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Preface

The publications in this dissertation are part of the research carried out during my

PhD studies at Michigan Technological University during 2015-2018. The optimiza-

tion algorithms developed in this dissertation can be used in various problems in

robotics, aerospace, electrical, etc. fields. Some examples of these applications are

provided in Section 1.1 and some mathematical and space trajectory optimization

problems are investigated in details in Chapter 4.

Chapter 1 presents the overview of the dissertation, motivations and objective of

the work, and the organization of this thesis. The content of this chapter has been

published in References [4, 5]. Chapter 2 presents the concept of hidden Genes Ge-

netic Algorithm in biology and optimization. The content of this chapter has been

published in References [4, 6, 7]. Chapter 3 presents the proposed mechanisms for

selecting the hidden genes. The content of this chapter has been published in Refer-

ences [6, 8]. Chapter 4 presents mathematical test cases and three space trajectory

optimization problems. The mechanisms proposed in chapter 3 are tested on these

problems and the results are compared to the literature. The content of this chapter

has been published in References [4, 5, 6, 7]. Chapter 5 presents the Markov Chain

convergence analysis of the proposed mechanisms and it is proven that the proposed

mechanisms satisfy minimum conditions for convergence. The content of this chapter

xvii



has been published in Reference [8].
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Abstract

In this dissertation, the concept of hidden genes genetic algorithms is developed. In

system architecture optimization problems, the topology of the solution is unknown

and hence, the number of design variables is variable. Hidden genes genetic algorithms

are genetic algorithm based methods that are developed to handle such problems by

hiding some genes in the chromosomes. The genes in the hidden genes genetic algo-

rithms evolve through selection, mutation, and crossover operations. To determine if

a gene is hidden or not, binary tags are assigned to them. The value of the tags de-

termine the status of the genes. Different mechanisms are proposed for the evolution

of the tags. Some mechanisms utilize stochastic operations while others are based on

deterministic operations. All the proposed mechanisms are tested on mathematical

and space trajectory optimization problems. Moreover, Markov chain models of the

mechanisms are derived and their convergence is investigated analytically. The re-

sults show that the proposed concept are capable to search for the optimal solution

by autonomously enabling the algorithms to assign the hidden genes.
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Chapter 1

Introduction

1.1 Overview

Systems architecture optimization problems 1 arise in several applications such as in

automated construction (in which hundreds or thousands of robots fabricate large,

complex structures), autonomous emergency response, and smart buildings, trans-

portation, medical technology, and electric grids [9]. In these complex systems, the

automated system design optimization is crucial to achieve design objectives. The

task of design optimization includes optimizing the system architecture (topology)

in addition to the system variables. Optimizing the system architecture renders the

problem a Variable-Size Design Space (VSDS) optimization problem (the number

1The material of this chapter are copied in part from References [4, 5]
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of design variables to be optimized is a variable). Consider, for example, the opti-

mization of a space interplanetary trajectory. The spacecraft travels from the home

planet to the target planet and it is desired to utilize the minimum fuel possible. As

can be seen in Figure 1.1, the spacecraft can apply Deep Space Maneuvers (DSMs)

which are propulsive impulses used to change the velocity of the spacecraft instanta-

neously; these DSMs consume fuel proportional to the amount of the DSMs impulse.

The spacecraft can also benefit from free change in momentum, through as many

as needed flybys of other planets. When the spacecraft performs a flyby maneuver,

we need to determine the height of closest approach to the flyby planet as well as

the plane of the flyby maneuver. Hence, by changing the number of flybys the total

number of variables change.

Figure 1.1: Interplanetary Trajectory Optimization Problem Topology

Besides the flyby planets, the spacecraft can have DSMs in any segment between any

two planets. These segments are referred to as legs. The architecture of a solution

refers to the sequence of flybys and the number of DSMs in each leg. To optimize
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the mission architecture, the number of flybys, the planets of flybys, and the number

of DSMs in each leg need to be optimized. These are called the architecture Other

non architecture variables include launch and arrival dates, dates and times of flybys,

dates and times of DSMs, amounts and directions of DSMs impulses. This is a VSDS

optimization problem.

Another example is the optimization of a microgrid system where there are several

energy sources and co-located energy storage devices that can either sink or source

power with their corresponding sources. The net power at each source/storage is

metered to the grid main bus using a boost converter. For an efficient design of the

microgrid, the number of storage elements (N) and their capacities need to be opti-

mized. Storage is expensive and designing a microgrid, with storage sized properly, is

an open problem. Associated with computing the optimal N is the optimal values for

the duty ratios at the converters that controls the power metered to the main bus from

each source. A more complex situation is when we have M microgrids that have the

ability to interconnect. This provides a large number of permutations for exchanging

power. Systems design optimization problems are usually replete with local minima.

Hence a global search algorithm is usually needed for optimizing the system variables,

such as genetic algorithms (GAs) [10], particle swarm optimization [11], ant colony

optimization [12], or differential evolution [13]. In VSDS optimization, the problem
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can be formulated as follows:

Minimize f(~x,N)

Subject to ~g(~x) ≤ 0, ~h(~x) = 0, ~xl ≤ ~x ≤ ~xu
(1.1)

where ~x = [x1, x2, ..., xN ]T , N is the number of design variables, ~xu and ~xl are the

upper and lower bounds of the variables ~x, respectively. The number of variables N

in this formulation is variable, and its value dictates the architecture of the solution.

The number of inequality constraints ~g and the number of equality constraints ~h,

each is also a variable.

1.2 Genetic Algorithms

The research on developing algorithms that can handle VSDS optimization problems

(sometimes referred to as variable length optimization) has started since about two

decades. Standard GAs are not suitable for VSDS problems because they are designed

to work only on problems of fixed number of variables. In standard GAs, the variables

of the optimization problem are coded in chromosomes. Each chromosome represents

a solution and consists of the variables that are coded as genes. In standard GA,

the number of variables is assumed fixed and therefore, the number of the genes and

the length of the chromosomes are fixed. By applying the evolutionary operations of
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selection, mutation, and crossover, the population of these chromosomes converges

to the global optimal solution [10]. The objective of optimization determines the

fitness of the solution. The genetic operations of selection, mutation and crossover are

applied on a population of these chromosomes, and through generations (iterations),

theses populations converge to the optimal solution.

