
Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2018

mPart: Miss Ratio Curve Guided Partitioning in Key-Value Stores mPart: Miss Ratio Curve Guided Partitioning in Key-Value Stores

Daniel Byrne
Michigan Technological University, djbyrne@mtu.edu

Copyright 2018 Daniel Byrne

Recommended Citation Recommended Citation
Byrne, Daniel, "mPart: Miss Ratio Curve Guided Partitioning in Key-Value Stores", Open Access Master's
Thesis, Michigan Technological University, 2018.
https://digitalcommons.mtu.edu/etdr/653

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Data Storage Systems Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=digitalcommons.mtu.edu%2Fetdr%2F653&utm_medium=PDF&utm_campaign=PDFCoverPages

MPART: MISS RATIO CURVE GUIDED PARTITIONING IN KEY-VALUE
STORES

By
Daniel Byrne

A THESIS
Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
In Computer Science

MICHIGAN TECHNOLOGICAL UNIVERSITY
2018

© 2018 Daniel Byrne

This thesis has been approved in partial fulfillment of the requirements for the Degree
of MASTER OF SCIENCE in Computer Science.

Department of Computer Science

Thesis Co-advisor: Dr. Zhenlin Wang

Thesis Co-advisor: Dr. Nilufer Onder

Committee Member: Dr. Soner Onder

Department Chair: Dr. Zhenlin Wang

Dedication

To my mother, father, teachers and friends who have always encouraged me to study
and pursue my education.

Contents

List of Figures . ix

List of Tables . xi

Acknowledgments . xiii

Abstract . xv

1 Introduction . 1

2 Background . 5
2.1 Key-Value Stores . 5
2.2 Multi-Tenancy . 6

2.2.1 Sharing Models . 6
2.2.2 Static Allocation . 7
2.2.3 Pooled Allocation . 7
2.2.4 Working-Set Size Allocation 7

2.3 Miss Ratio Curves . 8
2.3.1 Average Eviction Time (AET) 8
2.3.2 Cliffhanger . 9

3 mPart . 11
3.1 Miss Ratio Curve Construction . 11
3.2 Arbitration . 12

3.2.1 Dynamic Programming . 12

4 Experimental Evaluation . 15
4.1 Memory Allocation Experiments . 15

4.1.1 90% Working Set Size Allocation 18
4.1.2 75% Unique Objects Allocation 19
4.1.3 Equal Objects Allocation . 20

4.2 Time Varying Workload . 20
4.3 Noisy Neighbor Workload . 22
4.4 Miss Ratio Curve Accuracy . 22
4.5 Sampling and Arbitration Overhead 23

vii

4.6 CPU Utilization and Throughput 25

5 Related Work . 29
5.1 Taxonomy of MRC Constructions 29

5.1.1 Stack Distance Algorithms 30
5.1.2 Reuse Time Algorithms . 36

5.2 MRC Based Allocation . 38

6 Conclusion and Future Work . 39

References . 41

viii

List of Figures

1.1 Example Multi-Tenant Architecture 2
1.2 Example Miss Ratio Curve (MRC) illustrating the expected miss ratio

for two allocations sharing a cache size of 10 million objects 3

4.1 Miss Ratio Curve for each application used in our experiment . . . 17
4.2 Hit ratio and Memory Allocation vs 18
4.3 Time-Varying Workload over 24 hour period 21
4.4 Applications with a noisy neighbor added 23
4.5 Noisy Neighbor’s Miss Ratio Curve 24
4.6 Accuracy of MRC generated by AET vs actual 25

5.1 Methods based on Stack Distance 30
5.2 Methods based on Reuse Time . 30

ix

List of Tables

2.1 Example reuse time calculation for a set of requests 9

4.1 Workload parameters used . 16
4.2 Initial allocations (millions of objects) used 16
4.3 Summary of miss/hit ratio for each allocation 20
4.4 GET latencies measured in µs . 25
4.5 SET latencies measured in µs . 26
4.6 Percentage of CPU time spent on cleaning and online WSS tracking 26
4.7 Throughput (1000 op/s) for Memshare and mPart 26

5.1 Example stack distance calculation for a set of requests 31
5.2 Example Counter Stacks calculation 35

xi

Acknowledgments

We would especially like to thank Ryan Stutsman and Asaf Cidon for provid-
ing us with the Memshare system, the log-structured memory simulator (lsm-
sim), and their correspondence throughout this work. This research is supported
in part by the National Science Foundation under Grant No. CSR1618384 and
CSR1422342, the National Science Foundation of China under Grant No. 61232008,
61472008, 61672053 and U1611461, Shenzhen Key Research Project under Grant
No. JCYJ20170412150946024, and the 863 Program of China under Grant No.
2015AA015305. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the
views of the sponsors.

xiii

Abstract

Web applications employ key-value stores to cache the data that is most commonly
accessed. The cache improves an web application’s performance by serving its requests
from memory, avoiding fetching them from the backend database. Since the memory
space is limited, maximizing the memory utilization is a key to delivering the best
performance possible. This has lead to the use of multi-tenant systems, allowing
applications to share cache space. In addition, application data access patterns change
over time, so the system should be adaptive in its memory allocation.

In this thesis, we address both multi-tenancy (where a single cache is used for mul-
tiple applications) and dynamic workloads (changing access patterns) using a model
that relates the cache size to the application miss ratio, known as a miss ratio curve.
Intuitively, the larger the cache, the less likely the system will need to fetch the data
from the database. Our efficient, online construction of the miss ratio curve allows us
to determine a near optimal memory allocation given the available system memory,
while adapting to changing data access patterns. We show that our model outper-
forms an existing state-of-the-art sharing model, Memshare, in terms of cache hit
ratio and does so at a lower time cost. We show that average hit ratio is consistently
1 percentage point greater and 99.9th percentile latency is reduced by as much as
2.9% under standard web application workloads containing millions of requests.

xv

Chapter 1

Introduction

In-memory key-value stores play critical roles in many datacenters and web services
by caching database requests. Two widely deployed systems are memcached [33] and
Redis [31]. Facebook lays claim to the largest reported deployment of memcached [5],
caching of the order of hundreds of terabytes of data. By the same token, Amazon
Web services [4] hosts a large-scale deployment of Redis as a web application cache
for its customers.

Given the scale and scope of these deployments it has been shown that even a slight
improvement in hit ratio can have a significant impact on performance [5, 17]. Con-
sider the following example: A cache has 98% hit ratio, average cache latency of
100us, and a database access time of 10ms, the expected end-to-end application la-
tency is 298us (0.98 × 100us + 0.02 × 10000us). Now increasing the application’s
hit ratio to 99%, we get an expected end-to-end latency of 199us, resulting in over a
33% speedup.

In this thesis, we consider the multi-tenant environment, where there is a single
caching instance (i.e. memcached or Redis) partitioned for multiple applications (Fig-
ure 1.1). This environment has been promoted since it allows for pooling of memory
between application to accommodate changing workloads [17]. In this environment
we need a sharing model to decide how to allocate memory among the tenants as
to not have a few applications take over the entire cache. Traditionally, the sharing
model has been static, manual, assignments, but this often leads to underutilized
memory and requires constant tuning [17].

A recent development in dynamic partitioning in multi-tenant environment has been
to estimate the working-set size (WSS) of an application [20]. Ideally, the system

1

���������	
���	�������

��	� ��	� ��	� ��	�

������

���� ���� ���� ����

Figure 1.1: Example Multi-Tenant Architecture. There is a single cache
that serves requests to multiple applications/databases, space is shared be-
tween each application.

should be adaptive to the working-set size of each application. With the recent
advancements in miss ratio curve estimation algorithms, we study how to use full
miss ratio curves to guide our memory partitioning between applications in order to
deliver near optimal allocations [21, 22, 27, 28, 42].

Miss ratio curves (MRCs) relate cache allocations to application miss ratios. The
MRC is an effective tool to estimate how an application responds to its cache alloca-
tion and how much space it actually needs, known as the working set size. Knowing
the working set size of an application helps estimate the utility of adding more mem-
ory or increasing the cache size. With MRC, previous studies usually define the WSS
of an application as the minimum cache size that can achieve a preset hit ratio, say
95%, or the minimum cache size beyond which the hit ratio remains flat [46]. We
choose the latter definition in this paper. Example miss ratio curves are shown in
Figure 1.2.

Notice how that if our total cache size was 10 million objects, we can use the miss
ratio curve to quickly find which allocation maximizes overall hit ratio. Compared
to an assignment of 5 million objects to each application, a miss ratio curve based
allocation gives 6.9 million objects to etc and 3.1 million objects to psa. This results
in a 4 percentage point decrease in overall miss ratio (24% vs. 20%), or a 13% miss
reduction.

