Figure 7.1. When a particle is less polarizable than the medium, Re[K(ω)] is negative 
and negative DEP (nDEP) pushes the particle toward regions of low field density [34] as 
indicated by blue regions in Figure 7.1.   

When translating homogeneous particle theory into the much more complex cellular 
dielectrophoretic theory, cell structure and composition directly correlate with the 
electrical properties influencing cell polarization.  Effective polarizability is dependent on 
cell permittivity and conductivity through cellular components; cell membranes impact 
the ability of charges to penetrate the cell while intracellular proteins and cytosol 
molecules impact charges conducted through the cell [34, 128, 159, 199, 266, 267]. This 
work employs ideal spherical particles for demonstration and verification purposes, but is 
primarily focused on exploring the complex interactions of medium and cell polarizations 
within aqueous droplets. 

This work introduces for the first time a new twist on insulator dielectrophoresis where 
the aqueous-in-oil droplets shape the electric field, replacing and advancing beyond static 
insulator geometries. A challenge when combining dielectrophoresis with droplet 
generation is that electric fields can impact the droplet interface itself.  Electric fields 
have been used to control production, transport, deformation, fission, and fusion of 
droplets within microdevices [28, 29, 35, 37, 218]. Droplet deformation has been noted in 
uniform and non-uniform electric fields [218]. Electrocoalescence occurs when the 
electric field destabilizes the thin film between droplets and has been shown to depend on 
the materials present in the two phases [85] [11, 219, 220]. With increased conductivity, 
there is enhanced dielectrophoretic attraction between droplets and larger electric stress at 
the droplet interfaces [220]. Phase diagrams exist for droplet coalescence in a static fluid 
and AC fields as a function of frequency [6, 220]. Literature targeting droplet 
coalescence has illustrated that there is potential to achieve electric field effects within 
the droplets without destabilizing the droplet interface [6, 11, 219, 220].  

Polystyrene bead and human red blood cell (RBC) dielectrophoretic responses were used 
to explore the novel riDEP technique described herein. Before adding complex 
particles/cells into a system, many researchers benchmark new dielectrophoretic devices 
using polystyrene beads [103-109]. Polystyrene beads are highly uniform, behave ideally 
in many systems, and can be synthesized in various sizes. This work focused on 
polystyrene beads ranging from 6.0 to 7.9 µm in size, with an average size of 6.78 µm, 
for comparison to RBCs (6-8 µm). RBC dielectrophoretic characterizations have been 
extensively studied in traditional spatially non-uniform microdevices. RBC membranes 
[112-120] are essentially non-conducting (σ ≤ 1 µS/m) [121-125], vary from 50 nm to 90 
nm thick depend,ing on exerted force [114], and are the reason RBCs are dielectrics –
materials of low electrical conductivity [34, 123]. In contrast, RBC interiors are 
conductive (σ = 0.53 to 0.31 S/m) [125-127] and vary with cytosol composition such as 
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hemoglobin and cytoplasm molecules [125, 128, 129]. Biconcave RBCs range from 6 to 
8 μm in transverse diameter with 0.5 μm (center) to 2 μm (edge) variations in thickness; 
shapes vary dynamically in response to solvent conditions, pH, tonicity, and temperature 
[127]. Blood cell molecule expression on the membrane varies by the person; 
classification is dominated by ABO-Rh type based on antigen polysaccharides expressed 
on the membrane surface and plasma antibodies (A+, B+, AB+, O+, A-, B- AB-, and O-) 
[112, 113].  Type designations dominate blood transfusions and blood product therapies 
for cancer and sickle cell disease. 

Prior research in this research group, µM.D.-ERL has 1) experimentally quantified the 
DEP response of all ABO-Rh blood types (example in Figure 7.2), 2) definitively 
determined through selective antigen removal, the role of ABO antigens in 
dielectrophoretic polarizations, and 3) mapped out blood type membrane instabilities and 
rupturing for subsequent subcellular analysis. First efforts quantified RBC responses in a 
batch DEP device [36, 130, 131] where electric field non-uniformities were accomplished 
via electrode position. Then insulator DEP blood cell deflection at a microfluidic 
bifurcation was interrogated in a continuous DEP device where electric field non-
uniformities were accomplished with a static insulator structure protruding into the flow 
channel [132]. ABO-Rh expression was shown to shift DEP spectral profiles including 
the cross-over frequencies (COF), which is the transitional point of zero cell motion 
between movement up the electric field gradient (pDEP) to movement down the electric 
field gradient (nDEP) or vice versa (see horizontal line in Figure 7.2). Results further 
revealed enzymatic removal of the ABO membrane antigens yielded a uniform DEP 
response consistent with a baseline RBC polarization [159]. Systematic experiments and 
automated intensity analysis revealed that ABO-Rh expression correlates to the cell DEP 

Figure 7-2. Dielectric spectra of O+, A+, A-, B+, B- and AB- red blood cells in 0.1 S/m 
subjected to a 2.5 Vpp AC signal swept from 0.1 to 1 MHz and back to 0.1 MHz. This 
demonstrates the subtleties of RBC DEP responses by ABO antigen expression. Data 
collection and graphic credit: Hector Moncada Hernandez 
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frequency spectra. Experiments were completed batch-wise (Figure 7.2) consuming five 
years of resources and person-hours. Studies outlined herein could enable multiplexed 
riDEP experiments yielding the same data in ~80 hrs. This work utilized the previous 
RBC typing database to compare and ascertain the reliability and reproducibility of 
reverse-insulator dielectrophoresis.  

In summary, dielectrophoresis has not previously been demonstrated within droplets. 
This work builds upon dielectrophoresis demonstrated around an oil interface protruding 
into an aqueous channel [287], which adds credence to this work exploring aqueous/oil 
interfaces shaping electric fields. Current DEP techniques have been limited to a single 
media condition for each experiment. The novel riDEP technique outlined herein applied 
knowledge from the field of droplet microfluidics into the field of electrokinetics to 
create stable microenvironments for multiplexed dielectrophoretic characterizations. 
Multiple dependencies, including surfactant concentration in the oil phase, conductivity 
of the aqueous phase, voltage, and frequency, were investigated.  

7.2 Materials and Methods 

7.2.1 Chemical Reagents, Particles, and Cell Preparation 

Aqueous-in-oil droplets, seeded with particles, were generated in a microfluidic T-
junction using custom fabricated PDMS devices. The continuous oil phases were 0.33, 
0.66, 1, 1.75, or 2 mM Krytox FSH 157 (Dupont, Wilmington, DE), a perfluoropolyether 
carboxylic acid, dispersed in FC-40 (3M, Maplewood, MN), a biocompatible fluorinated 
oil. The dispersed aqueous phases were solutions comprised of epure water, a salt stock 
(containing 1.1696 grams NaCl, 2.7223 grams KH2PO4, and 3.4961 grams K2HPO4), and 
dextrose (Sigma Aldrich, St. Louis, MO). Conductivities of 0.0000055 S/m (epure 
water), 0.05 S/m, 0.1 S/m, 0.5 S/m, and 1.0 S/m were used for this project. The isotonic 
solutions were phosphate buffer saline (PBS) solutions combined with dextrose.  
Concentrations and amounts combined for each isotonic solution are presented in Table 
7.1 along with their respective conductivities. 

A single continuous and dispersed phase combination was employed for the exploratory 
dielectrophoresis experiments. 1 mM Krytox in FC-40 was used as the continuous phase 
and 0.1 S/m PBS and dextrose seeded with particles or cells was used as the dispersed 
phase. One milliliter of the 0.1 S/m PBS and dextrose solution was combined with 10 
microliters of either packed human red blood cells to yield ~1% concentration by volume. 
Human blood was collected from a healthy donor by a phlebotomist into EDTA Becton 
Dickinson vacutainers, following IRB approved protocols. The red blood cells were 
separated from the blood volume by centrifugation at 132 relative centrifugal force (rcf) 
for 10 minutes. All blood handling was completed in a biosafety level II facility using 
approved protocols and stored at 5oC between experiments. 
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Table 7-1. Amounts of each component in each aqueous phase solution 
Control Solution Epure Water (ml) Salt Stock (µl) Dextrose (g) 

Epure water 20.000 0.0 0.0000 
0.960 mM 24.976 24.0 0.0000 
2.616 mM 24.935 65.4 0.0000 
13.892 mM 24.653 347.2 0.0000 
24.122 mM 24.397 603.0 0.0000 

Dextrose-only Solutions Epure Water (ml) Salt Stock (µl) Dextrose (g) 
58.837 mM 25.000 0.0 0.2650 
161.108 mM 25.000 0.0 0.7256 
273.845 mM 25.000 0.0 1.2334 
290.404 mM 25.000 0.0 1.3080 

Conductivity Solution Epure Water (ml) Salt Stock (µl) Dextrose (g) 
0.05 S/m 24.976 24.0 1.3080 
0.1 S/m 24.935 65.4 1.2334 
0.5 S/m 24.653 347.2 0.7256 
1.0 S/m 24.397 603.0 0.2650 

7.2.2 Microfluidic Device 

The microfluidic device contained the following geometric parameters; a 50 µm wide 
dispersed phase channel joined a 100 µm wide continuous phase channel, both 70 µm tall 
and 3.5 mm in length arranged into a perpendicular T-junction. The continuous phase 
channel continued past the junction for 11 mm before opening, at a pitch of 35°, into a 
1500 µm wide and 5000 µm long chamber. The device was fabricated to be 70 µm in 
height via soft-lithography with SU-8 photoresist (MicroChem, Westborough, MA). The 
SU-8 features were cast with PDMS and bonded to a glass microscope slide immediately 
after oxygen plasma treatment. 50 micron platinum wire (99% pure, Goodfellow, 
Coraopolis, PA ) electrodes were positioned on either side of the 1500 µm wide 
microfluidic chamber. 360-micron holes were punched in all four corners in the 
microfluidic chamber. The 50 µm platinum wire was pulled through the holes to form 
two parallel electrodes. Uncured PDMS was placed at the top of each hole to make a 
watertight seal. The PDMS with the electrodes were cleaned with Scotch tape® and 
bonded to a glass slide as described in Section 3.1.2.  

To connect the platinum electrodes to an external electric field source (AC generator, 
Agilent, Santa Clara, CA) silver conductive epoxy (MGChemicals, Surrey, B.C., Canada) 
was used to bond copper wires to the platinum wires as shown in Figure 3.2. The copper 
wires (22 GA Gauge AWG 2, local hardware store) were connected to alligator clips 
attached to the ground and potential; the copper wires provided a stronger connection 
than the fragile platinum wire alone. The silver conductive epoxy was a two-part mixture 
that was combined and well mixed in equal proportions. The epoxy was placed around 
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the copper wire on the seed layer. The microdevice was then placed in the oven at 70°C 
overnight to allow the epoxy to cure. 

7.2.3 Experimental Set-up 

Before beginning experiments, two pretreatment steps were completed to facilitate 
smooth dispersed and continuous phase flow through the microfluidic device. The first 
step was to ensure hydrophobic channels (detailed in Appendix A). Rain-X® (ITW 
Global Brands, Houston, TX), a commercially available glass water repellent, was 
flushed through the microdevice and kept at room temperature until the Rain-X® solution 
evaporated. A second step was completed ensured that the surfactant within the oil 
solutions was in equilibrium with the solid-liquid interface at the channel walls.  This was 
accomplished by filling the device with the continuous oil phase and surfactant Krytox 
FSH 157 solution then allowing it to sit for ~one hour before experiments started. 

Both the aqueous and oil solutions were withdrawn into 3 mL syringes (Becton 
Dickinson, Franklin Lakes, NJ). The syringes were connected to the microdevice via 360 
micron polyether ether ketone (PEEK) tubing (Labsmith) and T-connectors. The 
microdevice was fixed onto the stage of a SVM340 synchronized video microscope 
(Labsmith, Livermore, CA) via tape to prevent movement during experiments.  Once 
turned on, the brightness, contrast, and focus of the microscope were adjusted to the ideal 
settings for observing/recording the experiments at 4x or 10x magnification. The 
solutions were then infused through the PEEK tubing into the microdevice via a Harvard 
Apparatus syringe pump (Harvard Apparatus, Holliston, MA) 0.25 µl/min for 10 minutes 
to allow the system to reach steady state before beginning experiments.  Due to device 
clogging issues, some experiments were completed by applying pressure to the dispersed 
phase syringe by hand.  

For the dielectrophoretic experiments, droplets were either allowed to flow through the 
microchamber while the electric field was applied (continuous configuration) or flow was 
halted such that the droplets were stationary when the electric field was applied (batch). 
For continuous experiments, the syringe pump delivered a constant flow rate. For batch 
experiments, pressure was adjusted by hand to bring the droplets to a stop within the 
chamber. For the dielectrophoretic experiments, an AC generator was used to apply an 
electric field across the chamber. The applied potential was either a DC or AC and ranged 
from 1 to 10 volts.  For AC experiments, the applied frequency ranged from 100 to 1000 
kHz. The experimental setup can be seen in Figure 3.3. 

7.2.4 Data Collection and Analysis 

Experiments were observed and recorded using the UScope software (Labsmith). The 
collected data was then analyzed using ImageJ, a free image analysis program from the 
National Institute of Health [226]. Electric field stability was analyzed by observing and 
documenting droplet coalescence. For each conductivity and surfactant concentration, the 
voltage was slowly increased (at least 1 minute at each voltage) until droplet coalescence 
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was observed. For the dielectrophoresis experiments, a single voltage (DC) or voltage 
and frequency (AC) was applied and videos were recorded. Particles and cells were 
imaged within the droplets and tracked over time within the dielectrophoretic fields.    

7.3 Results and Discussion 

7.3.1 Droplet Stability within an Applied Electric Field 

The voltage at which electrocoalescence began to be observed was recorded as a function 
of dispersed phase conductivity, continuous phase surfactant concentration, and 
frequency, as shown in Figure 7.3. For multiple conditions, no electrocoalescence was 
observed, and is indicated as a voltage of >10 in Figure 7.3. At the lowest two 
conductivities, 0.05 S/m and 0.1, there was a general trend of decreasing voltage needed 
for coalescence with an increase in surfactant concentration, with the highest surfactant 
concentration yielded stable droplets up to 7 Vpp for 0.05 S/m and 5 Vpp for 0.1 S/m. 

Figure 7-3. Voltage, as a function of frequency (x-axis) and surfactant concentration 
(different color data markers) in the continuous oil phase, that caused electrocoalescence 
for a) 1.0 S/m, b) 0.5 S/m, c) 0.1 S/m, and d) 0.05 S/m conductivity PBS and dextrose 
solutions as the dispersed aqueous phase. Data points at >11V indicate that for the full 
range of voltages (1-10 Vpp) no electrocoalescence was observed. The applied voltage 
needed for electrocoalescence decreased with increasing dispersed phase conductivity, 
increased frequency, and decreased surfactant concentration.  
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The 1 mM surfactant concentration did not fit this general trend due to the increased 
temperature (72→79ºF) and humidity (22→58%) during the experiments. The relative 
surfactant trend was consistent for the 0.5 S/m conductivity solution, however, 
electrocoalescence voltages are roughly half those at 0.1 S/m.  At the highest 
conductivity of 1.0 S/m, electrocoalescence occurred predominantly at 5 Vpp with minor 
variations to 4 or 6 Vpp at the highest surfactant and lowest surfactant concentration, 
respectively.    

In summary, the voltage that caused electrocoalescence increased with increasing 
frequency. Increased dispersed phase conductivity decreased the voltage needed for 
electrocoalescence. Both of these trends are consistent with literature [219, 220]. In 
addition, a third trend of decreased voltage required with increased continuous phase 
surfactant concentration was observed. These results are a foundational map of conditions 
feasible for dielectrophoretic characterizations within droplets since droplet stability is a 
necessary condition for any subsequent analysis. 

7.3.2 Polystyrene beads 

A completed electric circuit was verified as previously described, then the chamber was 
packed with 6 µm polystyrene bead-seeded aqueous droplets 100 to 300 µm in diameter. 
Note that this preliminary data was completed before stability experiment optimization, 
so the droplets are polydisperse and some coalesced resulting in less uniform DEP 
behavior, which is consistent with the 2D COMSOL simulation results discussed in 
Chapter 5, Section 5.3. As shown in Figure 7.4, pearl chain formation occurred indicating 
DEP forces acting upon the polystyrene beads within the droplets. This chaining as well 
as the translation to the center of the droplet indicates negative dielectrophoresis, which is 
consistent with theory predictions of polystyrene beads in low conductivity (0.055 µS/m) 

Figure 7-4. (a) Platinum wire electrodes (100 μm) were sealed between PDMS and glass 
slide, then used to apply a 10 Vpp, 100 kHz electric field across the chamber of 1 S/m 
aqueous droplets in 10-8 S/m silicon oil. (b) Image of 6 μm polystyrene particles in 200 
μm droplets. (c) Images of particle pearl chain formation along electric field lines. 



87 

water. These all show the feasibility of riDEP as a new and powerful characterization 
technique.  

7.3.3 Red Blood Cells 

Human red blood cells were seeded into the 0.1 S/m PBS and dextrose solution and 
droplets were generated using the 1 mM Krytox in FC-40 solution since this surfactant 
range yielded the most stable droplets in the electrocoalescence screening experiments. 
The first set of experiments completed were conducted in a continuous flowing stream 
where the droplets migrated through the chamber. The aqueous and oil phases were 
steadily pumped at 0.25 µl/min to generate droplets packed within the chamber. A 4 Vpp 
and 100 kHz or 1 MHz frequency electric field was applied across the chamber as the 

Figure 7-5. a) Red blood cells seeded into 0.1 S/m PBS and dextrose solution and packed 
within a microfluidic chamber. Successful droplet packing was observed. RBCs are 
shifted to the right from droplet generation due to the lower viscosity within the droplets. 
b) Before and c) after application of a 10 Vpp, 1 MHz electric field. Pearl chaining and
movement toward high electric field gradient areas indicate a dielectrophoretic response.
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droplets flowed through. The RBCs demonstrated a very weak DEP response which was 
visually observable in the form of pearl chain formation near the equator of the droplet.  
However qualitative analysis was challenging due to the motion of the droplets through 
the chamber. Thus, batch experiments were conducted.  

Droplets were formed by using the syringe pump or by hand and the flow of droplets 
through the chamber was halted by applying pressure to the inlets/outlets by hand. 
Droplets were successfully generated, packed, and stopped within the chamber as shown 
by Figure 7.5a. The microscope was set to 10x magnification to more easily identify the 
RBCs within the droplets. As shown in Figure 7.5a, the cells within the droplet were 
affected by the droplet movement and are all shifted toward the right side of the droplets. 
Figure 7.5b contains stills from a video showing the RBCs before and 2 minutes after 
applying the electric field (10 Vpp and 1 MHz). The RBCs show a weak positive 
dielectrophoretic response, indicated by the pearl chaining and the slight movement 
towards high electric field gradient areas at the droplet poles closest to adjacent droplets.  

These results, although preliminary in nature, demonstrate that utilizing the non-uniform 
electric fields within droplets can induce cell polarization.  In short, these preliminary 
results provide evidence that riDEP is feasible.  

7.4 Conclusions 

Conceptually envisioned reverse insulator dielectrophoresis, riDEP, was investigated by 
1) mapping out droplet stability in electric fields from 1-10 Vpp and 100-1000 kHz, 2)
observing the response of 6 um PS particles in solutions with conductivities ranging from
0.055 µS/m to 1.0 S/m and 3) interrogating RBCs dispersed into droplets under similar
solution and electrical conditions.

Droplet stability in an applied electric field was a function of dispersed phase 
conductivity, continuous phase surfactant concentration, frequency, and voltage. The 
results of this work start building a map of the operating windows possible for riDEP. 

PS particle DEP responses were observed and demonstrated pearl chaining as well as the 
translation to the center of the droplet indicating negative dielectrophoresis, which is 
consistent with theory predictions of polystyrene beads in low conductivity (0.055 µS/m) 
water.  

RBC interrogations demonstrated slow dielectrophoretic responses. This indicates that 
the electric field was shaped by the droplet interfaces, however the voltage drop within 
the droplets is likely weak.  One plausible explanation is that the droplet to droplet 
interface functions as an electrical barrier that interferes with potential bridging between 
the droplets.   

This challenge can be approached in the following manner: 1) interrogate additional 
particle types, polystyrene beads (of various sizes) and human red blood cells, based on 
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their known dielectrophoretic properties and predictability because both the electric 
properties and the size of the particles affect the DEP response, 2) test multiple media 
conductivities, from 0.05 to 1.0 S/m because the media conductivity has a large impact 
on dielectrophoretic response, 3) use a range of frequencies, from 100 to 1000 kHz 
because, based on the media conditions and particles, the frequency determines the 
direction of the dielectrophoretic response, 4) explore both AC and DC electrical fields 
because non-uniform fields are necessary to elicit DEP responses but AC frequencies are 
not essential, and 5) test both static and flow systems to investigate the possibility of both 
batch and continuous testing. 
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8 Electrical and Chemical Characterizations of Hafnium 
(IV) Oxide Films for Biological Lab-on-a-Chip Devices

Reverse insulator dielectrophoresis uses immiscible phases to shape a non-uniform 
electric field. Because there is a layer of oil between the electrodes and the aqueous 
sample phase, the samples are isolated/protected from the electrodes. For applications 
where droplet microfluidics is not advantageous, but preventing unwanted sample-
electrode interaction is, an additional method of isolating/protecting samples from 
electrodes was also investigated. Hafnium oxide was used as a passivation layer to 
physically isolate the samples from the electrodes while allowing electric field 
penetration through the passivation into the sample. This investigation was a 
collaborative effort and has been published in Thin Solid Films. J. Collins was lead 
author. The contributing authors on this work included H. Moncada Hernandez, S. 
Habibi, C.E. Kendrick, Z. Wang, N. Bihari, P.L. Bergstrom, and A.R. Minerick. 

Abstract: Many biological lab-on-a-chip applications require electrical and optical 
manipulation as well as detection of cells and biomolecules.  This provides an intriguing 
challenge to design robust microdevices that resist adverse electrochemical side reactions 
yet achieve optical transparency.  Physical isolation of biological samples from 
microelectrodes can prevent contamination, electrode fouling, and electrochemical 
byproducts; thus this manuscript explores hafnium oxide (HfO2) films - originating from 
traditional transistor applications – for suitability in electrokinetic microfluidic devices 
for biological applications. HfO2 films with deposition times of 6.5, 13, and 20 minutes 
were sputter deposited onto silicon and glass substrates.  The structural, optical, and 
electrical properties of the HfO2 films were investigated using atomic force microscopy 
(AFM), X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier transform 
infrared spectroscopy, ellipsometry, and capacitance voltage. Electric potential 
simulations of the HfO2 films and a biocompatibility study provided additional insights. 
Film grain size after corrosive Piranha treatment was observed via AFM.  The crystalline 
structure investigated via X-ray diffraction revealed all films exhibited the (111) 
characteristic peak with thicker films exhibiting multiple peaks indicative of anisotropic 
structures. Energy dispersive X-ray spectroscopy via field emission scanning electron 
microscopy and Fourier transform infrared spectroscopy both corroborated the atomic 
ratio of the films as HfO2. Ellipsometry data from Si yielded thicknesses of 58, 127, and 
239 nm and confirmed refractive index and extinction coefficients within the normal 
range for HfO2; glass data yielded unreliable thickness verifications due to film and 
substrate transparency. Capacitance-voltage results produced an average dielectric 
constant of 20.32, and the simulations showed that HfO2 dielectric characteristics were 
sufficient to electrically passivate planar microelectrodes.  HfO2 biocompatibility was 
determined with human red blood cells by quantifying the hemolytic potential of the 
HfO2 films. Overall results support hafnium oxide as a viable passivation material for 
biological lab-on-a-chip applications. 
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8.1 Introduction 

8.1.1 Electrode Isolation in Lab-on-a-Chip Technology 

Lab-on-a-chip (LOC) technologies and applications are continually expanding with an 
emphasis on electrical manipulations for chemical/biological detection.  LOCs are 
prevalent in point-of-care clinical diagnostics due to the small sample and reagent 
volumes, cost effectiveness, rapid analyses, high sensitivity/selectivity, and potential for 
disposable devices [288].  For electric field utilization, electrode miniaturization 
improves sensitivity and device footprint [204].  However, electrode behaviors and 
subsequent solution characteristics are closely intertwined [289, 290].  Aqueous 
experimental samples in contact with electrodes can lead to electrode fouling [202, 291].  
For example, platinum microelectrodes showed both morphological and chemical 
changes when exposed to biological buffer solutions in both AC and DC electric fields. 
These changes included oxidation and dissolution of platinum along with potassium 
deposition and chloride formation originating from buffer solutions [292]. Electrodes in 
contact with aqueous experimental samples can generate pH changes, target analyte 
interferences, and other byproducts.  While electrode byproducts are sometimes 
harnessed for beneficial LOC functions: electrochemical impedance can detect foodborne 
pathogens [293], enzyme-catalyzed reactions can detect multiple metabolic biomarkers 
[294], and amperometric flow injection analysis can sense cholesterol [83], this is not 
uniformly desired. 

Creative strategies to achieve electrode and target sample isolation include remote 
positioning of electrodes, membrane isolation, and passivation layers.  In 
dielectrophoretic applications, insulating structures within channels replace embedded 
microelectrodes and effectively shape non-uniform electric fields (insulator 
dielectrophoresis) [132, 196, 202].  Membranes isolate electrode wells from LOC 
channels preventing unwanted electrode/solution effects, such as electrolysis bubbles 
[295].  A key approach is to apply dielectric thin film coatings over planar electrode 
surfaces as passivation layers to reduce ion production, Faradaic reactions, and electrode 
surface fouling [51, 289, 292, 296].  In electrowetting on dielectric (EWOD) devices, a 
dielectric layer is deposited on top of the electrodes to energize droplet motion across 
surfaces without causing solution interferences [273].  Some LOC applications desire 
complete electrical passivation from the fluidics [297].  In cell culturing, sensing 
windows monitored spreading kinetics via impedance while the remaining electrode 
region was passivated to isolate cells and reduce the risk of contamination from and 
reaction with electrode surfaces [297].  Thus, passivation layers over electrodes are a 
viable and growing method to selectively isolate electrodes from samples and preventing 
unwanted electrochemical byproducts. 
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8.1.2 Choosing a Passivation Layer 

In electronics, high dielectric constant passivation in capacitors, resistors, and transistors 
improves performance during miniaturization.  This knowledge can be translated into 
LOC applications bridging electronics and fluidics.  The most common high dielectric 
constant shielding material is silicon dioxide (SiO2).  At thicknesses less than 1.5 nm, 
SiO2 has physical and electrical limitations that manifest in a leakage current [298, 299].  
While leakage current is desired in some LOC applications, aqueous electrolyte solutions 
required for many biological applications can cause alkali ion contamination in the SiO2 
leading to undesirable device instability [300].  Common SiO2 replacements include 
HfO2, Si3N4, La2O3, Al2O3, ZrO2, TiO2, HfSiO, CeO2, and LaAlO3 [299-301].  Dielectric 
constants for these materials range from 3.9 for SiO2 to 80 for TiO2; the material explored 
here, HfO2, is 20-25 [302].  

In LOC devices, passivation materials must withstand mechanical/chemical stresses and 
not interfere with electric field characteristics or detection schemas at fluidic interfaces 
[303]. Passivation layer characteristics frequently assessed  are dielectric strength and  
biocompatibility, along with mechanical, chemical, thermal, and charge stability [304], 
and are tailored to the application.  LOC passivation materials have included Teflon, 
Parylene C, polydimethylsiloxane, polyimide, silicon dioxide, silicon nitride, SU-8, dry-
film, and others [273, 303-306].  

Biological LOCs require films with optical transparency and biocompatibility.  Optical 
transparency within LOCs enables optical detection techniques such as absorbance, 
reflectance, fluorescence, and chemiluminescence,  among others [307]. Common 
biocompatible passivation materials include cover glass, photoresist, epoxy, polyimide, 
SiO2, and Si3N4 [297].  However, these materials display undesirable refractive 
properties, limited optical transparency, and/or non-ideal electrical passivation 
characteristics.  HfO2 stability in aqueous solutions and biomolecule functionalization 
was demonstrated [300]. Thus, this work investigated hafnium (IV) oxide as a 
biocompatible passivation layer for biological LOCs due to its relatively high dielectric 
constant [302] and optically transparency [308].  

8.1.3 Hafnium Oxide (HfO2) 

Advantageous properties of hafnium oxide (HfO2) include its chemical stability, high 
dielectric constant (20-25), wide band gap (5.8 eV), conduction band offset (1.4 eV), 
optical transparency from 300 to 10,000 nm in the electromagnetic spectrum, and 
refractive index (~2) based on deposition conditions [302, 308-310].  These properties 
prompted HfO2 use in gate oxide in metal–oxide–semiconductor field-effect transistors 
(MOSFET) [298, 299, 308-315] whereby SiO2 is unsuitable due to scaling limitations 
[299].  Other common HfO2 uses include optical coatings [299, 309, 310, 313], 
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optoelectronics [299, 308, 310], and ceramics [308, 310].  This substantial foundation of 
electrical and optical knowledge is advantageous to build upon for LOC applications. 

Hafnium oxide’s utilization for biological applications is increasing, especially within 
nanopore and nanowire structures. HfO2 increased the sensitivity of silicon-based multi-
nanowires for DNA and protein detection due to its chemical stability, pH sensitivity, 
high dielectric constant, hydrophilicity, and isoelectric point of 7 [300, 316-319].  HfO2 
demonstrated stability within an aqueous electrolyte environment and was successfully 
functionalized with biotin biomolecule probes when used as a gate dielectric for charge 
based biosensors [300]. Hafnium oxide pH responses (51.0-55.8 mV/pH) [320] were 
comparable to other Si nanowire, Al2O3/SiO2 pH sensors (54.9-60.2 mV/pH) [321] when 
investigated for ion sensitive field effect transistors (ISFET) and MOSFETs.  Table 8.1 
summarizes biological applications that utilized HfO2 along with deposition methods, 
characterization methods, and substrates. In this paper, fabrication and multi-dimensional 
characterizations of HfO2 films needed for LOC technologies are presented with a 
particular emphasis on concurrent optical and electrokinetic cell characterizations. 

Table 8-1: Hafnium oxide in biological applications 
Ref. Deposition 

Method 
HfO2 
(nm) 

Substrate Application Characterization 
Methods 

[300] ALD ~2.8, 
45 

Si (100) 
Prime grade 
1-10 Ωcm

Charged based 
biosensors 

SE, AFM, CV, 
XPS 

[320] ALD 13 Si-NW on Si-O-
I   
p-type
doped

Small nucleic 
acid oligomer 
detection 

SE, AFM, SEM, 
CV, FLIC 

[316, 
317] 

ALD 2-7 Si/SiO2/SiNx DNA transport 
through 
nanopores and 
Protein analysis 

AFM, CV, EDS, 
TEM 

[318] ALD 10 Si-NW on Si-O-
I   

Cardiac 
troponin 1 
detection 
(biosensor) 

TEM 

[319] ALD 16 Graphene/TiO2

and 
Si, p-type, 
highly doped 

Nanopores for 
biosensing 

FFT, Contact 
angle, IV, Leakage 
current, TEM 

8.1.4 Deposition and Characterization of Hafnium Oxide (HfO2) 

Optical and electrical properties of HfO2 are affected by crystallography, microstructure, 
integral stoichiometry, binding states, morphology, contamination, and defect density 
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[309], making HfO2 deposition important. For very thin films, industry typically uses 
atomic layer deposition (ALD) [298].  Other deposition methods include organic vapor 
deposition [322], metal-organic vapor deposition [298], electron-beam evaporation, 
reactive vacuum evaporation [313], and a variety of sputtering techniques [299, 301, 308-
310, 314]. Herein, RF sputtering was used for all HfO2 film depositions.  

Table 8-2: Non-sputter deposition techniques and HfO2 characterization 
Ref. Deposition 

Method 
HfO2 
(nm) 

Substrate Deposition 
Parameters 

Characterization 
Methods 

[319] ALD 16 Graphene/TiO2

and 
Si, p-type, 
highly doped 

Annealing 
temperature 
(none, 500-
700 °C) 

FFT, Contact 
angle, IV, Leakage 
current, TEM 

[298] ALD 
MO-CVD 

<7 Si and 
Si covered with 
SiO2 

Study of 
possibilities 
and 
limitations of 
near UV-
visible range 
SE 

SE, AR-XPS, RBS 

[322] MO-CVD 4 Si, p-type Estimation of 
dielectric 
density 

SE, XRR 

[313] Reactive 
vacuum 
evap. 

~75-
170 

Si, single-
crystal 

Deposition 
temperature 
(40-280 °C) 

SE, AFM, XRD 

Deposition parameters affecting HfO2 film properties include temperature, pressure, 
voltage, plasma composition, and annealing [299, 301, 313]. Tables 8.2 and 8.3 contain 
the deposition methods, characterization methods, and substrates used to determine HfO2 
characteristics/quality for non-sputter (Table 8.2) and sputter deposition techniques 
(Table 8.3). Characterization methods include spectroscopic ellipsometry (SE), scanning 
electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) for 
thickness; atomic force microscopy (AFM), X-ray diffraction (XRD), energy dispersive 
X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and X-ray
reflectometry (XRR), for structural properties; SE, FTIR, and ultraviolet-visible
spectroscopy (UV-VIS) for optical properties; and SE, capacitance-voltage (CV), and
current-voltage (IV) for electrical properties, among others including grazing incidence
X-ray diffraction (GIXRD), angle-resolved X-ray photoelectron spectroscopy (AR-XPS),
Rutherford backscattering spectroscopy (RBS), Doppler broadening spectroscopy (DBS),
transmission electron microscopy (TEM), fast Fourier transform (FFT), and fluorescence
interference contrast (FLIC).

To expand knowledge of HfO2 performance for biological LOC technologies, this work 
explored HfO2 deposition and characterization for isolating electrodes from aqueous,  
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Table 8-3: Sputter deposition parameters and HfO2 characterization 
Ref. HfO2 (nm) Deposition Substrate O2 and Ar Flow RF 

(W) 
T (°C) BP (Pa) 

DP (Pa) 
DT 
(min) 

CM 

a, b 78, 156, 
240 

RF SSP 
DSP 
Glass 

4 SCCM O2 
18 SCCM Ar 

700 Room 2.7x10-4 to 
4.0x10-4 
0.93-1.02 

6.5, 
13, 20 

AFM, XRD, 
EDS-FESEM, 
FTIR, SE, CV 

[312] 
b

67.6, 86.3, 
104, 128.9 

RF magnetron Si (001) 
2-5 Ω/cm
Quartz

20 SCCM Ar 50, 60, 
70, 80 

Room >2.0 x 10-4

0.35
120 AFM, XRD, 

FTIR, UV-Vis, 
SE 

[299] 
c 

33.19 to 
35.38 

RF magnetron Si (100) 
p-type
4-7 Ω/cm

- - - 1.5 x 10-3 
2.2 

7 AFM, FTIR, IV, 
SE, CV 

[301] 
d 

7.8 to 71.6 RF magnetron Si (100) 
p-type
1-10 Ωcm

5, 10, 15 ml/min 
O2 

100, 
300, 
500 

- - 
0.4, 0.8, 1.2 

2, 5, 
10 

AFM, XRD, IV, 
RBS, CV 

[308] 
b 

40 RF magnetron Si (100) 12 SCCM O2 
28 SCCM Ar 

100 Room 
to 700 

1.3 x 10-3 
- 

- GIXRD, XRR, 
SE 

[309] 
b 

- Magnetron Si (100) 
n-type

30 SCCM total  
O2/(O2+Ar) ratio 
(0.07, 0.26, 0.59) 

25, 45, 
100 

- 2.0 x 10-3 
0.7, 1.0, 4.0 

- XRD, DBS, SE 

[310] 
b 

~95 to 155 RF magnetron 
(reactive)  

Si (100) 0, 0.1, 0.2, 0.3, 0.4 
O2/(Ar+O2) 

100 300 1.3 x 10-3 
- 

45 XRD, SEM, SE 

[311] 
b,e

7.3 DC magnetron Si (100) 
p-type
7-17 Ωcm

12 SCCM O2 
30 SCCM Ar 

30 200 <2.7 x 10-3 
5.9 x 10-2 

5 XRD, FTIR, 
XPS, SE 

[314] 
b,f

- Reactive w/ 
pulsed DC 
power 

Si 10 SCCM O2 
28.3 SCCM Ar 

42 - 2 x 10-3 
1 

60 DBS, XRR, SE 

a This paper T=Temperature, BP=Base Pressure, DP=Deposition Temperature, DT=Deposition Time, CM=Characterization Methods 
b Papers that reported the target used: all ≥99.9% hafnium oxide or hafnium metal target 
d Annealing temp. 300, 600, 900 °C        e Study of SiOx formation at HfO2/Si interface 

 c Annealing temp. 350, 550, 750 °C 
 f 40 kHz pulse, 70% duty factor, study of atomic O2 treatment
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biological samples.  Three HfO2 thicknesses were sputter deposited on both opaque 
silicon and transparent glass substrates.  HfO2 characterizations included AFM, XRD, 
energy dispersive X-ray spectroscopy field emission scanning electron microscopy (EDS-
FESEM), and FTIR characterizations for structural properties; SE for thickness and 
optical properties; and SE, CV, and simulations for electrical properties.  In addition, this 
study explored HfO2 biocompatibility with cells.  These results have implications in 
biological LOC devices that use optical measurement methods concurrent with electrode 
isolation. 