In the selection operation, two chromosomes are selected as parents from the gen-

eration pool. In general, the chromosomes that have better fitness values (objective

function), have higher probability to be selected as parents. After the parents are

selected, mutation and crossover operations are applied on them. As an example,

in binary coding, genes are coded as 0s and 1s; in the mutation process gene 1 may

change to 0 with a probability of pm. In the crossover operation, parts of the chromo-

some strings are swapped in parents. For example, in single point crossover, a random

point is selected in both parents and the genes of one side of that point are swapped

in parents with a crossover probability of pc to create new chromosomes. Some of

the best chromosomes (elites) are transferred to the next generation with no change.

By repeating the GA operations in each generation, the population converges to the

optimal solution.

Some variations of GAs have been proposed for VSDS problems. Genetic program-

ming is a specialization of genetic algorithm in which each individual is a computer

program [14, 15]. In genetic programming, the solutions are in the structure of trees

5



that can have variable lengths. A VSDS GA is presented in [16] in which a random

operator is introduced to change the chromosome length, for the problem of Kauffman

NK model. This random operator depends on the identity of genes which is given by

their position relative to one end of the genotype. Reference [17] is a continuing work

of [16] and analyzes the optimal location for the crossover point in VSDS problems.

When two parents have different chromosome lengths, and given a selection for the

crossover point in parent 1, reference [17] suggests that the crossover point in parent

2 be chosen such that the difference between the swapped segments is minimized.

The method proposed in [17] is a search on all the possible crossover points in parent

2 to find the best cutoff point. The VSDS GA in reference [18] uses a two-point

crossover, with different cutoff points in each parent, resulting in different lengths of

the children chromosomes. This method is most useful in problems with variables of

the same identity, like angles of a polyhedral where adding or removing one angle will

result in a new polyhedral (e.g. triangle to rectangle or vice versa).

Reference [19] presents a number of variable length representation evolutionary al-

gorithms that improves the sampling of a VSDS, with application in evolutionary

electronics. In reference [20], the number of different chromosome lengths is set a

priori, and both parents have the same crossover point (same gene index of cutoff).

Therefore the length of the chromosome is switched from parents to children in [20]

(the length of child 2 is equal to length of parent 1 and length of child 1 is equal to

length of parent 2). This method does not provide information regarding the optimal

6



length of a solution. A different approach in VSDS GA is to have equal-length chro-

mosomes in each generation, yet the chromosome length is allowed to change among

different generations as presented in [21, 22]. In this method, the GA starts with

short-length chromosomes and the best solution in a generation is transferred to the

next generation with a longer chromosome length. In this way, the GA handles fixed-

size chromosomes in each generation, and there is no need to define new evolutionary

operations for GA.

A structured chromosome genetic algorithm was developed in [23, 24] where the stan-

dard one layer chromosome is replaced with a multi-layer chromosome for coding the

variables; the number of genes in one layer is dictated by the values of some of the

genes in the upper layers. Hence, it was possible to code solutions of different architec-

tures. Yet, this structured-chromosome approach introduces new definitions for the

crossover operation such that meaningful swapping between chromosomes of different

layers is guaranteed. Some other algorithms are designed for specific problems. For

instance, references [25] and [26] present tailored algorithms that search for the opti-

mal structural topology in truss and frame structures, respectively. The dissertation

in [27] presents a study on topology optimization of nanophotonic devices and makes

a comparison between the homogenization method [28] and genetic algorithms [10].

As can be seen from the above discussion, many of the VSDS optimization algorithms

are problem specific. The dynamic-size multiple population genetic algorithm has a

high computational cost [29].
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1.3 Space Trajectory Optimization

Space trajectory optimization is the process of searching for the optimal trajectory

from one celestial body or orbit to another, such that the mission requirements are

satisfied and a given objective is optimized. The objective can be minimizing the

mission cost or fuel consumption, minimizing the mission duration, maximizing the

number of visited asteroids, or a combination of these objectives. The spacecraft

can have continuous or impulsive thrusters, for which various trajectory design tech-

niques have been developed. In this dissertation, the impulsive thrust spacecraft is

considered. The earliest research on space trajectory optimization goes back to the

work of Walter Hohmann on trajectory design of a spacecraft with impulsive thrusters

between two coplanar orbits [30]. Cornelisse [31] showed that in the patched conics

method, the cost of an interplanetary trajectory mission can be reduced by applying

a DSM. Several works have studied the effect of DSMs in different space missions

[32, 33, 34, 35]. Planetary flybys utilize the gravity of a planet to change the mo-

mentum vector of a spacecraft. Such trajectories that use DSMs and flybys are called

Multi Gravity-Assist Deep Space Maneuver (MGADSM) trajectories.

To design a MGADSM interplanetary trajectory, many variables should be optimized

depending on the mission type, such as launch and arrival dates and times, number of

8



flybys, planets to flyby, number of DSMs, epoch of each DSM, direction and magni-

tude of each DSM, time of flight (TOF) between each two successive celestial bodies

(leg), and flyby altitudes and rotation angles. These variables can be categorized into

two groups of discrete design variables and continuous design variables, as shown in

Table 1.1. Since some variables are related to others (e.g. flyby attitude depends on

whether there is a flyby or not), the problem can be considered as VSDS problem,

in which the number of optimization variables vary among different trajectory mis-

sions. In other words, the number of flybys and DSMs are not known a priori and

they determine the number of other variables needed to model the problem. These

variables that determine the total number of variables in a solution are referred to as

the architecture variables.

Table 1.1
Design variables in an interplanetary trajectory optimization problem

Discrete Variables Continuous Variables
Number of flybys (m) Departure date (td)
Flyby planets (P) Arrival date (ta)
Number of DSMs in each leg
(n)

TOF

Flyby pericenter altitude
(hp)
Flyby rotation angles (η)
DSMs epoch (ε)
DSMs magnitudes and di-
rections

Many global optimization methods have been investigated in different MGADSM

9



problems, including heuristic algorithms [36, 37, 38, 39, 40, 41], deterministic algo-

rithms [42, 43, 44], or a combination of them [45, 46]. Deterministic methods use

grid or tree search to explore the design space. Although these methods converge

globally, they can be extremely exhaustive, especially in complex missions with high

number of flybys/rendezvous and DSMs or large time windows. The obtained solu-

tions also are usually sensitive to the grid size. Heuristic methods on the other hand

do not need discretization of the search space and are more adaptive and hence are

not usually exhaustive. Yet they rely on heuristics and parameters tuning. Genetic

algorithms (GAs) [47, 48, 49, 50, 51], differential evolution [41, 52, 53, 54], and ant

colony optimization [55] are some of the heuristic algorithms that have been used in

MGADSM optimization problems.