2

●

●

●
●

1

1

22

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6

Cache Size (millions of objects)

M
is

s
 R

a
ti
o

workload
etc
psa

Figure 1.2: Example Miss Ratio Curve (MRC) illustrating the expected
miss ratio for two allocations sharing a cache size of 10 million objects.
Allocation 1 gives both applications 5 million objects, while Allocation 2
uses the miss ratio to maximize overall hit ratio.

In this thesis, we present the implementation of mPart, a sharing model for multi-
tenant key-value stores that allocates memory based on the miss ratio curve. We
systematically compare mPart with Memshare (Chapter 2) [17], a state-of-the-art
multi-tenant key-value store design that utilizes a credit system to incrementally
adjust memory allocations. Our evaluation results show that mPart is able to provide
a robust and complete picture of the working set versus Memshare and deliver higher
hit ratio and smaller tail latency in response time at the 95th percentile and above.

3

Chapter 2

Background

In this chapter we will describe key-value stores in detail and provide examples of
their use in a typical environment. We also motivate the multi-tenant design in
the data center environment based off of prior work in the virtual machine world
and theoretical results on resource sharing. In doing so, we present different sharing
models for how to divide the memory available among the applications hosted on a
single instance of a key-value store.

Finally, we describe the recent work surrounding working set modeling and how they
are used to make decisions about allocating memory among multiple applications.
In particular, we describe an incremental approach, Cliffhanger, which uses a victim
cache to estimate the gradient of the miss ratio curve. We also present an overview
of a complete miss ratio curve algorithm, Average Eviction Time (AET), which uses
the logical reuse time of references.

2.1 Key-Value Stores

Key-Value stores are a class of object stores that store data in a <key,value> pair.
Typically keys are represented as integers or strings and values can range from prim-
itive data types (integers, floats, strings, etc.) to more advanced data structures
such as, lists and hash-tables, in some key-value stores, like Redis.

In many ways, key-value stores can be thought of as distributed dictionaries rather
than a relational database. For example, in the context of social media site Instagram,

5

they use Redis to store a mapping between media ID (keys) and user ID (values) to
the order of 300 million key-value pairs [1].

Key-value stores can reside in a servers main memory or on disk. Key-value stores
that reside on a server’s main memory are referred to as in-memory key value stores.
Examples of these systems are memcached and Redis. On the other hand, some key-
value stores are persistent, like RocksDB, and write to disk occasionally. In addition,
there are key-value stores designed specifically for non-volatile memory (NVM) such
as pmemkv, developed by Intel. Our thesis will focus on in-memory key-value stores.

2.2 Multi-Tenancy

Figure 1.1 shows the multi-tenant environment. There is a single instance of the
key-value store that is host to several applications. Each application has its own
set of candidates for eviction, known as an eviction pool, and we assume there is no
overlap in the keyspace. Multi-tenant environments are attractive for data centers
since they allow resources to be shared among applications. In fact, in his thesis,
Denning showed that sharing resources leads to more efficient utilization [19].

Prior work done in the multi-tenant environment has been centered around virtual
machine management [47]. One physical server may host several virtual machines,
each with variable memory demands. The work by Weiming and Wang [47] introduces
a memory balancer that allocates memory among virtual machines on a physical
host. They show that the memory balancer provides an increase in overall system
throughput. Further motivating the multi-tenant architecture for the data center
environment.

2.2.1 Sharing Models

The key component is resource sharing is how to decide how much to give each
application. From the literature and in practice,there have been several different
notions of how to share the memory. We call these sharing models for application
memory and we present three different allocation techniques in order of complexity.

6

2.2.2 Static Allocation

In larger deployments it is common to have several different pools of memcached
servers. For example, Facebook partitions applications among a number of pools
[5, 34]. Each pool is a set of memcached servers with varying levels of quality of
service (QoS) needs. We must choose which applications belong in what pool in
order to maximize overall performance. That is, if there is an application that would
benefit the most from a pool with more memory then it should be placed in a pool
with more memory. Currently this is done through static assignment and constant
manual tuning by system administrator.

2.2.3 Pooled Allocation

Ideally, a cache should be able to adapt when an application’s workload changes. In
a pooled environment, all applications share the entire memory pool and eviction
queues, essentially acting as a single application. As a greedy approach, it has the
potential to starve smaller applications, but increases overall hit ratio compared to
the static allocation strategy [17].

2.2.4 Working-Set Size Allocation

Formally, researchers [2, 43] defined the multi-tenant allocation problem as the fol-
lowing optimization problem: compute the ideal memory m = [m1,m2, ...,mN] that
minimizes the number of misses in the cache,

minimize F (m) =
N∑

i=1

mrci(mi) ∗NRi

subject to
N∑

i=1

mi ≤ M

(2.1)

for all N applications while subject to a memory budget M , where mrci(mi) is the

7

miss ratio for a given memory size mi, NRi is the number of requests for the appli-
cation, and the number of misses is mrci(mi) ∗NRi .

Memory management has also been studied in the context of virtual machines running
on a single host, where each virtual machine is allocated a certain amount of memory.
Over time as workloads change, memory is reassigned based on the working set size
of a given virtual machine [43].

2.3 Miss Ratio Curves

Miss ratio curves (MRCs) are useful for estimating how much data is being used by
a particular workload and what utility can be gained by increasing the cache size. In
our work, we will apply the recently developed MRC estimation method known as
AET: Average Eviction Time.

2.3.1 Average Eviction Time (AET)

Hu et al. present a series of kinetic equations related to average data eviction in
the cache [27, 28]. The first step is to construct a histogram of reuse time that
describe the reuse time distribution. The reuse time of an object is the total number
of accesses between two accesses to the same piece of data. Reuse time is a simpler
metric to measure than reuse distance [23, 49], which counts the number of distinct
accesses between an access and its next reuse. Table 2.1 gives an example of reuse
time calculation.

Based on the reuse time histogram, we can now calculate the probability that reference
x has reuse time greater than t, which is then related to a stack movement in an LRU
queue.

From here we can solve for the average eviction time for a given cache size, c. It is
realized by the following equation:

∫ AET (c)

0

P (t)dt = c (2.2)

where P (t) is the probability that a reference has reuse time greater than t. We

8

Table 2.1
Example reuse time calculation for a set of requests.

request time last use reuse time

a 1 ∞ ∞

b 2 ∞ ∞

c 3 ∞ ∞

d 4 ∞ ∞

a 5 1 4

a 6 5 1

d 7 4 3

b 8 2 6

obtain P (t) from the reuse time histogram. Armed with the average eviction time
for a cache of size c, we can now compute the MRC using the following equation
described by Hu et al.:

mrc(c) = P (AET (c)) (2.3)

where P (AET (c)) is the probability that a reuse time is greater than the average
eviction time for cache of size c, AET (c). The probability again comes from the reuse
time histogram.

To control space and time overhead, AET adopts random sampling and reservoir
sampling to generate reuse time histogram. We use random sampling in this paper.
AET is able to generate an accurate MRC with a sampling ratio as low as 1/10000.
In other words, it only needs to track the reuse time for 1 over 10000 accesses. AET
maintains a small hash table of the sampled keys to compute the reuse time.

2.3.2 Cliffhanger

In contrast to computing the full miss ratio curve, another approach is to estimate
the working set size by using a data structure that tracks recently evicted keys, called
shadow queues. Shadow queues are similar to victim caches [29], except that they only

9

store the keys of the evicted items. The Cliffhanger [16] miss ratio curve estimation
technique uses these shadow queues to hold the keys of recently evicted objects, in
order tell how often data that was recently evicted (that is, residing in the shadow
queue) is reused.

If an application has a high hit ratio in the shadow queue, then it should be allocated
more memory. If the cache was expanded by the size of the shadow queue, then
those misses would have been hits. In addition, the more frequent an application is
hitting in the shadow queue, the greater the gradient on the miss ratio curve is, since
an increase in cache size would lead to significantly more hits. A credit system is
used to keep track of which application steals memory from another application on
a cache miss. One credit is a pre-defined amount of memory that is taken from a
victim application at random.

Cliffhanger is the sharing method that is implemented in the recent multi-tenant key-
value store Memshare by Cidon et al [17]. On a miss in the cache, the Memshare
system checks if the request would have been a hit in the application’s shadow queue.
If the application would have hit in the shadow queue, it is assigned 1 credit of mem-
ory. The victim application is chosen at random. Memshare employs log structured
memory, so applications are cleaned based on their need. An application’s need is
defined as the amount of memory in use over the amount of memory currently al-
located. A need of less than 1 means the application is currently over-provisioned
and the Memshare system will prefer to clean items from that particular application.
When items are cleaned, they are pushed into the application’s shadow queue. There-
fore allowing the application to receive more credits (space) if those items are reused
soon.