8.2 Materials & Methods 

8.2.1 Hafnium Oxide Deposition 

Hafnium oxide thin films were deposited on four types of substrates: 500 µm thick (100) 
oriented single side polished (SSP) and 500 µm thick double side polished (DSP) 10 Ω-
cm resistivity silicon wafers, 75x25x1±0.1 mm soda lime glass microscope slides, and 
500 µm thick Borofloat 33 borosilicate glass wafers (UniversityWafer.com).  The latter 
two were optically transparent and utilized for many LOC devices [4]. HfO2 RF sputter 
deposition (Perkin-Elmer 2400-8J, Waltham, MA) progressed at room temperature with 
an RF power of 700 W, a 99.95% pure hafnium target (Kurt J. Lesker, Jefferson Hills, 
PA), and base and operating pressures of 2.7x10-4 to 4.0x10-4 Pa and 0.93-1.02 Pa, 
respectively.  Film stoichiometry was maintained using 4 SCCM O2 and 18 SCCM Ar 
and was characterized in Section 3.3. Films were treated as HfOx until film stoichiometry 
was confirmed.  Depositions ran for 6.5, 13, and 20 minutes with an average deposition 
rate of 12 nm/min, as determined by ellipsometry calibration of HfO2 deposited on 
silicon.  For each deposition time, Si and glass substrates were sputtered together to 
enable direct comparisons.  

Surface cleaning processes used in LOC fabrication were compared in Section 3.1 by 
cleaving HfO2 coated substrates into three pieces: as-deposited control, oxygen plasma 
treatment, and Piranha treatment. The oxygen plasma treatment was performed via RIE at 
3.2x104 Pa for 40 seconds (Jupiter II, March Instruments, Concord, CA).  The Piranha 
treatment was performed by soaking substrates in Piranha solution, a strong corrosive 
oxidizing agent prepared by mixing 12N H2SO4 and 30% H2O2 (1:1 v/v) (Sigma Aldrich, 
St. Louis, MO), for 5 minutes, rinsing with deionized water, and drying with nitrogen 
gas. 

8.2.2 Hafnium Oxide Characterization 

8.2.2.1 Atomic Force Microscopy 

Structural properties and morphology of the HfO2 films were examined on both DSP 
silicon and soda lime glass substrates, with pre- and post-oxygen plasma and Piranha 
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treatments. A Veeco Dim 3000 atomic force microscope (Plainview, NY) in tapping 
mode at 1 Hz was utilized to scan areas of 5x5 µm2 with a resolution of 103 pixels per 
micron.  Nanoscope V530 software collected data and measured surface roughness.  
Grain size analysis was conducted with Image-J software (NIH, 
https://imagej.nih.gov/ij/). The minimum and maximum pixel area threshold sizes were 
systematically adjusted on the B&W images to identify both grains and grain 
agglomerates from the background, 100 to 1000 pixels squared and 100 to infinity pixels 
squared, respectively. Data was compiled and compared across treatments, substrates, 
and film thicknesses. The size of the grains, along with roughness and surface 
morphology revealed film growth conditions and the impact of oxygen plasma and 
Piranha treatments. 

8.2.2.2 X-Ray Diffraction 

Because the film crystal structure and size can affect the film’s optical and electric 
properties, the bulk morphology of the deposited HfO2 was further explored with XRD 
for different deposition times on SSP silicon and soda lime glass substrates.  XRD was 
used in a glancing angle mode to obtain crystalline structure as a function of film 
thickness. A 2θ scan was performed from 18-67.98°, using a 2000 W Cu target X-ray 
tube on a Scintag XDS-2000 θ/θ powder diffractometer (CA, USA).  The X-ray tube 
utilized Cu Kα1 radiation (wavelength: 1.540562 Å) and a tungsten filament.  The step 
scan mode was used with a scan rate of 0.003 deg/min.  The Scherrer equation was 
employed to relate crystallite size in the deposited films to the broadening of a peak in the 
diffraction pattern.  The mean size of the crystallites (𝜏𝜏) was calculated using 𝜏𝜏 =
𝐾𝐾𝐾𝐾/𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽, with K as a dimensionless shape factor, 𝜆𝜆 as the X-ray wavelength, 𝛽𝛽 as half 
the maximum intensity in radians, and 𝜃𝜃 as the Bragg angle.  The dimensionless shape 
factor utilized was 0.9, because values range from 0.86 to 0.94 depending on crystallite’s 
circular to cubic shape, respectively [323]. The Cu tube on the system yielded an X-ray 
wavelength of 0.154056 nm, which is the characteristic wavelength for K-alpha radiation 
[324].  

8.2.2.3 Energy Dispersive X-Ray Spectroscopy and Fourier Transform Infrared 
Spectroscopy 

Film thickness, morphology, and composition were measured via field emission scanning 
electron microscopy (FE-SEM, Hitachi S-4700, Tarrytown, NY) at 20 keV and 200k 
magnification. A sputtered carbon coating on the HfO2 films prevented charging to obtain 
higher quality images. Morphology comparisons were made between AFM and SEM. To 
gain insights to compliment morphology and crystalline structure, the film composition 
was analyzed via SEM-EDS and FTIR. Films on DSP silicon and soda lime glass were 
analyzed with deposition times of 13 and 20 minutes, respectively. In addition, the 20-
minute deposition on DSP silicon was scanned, and a thickness comparison was made 
between the SEM and ellipsometry results. To achieve a cross-sectional analysis and thus 
discern thickness, the HfO2 coated silicon wafer was cleaved and mounted on a holder 
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perpendicular to the electron beam.  EDS composition was compared to FTIR by 
scanning the DSP silicon film (Genesis II, Mattson Instruments, Madison, WI) from 400-
4000 cm-1.  Silicon background peaks were removed. SEM-EDS and FTIR both 
corroborated stoichiometric HfO2.   

8.2.2.4 Spectroscopic Ellipsometry 

Thickness and optical characterizations were completed via spectroscopic ellipsometry 
for all deposition times and substrates.  Each film was scanned across 400 to 1000 nm 
wavelengths at angles of 65°, 70°, and 75° to measure the ellipsometric parameters psi 
(ψ) and delta (Δ) (JA Woollam V-VASE, Lincoln, NE). Material models were fitted to 
the collected data, and a regression analysis was used to find the mean square error 
(MSE).  Minimizing the MSE was the criteria used to select optimal material models.  
The films were modeled as Lorentz-Tauc Oscillators, which considered the bandgap 
[325] and included a 10 nm SiO2 layer. The model required surface roughness which was
obtained via AFM, presented in Section 3.1.  The WVASE32 software used ψ and Δ
models to predict film thickness, refractive index, and extinction coefficient, from which
the optical properties of the deposited films were assessed.

8.2.2.5 Capacitance-Voltage 

Capacitance-voltage measurements were used to extract the film dielectric constant. 
Experiments were conducted using a series of 1000-2000 µm circles that had an Al/HfO2

(6.5-minute deposition)/Al configuration, as shown in Figure 9.5. A HfO2 film was 
sputtered on an Al (100 nm) coated SiO2/Si wafer, with a portion protected with a glass 
slide to allow for probing to the underlying Al film, followed by a 100 nm Al film 
deposited through a shadow mask. The shadow mask had 1000, 1500, and 2000 µm 
diameter circles.  Due to the step change, the thickness of the Al and HfO2 films were 
measured with a 3D profilometer (Filmetrics Profilm3D, San Diego, CA). CV 
measurements were collected using an HP 4284A Precision LCR Meter (Agilent, Santa 
Clara, CA) by connecting to the underlying and top Al films. Capacitance values were 
converted to the dielectric constant using C = A(κ/d), with C as the measured 
capacitance, A as the area of the capacitor (e.g., each respective circle), κ as the dielectric 
constant of the insulator, and d as the separation of the two Al films. 

8.2.2.6 Simulations 

Along with the determination of the dielectric constant of the HfO2 films, COMSOL 
Multiphysics (Burlington, MA, USA) simulation software was used to model HfO2 
electrical isolation of the electrodes from the fluidic layer.  Electric potential distributions 
in a 2D geometry were obtained by solving Laplace’s equation using the Lagrange 
element method.  The 2D model geometry, shown in Figure 9.6a, consisted of a 200 x 40 
μm substrate, two 20 x 0.15 μm Au electrodes (excitation and ground), the HfO2 
passivation with targeted thicknesses (0.078, 0.156, and 0.240 μm) over the substrate and 
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electrodes, in contact with a 200 x 70 μm chamber filled with 0.1 S/m phosphate buffer 
saline (PBS) fluidic layer.  Material properties utilized are shown in Table 8.4. Boundary 
conditions were Electric Potential (5 V) from the Au excitation electrode, Ground at the 
Au ground electrode, and Electrical Insulation at all outer boundaries.  To evaluate the 
electric potential distribution, the simulated was run between 10 Hz and 10 MHz with a 
mesh consisting of elements ranging from 0.004 to 2 µm.   

Table 8-4. Material properties and parameters employed for electric potential simulations. 
Material Relative ε σ [S/m] 
Borosilicate glass 4.5 1x10-15 
Silicon 11.7 0 
Hafnium Oxide 20.32* 1x10-16 
Water 80 0.1 
*Value obtained from CV measurements, section 8.3.5

8.2.2.7 Biocompatibility 

In addition to physical, optical, and electrical properties, the deposited film 
biocompatibility was investigated.  Healthy red blood cells (RBCs) were contacted with 
HfO2 films, and the extent of hemolysis was determined by measuring the absorbance of 
free hemoglobin according to standards by Xiong et al. [326, 327].  Whole blood was 
drawn from a healthy, anonymous consenting donor via IRB approved protocols into 
ethylenediaminetetraacetic acid (EDTA) Becton Dickinson vacutainers (MTU IRB 
M0540[318164-11]).  Blood was centrifuged at 132 relative centrifugal force (rcf) for 10 
minutes to separate into platelet-rich plasma, white blood cells, and packed RBCs. 
Packed RBCs were re-suspended and diluted in sterile, isotonic 0.9 w/v% NaCl to a 
1:100 ratio for the hemolysis assay.  A 4” borosilicate glass wafer coated with HfO2 was 
diced into 20 x 20 mm pieces and separately submerged into 50 mL tubes containing the 
1:100 RBC suspension, then incubated at 37° C for 1, 3, and 5 hours.  A negative control 
of the 1:100 RBC suspension was conducted without HfO2. A positive control (100% 
lysis expected) was conducted with the 1:100 RBC suspension incubated with 1 w/v% 
Triton X-100 and without HfO2. All conditions were concurrently conducted in triplicate. 
After incubation, RBC suspensions were centrifuged at 1075 rcf for 10 minutes and the 
supernatant collected.  Free hemoglobin absorbance readings were obtained via UV/Vis 
spectrophotometry (Genesis 10 UV Scanning, Thermo Fisher Scientific, Waltham, MA) 
at 380, 415, and 450 nm, corresponding to the hemoglobin peaks [326].  A 0.9 w/v% 
NaCl blank control was measured to calculate the corrected absorbance of free 
hemoglobin (Abfree hemoglobin) (Equation 8.1) and percent hemolysis was obtained relative 
to the 100% hemolysis positive control to compare across exposure conditions (Equation 
8.2).  Materials were deemed biocompatible if hemolysis was negligible [326].  

𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑛𝑛 = 2 × 𝐴𝐴415 − (𝐴𝐴380 + 𝐴𝐴450) (8.1) 

% ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐴𝐴𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

× 100% (8.2) 
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8.3 Results & Discussion 

Diverse characterization techniques were utilized to investigate the effectiveness of 
hafnium oxide properties as a passivation layer for biological LOC devices.  
Morphology/crystallinity was measured and compared via AFM and XRD. Composition 
was measured and compared via SEM-EDS and FTIR. FTIR results were also used to 
determine potential optical interferences from HfO2. Measurements, except FTIR, were 
compared between crystalline silicon and amorphous glass substrates. Film thickness was 
measured via ellipsometry and SEM.  Ellipsometry also provided optical properties 
including refractive index and extinction coefficient.  Dielectric constant measurements 
were completed via CV.  COMSOL simulations utilized these properties to explore the 
electrical passivation capabilities of the HfO2 films.  In addition to the physical, optical, 
and electrical properties, HfO2 film biocompatibility was studied via hemolysis.  

8.3.1 Atomic Force Microscopy 

Surface morphology of the deposited HfO2 was studied via AFM. Topographical images 
for three HfO2 film thicknesses are shown in Figure 8.1, organized by columns to 

Figure 8-1. AFM images of three different HfO2 thicknesses deposited on soda lime glass 
(a-b) and DSP silicon (c-h) substrates before and after a 5-minute Piranha treatment. The 
substrate utilized effected grain size with the thickest, 20-minute deposition films on 
glass showing comparable grain size to that of the thinner films on silicon.  Piranha 
treatment changed surface roughness of the 20-minute deposition on glass, but not of the 
20-minute deposition on silicon.
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compare as-prepared films to piranha-treated films with rows organized to allow 
comparisons between DSP silicon and soda lime glass substrates as well as film 
thickness.  Oxygen plasma and piranha treatments were employed to ascertain the impact 
of an oxidizing agent on film surface morphology. The oxygen plasma treatment showed 
no discernible change and thus is not shown.  Piranha treatment smoothed the glass/HfO2 
surfaces as shown in Figure 8.1a and b, but no significant changes were observed for 
Si/HfO2 surfaces with different thicknesses.  

For the 20 minute HfO2 depositions, roughness (RMS) on the silicon substrate was 
12.4±0.7 nm as compared to 4.5±0.4 nm on the glass. Comparable literature values for 
RMS roughness increased from 5 to 12 nm for 13-minute depositions on silicon films 
with increasing substrate temperatures from 25°C to 120°C [328]. Generally, as the grain 
size increased, the roughness increased.  Figure 8.1c, e, and g illustrate that as the HfO2 
thickness increased on silicon, agglomeration at the grain boundaries occurred.  Such 
grain agglomeration could be due to temperature effects during HfO2 deposition [329-
331] because, with longer deposition times, the substrate heated up due to free energy
losses in the system.  Interestingly, the grain size of the thinnest, 6.5 and 13-minute, HfO2

films on the molecularly ordered silicon resembled that of the thickest, 20-minute, HfO2

on the molecularly disordered glass. The secondary grain size analysis using Image-J
confirmed that the HfO2 molecules organized into smaller grains on glass than on silicon,
and demonstrated that there were fewer grain boundaries in the HfO2 film on the silicon.

8.3.2 X-Ray Diffraction 

X-ray diffraction was used to expand the grain analysis investigating the crystalline
structure of the HfO2 films.  Figure 8.2 shows the effect of HfO2 deposition time, and
thus thickness, on the XRD pattern for SSP silicon and soda lime glass substrates.  All
HfO2 films exhibited the characteristic peak for the (111) plane at 28.47°.  For the 6.5-
minute deposition of HfO2 on silicon, there was a broad peak from 32.22 to 38.91° which
suggested a (200) orientation. Narrow peaks at 47.22, 54.56, 55.4, 56.33, and 65.87° were
attributed to stray atoms from the energized tungsten filament, which were attracted to
the water-cooled copper target and emit tungsten radiation [332].

As the film thickness increased on silicon, more planes were observed.  Both the 13 and 
20-minute depositions showed peaks (34.21° and 35.7°) corresponding to the (200) plane,
and the 20-minute deposition showed an additional peak (50.8°) corresponding to the
(220) plane. There was preferred growth along the (111) plane, as demonstrated by the
dominance of the (111) peak at 28.47°. The presence of additional peaks for longer
depositions showed HfO2 growth along different planes.  The thickest layer of HfO2 on
glass had a similar result as the thinnest layer of HfO2 on silicon and was consistent with
literature [333, 334]. Based on the Scherrer equation, crystallites from the 6.5, 13, and
20-minute HfO2 depositions on silicon were calculated to be 2.9, 2.6, and 4.1 nm while
the 20-minute HfO2 deposition on glass was 3.8 nm.
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HfO2 roughness and crystallite size differed between glass and silicon. The XRD results 
for the 20-minute deposition on glass and the 6.5-minute deposition on silicon yielded the 
same orientation of (111) with roughness and crystallite size 78% and 81% greater on 
glass than on silicon, respectively. For the same film thickness (20-minute depositions), 
the roughness was 64% smaller, and the crystallite size was 11% smaller for the glass 
than the silicon. These results suggested the structured silicon, when compared to the 
amorphous glass, supported larger HfO2 crystallite formation.  As the film thickness 
increased, not only did the grain size increase, as demonstrated by the AFM results, but 
there was also a trend of increasing crystalline domain size.  

8.3.3 Energy Dispersive X-ray Spectroscopy and Fourier Transform 
Infrared Spectroscopy 

Once grain size was determined, energy dispersive X-ray spectroscopy was done at both 
20 kV and 5 kV to determine the composition of two HfO2 films: 13 minutes on DSP 
silicon and 20 minutes on soda lime glass.  Figure 8.3a shows the EDS spectra using a 20 
kV acceleration voltage that penetrated the HfO2 film resulting in a small substrate 
signal; oxygen and hafnium dominated the spectra.  For the silicon substrate, oxygen, 
hafnium, and carbon peaks were apparent; carbon originated from the carbon coating 
sputtered to enable imaging.  For glass, the same oxygen, hafnium, and carbon peaks 
were observed along with nickel, sodium, calcium, and silicon peaks attributed to the 
soda-lime glass slide composition [335]. An accelerating voltage of 5 kV was employed 
to minimize contributions from the substrate; the atomic percent for oxygen and hafnium 

Figure 8-2: XRD pattern for 6.5, 13, and 20-minute depositions on SSP silicon and a 20-
minute deposition on soda lime glass. All spectra exhibit the characteristics peak of (111) 
plane at 28.47°; however, as the thickness of the HfO2 film increases more peaks appear 
in the XRD spectra suggesting crystallite growth in multiple planes demonstrating the 
tendency for HfO2 to grow along different planes. 
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were 66.92% and 33.08%, respectively, confirming that the films were 99% 
stoichiometric HfO2 for a penetration depth of ~250 nm. The cross-sectional analysis of 
the 20-minute deposition showed an HfO2 layer 180-230 nm thick, on top of a thin layer 
of SiO2, as shown in Figure 8.4c.  

Films were also scanned using FTIR to investigate composition.  No peaks were observed 
at wavenumbers greater than 1300 cm-1; therefore the data was truncated to 400-1300 cm-

1 as shown in Figure 8.3b. The sharp peak at 670 cm-1 was a C-O chemical bond resulting 
from measuring in ambient air.   The peak at 610 cm-1 was due to silicon phonon 
absorption [336, 337]. The peak at 1050 cm-1 was attributed to the Si-HfO2 interface 
where a HfSixOy composite was formed [311, 337].  Peaks at 748 cm-1, 512 cm-1, and 412 
cm-1 were related to the HfO2 film.  The first peak was HfO2, while the latter two were
Hf-O chemical bonds [311, 336, 337].  This agreed with the EDS results demonstrating
that the deposited films were stoichiometric HfO2. The peak locations not only indicated
composition,  but they also inferred that there is optical interference at those wavelengths.
This information can inform experimental designs in optical lab-on-a-chip systems to
exclude wavelengths with HfO2 interference.

8.3.4 Spectroscopic Ellipsometry 

Spectroscopic ellipsometry measurements included inference of each deposited HfO2 
film thickness from silicon and glass model fits as well as refractive index and extinction 
coefficient as shown in Figure 8.4 and Table 8.5.  Figure 8.4 illustrates a representative 
experimental data set with an angle 70° and the fitted model for psi (ψ) and delta (Δ) as a 
function of wavelength for three HfO2 thicknesses. Glass substrate transparency did not 
allow standard reflection measurements, instead lower accuracy transmission 

Figure 8-3: a) EDS analysis at 20kV of the 13-minute HfO2 film on DSP silicon and the 
20-minute HfO2 film on soda lime glass confirming stoichiometric deposition for HfO2.
b) Transmission mode FTIR analysis of the HfO2 deposited on a 20 Ωcm DSP silicon
wafer as prepared and after oxygen plasma and Piranha treatments. FTIR corroborates
that the deposited films are stoichiometric HfO2.
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measurements were performed. MSE values indicated that glass yielded unreliable data, 
caused by refractive index similarities between HfO2 and glass.  SE was not the optimal 
tool for characterizing HfO2 on glass, and thus glass ellipsometry results are not 
presented herein. HfO2 was deposited on glass and silicon in the same chamber run, so 
thicknesses measured on silicon were inferred for the respective films on glass.  

Table 8-5: Ellipsometry results for different HfO2 deposition times 
Deposition time (min) 6.5 13 20 
Targeted thickness (nm) 78 156 240 
Thickness (nm) 58 127 239 
Mean Square Error 0.5411 52 7.727 
Refractive Index 2.03±0.02 1.99±0.03 1.82±0.01 
Extinction Coefficient 0.002±0.002 0.004±0.004 0.006±0.009 

The MSE values for the 6.5 and 20-minute depositions on silicon indicated good model 
fits [338]. The Cauchy dispersion relationship, which assumed isotropic material, was 
used as the primary model and the thinnest film followed the trend of previously 
published data [308]. Model deviations and higher MSE values were obtained for the 13 
and 20-minute depositions, suggesting that the increasing thickness increased the 
anisotropy of the films.  This agreed with the XRD results presented in Section 3.2, 
which also showed HfO2 anisotropy. A more complex model may be able to account for 
anisotropy in the thicker deposited HfO2 films [338, 339] and increase accuracy. 

Figure 8-4: Ellipsometry a) psi and b) delta waves for an angle of 70° for HfO2 measured 
on silicon for all three deposition times: 6.5, 13, and 20-minutes yielding 58, 127, and 
239 nm thicknesses with MSEs of 0.5411, 52, and 7.727, respectively. Measurements 
were conducted for all three deposition times on silicon and glass and were used to 
determine thickness, refractive index, and extinction coefficient. (b) Cross-sectional SEM 
image showing the silicon substrate, SiO2 interfacial layer, HfO2 film, and the carbon 
over layer used for data collection for a 20-minute deposition of HfO2. Results show a 
HfO2 film of 180-230 nm based on the location. 
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Both the 13 and 20-minute depositions contained a characteristic ψ absorption peak 
around 3400 nm. The 20-minute deposition contained an addition ψ peak around 5700 
nm, which indicated another resonance mode due to the thicker film thickness.  The 
thickness inferred from the ellipsometry model was highly consistent with instrument 
calibration for the 20-minute deposition. The cross-sectional SEM image in Figure 8.4c 
illustrates spatial variations in film thickness from 180-230 nm for HfO2 and 20 nm for 
SiO2; this thickness was fairly consistent with the ellipsometry results of 239 nm. 

As shown in Table 8.5, SE modeled refractive index (n) for wavelengths from 400 nm to 
1000 nm and varied around 2, consistent with literature [308, 313]. Refractive index 
profiles for each film thickness were not identical as a function of wavelength due to the 
increasing anisotropy with thickness. Lastly, the extinction coefficient was close to zero, 
which was expected for a transparent material and was consistent with previously 
reported data [340].  

8.3.5 Capacitance-Voltage 

Capacitive measurements were collected at 100 kHz for applied potentials from -5V to 
5V. However, due to the thickness, the HfO2 films could not be fully depleted, and 
therefore no modulation was observed. Figure 8.5a-d depicts fabrication for the utilized 
Al/HfO2/Al configuration. The thicknesses of the Al and HfO2 films were 100 nm for the 
Al and 72 nm for the 6.5-minute HfO2 deposition– fairly consistent with the 78 nm 
thickness interpolated from the deposition calibration. The dielectric constant was 
calculated from the measured capacitance, per the equation C = A(κ/d), as a function of 
HfO2 area as shown in Figure 8.5e. For the 1000-2000 µm diameter circles, the dielectric 

Figure 8-5: a-d) Microfabrication of 1000-2000 µm diameter, sandwiched (100/72/100 
nm) Al/HfO2/Al pattern used for CV measurements. e) Dielectric constant as a function of 
area for a 6.5-minute HfO2 deposition. The average dielectric constant of 20.32±1.55 is 
consistent with literature values for HfO2. 
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constant ranged from 17.97 to 23.64, with an average of 20.32±1.55, consistent with 20-
25 reported in the literature [302]. 

8.3.6 Simulations 

Once HfO2 material properties were determined, AC electrostatics simulations were used 
to investigate the electrical passivation of different thicknesses of HfO2 over frequencies 
from 10 to 10000 kHz.  Simulations were performed for both silicon and borosilicate 
glass substrates, but these substrates did not significantly affect dielectric performance 
(the difference between silicon and glass ranged from 1.172x10-5 to 1.179x10-3 V) or 
electric potential profiles.  Figure 8.6a shows the 2D geometry modeled over borosilicate 
comprised of a 20 μm fluidic span between two 20 μm electrodes, all uniformly 

Figure 8-6: a) 2D geometry used for COMSOL simulations with 200 x 40 μm substrate, 
two 20 x 0.15 μm Au electrodes (excitation and ground), HfO2 thickness (t = 78, 156, and 
240 nm) over the substrate and electrodes, in contact with a 200 x 70 μm 0.1 S/m PBS 
fluidic layer. b) Electric potential distribution (surface plot) and current density 
(streamlines) for the 240 nm thick HfO2 passivation layer at frequencies of 10, 100, 1000, 
and 10000 kHz. c) Magnitude of the electric potential that penetrated through the 
passivation layer into the chamber at a height of 1 μm above the working electrode 
(purple dot in a) as a function of frequency and film thickness. Arrows correspond to the 
frequency threshold whereby the maximum potential of ~4.85 V was reached. d) Close 
up of working electrode at a frequency of 1000 kHz.  Results demonstrate that HfO2

allowed electric field penetration into the fluidic layer while preventing direct physical 
contact between electrodes and fluidic layer. 
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passivated with 78, 156, or 240 nm of HfO2.  Figure 8.6b shows color maps of the 
chamber’s electric potential distributions for 240 nm of HfO2 as a function of frequency, 
while Figure 8.6c illustrates dependence on both frequency and film thickness at a 
location 1 μm above the working electrode.  For all thicknesses, a potential of 5 V was 
applied at the working electrode and 0 V at the ground electrode to then observe heat 
maps of the current between the working and ground electrodes through the fluidic 
chamber.  Simulations illustrated that HfO2 allowed electric field penetration into the 
fluidic layer while preventing direct physical contact of the fluidic layer with the 
electrodes, thus preventing unwanted side reactions and electrode fouling. Potential 
leakage within the substrate resulted from the dielectric nature of borosilicate whereby no 
charge flowed, as indicated by the lack of current density streamlines.  

For all cases, the electric field penetrated the passivation layer yet varied with HfO2 
thickness and frequency.  At frequencies below 10 kHz, HfO2 suppressed half of the 
applied electric potential regardless of thickness. A similar but opposite behavior was 
observed at frequencies greater than 10 MHz, at which a potential of 4.85 V was reached 
regardless of the thickness. This confirmed that the capacitive coupling through the HfO2 
film was higher at higher frequencies. The frequency at which the HfO2 film became 
nearly electrically transparent, with a potential of 4.85 V in the fluidic layer, was 
dependent on thickness. The arrows in Figure 8.6c demonstrate this threshold for each 
film thickness.  Simulations provide a foundation of electrical passivation characteristics 
of the HfO2 for different thicknesses and different AC frequencies; this simulation 
framework may be useful for design and parameter optimizations for specific operating 
conditions or applications, such as constant current for field gradients.  

8.3.7 Biocompatibility 

HfO2 film hemocompatibility was evaluated by exposing red blood cells in an isotonic 
0.9 w/v% NaCl solution to a 20 x 20 mm borosilicate glass substrate coated with HfO2 
for up to 5 hours and measuring the amount of free hemoglobin in the supernatant after 
centrifugation.  Figure 8.7 shows the percent hemolysis results for RBCs after 1, 3, and 5 
hours of incubation at 37° C with HfO2, along with the negative (no substrate or HfO2) 
and positive (1% w/v Triton X-100 surfactant) controls completed in triplicate.  
Hemolysis varied between 0.75% and 1.45% when exposed to the HfO2 without an 
apparent trend with exposure time.  The negative control not exposed to HfO2 showed 
0.06% hemolysis, while the positive control showed 100% hemolysis.  These results 
illustrated that HfO2 was compatible with RBCs and is suitable as a passivation layer on 
lab-on-a-chip devices using blood as a primary sample. 



108 

8.4 Conclusions 

Sputter-deposited hafnium oxide films of three different deposition times, 6.5, 13, and 
20-minutes, were fabricated and characterized for use as a passivation layer in a
biological electrokinetic microdevice system requiring sufficient optical transparency,
electrode isolation, and biocompatibility.   EDS and FTIR both confirmed that the
composition of the films were stoichiometric HfO2. Film structural properties were
explored via AFM, XRD, EDS, and FTIR. AFM results show surface roughness
depended upon the substrate, with 64% smaller grain sizes and 11% smaller crystallite
size on amorphous glass than silicon for the same 20-minute deposition.  Surface
roughness increased with deposition time from 5 nm to 12 nm on silicon. XRD results
agreed with AFM results, showing an increase in crystallite size from 0.844 to 1.193 nm,
with increasing deposition time. The XRD results for the 20-minute deposition on glass
and the 6.5-minute deposition on silicon yielded the same orientation of (111) with
roughness and crystallite size 78% and 81% greater on glass than on silicon, respectively.
These results suggested that, based on the substrate used, the thickness of the HfO2 film
can be tailored to achieve desired grain structure.

Ellipsometry thicknesses of 58, 127, and 239 nm were determined for the 6.5, 13, and 20-
minute depositions on silicon, respectively. The models included a SiO2 interfacial layer 
and resulted in mean square errors of 0.54, 52, and 7.727 for the 6.5, 13, and 20-minute 
depositions, respectively. The multiple orientations seen by the XRD show that the films 
were anisotropic, explaining why the ellipsometry data deviated from the Cauchy 

Figure 8-7: RBC hemolysis after 1, 3, and 5 hours of exposure to borosilicate glass 
coated with HfO2, as well as, negative (no HfO2), and positive (1 w/v% Triton X-100) 
controls. This demonstrated that HfO2 is a suitable material for passivating electrodes 
within biological LOC devices that use cells. 



109 

dispersion model fit. SEM thickness measurements revealed HfO2 thicknesses ranging 
from 180-230 nm for the 20-minute deposition due to crystallite packing on top of a thin 
layer of SiO2. The bulk ellipsometry measurements and the SEM measurements were 
deemed acceptably consistent.   

Refractive index and extinction coefficient of the HfO2 films were also determined from 
the ellipsometry data. For all three thicknesses, the refractive index was near the expected 
value of 2 from the literature [308, 313] and the extinction coefficient was near the 
expected value of zero [340]. These optical measurements confirm that HfO2 was 
optically transparent. The FTIR results suggested wavelengths to be avoided, due to 
interference, if designing a set of fluorescence-based experiments on LOCs.  

CV measurements were used to calculate dielectric constant as a function of film area for 
the 6.5-minute deposition. The resulting average dielectric constant was 20.32, which is 
close to the expected value of 25 [302].  The dielectric constant of HfO2 is suitable for 
use as a passivation layer because the layer allows current to pass through into an 
adjacent fluidic layer while being thick enough to physically isolate the electrodes from 
the fluidic layer to prevent corrosive degradation.  

COMSOL electrostatic simulations were utilized to further explore electric field 
behaviors through and around the HfO2 films. Results demonstrated HfO2 films of 78, 
156, and 240 physically passivated the electrodes and enabled the electric field to 
penetrate into a fluidic layer above the film. Thicker HfO2 films attenuated the electric 
potential penetration into the fluid, which was more pronounced at lower frequencies. 
Conveniently, electrical signal frequency enables straightforward modulation of the 
potential drop across the dielectric HfO2 film.  

For biological LOC applications, biocompatibility was tested via standard hemolytic 
potential protocols with human RBCs. When exposed to HfO2 for up to 5 hours, less than 
1.5% RBC lysis occurred, demonstrating that HfO2 can be used with minimal reservation 
in LOC devices interrogating cells. 

Implications of this work include increased HfO2 structural, optical, and electrical film 
property knowledge as a function of film thickness.  These attributes, along with the 
biocompatibility characteristic are highly useful for LOC applications involving 
electrokinetic separations and characterizations combined with optical detection of 
biological samples.   
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9 Microdevice Replication and Design Using a Water- 
Based Acrylic Polymer Emulsion 

Microfabrication of high-aspect-ratio SU-8 features can be a difficult process. Small 
changes in the processing conditions can result in wafers that only last two or three 
castings. This chapter describes a solution that was investigated to avoid excess 
microfabrication costs and time. Puffy Paint, a commercially available children’s paint, 
was used to make molds of PDMS devices made from SU-8 features. The work was then 
expanded to include designing new devices by hand drawing them, and eventually 3D-
printing them, with Puffy Paint. Through this chapter, the Puffy Paint is referred to as a 
water-based acrylic polymer emulsion or WBAPE. This investigation was a collaborative 
effort and has been submitted to the ACS Journal of Education. J. Collins was lead 
author. The contributing authors on this work included A.M. Nelson and A.R. Minerick. 
Destiny Robinson, Rob Minerick, and Jerry Norkel assisted with adapting the 3D printer. 

Abstract: Microfabrication of poly(dimethylsiloxane) (PDMS) microdevices via 
photolithography can be an expensive and time-consuming process. Processing materials 
and conditions can lead to high aspect ratio features peeling off the silicon master wafer 
after being replicated only a few times. Water-based acrylic polymer emulsion (WBAPE) 
was investigated as an easy to use and low-cost material for replicating PDMS features, 
reducing the need to use a silicon master wafer. Devices with features of various aspect 
ratios, ranging from 50-1500 microns in width and 70 microns in height, were designed 
and fabricated. The devices (master wafer, PDMS castings, WBAPE replicas, and PDMS 
replicas from the WBAPE) were compared by measuring the feature’s dimensions with a 
stylus profilometer. PDMS replicas created via WBAPE maintained the desired feature 
shape and were 19 ±13 percent smaller than the silicon master wafer. WBAPE can also 
be used to alter existing features on a silicon wafer, to prototype microdevice designs 
before investing in costly wafer photolithography via drawing by hand or 3D printing, or 
to teach process steps for designing and fabricating a microdevice. 
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9.1 Introduction 

Microfabrication can be a usage/time-intensive and costly process. Presented herein is a 
method of duplicating already fabricated fluidic designs, as well as prototyping 
microscale fluidic devices quickly and with less cost. One of the most common 
techniques for microdevice fabrication is using photolithography to make a silicon master 
wafer for poly(dimethylsiloxane) (PDMS) castings. PDMS is commonly used in the 
fabrication of microfluidic devices. Advantageous properties of PDMS include ease of 
use, mechanical/chemical stability, biocompatibility, optical properties, and low-cost [82, 
83].  

The process starts by designing the microfluidic features. Then a dark field/light field 
mask is made with those features. Making a mask can take anywhere from a day if 
developing the mask in-house to up to two weeks if ordered from suppliers and can cost 
up to $200 or more depending on the size, type, and feature resolution of the mask. The 
features are then translated from the mask to a silicon wafer using photolithography. 
Photolithography can be completed in a single day and costs around $100, depending on 
the microfabrication facility and photoresist used. After the silicon master wafer is 
developed and completed, the fluidic layer is created by casting, degassing, and baking 
PDMS on top of the master silicon wafer. Once cured, the PDMS is peeled off, and 
plasma bonded to a glass microscope slide.  