In MGADSM problems, since in general the flyby and DSM structures are not known

a priori, it is not possible to use the standard GAs without simplifications on the

problem or modification to the algorithms [36, 56, 57]. One way of simplifying the

problem is to prune the state space (assume fixed flyby sequence and number of

DSMs) to limit the possible mission scenarios. A deterministic search is used in

[57, 58] where the flyby sequence and DSMs are fixed and the search space is limited

to a grid of points where the global optimization methods can be used. Another way

of simplifying the problem is to use a nested loop solver to optimize the trajectory

[37, 59]. The outer loop finds the optimal flyby sequence and the inner loop optimizes

the trajectory for that scenario. Since not all the scenarios have the same number
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of flybys, this problem is a VSDS optimization. Early methods pruned the outer

loop to solutions that the designer considered to include the optimal flyby sequence

[60]. Later, automatic methods were proposed to find the flyby sequence in MGA

trajectories. Some graphical methods use the energy contours against two variables

that define the orbits for different planet flybys [61, 62]. This method can be used

when all the flybys are considered non-powered and it is assumed that there is no

DSMs. In [59] a maximum length for the flyby sequence is assumed and the outer

loop is optimized using a binary genetic algorithm. By adding null variables that

represents a ”no flyby”, variable-sized flyby sequences can be modeled in this method.

For example, for a maximum flyby of two, the Earth-Venus-Mars (EVM) sequence

is equivalent to a mission from Earth to Mars with a flyby around Venus and a null

flyby that is not considered in the cost function. Genetic algorithm is also used for

multiple phase maneuvers where there is both impulsive and continuous maneuvers

[37]. Genetic Programming [15] is also among the earliest approaches that addressed

the VSDS optimization problems. One of the earliest attempts in implementing gene

expression in GA is to perform “cut and splice” on the chromosomes and applying a

self adaptive recombination operator on them to yield individuals of variable lengths

[63, 64]. In recent years, the role of histone in the regulation of DNA including gene

expression and functionality of each cell was discovered [65], which resulted in the use

of epigenetics through modification of histone in strongly-typed genetic programming

[66]. A dynamic-size multiple population genetic algorithm was developed in [29]
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where each generation consists of a number of sub-populations; all chromosomes

in each sub-population are of the same length. Hence each sub-population evolves

over subsequent generations as in a standard GA. The size of each sub-population,

however, changes dynamically over subsequent generations such that more fit sub-

populations are allowed to increase in size whereas lower fit sub-populations decreases

in size. This approach has been applied to the trajectory optimization problem and

demonstrated success in finding best know solution architectures. The computational

cost of this method, however, is relatively high since it implements GA over several

sub-populations in parallel. Also, only a finite number of architectures (assumed a

priori) can be investigated using the method in [29].

1.4 Motivations and Objectives

Inspired by the concept of gene expression in biology, the concept of Hidden Genes

Genetic Algorithm (HGGA) was introduced to search for the optimal architecture and

autonomously generate new design spaces [2, 3]. Reference [3] applied a simplified

version of the HGGA for interplanetary trajectory optimization and demonstrated

success in finding the best known solution architectures for known benchmark prob-

lems. This original version of the HGGA implemented in [3] assumes a long chromo-

some for each solution where some of the genes are hidden. In this version, genes in a

chromosome will only be hidden if a chromosome represents a non-feasible solution,
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Hence, the HGGA will not attempt to hide genes if the chromosome is a feasible

solution. Therefore, this developed method of HGGA lacks a rigorous mechanism for

selecting the hidden genes in each generation.

In this dissertation, the objective is to develop new mechanisms for hiding genes.

These mechanisms should have the following properties:

1. They should autonomously decide which genes should be hidden.

2. They should not be problem specific; i.e. they should be applicable to any

VSDS problem with no modification of the algorithm in any kind or simplifi-

cation on the problem. The problems can be constrained or non-constrained,

discontinuous, non-differentiable, stochastic, or highly nonlinear.

3. They must promise convergent solutions.

4. They should produce comparable results to other algorithms for VSDS prob-

lems.

Note that the proposed algorithms in this dissertation are stochastic optimization

algorithms. Hence, there is no guarantee that the solutions found with these al-

gorithms are global optima. In this dissertation however, the results found by the

designed algorithms are referred to as the optimal points/solutions.
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1.5 Organization of the Dissertation

This dissertation consists of six chapters covering the objectives described in the

previous section. In preparing this dissertation, the materials of papers written during

this research are utilized. Chapter 2 covers the necessary background material on

GAs and HGGAs. The concept of HGGAs in biology is explained and the original

feasibility criteria for HGGAs is described. Chapter 3 is focused on developing new

HGGA mechanisms. The concept of tags and alleles in HGGAs are presented and

several stochastic and deterministic evolution mechanisms of the tags and alleles are

proposed. In Chapter 4, the performance of these mechanisms are tested on various

VSDS problems, including mathematical problems and space trajectory optimization

problems. In Chapter 5, the Markov Chain convergence analyses of the HGGAs with

the proposed mechanisms are performed and finally the conclusion of the dissertation

is presented in Chapter 6.
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Chapter 2

Hidden Genes Genetic Algorithms

2.1 Introduction

In this chapter 1, the concept HGGAs is presented. To handle a VSDS (or architec-

ture) optimization problem, the idea of turning genes on and off was adapted from

biology in genetic algorithm. By setting the chromosome length equal to the length

of the longest possible chromosome Lmax (maximum number of design variables) and

turning some genes off, different solutions (of different architectures) with lengths of

1 to Lmax can be built while having the same length for all the chromosomes. More-

over, having similar lengths for all the chromosomes enables the implementation of

the standard GA operations like crossover and mutation on them. The genes that are

1The material of this chapter are copied in part from References [4, 6, 7]
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hidden are variables that do not affect the fitness of the solution; yet they carry in-

formation, go through GA operations, and may become active (not hidden) in future

generations. In the next section, the equivalent of HGGAs in biology is explained

and an initial hidden genes assignment mechanism is described.