10

Chapter 3

mPart

A multi-tenant sharing model should be based on the working-set sizes of the appli-
cations present and must also be able to dynamically reassign memory in the face
of changing workloads. To that end, we designed mPart. mPart is made up of two
parts: online miss ratio curve construction and memory arbitration.

3.1 Miss Ratio Curve Construction

In order to determine the probability that a reference will be reused after a given time
t, we must first construct a reuse time histogram. This is accomplished by sampling
GET requests. When a request is randomly sampled, the algorithm checks a hash
table of requests and access times in order to see if this particular request has been
accessed before or not.

If the request has an entry in the hash table, then its reuse time is recorded in the
reuse time histogram accordingly and its access time is updated as the current logical
time. If there is no entry in the hash table for this request, then with a probability of
the sampling ratio, the new request is added to the hash table and its logical access
time is recorded.

Now that we have the reuse time histogram, we can calculate the miss ratio curve for
each application by solving Equations 2.2 and 2.3. In the system implementation, this
is done in a separate thread with the arbitration so it will not interrupt the key-value
store service.

11

3.2 Arbitration

We present a dynamic programming optimization algorithm. We choose this method
in order to achieve polynomial time in determining memory assignments since the
problem can have an exponential search space.

3.2.1 Dynamic Programming

At a specified interval, we run the arbitration algorithm presented in [43]. Algorithm
1 shows the psuedocode. We use dynamic programming in order to minimize the
number of expected misses based off the constructed miss ratio curve. In a set of N
applications with total memory M , let miss(i, j) be the minimum number of misses
that the first i applications cause with total amount memory size j. We use k to
denote the amount of memory for application i. Our goal is to find the assignment
for miss(N,M). miss(i, j) can be calculated from the following recurrence equation
using the application’s miss ratio curve, mrc:

miss(i, j) =

min(miss(i, j),miss(i− 1, j − k) +mrci(k) ∗NRi)
(3.1)

where Li ≤ k ≤ Hi, since k represents the amount of memory that we will assign to
application i. The Li lower bound serves as a lower limit set by the administrator
for the lowest amount of cache space required by the application. Similarly, the
upper bound Hi is the maximum amount of cache space set by the administrator. In
practice, we set up an increment/decrement step S for k. The step S determines the
granularity of our miss ratio curve and therefore number of objects assigned to an
application. In our evaluation, we found that 500 objects works well. We use NRi

for the number of accesses since the last arbitration. The base case is just the first
application’s misses, that is:

miss(1, j) = mrci(j) ∗NRi (3.2)

The expected memory allocation for application i is Ei = max(Li,WSSi). If M ≥
∑

Ei, then we can distribute the additional, bonus, memory in proportion to an
application’s working set size. That is, if an application’s working set size takes up

12

50% of
∑

Ei, then it is given 50% of the additional memory.

If M ≤
∑

Ei, then we cannot satisfy the working set size of at least one application,
since our goal is to minimize the number of misses in the entire cache, we now need
to calculate miss(N,M) and record the assignments for each application. For each
application (the i to N loop) we need to search over total memory sizes in M (the
j loop). For each memory size j we need to find the memory allocation k (subject
to the lower and upper bounds of the applications memory size), that minimizes the
number of misses subject to j. The total time complexity is O(N2 × (M

S
)2).

13

Algorithm 1 Dynamic Programming Arbitration.
Require: M {Total cache memory}
Require: {V} {Set of applications}
Require: {L} {Set of lower limits for each app}
Require: {H} {Set of upper limits for each app}
Require: {m} {Set of current memory alloc’s for each app}
Require: {WSS} {current WSS for each app}
Require: {mrc} {MRCs for each app}
Require: {NR} {requests for each app}
1: for i ∈ V do

2: Ei ← max(lowi,WSSi)
3: end for

4: Es ←
∑

Ei

5: if M ≥ Es then

6: bonus←M − Ei

7: for i ∈ V do

8: Ai ← bonus× Ei

Es

9: end for

10:
11: return {A}
12: else

13: Lows ← 0, Highs ← 0 {bound on inner j loop}
14: for i ∈ V do

15: Lows ← Lows + Li

16: Highs ← Highs +Hi

17: for j ← Lows; j ≤ min(M,Highs) do

18: if i = first then

19: miss[1][j]← mrci(k) ∗NRi

20: else

21: miss[i][j]←∞
22: for k ← Li; k ≤ Hi do

23: if j ≥ k then

24: cMiss← mrci(k)×NRi

25: pMiss← miss[i− 1][j − k]
26: nMiss← pMiss+ cMiss

27: if miss[i][j] ≥ nMiss then

28: miss[i][j]← nMiss

29: Target[i][j]← k

30: end if

31: end if

32: k ← k + S

33: end for

34: end if

35: end for

36: end for

37: T ←M

38: for i← N ; i→ 1 do

39: Ai ← Target[i][T]
40: T ← T − Target[i][T]
41: end for

42:
43: return {A}
44: end if

14

Chapter 4

Experimental Evaluation

In order to measure the memory allocation and performance of MRC guided partition-
ing and compare it with Memshare, we run two sets of tests. First, we run a set of 6
synthetic application traces in order measure the hit ratio gains and speedup. Second,
we run the YCSB benchmark to measure the overhead of sampling and application
arbitration.

Our experiments run on a 48-core 2.2GHz Intel(R) Xeon(R) CPU E5-2650 v5 and
256GB of DDR4 DRAM at 2400 MHz. All experiments are compiled and run on Red
Hat 6.3.1 with Linux kernel 4.11.12 and GNU C compiler (gcc 7.3.0, -O3 optimiza-
tion).

4.1 Memory Allocation Experiments

To measure the benefits of MRC guided partitioning, we adopted a set of synthetic
workloads with the following: reuse patterns based on Zipfian-like distribution with
varying α values to model web access patterns [11] and varying number of objects
(ETC, PSA, YCSB) from [14, 18, 25]. Table 4.1 gives the parameters for each
workload. Each workload has the same total number of requests: 100 million, and
each object is 200 bytes. We define the working set size (WSS) as the number of
objects in the cache such that any additional objects do not increase the cache hit
ratio.

We use the log structured memory simulator from [17] to measure hit ratios and

15

Table 4.1
Workload parameters used. Number of objects is expressed in millions.

Workload Unique objects WSS Zipf - α

etc 7 6.97 0.25
etc.small 3.5 3.47 0.25
psa 7 6.12 0.85
psa.small 3.5 3.38 0.85
ycsb 10 5.28 1.0
ycsb.small 5 3.63 1.0

Table 4.2
Initial allocations (millions of objects) used.

Workload 90% WSS 75% Uniques Equal

etc 6.273 5.25 4.3275
etc.small 3.123 2.625 4.3275
psa 5.508 5.25 4.3275
psa.small 3.042 2.625 4.3275
ycsb 4.752 7.5 4.3275
ycsb.small 3.267 3.75 4.3275

Total 25.965 27 25.965

compare against the Memshare system. We also vary the initial allocation, since it
is possible developers do not have precise knowledge of the working set size of their
application before deployment.

In order to compare allocation strategies, we use the workloads listed in Table 4.1
and vary the initial allocations. We set the following allocations:

90% Working Set - Each application is initially given an allocation that is 90% of
its working set size. This is to simulate when developers may have an estimation of
the working set size of their application.

75% Unique Objects - Each application is initially given 75% of its total unique
objects. This is to simulate when developers may not be aware of the access pattern
of the applications.

Equal Allocation - All applications are given the same amount of memory. This is
to simulate when developers do not have an estimation of each application’s working

16

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6

Cache Size (millions of objects)

M
is

s
 R

a
ti
o

workload
etc
etc.small
psa
psa.small
ycsb
ycsb.small

Figure 4.1: Miss Ratio Curve for each application used in our experiment.

set size. We set the total memory to be 90% of the sum of all applications working
set size.

Table 4.2 compares each allocation and Figure 4.1 shows the miss ratio curve for each
application.