The process of fabricating a silicon master wafer takes time (~2 weeks) and money 
(~$300) but does not guarantee a long-lasting wafer. A silicon master wafer may only last 
two or three castings before the features peel off, due to poor processing conditions or 
creating feature sizes that push the limits of the photolithography process and materials. 
High aspect ratio features are especially hard to fabricate due to Fresnel diffraction at the 
edge of the dark field areas of the mask and reflections off the silicon wafer itself causing 
stray light beneath the dark field areas [224]. SU-8, a negative photoresist commonly 
used for a wide range of feature sizes, is highly susceptible to this stray light [224].  

 During the fabrication process, the feature sizes can change due to processing conditions.  
Edge beading may occur during spin coating, resulting in non-uniform feature sizes 
across a silicon wafer [341]. UV-exposure during photolithography, which depends on 
the time of the exposure, the intensity of the UV lamp, and the type and thickness of 
photoresist, significantly affects microchannel width [224]. PDMS casting can also alter 
the desired feature sizes. Fabrication of high aspect ratio features can be difficult with 
PDMS [342] and whether or not the PDMS is fully cured or not can lead to either an 
increase or decrease in feature size, respectively [343].  

Due to the time and cost involved with fabricating a silicon master wafer via 
photolithography, a method for preserving the life of the wafer was investigated. This 
work was based on previous work presented by the MRSEC education group at the 
University of Wisconsin Madison [344]. WBAPE (Tulip, Walmart), a water-based 
acrylic polymer emulsion, was investigated to extend the life of a wafer and reduce 
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fabrication time and cost. This was done by making molds of existing PDMS features, 
adding to features on existing silicon wafer, or designing new devices by hand or 3D 
printing.  

9.2 Materials and Methods 

Original Master and Poly(dimethylsiloxane) Fabrication: A 4-inch silicon master wafer 
with 70 micron SU-8 2075 (MicroChem, Westborough, MA) features was fabricated 
using previously developed soft lithography techniques [221, 222]. The features were 
designed in AutoCAD (Autodesk, San Rafael, CA) and translated onto a mask[345]. The 
wafer was cleaned via sonication in acetone followed by isopropyl alcohol then deionized 
water, each for 5 minutes. The silicon wafer was then placed on a hot plate at 150 °C for 
30 minutes to remove any volatiles. Negative photoresist, SU-8 2075, was spin coated at 
500 rpm with an acceleration of 10 rpm/s for 55 seconds followed by 3000 rpm with an 
acceleration of 150 rpm/s for 47 seconds. The pre-bake was completed at 65 °C for 10 
minutes followed by 95 °C for 25 minutes. Crosslinking of the SU-8 was achieved by 
masking with UV exposure at a dose of 196.5 mJ/cm2 followed by a post bake at 65 °C 

Figure 9-1. Flow diagram of the fabrication and replication process. The process began 
with a blank wafer, which underwent photolithography to create a master wafer (A) with 
SU-8 photoresist features. PDMS was then cast and baked over the features before being 
peeled off to fabricate the original PDMS (B). The original PDMS was then placed in 
WBAPE. The WBAPE was allowed to cure then the original PDMS was removed, 
leaving the WBAPE mold (C). PDMS was then cast and baked over the WBAPE before 
being peeled off to fabricate the replica PDMS (D). *The four fabrication steps A, B, C, 
and D are referenced in Figures 9.2-9.4. 
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for 5 minutes and 95 °C for 25 minutes. Features were developed in the SU-8 developer 
(MicroChem, Westborough, MA), resulting in the completed silicon master wafer. 

A PDMS casting was made by mixing a 10:1 ratio of base to curing agent (Sylgard 184, 
Dow Corning, Auburn MI). The casting was placed in a vacuum to remove bubbles 
created by mixing. After bubbles were removed, the PDMS was poured over the silicon 
master wafer, and cured in an oven at 70°F for 4 hours. The cured PDMS layer was 
carefully peeled off the silicon master wafer, and each device layout was separated by 
cutting with a scalpel. 

Water Based Acrylic Polymer Emulsion Replica and Replica Poly(dimethylsiloxane): 
After being removed from the oven and peeled off the wafer, WBAPE molds of the 
original PDMS were immediately made. Two-inch inner diameter, hexagonal plastic 
weigh boats (Sigma Aldrich, St. Louis, MO) were cleaned with deionized water and air 
dried. Each original PDMS was cleaned via scotch tape (3M) and a WBAPE replica mold 
was created by pressing the feature side of the PDMS into a shallow pool of WBAPE. Air 
bubbles in the WBAPE were carefully removed by strategically applying pressure to the 
top of the original PDMS.  

The WBAPE was cured at atmospheric conditions and checked regularly for air bubbles; 
if any were present, pressure was applied to the top of the features to remove any 
bubbles. After the WBAPE cured, ranging from a day to a week, the original PDMS was 
carefully removed. The WBAPE was then allowed to further cure for 24 hours at 
atmospheric conditions. The cured WBAPE was used as a mold for replicate PDMS 
features. A new batch of 10:1 PDMS was then cast over the WBAPE replica following 
similar conditions/procedures as the original PDMS. After being removed from the oven, 
the replica PDMS was allowed to cool for about 12 hours. Once all replicates of the 
PDMS replicas were cured, the replica PDMS was carefully removed from the PDMS. 
The process flow of fabricating a silicon wafer via soft lithography (A in Figures 9.1-
9.4), creating the PDMS casting (B in Figures 9.1-9.4), making the WBAPE mold (C in 
Figures 9.1-9.4), and creating the PDMS replica (D in Figures 9.1-9.4) is shown in Figure 
9.1. 

Alternate Water Based Acrylic Polymer Emulsion Uses: WBAPE was also investigated 
for applications including prototyping preliminary device designs, manipulating current 
designs by adding ports, and selecting single devices for replication on large wafers. To 
prototype, designs were drawn on the bottom of a weigh boat using a three mL syringe 
(Becton Dickinson, Franklin Lakes, NJ) filled with WBAPE and fitted with a precision 
tip (Nordson, Westlake, OH). Feature sizes were controlled by the size of the precision 
tip (0.1 to 1.54 mm inner diameter) and the amount of pressure applied to the syringe.  
Ports were added by carefully drawing them onto the silicon master wafer using a 
precision tip, and single devices were isolated from the rest of the silicon master wafer by 
building a wall of WBAPE around the single device. 



114 

Characterization Methods: Original features made via the silicon wafer and replicate 
features made via WBAPE were imaged, measured, and compared using an SVM340 
synchronized video microscope (Labsmith, Livermore, CA) at 4x magnification. Three 
different sized sections of a microfluidic T-junction device were measured. The three 
sections included a small channel (I), large channel (II), and a chamber (III), which were 
designed to be 50, 100, and 1500 microns, respectively, as depicted in Figure 9.2. The 
SU-8 was fabricated to target a feature height of 70 microns. 

Feature heights and widths were measured using a Dektak 6M Stylus Profilometer 
(Vecco, Plainview, NY). The measurements were completed using the stylus to scan 
across each feature perpendicularity at a force of 5 mg and a resolution of 0.513 
µm/sample. The applied force was kept low since all materials being measured, PDMS 
and WBAPE, were soft materials and could easily be scratched or catch and break the 
scanning tip. Each step was measured in the locations shown in Figure 9.2. The results of 
the scans were loaded into a MATLAB program designed to output the height and width 
of each feature measured. Depending on the inversion of the curve, the average of the 
minima/maxima determined the height of each feature. To determine the width of the 
feature sizes, a derivative of each profilometer curve was taken, and the two resulting 
peaks were subtracted. The derivative curve was visually checked to confirm that the 
correct peaks were chosen, and not an artifact within the data. The average and standard 
deviation for the height and width of the small channel (I), the large channel (II), and 
chamber (III) for each step of the process (A-D) were calculated to determine how each 
processing step affected feature sizes. 

9.3 Hazards 

Original Master and Poly(dimethylsiloxane) Fabrication: The photolithography process 
includes chemical and equipment hazards. Processing was completed in a clean room 
requiring personal protective equipment (PPE): a bouffant cap, safety glasses with side 
shields, a face mask, a lab coat, gloves, and two sets of shoe coverings. Acetone and IPA 
were used to clean the silicon wafer, required secondary gloves, and handling in a 
chemical hood. These are both highly flammable chemicals that can cause serious eye 
irritation and drowsiness or dizziness if inhaled. In addition, acetone may cause organ 
damage through prolonged or repeated exposure.  SU-8 was spun onto the silicon wafers. 
SU-8 and SU-8 developer both pose flammability and health hazards with GHS ratings of 
3 for flammability, 4 for acute toxicity, 2 for skin and eye irritation, and 1 for skin 
sensitivity for the SU-8 and with a GHS rating of 2 for flammability and NFPA rating of 
1 for health for the SU-8 developer. In addition, SU-8 developer is slightly toxic and was 
handled in a chemical hood. UV light, which can cause severe eye damage, was utilized 
in the photolithographic process. UV light protective eyewear was required during the 
UV exposure step. Safety training on all chemicals and equipment present was required 
before entering the clean room facility. 

Water Based Acrylic Polymer Emulsion Replica and Poly(dimethylsiloxane):  WBAPE is 
non-flammable, non-reactive; the and is classified as non-toxic in the commercially 
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available product. There are no PPE requirements associated with the handling of the 
WBAPE, however, safety glasses with side shields and gloves are recommended and 
were utilized. PDMS casting were made using a base and curing agent, both of which are 
non-hazardous. Safety glasses with side shields are required with PDMS handling and 
gloves are recommended. Following the standard operating procedures for the equipment, 
air bubbles were removed from the PDMS via vacuum, and the PDMS was cured in an 
oven at 70°C. PDMS castings were cut with a scalpel using care to cut away from 
hands/body.  

9.4 Results and Discussion 

To explore whether WBAPE could be utilized to reproduce microscale features, 
microfabricated features on a silicon wafer were cast with PDMS.  Once cured, the 
PDMS was pressed into WBAPE.  WBAPE successfully formed a secondary mold. 

Figure 9-2. Schematic showing three measurement locations using a profilometer.  Mask 
design dimensions were small channel: I = 50 µm, large channel: II = 100 µm, and 
chamber: III = 1500 µm. Measurements were completed on the A) wafer, B) original 
PDMS, C) WBAPE replica, and D) replica PDMS (see Figure 9.1). Wafer and WBAPE 
replica features were “hills” whereas PDMS features were “valleys’ and were inverted for 
direct comparison. Overall, feature shape and size were retained by the replication 
process. 



116 

Figures 9.2- 9.4 show qualitative and quantitative comparisons between each of the four 
fabrication steps; the wafer, original PDMS, WBAPE, and replica PDMS (A, B, C, and D 
in Figure 1, respectively). Comparisons were made between three features of a 
microfluidic T-junction designed to have a small channel width of 50 microns and a large 
channel width of 100 microns (I and II in Figure 9.2) and a wide 1500 micron chamber 
(III in Figure 9.2).  Qualitative images in Figure 9.3 demonstrate channel integrity of the 
small and large channels at the T-junction.  Channel shape and wall roughness are 
optically comparable with only minor shape distortion in the smaller channel for the final 
replicate PDMS. Channel dimensions were measured with optical microscopy tools as 
shown in Figure 9.3, but subsequent analysis relied predominantly on stylus profilometer 
results. 

Height and width measurements were obtained with a stylus profilometer for each of the 
four fabrication steps; the silicon master wafer, the original PDMS casting, the WBAPE, 
and the replica PDMS casting. Representative raw data from the profilometer are shown 
in Figure 9.2, and compiled results of the height and width comparisons are shown in 
Figure 9.4 as well as in Tables 9.1-9.2. 

Table 9-1. Height and width measurements for each replication step. Corresponds to 
Figure 9.4a. 

Original 
Master 

Original 
PDMS WBAPE Replica 

PDMS 
Number of 

measurements 1 5 5 5 

HI (µm) 75.6 64.9 ± 1.3 63.4 ± 6.6 48.0 ± 2.9 
HII (µm) 80.9 78.2 ± 0.9 61.0 ± 5.6 65.0 ± 2.4 
HIII (µm) 67.0 77.0 ± 0.8 41.6 ± 5.2 62.8 ± 8.1 
WI (µm) 119.2 64.0 ± 11.0 87.2 ± 36.7 89.0 ± 16.2 
WII (µm) 166.7 129.2 ± 8.0 122.1 ± 18.0 123.1 ± 18.2 
WIII (µm) 1587.2 1512.8 ± 0.5 1496.4 ± 3.0 1550.0 ± 9.8 

Height differences between measurement locations I, II, and III on the silicon wafer (step 
1) were due to the photolithography process and are typical with thicker photoresist spins
[224, 341].  On average the height of the SU-8 features were about 1% larger than the
planned 70 µm. The average widths of the small channel, large channel, and chamber
were about 138%, 11%, and 6% larger than the desired feature size.

The original PDMS casting (step 2) was on average 13% smaller than the wafer with 
comparable variations by between locations I, II, and III. This universal shrinkage 
suggests that the PDMS may not have been fully cured [343], as it was in the oven for 
approximately 4 hours before being removed and put in contact with the WBAPE. The 
average height was 1% larger than the SU-8 and 5% larger than the designed 70 µm, 
showing that the shrinkage mainly occurred in the width of the features. When compared 
to the SU-8 features and the design dimension the small channel, the chamber width was 
the most consistent at 5% larger than the SU-8 and 1% larger than the design dimensions. 
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The small and large channels had more variation, demonstrating that larger features, with 
the smaller aspect ratios, were more reproducible.   

All WBAPE (step 3) feature heights and widths were smaller than the original PDMS, 
except for the width of the small channel. The heights were 21% smaller than the 
designed height. While drying the interfacial tension between the WBAPE and the 
original PDMS created a meniscus, which was most prominent in the chamber as seen in 
Figure 9.2c. The widths of the small and large channels were 74% and 22% larger than 
the designed dimensions, respectively, and the width of the chamber was less than 1% 
smaller than the designed dimensions. 

The replica PDMS (step 4) displayed heights that were ~7% larger than the WBAPE. 
This is consistent with literature, which has shown PDMS features to increase ~10% for 
fully cured PDMS [343]. The replica PDMS was able to cure for at least an additional 12 
hours after being removed from the oven. The average height of the replica PDMS was 
about 41% smaller than the designed height and the widths of the small channel, large 
channel, and chamber were 78%, 23%, and 3% larger than the designed dimensions. 

Figure 9-3. Comparison of the small and large channels (I and II in Figure 9.2) for the 
four fabrication steps (A, B, C, and D in Figure 9.1) under 4x magnification: A) silicon 
wafer with SU-8 features made via photolithography, B) original PDMS casting, C) 
WBAPE replica, and D) replica PDMS casting. Channel shape and size were fairly well 
maintained throughout the replication processes. 
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Table 9-2. Comparison of relative size (percentage). Corresponds to Figure 9.4b. 

Wafer 
/Wafer 

Original 
PDMS 
/Wafer 

WBAPE 
/Wafer 

Replica 
PDMS 
/Wafer 

HI 100 86 84 63 
HII 100 97 75 80 
HIII 100 115 62 94 
WI 100 54 73 75 
WII 100 78 73 74 
WIII 100 95 94 98 

Average Ratio 100 ± 0 87 ± 21 77 ± 11 81 ± 13 
Average Height Ratio 100 ± 0 99 ± 15 74 ± 11 79 ± 15 
Average Width Ratio 100 ± 0 76 ± 21 80 ± 12 82 ± 14 

Each step of the replication process resulted in a size change, as seen in Tables 9.1 and 
9.2. After measuring each device at multiple points, on average, the replica PDMS 
features were 81 ± 13% of the wafer features sizes, 96 ± 23% of the original PDMS 
feature sizes, and 109 ± 38% of the designed dimensions. It is important to note that the 
variation in size was dependent on feature size with greater accuracy for the largest 
features with the smallest aspect ratios than for the smallest features with the largest 
aspect ratios. The standard deviation for WBAPE tended to be larger than the other 
fabrication steps and was more pronounces in the feature widths. PDMS had the least 
variation for the largest features. Both channel widths (I and II in Figure 9.2) decreased 
during the original PDMS casting, the small channel (I) increased during the last two 
fabrication steps, and the large channel (II) remained fairly constant.  

The standard deviation of the width of the small and large channels for five castings of 
the same SU-8 features, measured via profilometer, were 11 and 8 microns, respectively. 
In the context of 50 and 100-micron features, the reproducibility of the original PDMS 
castings was within 22% and 8%, respectively. The chamber had a standard deviation of 
0.5 microns, showing that the larger features were more reproducible. The standard 
deviation of the small and large channels from five castings of the same WBAPE replica, 
via bright field microscopy, were 2 and 6 microns, respectively, demonstrating much 
better reproducibility of the PDMS replicas. These results demonstrated that the WBAPE 
replicas are sufficiently reliable to cast PDMS features. Further, WBAPE was able to 
withstand more than five castings without discernable integrity effects on the mold. 

The reproducibility of these results suggests WBAPE can be used to replicate features on 
a silicon wafer with microscale SU-8 features. This method is both beneficial in 
duplicating multiple devices in a short amount of time, as well as preserving a master 
silicon wafer. High aspect ratio photolithographic features are known to be vulnerable to 
slight shifts in temperature and humidity, causing weaker adherence of the SU-8 features 
to the wafer and manifesting as feature flaking after a few PDMS castings [224]. If 
WBAPE is employed to replicate the master mold, then predominantly used for PDMS 
casting, wear and tear on the silicon wafer would be decreased. From the observations 
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Figure 9-4. a) Profilometer results of each measurement location for each fabrication step 
(see Figure 9.1): A = master silicon wafer, B = original PDMS, C = WBAPE replica, and 
D = replica PDMS. The chamber width (Wc) was the least changed by each step of the 
process and WBAPE tended to have greater variation as compared to PDMS. b) Average 
relative magnitude between each step and the silicon wafer. Overall there was a decrease 
in size throughout the replication process. 



120 

 that the PDMS replica was smaller than the original wafer, designs can be proportionally 
adjusted to account for size decreases. It is important to note that depending on the 
feature size the profile shape of the features may differ, as seen in Figure 9.2.  

WBAPE can also be employed to add features to an existing wafer, increase the height of 
a chamber, add features ports, or build a barrier around a single device, such that less 
PDMS is required per casting. The ability to duplicate and manipulate devices using 
WBAPE increases the versatility and usability of microfabricated wafers for 
microfluidics. 

The entire design process, from initial design to fabricated device, can also be 
accomplished directly with WBAPE. Figure 9.5 depicts a comparison between traditional 
photolithographic methods and WBAPE. Both start by creating a design in a CAD 
software application and laser printing on paper. A glass coverslip overlaid over the 
printed design can function as a surface upon which three-dimensional features can be 

Figure 9-5. Design process comparison between traditional photolithography and 
WBAPE. Both begin by creating a design in CAD software and then translating into 
three-dimensional features. PDMS castings are made of the features, removed and 
bonded to glass slides. The photolithography process is highly reproducible and accurate, 
but takes more time and resources than the WBAPE process. 



121 

achieved by tracing the designs with WBAPE. WBAPE features can also be printed 
directly from CAD drawings using a paste extruder attachment on a 3D printer for more 
accurate features. Features drawn by hand or by the 3D printer have a rounded profile due 
to WBAPE surface tension with air. Photolithographically created SU-8 features have flat 
wall profiles while WBAPE yields curved wall profiles. WBAPE, while less accurate and 
more crude, can generate three-dimensional features in less than two days for under $5, 
making WBAPE a good material to test concepts and initial designs before investing in a 
silicon wafer. This can also be a fun and informative way to teach the design process 
without needed money, time, or training for microfabrication. 

9.5 Conclusions 

This work demonstrated that a low-cost, readily available water-based acrylic polymer 
emulsion can be used to make replications of PDMS castings and to make new designs. 
Replica PDMS features were made from a WBAPE mold of a PDMS casting from a 
microfabricated silicon wafer. Qualitative and quantitative comparisons revealed that 
overall feature shape was retained during each step of the replication process. Channel 
shape and wall roughness were optically comparable with only minor shape distortion in 
the smaller channel for the final replicate PDMS. The WBPAE profile showed a 
meniscus, created by the interfacial tension between the WBAPE and the PDMS while 
the WBAPE dried.  

Given that high aspect ratio photolithographic features experience weaker adherence of 
the SU-8 features to the wafer, WBAPE has been demonstrated to be an acceptable 
augment to increase casting yields and reduce the frequency with which new silicon 
wafers must be microfabricated. The chamber had less variation than the small and large 
channels, demonstrating a dependence on size. Larger features, with smaller aspect ratios, 
were more producible. There was an overall decrease in feature size throughout the 
replication process, resulting in replicate PDMS devices that were 19 ± 13 percent 
smaller than the silicon master wafer. The size measurements at each step in the 
replication process indicate that designs could be implemented to reflect the expected 
change in feature size allowing for the replica PDMS to result in the desired feature sizes. 
PDMS casting reproducibility of the WBAPE molds and the ability to withstand multiple 
castings without discernable integrity effects demonstrated that they are sufficiently 
reliable to cast PDMS features.  

In addition to replicating PDMS features from traditional microfabrication, WBAPE was 
investigated for testing new device designs. The photolithography process is highly 
reproducible and accurate but takes more time and resources than the WBAPE process. 
WBAPE can be used to trace features printed via a laser printer or to 3D print features 
from a CAD file, allowing testing of new designs before investing in fabrication. 
Between device replication, device alteration, and device design, WBAPE is a fun way to 
teach the process of microfluidic design and fabrication before re/investing in the 
fabrication of a silicon master wafer.  
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10 Future Work 
The work in this dissertation revealed differing droplet stability windows as a function of 
droplet composition and applied electric field. A novel combination of droplet 
microfluidics and insulator dielectrophoresis, reverse insulator dielectrophoresis, was 
demonstrated. This new technique reduces the time, sample volume, reagent volume, and 
number of experiments necessary to complete a DEP response curve on a given particle 
or cell for a single media condition. The next logical step is to consolidate experiments 
further by simultaneous testing multiple media conditions. Figure 10.1 demonstrates how 
this project could reduce the number of necessary experiments by up to 93%. A 
systematic study to quantify stability and reliability of co-flowing droplets of different 
composition is outlined for future work. 

10.1  Purpose and Motivation 

One of the key limitations to current DEP devices is the amount of time it takes to 
generate DEP frequency spectra curves. This project aims to eliminate this by 
implementing parallel experimentation. Utilizing droplet microfluidics for parallelization 
of experimental repeats, each within a droplet with all of the droplets packed within one 
device, has been discussed and demonstrated. The new electrokinetic technique presented 
in this dissertation, riDEP, uses droplet interfaces to shape a non-uniform electric field 

Figure 10-1. The potential impact of the new technique, riDEP, on reducing the amount 
of time needed to complete experiments by up to 93% when multiplexed. 



123 

within the droplets for DEP characterization on particles or cells seeded within the 
droplets. Because DEP responses are highly dependent on media conditions, 
simultaneous experimentation could eliminate large amounts of time in the lab. The 
proposed system was engineered to allow for parallelization and multiplexation 
simultaneously. Two technologies are combined in this design; (a) droplet microfluidics, 
which provides isolated microenvironments for multiplexing the number of experiments 
and (b) a microfluidic tree structure, which allows simultaneous testing of different media 
conditions. 

10.2  Background on Other Methods 

As previously discussed in Sections 2.1.1 and 2.1.2, droplet microfluidics provides a 
platform for multiplexation by generating isolated microenvironments. However, it is 
limited in the number of phases/conditions that can be tested at once. Gradients have 
been used to alter concentrations of media/reactants. The challenge is knowing the exact 
concentration within each droplet, as well as keeping track of which droplet has each 
concentration once they enter a large microfluidic chamber. Microwell arrays have also 
been used for parallel experimentation, but there are limitations in altering sample 
volume and carrying out reaction steps [346], unlike droplets that can be transported, 
sorted, and mixed in a designated fashion.  

10.3  Multiplexing in Microdevices via Microfluidic Tree 
Structures 

Microfluidic tree structures provide means of multiplexing experiments by joining 
streams together from the ‘branch’ channels into a larger ‘trunk’ channel. This is feasible 
to accomplish with negligible mixing between streamlines since flow is solidly in the 
laminar flow regime. Applications of microfluidic tree structures include the formation of 
gradients, modeling branches of lungs, fission/fusion of droplets, and more [5, 347-354]. 
Multiplexing droplets with multiple dispersed phase composition requires careful control 
of multiple microfluidic streams.  N.L. Jeon demonstrated the first use of a microfluidic 
tree structure in 2000 for gradient generation [347]. In 2004, D.R. Link demonstrated a 
microfluidic tree structure for droplet splitting [355]. It has since been adapted to 
applications from multicolor nanoparticles to modeling branches in a lung [5, 349-354]. 
In research presented by Riche et al., the use of multiple T-junctions was utilized, 
however, due to the chip design multiple fluidics layers were necessary and different 
pressures occurred in each junction resulting in different sized droplets from each [356]. 
Higher throughput of droplet generation for both single and double emulsions has been 
achieved by using the pressure at each split in the tree structure to break larger droplets 
into smaller ones [5], as seen in Figure 2.2a [5]. Large droplets can be broken up into 
smaller droplets without altering the total dispersed phase volume and concentration 
[349]. Collection of droplets within a large microfluidic chamber post tree structure 
splitting was also achieved in an ordered fashion [5] which is critical for this work.  The 
proposed design contains an array of T-junctions, each with its own media condition, 
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which join into a microfluidic tree structure to create a gradient from droplet to droplet 
across the microfluidic chamber. 

10.4  Experimental Plan 

Multiple devices have been designed to approach multiplexation incrementally. The goal 
is to concurrently generate droplets with varying aqueous phase compositions, and stably 
pack the droplets into a slowly flowing electrokinetic chamber for real-time, medium 
dependent dielectrophoretic characterizations. Design optimizations will be conducted 
using hydrodynamic flow simulations in COMSOL (see foundations in Chapter 5), along 
with 3D printed Puffy Paint devices (refer to demonstrations in Chapter 9), before 
finalizing masks for microfabrication. Once the design is completed, device operation 
will be tested to quantify the accuracy of droplet ordering into linear lines (as shown in 
Figure 10.2); this can be done by adding different dyes to the dispersed phase of each T-

Figure 10-2. Conceptual drawing of a microfluidic tree structure used to generate droplets of 
varying concentrations, pH, or cell composition. Top inset illustrates that via laminar flow, the 
droplet alignment into a chamber region retains relative position alignment based on composition. 
Electric fields applied across the chamber enable r-iDEP responses within the different 
composition droplets.
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junction.  The approach to study this will be to begin with two coflowing junctions of the 
same composition to test the hydrodynamics, followed by two coflowing junctions with 
conductivities of 0.1 and 1 S/m. DEP experiments will be conducted by sweeping the 
frequency from high to low at a fixed voltage to reveal the differences in the two 
conductivities (RBCs in the 0.1 S/m droplets should reveal a switch from negative to 
positive DEP with an increase in frequency, whereas RBCs in the 1.0 S/m droplets should 
only demonstrate negative DEP). From there devices with four T-junctions will be 
fabricated, and both uniform droplets and droplets with conductivities of 0.05, 0.1, 0.5, 
and 1.0 S/m will be tested. COMSOL simulations will be conducted to simulate how the 
electric field gradient will vary within adjacent, different conductivity droplets; it is 
expected that potential drops will be greater across the lower conductivity droplets and 
thus impact the gradients achievable in the inner rows. Conductivity order will be 
systematically explored to ascertain droplet row configurations that will preserve 
gradients truest to the results of a single media present in adjacent droplets. Outcomes 
from this task will include insights into interfacial stability between two different 
conductivity droplets (this has not been extensively studied in the literature) as well as 
droplet conductivity arrangement for maximum DEP performance and stability.  Once 
this system is fully explored, it will be expanded to up to ten coflowing droplets. 

10.5  Implications 

Knowledge from all prior objectives and tasks culminate in this final research task. This 
will be the true test of the versatility and power of the envisioned, novel r-iDEP 
technique. First particles, and then a single RBC blood type seeded into varying 
composition droplets will be dielectrophoretically interrogated simultaneously. The 
frequency sweeping technology patented by Minerick, Collins, Leonard, and Adams 
[357] will be used to investigate a full range of frequencies within a single experiment.
Flow will be controlled to allow sufficient time for the particles or cells to sufficiently
polarize and demonstrate DEP motion during the droplet’s residence time in the chamber.
Image analysis algorithms will be used to quantify DEP responses as a function of droplet
position (and thus composition) and as a function of time. Multiplexing power will be
tested via this approach. Outcomes of this task will include being able to fully
characterize with DEP eight different blood types (in separate experiments) for at least
four medium conductivities in roughly 80 hours of experiments and analysis compared to
the (mathematically) 2 years of steady experiments/analysis.  Quality of data will be
determined by comparing with prior published RBC DEP data and results of the T-
junction devices. In summary, these proposed investigations will increase multiplexing
control within droplet microfluidics and allow that field to transform dielectrophoretic
research.
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11 Conclusions 
This dissertation combined principles of droplet microfluidics and insulator 
dielectrophoresis to create a microdevice for parallel characterization of particles/cells via 
droplet microfluidics. Dielectrophoresis is a fast, noninvasive, and nondestructive 
technique with instrumentation simplicity, favorable scaling effects, and label-free 
operation. Although there are many advantages to using DEP there are disadvantages, 
including the number of required experiments and unwanted sample-electrode 
interactions. Insulator DEP reduces the sample-electrode interactions by remotely placing 
the electrodes and using insulating structures to shape the non-uniform electric field. This 
dissertation investigated the use of droplet microfluidics to form aqueous-in-oil droplets 
to act as individual, isolated microenvironments whose interfaces shaped non-uniform 
electric fields (needed for DEP) within each droplet. This work was the first to explore a 
novel technique envisioned by the author and advisor termed reverse insulator 
dielectrophoresis. There were three main objectives: 1) experimentally generate 
monodisperse droplets and pack them into a microfluidic chamber, 2) experimentally 
explore reverse insulator dielectrophoresis within droplets, and 3) ascertain feasibility via 
simulations of reverse insulator dielectrophoresis within droplets. There were also two 
secondary objectives: 1) characterize hafnium oxide as a material to physically isolate 
samples from electrodes as an alternative to riDEP and 2) investigate Puffy Paint as a 
microfabrication tool to prolong the lifetime of silicon master wafers.  

11.1 Implications of stabilizing a droplet microfluidic system via 
surfactants/additives 

The first main objective, to experimentally generate monodisperse droplets 100-200 µm 
in diameter and pack them into a microfluidic chamber, was split into two main aims. 
The first engineering-based aim, was to design and fabricate a microdevice with a T-
junction for droplet generation and a chamber for droplet packing. This work used T-
junctions due to their prior robust performance in the field, adaptability to a wide range of 
velocities and pressures, and utility in containing chemical reactions and cell 
encapsulations. Simulations, fabrication limitations, and preliminary experiments all 
informed device designs. The final device contained the following geometric parameters; 
a 50 µm wide dispersed phase channel joined a 100 µm wide continuous phase channel, 
both 3.5 mm in length, to form a T-junction. The continuous phase channel continued 
past the junction for 11 mm before opening, at a pitch of 35°, to a 1500 µm wide and 
5000 µm long chamber. The device was fabricated to be 70 µm in height via soft-
lithography with SU-8 photoresist. The SU-8 features were cast with PDMS and bonded 
to a glass microscope slide after oxygen plasma treatment.  

The second, science-based aim, was to study the effect of chemical additives on the two-
fluid system. Three surfactants, two oil phases, and thirteen aqueous phases were 
investigated. First, the oil phase and surfactant were optimized for the T-junction 
geometry by utilizing droplet diameter and stability.  Experiments with SDS and Triton 
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X-100 suggested that a higher molecular weight surfactant would perform better, and 
thus Krytox FSH 157, a fluorosurfactant, was chosen.  It demonstrated a large operating 
window that allowed changes in interfacial tension while maintaining droplet stability, 
along with lower cost and structural similarity to a commercially available biocompatible 
surfactant. A fluorinated oil, FC-40, was chosen as the oil phase due to its 
biocompatibility.  

The effect of aqueous phase composition on droplet generation and packing was 
investigated. The droplet size at generation, the observed generation regime, the stability 
entering the chamber, and the coefficient of variance were tracked for each aqueous 
phase composition. Aqueous phase compositions explored included epure water, salt-
only solutions containing 0.960, 2.616, 13.892, and 24.122 mM salt stock in epure water, 
dextrose only solutions containing 58.837, 161.108, 273.845, and 290.404 mM dextrose 
in epure water, and isotonic PBS and dextrose solutions of 0.05, 0.1, 0.5, and 1.0 A/m 
conductivities. All aqueous phase compositions demonstrated the expected natural log 
trend of decreasing droplet size with increasing surfactant concentration. The epure water 
control experiments showed that Krytox alone was unable to effectively stabilize the 
interface to prevent coalescence in an epure water/FC-40 system. However, the addition 
of salt into the aqueous phase resulted in a reduction in droplet size, and thus interfacial 
tension, which stabilized the droplets and increased droplet monodispersity. Availability 
of ions likely decreased the repulsion between Krytox’s carboxylic head groups via a thin 
Debye layer of positive counterions.  This ionic charge stabilization enabled closer 
packing of the surfactant molecules at the interface yielding stable droplets.  

The addition of dextrose also had an observable effect on the droplet interfacial 
equilibrium. At low surfactant concentrations, droplet size increased indicating an 
increase in interfacial tension. At high surfactant concentrations, the presence of dextrose 
decreased the droplet size, and thus the interfacial tension to improve droplet stability. 
All Krytox and dextrose combinations of concentrations were not able to fully prevent 
droplet coalescence. This effect with the dextrose may be an indication that the surfactant 
molecules adsorb onto the large molecular weight dextrose molecules. The combination 
of salt and dextrose, to form isotonic solutions, resulted in a combination of droplet 
stability effects. The combination of salt and dextrose in the isotonic conductivity 
solutions affected the droplet size at generation, the generation regime, and the droplet 
stability entering the chamber in a combined interfacial tension reduction. This 
suggested interactions at the interface between the surfactant and the salt/dextrose 
additives played a key role in realized surface tension and stability. This work provided a 
map of droplet size, stability, and reproducibility along with regime tracking of 
coalescence and splitting, demonstrating the ability to strategically engineer surfactant 
concentration to eliminate droplet coalescence within a droplet microfluidic device.  
Further, this body of work has provided a starting point to aid in engineering a stable bio-
and electro-compatible droplet microfluidic platform. 
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11.2 Implications of Introduction to a new, novel 
dielectrophoretic technique, Reverse Insulator 
Dielectrophoresis 

The second objective of this project, achieving reverse insulator dielectrophoresis within 
droplets, was broken down into three main aims, one engineering based and two science-
based. The first, engineering-based aim of objective two was to design and implement 
parallel electrodes within the microdevice. The previously explored T-junction and 
chamber device was adapted to include two 50 µm platinum wire electrodes. The 
platinum wires were successfully placed on either side of the chamber to create an 
electric field traverse to the droplet flow direction (when flow was included).  

The second, science-based aim of the second main objective was to study the effect of the 
electric field on droplet stability. It is important that the droplets stay intact for the 
parallel DEP experiments within droplets. Experiments showed that droplet stability, as a 
function of voltage and frequency, changed with aqueous phase conductivity. For both an 
increase in surfactant concentration in the oil phase and conductivity of the aqueous 
phase, droplets coalescenced at lower applied potentials. In addition at higher 
frequencies, droplets were able to resist coalescence even as higher potentials were 
applied. This work successfully demonstrated stable droplets for frequencies from 100 
kHz to 1 MHz and for applied potentials as high as 10 Vpp.  This work provided a 
stability map for strategically choosing voltage and frequency to avoid electrocoalescence 
of droplets. 

The third, science-based aim of the second main objective was to seed particles/cells into 
the droplets in order to conduct riDEP characterizations. Three-dimensional simulations 
in the third objective demonstrated both positive and negative dielectrophoresis in 
agreement with theory. Polystyrene beads and human red blood cells were successfully 
seeded into droplets and packed within the chamber. The electric field did bend to create 
non-uniform electric fields within the droplets, resulting in observed dielectrophoretic 
responses. The responses were slower than expected at the electrical and material 
conditions employed suggesting a decrease in voltage when the electric field traversed 
from droplet to droplet. However, riDEP was successfully demonstrated and steps for 
further improvement have been identified. These observations further support the premise 
that successful multiplexation of dielectrophoretic particle/cell characterization is 
achievable. This could greatly decrease the amount of time spent on experimentally 
generating DEP spectral curves for the determination of particle/cell properties. 