2.2 Modeling Genes and Chromosomes

In standard GAs, the mechanics of natural selection and genetics are simulated [10].

For each solution a chromosome is considered which is a set of coded variables called

genes. Figure 2.1 shows a typical chromosome that consists of N genes g1, g2, . . . , gN .

The value of gi determines the value of that variable in that solution. The fitness of

the solution is determined based on the objective of optimization.

Figure 2.1: In standard GA, a chromosome (code) is a string of genes that
represent a solution

The algorithm starts by applying the genetic operations of selection, crossover, and

mutation on a population of these chromosomes. Through generations (iterations),

this population converges to optimal solutions. In the selection operation, the chro-

mosomes that are more fit, have higher probability of being selected as parents. After

parents are selected, the crossover and mutation operations are applied on them to
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create new children chromosomes. For example, in the single point crossover, a ran-

dom point in parents strings is selected and the gene strings of both sides of that

point are swapped in parents to create new individuals. The crossover probability of

pc is applied to the crossover operation to make sure that the fit individuals found in

the previous population survive without modification. In the mutation operator, each

gene is mutated with probability of pm. For example, in binary coding, gene 0 may

change to 1 through mutation operator. By repeating the selection, crossover, and

mutation operations in each generation, the population converges to a (near) optimal

solution.

2.3 Hidden Genes in Biology

In genetics, the deoxyribonucleic acid (DNA) is organized into long structures called

chromosomes. Contained in the DNA are segments called genes. Each gene is an

instruction for making a protein. These genes are written in a specific language. This

language has only three-letter words, and the alphabet is only four letters. Hence, the

total number of words is 64. The difference between any two persons is essentially

because of the difference in the instructions written with these 64 words. Genes

make proteins according to these words. Since, not all proteins are made in every

cell, not every gene is read in every cell. For example, an eye cell doesn’t need any

breathing genes on. And so they are shut off in the eye. Seeing genes are also shut
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Figure 2.2: Chemical tags (purple diamonds) and the ”tails” of histone
proteins (purple triangles) mark DNA to determine which genes will be tran-
scribed. (picture is modified from [1])

off in the lungs. Another layer of coding tells what genes a cell should read and what

genes should be hidden from the cell [67]. A gene that is being hidden, will not be

transcribed in the cell. There are several ways to hide genes from the cell. One way

is to cover up the start of a gene by chemical groups that get stuck to the DNA. In

another way, a cell makes a protein that marks the genes to be read; Figure 2.2 is an

illustration for this concept. Some of the DNA in a cell is usually wrapped around

nucleosomes but lots of DNA are not. The locations of the nucleosomes can control

which genes get used in a cell and which are hidden [67].
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2.4 Concept of HGGAs in Optimization

The concept of Hidden genes is applied in GA to make some genes hidden (inactive),

so that their value does not affect the fitness of objective function. The genes that

are hidden are variables that should not appear in a specific solution. This concept

allows GA to be able to handle VSDS and architecture optimization problems. In such

problems, the number of design variables is variable and the length of the chromosome

changes by selecting different values for some of the design variables. Let Lmax be the

length of the longest possible chromosome (maximum number of design variables).

In hidden gene concept, all the solutions (chromosomes) have the same length and

hence the operators of standard GA can be applied to them. Genes that are hidden

will be ineffective in fitness of the objective function, although they take part in the

genetic operations in generating future generations.

Figure 2.3: Hidden genes and effective genes in two different chromosomes
[2]
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Consider two chromosome with different lengths. Assume that there are four genes in

the first chromosome and three genes in the second chromosome (represented by bi-

nary bits in Figure 2.3). Also assume that the maximum number of genes (variables)

in a chromosome is six. To make this problem a fixed-sized design space problem, two

hidden genes are added to the first chromosome, and three hidden genes are added

to the second chromosome. These added genes are hidden and therefore do not affect

the fitness of the objective function. Since all the chromosome have the same length

now, the standard GA operators can be applied to them. These added (hidden) genes

go through crossover and mutation like active genes. Based on the mechanism that

assign the hidden genes, a hidden gene in parents can be active in children (and hence

effective in fitness evaluation).

A simple example of a single-point crossover operator in HGGA is shown in Figure

2.4. In this figure, the crossover point is between the second and third genes. After

the genes are swapped, the location of hidden genes in children may be similar to or

different than the hidden genes in the parents. The genes that should be hidden are

selected based on a specific hidden gene assignment method. In the initial studies on

HGGA [2, 3], a primitive mechanism (called feasibility mechanism”) was introduced.

In these works, the hiding criteria was feasibility, meaning that the genes were all

active unless the solution was infeasible. In that case, the genes would be hidden one

by one until a feasible solution is achieved.
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Figure 2.4: Crossover operation in HGGA [2]

2.5 Conclusion

The concept of hidden genes and their equivalent in biology were introduced in this

chapter. To determine the status of genes, the feasibility mechanism can be utilized

where genes are hidden one by one from one side of the chromosome until a feasible

solution is acquired. However, this mechanism is not robust specially when variables

are simulated in various locations of the chromosome as genes. In the next chapter,

new mechanisms are proposed for hiding gens. In these mechanisms, the status of

the genes can evolve through generations while the genes are evolving.
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Chapter 3

Hidden Genes Assignment

Methods

3.1 Introduction

In this chapter 1, new mechanisms are proposed to hide genes. The concept of tags is

described and eight stochastic mechanisms with tags, three logical mechanisms, and

the concept of alleles are presented. In the logical mechanisms, the logical OR and

OR operators are used. For x and y expressions, the logical OR operator is true if

either of x or y are true. The logical AND operator results in true if x and y are true.

1The material of this chapter are copied in part from References [6, 8]
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As described in Section 2, the protein of each gene makes it to be read or hidden.

This gave us the idea to use tags for genes to make them hidden or active. To code

such tags, binary digits of 0 and 1 are assigned to each tag, as shown in Figure 3.1.

If the value of tagi is 1, then the corresponding gene xi is hidden, and if it is 0, gene

xi is not hidden (active).

Figure 3.1: HGGA and the tags concept

Chromosomes evolve over successive generations. Genes along with their tags go

through evolutionary operations. Genes evolve through the standard operations de-

fined in the CGA. The tags, however, may evolve with different operations. A set of

operations used to evolve tags is here referred to as a mechanism for tags’ evolution.