Memshare Parameters: The credit size is set to 500 objects based on the Memshare
system defaults. The credit size is how much memory an application can steal from
an application on a hit in the shadow queue. We found that an increase in credit size
negatively impacted overall hit ratio for our set of experiments. We use a shadow
queue size of 50K objects, based from previous work and our evaluation. We found
that an increased shadow queue size of 20MB did not have significant impact on the
hit ratio. Figure 4.2 shows the hit ratio and memory allocations of each application
over the number of accesses.

mPart Parameters: We use a sample rate of 1/10,000 for building the reuse time
histogram used by the AET algorithm. Our miss ratio curve is set to output at steps
of 500 objects, S = 500, matching the credit size used in Memshare. The arbitration

17

WSS: Memshare WSS: mPart Unique: Memshare Unique: mPart Equal: Memshare Equal: mPart

0.80

0.85

0.90

0.95

1.00

0

3

6

9

12

15

10 50 90 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90

0

3

6

9

12

15

Accesses (millions per app)

H
it
 R

a
ti
o

A
llo

c
a

te
d

 M
e

m
o

ry

 (
m

ill
io

n
s
)

C
u

rr
e

n
t

O
b

je
c
ts

 (

m
ill

io
n

s
)

etc

etc.small

psa

psa.small

ycsb

ycsb.small

Figure 4.2: Hit ratio and Memory Allocation vs. Number of Accesses for
each application

algorithm runs every 2 million accesses (50 times total for our experiments). We set
an upper and lower bound of 30% for the amount of memory that can be added or
removed from an application on a given arbitration.

Figure 4.2 shows the hit ratio and memory allocations of each application over the
number of accesses. In all three settings, mPart outperforms Memshare since it
has a complete miss ratio curve to calculate the utility of increasing or decreasing
the memory of a given application. Table 4.3 summarizes the miss ratios of each
experiment. mPart reduces the miss ratio by at least 20% for all three settings and
by over 25% in the 90% WSS allocation scenario.

4.1.1 90% Working Set Size Allocation

In the working set size allocation, Memshare obtains a 95.2% hit ratio. The steady
state is reached in the last 10% of accesses when allocations become relatively stable.
Three applications, psa, psa.small and ycsb.small, ended up with similar allocations as
their initial setting. The etc.small workload gained 400K objects in order to increase

18

its hit ratio and the etc workload gained 100K objects. These objects came from
the ycsb allocation, which resulted in an overall increase in hit ratio since etc and
etc.small have steep miss ratio curves in comparison to ycsb.

mPart achieves a 96.4% hit ratio under its allocation performing repartitioning every
2 million accesses. The near-optimal tradeoff between cache size and miss ratio for
applications like etc and ycsb is made in order to maximize hit ratio. For example, in
the final ycsb allocation, we allocate 3 million objects (as opposed to the 4.1 million
objects in Memshare) in order to achieve an increased hit ratio for etc and etc.small.
While there is a decrease of 3.1% in ycsb’s hit ratio when compared with the Memshare
allocation, the mPart allocation results in an overall 1.26% improvement in hit ratio
or 25% miss reduction.

4.1.2 75% Unique Objects Allocation

In the unique objects allocation, Memshare obtains a 95.8% hit ratio. This is the
result largely due to the reassignment of the extra ycsb memory, decreasing from 7.5
million objects to 4.6 million objects. Initially, ycsb is overcommited, there are many
more objects allocated than there are present in the cache, while on the other hand,
etc is underallocated and hits very often in its shadow queue, causing it to be assigned
more credits.

Since ycsb has such a large number of unique objects, it initially hits very little in the
shadow queue. But at 58 million accesses, the shadow queue contains enough of the
working set of requests to begin having enough hits to cause ycsb to steal from other
applications. Unfortunately, this comes at the cost of other applications memory (etc
or etc.small), which may have steeper miss ratio curves and not necessarily maximize
overall hit ratio.

In comparison to the Memshare allocation, mPart achieves a 96.8% hit ratio, a 1
percentage point increase over the Memshare allocation. This is due to the increased
allocation to applications psa, psa.small, etc, and a decrease in allocation to applica-
tions ycsb and ycsb.small. Recall that a slight increase in hit ratio yields significant
speedup. In our case from 95.8% to 96.8%, we should expect to see near 30% speedup
assuming a cache access time of 10us and backend database access time of 10,000us.

19

Table 4.3
Summary of miss/hit ratio for each allocation.

Miss / Hit Ratio (%) 90% WSS 75% Unique Equal

Memshare 4.8 / 95.2 4.2 / 95.8 4.9 / 95.1
mPart 3.6 / 96.4 3.2 / 96.8 3.9 / 96.1

% change -25.0 / 1.26 -23.8 / 1.04 -20.4 / 1.05

4.1.3 Equal Objects Allocation

In the equal objects allocation, Memshare obtains a 95.1% final hit ratio in the
steady state. Again, we see a sub-optimal allocation choice in stealing memory from
etc starting at 40 million accesses. This is because the application psa has higher
need than etc as etc is currently over provisioned (its need is less than 1). Since etc
has a steep miss ratio curve, the cost of stealing memory is significant. Before the
reallocation etc had a hit ratio of nearly 100% but drops to 95% after the reallocation.
Notice how if we were to steal the same amount of memory, about 200K objects, from
the ycsb application, ycsb’s hit ratio would only decrease by a small amount based on
the miss ratio curve (89.6% average hit ratio with cache size of 4.1 million to 89.4%
average miss ratio with cache size 3.9 million).

In comparison to the Memshare allocation, mPart achieves a 96.1% hit ratio. Appli-
cations like psa and etc quickly receive close to their optimal memory allocation. This
is one key advantage to using the stable miss ratio curve; we can almost immediately
get an estimation of the working set size of an application. The resulting smaller
allocations occur in order to accommodate the change in workloads. In comparison,
the Memshare equal objects allocation test takes almost 80 million accesses to arrive
at its working set size estimation.

4.2 Time Varying Workload

In order simulate performance when workloads vary request rate over a period of time,
as demonstrated in Facebook datacenter environment, we set the inter-arrival times
for requests according to the observed patterns at Facebook. For each hour of the
day, requests follow a Generalized Pareto distribution with varying shape parameter
k, scale parameter σ, and constant threshold/location parameter θ = 0 following
Table 6 from B. Atikoglu et al. [5].

20

0.89 avg 0.911 avg

Memshare mPart

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 0 5 10 15 20
0

3

6

9

12

15

Time (hrs)

H
it
 R

a
ti
o

A
llo

c
a
te

d
 M

e
m

o
ry

(m

ill
io

n
s
)

etc

etc.small

psa

psa.small

ycsb

ycsb.small

Figure 4.3: Time-Varying Workload over 24 hour period.

In our synthetic workloads we stagger the workloads by 4 hours each, so they do
not follow the same periodic pattern. An example of this in the real world is when
some applications see higher usage during the night time hours, such as bank batch
processing, and others are used heavily during the daytime, such as web search.

Figure 4.3 shows that he overall performance is not changed significantly in mPart
since the allocation assignments are unaffected by the different request rates because
AET algorithm tracks logical access time. This is in contrast to Memshare since
the hit ratio in the shadow queue changes with the request rate, which in turn,
corresponds to the number of credits that are assigned to an application. In Figure
4.3, we see that the allocations between applications in Memshare have considerably
higher variance over time. The result is that mPart achieves a 2.4% improvement
total hit ratio over Memshare.

21

4.3 Noisy Neighbor Workload

Some applications have such poor locality that there may be little benefit from
caching. Such applications are referred to as ”noisy neighbors” and can eat away
cache space from other applications if not controlled properly. To emulate a noisy
neighbor application, we use a Zipfian-like distribution with α = 0.9. We make
100,000 requests to a data set of 100 million objects. The noisy neighbor enters
the system at hour 5. The results from both Memshare and mPart are shown in
Figure 4.4.

Both systems handle the noisy neighbor case well, since they both do estimations of
an application’s working-set size online. In the case of Memshare, the noisy work-
load rarely hits in the shadow queue, so it hardly ever steals memory from other
applications. In the case of mPart, the miss ratio curve for the noisy neighbor is flat
after a 150,000 objects. This means that there is no added benefit to increasing the
noisy neighbor’s cache space beyond that size. Figure 4.5 shows the miss ratio curve
for the noisy neighbor workload. In fact, once the noisy workload enters the cache,
both systems allocate it some memory (Memshare 4,000 and mPart 5,000 objects)
but soon calculate that it is better to use the extra space towards workloads psa and
etc. The noisy workload returns to its lower bound at hour 6 in the mPart system,
while it takes an extra 2 hours for Memshare to realize this.

4.4 Miss Ratio Curve Accuracy

The AET model assumes a fully associative LRU cache. In the Memshare system
cleaning is done based on application need. This means that after choosing a set
number of candidate segments (in our experiments we choose 50 candidate segments),
the system evicts items that belong to applications with lower need first. Within an
application, items are evicted on LRU ordering. While not completely LRU, it has
been shown that sampling for eviction is accurate and yields lower overhead [10].

In order to measure the actual miss ratio for a given cache size, we ran Memshare for
a range of cache sizes, 200K to 8 million objects, and recorded the miss ratio for each
run. Each workload was run separately so there was no sharing to impact the miss
ratio. The error in the AET model prediction is shown in Figure 4.6. It provides
accurate results at a sampling rate at 1/10,000 requests.