11.3 Simulations to explore the feasibility of a new, novel 
dielectrophoretic technique, Reverse Insulator 
Dielectrophoresis 

For objective three, two and three-dimensional simulations demonstrated the potential for 
aqueous droplets, surrounded by insulative oil, to shape non-uniform electric fields and 
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thus generate the electric field gradients necessary for dielectrophoresis. The simulations 
revealed that the insulative oil surrounding aqueous droplets does allow the electric field 
to pass through from droplet to droplet, as long as the droplets are closer than three 
microns apart. 

Three-dimensional simulations demonstrated both positive and negative dielectrophoresis 
in agreement with theory. The electric field gradient was greatest at the poles, or the 
points of contact between droplets where the electric field traverses from one droplet to 
the next and the electric field gradient was smallest in the middle, around the edge of the 
droplet, the furthest distance from the high electric field gradient areas. The 
dielectrophoretic response within three-dimensional droplets at different voltages and 
aqueous phase conductivities reinforced how critically important controlling these 
variables is to map out DEP responses and thus back-calculate cell dielectric properties 

11.4 Implications of Hafnium Oxide as a Material to Physically 
Isolate Samples from Electrodes 

Reverse insulator dielectrophoresis uses immiscible phases to shape a non-uniform 
electric field. Because there is a layer of oil between the electrodes and the aqueous 
sample phase, the samples are isolated/protected from the electrodes. In this secondary 
objective, hafnium oxide was to investigated as a material to physically isolate samples 
from electrodes; this approach served as an additional method beyond droplets for 
isolating/protecting samples from electrode surface reactions. Hafnium oxide was used as 
a passivation layer to physically isolate the samples from the electrodes while allowing 
electric field penetration through the passivation into the sample. Seven characterization 
tools were used to investigate the potential of hafnium oxide film to function as a 
passivation layer. Results showed that hafnium oxide is both biocompatible and able to 
physically isolate samples while allowing the electric field to pass through.  Implications 
of this work include increased HfO2 structural, optical, and electrical film property 
knowledge as a function of film thickness.  These attributes, along with the 
biocompatibility characteristic are highly useful for LOC applications involving 
electrokinetic separations and characterizations combined with optical detection of 
biological samples.   

11.5  Implications of Puffy Paint as a Fabrication Tool 

The high aspect ratios used in this work to create the necessary microfluidic channels 
proved challenging to microfabricate with limited shelf-life of the resulting silicon wafer 
masters. This secondary objective involved investigating Puffy Paint, a water-based 
acrylic polymer emulsion, as a microfabrication tool to augment PDMS castings. 
WBAPE proved to be an acceptable augment to increase casting yields and reduce the 
frequency with which new silicon wafers must be microfabricated by creating molds of 
previously fabricated PDMS features. Variations in size were dependent on feature size 
with greater accuracy for the largest features with the smallest aspect ratios than for the 
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smallest features with the largest aspect ratios. The size measurements at each step in the 
replication process indicated that designs could be implemented to reflect the expected 
change in feature size allowing for the replica PDMS to result in the desired feature sizes. 
PDMS casting reproducibility of the WBAPE molds and the ability to withstand multiple 
castings without discernable integrity effects demonstrated that they are sufficiently 
reliable to cast PDMS features. WBAPE was also investigated for testing new device 
designs. The photolithography process is highly reproducible and accurate but takes more 
time and resources than the WBAPE process. WBAPE can be used to trace features 
printed via a laser printer or to 3D print features from a CAD file, allowing testing of new 
designs before investing in fabrication. This work provided a fun, low-cost way to 
replicate, alter, and design devices and to teach the process of microfluidic design and 
fabrication before re/investing in the fabrication of a silicon master wafer.  

11.6  Implications of Multiplexing riDEP with a microfluidic tree 
structure 

A microfluidic tree structure has the potential, when coupled with the riDEP approach, to 
enable further multiplexing of cellular DEP characterizations. The microfluidic tree 
enables multiple different solutions to be pumped into T-junctions and generate droplets 
in parallel before being fluidically joined into a single chamber. Implications of this 
multiplexing will be less time, cost, and sample volume needed to complete the same 
number of experiments, as well as being able to uniformly control global parameters such 
as temperature. RBC DEP is highly dependent upon media conditions, and the ability to 
simultaneously conduct up to10 media conditions would fundamentally change this field 
as an enabling technology. Combined with the body of work completed thus far, 
involving biocompatible surfactant, ionic species, and nonionic species concentration 
effects on droplet interfacial stability, this future vision will also advance the field of 
droplet microfluidics and dielectrophoretic research. 

11.7  Broader Implications  

This dissertation discussed a combination of three microfluidic techniques; droplet 
microfluidics, dielectrophoresis, and microfluidic tree structures, for the goal of reducing 
the number of experiments required for dielectrophoretic characterizations. This exciting 
new riDEP approach could enable highly reliable multi-dimensional (such as medium 
conductivity and cell concentration) analysis at it has the potential to reduce the number 
of experiments necessary by up to 93%. Thus riDEP could provide cellular level 
reliability of diagnostics for an entire population of cells with fewer resources and time 
than existing technologies. 
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A Effects of Additives on Droplet Size and Stability 
in a Microfluidic T-junction Device 

A.1 Surfactant Effects 

Epure water was used as a baseline control, exploring how the presence of a surfactant 
(Krytox 157 FSH, from here on referred to as Krytox) affected droplet size and stability 
when being generated in a microfluidic T-junction and collected in a chamber. Research 
has shown that the presence of surfactant decreases interfacial tension with increasing 
concentration [84]. Table A.1 presents each set of continuous and dispersed phases used 
for the control experiments. Figure A.1 demonstrates the expected natural log trend of the 
effect of surfactant concentration on droplet size.  

Table A-1. Aqueous dispersed phase and continuous oil phase compositions used for the 
epure water control experiments. 

Dispersed Phase Continuous Phase 
 epure water 0.33 mM Krytox in FC-40 
epure water 0.66 mM Krytox in FC-40 
epure water 1.00 mM Krytox in FC-40 
epure water 1.75 mM Krytox in FC-40 
epure water 2.00 mM Krytox in FC-40 

A.2 Salt Effects 

Salts are an important part of making isotonic solutions of different conductivity, and 
their presence has been shown to decrease the critical micelle concentration (CMC) with 
increasing salt concentration [239-241]. Before exploring isotonic solutions (containing 
both salts and dextrose), the presence of salts alone was investigated and the behavior 

Figure A-1. Epure water control for confirming surfactant effect on droplet size. The 
droplet size, as a function of surfactant concentration, follows the expected natural log 
trend. 
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compared to literature. Table A.2 presents each set dispersed phase used for the salt-only 
experiments. Continuous phases were FC-40 with a range of Krytox concentrations (0.33 
to 2 mM). Figure A.2 presents the results of each salt concentration. The trend of 
decreasing droplet size with increasing surfactant concentration, as seen with epure water 
and as expected from literature, held for each salt concentration. When compared to 
epure water, the presence of salt decreased the droplet size in every case, which is 
consistent with literature findings that state that the presence of salt decreases the 
interfacial tension.  

Table A-2. Aqueous dispersed phase compositions used for the salt-only control 
experiments. 

Salt -only Solution Epure Water (ml) Salt Stock (µl) 
0 mM 25.000 0.0 

0.960 mM 24.976 24.0 
2.616 mM 24.935 65.4 
13.892 mM 24.653 347.2 
24.122 mM 24.397 603.0 

Figure A-2. Temperature adjusted droplet size versus surfactant concentration for a) 
0.960 mM salt, b) 2.616 mM salt, c) 13.892 mM salt, and d) 24.122 mM salt. Increasing 
surfactant concentration yielded a natural log trend line consistent with literature for each 
salt-only solution. 
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A.3 Dextrose Effects 

Dextrose-only solutions were also investigated. It has been seen that the presence of 
sugar does affect the interface and thus must be included when exploring isotonic 
solutions [242]. Table A.3 presents each dispersed phase used for the dextrose-only 
experiments. Continuous phases were FC-40 with a range of Krytox concentrations (0.33 
to 2 mM).  Figure A.3 presents the results of each dextrose concentration. The natural log 
trend on decreasing droplet size with increasing surfactant concentration was consistent 
for all dextrose concentrations. Unlike the salt, whose presence always decreased the 
droplet size, only the lowest surfactant concentration, 0.33 mM, resulted in a decrease in 
droplet size for each dextrose concentration. The highest three surfactant concentrations, 
1-2 mM, all dextrose concentrations increased in droplet size, indicating an increase in
interfacial tension. At 0.66 mM Krytox, the second highest dextrose concentration caused
an increase in droplet size, while all others decreased the average droplet size.

Figure A-3. Temperature adjusted droplet size versus surfactant concentration for a) 
58.837 mM dextrose, b) 161.108 mM dextrose, c) 273.845 mM dextrose, and d) 290.404 
mM dextrose. The increase of surfactant concentration yields a natural log trendline 
consistent with literature for each slat-only aqueous phase. 
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Table A-3. Aqueous dispersed phase compositions used for the dextrose-only control 
experiments. 

Dextrose -only 
Solution Epure Water (ml) Dextrose (g) 

0 mM 25.000 0.0000 
58.837 mM 25.000 0.2650 
161.108 mM 25.000 0.7256 
273.845 mM 25.000 1.2334 
290.404 mM 25.000 1.3080 

A.4 Combined Salt/Dextrose Effects (Conductivity) 

Since both salt and dextrose affect droplet breakup and stability in droplet microfluidics, 
their combination to form isotonic solutions of varied conductivity were explored. Table 
A.4 presents each dispersed phase used for the conductivity experiments. Continuous
phases were FC-40 with a range of Krytox concentrations (0.33 to 2 mM).  Figure A.4
present the results of each conductivity. When compared to epure water, all but the
lowest surfactant concentration, 0.33 mM, when combined with solutions of different

Figure A-4. Temperature adjusted droplet size versus surfactant concentration for a) 0.05 
S/m, b) 0.1 S/m, c) 0.5 S/m, and d) 1.0 S/m. The increase of surfactant concentration 
yields a natural log trend line consistent with literature for each slat-only aqueous phase. 
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conductivities, decreased the average droplet size. The average droplet size was increased 
for the lowest concentration.  

Table A-4. Aqueous dispersed phase compositions used for the conductivity experiments. 
Conductivity 

Solution Epure Water (ml) Salt Stock (µl) Dextrose (g) 

0.0000055 S/m  25.000 0.0 0.0000 
0.05 S/m 24.976 24.0 1.3080 
0.1 S/m 24.935 65.4 1.2334 
0.5 S/m 24.653 347.2 0.7256 
1.0 S/m 24.397 603.0 0.2650 

A.5 Coefficient of Variance 

The coefficient of variance was found for each combination of additives. The results are 
shown in Table A.5. All bolded values fall in the typical range seen in literature of 2-10% 
[53, 243]. All values in green are below 5%. Overall, CV decreased with increased 
surfactant concentration.  

Table A-5. Coefficient of Variance (in Percent) of droplet diameter for each combination 
of phases. 
Krytox (mM) 0.33  0.66  1  1.75 2  
Epure Water 15.4 12.9 10.3 5.2 4.1 
Salt-Only 
(mM) 

0.960 8.7 2.2 3.5 6.4 - 
2.616 10.5 30.7 8.3 6.9 10.1 
13.892 14.5 8.0 4.5 2.0 4.3 
24.122 13.4 5.5 7.5 3.4 4.3 

Dextrose-
Only (mM) 

58.8  8.6 6.7 4.8 - 5.1 
161.6  10.5 7.6 3.0 - 2.9 
273.8  5.9 9.1 3.6 - 2.8 
290.4  10.3 9.0 2.7 - 6.6 

Conductivity 
(S/m) 

0.05  6.3 23.1 7.9 8.6 2.8 
0.1  17.0 17.3 8.8 8.0 7.8 
0.5 9.8 24.9 6.9 11.0 4.9 
1.0 6.7 11.8 8.4 18.6 4.5 

A.6 Steady State Determination 

An experiment was conducted to determine when the pump reached steady state. 
Droplets were measured starting at 1 minute up to 75 minutes. The results, in Figure A.5, 
show that after 10 minutes the droplet size stabilized, meaning the pump had reached 
steady state. 
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Figure A-5. Average droplet size, with standard deviation, versus time. Within the first 
ten minutes, the system reached steady state. 
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B Simulations on Portage and Superior 
Superior and Portage, high-performance computing infrastructure at Michigan 
Technological University, were used in obtaining results presented in this dissertation. 
(Note: the number of processors is equal to the CPU time divided by the wall time) 

B.1 Simulations on Superior 

Wall 
time 

CPU 
time 

Memory 
(GB) 

0:01:48 0:14:58 6.00 
3:07:42 40:21:27 6.05 
0:02:27 0:20:57 6.71 
0:57:05 4:38:13 6.71 
0:00:14 0:00:10 3.67 
0:00:01 0:00:01 3.00 
0:00:01 0:00:01 3.00 
0:00:01 0:00:01 3.00 
0:00:02 0:00:01 3.00 
0:00:01 0:00:01 3.00 
0:00:02 0:00:01 3.07 
0:00:02 0:00:01 3.07 
0:00:02 0:00:01 3.00 
0:00:02 0:00:01 3.07 
0:00:01 0:00:01 3.00 
0:00:01 0:00:01 3.00 
0:00:02 0:00:01 3.72 
0:00:01 0:00:01 3.00 
0:00:01 0:00:01 3.00 
0:00:01 0:00:01 0 
0:00:02 0:00:01 3.00 
0:00:01 0:00:01 3.00 
0:00:00 0:00:01 0 
0:00:01 0:00:01 3.00 
0:00:01 0:00:01 3.00 
0:00:02 0:00:01 1.92 
0:00:01 0:00:01 1.94 
0:00:04 0:00:01 1.87 
0:00:01 0:00:01 1.87 
0:00:01 0:00:01 0 
0:00:01 0:00:01 1.87 

Wall 
time 

CPU 
time 

Memory 
(GB) 

0:00:02 0:00:01 1.95 
0:00:22 0:00:55 2.41 
0:00:52 0:03:38 3.21 
98:36:11 606:46:31 5.37 
0:10:27 0:38:50 24.65 
2:05:25 16:04:47 29.82 
13:53:25 104:47:30 50.89 
1:26:58 11:27:43 24.30 
1:40:22 14:42:03 30.70 
1:56:55 15:46:18 25.08 
1:55:53 15:32:56 32.81 
3:02:28 23:31:07 31.50 
3:04:27 21:53:22 36.01 
0:00:24 0:00:52 2.39 
0:00:29 0:00:54 2.39 
0:00:20 0:00:52 2.40 
0:09:24 0:34:16 19.14 
0:00:59 0:08:16 2.71 



167 

B.2 Simulations on Portage 

Wall 
time 

CPU 
time 

Memory 
(GB) 

0:05:34:51 03:07:33:15 10.87 
0:03:37:55 02:03:23:00 11.42 
0:00:00:20 00:00:00:56 6.10 
0:04:08:27 02:10:48:51 11.14 
0:05:55:22 03:14:36:22 11.66 
0:03:27:56 02:02:32:15 11.35 
0:03:06:44 01:21:18:56 11.49 
0:02:58:45 01:18:08:04 11.26 
0:04:25:58 02:15:00:53 11.05 
0:03:05:52 01:21:06:16 11.48 
0:02:57:47 01:19:09:52 11.98 
0:02:38:57 01:14:26:49 11.63 
0:00:00:09 00:00:00:11 3.67 
0:03:57:27 02:09:41:57 11.39 
0:03:19:53 01:23:13:24 11.33 
0:02:33:04 01:12:55:29 11.38 
0:02:46:55 01:16:32:10 11.44 
0:00:00:23 00:00:00:46 6.15 
0:00:00:18 00:00:00:50 6.15 
0:00:00:17 00:00:00:45 6.14 
0:00:00:17 00:00:00:52 6.15 
0:00:00:18 00:00:00:49 6.14 
0:00:00:18 00:00:00:51 6.14 
0:00:00:18 00:00:00:48 6.15 
0:00:00:18 00:00:00:49 6.14 
0:00:00:18 00:00:00:48 6.15 
0:00:00:18 00:00:00:49 6.15 
0:00:00:06 00:00:00:11 3.67 
0:00:00:17 00:00:00:44 6.15 
0:00:00:18 00:00:00:50 6.15 
0:00:00:21 00:00:00:54 6.15 
0:00:00:21 00:00:00:56 6.16 
0:00:08:34 00:01:31:09 22.88 
0:02:47:39 01:12:34:27 17.10 
0:16:29:51 00:16:28:42 5.09 
0:01:40:17 00:21:42:52 15.23 

Wall 
time 

CPU 
time 

Memory 
(GB) 

0:13:24:47 07:09:11:16 15.36 
0:06:08:26 03:07:50:58 14.66 
0:05:31:15 02:23:47:47 16.46 
0:04:59:28 02:16:08:46 14.31 
0:04:23:22 02:08:33:37 15.31 
0:10:42:42 05:20:02:20 16.86 
3:07:44:46 42:01:22:47 15.44 
2:21:03:22 36:05:31:34 14.77 
0:00:00:59 00:00:07:36 10.40 
3:08:05:43 38:06:16:19 16.79 
0:18:28:18 06:00:47:52 16.73 
0:08:41:23 04:16:58:57 15.84 
0:09:02:16 04:21:18:37 15.35 
0:00:00:12 00:00:00:11 3.67 
0:00:00:06 00:00:00:11 3.67 
0:00:00:21 00:00:01:01 6.03 
0:00:00:36 00:00:04:09 6.93 
0:00:38:43 00:10:09:38 6.05 
0:00:00:18 00:00:01:02 6.02 
0:00:00:18 00:00:01:07 6.02 
0:00:00:19 00:00:01:02 6.02 
0:00:00:20 00:00:01:03 6.03 
0:00:00:17 00:00:01:01 6.03 
0:00:38:02 00:09:59:32 6.02 
0:00:32:26 00:07:58:57 6.09 
0:00:29:56 00:07:21:38 6.04 
0:00:19:52 00:05:09:33 11.83 
0:00:18:16 00:04:44:32 6.02 
0:00:20:38 00:05:22:00 6.03 
0:00:19:33 00:05:04:31 6.02 
0:00:30:22 00:07:27:53 5.96 
0:00:19:49 00:05:08:05 6.02 
0:00:19:45 00:05:08:00 5.96 
0:00:26:06 00:06:24:34 6.02 
0:00:00:23 00:00:00:49 6.02 
0:00:00:19 00:00:00:46 6.03 
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Wall 
time 

CPU 
time 

Memory 
(GB) 

0:00:00:24 00:00:00:59 6.03 
0:00:00:16 00:00:00:58 6.03 
0:00:38:44 00:10:09:23 6.09 
0:00:00:23 00:00:01:47 6.12 
2:16:30:28 42:17:57:11 6.25 
0:00:11:14 00:02:52:41 6.09 
0:00:00:17 00:00:00:57 6.03 
0:00:11:16 00:02:53:25 6.09 
0:01:28:56 00:22:07:11 6.09 
0:02:17:07 01:12:13:06 6.09 
0:00:56:06 00:14:47:12 6.09 
0:00:04:29 00:01:06:06 6.09 
0:00:07:13 00:01:49:45 6.29 
0:02:15:23 01:09:39:11 6.09 
0:01:07:48 00:16:43:26 6.13 
0:00:01:04 00:00:10:21 6.11 
0:01:01:01 00:16:01:23 6.10 
0:05:33:40 03:13:26:58 6.03 
0:00:32:22 00:04:05:54 6.14 
0:01:27:48 00:19:08:11 6.18 
0:08:36:09 05:05:51:29 11.85 
0:05:08:34 03:03:53:17 6.14 
0:00:38:29 00:09:59:47 6.15 
0:01:01:46 00:14:48:20 6.14 
0:00:00:22 00:00:01:52 6.09 
0:00:00:55 00:00:09:13 6.31 
0:00:01:51 00:00:07:54 6.22 
0:00:01:56 00:00:07:49 6.22 
0:00:26:47 00:01:46:44 6.25 
0:00:01:07 00:00:02:27 6.13 
0:00:00:40 00:00:02:07 6.09 
0:00:00:58 00:00:03:20 6.03 
0:00:00:16 00:00:00:42 6.08 
0:01:00:46 00:10:14:49 6.19 
0:00:20:58 00:02:15:37 9.57 
0:00:20:33 00:02:11:45 9.57 
0:00:22:57 00:02:25:42 9.56 
0:00:21:39 00:02:27:19 9.57 

Wall 
time 

CPU 
time 

Memory 
(GB) 

0:00:56:49 00:10:09:24 6.19 
0:00:21:20 00:02:12:22 9.56 
0:00:21:04 00:02:14:42 9.57 
0:00:00:14 00:00:00:43 6.08 
0:06:27:00 03:06:38:18 6.09 
0:00:00:14 00:00:00:41 6.08 
0:00:00:14 00:00:00:44 6.08 
0:00:00:14 00:00:00:43 6.08 
0:00:00:21 00:00:00:38 6.08 
0:00:00:13 00:00:00:39 6.08 
0:00:00:18 00:00:01:11 6.03 
0:00:00:20 00:00:01:33 6.09 
0:00:00:15 00:00:00:43 6.04 
0:00:00:16 00:00:01:04 6.03 
0:00:00:20 00:00:01:34 6.09 
0:00:00:21 00:00:01:34 6.09 
0:00:00:20 00:00:01:39 6.09 
0:00:00:21 00:00:01:35 6.09 
0:00:00:20 00:00:01:37 6.09 
0:21:00:37 10:16:09:30 6.23 
0:02:10:48 01:07:04:09 9.07 
1:01:34:09 11:06:56:31 13.22 
1:10:20:35 15:01:00:38 12.94 
0:00:07:27 00:01:54:03 6.21 
0:00:00:56 00:00:10:32 6.13 
0:06:02:49 03:14:29:40 10.89 
0:01:17:16 00:20:22:49 6.07 
0:08:57:54 05:07:46:26 10.88 
0:02:38:47 01:14:17:06 10.87 
0:00:00:35 00:00:04:21 6.19 
0:03:05:25 01:19:38:58 10.33 
1:04:00:00 16:22:29:42 10.45 
0:23:07:54 14:00:42:00 10.52 
0:00:00:21 00:00:01:03 6.03 
3:20:00:12 56:13:26:18 10.56 
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C Copyright Documentation: Permission for 
Material Reproduced in Chapter 2 

C.1 Permission for Figure 2.1 a and b 
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C.2 Permission for Figure 2.1 c 
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C.3 Permission for Figure 2.1 d   
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C.4 Permission for Figure 2.2 a   
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C.5 Permission for Figure 2.2 b   
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C.6 Permission for Figure 2.2 c   
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C.7 Permission for Figure 2.2 d   
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C.8 Permission for Figure 2.4 

 



189 

C.9 Permission for Figure 2.7 
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C.10 Permission for Figure 2.8 a and b   
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C.11 Permission for Figure 2.8 c and d  
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C.12 Permission for Figure 2.9 
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C.13 Permission for Figure 2.10 a and b  
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C.14 Permission for Figure 2.10 c, d, and e 
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	Abstract

	Lab-on-a-chip (LOC) technologies enable the development of portable analysis devices that only require small sample and reagent volumes; that allow for multiple unit operations including separations, dilutions, concentrations, and mixing; and that cou...
	A microfluidic device was designed where aqueous (electrically conductive)-in-oil (electrically insulative) droplets were generated in a microchannel T-junction and then packed into a larger microchamber. Reproducible droplets were achieved at the T-j...
	Once stable droplets were achieved, electrodes were added to the microdevice to apply an electric field across the droplet packed chamber and explore riDEP responses. The insulative/conductive fluid interfaces shaped a spatially non-uniform electric f...

	1 Introduction
	1.1 Introduction and Outline
	In recent years, technology miniaturization has become a prominent research interest that has increased access to data by the average member of society. Micro-total analysis systems (µTAS) were introduced in the 1980s with the idea of miniaturizing mu...
	As a subset of sought-after LOC device applications, medical microdevices are emerging technologies that enable portable, low cost, sensitive, selective, less invasive, and fast measurements and manipulations for medical diagnostics and treatment mana...
	Electrokinetic tools are also widely utilized in µTAS and LOC applications because they have the ability to selectively focus [30], separate [31], or transport molecules [32], bioparticles [33], cells [34], or droplets [35]. The use of electric fields...

	1.2 Reverse Insulator Dielectrophoresis
	This dissertation systematically explores a novel approach that combines iDEP with droplet microfluidics to harness iDEP’s advantageous separation between samples and electrodes with the multiplexing abilities of droplet microfluidics. This approach i...
	A novel, new dielectrophoresis technique termed ‘reverse insulator DEP’ was systematically explored. riDEP combines principles of droplet microfluidics and insulator dielectrophoresis to create a microdevice for parallel characterization of particles/...

	1.3 Dissertation Objectives and Aims
	The first objective of this project was to experimentally generate monodisperse droplets, 100-200 µm in diameter, and pack them into a microfluidic chamber. This objective was broken down into two main aims, one engineering based and one science-based...
	The second objective of this project was to explore reverse insulator dielectrophoresis within droplets. This objective was broken down into three main aims, one engineering based and two science-based. The first aim (engineering) of objective two was...
	The third objective was to use simulations to inform experimental matrices and to compare to experimental results in order to more fully understand the underlying physics behind the droplet behaviors. Chapter 5 presents the set up and results of three...
	As mentioned previously, a disadvantage of traditional dielectrophoresis includes unwanted sample-electrode ion interactions.  The insulative nature of riDEP prevents direct contact between the aqueous microenvironments and the electrode.  In addition...
	All microchannel and microchamber designs within this work relied on microfabrication of high-aspect ratio features. Microfabrication of high-aspect ratio features is challenging and can result in features losing adhesion to master silicon wafers afte...
	The future work from this project is to further multiplex experiments. This goal is broken down into two main aims, one engineering, and one science. The first aim (engineering) of objective three involves designing and modeling microdevices with micr...


	Figure 1-1. The potential impact of the new technique, riDEP, on reducing the amount of time needed to complete experiments by up to 80%.
	2 Project Background/Literature Review
	2.1 Droplet Microfluidics
	The following sections discuss the applications of droplet microfluidics; methods and applications for droplet handling techniques including fusion/fission/mixing and sorting/trapping; droplet formation techniques; and the role of surfactants.
	2.1.1 Applications and Advantages of Droplet Microfluidics
	The first microfluidic technique utilized in this work is droplet microfluidics. Droplet microfluidics utilizes the capability of monodisperse droplet formation and manipulation within a microfluidic device. The use of microfluidic structures to gener...
	Droplet microfluidics is a growing field, due to the numerous applications that encompass a range of fields of study. A range of techniques are used to achieve specific tasks. These techniques include fission, fusion, mixing, sorting, trapping, as wel...
	By adjusting the upstream composition, drug discovery, protein crystallization, and enzymatic assays are possible [13, 28, 29, 37]. Other applications include irregular particles, double emulsions, hollow microcapsules, microbubbles, single cell analy...
	One of the key challenges in continuous flow microfluidics is that as the number of parallel experiments increases, the size of the device increases almost linearly [29]. Droplet microfluidics is one effective method of addressing this challenge. In d...
	Each droplet acts as its own isolated microenvironment, which is an attribute extensively leveraged in this research. Droplets can also exist on a scale relevant to biological conditions [37]; this work focused on droplets on the order of 100-200 micr...
	Isolated chambers,  separated by the immiscible carrier fluid [28], are advantageous due to stable reaction conditions, parallel reactions, batch and continuous capabilities, no cross contamination, no dilution, control over evaporation, and high thro...
	Table 2-1. Comparison of attributes of droplet microfluidics for chemical reactions and electrokinetic microenvironments.

	2.1.2 On-Chip Droplet Manipulation Techniques
	One of the advantages of droplet microfluidics is the ability to manipulate the droplets by sorting, trapping, fission, fusion, and mixing. Droplet sorting is important for the separation of specific droplets of interest. Droplets can be sorted based ...
	A change in surface tension can not only be used for droplet sorting but droplet trapping as well, as shown in Figure 2.1. Droplet trapping can be beneficial for increasing residence time. Normally, microdevices have a residence time of only seconds t...
	Droplet fission is another droplet manipulation technique used in droplet microfluidics. It can scale up the number of parallel experiments by splitting previously formed droplets. Droplet fission can also be used to control the concentration of the d...
	As droplet fission has advantages, droplet fusion does as well. Many reactions require reactants to be kept separate until the correct conditions or have multiple steps that require the addition of reagents at specific times [28, 56, 61]. Droplet micr...
	Droplet contents need to be well mixed to facilitate chemical reactions. Due to the nature of laminar flow and the length scale in which droplet microfluidics occurs, diffusion times are very long [28, 37]. To overcome slow diffusion, active and passi...

	2.1.3 Methods and Theory of Droplet Formation
	Droplet manipulation has many advantages, but first requires the generation of droplets. “Top-down” generation occurs by direct agitation. This turbulence-enhanced generation provides little control over individual droplets [28, 38]  and results in an...
	Passive means of droplet generation consist of two or more immiscible fluids and laminar fluid flow. Common geometries for passive droplet generation include flow-focusing, co-flowing, Y-junction, and T-junction geometries [29, 37, 66]. T-junctions fo...
	T-junctions, the most common droplet generation geometry, are adaptable to a wide range of velocities and pressures and are useful in chemical reactions and cell encapsulations [44, 67-70]. Y-junction and K-junction (not shown in Figure 2.3) are varia...
	Droplet formation is governed by the Capillary number (𝐶𝑎),  Equation 2.1, where 𝜂 is the continuous phase viscosity, 𝑣 is the continuous phase velocity, and 𝛾 is the interfacial tension [29]. For a Capillary number less than 10-2, interfacial fo...
	There is a competition between the viscous and capillary forces in a T-junction [55]. Viscous forces tend to draw fluid along the channel, and capillary forces tend to reduce the total interface between two fluids by forming droplets. Joanicot et al. ...

	2.1.4 Material Properties, Geometry, and Flow Rate Effects on Droplet Generation
	Different droplet formation geometries have demonstrated different regimes of droplet formation [40, 54, 66, 69, 77-79]. Droplet breakup regimes are analogous to flow regimes. As the Reynolds number increases, the fluid flow goes from laminar, to tran...
	As previously mentioned, the geometry and flow rates within a device affect the formation of droplets. Surface properties are also important to consider for droplet generation [28, 74, 81]. How droplet formation occurs depends on the wetting condition...
	Controlling how droplets are generated can be very important depending on the application. It is important that the size, shape, and monodispersity are controlled while the droplets form. For drug delivery and biosensing, well-defined volumes and comp...


	2.2 Surfactants for Control of Droplet Uniformity/Size/Stability in Droplet Microfluidics
	The use of surfactants can be very advantageous in microfluidic devices, as discussed in the following sections.
	2.2.1 Introduction to Surfactants
	As previously mentioned in Section 2.1.4, it is important to be able to control droplet generation. One way to aid in this control is to add a surfactant into the system. Traditionally, a wide range of applications use surfacants including motor oils,...
	There are four classifications of the surface active portion based on the charge; nonionic has no apparent ionic charge, zwitterionic has both positive and negative charges, cationic has a positive charge, and anionic has a negative charge. Because of...

	2.2.2 Surfactants in Microfluidics
	Surfactants play a major role in emulsions because the phase boundary area is very large with respect to the volume. This means that a substantial fraction of the total mass present is at the boundaries [84].  In most microfluidic applications they re...
	The Gibbs adsorption isotherm describes the decrease in surface tension for dilute solutions (Equation 2.2), where 𝛾 is the surface tension, 𝑐 the surfactant  concentration, Γ the surface concentration, 𝑅 the gas constant, and 𝑇 the temperature [8...
	The surfactant concentration is important in this equation due to the nature of surfactants. As the concentration of surfactants increase, there comes a point when the molecules come together to form micelles. This point is referred to as the critical...
	In addition, droplet size and time to collision with other droplets also affects coalescence due to kinetic mechanisms of surfactant adsorption. Adsorption/desorption surfactant interface kinetics dominate in smaller droplets, while diffusion dominate...
	Table 2-2. Surfactants and uses in literature
	Not only can surfactants increase the ease of formation and stability of droplets, but they can also aid biocompatibility [40, 47, 62, 87, 99, 100]. Biocompatibility is important for this project because we are completing particle/cell characterizatio...


	2.3 Electrokinetic Particle/Cell Characterization via Dielectrophoresis
	The following sections detail particle/cell characterizations.
	2.3.1 Current Methods of Particle/Cell Characterizations (Advantages and Disadvantages)
	As mentioned in the introduction, this work utilized two microfluidic techniques. So far droplet microfluidics has been introduced. The second portion of this project was related to particle/cell characterization. There are many methods of particle/ce...

	2.3.2 Previous (M.D.-ERL research for Characterizing Polystyrene Beads and Red Blood Cells
	(M.D.-ERL has completed a multitude of experiments for characterizing new device designs by using polystyrene beads (PS) and red blood cells (RBC). To characterize a new device, it is desirable to verify DEP responses of particles with ideal behavior....
	RBC membranes [112-120] are essentially non-conducting [121-125], vary from 50 to 90 nm thick depending on exerted force [114], and are the reason RBCs exhibit a low electrical conductivity (they behave as a dielectric) [34, 123]. In contrast, RBC int...
	Prior (M.D.-ERL research quantified cell movement in a batch DEP device, shown in Figure 2.6 [36, 130, 131], interrogated insulator DEP blood cell deflection at a microfluidic bifurcation in a continuous DEP device [132], and demonstrated that ABO-Rh ...

	2.3.3 Other Cell/Particle Systems
	There is a wide range of particle/cell systems that can be characterized via dielectrophoretic techniques. DEP characterizations have been completed for biological cells [24, 33, 133-142], whole blood [127, 128, 143-158], erythrocytes (RBCs) [31, 36, ...


	2.4 Dielectrophoresis
	Dielectrophoresis, the characterization method used for this work, is discussed in the following sections.
	2.4.1 Background: Electrokinetics to Dielectrophoresis
	Electrokinetics is the use of electric fields to induce motion. Three of the most common types of electrokinetics are electrophoresis, isoelectric focusing, and dielectrophoresis. Electrophoresis is the migration of charged objects within a solution w...

	2.4.2 Applications/Advantages of Dielectrophoresis for Particle/Cell Characterization
	Dielectrophoresis is a fast, noninvasive, and nondestructive technique for the manipulation/characterization of bioparticles such as yeast, cancer, stem, and blood cells [132]. Dielectrophoresis has many practical applications in the fields of enginee...
	Advantages to using DEP for particle manipulation include instrumentation simplicity, favorable scaling effects, and label-free operation. Another key advantage is that, unlike electrophoresis, DEP is applicable to any polarizable particle or cell, ev...
	DEP uses the spatial gradient of a non-uniform electric field to induce a particle dipole and thus cause particle movement up or down the electric field gradient [196]. Particle size, shape, and electrical properties as well as suspending media proper...
	Dielectrophoretic force is influenced by particle size, electric properties of the particles and the suspending medium, and the electric field frequency and amplitude [132, 198]. This allows DEP to characterize particles/cells based on their size, mem...

	2.4.3 Formation of Non-Uniform Electric Fields
	Dielectrophoresis can be completed using either direct current (DC) or alternating current (AC) fields [196, 202]. In DC-DEP non-uniform electric fields are created by the device geometry. Common geometries include parallel or interdigitated, castella...
	In AC-DEP, the non-uniform electric fields are generated by an embedded electrode array [203]. Fabrication of such electrode arrays is complex, expensive, and time-consuming. This makes AC-DEP devices less economically feasible as system scale increa...

	2.4.4 2D versus 3D Electrodes
	Two types of electrodes for DEP experiments have been presented in the literature, two-dimensional (planar) and three dimensional (3D). Planar electrodes are more common than 3D electrodes due to microfabrication complexity and cost [204]. Planar elec...
	With planar electrodes, the distance up into the chamber that the electric field traverses is limited [3]. With 3D electrodes, the electric field can be present throughout the entire chamber. A simulation comparison [3] and an experimental comparison ...