3.2 HGGAs Mechanisms

There are 12 different mechanisms for tags evolution that will be investigated in this

section. In the mechanisms that have a crossover operator for the tags, the singe-

point crossover is used, unless otherwise stated. Some of the evolution mechanisms

are logical. Here we introduce two definitions. Consider two parents selected for
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reproduction and consider one offspring child. The Hidden-OR evolution logic is

defined as follows: a gene in the child chromosome is hidden if the same gene is

hidden in any of the parents. The Active-OR evolution logic is defined as: a gene is

active in the child if the same gene is active in any of the parents.

1. Mechanism A: tags evolve using a crossover operator. The crossover point

location in the tags can be different from that in the genes. Before the crossover,

tags go through a mutation with probability of 10%.

Figure 3.2: Schematic of Mechanism A

2. Mechanism B: When two parents are selected for reproduction, then the process

of evolving the tags is as follows:

i - produce two temporary children through a single-point crossover opera-

tion on genes, and an Active-OR logic on tags. Both of these temporary

children will have the same tags.

ii - calculate the fitness value of these two temporary children, f̄1 and f̄2.
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iii - consider the parents chromosomes (genes and tags) as points in IRL+Lt

space where Lt is the number of tags.

iv - the child (output of Mechanism B) is the weighted arithmetic crossover

on the parents and is closer to the parent that has better fitness f̄ for its

temporary child.

For example, for the IR3 space in Figure 3.3, the child is closer to parent 1

because its temporary child has better fitness value. λ is a random number in

(0, 0.5). If f̄1 = f̄2, then the child can be randomly closer to either parents.

Figure 3.3: Representation of arithmetic crossover in IR3.

In this mechanism, the mutation operator is only allied to the genes.

3. Mechanism C: The arithmetic crossover operator is used for the genes only. The

tags in the child will have the same tags of one of the parents depending on

the value of
(
fm1 = f +

∑Lt

i=1 tagi

)
, where f is the fitness of the parent. The

offspring tags will be the same as that of the parent that has better value of(
fm1 = f +

∑Lt

i=1 tagi

)
. In other words, this mechanism favors higher number
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Figure 3.4: Schematic of Mechanism B.

of hidden genes.

4. Mechanism D: same as Mechanism C, but the offspring tags have the same

values as that of the parent with better value of
(
fm2 = f −

∑Lt

i=1 tagi

)
. In

other words, this mechanism favors less number of hidden genes.

5. Mechanism E: tags evolve only through a mutation operation with a certain

mutation probability different than the mutation probability of the genes. So,

two parents are selected; then mutation for the genes is carried out and another

mutation for the tags is carried out. These two parents then go through a

crossover operation on the genes with a certain probability as in the CGA,

while the tags remain unchanged during this crossover operation.

6. Mechanism F: tags are considered as discrete variables where they are appended

to the genes to create a long chromosome that has both genes and tags. Then

the mutation and crossover operations are carried out in a similar way to that

of the CGA.
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7. Mechanism G: this mechanism is similar to Mechanism F except that the tags

do not go through a mutation operation.

8. Mechanism H: this mechanism is similar to Mechanism F except that the tags

do not go through a crossover operation. This is carried out by limiting the

crossover point to be within the genes only.

9. Alleles: in biology, an allele is an alternative form of a gene and in human cells,

there are two alleles of a gene in each position on a chromosome, one dominant

and one recessive. Dominant traits are expressed only when the alleles of a pair

are heterozygous (the individual only has one copy of the allele). For example,

the allele for brown eyes is dominant, meaning that there is only one allele of

brown eyes needed to have brown eyes. On the other hand, the recessive traits

are expressed only if the alleles of a pair are homozygous (the individual has

two copies of the allele). These principles and their traits was first discovered by

Gregor Mendel [68, 69] and is named as Mendel’s Law of Segregation. Knowing

this concept in biology, two sets of tags (alleles) are considered for genes in

HGGA, in which only the dominant allele decides whether a gene is hidden or

active but both dominant and recessive alleles go through GA operations and

affect the next generation’s status. Therefore a recessive allele in the current

generation may become a dominant allele in the next generation. For the evo-

lution process, the mutation operation is first carried out in the genes and tags.

Then, a single-point crossover operator is applied to the genes, and a two-point
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crossover operator is applied to the tags such that the crossover point in the

dominant and recessive tags are similar.

Figure 3.5: Schematic of Alleles Mechanism.

10. Logic A: the member of the current generation (n̄) is split into two groups of

equal size. For the first group, the Active-OR logic is used for tags evolution

(a gene is active in the child if the same gene is active in any of the parents).

For the second group, the Hidden-OR logic is used for tags evolution (a gene is

hidden in the child if the same gene is hidden in any of the parents).

11. Logic B: similar to Logic A; but the Hidden-OR logic is used for all the members

in the generation.

12. Logic C: similar to Logic A; but the Active-OR logic is used for all the members
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Figure 3.6: Schematic of Logic A.

Figure 3.7: Schematic of Logic B.

in the generation.
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Figure 3.8: Schematic of Logic C.

3.3 Conclusion

In this chapter, the concept of binary tags was introduced in genetic algorithms to

enable hiding some of the genes in a chromosome, so that they can be used to search for

optimal architectures in VSDS problems. The proposed binary tags concept mimics

biological cells in hiding the genes that are not supposed to be effective in the cell,

while they could be effective in other cells. Various mechanisms for assigning the

chromosome hidden genes were proposed and investigated in this chapter. These

mechanisms make assigning the status of the genes more robust compared to the

feasibility criteria and can be applied to any problem with various number of hidden

genes for different types of variables. By evolving tags through generations, the

status of the genes evolve at the same time that their values evolve. This extended
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functionality in HGGAs is robust and easy to implement. All the mechanisms are

tested on different VSDS problems in the following chapter.
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Chapter 4

Test Cases

4.1 Introduction

In this chapter 1, the proposed mechanisms are tested on two types of VSDS problems.

The first type is mathematical problems that are used as the primary performance

evaluation for the mechanisms. Their performance is compared to the initial concept

of HGGAs (feasibility criteria). After that, the mechanisms are tested on three space

trajectory optimization problems. These problems have different levels of complexity

and are adapted from the standard space trajectory optimization benchmark. The

performance of the mechanisms are compared and their capabilities are evaluated.