22

Memshare mPart

0.5

0.6

0.7

0.8

0.9

1.0

0

2

4

6

8

10

0 2 4 6 0 2 4 6
0

3

6

9

12

15

Time (hrs)

H
it
 R

a
ti

o
N

o
is

y
 A

p
p
 A

llo
c
.

(1
0
0
0
0
s
)

N
o
rm

a
l
A

p
p
 A

llo
c
.

(m
ill

io
n
s
)

etc psa

Figure 4.4: Applications with a noisy neighbor added.

4.5 Sampling and Arbitration Overhead

To measure the sampling and arbitration overhead, we implement our approach on the
existing Memshare system. The clients and cache server run on one machine, hence
the measurements represent the worst case. We use the YCSB framework using 250
byte items with 23 byte keys over 100 million operations. The access pattern is the
YCSB zipf distribution (α = 1). The results are the average of 10 runs and are shown
in Tables 4.4 and 4.5.

We use a sampling rate of 1/10,000 and implement the arbitration into the log cleaner
in order to avoid unnecessary slowdown since the cleaner runs in a separate thread.
Our result show a decrease in GET request tail latency since we only need to perform
sampling on the critical path of a request. In our experiments, the steady state hit

23

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150
Cache Size (1000s of objects)

M
is

s
 R

a
ti
o

Figure 4.5: Noisy Neighbor’s Miss Ratio Curve.

ratios are typically 95% and above, therefore in Memshare, the 95th percentile of
GETs reflects the cost of accesses the shadow queue as shown in Table 4.4. On the
other hand, in mPart we only sample 1/10,000 of the requests to add to the reuse
time histogram. This avoids impacting the tail latency as much as Memshare does.

After a miss in the cache, both systems are configured to issue a SET request. On
a SET request we are adding new data to the cache and could cause the log cleaner
thread to run. When the log cleaner thread runs in Memshare, applications are sorted
by need and then items are evicted in LRU order. The evicted items are then pushed
to the shadow queue. Again for the same reasons as in the GET request percentiles,
this has an effect on the 95th percentile and above latencies. In mPart, when the log
cleaner thread runs, there is no shadow queue to push items into.

24

psa.small ycsb ycsb.small

etc etc.small psa

1.0 2.8 4.5 6.2 1.0 2.8 4.5 6.2 1.0 2.8 4.5 6.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Cache Size (in millions)

M
is

s
 R

a
ti
o

Figure 4.6: Accuracy of MRC generated by AET vs actual.

Table 4.4
GET latencies measured in µs.

GETS 50% 75% 90% 95% 99% 99.5% 99.9%

Memshare 29.46 32.06 35.41 38.27 45.13 47.4 55.41
mPart 29.36 31.89 35.15 37.42 44.48 46.86 53.81

% change -0.34 -0.53 -0.73 -2.22 -1.44 -1.14 -2.89

4.6 CPU Utilization and Throughput

In terms of CPU utilization, mPart achieves lower cleaning costs compared to
Memshare because we do not need to push cleaned items into their respective shadow
queues. Table 4.6 compares the CPU time spent on different tasks. In mPart, we
solve the AET equation off the critical path in the cleaner thread. Our results show
that solving the AET equation is cheaper than maintaining shadow queues. For sam-
pling, we find that only 0.002% of CPU time is spent for sampling, while up to 1.1%

25

Table 4.5
SET latencies measured in µs.

SETS 50% 75% 90% 95% 99% 99.5% 99.9%

Memshare 34.2 38.23 43.4 48.69 85.99 95.93 126.69
mPart 34.06 38.06 43.21 47.98 82.92 94.05 123.77

% change -0.41 -0.44 -0.44 -1.46 -3.57 -1.96 -2.30

Table 4.6
Percentage of CPU time spent on cleaning and online WSS tracking.

CPU Time Cleaning WSS Tracking

Memshare 4.4% 1.1%
mPart 3.2% 0.002%

Table 4.7
Throughput (1000 op/s) for Memshare and mPart.

Throughput YCSB workload

Memshare 560.1
mPart 610.8

% change 8.8

of CPU time is spent testing shadow queues on GET misses in Memshare.

Table 4.7 shows the increased throughput of mPart compared with Memshare. This
is a result of 1) increased hit ratio and 2) lower latency.

Memshare and mPart both have relatively small space overheads; on the order of 100s
of kilobytes. For Memshare, the shadow queue represents 10MB (or 20MB) of items.
Our tests have an item size of 200 bytes, so one queue stores 50,000 keys. Since we
only keep the 8 byte key hashes, that leaves a total overhead of 400KB (or 800KB if
using 20MB queue) per application. In our experiments increasing the shadow queue
size did not increase the hit ratio of the total system. For mPart, we consider the
space overhead of AET algorithm. The reuse time histogram is by default 100,000
entries, which gives 800KB space overhead. The hash table that keeps samples of
reuse times is determined by the number of references being tracked at a given time.
The upper bound on the hash table is then, the working set size times the sampling
rate (1/10,000 for this work). In our case, the etc workload has the largest WSS of
6.97 million objects, so it’s hash table needs to hold at most 697 objects, at 8 bytes

26

each entry, resulting in 5.4KB of space for this application.

27

Chapter 5

Related Work

In order to organize the related work, we present a taxonomy of miss ratio curve
construction techniques, along with some previous applications of these models.

5.1 Taxonomy of MRC Constructions

Figure 5.1 and 5.2 classify the techniques that use stack distance and reuse time
respectively, by how they store and process the data into a miss ratio curve. We also
give a representative work from each class. The figures are organized in the following
structure from top to bottom; metric (reuse time or stack distance), primary data
structure used, miss ratio curve derivation method, and representative works.

Metric

Data Structure

MRC Derivation

Rep. Work (s)

29

Stack Distance

Tree

Search Tree

Olken [36]

SHARDS[42]

Histogram

Stack Processing

PARDA [35]

FractalMRC [24]

UMONs [39]

Counter Stacks [44]

Buckets

Hill Climbing

Cliffhanger [16]

Stack Dist.

MIMIR [40]

Figure 5.1: Methods based on Stack Distance.

Reuse Time

Expected Reuse

Statstack [22]Statcache [8]

Histogram

Hit-Evict Distribution

Beyond LRU [6]

Footprint

LAMA [25]

Average Eviction

AET [27]

Figure 5.2: Methods based on Reuse Time.

5.1.1 Stack Distance Algorithms

This class of algorithms for calculating miss ratio curves takes advantage of the least
recently used (LRU) replacement policy which maintains the stack order. Table 5.1,
demonstrates this for a set of requests.

To generate a miss ratio curve for cache size d, a histogram of stack distances is
created. The stack distance histogram represents a distribution of the application’s
reuse distance. Given the stack distance histogram, one can calculate the number of
hits in a cache of size d as the sum of all the references with stack distances ≤ d and
similarly the number of misses as the sum of all references with stack distance > d.

Formally, let the cache size be d items, N is the total number of requests, and M is
the total number of unique items, then the miss ratio(d) is express as:

30

Table 5.1
Example stack distance calculation for a set of requests.

request time stack contents stack dist.

a 1 a ∞

b 2 b,a ∞

c 3 c,b,a ∞

d 4 d,c,b,a ∞

a 5 a,d,c,b 4 (d,c,b)
a 6 a,d,c,b 1 (none)
d 7 d,a,c,b 2 (a)
b 8 b,d,a,c 4 (d,a,c)

1−

d∑

i=1

freq(i)

N
︸ ︷︷ ︸

hit ratio

=

M∑

i=d+1

freq(i)

N
︸ ︷︷ ︸

miss ratio

(5.1)

The left hand side of equation 5.1 calculates the miss ratio by first calculating the
number of hits in the cache. This is done by counting every item with reuse distance
less than or equal to cache size d. Since misses = 1−hits, we arrive at the miss ratio
after dividing by the total number of requests.

The right hand side of the equation calculates the miss ratio by first calculating the
number of misses in the cache. That is, the number of items with reuse distance
greater than cache size d, since any requests for items with reuse distance larger than
the cache size will result in a miss as the item would already have been evicted.
Dividing by the total number of requests, we arrive at the miss ratio.

It is important to note that some represent this as an integration of the probabil-
ity density function given by the distribution. The reason is to highlight the order
relationship between stack distance and miss ratio, that is, miss ratio is one order
higher than stack distance. This result was proved in Ding’s Higher Order Theory of
Locality (HOTL) [21].