	2.5 Insulator Dielectrophoresis
	2.5.1 Advantages
	For the new DEP technique that we are presenting herein droplets shape the electric field instead of electrodes. This is similar to insulator dielectrophoresis, although in a reversed fashion. Insulator dielectrophoresis (iDEP) is a subset of DEP that...
	Srivastava et al. compiled common insulating geometries showing where the particles undergo the maximum effect under DC fields, shown in Figure 2.9 [4]. The cost of iDEP fabrication is reduced from electrode DEP because microfabricated iDEP devices us...
	Gallo-Villanueva et al. utilized the insulating post geometry in their experiments. Three geometry variables were studied; insulating post diameter, size of the gaps between posts, and the number of gaps. Along with COMSOL simulations, the experiments...
	Streaming and trapping are the two iDEP regimes observed during continuous flow experimentation. Cell/particle characterization and separation can be achieved by using streaming/trapping. This can be achieve by applying electric fields of different ma...
	In combination streaming and trapping can be used to separate particles based on size, shape, or electric properties such as polarizability and charge [197]. Experiments conducted by Baylon-Cardiel et. al. showed an increase in DEP force with an incr...
	In both trapping and streaming the diffusive forces are weaker than both the electrokinetic and dielectrophoretic forces [202]. Experiments and simulations completed by Camacho et. al. demonstrate large agreement. This implies that the theory is refle...

	2.5.2 DC vs. AC vs. DC-Offset AC for iDEP
	Traditionally iDEP is conducted using a DC electric field [216]. This is advantageous over the traditional AC field used for DEP due to single material fabrication, reduced fouling, and remote electrodes [4].  Srivastava et al. presented a comprehensi...

	2.5.3 Electrocoalescence
	The riDEP microdevice presented in this dissertation used the continuous oil phase around the droplets as an insulator, shaping a non-uniform electric field to within each droplet. A possible challenge when combining dielectrophoresis with droplet gen...


	2.6 Conclusions
	One of the key limitations to current DEP devices is the amount of time it takes to generate DEP curves. This project aimed to eliminate this by implementing parallel experimentation. This was accomplished by using droplet microfluidics, which provide...
	Research shows that droplet microfluidics can control the formation of droplets within the nano-micrometer diameter range with high monodispersity that act as isolated microreactors [28, 29]. This work used T-junctions due to their high presence in th...
	In this dissertation, dielectrophoresis (DEP) was chosen as a particle/cell characterization technique due to its versatile, fast, noninvasive, and nondestructive qualities [132]. An electric field was applied across the microfluidic chamber shaping a...


	Figure 2-1. (a) and (b) Droplet sorting via laser force [2] , droplet trapping via (c) surface patterning [8] and (d) dropspots [12].
	Figure 2-2. Examples of (a) passive droplet fission using tree structures [5] , (b) active droplet fusion using electric fields [11] , (c) droplet fission for mixing droplets of varied concentration [13] , and (d) mixing within droplets via channel ge...
	Figure 2-3. Schematics showing droplet break-up in (a) T-junction, (b) Y-junction, (c) flow-focusing, and (d) co-flowing geometries.
	Figure 2-4. Droplet break-up regimes; a) squeezing, b) dripping, c) jetting, and d) coflowing [1].
	Figure 2-5. Mechanisms of surfactant transport for droplet microfluidics. a) micelle: self-assembly of surfactant molecules, b) surfactant molecules transport to the interface, c) micelle molecules must diffuse apart in order for the molecules to tran...
	Figure 2-6. Native AB+ and B- red blood cells in 0.1 S/m dextrose buffer and subjected to a 2.5 Vpp AC signal swept from 100 kHz to 1.9 MHz over 400 seconds. Both AB+ and B- experience p DEP and nDEP, although the range differs. This demonstrates diff...
	Figure 2-7. Schematics of common DEP geometries. (a) parallel or interdigitated, (b) castellated, (c) oblique, (d) curved, (e) quadrupole, (f) microwell, (g) matrix, (h) extruded, and (i) top–bottom patterned [7].
	Figure 2-8. Simulation comparison of 2D (a) and 3D (b) electrodes [3]. Experimental comparison of 2D (c) and 3D (d) electrodes [9].
	Figure 2-9. Schematics showing common iDEP geometries  [4].
	Figure 2-10. Droplet coalescence phase diagrams for (a) sine and (b) square waves [6]. Contact angle dependence on (c) frequency and (d) voltage, along with (e) the utilization of electric field induced contact angle change to enable droplet fusion an...
	3 Materials and Methods
	3.1 Microdevice Fabrication
	This section describes, in detail, the fabrication processes used for device fabrication.
	3.1.1 Fluidic Layer
	Microdevices used for this work were microfabricated in the Michigan Technological University’s Microfabrication Facility (MFF) by customized soft lithography techniques [221, 222]. Entrance to the MFF required safety training on all hazards that were...
	To get the desired features from the film to a silicon master wafer, the clean room of the MFF was used. SU-8 processing information [223], along with literature [224] and (M.D.-ERL personnel experience informed the fabrication recipes used. Throughou...
	Cleaning: A 4-inch silicon wafer was sonicated in acetone for 5 minutes, followed by isopropyl alcohol (IPA) for 5 minutes then deionized (DI) water for 5 minutes. The wafer was immediately rinsed with DI water to ensure removal of all contaminated so...
	Table 3-1. SU-8 recipes used to target different structure thicknesses
	placed on a hot plate at 65  C for 5 minutes to remove any volatiles. For the SU-8 2075 recipe, the wafer was placed on a hotplate at 65  C for 20 minutes directly after the rinsing with DI water post sonication cleaning. The heating of the wafer post...
	Photoresist coating: The wafer was secured back onto the spin coater to undergo the spin cycle a second time. For the second spin cycle, 4 ml of the negative photoresist, SU-8 (MicroChem, Westborough, MA), was placed on the wafer. The first step of th...
	Photoresist crosslinking: The silicon wafer was then pre-baked to evaporate any solvents present on the wafer and densify the photoresist layer. The wafer was slowly cooled to room temperature to avoid any temperature shock to the substrate and photor...
	The intensity and uniformity of the UV lamp were measured using a five-point measurement system. UV protective safety glasses were worn during the measurements to prevent any possible eye damage from the UV lamp. The resulting intensity was used in Eq...
	Feature Development: The wafer was then ready for development. It was placed in the SU-8 developer (MicroChem, Westborough, MA ) and gently agitated to improve the development of the higher aspect ratio features [223]. Every two minutes the wafer was ...
	Fluidic layer casting and bonding: The silicon master wafer could then be used for a casting of the fluidic layer. Foil was carefully placed around the wafer to form a structure to contain the PDMS during the casting. A base/curing agent combination (...

	3.1.2 Electrode Layer
	Dielectrophoretic experiments used 50-micron platinum wire (Goodfellow, Coraopolis, PA) for electrodes. 360-micron holes were punched in all four corners in the microfluidic chamber. The 50 µm platinum wire was pulled through the holes to form two par...
	Addition of external electrodes: To connect the platinum electrodes to an external electric field source (AC generator, Agilent, Santa Clara, CA) silver conductive epoxy (MGChemicals, Surrey, B.C., Canada) was used to bond copper wires to the platinum...


	3.2 Solution Preparation
	3.2.1 Continuous phase: oil and surfactant
	Silicone oil: Preliminary experiments were completed with materials readily available in the lab that are also present in the literature. Sodium dodecyl sulfate (SDS) and Triton X-100 are two surfactants, and silicone oil is an oil phase that are comm...
	FC-40: After completing preliminary experiments investigating stability it was determined that a surfactant with a higher molecular weight might provide a more stable system (See Chapter 4). Since the project required a change in material, at the same...

	3.2.2 Aqueous phase: different conductivities, dextrose only, salt only, particles
	Due to the desired dielectrophoretic experiments, it was paramount that the aqueous phase was isotonic to protect the cells seeded within. Epure water (Millipore, Billerica, MA) was used as an aqueous phase throughout the project. It was used not only...
	Particles: Polystyrene beads (Spherotech, Lake Forest, IL) ranging from 3 to 9 microns were added into the aqueous dispersed phase. These were used to explore the dielectrophoretic capabilities of the new riDEP technique and compare the results with o...
	Table 3-2. Amounts of each component in each aqueous phase solution


	3.3 Device set-up: equipment uses and settings
	Device pretreatment: Two pretreatment steps were completed to aid in the successful flow through the device. The first step was to ensure hydrophobic channels (detailed in Appendix A). Rain-X®, a commercially available glass water repellent, was flush...
	Experimental setup: The microdevice was loaded onto the stage of an SVM340 synchronized video microscope (Labsmith, Livermore, CA). Each side of the microdevice was taped onto the stage to prevent movement during experiments. The aqueous and oil solut...
	For the remaining experiments, a Harvard Apparatus syringe pump (Harvard Apparatus, Holliston, MA) was utilized for pumping to reduce the polydispersity of the droplets (detailed in Chapter 4) as well as the time needed to load the pump. Both the aque...

	3.4 Video/Data Analysis: imaging software and analysis techniques
	Experiments were observed and recorded using the UScope software (Labsmith). The collected data was then analyzed using ImageJ, a free image analysis program from the National Institute of Health [226]. Droplet size analysis at generation, droplet mon...

	3.5 Modeling methods: COMSOL, Computing Cluster
	Computing: Superior and Portage, high-performance computing infrastructure at Michigan Technological University, were used in obtaining results presented in this dissertation. Superior has 92 compute nodes, each with 16 CPU cores and 64 GB of RAM, pro...
	Table 3-3. Number of processors, wall time, CPU time, and memory for the most memory intensive COMSOL simulations run on Superior.


	Figure 3-1. Flow diagram of microfabrication process.
	Figure 3-2. Three dimensional representations of a completed microdevice a) without and b) with electrodes. 50 micron platinum wire electrodes were positioned on either side of the chamber allowing an electric field to be applied across the chamber. c...
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	Figure 3-3. Experimental set-up. A syringe pump infused both the continuous oil and the dispersed aqueous phase into the microdevice. The microdevice was mounted on a Labsmith microscope for visual observation and recording. A ground and potential wer...
	4 System Stabilization
	4.1 Introduction
	4.1.1 Applications
	Droplet microfluidics is a growing research field due to the numerous microscale applications that encompass a range of fields from biotechnology (drug delivery and biosensing) to particulate synthesis. The high throughput possible in droplet microflu...

	4.1.2 Advantages
	Each droplet acts as its own isolated microenvironment, on a scale relevant to biological conditions [37]. These isolated chambers, caused by the separation from the immiscible carrier fluid [28], are advantageous because the droplets enable a) relati...

	4.1.3 Purpose and Motivation
	The monodispersity, size, and shape of the droplets formed is important for many applications, especially drug delivery and biosensing, where well-defined volumes and compositions are necessary to achieve the correct concentration. Further, the biolog...
	This chapter describes the process of optimizing all of the aforementioned materials and experimental conditions used for the bulk of the research in this dissertation.  Parameters were highly informed by literature, but some required specific tuning ...

	4.1.4 Surfactants
	Surfactants can benefit microfluidic systems in a variety of ways; increasing the ease of formation, lowering interfacial tension, hindering coalescence, maintaining wetting conditions, as well as controlling biocompatibility [40, 62, 99, 100]. Surfac...
	Two readily available surfactants with differing properties, ionic sodium dodecyl sulfate (SDS) and non-ionic Triton X-100, were investigated. A large operating window of stability was desired because a wide range of dispersed phases, with additives k...

	4.1.5 Hydrophobicity
	Channel wall properties can affect droplet microfluidic systems [74, 227] including how droplets are generated and ease of droplet motion within microfluidic device channels and chambers. Different materials have been used both for fabrication and for...
	Surfaces of microfluidic features can also be treated to shift the phobicity of materials.  For example, when PDMS is treated with oxygen plasma, bonded methyl groups are released and replaced with silonal groups [231].  This results in the PDMS becom...
	Since surfactants also migrate to liquid/solid interfaces, they can be utilized to alter the charge and/or hydrophobicity of microfluidic features within microchannels.  Multiple research groups use chemical compounds, such as Rain-X [79], Aquapel [47...

	4.1.6 Pump Effects
	Passive droplet breakup in microfluidic channels can greatly increase the monodispersity of droplets as compared to active droplet breakup as discussed in Chapter 2 Section 2.1.3. Syringe pumps are commonly used in droplet microfluidics to precisely a...


	4.2 Materials and Methods
	4.2.1 Surfactants
	To understand droplet coalescence and polydispersity, a parametric study on surfactants was initiated. First, sodium dodecyl sulfate (SDS), an ionic surfactant (MW=288.38), was investigated with concentrations from 0 to 10 w/w% in the aqueous disperse...
	A microfluidic device consisting of an aqueous phase inlet, continuous phase inlet, T-junction, large chamber, and a single outlet was used for this study, as shown in Figure 4.1. Aqueous-in-oil droplet generation (Figure 4.1 a and b) was achieved pas...
	The droplets generated at the T-junction traversed down the channel and packed into the chamber, as shown in Figure 4.1 d. Droplet size and stability were measured optically upon entrance to the chamber. A Labsmith microscope and corresponding Uscope ...
	The effective droplet diameters were averaged to obtain an average effective droplet diameter (with standard deviation) for each parameter condition. The monodispersity and reproducibility within a single experiment (repeats), as well as a set of inde...

	4.2.2 Hydrophobicity
	Four methods of increasing device hydrophobicity were investigated; 1) air plasma bonding followed by 24 hours in a 70 C oven, 2) air plasma bonding followed by 45 seconds at 120 C, 3) air plasma bonding followed by 24 hours in a 70 C oven followed by...

	4.2.3 Pump Effects
	A comparison between two lengths of 360-micron diameter PEEK capillaries (Labsmith) was made to determine if polydispersity could be decreased by lengthening the distance between the two Labsmith pumps and the microdevice. Two lengths were tested, 20 ...
	Data regarding the effect of different surfactants, surface treatments, and pumping setups was collected via bright field microscopy.  To ascertain surfactant efficacy, data was compiled as a function of surfactant concentration for two surfactants, S...


	4.3 Results and Discussion
	4.3.1 Surfactants
	Droplets size and percent coalescence were measured in preliminary experiments and the results compiled as a function of SDS and Triton X-100 concentration (Figure 4.2) to assess monodispersity and stability. Experimental observations revealed that di...
	Both SDS (Figure 4.2a) and Triton X-100 (Figure 4.2c) showed a trend of decreasing droplet size with an increase in surfactant concentration. The trend of decreasing droplet size with increasing surfactant concentration was consistent with predictions...
	The experimental results of SDS and Triton X-100 yielded too narrow of an operating region for these studies with only the 2.5 w/w% SDS resulting in droplets that did not coalesce within the first 1000 µm of the chamber. 1.25 w/w% SDS and 0.05 w/w% Tr...
	Table 4-1. Surfactant conditions explored with 31<N<100 droplets. SDS experiments had flow rates of 2.5 and 0.5 µl/min for the continuous and dispersed phases, respectively, while Triton-X experiments (shaded grey) had flow rates of 3.0 and 1.5 µl/min...
	tension [239-242] which may have resulted in unstable droplets if SDS or Triton X-100 was used. Since the application of this project was bio-related, biocompatibility was taken into account. Exposure to SDS and Triton X-100 can lead to cell death. Th...
	A higher molecular weight surfactant would provide better stability because mass transport from and around the interface is slower. Therefore, Krytox FSH 157 (Dupont, MW = 7000-7500) was chosen as the surfactant instead of SDS (MW=288.38) or Triton X-...

	4.3.2 Hydrophobicity
	Due to the significant influence of device wall wettability on droplet formation, four techniques were investigated to improve device hydrophobicity to aid the continuous oil phase. Technique 1 was air plasma bonding followed by 24 hours at 70 C. In t...
	It was also observed that over time, exposure to the continuous oil phase with surfactant improved the hydrophobicity. This was most evident in the non- Rain-X treated devices suggesting that the surfactant was adsorbing to the microdevice surfaces. F...

	4.3.3 Pump Effects
	High polydispersity was present in the droplets initially generated. To maximize monodispersity, 360-micron diameter PEEK tubing capillaries were doubled in length from 20 cm to 40 cm to attenuate flow fluctuations originating from the pump.  Table 4....
	Table 4-2. Comparison of droplet size standard deviation between short and long capillaries
	respectively. In each case, the longer capillary lengths yielded a desired decrease in polydispersity by decreasing the standard deviation from ~85 µm to ~60 µm.
	However, the longer capillary did sufficiently reduce the polydispersity issue, by an average of ~24%. Therefore switching the pumping system from Labsmith syringe pumps to a Harvard Apparatus syringe pump was explored as a means to further reduce dro...
	Time-dependency experiments were then conducted with the Harvard Apparatus pump to determine when the system reached steady state. The results showed that after 10 minutes, droplet size stabilized to 240 ± 6 µm at 0.5 µl/min for both the continuous an...


	4.4 Conclusions
	As outlined in this chapter, experimental parameters and equipment optimizations were completed to achieve highly reproducible, monodispersed droplets over a broad operating range.  First, the oil phase and surfactant were optimized for this T-junctio...
	Optimizations were also explored for the experimental setup. Longer microcapillaries were chosen because they attenuate pump-induced perturbations to increase flow stability before the fluid reached the T-junction.  A Harvard Apparatus syringe pump wa...
	Improvements in the continuous oil phase, the surfactant, fluidics, and pump enable the broadest range of aqueous phase conductivities to be explored for droplet generation.  In addition, the effect of additives needed for isotonic solutions was optim...


	Figure 4-1. Design (a), realization (b), and operational images of a T-junction microdevice used to generate aqueous droplets in 0.125% Krytox 157 FSH in FC-40. a and b) Inlet flow rates are controlled by independent syringe pumps, while droplets are ...
	Figure 4-2. Data for 30<N<100 droplets. (a) Average droplet diameter and (b) percent coalescence as a function of SDS in the continuous phase at flow rates of 2.5 µl/min and 0.5 µl/min for the continuous and dispersed phase flow rates, respectively.  ...
	Figure 4-3. Average droplet size, with standard deviation, versus time. Within the first ten minutes, the system reached steady state.
	5 Simulations via COMSOL Multiphysics
	5.1 Introduction
	Simulations can be used to design experiments, check experimental results versus theory, and to investigate unexplained phenomena encountered in experiments. For design of experiments, simulations can be completed for a range of operating conditions a...

	5.2 Droplet Generation
	One of the main technologies used in this research was droplet microfluidics. T-junction dimensions affect droplet generation as discussed in Chapter 2 Section 2.1.3. [29, 40, 50, 55, 68, 69, 77] and a variety of models for the prediction of droplet b...
	The results shown in Figure 5.1 demonstrate the same trends expected based on the predictive model [68].  For an increase in continuous phase flow rate, the droplet size decreased and for an increase in dispersed phase flow rate, the droplet size incr...
	To help understand the mechanism behind droplet break-up at the T-junction, as well as to inform the experimental work completed, three-dimensional droplet generation simulations for a microfluidic T-junction were completed. These simulations were run...
	Table 5-1. Parameters for predicting droplet size
	Table 5-2. Parameters/variables used in the droplet generation simulations
	Multiphysics®. The laminar two-phase flow and level set interface physics packages were used with prescribed geometry (dimensions of real devices) and volume flows (matched experiments), In addition, boundary conditions of the pressure, a no viscous s...
	Parameters not pulled from experimental conditions were based on a demo available within the COMSOL program. After designing, fabricating, and testing the T-junction microdevice, a comparison of the droplet formation within the device to simulation re...
	Consistent with previous research, the results presented herein demonstrated qualitative agreement between the COMSOL simulations and experimental droplet generation during steady-state operation. Relative quantitative results could also be gleaned fr...

	5.3 Electric Fields
	This dissertation details the combination of droplet microfluidics with dielectrophoresis (DEP). In particular, insulator DEP, which uses insulator-shaped electric fields to manipulate polarizable particles or cells [34, 199]. Classical dielectrophore...
	Table 5-3. Parameters/variables used in the electric field simulations
	The droplets’ interfacial shaping of the electric field to yield spatially non-uniform electric field gradients was demonstrated in the simulations as shown in Figure 5.3. For the 1.0 S/m aqueous phase, shown in Figure 5.3, current traveled from dropl...
	A three-dimensional simulation was used to further investigate the formation of non-uniform electric fields within droplets. A 20 V DC field was applied to a single 1.0 S/m droplet with two electrical contacts on either side of the droplet. The simula...
	Both the 2D and 3D simulations demonstrated the ability for the droplets to shape a non-uniform electric field within them, allowing dielectrophoretic characterizations of the particles/cells seeded within the droplets. The simulations also demonstrat...

	5.4 Dielectrophoretic Movement
	Theoretical dielectrophoretic particle responses within droplets were investigated by using the particle tracing and AC/DC modules in COMSOL Multiphysics®. As previously discussed, DEP manipulates polarizable particles or cells [34, 199]. Clausius and...
	Table 5-4. Parameters/variables used in the dielectrophoresis simulations
	The resulting DEP force pushes particles toward regions of high field or low field depending on whether Re[K(()] is positive or negative. When the particle is more polarizable than the medium, Re[K(()] is positive and the resulting dipole moment cause...
	For the sake of keeping simulations as simple as possible while still reflecting the experimental system, particle-particle interactions were not programmed into the simulation. A single 100 µm droplet was generated with 216 particles seeded within. T...
	The simulations in Figures 5.5 and 5.6 studied pDEP and nDEP PS particle motion due to solution/particle conductivity differences within a 100 (m droplet. Particles were initially positioned in a cubic grid circumscribed inside the droplet. Figure 5.5...
	In Figure 5.6 at an applied electric field of 20 V DC and at an aqueous droplet conductivity of 1 S/m, simulations predicted nDEP at the low-frequency limit as observed via motion to the droplet “equator” (second row). Similarly, at low conductivities...

	5.5 Conclusions
	Simulations of droplet generation, non-uniform electric fields within droplets, and dielectrophoretic responses within droplets were completed. Experimental results followed the qualitative trends predicted by the simulations, but quantitative compari...
	Two and three-dimensional simulations demonstrated how the droplet interfaces shaped a non-uniform electric field, which is a necessary condition for dielectrophoresis. Insulative oil surrounding aqueous droplets did allow the electric field to pass t...
	Three-dimensional simulations demonstrated both positive and negative dielectrophoresis of simulated particles in agreement with theory. The droplet interface shaped a non-uniform electric field. The electric field gradient was greatest at the poles, ...


	Figure 5-1. a) Predicted droplet diameter from a model and b) experimental effective diameter and COMSOL simulation results as a function of both continuous phase (CP) and dispersed phase (DP) flow rates for continuous and dispersed phase channel widt...
	Figure 5-2. Comparison of droplet break-up in a T-junction in experiments (top row) and COMSOL simulations (bottom row) for continuous and dispersed phase widths of 200 µm and 300 µm as well as flow rates of 3.0 µl/min and 0.5 µl/min, respectively.
	Figure 5-3. Electric field gradients (color map) in 1 S/m aqueous droplets packed 5 different ways (square, offset, offset with gaps, and random) in a 20 V DC field applied from top channel wall and grounded at the bottom channel wall. White space is ...
	Figure 5-4. Electric field gradient (color map slices) within a 1 S/m aqueous 100 μm diameter droplet surrounded by 10-8 S/m oil.  A 20 V DC potential is applied from one pole and grounded on the opposite pole. The electric field gradient is greatest ...
	Figure 5-5. Voltage and medium conductivity comparisons in an aqueous 100 μm droplet. Time points from three cases are shown for the zx plane (gradient radiates from center) shown in Figure 5.4. Top: 5 V DC field across a 1 S/m droplet. Middle: 20 V D...
	Figure 5-6. DEP particle tracing simulations in an aqueous 100 µm diameter droplet with 20V DC applied at the droplet poles to create a non-uniform field. Particles are white dots above the electric field gradient (color map); particles are driven up ...
	6 Effects of Additives on Droplet Size and Stability in a Microfluidic T-junction Device
	Pieces of this chapter were presented as posters. This work will be submitted to Biomicrofluidics or similar.
	J.L. Collins, and A.R. Minerick, “Effect of Surfactant on Droplet Size and Stability in a Microfluidic T-junction Device, a mini-study,” ASME 4th Global Conference on Nanoengineering for Medicine and Biology, Minneapolis MN, April 2015.
	J.L. Collins, and A.R. Minerick, “Effect of Surfactant on Droplet Size and Stability in a Microfluidic T-junction Device,” External Advisory Board (EAB) Poster Session, Michigan Technological University, Oct. 2014. Also presented at: Biotechnology Res...
	6.1 Introduction
	Surfactant transport mechanisms, because of their efficiency and elegance are valuable in microelectronics, microfluidics, and biotechnology as they influence/dominate interface behaviors [84]. This work explores the complex interactions between surfa...
	Bodies of work have demonstrated that surfactants ease droplet formation and stability [62, 76, 78, 99, 100], and dominate emulsions where phase boundary area is large with respect to volume [84].  Decreasing interfacial tension, the interfacial free ...
	Surfactants play a key role in droplet biocompatibility [40, 47, 62, 87, 99, 100]. Because their addition can impact the adsorption of biomolecules at liquid-liquid and solid-liquid interfaces [47], surfactant biocompatibility has been shown to be imp...
	Another area of microfluidics that extends to biological applications is electrokinetics, which encompasses linear electric field phenomena such as electrophoresis and nonlinear electric field phenomena such as dielectrophoresis (DEP) [130, 159, 190, ...
	Strategic tailoring of surfactants for specific applications can be achieved via molecule selection, head or tail group alterations, or via interactions with other molecules present in the solution. Research has shown a decrease in CMC with increasing...
	Measuring droplet sizes from a microfluidic T-junction indirectly measures the effect of interfacial tension, and hence surfactant efficacy [85]. This can be related to the droplet size by the Laplace pressure. Multiple equations for describing both s...
	Table 6-1. Relationship between Laplace pressure, interfacial tension, and droplet size
	Assuming the pressure difference to be constant, the Gibbs isotherm and the simplest form of the Laplace pressure relationship can be combined and rearranged into a relationship between surfactant concentration and droplet size, as shown in Equations ...
	This equation was fit to diameter dependence from three types of additives. Generation, size, and stability of aqueous-in-oil droplets were measured for a range of aqueous phase compositions and surfactant concentrations in the oil phase. Control expe...

	6.2 Materials and Methods
	6.2.1  Materials
	Devices were microfabricated using SU-8 features on a silicon wafer templating for PDMS castings, which were bonded to glass slides for fluidics.  Devices were pretreated for hydrophobicity (as described in Chapter 4), then loaded with a continuous oi...

	6.2.2 Device Fabrication
	Microdevices were fabricated in Michigan Tech’s Microfabrication Facility using customized soft lithography techniques [221, 222]. To make features on a master silicon wafer, SU-8 2025 (MicroChem, Westborough, MA) photoresist was masked and photopolym...

	6.2.3 Solution Preparation
	The continuous oil phase was Fluorinert FC-40 (Sigma Aldrich, St. Louis, MO) with varying amounts (0-2 mM) of Krytox 157 FSH surfactant (Dupont, Morton Grove, IL). Krytox 157 FSH contains a PFPE (perfluorinated polyether) tail and a carboxylic acid he...

	6.2.4 Device Set-up: Equipment Uses and Settings
	Device pretreatment: Two pretreatment steps were completed to aid in reproducible flows through devices. Rain-X®, a commercially available water repellent from glass, was used to treat PDMS devices before use. Rain-X® was flushed through the microdevi...
	Experimental setup: A Harvard Apparatus syringe pump (PHD Ultra, Holliston, MA) was utilized to precisely control flow rates. The PHD Ultra pump has a flow rate accuracy of ±0.25% and reproducibility of ±0.05% [280]. Both the aqueous and oil solutions...

	6.2.5 Imaging Software and Analysis Techniques
	Experiments were recorded at 4x magnification and 30 frames per second via an SVM340 Synchronized Video Microscope using the UScope software (Labsmith, Livermore CA). Image data were analyzed using ImageJ [226].
	Droplet Size Analysis: The effect of each additive, and the combination of additives, on droplet size, was analyzed using a temperature adjusted droplet size approach. For each experiment, 100 droplets were measured at the T-junction location shown in...
	An increase in temperature increases the extent of solubilization [84], and thus the effect was removed to yield a more accurate representation of additive effects based on Gibbs isotherm and Laplace pressure. The temperature was measured via an infra...
	Droplet generation regime:  Effects from additive combinations on the droplet generation regime were analyzed by visual determination. Five generation regimes [69, 77] were used for classification informed by previous research cataloging surfactant co...
	Droplet coalescence and splitting: Just as surfactants have been shown to alter the generation regime, they have also been shown to alter droplet stability [78]. Droplet stability was assessed as a function of additive concentrations by analyzing drop...


	6.3 Results and Discussion
	Droplet characteristics were compiled to ascertain trends as a function of surfactant concentration in the continuous phase as well as compiled as a function of different composition and conductivities in the dispersed aqueous phases. Each dependency ...
	Surfactant effects: The droplet size at generation, the observed generation regime, the stability entering the chamber, and the coefficient of variance were used to investigate the effect of surfactant in a microfluidic T-junction. Controls were compl...
	The droplet size increased with an increase in Krytox concentration, until 0.66 mM Krytox, at which point the droplet size decreased with an increase in Krytox concentration. For the epure water control, the generation regime of squeezing and the stab...
	Salt effects: Control experiments were conducted with salt concentrations of 0, 0.96, 2.616, 13.892, and to 24.122 mM to investigate the effect of salt on droplet generation. The droplet size at generation, the observed generation regime, the stabilit...
	The presence of salt decreased the temperature adjusted droplet size when compared to the epure water (0 mM salt) control experiments at the same surfactant concentrations, as
	shown in Figure 6.5.  This trend indicates an interfacial tension decrease, which was consistent with the change in generation regimes observed. In the presence of salt, the regime remained squeezing at 0.66 mM Krytox, shifted from squeezing to drippi...
	The coefficient of variance (CV) of the droplet generation size was also evaluated for salt affects the aqueous/oil/surfactant system.  A full table of CV values is located in Appendix A. Figures 6.4-6.9 illustrate the average droplet size (averaged f...
	The relationships between salt presence and droplet size, and capillary number and flow regime corroborate that the interfacial tension was decreased in the presence of salt, likely due to charge stabilization of Krytox’s carboxylic acid head groups. ...
	Dextrose effects: Control experiments were conducted, investigating the effect of dextrose on droplet formation for dextrose concentrations of 0, 58.8, 161.1, 273.8, and 290.4 mM, corresponding to the amounts needed for 0.0000055, 1.0, 0.5, 0.1, and 0...
	There was a change in generation regime observed in the presence of dextrose, as shown in Figure 6.7. At surfactant concentrations of 1.75 mM and lower, squeezing was observed. At higher surfactant concentrations, a mixture of dripping and jetting was...
	There was also an observable change in CV in the dextrose only controls. There was a decrease in CV with an increase in surfactant concentration for all but the 58.8 mM dextrose with 1 mM Krytox, 273.8 mM dextrose with 0.33 mM Krytox, and 290.4 mM
	dextrose with 1 mM Krytox. The dextrose-only experiments also showed a decrease in CV, compared to the epure water control, for 88% of the experiments.
	The dextrose appeared to act as a buffer on the interfacial tension when compared to the epure water control (0 mM dextrose); identical shifts in surfactant concentration yielded smaller changes in droplet size at all concentrations of dextrose than t...
	Combined salt and dextrose effects: The effect of combinations of salt and dextrose, to make isotonic solutions of varied conductivity (5.5E-6, 0.05, 0.1, 0.5 and 1.0 S/m), were investigated by tracking droplet size at generation, the observed generat...
	statistically larger than the epure-water control, except the 0.1 S/m whose standard deviation slight overlapped with the standard deviation of the epure water, as shown in Figure 6.8. For Krytox concentrations of 0.66, 1, and 2 mM, the presence of th...
	The combined presence of salt and dextrose to make isotonic solutions of various conductivity resulted in different generation regimes at different Krytox concentrations. At 0.33 mM, squeezing and was observed. As the Krytox concentration increased, t...
	The coefficient of variance of droplet diameter decreased compared to the epure water control for 45% of the conductivity experiments.  The overall trend of decreasing CV with increasing surfactant concentration held true for all conductivity solution...
	These behaviors suggest salt and dextrose interact with the Krytox to decrease the interfacial tension compared to epure water.  When in contact with water, a hydrogen ion from the Krytox molecule dissociates into the water. The salts in the aqueous p...

	6.4 Conclusions
	To design a solution system for droplet microfluidics that was simultaneously biocompatible, isotonic, and variable conductivity, the effects of multiple additives in a droplet microfluidic system were investigated. Shifts in droplet generation regime...
	Controls were conducted with only epure water for the aqueous phase; droplets were not stable and complete coalescence was consistently observed. This indicated that Krytox alone was unable to effectively stabilize the interface to prevent coalescence...
	Separately, the addition of dextrose also reduced the interfacial tension and improved droplet stability at higher concentrations.  However, complete droplet coalescence upon entering the chamber was observed for all of the dextrose-only experiments. ...
	The combination of salt and dextrose in the isotonic PBS conductivity solutions affected both the generation regimes and stability in a combined interfacial tension reduction. The fact that both the salt and dextrose affected the size and stability of...

	6.5 Supplementary Material
	See Appendix A for supplementary material including complete tables of amounts of additives used along with their corresponding droplet size data, and a complete table of coefficients of variance for each combination.


	Figure 6-1. Diagram depicting the equipment setup. The microdevice was set on the microscope stage and PEEK tubing was used to connect the device to the syringe pump.
	Figure 6-2. a) Fabricated microdevice (filled with food coloring to show fluidics). Continuous channel = 100 µm in width, dispersed channel = 50 µm in width, height = 100 µm, and chamber = 1 x 3 mm. b)-f) droplet break off within the T-junction (image...
	Figure 6-3. a) Algorithm for converting number of frames to temperature adjusted diameter. b) Examples of i) squeezing (2.616 mM salt in 1 mM Krytox in FC-40 at 0.25 µl/min), ii) dripping (0.05 S/m in 1 mM Krytox in FC-40 at 0.25 µl/min), iii) jetting...
	Figure 6-4. Compilation of curves for five salt concentrations. The error bars indicate that a surfactant concentration of 2 mM Krytox in FC-40 results in the lowest coefficient of variance. 1 mM and 2 mM Krytox in FC-40 also results in the point wher...
	Figure 6-5. a) Stability, b) generation regime, and c) combined stability and generation regime diagrams for the salt-only aqueous phases. There is decrease in interfacial tension in the presence of salt, shifting the generation regimes and stability.
	Figure 6-6. Compilation of curves for five dextrose concentrations. The error bars indicate that a surfactant concentration of 1 mM Krytox in FC-40 results in the lowest coefficient of variance. 1 mM Krytox in FC-40 also results in the point where all...
	Figure 6-7. a) Stability, b) generation regime, and c) combined stability and generation regime diagrams for the dextrose-only aqueous phases. There is an effect on the generation regime at higher dextrose concentrations, but all dextrose concentratio...
	Figure 6-8. Compilation of curves for five conductivities. The error bars indicate that a surfactant concentration of 2 mM Krytox in FC-40 results in the lowest coefficient of variance. 0.66 mM Krytox in FC-40 results in the point where all conductivi...
	Figure 6-9. a) Stability, b) generation regime, and c) combined stability and generation regime diagrams for the conductivity aqueous phases. The combination of salt and dextrose in the isotonic PBS conductivity solutions affected both the generation ...
	Figure 6-10. Cartooned molecular diagrams (not to scale) of possible mechanisms for a) surfactant only, b) surfactant and salt, c) surfactant and dextrose, and d) surfactant, salt, and dextrose.
	7 Introduction to a New, Novel Dielectrophoretic Technique, Reverse Insulator Dielectrophoresis (riDEP)
	This work will be submitted to Biomicrofluidics or similar.
	7.1 Introduction
	This work explored the development of a new dielectrophoretic technique for multiplexing/parallel experimentation of cells or particles that utilized droplets in microfluidic channels to shape non-uniform electric fields. Dielectrophoresis (DEP) emplo...
	In a uniform field with a symmetric AC waveform, induced polarizations average out over time such that no net electrical forces act on the particles and no particle motion is observed [34]. When multiple particles are in close proximity, their induced...
	The complex quantity K(() has an imaginary component out of phase with the applied electric field while the real component is in phase [264]. The imaginary component manifests as a particle torque in electrorotation measurements [139, 140, 282-286]. T...
	FDEP is also dependent upon the electric field gradient squared, ∇,,𝐸.-𝑟𝑚𝑠-2., which means significant forces can be exerted on particles at relatively low voltages [199]. This DEP force pushes particles toward regions of high electric field or lo...
	When translating homogeneous particle theory into the much more complex cellular dielectrophoretic theory, cell structure and composition directly correlate with the electrical properties influencing cell polarization.  Effective polarizability is dep...
	This work introduces for the first time a new twist on insulator dielectrophoresis where the aqueous-in-oil droplets shape the electric field, replacing and advancing beyond static insulator geometries. A challenge when combining dielectrophoresis wit...
	Polystyrene bead and human red blood cell (RBC) dielectrophoretic responses were used to explore the novel riDEP technique described herein. Before adding complex particles/cells into a system, many researchers benchmark new dielectrophoretic devices ...
	Prior research in this research group, (M.D.-ERL has 1) experimentally quantified the DEP response of all ABO-Rh blood types (example in Figure 7.2), 2) definitively determined through selective antigen removal, the role of ABO antigens in dielectroph...
	In summary, dielectrophoresis has not previously been demonstrated within droplets. This work builds upon dielectrophoresis demonstrated around an oil interface protruding into an aqueous channel [287], which adds credence to this work exploring aqueo...