1The material of this chapter are copied in part from References [4, 5, 6, 7]
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4.2 VSDS Mathematical Functions

Multi-minima mathematical functions can be very useful in testing new optimization

algorithms. However, there is not many multi-minima VSDS mathematical func-

tions in the known benchmark mathematical optimization problems. Four benchmark

mathematical optimization problems were modified to make them VSDS functions;

and then they were used to test the new HGGA mechanisms. These functions are: the

Egg Holder, the Schwefel 2.26, and the Styblinski-Tang functions. These functions

and their variable ranges are as follows [70]:

1. Egg Holder: continuous, differentiable, and multimodal.

FEG(X) =
N∑
i=1

(−(xi+1 + 47)sin(
√
|xi+1 + xi/2 + 47|)−

xisin(
√
|xi − (xi+1 + 47)|)), −512 ≤ xi ≤ 512

(4.1)

2. Schwefel 2.26: continuous, differentiable, and multimodal.

FSch(X) = − 1

N

N∑
i=1

xisin(
√
|xi|, −500 ≤ xi ≤ 500 (4.2)
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3. Styblinski-Tang: continuous, differentiable, and multimodal.

FSch(X) =
1

2

N∑
i=1

(x4i − 16x2i + 5xi), −5 ≤ xi ≤ 5 (4.3)

The general concept of modifying these functions to be VSDS functions is here de-

scribed. Consider the optimization cost function defined as:

F (X) =
N∑
i=1

fi (4.4)

If tagi is 1 (hidden), then fi is set to zero. In other words, if a variable (gene) i is

hidden, then the corresponding fi is zero, or does not exist. This is consistent with the

physical systems test cases presented in Section 1.1. Unlike the tags, the genes evolve

through the standard GA selection, mutation and crossover operations. In general,

standard GA are not suitable for solving VSDS problems. However, a significant

advantage of using the above modified mathematical functions is the possibility of

using standard GA if we assume all variable are active (not hidden). If the optimal

solution has xj hidden ∀j ∈ Γ, and Γ ⊆ {1, 2, · · · , N}, then the standard GA can

find that optimal solution, if we assume all variables are not hidden. In such case,

the optimal solution that the standard GA would search for is x∗j where f(x∗j) = 0,

∀j ∈ Γ.

All the proposed mechanisms are tested on the selected mathematical optimization
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functions. For the genes, a single point crossover and an adaptive feasible mutation

operators are selected. The GA parameters used in these simulations are listed in

Table 4.1.

Table 4.1
Genetic Algorithm Options

Option V alue

Population Size 400
Number of Generation 300

Elite Count 20
StallGenLimit Count 25
Crossover Fraction 0.95

TolFun 1e− 6

where Elite Count is the number of solutions that go to the next generation with-

out any change and the algorithms stops if the average relative change of the best

solution over StallGenLimit generations is less than or equal to TolFun. Note that

the crossover fraction in Table 4.1 is for the genes and the tags evolve based on the

characteristics of each mechanism. In Equation 4.4, if fi is a function of xi only,

there are N tags, and if fi is a function of xi and xi+1, then there are N − 1 tags.

In all the problems, the number of variables without tags is 5. Each test case is

simulated 20 times. Superior, a high-performance computing cluster at the Michigan

Technological University, was used in obtaining the results presented in this section.

This computing cluster is Generation 2 with 47 CPU compute nodes, each having 32

CPU cores (Intel Xeon E5− 26832.10 GHz) and 256 GB RAM 2. The best solutions,

2MTU High Performance Computing, https://hpc.mtu.edu/boilerplate, date retrieved: March 27,
2018
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average, variance, computational time (in seconds), average number of generations

until convergence, and success rate of 20 simulations are presented in Table 4.2-4.4.

The problems are also solved with the initial concept of HGGAs presented in [2].

The results show that Mechanisms A and G, Logic A and G, and alleles concept have

better overall performance compared to others. Moreover, based on the overall results

presented in Table 4.2-4.4, the Egg Holder function seems to be the most difficult

problem among the three chosen problems with higher variance and variation in the

best solution found. In the Egg Holder function, all the proposed mechanisms except

Mechanism B, C, and D could find solutions with lower cost value compared to the

initial HGGA concept. In the Schwefel 2.26 and Styblinski-Tang functions, several

mechanisms could find solutions with similar or close cost value to the solution of ini-

tial HGGA concept. Although the computational time of the initial HGGA concept

is lower for both test functions. However in the Schwefel 2.26 function, the success

rate of the alleles concept is higher than the initial HGGA concept with the same cost

value as the best solution. In the Styblinski-Tang function, the best solution among

the tested mechanisms has a cost value of −195.8308 and most of the mechanisms

are able to find close solutions to that with high success rate. Mechanisms B, C, D,

and Logic B have the highest cost (not desired) and lowest success rate in all the

problem. However, this is expected for Logic B since it favors solutions with more

hidden genes. In the tested problem however the best solution is to have all the genes

active and therefore the performance of Logic B is not good. Regardless, in problems
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where the optimal solution has some hidden and some active genes, Logic B might

have better performance. The success rate of the Egg Holder function is shown in

Figure 4.1 as an example. On each of these boxes, the

Figure 4.1: Success rate of some mechanisms in Egg Holder function.

By repeating the same numerical experiment, the obtained solution in each experi-

ment is compared to the best obtained solution and a success rate can be updated as

the experiment being repeated. A success rate of 0.3 means that if the simulations are

repeated ten times, it is expected that three simulations have a cost value of around

95% of the best solution found overall. The box diagram of the mechanisms for the

Egg-Holder function is shown in Figure 4.2. In this figure, A through H refer to

mechanisms A through mechanism H, and LA, LB, and LC refer to logic A, logic

B, and logic C, respectively. On each box, the central red mark is the median, the

top and bottom edges of the box are the 25th and 75th percentiles, respectively, the
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dotted black line is the data considered in the calculations, and the red ‘+’ symbols

are the outliers.

Figure 4.2: Box diagram of all the mechanisms in Egg Holder function.