Mattson’s Stack Distance Algorithm: Mattson et al. [32] developed the first
algorithm to use stack distance as a method for calculating the miss ratio for a given
cache size. It has five main steps for each reference x:

1. Search stack to find the current location of x (if any)

31

2. Calculate the distance d from the top of the stack

3. Update cache miss counters for all sizes > d

4. Update cache hit counters for all sizes ≤ d

5. Push x onto the stack and remove the last location of x (if any)

The algorithm runs in O(N ∗ M) time, where N is total number of references and
M is unique number of references. Many works improve on this algorithm by using
more efficient data structures, sampling, and estimated stack distances.

Fang et al. [23] showed that the stack distance distribution of a program’s typical
workload could be predicted accurately given a significantly smaller input of the
workload. They predicted the stack distance distribution for the reference input set
of the SPEC2K benchmark using only the train and test input sets. These results
encouraged researchers to move towards sampling the references in order to build the
distribution while still achieving accurate stack distance distributions.

Tree Based: In tree-based stack distance calculations we exploit the logarithmic
search time in balanced tree structure. Methods in this class have developed towards
approximation of distances by getting to a leaf node that represents an approximate
stack distance.

Partial Sums Tree: by Bennet et al. [7] introduce a partial sums tree based on
binary vectors representing the stack distance of a reference. First, they introduce
the concept of using a hash table to store the previous location p of a reference.
Second, they maintain a binary vector, B, at time t for a given reference x with the
following property:

Bt =

{

1 if xp 6= xi(i = p, p+ 1, ..., t)

0 otherwise.

Now, the number of 1s in Bt is the stack distance of reference x. As t increases the
idea is to create a hierarchy of partial sums out of B. For example, imagine that
every 3 time intervals all the 1s are summed and stored as a partial sum Bi. Then
for every 3 partial sums Bi, there is a new final sum. In order to, calculate the stack
distance now, we do a tree traversal from our current time t to the previous use time
p. Since each lookup in the hash table is O(1) and each stack distance calculation is
O(log(n)), then for a trace of N references the running time is now O(N ∗ log(n)).

Interval Tree: by Almasi et al. [3] interpret Bennet’s binary vectors in a different

32

manner. They use only the 0s from the vector, calling them holes. The calculation
for stack distance now becomes:

stackdist(x) = t− p− holes(xp)

Where t is current time, p is previous time, and holes(xp) represents the number of
holes (0s) between t and p in B. Now let a hole’s index be hi and let the interval
[hi, hj] represent the time between two consecutive holes.

Since these intervals of holes are non-overlapping, they can be represented as AVL
or red-black trees. For N references this takes O(N ∗ log(n)), similar to Bennet’s
asymptotic bound, but in practice it performs significantly better because the tree is
well balanced. This algorithm uses the same space cost as Bennet’s algorithm, O(M)
where M is the number of accesses in the trace.

Search Tree: Olken proposed ordering the LRU stack as a binary tree based on
access times so that an in-order traversal gives the LRU stack position [36] . For
a given reference at the root, the right side of the tree represents references used
more recently and the left side represents older references. At each node in the tree,
they store a count of the number of nodes in the right subtree (more recent) and the
number of nodes in the left subtree (older).

Now in order to calculate a stack distance, on a reference to x, one searches the tree for
its location and traverse to the top of the tree, recording the number of nodes in the
right subtree of each node that they visited. The algorithm runs in O(N ∗log(n)) time
and needs to store M number of nodes, where M is the number of unique accesses.

Scale Tree: In Zhong et al. [49] they produce a modified version of Olken’s search
tree by modifying it to support a range of times at each node. This maps several
references to one node and allows for much faster searches. The amount of error
incurred by using a range of times at each node is bounded by the range. The overall
run time is reduced to O(N ∗log(log(M)), but the algorithm still require O(M) space.

SHARDS: Spatially hashed reuse distances (stack distances), or SHARDS, is a re-
cent advancement to constant space use by Waldspurger et al. [42]. They achieve
this by sampling accesses based on the hashed value of their location, hence spatially
hashed. These samples are then put into an interval tree to compute their stack dis-
tance. After computing stack distance, it is recorded in the stack distance histogram
in order to solve for the miss ratio curve. By using fixed size hash table and fixed
size LRU tree, each reuse distance sample takes constant, O(1) space. Allowing for
efficient construction of the stack distance histogram.

33

Buckets: These algorithms employ bins to reduce the number of stack positions that
exist in the LRU stack. The key insight is to reduce n stack positions into m buckets
while still maintaining the LRU stack order.

MIMIR: by Saemundsson et al. [40] creates a fixed number of buckets to store
references. Each bucket B maintained the LRU stack order property, that is Bi

has lower stack distance than Bj since i < j. While buckets can vary in size, they
introduce an aging procedure to ensure that buckets stay balanced. A common metric
used to resize the buckets is the average stack distance.

The miss ratio curve is generated from the estimated stack distance distribution. For
any bucket the actual stack distance lies somewhere between the sum of the size of
the buckets before Bi, call it n and n+ sizeof(Bi). The stack distance histogram is
created from the intervals recorded and the integration over the histogram is done to
get the miss ratio at for a cache size (stack distance) d.

Histogram: These methods either use: (1) a set of counters to represent stack
distances at each cache size or (2) a set of counters to represent total accesses and
unique accesses. The counts then represent a histogram of the stack distances that
are used to construct the miss ratio curve.

Powers of Two: This method by Kim et al. [30] changes Mattson’s stack processing
algorithm by storing stack distances in discrete intervals of powers of 2. The idea is
based on the insight that memory designers often do not require miss ratios for con-
tinuous memory sizes but powers of 2 (2, 4, 6 ...) are sufficient. The algorithm stores
the approximated stack distances in a linked list of data blocks, which correspond
to the LRU stack and a hash table is used to find the location of references in the
stack. On a reference to a block, the approximated stack distance (in powers of 2) is
updated only when a block moves into the next interval.

The algorithm runs in O(N ∗ M) where N is the number of requests and M is
the number of intervals that stack distances can fall into. However, since the stack
distance is only updated when a block moves into the next interval, the number of
expected stack distance updates is the sum of the miss ratios at each interval.

This algorithm has been applied to build miss ratio curves in Zhou et al. [50]. They
present a hardware and software implementation for calculating page miss ratio curves
to guide memory management in a multi-program environment.

At the hardware level, Tam et al. [41] have used this algorithm to manage L2 cache
partitioning. Here they create an access trace to L2 by recording the misses of L1,

34

Table 5.2
Example Counter Stacks calculation.

a b c a

1 2 3 3
1 2 3

1 2
1

then they send the access trace log into the algorithm given by Kim. Their miss ratio
curve is then used to guide how much of the L2 cache should an application receive.

CounterStacks: This recent development by Wires et al. [44] uses probabilistic
counters (HyperLogLogs) and Bloom filters (for set inclusion) in order to maintain a
list of unique accesses over a period of time. Specifically, they construct a list at time
t that contains the number of unique accesses. This allows us to keep track of how
much a counter has increased (stack distance) over a number of non-distinct accesses.
An example is given in Table 5.2.

In order to derive the stack distance, the intra-counter change is calculated. In order
to find the last reference, the algorithm checks the newest update to the counter.
In Table 5.2 we find the last reference to a is at position 1, hence the stack dis-
tance of a lies at position (1,4) = 3. Note that since these counters are probabilistic
(HyperLogLogs), their memory usage is logarithmic to the number of distinct items.
Therefore, CounterStacks achieves logarithmic space complexity, O(log(M)) with its
probabilistic counters which set a small bound on the overall error in stack distance
calculation.

UMONs: Qureshi et al. [39] developed utility monitor circuits (UMONs) that
approximate hit ratio vs. number of ways in an LRU cache. They perform way-
partitioning based off the approximated hit ratio curves. UMONs use access counters
to record the number of misses at each stack position for a number of ways. Since the
cache obeys the LRU policy, the hit ratio for an n-way partition is found by summing
the counters up to n-ways.

This process is used in partitioning caches by way per application. If application A
has a higher utility for a number of ways (i.e. its hit ratio curve is not as steep) then
it will be assigned that number of ways. Application B will be left with the remaining
number of ways.

Fractals: L. He et al. [24] use a fractal equation to calculate the miss ratio of a

35

given cache size from the time between two consecutive misses. This is known as
the inter-miss gap described by Denning and related to LRU miss ratio by Ding in
HOTL [21]. From the distribution of the inter-miss gaps, the LRU miss ratio for a
given cache size c, is derived by :

intramiss(c) =
1

missratio(c)

FractalMRC is implemented using hardware performance counters and their model
allows for online processing at the cost of a 2% slowdown. One drawback is that their
model ignores cold misses which leads to inaccuracy (the cold miss equation is not
fractal). On average in the SPEC2006 benchmark they report 76% percent miss ratio
curve accuracy.