	7.2 Materials and Methods
	7.2.1 Chemical Reagents, Particles, and Cell Preparation
	Aqueous-in-oil droplets, seeded with particles, were generated in a microfluidic T-junction using custom fabricated PDMS devices. The continuous oil phases were 0.33, 0.66, 1, 1.75, or 2 mM Krytox FSH 157 (Dupont, Wilmington, DE), a perfluoropolyether...
	A single continuous and dispersed phase combination was employed for the exploratory dielectrophoresis experiments. 1 mM Krytox in FC-40 was used as the continuous phase and 0.1 S/m PBS and dextrose seeded with particles or cells was used as the dispe...
	Table 7-1. Amounts of each component in each aqueous phase solution

	7.2.2 Microfluidic Device
	The microfluidic device contained the following geometric parameters; a 50 µm wide dispersed phase channel joined a 100 µm wide continuous phase channel, both 70 µm tall and 3.5 mm in length arranged into a perpendicular T-junction. The continuous pha...
	To connect the platinum electrodes to an external electric field source (AC generator, Agilent, Santa Clara, CA) silver conductive epoxy (MGChemicals, Surrey, B.C., Canada) was used to bond copper wires to the platinum wires as shown in Figure 3.2. Th...

	7.2.3 Experimental Set-up
	Before beginning experiments, two pretreatment steps were completed to facilitate smooth dispersed and continuous phase flow through the microfluidic device. The first step was to ensure hydrophobic channels (detailed in Appendix A). Rain-X® (ITW Glob...
	Both the aqueous and oil solutions were withdrawn into 3 mL syringes (Becton Dickinson, Franklin Lakes, NJ). The syringes were connected to the microdevice via 360 micron polyether ether ketone (PEEK) tubing (Labsmith) and T-connectors. The microdevic...
	For the dielectrophoretic experiments, droplets were either allowed to flow through the microchamber while the electric field was applied (continuous configuration) or flow was halted such that the droplets were stationary when the electric field was ...

	7.2.4 Data Collection and Analysis
	Experiments were observed and recorded using the UScope software (Labsmith). The collected data was then analyzed using ImageJ, a free image analysis program from the National Institute of Health [226]. Electric field stability was analyzed by observi...


	7.3 Results and Discussion
	7.3.1 Droplet Stability within an Applied Electric Field
	The voltage at which electrocoalescence began to be observed was recorded as a function of dispersed phase conductivity, continuous phase surfactant concentration, and frequency, as shown in Figure 7.3. For multiple conditions, no electrocoalescence w...
	In summary, the voltage that caused electrocoalescence increased with increasing frequency. Increased dispersed phase conductivity decreased the voltage needed for electrocoalescence. Both of these trends are consistent with literature [219, 220]. In ...

	7.3.2 Polystyrene beads
	A completed electric circuit was verified as previously described, then the chamber was packed with 6 µm polystyrene bead-seeded aqueous droplets 100 to 300 µm in diameter. Note that this preliminary data was completed before stability experiment opti...

	7.3.3 Red Blood Cells
	Human red blood cells were seeded into the 0.1 S/m PBS and dextrose solution and droplets were generated using the 1 mM Krytox in FC-40 solution since this surfactant range yielded the most stable droplets in the electrocoalescence screening experimen...
	Droplets were formed by using the syringe pump or by hand and the flow of droplets through the chamber was halted by applying pressure to the inlets/outlets by hand. Droplets were successfully generated, packed, and stopped within the chamber as shown...
	These results, although preliminary in nature, demonstrate that utilizing the non-uniform electric fields within droplets can induce cell polarization.  In short, these preliminary results provide evidence that riDEP is feasible.


	7.4 Conclusions
	Conceptually envisioned reverse insulator dielectrophoresis, riDEP, was investigated by 1) mapping out droplet stability in electric fields from 1-10 Vpp and 100-1000 kHz, 2) observing the response of 6 um PS particles in solutions with conductivities...
	Droplet stability in an applied electric field was a function of dispersed phase conductivity, continuous phase surfactant concentration, frequency, and voltage. The results of this work start building a map of the operating windows possible for riDEP.
	PS particle DEP responses were observed and demonstrated pearl chaining as well as the translation to the center of the droplet indicating negative dielectrophoresis, which is consistent with theory predictions of polystyrene beads in low conductivity...
	RBC interrogations demonstrated slow dielectrophoretic responses. This indicates that the electric field was shaped by the droplet interfaces, however the voltage drop within the droplets is likely weak.  One plausible explanation is that the droplet ...
	This challenge can be approached in the following manner: 1) interrogate additional particle types, polystyrene beads (of various sizes) and human red blood cells, based on their known dielectrophoretic properties and predictability because both the e...


	Figure 7-1. Electric field gradient (color map slices) within a 1 S/m aqueous 100 μm diameter droplet surrounded by 10-8 S/m oil.  A 20 V DC potential is applied from one pole and grounded on the opposite pole. The electric field gradient is greatest ...
	Figure 7-2. Dielectric spectra of O+, A+, A-, B+, B- and AB- red blood cells in 0.1 S/m subjected to a 2.5 Vpp AC signal swept from 0.1 to 1 MHz and back to 0.1 MHz. This demonstrates the subtleties of RBC DEP responses by ABO antigen expression. Data...
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	Figure 7-3. Voltage, as a function of frequency (x-axis) and surfactant concentration (different color data markers) in the continuous oil phase, that caused electrocoalescence for a) 1.0 S/m, b) 0.5 S/m, c) 0.1 S/m, and d) 0.05 S/m conductivity PBS a...
	Figure 7-4. (a) Platinum wire electrodes (100 μm) were sealed between PDMS and glass slide, then used to apply a 10 Vpp, 100 kHz electric field across the chamber of 1 S/m aqueous droplets in 10-8 S/m silicon oil. (b) Image of 6 μm polystyrene particl...
	Figure 7-5. a) Red blood cells seeded into 0.1 S/m PBS and dextrose solution and packed within a microfluidic chamber. Successful droplet packing was observed. RBCs are shifted to the right from droplet generation due to the lower viscosity within the...
	8 Electrical and Chemical Characterizations of Hafnium (IV) Oxide Films for Biological Lab-on-a-Chip Devices
	Reverse insulator dielectrophoresis uses immiscible phases to shape a non-uniform electric field. Because there is a layer of oil between the electrodes and the aqueous sample phase, the samples are isolated/protected from the electrodes. For applicat...
	Abstract: Many biological lab-on-a-chip applications require electrical and optical manipulation as well as detection of cells and biomolecules.  This provides an intriguing challenge to design robust microdevices that resist adverse electrochemical s...
	8.1 Introduction
	8.1.1 Electrode Isolation in Lab-on-a-Chip Technology
	Lab-on-a-chip (LOC) technologies and applications are continually expanding with an emphasis on electrical manipulations for chemical/biological detection.  LOCs are prevalent in point-of-care clinical diagnostics due to the small sample and reagent v...
	Creative strategies to achieve electrode and target sample isolation include remote positioning of electrodes, membrane isolation, and passivation layers.  In dielectrophoretic applications, insulating structures within channels replace embedded micro...

	8.1.2 Choosing a Passivation Layer
	In electronics, high dielectric constant passivation in capacitors, resistors, and transistors improves performance during miniaturization.  This knowledge can be translated into LOC applications bridging electronics and fluidics.  The most common hig...
	In LOC devices, passivation materials must withstand mechanical/chemical stresses and not interfere with electric field characteristics or detection schemas at fluidic interfaces [303]. Passivation layer characteristics frequently assessed  are dielec...
	Biological LOCs require films with optical transparency and biocompatibility.  Optical transparency within LOCs enables optical detection techniques such as absorbance, reflectance, fluorescence, and chemiluminescence,  among others [307]. Common bioc...

	8.1.3 Hafnium Oxide (HfO2)
	Advantageous properties of hafnium oxide (HfO2) include its chemical stability, high dielectric constant (20-25), wide band gap (5.8 eV), conduction band offset (1.4 eV), optical transparency from 300 to 10,000 nm in the electromagnetic spectrum, and ...
	Hafnium oxide’s utilization for biological applications is increasing, especially within nanopore and nanowire structures. HfO2 increased the sensitivity of silicon-based multi-nanowires for DNA and protein detection due to its chemical stability, pH ...
	Table 8-1: Hafnium oxide in biological applications

	8.1.4 Deposition and Characterization of Hafnium Oxide (HfO2)
	Optical and electrical properties of HfO2 are affected by crystallography, microstructure, integral stoichiometry, binding states, morphology, contamination, and defect density [309], making HfO2 deposition important. For very thin films, industry typ...
	Table 8-2: Non-sputter deposition techniques and HfO2 characterization
	Deposition parameters affecting HfO2 film properties include temperature, pressure, voltage, plasma composition, and annealing [299, 301, 313]. Tables 8.2 and 8.3 contain the deposition methods, characterization methods, and substrates used to determi...
	To expand knowledge of HfO2 performance for biological LOC technologies, this work explored HfO2 deposition and characterization for isolating electrodes from aqueous,
	Table 8-3: Sputter deposition parameters and HfO2 characterization
	a This paper T=Temperature, BP=Base Pressure, DP=Deposition Temperature, DT=Deposition Time, CM=Characterization Methods
	b Papers that reported the target used: all ≥99.9% hafnium oxide or hafnium metal target       c Annealing temp. 350, 550, 750  C
	d Annealing temp. 300, 600, 900  C        e Study of SiOx formation at HfO2/Si interface       f 40 kHz pulse, 70% duty factor, study of atomic O2 treatment
	biological samples.  Three HfO2 thicknesses were sputter deposited on both opaque silicon and transparent glass substrates.  HfO2 characterizations included AFM, XRD, energy dispersive X-ray spectroscopy field emission scanning electron microscopy (ED...


	8.2 Materials & Methods
	8.2.1 Hafnium Oxide Deposition
	Hafnium oxide thin films were deposited on four types of substrates: 500 µm thick (100) oriented single side polished (SSP) and 500 µm thick double side polished (DSP) 10 (-cm resistivity silicon wafers, 75x25x1(0.1 mm soda lime glass microscope slide...
	Surface cleaning processes used in LOC fabrication were compared in Section 3.1 by cleaving HfO2 coated substrates into three pieces: as-deposited control, oxygen plasma treatment, and Piranha treatment. The oxygen plasma treatment was performed via R...

	8.2.2 Hafnium Oxide Characterization
	8.2.2.1 Atomic Force Microscopy
	Structural properties and morphology of the HfO2 films were examined on both DSP silicon and soda lime glass substrates, with pre- and post-oxygen plasma and Piranha treatments. A Veeco Dim 3000 atomic force microscope (Plainview, NY) in tapping mode ...
	8.2.2.2 X-Ray Diffraction
	Because the film crystal structure and size can affect the film’s optical and electric properties, the bulk morphology of the deposited HfO2 was further explored with XRD for different deposition times on SSP silicon and soda lime glass substrates.  X...
	8.2.2.3 Energy Dispersive X-Ray Spectroscopy and Fourier Transform Infrared Spectroscopy
	Film thickness, morphology, and composition were measured via field emission scanning electron microscopy (FE-SEM, Hitachi S-4700, Tarrytown, NY) at 20 keV and 200k magnification. A sputtered carbon coating on the HfO2 films prevented charging to obta...
	8.2.2.4 Spectroscopic Ellipsometry
	Thickness and optical characterizations were completed via spectroscopic ellipsometry for all deposition times and substrates.  Each film was scanned across 400 to 1000 nm wavelengths at angles of 65 , 70 , and 75  to measure the ellipsometric paramet...
	8.2.2.5 Capacitance-Voltage
	Capacitance-voltage measurements were used to extract the film dielectric constant. Experiments were conducted using a series of 1000-2000 µm circles that had an Al/HfO2 (6.5-minute deposition)/Al configuration, as shown in Figure 9.5. A HfO2 film was...
	8.2.2.6 Simulations
	Along with the determination of the dielectric constant of the HfO2 films, COMSOL Multiphysics (Burlington, MA, USA) simulation software was used to model HfO2 electrical isolation of the electrodes from the fluidic layer.  Electric potential distribu...
	Table 8-4. Material properties and parameters employed for electric potential simulations.
	8.2.2.7 Biocompatibility
	In addition to physical, optical, and electrical properties, the deposited film biocompatibility was investigated.  Healthy red blood cells (RBCs) were contacted with HfO2 films, and the extent of hemolysis was determined by measuring the absorbance o...
	,𝐴𝑏-𝑓𝑟𝑒𝑒 ℎ𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛.=2×,𝐴-415.−(,𝐴-380.+,𝐴-450.)     (9.1)
	% ℎ𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠=,,𝐴𝑏-𝑓𝑟𝑒𝑒 ℎ𝑒𝑚𝑜𝑔𝑙𝑜𝑏𝑖𝑛. 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒-,𝐴𝑏-𝑓𝑟𝑒𝑒 ℎ𝑒𝑚𝑜𝑏𝑙𝑜𝑏𝑖𝑛. 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙.×100%    (9.2)


	8.3 Results & Discussion
	Diverse characterization techniques were utilized to investigate the effectiveness of hafnium oxide properties as a passivation layer for biological LOC devices.  Morphology/crystallinity was measured and compared via AFM and XRD. Composition was meas...
	8.3.1 Atomic Force Microscopy
	Surface morphology of the deposited HfO2 was studied via AFM. Topographical images for three HfO2 film thicknesses are shown in Figure 8.1, organized by columns to compare as-prepared films to piranha-treated films with rows organized to allow compari...
	For the 20 minute HfO2 depositions, roughness (RMS) on the silicon substrate was 12.4±0.7 nm as compared to 4.5±0.4 nm on the glass. Comparable literature values for RMS roughness increased from 5 to 12 nm for 13-minute depositions on silicon films wi...

	8.3.2 X-Ray Diffraction
	X-ray diffraction was used to expand the grain analysis investigating the crystalline structure of the HfO2 films.  Figure 8.2 shows the effect of HfO2 deposition time, and thus thickness, on the XRD pattern for SSP silicon and soda lime glass substra...
	As the film thickness increased on silicon, more planes were observed.  Both the 13 and 20-minute depositions showed peaks (34.21  and 35.7 ) corresponding to the (200) plane, and the 20-minute deposition showed an additional peak (50.8 ) correspondin...
	HfO2 roughness and crystallite size differed between glass and silicon. The XRD results for the 20-minute deposition on glass and the 6.5-minute deposition on silicon yielded the same orientation of (111) with roughness and crystallite size 78% and 81...

	8.3.3 Energy Dispersive X-ray Spectroscopy and Fourier Transform Infrared Spectroscopy
	Once grain size was determined, energy dispersive X-ray spectroscopy was done at both 20 kV and 5 kV to determine the composition of two HfO2 films: 13 minutes on DSP silicon and 20 minutes on soda lime glass.  Figure 8.3a shows the EDS spectra using ...
	Films were also scanned using FTIR to investigate composition.  No peaks were observed at wavenumbers greater than 1300 cm-1; therefore the data was truncated to 400-1300 cm-1 as shown in Figure 8.3b. The sharp peak at 670 cm-1 was a C-O chemical bond...

	8.3.4 Spectroscopic Ellipsometry
	Spectroscopic ellipsometry measurements included inference of each deposited HfO2 film thickness from silicon and glass model fits as well as refractive index and extinction coefficient as shown in Figure 8.4 and Table 8.5.  Figure 8.4 illustrates a r...
	Table 8-5: Ellipsometry results for different HfO2 deposition times
	The MSE values for the 6.5 and 20-minute depositions on silicon indicated good model fits [338]. The Cauchy dispersion relationship, which assumed isotropic material, was used as the primary model and the thinnest film followed the trend of previously...
	Both the 13 and 20-minute depositions contained a characteristic ψ absorption peak around 3400 nm. The 20-minute deposition contained an addition ψ peak around 5700 nm, which indicated another resonance mode due to the thicker film thickness.  The thi...
	As shown in Table 8.5, SE modeled refractive index (n) for wavelengths from 400 nm to 1000 nm and varied around 2, consistent with literature [308, 313]. Refractive index profiles for each film thickness were not identical as a function of wavelength ...

	8.3.5 Capacitance-Voltage
	Capacitive measurements were collected at 100 kHz for applied potentials from -5V to 5V. However, due to the thickness, the HfO2 films could not be fully depleted, and therefore no modulation was observed. Figure 8.5a-d depicts fabrication for the uti...

	8.3.6 Simulations
	Once HfO2 material properties were determined, AC electrostatics simulations were used to investigate the electrical passivation of different thicknesses of HfO2 over frequencies from 10 to 10000 kHz.  Simulations were performed for both silicon and b...
	For all cases, the electric field penetrated the passivation layer yet varied with HfO2 thickness and frequency.  At frequencies below 10 kHz, HfO2 suppressed half of the applied electric potential regardless of thickness. A similar but opposite behav...

	8.3.7 Biocompatibility
	HfO2 film hemocompatibility was evaluated by exposing red blood cells in an isotonic 0.9 w/v% NaCl solution to a 20 x 20 mm borosilicate glass substrate coated with HfO2 for up to 5 hours and measuring the amount of free hemoglobin in the supernatant ...


	8.4 Conclusions
	Sputter-deposited hafnium oxide films of three different deposition times, 6.5, 13, and 20-minutes, were fabricated and characterized for use as a passivation layer in a biological electrokinetic microdevice system requiring sufficient optical transpa...
	Ellipsometry thicknesses of 58, 127, and 239 nm were determined for the 6.5, 13, and 20-minute depositions on silicon, respectively. The models included a SiO2 interfacial layer and resulted in mean square errors of 0.54, 52, and 7.727 for the 6.5, 13...
	Refractive index and extinction coefficient of the HfO2 films were also determined from the ellipsometry data. For all three thicknesses, the refractive index was near the expected value of 2 from the literature [308, 313] and the extinction coefficie...
	CV measurements were used to calculate dielectric constant as a function of film area for the 6.5-minute deposition. The resulting average dielectric constant was 20.32, which is close to the expected value of 25 [302].  The dielectric constant of HfO...
	COMSOL electrostatic simulations were utilized to further explore electric field behaviors through and around the HfO2 films. Results demonstrated HfO2 films of 78, 156, and 240 physically passivated the electrodes and enabled the electric field to pe...
	For biological LOC applications, biocompatibility was tested via standard hemolytic potential protocols with human RBCs. When exposed to HfO2 for up to 5 hours, less than 1.5% RBC lysis occurred, demonstrating that HfO2 can be used with minimal reserv...
	Implications of this work include increased HfO2 structural, optical, and electrical film property knowledge as a function of film thickness.  These attributes, along with the biocompatibility characteristic are highly useful for LOC applications invo...


	Figure 8-1. AFM images of three different HfO2 thicknesses deposited on soda lime glass (a-b) and DSP silicon (c-h) substrates before and after a 5-minute Piranha treatment. The substrate utilized effected grain size with the thickest, 20-minute depos...
	Figure 8-2: XRD pattern for 6.5, 13, and 20-minute depositions on SSP silicon and a 20-minute deposition on soda lime glass. All spectra exhibit the characteristics peak of (111) plane at 28.47 ; however, as the thickness of the HfO2 film increases mo...
	Figure 8-3: a) EDS analysis at 20kV of the 13-minute HfO2 film on DSP silicon and the 20-minute HfO2 film on soda lime glass confirming stoichiometric deposition for HfO2. b) Transmission mode FTIR analysis of the HfO2 deposited on a 20 Ωcm DSP silico...
	Figure 8-4: Ellipsometry a) psi and b) delta waves for an angle of 70  for HfO2 measured on silicon for all three deposition times: 6.5, 13, and 20-minutes yielding 58, 127, and 239 nm thicknesses with MSEs of 0.5411, 52, and 7.727, respectively. Meas...
	Figure 8-5: a-d) Microfabrication of 1000-2000 µm diameter, sandwiched (100/72/100 nm) Al/HfO2/Al pattern used for CV measurements. e) Dielectric constant as a function of area for a 6.5-minute HfO2 deposition. The average dielectric constant of 20.32...
	Figure 8-6: a) 2D geometry used for COMSOL simulations with 200 x 40 μm substrate, two 20 x 0.15 μm Au electrodes (excitation and ground), HfO2 thickness (t = 78, 156, and 240 nm) over the substrate and electrodes, in contact with a 200 x 70 μm 0.1 S/...
	Figure 8-7: RBC hemolysis after 1, 3, and 5 hours of exposure to borosilicate glass coated with HfO2, as well as, negative (no HfO2), and positive (1 w/v% Triton X-100) controls. This demonstrated that HfO2 is a suitable material for passivating elect...
	9 Microdevice Replication and Design Using a Water- Based Acrylic Polymer Emulsion
	Microfabrication of high-aspect-ratio SU-8 features can be a difficult process. Small changes in the processing conditions can result in wafers that only last two or three castings. This chapter describes a solution that was investigated to avoid exce...
	Abstract: Microfabrication of poly(dimethylsiloxane) (PDMS) microdevices via photolithography can be an expensive and time-consuming process. Processing materials and conditions can lead to high aspect ratio features peeling off the silicon master waf...
	9.1 Introduction
	Microfabrication can be a usage/time-intensive and costly process. Presented herein is a method of duplicating already fabricated fluidic designs, as well as prototyping microscale fluidic devices quickly and with less cost. One of the most common tec...
	The process starts by designing the microfluidic features. Then a dark field/light field mask is made with those features. Making a mask can take anywhere from a day if developing the mask in-house to up to two weeks if ordered from suppliers and can ...
	The process of fabricating a silicon master wafer takes time (~2 weeks) and money (~$300) but does not guarantee a long-lasting wafer. A silicon master wafer may only last two or three castings before the features peel off, due to poor processing cond...
	During the fabrication process, the feature sizes can change due to processing conditions.  Edge beading may occur during spin coating, resulting in non-uniform feature sizes across a silicon wafer [341]. UV-exposure during photolithography, which de...
	Due to the time and cost involved with fabricating a silicon master wafer via photolithography, a method for preserving the life of the wafer was investigated. This work was based on previous work presented by the MRSEC education group at the Universi...

	9.2 Materials and Methods
	Original Master and Poly(dimethylsiloxane) Fabrication: A 4-inch silicon master wafer with 70 micron SU-8 2075 (MicroChem, Westborough, MA) features was fabricated using previously developed soft lithography techniques [221, 222]. The features were de...
	A PDMS casting was made by mixing a 10:1 ratio of base to curing agent (Sylgard 184, Dow Corning, Auburn MI). The casting was placed in a vacuum to remove bubbles created by mixing. After bubbles were removed, the PDMS was poured over the silicon mast...
	Water Based Acrylic Polymer Emulsion Replica and Replica Poly(dimethylsiloxane): After being removed from the oven and peeled off the wafer, WBAPE molds of the original PDMS were immediately made. Two-inch inner diameter, hexagonal plastic weigh boats...
	The WBAPE was cured at atmospheric conditions and checked regularly for air bubbles; if any were present, pressure was applied to the top of the features to remove any bubbles. After the WBAPE cured, ranging from a day to a week, the original PDMS was...
	Alternate Water Based Acrylic Polymer Emulsion Uses: WBAPE was also investigated for applications including prototyping preliminary device designs, manipulating current designs by adding ports, and selecting single devices for replication on large waf...
	Characterization Methods: Original features made via the silicon wafer and replicate features made via WBAPE were imaged, measured, and compared using an SVM340 synchronized video microscope (Labsmith, Livermore, CA) at 4x magnification. Three differe...
	Feature heights and widths were measured using a Dektak 6M Stylus Profilometer (Vecco, Plainview, NY). The measurements were completed using the stylus to scan across each feature perpendicularity at a force of 5 mg and a resolution of 0.513 µm/sample...

	9.3 Hazards
	Original Master and Poly(dimethylsiloxane) Fabrication: The photolithography process includes chemical and equipment hazards. Processing was completed in a clean room requiring personal protective equipment (PPE): a bouffant cap, safety glasses with s...
	Water Based Acrylic Polymer Emulsion Replica and Poly(dimethylsiloxane):  WBAPE is non-flammable, non-reactive; the and is classified as non-toxic in the commercially available product. There are no PPE requirements associated with the handling of the...

	9.4 Results and Discussion
	To explore whether WBAPE could be utilized to reproduce microscale features, microfabricated features on a silicon wafer were cast with PDMS.  Once cured, the PDMS was pressed into WBAPE.  WBAPE successfully formed a secondary mold. Figures 9.2- 9.4 s...
	Height and width measurements were obtained with a stylus profilometer for each of the four fabrication steps; the silicon master wafer, the original PDMS casting, the WBAPE, and the replica PDMS casting. Representative raw data from the profilometer ...
	Table 9-1. Height and width measurements for each replication step. Corresponds to Figure 9.4a.
	Height differences between measurement locations I, II, and III on the silicon wafer (step 1) were due to the photolithography process and are typical with thicker photoresist spins [224, 341].  On average the height of the SU-8 features were about 1%...
	The original PDMS casting (step 2) was on average 13% smaller than the wafer with comparable variations by between locations I, II, and III. This universal shrinkage suggests that the PDMS may not have been fully cured [343], as it was in the oven for...
	All WBAPE (step 3) feature heights and widths were smaller than the original PDMS, except for the width of the small channel. The heights were 21% smaller than the designed height. While drying the interfacial tension between the WBAPE and the origina...
	The replica PDMS (step 4) displayed heights that were ~7% larger than the WBAPE. This is consistent with literature, which has shown PDMS features to increase ~10% for fully cured PDMS [343]. The replica PDMS was able to cure for at least an additiona...
	Table 9-2. Comparison of relative size (percentage). Corresponds to Figure 9.4b.
	Each step of the replication process resulted in a size change, as seen in Tables 9.1 and 9.2. After measuring each device at multiple points, on average, the replica PDMS features were 81 ± 13% of the wafer features sizes, 96 ± 23% of the original PD...
	The standard deviation of the width of the small and large channels for five castings of the same SU-8 features, measured via profilometer, were 11 and 8 microns, respectively. In the context of 50 and 100-micron features, the reproducibility of the o...
	The reproducibility of these results suggests WBAPE can be used to replicate features on a silicon wafer with microscale SU-8 features. This method is both beneficial in duplicating multiple devices in a short amount of time, as well as preserving a m...
	that the PDMS replica was smaller than the original wafer, designs can be proportionally adjusted to account for size decreases. It is important to note that depending on the feature size the profile shape of the features may differ, as seen in Figur...
	WBAPE can also be employed to add features to an existing wafer, increase the height of a chamber, add features ports, or build a barrier around a single device, such that less PDMS is required per casting. The ability to duplicate and manipulate devi...
	The entire design process, from initial design to fabricated device, can also be accomplished directly with WBAPE. Figure 9.5 depicts a comparison between traditional photolithographic methods and WBAPE. Both start by creating a design in a CAD softwa...

	9.5 Conclusions
	This work demonstrated that a low-cost, readily available water-based acrylic polymer emulsion can be used to make replications of PDMS castings and to make new designs. Replica PDMS features were made from a WBAPE mold of a PDMS casting from a microf...
	Given that high aspect ratio photolithographic features experience weaker adherence of the SU-8 features to the wafer, WBAPE has been demonstrated to be an acceptable augment to increase casting yields and reduce the frequency with which new silicon w...
	In addition to replicating PDMS features from traditional microfabrication, WBAPE was investigated for testing new device designs. The photolithography process is highly reproducible and accurate but takes more time and resources than the WBAPE proces...


	Figure 9-1. Flow diagram of the fabrication and replication process. The process began with a blank wafer, which underwent photolithography to create a master wafer (A) with SU-8 photoresist features. PDMS was then cast and baked over the features bef...
	Figure 9-2. Schematic showing three measurement locations using a profilometer.  Mask design dimensions were small channel: I = 50 µm, large channel: II = 100 µm, and chamber: III = 1500 µm. Measurements were completed on the A) wafer, B) original PDM...
	Figure 9-3. Comparison of the small and large channels (I and II in Figure 9.2) for the four fabrication steps (A, B, C, and D in Figure 9.1) under 4x magnification: A) silicon wafer with SU-8 features made via photolithography, B) original PDMS casti...
	Figure 9-4. a) Profilometer results of each measurement location for each fabrication step (see Figure 9.1): A = master silicon wafer, B = original PDMS, C = WBAPE replica, and D = replica PDMS. The chamber width (Wc) was the least changed by each ste...
	Figure 9-5. Design process comparison between traditional photolithography and WBAPE. Both begin by creating a design in CAD software and then translating into three-dimensional features. PDMS castings are made of the features, removed and bonded to g...
	10 Future Work
	The work in this dissertation revealed differing droplet stability windows as a function of droplet composition and applied electric field. A novel combination of droplet microfluidics and insulator dielectrophoresis, reverse insulator dielectrophores...
	10.1  Purpose and Motivation
	One of the key limitations to current DEP devices is the amount of time it takes to generate DEP frequency spectra curves. This project aims to eliminate this by implementing parallel experimentation. Utilizing droplet microfluidics for parallelizatio...

	10.2  Background on Other Methods
	As previously discussed in Sections 2.1.1 and 2.1.2, droplet microfluidics provides a platform for multiplexation by generating isolated microenvironments. However, it is limited in the number of phases/conditions that can be tested at once. Gradients...

	10.3  Multiplexing in Microdevices via Microfluidic Tree Structures
	Microfluidic tree structures provide means of multiplexing experiments by joining streams together from the ‘branch’ channels into a larger ‘trunk’ channel. This is feasible to accomplish with negligible mixing between streamlines since flow is solidl...

	10.4  Experimental Plan
	Multiple devices have been designed to approach multiplexation incrementally. The goal is to concurrently generate droplets with varying aqueous phase compositions, and stably pack the droplets into a slowly flowing electrokinetic chamber for real-tim...

	10.5  Implications

	Figure 10-1. The potential impact of the new technique, riDEP, on reducing the amount of time needed to complete experiments by up to 93% when multiplexed.
	Figure 10-2. Conceptual drawing of a microfluidic tree structure used to generate droplets of varying concentrations, pH, or cell composition. Top inset illustrates that via laminar flow, the droplet alignment into a chamber region retains relative po...
	Figure 10-3. Conceptual drawing of a microfluidic tree structure used to generate droplets of varying concentrations, pH, or cell composition. Top inset illustrates that via laminar flow, the droplet alignment into a chamber region retains relative po...
	Knowledge from all prior objectives and tasks culminate in this final research task. This will be the true test of the versatility and power of the envisioned, novel r-iDEP technique. First particles, and then a single RBC blood type seeded into varyi...
	11 Conclusions
	This dissertation combined principles of droplet microfluidics and insulator dielectrophoresis to create a microdevice for parallel characterization of particles/cells via droplet microfluidics. Dielectrophoresis is a fast, noninvasive, and nondestruc...
	11.1 Implications of stabilizing a droplet microfluidic system via surfactants/additives
	The first main objective, to experimentally generate monodisperse droplets 100-200 µm in diameter and pack them into a microfluidic chamber, was split into two main aims. The first engineering-based aim, was to design and fabricate a microdevice with ...
	The second, science-based aim, was to study the effect of chemical additives on the two-fluid system. Three surfactants, two oil phases, and thirteen aqueous phases were investigated. First, the oil phase and surfactant were optimized for the T-juncti...
	The effect of aqueous phase composition on droplet generation and packing was investigated. The droplet size at generation, the observed generation regime, the stability entering the chamber, and the coefficient of variance were tracked for each aqueo...
	The addition of dextrose also had an observable effect on the droplet interfacial equilibrium. At low surfactant concentrations, droplet size increased indicating an increase in interfacial tension. At high surfactant concentrations, the presence of d...

	11.2 Implications of Introduction to a new, novel dielectrophoretic technique, Reverse Insulator Dielectrophoresis
	The second objective of this project, achieving reverse insulator dielectrophoresis within droplets, was broken down into three main aims, one engineering based and two science-based. The first, engineering-based aim of objective two was to design and...
	The second, science-based aim of the second main objective was to study the effect of the electric field on droplet stability. It is important that the droplets stay intact for the parallel DEP experiments within droplets. Experiments showed that drop...
	The third, science-based aim of the second main objective was to seed particles/cells into the droplets in order to conduct riDEP characterizations. Three-dimensional simulations in the third objective demonstrated both positive and negative dielectro...

	11.3 Simulations to explore the feasibility of a new, novel dielectrophoretic technique, Reverse Insulator Dielectrophoresis
	For objective three, two and three-dimensional simulations demonstrated the potential for aqueous droplets, surrounded by insulative oil, to shape non-uniform electric fields and thus generate the electric field gradients necessary for dielectrophores...
	Three-dimensional simulations demonstrated both positive and negative dielectrophoresis in agreement with theory. The electric field gradient was greatest at the poles, or the points of contact between droplets where the electric field traverses from ...

	11.4 Implications of Hafnium Oxide as a Material to Physically Isolate Samples from Electrodes
	Reverse insulator dielectrophoresis uses immiscible phases to shape a non-uniform electric field. Because there is a layer of oil between the electrodes and the aqueous sample phase, the samples are isolated/protected from the electrodes. In this seco...

	11.5  Implications of Puffy Paint as a Fabrication Tool
	The high aspect ratios used in this work to create the necessary microfluidic channels proved challenging to microfabricate with limited shelf-life of the resulting silicon wafer masters. This secondary objective involved investigating Puffy Paint, a ...

	11.6  Implications of Multiplexing riDEP with a microfluidic tree structure
	A microfluidic tree structure has the potential, when coupled with the riDEP approach, to enable further multiplexing of cellular DEP characterizations. The microfluidic tree enables multiple different solutions to be pumped into T-junctions and gener...

	11.7  Broader Implications
	This dissertation discussed a combination of three microfluidic techniques; droplet microfluidics, dielectrophoresis, and microfluidic tree structures, for the goal of reducing the number of experiments required for dielectrophoretic characterizations...