The results of this section give more insight on the performance of the proposed

HGGA mechanisms and can be used as an initial statistical analysis. The mechanisms

showed potential for more investigation and hence, in the next section they are tested

on space trajectory optimization problems.
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Table 4.2
Egg Holder function results

Mechanism Best Average Variance Tc Ng SR

Logic A −3674.8391 −3330.7773 55850.2062 191.1277 242.25 30
Logic B −3010.1431 −1992.4732 127557.2779 176.4492 222 5
Logic C −3636.4812 −3351.7976 38493.6971 170.9710 215.55 30

Mechanism A −3627.2132 −3191.2960 39502.0731 121.9006 140.5 20
Mechanism B −2282.3187 −1665.2146 70489.6712 67.1561 45.1 5
Mechanism C −2445.1901 −1785.3663 109847.1527 67.6609 47.95 5
Mechanism D −2521.0772 −1736.6389 85834.8496 63.9779 45.2 5
Mechanism E −3607.1362 −3014.7806 72811.4486 71.2453 77.65 5
Mechanism F −3592.4893 −3249.7519 56730.4356 210.2351 285.55 20
Mechanism G −3679.5732 −3276.8970 56740.0155 185.6655 250.85 25
Mechanism H −3455.9918 −3097.3507 34409.3814 220.8240 281.8 20

Alleles −3664.1354 −3377.8405 46136.7272 644.6538 233.35 35
Initial HGGA −2808.1814 −2496.6042 45111.6674 111.7339 127.8 30

Table 4.3
Schwefel 2.26 function results

Mechanism Best Average Variance Tc Ng SR

Logic A −418.9828 −417.6561 28.1062 116.1333 141.35 95
Logic B −335.1862 −258.0072 963.0126 165.8180 208.55 5
Logic C −418.9828 −418.8164 0.4639 105.3200 127.8 100

Mechanism A −418.7245 −410.5598 67.1025 74.5818 78.65 85
Mechanism B −263.7859 −223.3435 600.5483 74.6767 50.95 10
Mechanism C −350.4428 −251.4763 1722.6184 80.2498 59 10
Mechanism D −286.7516 −233.8988 868.0824 76.9453 57.15 10
Mechanism E −418.2302 −394.9007 517.0262 57.4893 60.7 55
Mechanism F −418.9828 −417.2749 28.2410 191.4418 256.2 95
Mechanism G −418.9828 −416.0680 38.4820 140.2377 188.65 95
Mechanism H −418.8752 −401.3159 310.9379 204.2924 267.95 50

Alleles −418.9829 −418.9218 0.07207 369.3322 132.4 100
Initial HGGA −418.9829 −416.6141 53.1574 63.0096 67.05 90
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Table 4.4
Styblinski-Tang function results

Mechanism Best Average Variance Tc Ng SR

Logic A −195.8307 −195.8281 0.00011 74.4599 84.95 100
Logic B −195.8307 −155.7955 386.6748 97.8044 115.6 10
Logic C −195.8308 −195.8302 1.3061e− 06 71.8116 80.85 100

Mechanism A −195.8304 −195.7179 0.04677 98.74251 107.65 100
Mechanism B −176.0926 −158.9485 172.4940 99.1229 70.4 35
Mechanism C −190.5350 −165.1095 185.9181 90.3370 67.2 15
Mechanism D −189.2275 −164.6126 151.5187 86.1996 63.35 5
Mechanism E −195.8097 −188.1418 137.0943 74.4072 83.2 70
Mechanism F −195.8307 −195.8301 6.7591e− 07 75.6282 91.9 100
Mechanism G −195.8308 −195.8304 2.4139e− 07 75.3374 91.7 100
Mechanism H −195.8308 −195.1230 9.9912 84.8920 98.5 95

Alleles −195.8308 −195.8301 6.4460e− 07 246.5077 83.35 100
Initial HGGA −195.8308 −195.8308 1.4025e− 15 49.8379 50.95 100

4.3 Space Trajectory Optimization

The purpose of interplanetary trajectory design is to select different variables such

that a spacecraft travels from of celestial body to another with the best objective

function. To get to the final destination, the spacecraft can have multiple revolu-

tions around the sun, different flybys around other celestial bodies, and also multiple

DSMs in each leg. The number of flybys and DSMs are the variables that describe

the topology of the mission and make the problems a VSDS optimization problem.

Other variables of this problem include the launch and arrival time, flight direction,

time of flight for each leg, pericenter altitude for each flyby, rotation angles, epochs of

DSMs, and the DSM vectors (direction and magnitude). These variables can be cat-

egorized into two groups of discrete design variables and continuous design variables
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(Table 4.5).

Table 4.5
Design variables in an interplanetary trajectory optimization problem

Discrete Variables Continuous Variables

Number of flybys (m) Departure date (td)
Flyby planets (P) Arrival date (ta)
Number of DSMs in each leg
(n)

TOF

Flight direction (fdir) Flyby pericenter altitude
(hp)
Flyby rotation angles (η)
DSMs epoch (ε)
DSMs magnitudes and di-
rections

It is assumed in this study that the spacecraft operates with impulsive thrust and

can have multiple DSMs in each leg. The objective function is to minimize the fuel

consumption, which can be divided into departure (launch) impulse, arrival impulse,

and DSMs maneuvers.

∆vtot = ||∆Vd||+ ||∆Va||+
n∑

i=1

||∆VDSM ||+
m∑
i=1

||∆Vps|| (4.5)

where ||∆Vd|| is the launch impulse, ||∆Va|| is the arrival impulse, n is the total

number of DSM maneuvers, m is the number of powered gravity assist maneuvers,

||
∑n

i=1 ∆VDSM || is the total costs of DSM maneuvers, and
∑m

i=1 ||∆Vps|| is the total

post-flyby impulses in the powered gravity assist maneuvers.
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When there are no DSMs or flybys for a mission, the trajectory problem becomes a

Lambert’s problem. Lambert’s problem is a two-body boundary value problem that

computes the trajectory using initial and final heliocentric position vectors and TOF.

The initial and final heliocentric positions of the spacecraft are assumed to be the

same as the heliocentric position vector of the home planet and target planet at the

initial and final time, respectively. The solution of the Lambert’s problem determines

the departure and arrival impulses, and hence the transfer orbit.