PARDA: Q. Niu [35] et al. introduce the first explicit parallel stack distance al-
gorithm based on Mattson’s stack processing. PARDA exploits the independence of
the define-use chains in references. That is, only the reference to the last location
matters; all previous references are independent. Therefore, one can divide the trace
into chunks that contain all references between the last use and the current use for a
given access. The algorithm is outlined below:

1. Start at the end of the trace with reference x

2. Scan until there is another reference to x

3. Send that interval off for processing via Mattson’s algorithm

4. Repeat with the next reference after x

5.1.2 Reuse Time Algorithms

More recently, reuse time has emerged as a metric used to approximate miss ratio
curves. In 1968, Denning proposed that the reuse time distribution can yield the
working set size at time t, but until recently it was hard to achieve accurate results
with the analytical models available.

Histogram Based: These methods bin the data recorded into a histogram, and
build a miss ratio curve from that histogram by integrating the probability density
function or summing the total frequencies over a given range.

36

Footprint: Xiang et al. [45] introduce the footprint function as a mapping from an
execution window w to the expected amount of data accessed during w. The key
metrics that are measured are: reuse time distribution, first use of each reference,
last use of each reference.

Since there can be exponential number of execution windows, The average footprint
is measured for a set of references. Given the footprint of a set of references, the
miss ratio for a cache size c is found by taking the difference between two consecutive
execution window sizes.

The footprint algorithm runs in O(N) and O(M) where N is the total number of
accesses and M is the total unique accesses. The algorithm was recently applied in
LAMA (Locality Aware Memory Allocation) [25], to guide memcached’s slab reallo-
cation problem.

Hit-Evict Distribution: Beckmann et al. [6] introduces two new histograms of
information, hit and evict. The hit distribution is the frequency of hits for given
reuse times. Likewise, the evict distribution is the frequency of evicts for given reuse
times. The motivation behind this work is to reduce the dependence on the LRU
stack property that many analytic models assume. In their work they also create an
age distribution based off of the reuse times. This age distribution when combined
with the hit and evict distribution can give an accurate LRU model for cache miss
ratio.

Statcache: Statcache by Berg et al. [8] uses random sampling to select some memory
references for their analysis. For each memory reference sampled it does the following:

1. Set a (hardware) watchpoint on the address and record current number of mem-
ory accesses at that time n.

2. On the watchpoint trap read the new current number of memory access N . The
reuse time of this address is now N − n.

3. Update the reuse time distribution with the new reuse time.

The Statcache model assumes a cache with random replacement, therefore the proba-
bility that a cache line is still in a cache after a cache miss is uniform. Since the model
calculates the probability that a reference will cause a cache miss, and by assuming
miss ratio does not change over time, we can fix miss ratio and derive the probability
that a number of references cause a miss from its reuse distance from their reuse time.

37

Statstack: The Stackstack [22] model builds off of the Statcache work, this time
modeling an LRU cache. They define the expected stack distance of a reference with
reuse time t to be the average stack distance of all references with reuse time t. The
miss ratio curve is then constructed by computing the expected stack distance of each
reuse time weighted by their frequency, this gives us a stack distance distribution.

5.2 MRC Based Allocation

Miss ratio curves have been used in memcached for provisioning slab classes. In
memcached each object belongs to a class based on its size, and so MRCs can be used
to maximize hit ratio over all classes for a given amount of memory. LAMA [25, 26]
achieves this by using the footprint metric introduced by Ding et al [21]. MIMIR
[40] and Dynacache [15] also approach the problem by modeling the miss ratio for
each slab class.

In the context of virtualization, memory allocation between virtual machines on a
single host has been studied extensively [48]. mPart uses the dynamic programming
algorithm presented by Wang et al. [43] for its memory balancer. The memory
balancer uses the miss ratio curve in order to minimize the expected number of page
misses for a given application. This is in turn used to guide virtual machine memory
allocation in a cloud environment.

38

Chapter 6

Conclusion and Future Work

We have demonstrated that in a multi-tenant caching environment, full miss ratio
curve guided partitioning outperforms the existing state-of-the-art in terms of hit
ratio and latency. mPart serves as an initial sharing model that can be applied to
other multi-tenant environments where memory is limited.

There are multiple lines for future work. The first is to work on cache allocation
when objects are non-uniform size. This problem has been shown to be NP-hard and
recent work has given upper and lower bounds on optimal replacement with variable
sizes [9]. In a sense, providing a miss ratio curve for each size class, as done in LAMA
[25], provides a first step, but an open problem is how to combine these curves in
order to give an overall application miss ratio curve. It may be the case that we do
not need to combine the curves and only do allocations at the size class level where
we can assume objects are close enough in size.

Second, is exploring the role that MRCs can play in reducing fragmentation at the
memory allocator (malloc) level. For example, the jemalloc allocator needs to assign
applications arenas of slabs, each corresponding to a size class. Miss ratio curves can
quantify how an application could benefit from additional arenas during runtime.
They could also help quantify how many arenas can be reclaimed under changing
workloads by analyzing the change in the MRC.

Third, in the context of key-value stores we need to know when to perform re-
allocation. By analyzing intra-MRC change we can decide when an application’s
working set has changed significantly and if it should receive more or less space as a
result. Further, there are different methods for solving the optimization problem. If
MRCs are convex, then we can use the the allocation algorithm proposed by Denning

39

in his PhD thesis [19].

Finally, in the context of performance, data centers typically scale out horizontally by
adding more caching nodes. Additional caching nodes are costly but may be worth the
performance gains given an application’s miss ratio curve. The benefits of adding/re-
moving caching nodes in a data center can be calculated from the application’s miss
ratio curve.

40

References

[1] Instagram engineering team. https://instagram-engineering.tumblr.com/

post/12202313862. Accessed: 2016-12-10.

[2] Abad, C. L., Abad, A. G., and Lucio, L. E. Dynamic memory parti-
tioning for cloud caches with heterogeneous backends. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering (New
York, NY, USA, 2017), ICPE ’17, ACM, pp. 87–90.

[3] Almási, G., Caşcaval, C., and Padua, D. A. Calculating stack distances
efficiently. SIGPLAN Not. 38, 2 supplement (June 2002), 37–43.

[4] Amazon. Amazon web services, May 2018.

[5] Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., and Paleczny,

M. Workload analysis of a large-scale key-value store. In Proceedings of the
12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems (New York, NY, USA, 2012),
SIGMETRICS ’12, ACM, pp. 53–64.

[6] Beckmann, N., and Sanchez, D. Modeling cache performance beyond lru.
In High Performance Computer Architecture (HPCA), 2016 IEEE International
Symposium on (2016), IEEE, pp. 225–236.

[7] Bennett, B. T., and Kruskal, V. J. Lru stack processing. IBM Journal of
Research and Development 19, 4 (1975), 353–357.

[8] Berg, E., and Hagersten, E. Statcache: a probabilistic approach to efficient
and accurate data locality analysis. In 2004 IEEE International Symposium on
- ISPASS Performance Analysis of Systems and Software (ISPASS ’04) (2004),
pp. 20–27.

[9] Berger, D. S., Beckmann, N., and Harchol-Balter, M. Practical
bounds on optimal caching with variable object sizes, June 2018.

41

https://instagram-engineering.tumblr.com/post/12202313862
https://instagram-engineering.tumblr.com/post/12202313862

[10] Blankstein, A., Sen, S., and Freedman, M. J. Hyperbolic caching: Flexi-
ble caching for web applications. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17) (Santa Clara, CA, 2017), USENIX Association, pp. 499–511.

[11] Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. Web
caching and zipf-like distributions: evidence and implications. In Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings (INFOCOM ’99) (Mar 1999), vol. 1, pp. 126–134 vol.1.

[12] Byrne, D., Onder, N., and Wang, Z. mpart: Miss-ratio curve guided
partitioning in key-value stores. In Proceedings of the 2018 ACM SIGPLAN
International Symposium on Memory Management (New York, NY, USA, 2018),
ISMM 2018, ACM, pp. 84–95.

[13] Carra, D. Benchmarks for testing memcached memory management, December
2016.

[14] Carra, D., and Michiardi, P. Memory partitioning in memcached: An
experimental performance analysis. In 2014 IEEE International Conference on
Communications (ICC ’14) (June 2014), pp. 1154–1159.

[15] Cidon, A., Eisenman, A., Alizadeh, M., and Katti, S. Dynacache:
Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15) (Santa Clara, CA, 2015), USENIX Association.

[16] Cidon, A., Eisenman, A., Alizadeh, M., and Katti, S. Cliffhanger:
Scaling performance cliffs in web memory caches. In 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16) (Santa Clara, CA,
2016), USENIX Association, pp. 379–392.