	12 Reference List
	[1] M. Zagnoni, J. Anderson, J.M. Cooper, Hysteresis in Multiphase Microfluidics at a T-Junction, Langmuir, 26 (2010) 9416-9422.
	[2] E. Fradet, C. McDougall, P. Abbyad, R. Dangla, D. McGloin, C.N. Baroud, Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays, Lab on a Chip, 11 (2011) 4228-4234.
	[3] M. Nasabi, K. Khoshmanesh, F.J. Tovar-Lopez, K. Kalantar-Zadeh, A. Mitchell, Dielectrophoresis with 3D microelectrodes fabricated by surface tension assisted lithography, Electrophoresis, 34 (2013) 3150-3154.
	[4] S.K. Srivastava, A. Gencoglu, A.R. Minerick, DC insulator dielectrophoretic applications in microdevice technology: a review, Analytical and Bioanalytical Chemistry, 399 (2011) 301-321.
	[5] A. Abate, D. Weitz, Faster multiple emulsification with drop splitting, Lab on a chip, 11 (2011) 1911-1915.
	[6] M. Chabert, K. Dorfman, J.-L. Viovy, Droplet fusion by alternating current (AC) field electrocoalescence in microchannels, Electrophoresis, 26 (2005) 3706-3715.
	[7] K. Khoshmanesh, S. Nahavandi, S. Baratchi, A. Mitchell, K. Kalantar-zadeh, Dielectrophoretic platforms for bio-microfluidic systems, Biosensors & bioelectronics, 26 (2011) 1800-1814.
	[8] P. Abbyad, R. Dangla, A. Alexandrou, C.N. Baroud, Rails and anchors: guiding and trapping droplet microreactors in two dimensions, Lab on a Chip, 11 (2011) 813-821.
	[9] C. Iliescu, G.L. Xu, V. Samper, F.E.H. Tay, Fabrication of a dielectrophoretic chip with 3D silicon electrodes, Journal of Micromechanics and Microengineering, 15 (2005) 494-500.
	[10] H.Y. Geng, J. Feng, L.M. Stabryla, S.K. Cho, Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets, Lab on a Chip, 17 (2017) 1060-1068.
	[11] C. Priest, S. Herminghaus, R. Seemann, Controlled electrocoalescence in microfluidics: Targeting a single lamella, Applied physics letters, 89 (2006).
	[12] C.H.J. Schmitz, A.C. Rowat, S. Koster, D.A. Weitz, Dropspots: a picoliter array in a microfluidic device, Lab on a Chip, 9 (2009) 44-49.
	[13] E. Um, M.E. Rogers, H.A. Stone, Combinatorial generation of droplets by controlled assembly and coalescence, Lab on a Chip, 13 (2013) 4674-4680.
	[14] A.J. deMello, Control and detection of chemical reactions in microfluidic systems, Nature, 442 (2006) 394-402.
	[15] G.J.M. Bruin, Recent developments in electrokinetically driven analysis on microfabricated devices, Electrophoresis, 21 (2000) 3931-3951.
	[16] L. Oconnor, MEMS - MICROELECTROMECHANICAL SYSTEMS, Mechanical Engineering, 114 (1992) 40-47.
	[17] G.M. Whitesides, The origins and the future of microfluidics, Nature, 442 (2006) 368-373.
	[18] D.R. Walt, Miniature analytical methods for medical diagnostics, Science, 308 (2005) 217-219.
	[19] G.M. Whitesides, The origins and the future of microfluidics, Nature, 442 (2006) 368-373.
	[20] K.-H. Han, R.D. McConnell, C.J. Easley, J.M. Bienvenue, J.P. Ferrance, J.P. Landers, A.B. Frazier, An active microfluidic system packaging technology, Sensors and Actuators B-Chemical, 122 (2007) 337-346.
	[21] M.A. Burns, Analytic chemistry: Everyone's a (future) chemist, Science, 296 (2002) 1818-1819.
	[22] E.D. Pratt, C. Huang, B.G. Hawkins, J.P. Gleghorn, B.J. Kirby, Rare cell capture in microfluidic devices, Chemical Engineering Science, 66 (2011) 1508-1522.
	[23] H. Shafiee, J.L. Caldwell, R.V. Davalos, A Microfluidic System for Biological Particle Enrichment Using Contactless Dielectrophoresis, Jala, 15 (2010) 224-232.
	[24] A. Salmanzadeh, L. Romero, H. Shafiee, R.C. Gallo-Villanueva, M.A. Stremler, S.D. Cramer, R.V. Davalos, Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature, Lab on a Chip, 12 (2012) 182-189.
	[25] J. Zhu, X. Xuan, Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels, Biomicrofluidics, 5 (2011) 24111.
	[26] B.H. Lapizco-Encinas, M. Rito-Palomares, Dielectrophoresis for the manipulation of nanobioparticles, Electrophoresis, 28 (2007) 4521-4538.
	[27] R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Droplet based microfluidics, Reports on Progress in Physics, 75 (2012).
	[28] S.J. Zeng, X. Liu, H. Xie, B.C. Lin, Basic Technologies for Droplet Microfluidics, in: B.C. Lin (Ed.) Microfluidics: Technologies and Applications, Place Published, 2011, pp. 69-90.
	[29] S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Droplet microfluidics, Lab on a Chip, 8 (2008) 198-220.
	[30] C.F. Ivory, Several new electrofocusing techniques, Electrophoresis, 28 (2007) 15-25.
	[31] N. Piacentini, G. Mernier, R. Tornay, P. Renaud, Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation, Biomicrofluidics, 5 (2011).
	[32] F. Camacho-Alanis, L. Gan, A. Ros, Transitioning streaming to trapping in DC insulator-based dielectrophoresis for biomolecules, Sensors and Actuators B-Chemical, 173 (2012) 668-675.
	[33] N.M. Jesus-Perez, B.H. Lapizco-Encinas, Dielectrophoretic monitoring of microorganisms in environmental applications, Electrophoresis, 32 (2011) 2331-2357.
	[34] R. Pethig, Review Article-Dielectrophoresis: Status of the theory, technology, and applications, Biomicrofluidics, 4 (2010).
	[35] P. Singh, N. Aubry, Transport and deformation of droplets in a microdevice using dielectrophoresis, Electrophoresis, 28 (2007) 644-657.
	[36] A.R. Minerick, The rapidly growing field of micro and nanotechnology to measure living cells, AIChE Journal, 54 (2008) 2230-2237.
	[37] E. Livak-Dahl, I. Sinn, M. Burns, Microfluidic Chemical Analysis Systems, in: J.M. Prausnitz (Ed.) Annual Review of Chemical and Biomolecular Engineering, Vol 2, Place Published, 2011, pp. 325-353.
	[38] S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using "flow focusing" in microchannels, Applied Physics Letters, 82 (2003) 364-366.
	[39] S.L. Anna, H.C. Mayer, Microscale tipstreaming in a microfluidic flow focusing device, Physics of Fluids, 18 (2006).
	[40] W. Lee, L.M. Walker, S.L. Anna, Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing, Physics of Fluids, 21 (2009).
	[41] W. Lee, L.M. Walker, S.L. Anna, Competition Between Viscoelasticity and Surfactant Dynamics in Flow Focusing Microfluidics, Macromolecular Materials and Engineering, 296 (2011) 203-213.
	[42] V. Taly, D. Pekin, A. El Abed, P. Laurent-Puig, Detecting biomarkers with microdroplet technology, Trends in Molecular Medicine, 18 (2012) 405-416.
	[43] A.R. Abate, C.H. Chen, J.J. Agresti, D.A. Weitz, Beating Poisson encapsulation statistics using close-packed ordering, Lab on a Chip, 9 (2009) 2628-2631.
	[44] E.Y. Basova, F. Foret, Droplet microfluidics in (bio)chemical analysis, Analyst, 140 (2015) 22-38.
	[45] M. Chabert, J.L. Viovy, Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells, Proceedings of the National Academy of Sciences of the United States of America, 105 (2008) 3191-3196.
	[46] F. Courtois, L.F. Olguin, G. Whyte, D. Bratton, W.T.S. Huck, C. Abell, F. Hollfelder, An integrated device for monitoring time-dependent in vitro expression from single genes in picolitre droplets, Chembiochem, 9 (2008) 439-446.
	[47] C. Holtze, A.C. Rowat, J.J. Agresti, J.B. Hutchison, F.E. Angile, C.H.J. Schmitz, S. Koster, H. Duan, K.J. Humphry, R.A. Scanga, J.S. Johnson, D. Pisignano, D.A. Weitz, Biocompatible surfactants for water-in-fluorocarbon emulsions, Lab on a Chip,...
	[48] E. Um, S.G. Lee, J.K. Park, Random breakup of microdroplets for single-cell encapsulation, Applied Physics Letters, 97 (2010).
	[49] H.B. Yin, D. Marshall, Microfluidics for single cell analysis, Current Opinion in Biotechnology, 23 (2012) 110-119.
	[50] O.E. Shklyaev, A.Q. Shen, Microfluidics enhanced control of the microstructure and flow of complex fluids, Mechanics Research Communications, 36 (2009) 121-124.
	[51] L.R. Shang, Y. Cheng, J. Wang, H.B. Ding, F. Rong, Y.J. Zhao, Z.Z. Gu, Double emulsions from a capillary array injection microfluidic device, Lab on a Chip, 14 (2014) 3489-3493.
	[52] M.J. Fuerstman, P. Garstecki, G.M. Whitesides, Coding/decoding and reversibility of droplet trains in microfluidic networks, Science, 315 (2007) 828-832.
	[53] W. Zeng, I. Jacobi, S.J. Li, H.A. Stone, Variation in polydispersity in pump- and pressure-driven micro-droplet generators, Journal of Micromechanics and Microengineering, 25 (2015).
	[54] P.A. Zhu, L.Q. Wang, Passive and active droplet generation with microfluidics: a review, Lab on a Chip, 17 (2017) 34-75.
	[55] M. Joanicot, A. Ajdari, Applied physics - Droplet control for microfluidics, Science, 309 (2005) 887-888.
	[56] J. Dai, H.S. Kim, A.R. Guzman, W.B. Shim, A. Han, A large-scale on-chip droplet incubation chamber enables equal microbial culture time, Rsc Advances, 6 (2016) 20516-20519.
	[57] A. Golberg, M.L. Yarmush, T. Konry, Picoliter droplet microfluidic immunosorbent platform for point-of-care diagnostics of tetanus, Microchimica Acta, 180 (2013) 855-860.
	[58] S.A. Leung, R.F. Winkle, R.C.R. Wootton, A.J. deMello, A method for rapid reaction optimisation in continuous-flow microfluidic reactors using online Raman spectroscopic detection, Analyst, 130 (2005) 46-51.
	[59] B. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, Place Published, 2010.
	[60] B.M. Jose, T. Cubaud, Droplet arrangement and coalescence in diverging/converging microchannels, Microfluidics and Nanofluidics, 12 (2012) 687-696.
	[61] X.M. Chen, A. Brukson, C.L. Ren, A simple droplet merger design for controlled reaction volumes, Microfluidics and Nanofluidics, 21 (2017).
	[62] R.K. Shah, H.C. Shum, A.C. Rowat, D. Lee, J.J. Agresti, A.S. Utada, L.Y. Chu, J.W. Kim, A. Fernandez-Nieves, C.J. Martinez, D.A. Weitz, Designer emulsions using microfluidics, Materials Today, 11 (2008) 18-27.
	[63] S. Haeberle, R. Zengerle, J. Ducree, Centrifugal generation and manipulation of droplet emulsions, Microfluidics and Nanofluidics, 3 (2007) 65-75.
	[64] C.N. Baroud, J.P. Delville, F. Gallaire, R. Wunenburger, Thermocapillary valve for droplet production and sorting, Physical Review E, 75 (2007).
	[65] S.J. Zeng, B.W. Li, X.O. Su, J.H. Qin, B.C. Lin, Microvalve-actuated precise control of individual droplets in microfluidic devices, Lab on a Chip, 9 (2009) 1340-1343.
	[66] T.T. Fu, Y.G. Ma, D. Funfschilling, C.Y. Zhu, H.Z. Li, Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction, Chemical Engineering Science, 65 (2010) 3739-3748.
	[67] J.S. Edgar, C.P. Pabbati, R.M. Lorenz, M.Y. He, G.S. Fiorini, D.T. Chiu, Capillary electrophoresis separation in the presence of an immiscible boundary for droplet analysis, Analytical Chemistry, 78 (2006) 6948-6954.
	[68] V. van Steijn, C.R. Kleijn, M.T. Kreutzer, Predictive model for the size of bubbles and droplets created in microfluidic T-junctions, Lab on a Chip, 10 (2010) 2513-2518.
	[69] H. Yang, Q. Zhou, L.S. Fan, Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction, Chemical Engineering Science, 87 (2013) 100-110.
	[70] S. Yeom, S.Y. Lee, Size prediction of drops formed by dripping at a micro T-junction in liquid-liquid mixing, Experimental Thermal and Fluid Science, 35 (2011) 387-394.
	[71] M.L.J. Steegmans, A. Warmerdam, K. Schroen, R.M. Boom, Dynamic Interfacial Tension Measurements with Microfluidic Y-Junctions, Langmuir, 25 (2009) 9751-9758.
	[72] N.N. Deng, Z.J. Meng, R. Xie, X.J. Ju, C.L. Mou, W. Wang, L.Y. Chu, Simple and cheap microfluidic devices for the preparation of monodisperse emulsions, Lab on a Chip, 11 (2011) 3963-3969.
	[73] W. Li, E.W.K. Young, M. Seo, Z. Nie, P. Garstecki, C.A. Simmons, E. Kumacheva, Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators, Soft Matter, 4 (2008) 258-262.
	[74] C.C. Roberts, R.R. Rao, M. Loewenberg, C.F. Brooks, P. Galambos, A.M. Grillet, M.B. Nemer, Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces, Lab on a Chip, 12 (2012) 1540-1547.
	[75] S.P.C. Sim, T.G. Kang, L. Yobas, C. Holtze, D.A. Weitz, The shape of a step structure as a design aspect to control droplet generation in microfluidics, Journal of Micromechanics and Microengineering, 20 (2010).
	[76] X.Y. Wang, A. Riaud, K. Wang, G.S. Luo, Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel, Microfluidics and Nanofluidics, 18 (2015) 503-512.
	[77] M. Azarmanesh, M. Farhadi, The effect of weak-inertia on droplet formation phenomena in T-junction microchannel, Meccanica, 51 (2016) 819-834.
	[78] S.L. Anna, Droplets and Bubbles in Microfluidic Devices, in: S.H. Davis, P. Moin (Eds.) Annual Review of Fluid Mechanics, Vol 48, Place Published, 2016, pp. 285-309.
	[79] S. van Loo, S. Stoukatch, M. Kraft, T. Gilet, Droplet formation by squeezing in a microfluidic cross-junction, Microfluidics and Nanofluidics, 20 (2016).
	[80] A. Gupta, R. Kumar, Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction, Microfluidics and Nanofluidics, 8 (2010) 799-812.
	[81] W.A.C. Bauer, M. Fischlechner, C. Abell, W.T.S. Huck, Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions, Lab on a Chip, 10 (2010) 1814-1819.
	[82] M.J. Schoning, M. Jacobs, A. Muck, D.T. Knobbe, J. Wang, M. Chatrathi, S. Spillmann, Amperometric PDMS/glass capillary electrophoresis-based biosensor microchip for catechol and dopamine detection, Sensors and Actuators B-Chemical, 108 (2005) 688...
	[83] A. Wisitsoraat, P. Sritongkham, C. Karuwan, D. Phokharatkul, T. Maturos, A. Tuantranont, Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor, Biosensors & Bioelectr...
	[84] M.J. Rosen, J.T. Kunjappu, Characteristic Features of Surfactants,  Surfactants and Interfacial Phenomena, John Wiley & Sons, Inc., Place Published, 2012, pp. 1-38.
	[85] J.C. Baret, Surfactants in droplet-based microfluidics, Lab on a Chip, 12 (2012) 422-433.
	[86] J.C. Baret, F. Kleinschmidt, A. El Harrak, A.D. Griffiths, Kinetic Aspects of Emulsion Stabilization by Surfactants: A Microfluidic Analysis, Langmuir, 25 (2009) 6088-6093.
	[87] C.J. DeJournette, J. Kim, H. Medlen, X.P. Li, L.J. Vincent, C.J. Easley, Creating Biocompatible Oil-Water Interfaces without Synthesis: Direct Interactions between Primary Amines and Carboxylated Perfluorocarbon Surfactants, Analytical Chemistry,...
	[88] S.F. Burlatsky, V.V. Atrazhev, D.V. Dmitriev, V.I. Sultanov, E.N. Timokhina, E.A. Ugolkova, S. Tulyani, A. Vincitore, Surface tension model for surfactant solutions at the critical micelle concentration, J. Colloid Interface Sci., 393 (2013) 151-...
	[89] B. Ahn, K. Lee, H. Lee, R. Panchapakesan, L.F. Xu, J. Xu, K.W. Oh, Guiding, distribution, and storage of trains of shape-dependent droplets, Lab on a Chip, 11 (2011) 3915-3918.
	[90] J. Park, A. Kerner, M.A. Burns, X.X.N. Lin, Microdroplet-Enabled Highly Parallel Co-Cultivation of Microbial Communities, Plos One, 6 (2011).
	[91] J.C. Baret, Y. Beck, I. Billas-Massobrio, D. Moras, A.D. Griffiths, Quantitative Cell-Based Reporter Gene Assays Using Droplet-Based Microfluidics, Chemistry & Biology, 17 (2010) 528-536.
	[92] J. Clausell-Tormos, D. Lieber, J.C. Baret, A. El-Harrak, O.J. Miller, L. Frenz, J. Blouwolff, K.J. Humphry, S. Koster, H. Duan, C. Holtze, D.A. Weitz, A.D. Griffiths, C.A. Merten, Droplet-based microfluidic platforms for the encapsulation and scr...
	[93] H. Boukellal, S. Selimovic, Y.W. Jia, G. Cristobal, S. Fraden, Simple, robust storage of drops and fluids in a microfluidic device, Lab on a Chip, 9 (2009) 331-338.
	[94] C.N. Baroud, M.R. de Saint Vincent, J.P. Delville, An optical toolbox for total control of droplet microfluidics, Lab on a Chip, 7 (2007) 1029-1033.
	[95] E. Verneuil, M.L. Cordero, F. Gallaire, C.N. Baroud, Laser-Induced Force on a Microfluidic Drop: Origin and Magnitude, Langmuir, 25 (2009) 5127-5134.
	[96] L.L. Shui, A. van den Berg, J.C.T. Eijkel, Interfacial tension controlled W/O and O/W 2-phase flows in microchannel, Lab on a Chip, 9 (2009) 795-801.
	[97] J.H. Xu, S.W. Li, J. Tan, Y.J. Wang, G.S. Luo, Preparation of highly monodisperse droplet in a T-junction microfluidic device, Aiche Journal, 52 (2006) 3005-3010.
	[98] P.B. Umbanhowar, V. Prasad, D.A. Weitz, Monodisperse emulsion generation via drop break off in a coflowing stream, Langmuir, 16 (2000) 347-351.
	[99] X.Z. Niu, A.J. deMello, Building droplet-based microfluidic systems for biological analysis, Biochemical Society Transactions, 40 (2012) 615-623.
	[100] S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. Stone, P. Garstecki, D. Weibel, I. Gitlin, G. Whitesides, Generation of monodisperse particles by using microfluidics: control over size, shape, and composition, Angewandte Chemie (International ...
	[101] Z. Zhu, O. Frey, F. Franke, N. Haandbaek, A. Hierlemann, Real-time monitoring of immobilized single yeast cells through multifrequency electrical impedance spectroscopy, Analytical and Bioanalytical Chemistry, 406 (2014) 7015-7025.
	[102] N. Pamme, C. Wilhelm, Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis, Lab on a chip, 6 (2006) 974-980.
	[103] T.N. Adams, C.J. Yang, J. Gress, N. Wimmer, A.R. Minerick, A Tunable Microfluidic Device for Drug Delivery, in: B. Bofeng (Ed.) Microfluidics, InTech, Place Published, 2012.
	[104] H.Y. Jiang, Y.K. Ren, Y. Tao, Microwire formation based on dielectrophoresis of electroless gold plated polystyrene microspheres, Chinese Physics B, 20 (2011).
	[105] H. Kim, H.-S. Moon, B. Kwak, H.-I. Jung, Microfluidic device to separate micro-beads with various fluorescence intensities, Sensors and actuators. B, Chemical, 160 (2011) 1536-1543.
	[106] S. Ozuna-Chacón, B.H. Lapizco-Encinas, M. Rito-Palomares, S.O. Martínez-Chapa, C. Reyes-Betanzo, Performance characterization of an insulator-based dielectrophoretic microdevice, ELECTROPHORESIS, 29 (2008) 3115-3122.
	[107] S.K. Srivastava, J.I. Baylon-Cardiel, B.H. Lapizco-Encinas, A.R. Minerick, A continuous DC-insulator dielectrophoretic sorter of microparticles, Journal of Chromatography A, 1218 (2011) 1780-1789.
	[108] C.M. White, L.A. Holland, P. Famouri, Application of capillary electrophoresis to predict crossover frequency of polystyrene particles in dielectrophoresis, Electrophoresis, 31 (2010) 2664-2671.
	[109] S.I. Han, H.S. Kim, A. Han, In-droplet cell concentration using dielectrophoresis, Biosensors & Bioelectronics, 97 (2017) 41-45.
	[110] D.M.S. C.W. Bishop, The Blood Cell: A Comprehensive Treatise, Academic Press, New York, 1964.
	[111] T.J.G. G.A. Jamieson, Red Cell Membrane: Structure and Function, J.B. Lippincott Company, Philadelphia, 1969.
	[112] C.W. Bishop, D.M. Surgenor, The Blood Cell: A Comprehensive Treatise, Academic Press, Place Published, 1964.
	[113] G.A. Jamieson, T.J. Greenwalt, Red Cell Membrane: Structure and Function, J.B. Lippincott Company, Place Published, 1969.
	[114] V. Heinrich, K. Ritchie, N. Mohandas, E. Evans, Elastic thickness compressibilty of the red cell membrane, Biophysical Journal, 81 (2001) 1452-1463.
	[115] N. Mohandas, P.G. Gallagher, Red cell membrane: past, present, and future, Blood, 112 (2008) 3939-3948.
	[116] N. Mohandas, E. Evans, Mechanical-Properties Of The Red-Cell Membrane In Relation To Molecular-Structure And Genetic-Defects, Annual Review of Biophysics and Biomolecular Structure, 23 (1994) 787-818.
	[117] N. Mohandas, J.A. Chasis, S.B. Shohet, The Influence Of Membrane Skeleton On Red-Cell Deformability, Membrane Material Properties, And Shape, Seminars in Hematology, 20 (1983) 225-242.
	[118] B.M. Cooke, N. Mohandas, R.L. Coppel, Malaria and the red blood cell membrane, Seminars in Hematology, 41 (2004) 173-188.
	[119] T. Bulai, D. Bratosin, A. Pons, J. Montreuil, J.P. Zanetta, Diversity of the human erythrocyte membrane, sialic acids in relation with blood groups, Febs Letters, 534 (2003) 185-189.
	[120] D. Bratosin, C. Motas, Effect Of Procaine And Donor Age On Human Erythrocyte-Membrane - Lectins Binding Study, Revue Roumaine De Biochimie, 26 (1989) 345-353.
	[121] C. Ballario, A. Bonincontro, C. Cametti, A. Rosi, L. Sportelli, Conductivity of normal and pathological human-erythrocytes (homozygous beta-thalassemia) at radio frequencies, Zeitschrift Fur Naturforschung C-A Journal of Biosciences, 39 (1984) 1...
	[122] B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P.J. Magistretti, P. Marquet, Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer, Cytometry Part A, 73A (20...
	[123] H. Fricke, The Electric Capacity Of Suspensions With Special Reference To Blood, J. Gen. Physiol., 9 (1925) 137-152.
	[124] J.Z. Bao, C.C. Davis, R.E. Schmukler, Frequency domain impedance measurements of erythrocytes. Constant phase angle impedance characteristics and a phase transition, 61 (1992) 1427-1434.
	[125] J. Gimsa, T. Muller, T. Schnelle, G. Fuhr, Dielectric Spectroscopy of Single Human Erythrocytes at Physiological Ionic Strength:  Dispersin of the Cytoplasm, Biophysical Journal, 71 (1996) 495-506.
	[126] H. Pauly, H.P. Schwan, Dielectric Properties and Ion Mobility in Erythrocytes, Biophysical Journal, 6 (1966) 621-639.
	[127] P. Gascoyne, C. Mahidol, M. Ruchirawat, J. Satayavivad, P. Watcharasit, F.F. Becker, Microsample preparation by dielectrophoresis: isolation of malaria, Lab on a Chip, 2 (2002) 70-75.
	[128] O. Martinsen, S. Grimnes, H. Schwann, Interface Phenomena and Dielectric Properties of Biological Tissue,  Encyclopedia of Surface and Colloidal Science, Marcel Dekker, Place Published, 2002.
	[129] W. Arnold, A. Gessner, U. Zimmermann, Dielectric measurements on electro-manipulation media, Biochim Biophys Acta, 1157 (1993) 32-44.
	[130] S.K. Srivastava, P.R. Daggolu, S.C. Burgess, A.R. Minerick, Dielectrophoretic characterization of erythrocytes: Positive ABO blood types, Electrophoresis, 29 (2008) 5033-5046.
	[131] A.R. Minerick, R.H. Zhou, P. Takhistov, H.C. Chang, Manipulation and characterization of red blood cells with alternating current fields in microdevices, Electrophoresis, 24 (2003) 3703-3717.
	[132] S.K. Srivastava, A. Artemiou, A.R. Minerick, Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing, Electrophoresis, 32 (2011) 2530-2540.
	[133] B.G. Hawkins, C. Huang, S. Arasanipalai, B.J. Kirby, Automated Dielectrophoretic Characterization of Mycobacterium smegmatis, Analytical Chemistry, 83 (2011) 3507-3515.
	[134] R. Pethig, A. Menachery, S. Pells, P. De Sousa, Dielectrophoresis: A Review of Applications for Stem Cell Research, Journal of Biomedicine and Biotechnology, (2010).
	[135] G.H. Markx, M.S. Talary, R. Pethig, Separation of viable and non-viable yeast using dielectrophoresis, Journal of Biotechnology, 32 (1994) 29-37.
	[136] P.R.C. Gascoyne, Dielectrophoretic-Field Flow Fractionation Analysis of Dielectric, Density, and Deformability Characteristics of Cells and Particles, Analytical Chemistry, 81 (2009) 8878-8885.
	[137] H. Shafiee, M.B. Sano, E.A. Henslee, J.L. Caldwell, R.V. Davalos, Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP), Lab on a Chip, 10 (2010) 438-445.
	[138] F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R. Gascoyne, Separation of human breast cancer cells from blood by differential dielectric affinity, Proceedings of the National Academy of Sciences of the United States of America, 92 ...
	[139] R. Holzel, Non-invasive determination of bacterial single cell properties by electrorotation, Biochimica et Biophysica Acta, 1450 (1999) 53-60.
	[140] N.G. Green, A. Ramos, H. Morgan, Ac electrokinetics: a survey of sub-micrometre particle dynamics, J. Phys. D-Appl. Phys., 33 (2000) 632-641.
	[141] H. Moncada-Hernandez, J.L. Baylon-Cardiel, V.H. Perez-Gonzalez, B.H. Lapizco-Encinas, Insulator-based dielectrophoresis of microorganisms: Theoretical and experimental results, Electrophoresis, 32 (2011) 2502-2511.
	[142] B. Cetin, D.Q. Li, Lab-on-a-chip device for continuous particle and cell separation based on electrical properties via alternating current dielectrophoresis, Electrophoresis, 31 (2010) 3035-3043.
	[143] H.P. Schwan, Electrical properties of blood and its constitutents: Alternating current spectroscopy, Annals of Hematology, 46 (1983) 185-197.
	[144] F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, The removal of human leukaemia cells from blood using interdigitated microelectrodes, Journal of Physics D: Applied Physics, 27 (1994) 2659.
	[145] H. Huang, J.M. Yang, P.J. Hopkins, S. Kassegne, M. Tirado, A.H. Forster, H. Reese, Separation of Simulants of Biological Warfare Agents from Blood by a Miniaturized Dielectrophoresis Device, Biomedical Microdevices, 5 (2003) 217-225.
	[146] Y. Polevaya, I. Ermolina, M. Schlesinger, B.-Z. Ginzburg, Y. Feldman, Time domain dielectric spectroscopy study of human cells: II. Normal and malignant white blood cells, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1419 (1999) 257-271.
	[147] C. Wang, X. Wang, Z. Jiang, Dielectrophoretic Driving Of Blood Cells In A Microchannel, Biotechnology & Biotechnological Equipment, 25 (2011) 2405-2411.
	[148] D.M. Vykoukal, P.R.C. Gascoyne, J. Vykoukal, Dielectric characterization of complete mononuclear and polymorphonuclear blood cell subpopulations for label-free discrimination, Integrative Biology, 1 (2009) 477-484.
	[149] J. Vienken, U. Zimmermann, A. Alonso, D. Chapman, Orientation of sickle red blood cells in an alternating electric field, Naturwissenschaften, 71 (1984) 158-160.
	[150] M. Stephens, M.S. Talary, R. Pethig, A.K. Burnett, K.I. Mills, The dielectrophoresis enrichment of CD34(+) cells from peripheral blood stem cell harvests, Bone Marrow Transplantation, 18 (1996) 777-782.
	[151] V. Srinivasan, V.K. Pamula, R.B. Fair, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip, 4 (2004) 310-315.
	[152] K. Maswiwat, D. Wachner, J. Gimsa, Effects of cell orientation and electric field frequency on the transmembrane potential induced in ellipsoidal cells, Bioelectrochemistry, 74 (2008) 130-141.
	[153] P.V. Jones, S.J.R. Staton, M.A. Hayes, Blood cell capture in a sawtooth dielectrophoretic microchannel, Analytical and Bioanalytical Chemistry, 401 (2011) 2103-2111.
	[154] Z. Gagnon, J. Gordon, S. Sengupta, H.C. Chang, Bovine red blood cell starvation age discrimination through a glutaraldehyde-amplified dielectrophoretic approach with buffer selection and membrane cross-linking, Electrophoresis, 29 (2008) 2272-2279.
	[155] F. Dignat-George, J. Sampol, G. Lip, A.D. Blann, Circulating endothelial cells: Realities and promises in vascular disorders, Pathophysiology of Haemostasis and Thrombosis, 33 (2003) 495-499.
	[156] I.F. Cheng, C. Cheng-Che, C. Hsien-Chang, High-throughput electrokinetic bioparticle focusing based on a travelling-wave dielectrophoretic field, Microfluidics and Nanofluidics, 10 (2011).
	[157] D.R. Arifin, L.Y. Yeo, J.R. Friend, Microfluidic blood plasma separation via bulk electrohydrodynamic flows, Biomicrofluidics, (2007).
	[158] A. Alazzam, I. Stiharu, R. Bhat, A.N. Meguerditchian, Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis, Electrophoresis, 32 (2011) 1327-1336.
	[159] K.M. Leonard, A.R. Minerick, Explorations of ABO-Rh antigen expressions on erythrocyte dielectrophoresis: Changes in cross-over frequency, Electrophoresis, 32 (2011) 2512-2522.
	[160] M.D. Vahey, J. Voldman, High-Throughput Cell and Particle Characterization Using Isodielectric Separation, Analytical Chemistry, 81 (2009) 2446-2455.
	[161] G.V. Gass, L.V. Chernomordik, L.B. Margolis, Local Deformation of Human Red-Blood-Cells in High-Frequency Electric-fields, Biochimica Et Biophysica Acta, 1093 (1991) 162-167.
	[162] S.I. Han, S.M. Lee, Y.D. Joo, K.H. Han, Lateral dielectrophoretic microseparators to measure the size distribution of blood cells, Lab on a Chip, 11 (2011) 3864-3872.
	[163] H. Zhou, L.R. White, R.D. Tilton, Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis, J. Colloid Interface Sci., 285 (2005) 179-191.
	[164] Y. Xu, Q. Cao, X. Zeng, Y.J. Wu, W.P. Zhang, Research of Cell Concentration and Separation on the Dielectrophoretic Chip with Arrayed Opposite Electrodes, Chemical Journal of Chinese Universities-Chinese, 30 (2009) 876-881.
	[165] I.C. Tsoneva, D.V. Zhelev, D.S. Dimitrov, Red blood cell dielectrophoresis in axisymmetric fields, Cell Biophys, 8 (1986).
	[166] N.V. Tolan, L.I. Genes, W. Subasinghe, M. Raththagala, D.M. Spence, Personalized Metabolic Assessment of Erythrocytes Using Microfluidic Delivery to an Array of Luminescent Wells, Analytical Chemistry, 81 (2009) 3102-3108.
	[167] M.K.a.F. Thom, Deformability and Stability of Erythrocytes in High-Frequency Electric Fields Down to Subzero Temperatures Biophysical Journal, 73 (1997) 2653-2666.
	[168] T. Sun, S. Gawad, C. Bernabini, N.G. Green, H. Morgan, Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations, Measurement Science & Technology, 18 (2007) 2859-2868.
	[169] M.B. Sano, E.A. Henslee, E. Schmelz, R.V. Davalos, Contactless dielectrophoretic spectroscopy: Examination of the dielectric properties of cells found in blood, Electrophoresis, 32 (2011) 3164-3171.
	[170] R. Georgieva, B. Neu, V.M. Shilov, E. Knippel, A. Budde, R. Latza, E. Donath, H. Kiesewetter, H. Baumler, Low Frequency Electrorotation of Fixed Red Blood Cells, 74 (1998) 2114-2120.
	[171] B.P. Lynch, A.M. Hilton, G.J. Simpson, Nanoscale dielectrophoretic spectroscopy of individual immobilized mammalian blood cells, Biophysical Journal, 91 (2006) 2678-2686.
	[172] J. Sudsiri, D. Wachner, J. Donath, J. Gimsa, Can molecular properties of human red blood cells be accessed by electrorotation, (2003).
	[173] J.-Y. Jung, H.-Y. Kwak, Separation of Microparticles and Biological Cells Inside an Evaporating Droplet Using Dielectrophoresis, Anal. Chem., 79 (2007) 5087-5092.
	[174] D.V.Z. Iana Ch. Tsoneva, and Dimiter S. Dmitrov, Red Blood Cell Dielectrophoresis in Axisymmetric Fields, Inside, 22 (2003) 2-14.
	[175] Y. Hubner, K.F. Hoettges, G.E.N. Kass, S.L. Ogin, M.P. Hughes, Parallel measurements of drug actions on erythrocytes by dielectrophoresis, using a three-dimensional electrode design, Nanobiotechnology, IEE Proceedings -, 152 (2005) 150-154.
	[176] J. Gimsa, T. Schnelle, G. Zechel, R. Glaser, Dielectric spectroscopy of human erythrocytes: investigations under the influence of nystatin, 66 (1994) 1244-1253.
	[177] I.F. Cheng, V.E. Froude, Z. Yingxi, C. Hsueh-Chia, C. Hsien-Chang, A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis, Lab on a Chip, 9 (2009).
	[178] J. Auerswald, H.F. Knapp, Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes, Microelectronic Engineering, 67-68 (2003) 879-886.
	[179] J. Yang, Y. Huang, X.B. Wang, F.F. Becker, P.R.C. Gascoyne, Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation, Biophysical Journal, 78 (2000) 2680-2689.
	[180] J. Yang, Y. Huang, X.-B. Wang, F.F. Becker, P.R.C. Gascoyne, Dielectric Properties of Human Leukocyte Subpopulations Determined by Electrorotation as a Cell Separation Criterion, Biophysical Journal, 76 (1999) 3307-3314.
	[181] W.N. White, A. Raj, M.D. Nguyen, S.J. Bertolone, P. Sethu, Clinical application of microfluidic leukocyte enrichment protocol in mild phenotype sickle cell disease (SCD), Biomedical Microdevices, 11 (2009) 477-483.
	[182] A. Revzin, K. Sekine, A. Sin, R.G. Thompkins, M. Toner, Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes, Lab on a Chip, 5 (2005) 30-37.
	[183] X.-B.W.a.J. Yang, Cell sesparation by dielectrophoretic field-flow-fractionation, Analytical Chemistry, 72 (2000).
	[184] D. Holmes, H. Morgan, Cell sorting and separation using dielectrophoresis, in: H. Morgan (Ed.) Electrostatics 2003, Place Published, 2004, pp. 107-112.
	[185] R. Pethig, V. Bressier, C. Carswell-Crumpton, Y. Chen, L. Foster-Haje, M.E. Garcia-Ojeda, R.S. Lee, G.M. Lock, M.S. Talary, K.M. Tate, Dielectrophoretic studies of the activation of human T lymphocytes using a newly developed cell profiling syst...
	[186] V.I. Furdui, D.J. Harrison, Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems, Lab on a Chip, 4 (2004) 614-618.
	[187] C.M. Das, F. Becker, S. Vernon, J. Noshari, C. Joyce, P.R.C. Gascoyne, Dielectrophoretic segregation of different human cell types on microscope slides, Analytical Chemistry, 77 (2005) 2708-2719.
	[188] Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, X. Xu, Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays, Analytical Chemistry, 74 (2002) 3362-3371.
	[189] K.L. Chan, H. Morgan, E. Morgan, I.T. Cameron, M.R. Thomas, Measurements of the dielectric properties of peripheral blood mononuclear cells and trophoblast cells using AC electrokinetic techniques, Biochimica et Biophysica Acta, 1500 (2000) 313-...
	[190] T.N.G. Adams, K. Leonard, A.R. Minerick, Frequency Sweep Rate Dependence on the Dielectrophoretic Response of Polystyrene Beads and Red Blood Cells, Biomicrofluidics, 7 (2013).
	[191] K.M. Leonard, E. Rutan, S. Reeves, M. Walton, A. Pate, S. Thompson, A.R. Minerick, Dielectrophoretic Characterization of Red Blood Cells,  AIChE Annual Proceedings, AIChE, 2008.
	[192] M. Przybylska, M. Faber, A. Zaborowski, J. Swietoslawski, M. Bryszewska, J. SwietosÅ‚awski, Morphological changes of human erythrocytes induced by cholesterol sulphate, Clinical biochemistry, 31 (1998) 73-79.
	[193] E. Du, M. Diez-Silva, G.J. Kato, M. Dao, S. Suresh, Kinetics of sickle cell biorheology and implications for painful vasoocclusive crisis, Proceedings of the National Academy of Sciences of the United States of America, 112 (2015) 1422-1427.
	[194] T.N.G. Adams, P.A. Turner, A.V. Janorkar, F. Zhao, A.R. Minerick, Characterizing the dielectric properties of human mesenchymal stem cells and the effects of charged elastin-like polypeptide copolymer treatment, Biomicrofluidics, 8 (2014).
	[195] R. Pethig, Dielectrophoresis: A Review of Applications for Stem Cell Research, Journal of Biomedicine and Biotechnology, (2010).
	[196] B. Cetin, D.Q. Li, Dielectrophoresis in microfluidics technology, Electrophoresis, 32 (2011) 2410-2427.
	[197] J. Regtmeier, R. Eichhorn, M. Viefhues, L. Bogunovic, D. Anselmetti, Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications, Electrophoresis, 32 (2011) 2253-2273.
	[198] M.B. Sano, A. Salmanzadeh, R.V. Davalos, Multilayer contactless dielectrophoresis: Theoretical considerations, Electrophoresis, 33 (2012) 1938-1946.
	[199] H.A. Pohl, Dielectrophoresis, Cambridge University Press, Place Published, 1978.
	[200] I. Ermolina, H. Morgan, The electrokinetic properties of latex particles: comparison of electrophoresis and dielectrophoresis, J. Colloid Interface Sci., 285 (2005) 419-428.
	[201] T.N.G. Adams, K.M. Leonard, A.R. Minerick, Frequency sweep rate dependence on the dielectrophoretic response of polystyrene beads and red blood cells, Biomicrofluidics, 7 (2013).
	[202] S. Ozuna-Chacon, B.H. Lapizco-Encinas, M. Rito-Palomares, S.O. Martinez-Chapa, C. Reyes-Betanzo, Performance characterization of an insulator-based dielectrophoretic microdevice, Electrophoresis, 29 (2008) 3115-3122.
	[203] R.C. Gallo-Villanueva, V.H. Perez-Gonzalez, R.V. Davalos, B.H. Lapizco-Encinas, Separation of mixtures of particles in a multipart microdevice employing insulator-based dielectrophoresis, Electrophoresis, 32 (2011) 2456-2465.
	[204] R. Martinez-Duarte, Microfabrication technologies in dielectrophoresis applications-A review, Electrophoresis, 33 (2012) 3110-3132.
	[205] H.O. Fatoyinbo, D. Kamchis, R. Whattingham, S.L. Ogin, M.P. Hughes, A high-throughput 3-D composite dielectrophoretic separator, Ieee Transactions on Biomedical Engineering, 52 (2005) 1347-1349.
	[206] B.Y. Park, M.J. Madou, 3-D electrode designs for flow-through dielectrophoretic systems, Electrophoresis, 26 (2005) 3745-3757.
	[207] Z.Z. Abidin, L. Downes, G.H. Markx, Novel electrode structures for large scale dielectrophoretic separations based on textile technology, Journal of Biotechnology, 130 (2007) 183-187.
	[208] S.C. Kilchenmann, E. Rollo, E. Bianchi, C. Guiducci, Metal-coated silicon micropillars for freestanding 3D-electrode arrays in microchannels, Sensors and Actuators B-Chemical, 185 (2013) 713-719.
	[209] R. Martinez-Duarte, F. Camacho-Alanis, P. Renaud, A. Ros, Dielectrophoresis of lambda-DNA using 3D carbon electrodes, Electrophoresis, 34 (2013) 1113-1122.
	[210] R. Martinez-Duarte, P. Renaud, M.J. Madou, A novel approach to dielectrophoresis using carbon electrodes, Electrophoresis, 32 (2011) 2385-2392.
	[211] G. Mernier, R. Martinez-Duarte, R. Lehal, F. Radtke, P. Renaud, Very High Throughput Electrical Cell Lysis and Extraction of Intracellular Compounds Using 3D Carbon Electrodes in Lab-on-a-Chip Devices, Micromachines, 3 (2012) 574-581.
	[212] J. Voldman, M.L. Gray, M. Toner, M.A. Schmidt, A microfabrication-based dynamic array cytometer, Analytical chemistry, 74 (2002) 3984-3990.
	[213] E.B. Cummings, Streaming dielectrophoresis for continuous-flow microfluidic devices, Ieee Engineering in Medicine and Biology Magazine, 22 (2003) 75-84.
	[214] J.L. Baylon-Cardiel, B.H. Lapizco-Encinas, C. Reyes-Betanzo, A.V. Chavez-Santoscoy, S.O. Martinez-Chapa, Prediction of trapping zones in an insulator-based dielectrophoretic device, Lab on a Chip, 9 (2009) 2896-2901.
	[215] F. Camacho-Alanis, L. Gan, A. Ros, Transitioning streaming to trapping in DC insulator-based dielectrophoresis for biomolecules, Sensors and Actuators B: Chemical, 173 (2012) 668-675.
	[216] N. Lewpiriyawong, C. Yang, Y.C. Lam, Electrokinetically driven concentration of particles and cells by dielectrophoresis with DC-offset AC electric field, Microfluidics and Nanofluidics, 12 (2012) 723-733.
	[217] J.J. Zhu, S. Sridharan, G.Q. Hu, X.C. Xuan, Joule heating effects on electrokinetic focusing and trapping of particles in constriction microchannels, Journal of Micromechanics and Microengineering, 22 (2012).
	[218] C.K. Hua, D.W. Lee, I.S. Kang, Analyses on a charged electrolyte droplet in a dielectric liquid under non-uniform electric fields, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 372 (2010) 86-97.
	[219] Y.K. Jia, Y. Ren, L.K. Hou, W.Y. Liu, T.Y. Jiang, X.K. Deng, Y. Tao, H.Y. Jiang, Electrically controlled rapid release of actives encapsulated in double-emulsion droplets, Lab on a Chip, 18 (2018) 1121-1129.
	[220] Y.K. Jia, Y.K. Ren, W.Y. Liu, L.K. Hou, Y. Tao, Q.M. Hu, H.Y. Jiang, Electrocoalescence of paired droplets encapsulated in double-emulsion drops, Lab on a Chip, 16 (2016) 4313-4318.
	[221] R. An, K. Massa, D. Wipf, A. Minerick, Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency, Biomicrofluidics, 8 (2014) 064126-064126.
	[222] H. Moncada Hernandez, E. Nagler, A. Minerick, Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains, Electrophoresis, 35 (2014) 180...
	[223] SU-8 2000 Permanent Epoxy Negative PhotoresistPROCESSING GUIDELINES FOR:SU-8 2025, SU-8 2035, SU-8 2050 and SU-8 2075, in: M. Chem (Ed.).
	[224] M.B. Chan-Park, J. Zhang, Y.H. Yan, C.Y. Yue, Fabrication of large SU-8 mold with high aspect ratio microchannels by UV exposure dose reduction, Sensors and Actuators B-Chemical, 101 (2004) 175-182.
	[225] H.Y. Lee, C. Barber, A.R. Minerick, Improving electrokinetic microdevice stability by controlling electrolysis bubbles, Electrophoresis, 35 (2014) 1782-1789.
	[226] A.R. Minerick, NSF REU Site: Chemistry / Chemical Engineering:  The Bonds Between Us  - A Three Year Retrospective, American Society of Engineering Education Southeast Region Proceedings, (2008).
	[227] T. Trantidou, Y. Elani, E. Parsons, O. Ces, Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition, Microsystems &Amp; Nanoengineering, 3 (2017) 16091.
	[228] J.D. Wehking, M. Gabany, L. Chew, R. Kumar, Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction, Microfluidics and Nanofluidics, 16 (2014) 441-453.
	[229] Y. Pang, H. Kim, Z.M. Liu, H.A. Stone, A soft microchannel decreases polydispersity of droplet generation, Lab on a Chip, 14 (2014) 4029-4034.
	[230] C.S. Thompson, A.R. Abate, Adhesive-based bonding technique for PDMS microfluidic devices, Lab on a Chip, 13 (2013) 632-635.
	[231] S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay, Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength, Journal of Microelectromechanical Systems, 14 (20...
	[232] J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H.K. Wu, O.J.A. Schueller, G.M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21 (2000) 27-40.
	[233] J.N. Lee, C. Park, G.M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices, Analytical Chemistry, 75 (2003) 6544-6554.
	[234] A.R. Abate, A.T. Krummel, D. Lee, M. Marquez, C. Holtze, D.A. Weitz, Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability, Lab on a Chip, 8 (2008) 2157-2160.
	[235] Z. Li, S.Y. Mak, A. Sauret, H.C. Shum, Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy, Lab on a Chip, 14 (2014) 744-749.
	[236] W. Zeng, I. Jacobi, D.J. Beck, S. Li, H.A. Stone, Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels, Lab on a Chip, 15 (2015) 1110-1115.
	[237] W. Zeng, S.J. Li, H. Fu, Modeling of the pressure fluctuations induced by the process of droplet formation in a T-junction microdroplet generator, Sensors and Actuators a-Physical, 272 (2018) 11-17.
	[238] A. Kalantarifard, E.A. Haghighi, C. Elbuken, Damping hydrodynamic fluctuations in microfluidic systems, Chemical Engineering Science, 178 (2018) 238-247.
	[239] N. Kumar, R. Tyagi, Synthesis of anionic carboxylate dimeric surfactants and their interactions with electrolytes, Journal of Taibah University for Science, 9 (2015) 69-74.
	[240] S. Miyagishi, K. Okada, T. Asakawa, Salt effect on critical micelle concentrations of nonionic surfactants, N-acyl-N-methylglucamides (MEGA-n), J. Colloid Interface Sci., 238 (2001) 91-95.
	[241] P. Palladino, R. Ragone, Ionic Strength Effects on the Critical Mice liar Concentration of Ionic and Nonionic Surfactants: The Binding Model, Langmuir, 27 (2011) 14065-14070.
	[242] P.A. Sandoz, A.J. Chung, W.M. Weaver, D. Di Carlo, Sugar Additives Improve Signal Fidelity for Implementing Two-Phase Resorufin-Based Enzyme Immunoassays, Langmuir, 30 (2014) 6637-6643.
	[243] H.B. Zhou, Y. Yao, Q. Chen, G. Li, S.H. Yao, A facile microfluidic strategy for measuring interfacial tension, Applied Physics Letters, 103 (2013).
	[244] Standard Infuse/Withdraw PHD ULTRA™ Syringe Pumps, Harvard Apparatus.
	[245] Labsmith SPS01 Syringe Pump Brouchure.
	[246] S. Bashir, J.M. Rees, W.B. Zimmerman, Simulations of microfluidic droplet formation using the two-phase level set method, Chemical Engineering Science, 66 (2011) 4733-4741.
	[247] X.B. Li, F.C. Li, J.C. Yang, H. Kinoshita, M. Oishi, M. Oshima, Study on the mechanism of droplet formation in T-junction microchannel, Chemical Engineering Science, 69 (2012) 340-351.
	[248] H.H. Liu, Y.H. Zhang, Droplet formation in a T-shaped microfluidic junction, Journal of Applied Physics, 106 (2009).
	[249] Y. Yan, D. Guo, S.Z. Wen, Numerical simulation of junction point pressure during droplet formation in a microfluidic T-junction, Chemical Engineering Science, 84 (2012) 591-601.
	[250] T.B. Jones, Electromechanics of Particles, Cambridge University Press, Place Published, 1995.
	[251] J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., Clarendon Press, Place Published, 1891.
	[252] U. Zimmermann, J. Vienken, Electric field-induced cell-to-cell fusion, Journal of Membrane Biology, 67 (1982) 165-182.
	[253] R. Kretschmer, W. Fritzsche, Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis, Langmuir, 20 (2004) 11797-11801.
	[254] Y. Ai, S. Qian, DC dielectrophoretic particle-particle interactions and their relative motions, J. Colloid Interface Sci., 346 (2010) 448-454.
	[255] N. Aubry, P. Singh, Control of electrostatic particle-particle interactions in dielectrophoresis, Europhysics Letters, 74 (2006) 623-629.
	[256] V. Giner, M. Sancho, R.S. Lee, G. Martinez, R. Pethig, Transverse dipolar chaining in binary suspensions induced by rf fields, J. Phys. D-Appl. Phys., 32 (1999) 1182-1186.
	[257] J. Kadaksham, P. Singh, N. Aubry, Manipulation of particles using dielectrophoresis, Mechanics Research Communications, 33 (2006) 108-122.
	[258] M. Sancho, G. Martinez, S. Munoz, J.L. Sebastian, R. Pethig, Interaction between cells in dielectrophoresis and electrorotation experiments, Biomicrofluidics, 4 (2010).
	[259] S. Park, Y. Zhang, T.H. Wang, S. Yang, Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity, Lab on a Chip, 11 (2011) 2893-2900.
	[260] H.B. Zhang, M.J. Edirisinghe, S.N. Jayasinghe, Flow behaviour of dielectric liquids in an electric field, Journal of Fluid Mechanics, 558 (2006) 103-111.
	[261] P.R.C. Gascoyne, J. Vykoukal, Particle separation by dielectrophoresis, Electrophoresis, 23 (2002).
	[262] A. Ramos, H. Morgan, N.G. Green, A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures, Journal of Physics D: Applied Physics, 31 (1998) 2338.
	[263] B.G. Hawkins, A.E. Smith, Y.A. Syed, B.J. Kirby, Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, dc-biased, ac electric fields, Analytical Chemistry, 79 (2007) 7291-7300.
	[264] X.B. Wang, M.P. Hughes, Y. Huang, F.F. Becker, P.R.C. Gascoyne, Non-uniform spatial distributions of both the magnitude and phase of AC electric fields determine dielectrophoretic forces, Biochimica et Biophysica Acta (BBA) - General Subjects, 1...
	[265] J. Gimsa, Particle characterization by AC-electrokinetic phenomena: 1. A short introduction to dielectrophoresis (DP) and electrorotation (ER), Colloids and Surfaces A: Physicochemical and Engineering Aspects, 149 (1999) 451-459.
	[266] P. Gascoyne, R. Pethig, J. Satayavivad, F.F. Becker, M. Ruchirawat, Dielectrophoretic detection of changes in erythrocyte membranes following malarial infection, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1323 (1997) 240-252.
	[267] J. Teissie, C. Ramos, Correlation between electric field pulse induced long-lived permeabilization and fusogenicity in cell membranes, Biophysical Journal, 74 (1998) 1889-1898.
	[268] Z. Zhu, G. Jenkins, W.H. Zhang, M.X. Zhang, Z.C. Guan, C.Y.J. Yang, Single-molecule emulsion PCR in microfluidic droplets, Analytical and Bioanalytical Chemistry, 403 (2012) 2127-2143.
	[269] R. Fair, A. Khlystov, T. Tailor, V. Ivanov, R. Evans, Chemical and biological applications of digital-microfluidic devices, IEEE Design & Test of Computers, 24 (2007) 10-24.
	[270] H. Yang, V. Luk, M. Abeigawad, I. Barbulovic Nad, A. Wheeler, M. Abelgawad, A world-to-chip interface for digital microfluidics, Analytical chemistry, 81 (2009) 1061-1067.
	[271] V. Luk, L. Fiddes, E. Kumacheva, A. Wheeler, Digital microfluidic hydrogel microreactors for proteomics, Proteomics, 12 (2012) 1310-1318.
	[272] F. Mugele, J.C. Baret, Electrowetting: From basics to applications, Journal of physics. Condensed matter, 17 (2005) R705-R774.
	[273] Y.B. Sawane, S.M. Wadhai, A.V. Limaye, A.G. Banpurkar, Electrolyte concentration effects on DC voltage electrowetting, Sensors and Actuators a-Physical, 240 (2016) 126-130.
	[274] H. Moncada-Hernandez, E. Nagler, A.R. Minerick, Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains, Electrophoresis, 35 (2014) 1...
	[275] R. An, D. Wipf, A. Minerick, Spatially variant red blood cell crenation in alternating current non-uniform fields, Biomicrofluidics, 8 (2014) 021803-021803.
	[276] S. Srivastava, A. Artemiou, A. Minerick, Direct current insulator-based dielectrophoretic characterization of erythrocytes: ABO-Rh human blood typing, Electrophoresis, 32 (2011) 2530-2540.
	[277] Transport phenomena, R. B. Bird, W. E. Stewart, and E. N. Lightfoot, John Wiley and Sons, Inc., New York (1960). , AIChE Journal, 7 (1961) 5J-6J.
	[278] P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up, Lab on a Chip, 6 (2006) 437-446.
	[279] S. Kole, P. Bikkina, A parametric study on the application of microfluidics for emulsion characterization, Journal of Petroleum Science and Engineering, 158 (2017) 152-159.
	[280] A.R. Minerick, Advice for New Faculty: Structuring a Summer REU Project and Mentoring the Participant to a Publication, American Society of Engineering Education Proceedings, (2008).
	[281] K.W. Wagner, Arch. Elektrotech (Berlin), 2 (1914) 371-387.
	[282] R. Georgieva, B. New, V.M. Shilov, E. Knippel, A. Budde, R. Latza, E. Donath, H. Kiesewetter, H. Baumler, Low Frequency Electrorotation of Fixed Red Blood Cells, Biophysical Journal, 74 (1998) 2114-2120.
	[283] A.D. Goater, R. Pethig, Electrorotation and dielectrophoresis, Parasitology, 117 (1998) S177-S189.
	[284] U. Lei, Y.J. Lo, Review of the theory of generalised dielectrophoresis, IET Nanobiotechnol., 5 (2011) 86-106.
	[285] K.L. Chan, P.R.C. Gascoyne, F.F. Becker, R. Pethig, Electrorotation of liposomes: verification of dielectric multi-shell model for cells, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1349 (1997) 182-196.
	[286] M.P. Hughes, AC electrokinetics: applications for nanotechnology, Nanotechnology, 11 (2000) 124.
	[287] P.K. Thwar, J.J. Linderman, M.A. Burns, Electrodeless direct current dielectrophoresis using  reconfigurable field-shaping oil barriers, Electrophoresis, 28 (2007) 4572-4581.
	[288] C.H. Ahn, J.W. Choi, G. Beaucage, J.H. Nevin, J.B. Lee, Disposable Smart lab on a chip for point-of-care clinical diagnostics, Proceedings of the IEEE, 92 (2004) 154-173.
	[289] S. Habibi, H. Moncada-Hernandez, H. Lee, A. Minerick, Exploring the Role and Impact of Faradaic Reactions on Hemolysis in Non-Uniform AC Electric Fields, Unpublished Manuscript, (2018).
	[290] R. An, K. Massa, D.O. Wipf, A.R. Minerick, Solution pH change in non-uniform alternating current electric fields at frequencies above the electrode charging frequency, Biomicrofluidics, 8 (2014).
	[291] H. Lee, C. Barber, A. Minerick, Platinum electrode modification: Unique surface carbonization approach to improve performance and sensitivity, Electrophoresis, 36 (2015) 1666-1673.
	[292] A. Gencoglu, A. Minerick, Chemical and morphological changes on platinum microelectrode surfaces in AC and DC fields with biological buffer solutions, Lab on a Chip, 9 (2009) 1866-1873.
	[293] Q. Chen, D. Wang, G.Z. Cai, Y.H. Xiong, Y.T. Li, M.H. Wang, H.L. Huo, J.H. Lin, Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics, Biosensors & Bioelectronics, 86 (201...
	[294] C. Zhao, M.M. Thuo, X.Y. Liu, A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers, Science and Technology of Advanced Materials, 14 (2013).
	[295] H. Lee, C. Barber, A. Minerick, Improving electrokinetic microdevice stability by controlling electrolysis bubbles, Electrophoresis, 35 (2014) 1782-1789.
	[296] Z. Wang, C. Ivory, A.R. Minerick, Surface isoelectric focusing (sIEF) with carrier ampholyte pH gradient, Electrophoresis, (2017).
	[297] S. Narayanan, M. Nikkhah, J.S. Strobl, M. Agah, Analysis of the passivation layer by testing and modeling a cell impedance micro-sensor, Sensors and Actuators a-Physical, 159 (2010) 241-247.
	[298] O. Buiu, Y. Lu, I.Z. Mitrovic, S. Hall, P. Chalker, R.J. Potter, Spectroellipsometric assessment of HfO2 thin films, Thin Solid Films, 515 (2006) 623-626.
	[299] A.G. Khairnar, A.M. Mahajan, Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology, Solid State Sciences, 15 (2013) 24-28.
	[300] Y.W. Chen, M.Z. Liu, T. Kaneko, P.C. McIntyre, Atomic Layer Deposited Hafnium Oxide Gate Dielectrics for Charge-Based Biosensors, Electrochemical and Solid State Letters, 13 (2010) G29-G32.
	[301] M. Szymanska, S. Gieraltowska, L. Wachnicki, M. Grobelny, K. Makowska, R. Mroczynski, Effect of reactive magnetron sputtering parameters on structural and electrical properties of hafnium oxide thin films, Applied Surface Science, 301 (2014) 28-33.
	[302] Z.C.Y.a.P.K.C. A. P. Huang, Hafnium-based High-k Gate Dielectrics, Advances in Solid State Circuit Technologies,, in: P.K. Chu (Ed.), InTech, Place Published, 2010.
	[303] Y. Temiz, A. Ferretti, Y. Leblebici, C. Guiducci, A comparative study on fabrication techniques for on-chip microelectrodes, Lab on a Chip, 12 (2012) 4920-4928.
	[304] H. Liu, S. Dharmatilleke, D. Maurya, Dielectric materials for electrowetting-on-dielectric actuation, Microsystem Technologies, 16 (2010) 449-460.
	[305] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, C.J. Kim, Electrowetting and electrowetting-on-dielectric for microscale liquid handling, Sensors and actuators. A, Physical, 95 (2002) 259-268.
	[306] F. Fassbender, G. Schmitt, M.J. Schoning, H. Luth, G. Buss, J.W. Schultze, Optimization of passivation layers for corrosion protection of silicon-based microelectrode arrays, Sensors and Actuators B-Chemical, 68 (2000) 128-133.
	[307] B. Kuswandi, Nuriman, J. Huskens, W. Verboom, Optical sensing systems for microfluidic devices: A review, Analytica Chimica Acta, 601 (2007) 141-155.
	[308] M. Vargas, N.R. Murphy, C.V. Ramana, Tailoring the index of refraction of nanocrystalline hafnium oxide thin films, Applied Physics Letters, 104 (2014).
	[309] Z.W. Ma, L.X. Liu, Y.Z. Xie, Y.R. Su, H.T. Zhao, B.Y. Wang, X.Z. Cao, X.B. Qin, J. Li, Y.H. Yang, E.Q. Xie, Spectroscopic ellipsometry and positron annihilation investigation of sputtered HfO2 films, Thin Solid Films, 519 (2011) 6349-6353.
	[310] C.V. Ramana, M. Vargas, G.A. Lopez, M. Noor-A-Alam, M.J. Hernandez, E.J. Rubio, Effect of oxygen/argon gas ratio on the structure and optical properties of sputter-deposited nanocrystalline HfO2 thin films, Ceramics International, 41 (2015) 6187...
	[311] G. Aygun, I. Yildiz, Interfacial and structural properties of sputtered HfO2 layers, Journal of Applied Physics, 106 (2009).
	[312] B. Deng, G. He, J.G. Lv, X.F. Chen, J.W. Zhang, M. Zhang, Z.Q. Sun, Modulation of the structural and optical properties of sputtering-derived HfO2 films by deposition power, Optical Materials, 37 (2014) 245-250.
	[313] D. Franta, I. Ohlidal, D. Necas, F. Vizda, O. Caha, M. Hason, P. Pokorny, Optical characterization of HfO2 thin films, Thin Solid Films, 519 (2011) 6085-6091.
	[314] Z.W. Ma, Y.Z. Xie, L.X. Liu, Y.R. Su, H.T. Zhao, B.Y. Wang, X.B. Qin, P. Zhang, J. Li, E.Q. Xie, The effect of atomic oxygen treatment on the oxygen deficiencies of Hafnium oxide films, Optoelectronics and Advanced Materials-Rapid Communications...
	[315] G. He, J. Gao, H.S. Chen, J.B. Cui, Z.Q. Sun, X.S. Chen, Modulating the Interface Quality and Electrical Properties of HfTiO/InGaAs Gate Stack by Atomic-Layer-Deposition-Derived Al2O3 Passivation Layer, Acs Applied Materials & Interfaces, 6 (201...
	[316] J. Larkin, R. Henley, D. Bell, T. Cohen Karni, J. Rosenstein, M. Wanunu, Slow DNA transport through nanopores in hafnium oxide membranes, ACS nano, 7 (2013) 10121-10128.
	[317] J. Larkin, R. Henley, M. Muthukumar, J. Rosenstein, M. Wanunu, High-bandwidth protein analysis using solid-state nanopores, Biophysical Journal, 106 (2014) 696-704.
	[318] S.H. Shen, I.S. Wang, H. Cheng, C.T. Lin, An enhancement of high-k/oxide stacked dielectric structure for silicon-based multi-nanowire biosensor in cardiac troponin I detection, Sensors and Actuators B-Chemical, 218 (2015) 303-309.
	[319] J. Shim, J. Rivera, R. Bashir, Electron beam induced local crystallization of HfO2 nanopores for biosensing applications, Nanoscale, 5 (2013) 10887-10893.
	[320] B. Dorvel, B. Reddy, J. Go, C. Guevara, E. Salm, C. Duarte Guevara, M. Alam, R. Bashir, Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers, ACS nano, 6 (2012) 6150-6164.
	[321] J. Oh, H.-J. Jang, W.-J. Cho, M.S. Islam, Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane, Sensors and actuators. B, Chemical, 171 (2012) 238-243.
	[322] W. Davey, O. Buiu, M. Werner, I.Z. Mitrovic, S. Hall, P. Chalker, Estimate of dielectric density using spectroscopic ellipsometry, Microelectronic Engineering, 86 (2009) 1905-1907.
	[323] J. Wang, U. Author, R.A. Fava, L.L. Marton, 6.2 Crystallite Size and Lamellar Thickness by X-Ray Methods Crystal Structure and Morphology, Place Published, 1980.
	[324] B.D.a.W. Cullity, J.W., Elements of X-ray Diffraction, American Journal of Physics, 25 (1957) 394-395.
	[325] G. He, L.D. Zhang, G.H. Li, M. Liu, L.Q. Zhu, S.S. Pan, Spectroscopic ellipsometry characterization of nitrogen-incorporated HfO2 gate dielectrics grown by radio-frequency reactive sputtering, Applied Physics Letters, 86 (2005) 3.
	[326] G.M. Xiong, S.J. Yuan, J.K. Wang, A.T. Do, N.S. Tan, K.S. Yeo, C. Choong, Imparting electroactivity to polycaprolactone fibers with heparin-doped polypyrrole: Modulation of hemocompatibility and inflammatory responses, Acta Biomaterialia, 23 (20...
	[327] Q. Shi, Q.F. Fan, W. Ye, J.W. Hou, S.C. Wong, X.D. Xu, J.H. Yin, Binary release of ascorbic acid and lecithin from core-shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte, Colloids and Surfaces B-Biointe...
	[328] M. Ramzan, A.M. Rana, E. Ahmed, M.F. Wasiq, A.S. Bhatti, M. Hafeez, A. Ali, M.Y. Nadeem, Optical characterization of hafnium oxide thin films for heat mirrors, Materials Science in Semiconductor Processing, 32 (2015) 22-30.
	[329] D.M. Hausmann, R.G. Gordon, Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films, Journal of Crystal Growth, 249 (2003) 251-261.
	[330] D.M. Hausmann, E. Kim, J. Becker, R.G. Gordon, Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors, Chemistry of Materials, 14 (2002) 4350-4358.
	[331] D. Triyoso, R. Liu, D. Roan, M. Ramon, N.V. Edwards, R. Gregory, D. Werho, J. Kulik, G. Tam, E. Irwin, X.D. Wang, L.B. La, C. Hobbs, R. Garcia, J. Baker, B.E. White, P. Tobin, Impact of deposition and annealing temperature on material and electr...
	[332] H. O’Connor, A. van Riessen, G. Burton, D. Cookson, R. Garrett, Characterisation of Standard Reference Materials Using Synchrotron Radiation Diffraction Data, Advances in X-ray Analysis. This volume, (1999).
	[333] C.W. Lin, Y.T. Chiang, Tetragonal hafnium oxide film prepared by low-temperature oxidation, Japanese Journal of Applied Physics, 53 (2014).
	[334] L. Pereira, P. Barquinha, E. Fortunato, R. Martins, Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide, Materials Science and Engineering B-Solid State Materials for Advanced Technology, 118 (2005) 210-213.
	[335] B.R. Laboratories, Slide Composition Sheet, 2017.
	[336] S. Pandey, P. Kothari, S.K. Sharma, S. Verma, K.J. Rangra, Impact of post deposition annealing in O-2 ambient on structural properties of nanocrystalline hafnium oxide thin film, Journal of Materials Science-Materials in Electronics, 27 (2016) 7...
	[337] M. Toledano-Luque, E.S. Andres, A. del Prado, I. Martil, M.L. Lucia, G. Gonzalez-Diaz, F.L. Martinez, W. Bohne, J. Rohrich, E. Strub, High-pressure reactively sputtered HfO2: Composition, morphology, and optical properties, Journal of Applied Ph...
	[338] G.E. Jellison, Spectroscopic ellipsometry data analysis: measured versus calculated quantities, Thin Solid Films, 313 (1998) 33-39.
	[339] Q.H. Phan, Y.L. Lo, Characterization of optical/physical properties of anisotropic thin films with rough surfaces by Stokes-Mueller ellipsometry, Optical Materials Express, 6 (2016) 1774-1789.
	[340] A. Hakeem, M. Ramzan, E. Ahmed, A.M. Rana, N.R. Khalid, N.A. Niaz, A. Shakoor, S. Ali, U. Asghar, M.Y. Nadeem, Effects of vacuum annealing on surface and optical constants of hafnium oxide thin films, Materials Science in Semiconductor Processin...
	[341] H. Lee, K. Lee, B. Ahn, J. Xu, L.F. Xu, K. Woh, A new fabrication process for uniform SU-8 thick photoresist structures by simultaneously removing edge bead and air bubbles, Journal of Micromechanics and Microengineering, 21 (2011).
	[342] X.D. Ye, H.Z. Liu, Y.C. Ding, H.S. Li, B.H. Lu, Research on the cast molding process for high quality PDMS molds, Microelectronic Engineering, 86 (2009) 310-313.
	[343] S. Natarajan, D.A. Chang-Yen, B.K. Gale, Large-area, high-aspect-ratio SU-8 molds for the fabrication of PDMS microfluidic devices, Journal of Micromechanics and Microengineering, 18 (2008).
	[344] M.E. Group, PDMS ISOPROPANOL MICROFLUIDICS.
	[345] CAD/Art Services :: outputcity, photomasks, photomask services, phototools, photolithography.
	[346] A.C. Hatch, J.S. Fisher, S.L. Pentoney, D.L. Yang, A.P. Lee, Tunable 3D droplet self-assembly for ultra-high-density digital micro-reactor arrays, Lab on a Chip, 11 (2011) 2509-2517.
	[347] N.L. Jeon, S.K.W. Dertinger, D.T. Chiu, I.S. Choi, A.D. Stroock, Generation of solution and surface gradients using microfluidic systems, Langmuir, 16 (2000) 8311-8316.
	[348] D.R. Link, Geometrically mediated breakup of drops in microfluidic devices, Physical review letters, 92 (2004) 054503.
	[349] C. Ody, C. Baroud, E. de Langre, Transport of wetting liquid plugs in bifurcating microfluidic channels, J. Colloid Interface Sci., 308 (2007) 231-238.
	[350] W. Saadi, S.-J. Wang, F. Lin, N. Jeon, A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis, Biomedical Microdevices, 8 (2006) 109-118.
	[351] Y. Song, M. Baudoin, P. Manneville, C. Baroud, The air-liquid flow in a microfluidic airway tree, Medical engineering & physics, 33 (2011) 849-856.
	[352] Y. Song, P. Manneville, C. Baroud, Local interactions and the global organization of a two-phase flow in a branching tree, Physical review letters, 105 (2010) 134501.
	[353] H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annual Review of Fluid Mechanics, 36 (2004) 381-411.
	[354] C.-G. Yang, Z.-R. Xu, A. Lee, J.-H. Wang, A microfluidic concentration-gradient droplet array generator for the production of multi-color nanoparticles, Lab on a chip, 13 (2013) 2815-2820.
	[355] D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Geometrically mediated breakup of drops in microfluidic devices, Physical Review Letters, 92 (2004).
	[356] C.T. Riche, E.J. Roberts, M. Gupta, R.L. Brutchey, N. Malmstadt, Flow invariant droplet formation for stable parallel microreactors, Nature Communications, 7 (2016).
	[357] A.R. Minerick, J.L. Collins, K.M. Leonard, T.N.G. Adams, Methods and systems for identifying a particle using dielectrophoresis, Michigan Technological University, United States, 2018.
	A Effects of Additives on Droplet Size and Stability in a Microfluidic T-junction Device
	A.1 Surfactant Effects


	Epure water was used as a baseline control, exploring how the presence of a surfactant (Krytox 157 FSH, from here on referred to as Krytox) affected droplet size and stability when being generated in a microfluidic T-junction and collected in a chambe...
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	A.2 Salt Effects

	Salts are an important part of making isotonic solutions of different conductivity, and their presence has been shown to decrease the critical micelle concentration (CMC) with increasing salt concentration [239-241]. Before exploring isotonic solution...
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	A.3 Dextrose Effects

	Dextrose-only solutions were also investigated. It has been seen that the presence of sugar does affect the interface and thus must be included when exploring isotonic solutions [242]. Table A.3 presents each dispersed phase used for the dextrose-only...
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	Since both salt and dextrose affect droplet breakup and stability in droplet microfluidics, their combination to form isotonic solutions of varied conductivity were explored. Table A.4 presents each dispersed phase used for the conductivity experiment...
	Table A-4. Aqueous dispersed phase compositions used for the conductivity experiments.
	A.5 Coefficient of Variance

	The coefficient of variance was found for each combination of additives. The results are shown in Table A.5. All bolded values fall in the typical range seen in literature of 2-10% [53, 243]. All values in green are below 5%. Overall, CV decreased wit...
	Table A-5. Coefficient of Variance (in Percent) of droplet diameter for each combination of phases.
	A.6 Steady State Determination

	An experiment was conducted to determine when the pump reached steady state. Droplets were measured starting at 1 minute up to 75 minutes. The results, in Figure A.5, show that after 10 minutes the droplet size stabilized, meaning the pump had reached...
	B Simulations on Portage and Superior

	Superior and Portage, high-performance computing infrastructure at Michigan Technological University, were used in obtaining results presented in this dissertation. (Note: the number of processors is equal to the CPU time divided by the wall time)
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	Figure A-1. Epure water control for confirming surfactant effect on droplet size. The droplet size, as a function of surfactant concentration, follows the expected natural log trend.
	Figure A-2. Temperature adjusted droplet size versus surfactant concentration for a) 0.960 mM salt, b) 2.616 mM salt, c) 13.892 mM salt, and d) 24.122 mM salt. Increasing surfactant concentration yielded a natural log trend line consistent with litera...
	Figure A-3. Temperature adjusted droplet size versus surfactant concentration for a) 58.837 mM dextrose, b) 161.108 mM dextrose, c) 273.845 mM dextrose, and d) 290.404 mM dextrose. The increase of surfactant concentration yields a natural log trendlin...
	Figure A-4. Temperature adjusted droplet size versus surfactant concentration for a) 0.05 S/m, b) 0.1 S/m, c) 0.5 S/m, and d) 1.0 S/m. The increase of surfactant concentration yields a natural log trend line consistent with literature for each slat-on...
	Figure A-5. Average droplet size, with standard deviation, versus time. Within the first ten minutes, the system reached steady state.