[17] Cidon, A., Rushton, D., Rumble, S. M., and Stutsman, R. Memshare:
a dynamic multi-tenant key-value cache. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17) (Santa Clara, CA, 2017), USENIX Association,
pp. 321–334.

[18] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and

Sears, R. Benchmarking cloud serving systems with ycsb. In Proceedings
of the 1st ACM Symposium on Cloud Computing (New York, NY, USA, 2010),
SoCC ’10, ACM, pp. 143–154.

[19] Denning, P. J. Resource allocation in multiprocess computer systems. PhD
thesis, Massachusetts Institute of Technology, 1968.

[20] Denning, P. J. The working set model for program behavior. Commun. ACM
11, 5 (May 1968), 323–333.

42

[21] Ding, C., and Xiang, X. A higher order theory of locality. In Proceedings
of the 2012 ACM SIGPLAN Workshop on Memory Systems Performance and
Correctness (New York, NY, USA, 2012), MSPC ’12, ACM, pp. 68–69.

[22] Eklov, D., and Hagersten, E. Statstack: Efficient modeling of lru caches.
In 2010 IEEE International Symposium on Performance Analysis of Systems
Software (ISPASS ’10) (March 2010), pp. 55–65.

[23] Fang, C., Can, S., Onder, S., and Wang, Z. Instruction based memory
distance analysis and its application to optimization. In 14th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT’05) (Sept
2005), pp. 27–37.

[24] He, L., Yu, Z., and Jin, H. Fractalmrc: Online cache miss rate curve pre-
diction on commodity systems. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium (May 2012), pp. 1341–1351.

[25] Hu, X., Wang, X., Li, Y., Zhou, L., Luo, Y., Ding, C., Jiang, S., and

Wang, Z. LAMA: Optimized locality-aware memory allocation for key-value
cache. In 2015 USENIX Annual Technical Conference (USENIX ATC 15) (Santa
Clara, CA, 2015), USENIX Association, pp. 57–69.

[26] Hu, X., Wang, X., Zhou, L., Luo, Y., Ding, C., Jiang, S., and Wang,

Z. Optimizing locality-aware memory management of key-value caches. IEEE
Transactions on Computers (TC ’17) 66, 5 (May 2017), 862–875.

[27] Hu, X., Wang, X., Zhou, L., Luo, Y., Ding, C., and Wang, Z. Kinetic
modeling of data eviction in cache. In 2016 USENIX Annual Technical Confer-
ence (USENIX ATC 16) (Denver, CO, 2016), USENIX Association, pp. 351–364.

[28] Hu, X., Wang, X., Zhou, L., Luo, Y., Wang, Z., Ding, C., and Ye, C.

Fast miss ratio curve modeling for storage cache. ACM Trans. Storage (TOS’18)
14, 2 (Apr. 2018), 12:1–12:34.

[29] Jouppi, N. P. Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers. In The 17th Annual Interna-
tional Symposium on Computer Architecture (ISCA ’90) (May 1990), pp. 364–
373.

[30] Kim, Y. H., Hill, M. D., and Wood, D. A. Implementing stack simulation
for highly-associative memories. In Proceedings of the 1991 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems (New York,
NY, USA, 1991), SIGMETRICS ’91, ACM, pp. 212–213.

[31] Labs, R. redis, May 2018.

43

[32] Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L. Evaluation
techniques for storage hierarchies. IBM Systems journal 9, 2 (1970), 78–117.

[33] memcached. memcached, 2018.

[34] Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li,

H. C., McElroy, R., Paleczny, M., Peek, D., Saab, P., Stafford,

D., Tung, T., and Venkataramani, V. Scaling memcache at facebook. In
Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13) (Lombard, IL, 2013), USENIX, pp. 385–398.

[35] Niu, Q., Dinan, J., Lu, Q., and Sadayappan, P. Parda: A fast parallel
reuse distance analysis algorithm. In 2012 IEEE 26th International Parallel and
Distributed Processing Symposium (May 2012), pp. 1284–1294.

[36] Olken, F. Efficient methods for calculating the success function of fixed-space
replacement policies. Tech. rep., Lawrence Berkeley Lab., CA (USA), 1981.

[37] Ou, J., Patton, M., Moore, M. D., Xu, Y., and Jiang, S. A penalty
aware memory allocation scheme for key-value cache. In 2015 44th International
Conference on Parallel Processing (Sept 2015), pp. 530–539.

[38] Pu, Q., Li, H., Zaharia, M., Ghodsi, A., and Stoica, I. Fairride: Near-
optimal, fair cache sharing. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16) (Santa Clara, CA, 2016), USENIX As-
sociation, pp. 393–406.

[39] Qureshi, M. K., and Patt, Y. N. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared caches. In
Proceedings of the 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Washington, DC, USA, 2006), MICRO 39, IEEE Computer So-
ciety, pp. 423–432.

[40] Saemundsson, T., Bjornsson, H., Chockler, G., and Vigfusson, Y.

Dynamic performance profiling of cloud caches. In Proceedings of the ACM
Symposium on Cloud Computing (New York, NY, USA, 2014), SOCC ’14, ACM,
pp. 28:1–28:14.

[41] Tam, D. K., Azimi, R., Soares, L. B., and Stumm, M. Rapidmrc: Ap-
proximating l2 miss rate curves on commodity systems for online optimizations.
In Proceedings of the 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA, 2009),
ASPLOS XIV, ACM, pp. 121–132.

44

[42] Waldspurger, C. A., Park, N., Garthwaite, A., and Ahmad, I. Ef-
ficient mrc construction with shards. In Proceedings of the 13th USENIX Con-
ference on File and Storage Technologies (Berkeley, CA, USA, 2015), FAST’15,
USENIX Association, pp. 95–110.

[43] Wang, Z., Wang, X., Hou, F., Luo, Y., and Wang, Z. Dynamic memory
balancing for virtualization. ACM Trans. Archit. Code Optim. (TACO ’16) 13,
1 (Mar. 2016), 2:1–2:25.

[44] Wires, J., Ingram, S., Drudi, Z., Harvey, N. J. A., and Warfield, A.

Characterizing storage workloads with counter stacks. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 14) (Broomfield,
CO, 2014), USENIX Association, pp. 335–349.

[45] Xiang, X., Bao, B., Ding, C., and Gao, Y. Linear-time modeling of pro-
gram working set in shared cache. In 2011 International Conference on Parallel
Architectures and Compilation Techniques (Oct 2011), pp. 350–360.

[46] Yang, T., Berger, E. D., Kaplan, S. F., and Moss, J. E. B. Cramm:
Virtual memory support for garbage-collected applications. In Proceedings of
the 7th Symposium on Operating Systems Design and Implementation (Berkeley,
CA, USA, 2006), OSDI ’06, USENIX Association, pp. 103–116.

[47] Zhao, W., and Wang, Z. Dynamic memory balancing for virtual machines. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (New York, NY, USA, 2009), VEE ’09, ACM,
pp. 21–30.

[48] Zhao, W., and Wang, Z. Dynamic memory balancing for virtual machines. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (New York, NY, USA, 2009), VEE ’09, ACM,
pp. 21–30.

[49] Zhong, Y., Shen, X., and Ding, C. Program locality analysis using reuse
distance. ACM Trans. Program. Lang. Syst. (TOPLAS ’09) 31, 6 (Aug. 2009),
20:1–20:39.

[50] Zhou, P., Pandey, V., Sundaresan, J., Raghuraman, A., Zhou, Y.,

and Kumar, S. Dynamic tracking of page miss ratio curve for memory man-
agement. In ACM SIGOPS Operating Systems Review (2004), vol. 38, ACM,
pp. 177–188.

45

	mPart: Miss Ratio Curve Guided Partitioning in Key-Value Stores
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Background
	Key-Value Stores
	Multi-Tenancy
	Sharing Models
	Static Allocation
	Pooled Allocation
	Working-Set Size Allocation

	Miss Ratio Curves
	Average Eviction Time (AET)
	Cliffhanger

	mPart
	Miss Ratio Curve Construction
	Arbitration
	Dynamic Programming

	Experimental Evaluation
	Memory Allocation Experiments
	90% Working Set Size Allocation
	75% Unique Objects Allocation
	Equal Objects Allocation

	Time Varying Workload
	Noisy Neighbor Workload
	Miss Ratio Curve Accuracy
	Sampling and Arbitration Overhead
	CPU Utilization and Throughput

	Related Work
	Taxonomy of MRC Constructions
	Stack Distance Algorithms
	Reuse Time Algorithms

	MRC Based Allocation

	Conclusion and Future Work
	References