In the case of an n-impulse trajectory with no flybys (n DSMs in one mission leg),

the independent design variables are assumed the departure and arrival time, the ∆V

vector of n impulses, and the epoch of the DSMs. Knowing the departure time, the

planet heliocentric position vector can be determined (assumed equal to the helio-

centric position vector of the spacecraft). Since the epoch of the first DSM and the

initial velocity vector are known, the Kepler’s equation can be used to propagate the

position and velocity vector of the spacecraft at the DSM epoch. The velocity vector

of the spacecraft after the DSM can be computed as the summation of the velocity

vector of the spacecraft before the DSM and the DSM impulse vector. This procedure

is repeated for all the transfer orbits of the trajectory except the last one, where the

Lambert’s problem is solved. For the last transfer orbit, the arrival time and hence

the orbit’s TOF are known. The planet’s position vector can be determined (equal

to the spacecraft position vector at arrival) and therefore, the Lambert’s problem can

be used. This results in the arrival impulse for capture by the planet.
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Figure 4.3: Geometry of a non-powered flyby.

The spacecraft can have multiple powered or non-powered gravity-assist maneuvers

(flybys). The momentum change in a flyby maneuver can impact the ∆V needed for

the spacecraft during the mission. The spacecraft position vector during the flyby is

assumed not to change and is equal to the heliocentric position vector of the planet

at the flyby instance.

r− = r+ = rp (4.6)

where r− and r+ are the position vectors of the spacecraft before and after the flyby

maneuver and rp is the heliocentric position vector of the planet at the flyby instance.

The velocity vector of the spacecraft after the flyby maneuver is determined by cal-

culating the magnitude and direction of the velocity for powered and non-powered

flybys as follows:
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† Non-powered flyby: It is assumed that during the flyby, the linear momentum

of the spacecraft changes only due to the gravity field of the planet. Hence, the

magnitude of incoming and outgoing relative velocities are the same:

|v−∞| = |v+
∞| = v∞ (4.7)

where v−∞ and v+
∞ are the incoming and outgoing relative velocity vectors, re-

spectively and are calculated as:

v∞ = vS/C − vp (4.8)

vS/C is the spacecraft velocity vector and vp is the planet velocity vector

(Figure 4.3). The direction of the outgoing velocity can be determined by

the flyby plane rotation angle δ.

sin(δ/2) =
µp

µp + rperv2∞
(4.9)

where µp is the gravitational constant of the planet and rper is the pericenter

radius of the flyby which is a design variable. The maximum rotation angle

is when the pericenter radius is minimum. If the required rotation angle is

greater than the maximum achievable rotation angle, a powered flyby maneuver
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is needed. The total spacecraft velocity change in a non-powered flyby is:

∆vnpf = 2v∞sin(δ/2) (4.10)

† Powered flyby: Higher rotation angles can be gained by applying a small impulse

during the flyby [71]. The spacecraft velocity on the periapsis trajectory (vm)

is [72]:

vm =
√
v2∞ + 2µp/rper (4.11)

Hence, the required change in velocity for powered flyby is:

∆vpf = v+m − v−m =
√
v+∞

2 + 2µp/rper −
√
v−∞

2 + 2µp/rper (4.12)

The outgoing velocity of the spacecraft in heliocentric inertial frame can be

calculated as follows [3]:

v+
∞ = C(v+

∞)L (4.13)

where (v+
∞)L is the outgoing relative velocity vector expressed in the local frame

îĵk̂ and C = [̂i ĵ k̂] is the transformation matrix between local frame and

inertial frame. As shown in Figure 4.4, (v+
∞)L can be calculated as [3]:

(v+
∞)L = v∞[cos(δ) sin(δ) 0]T (4.14)
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Figure 4.4: The local and inertial frames [3].

The local frame is defined such that î is in the direction of the incoming relative

velocity and ĵ is perpendicular to î and is in the plane of the flyby maneuver.

Line Γ in Figure 4.4 is the intersection of ĵk̂ plane (Π plane) and the inertial

Ecliptic plane Î Ĵ . The angle between Î and Γ is Ω, and the angle between Γ

and ĵ is η. Also, ι is the inclination of plane Π to the Ecliptic plane. By this

nomenclature, the unit directions can be derived as [3]:

î =
v−∞
|v−∞|

(4.15)
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ĵ =


cos(−Ω) sin(−Ω) 0

−sin(−Ω) cos(−Ω) 0

0 0 1

×


1 0 0

0 cos(−ι) sin(−ι)

0 −sin(−ι) cos(−ι)



×


cos(−η) sin(−η) 0

−sin(−η) cos(−η) 0

0 0 1





1

0

0



(4.16)

k̂ = î× ĵ (4.17)

For the full MGADSM problem with m flybys and ni DSMs in each leg (i = 1 . . .m),

the calculations for each leg is carried out as explained above. Departure and arrival

dates and the TOF of each leg (except the last leg) are design variables. The TOF of

the last leg can be calculated knowing the total TOF of the mission and the summation

of the TOF of the other legs. Assume that there are n1 DSMs in the first leg. Hence,

there are n1 + 1 transfer orbits in that leg. The calculations of the first nl orbits

are similar to the explanations on the n-impulse trajectory. For the last orbit, the

velocity vector at the end point is the incoming heliocentric velocity of the flyby. The

flyby is assumed non-powered if at least one DSM is in the following leg. Knowing the

flyby pericenter altitude and rotation angle (design variables), the outgoing velocity
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(the spacecraft initial heliocentric velocity vector for the next leg) can be determined

by carrying out the non-powered flyby calculations. This procedure is repeated for

all the legs. In case of no DSMs in a leg, the initial flyby of that leg is assumed a

powered flyby and the corresponding calculations can be used.

For all the problems, the J2 effect is ignored. Since Lambert’s problem can have

multiple solutions, the maximum number of revolutions is set to 5 and the best

solution from Lambert’s problem is selected as the trajectory for the current transfer

orbit. The criteria to choose the best Lambert’s solution; i.e. choose the number of

revolutions, is to select the one that results in the lowest segment cost. This cost can

be the post-flyby maneuver, departure impulse, or a DSM impulse.

To illustrate how this problem is a VSDS optimization problem, two sample solutions

are shown as chromosomes in Figure 4.5. In this example, the hidden genes are shown

with gray color. The top part of the figure shows the chromosomes in HGGA, with

hidden genes and equal lengths, and the bottom part of the figure shows the equivalent

chromosomes with no hidden genes and different lengths. As seen, depending on the

number of flybys and DSMs, the length of the solutions can be variable. In the first

solution, there is one flyby and one DSM, and in the second solution there are two

flybys and two DSMs. Assume that it is required to send a spacecraft to planet

Jupiter with the lowest cost (fuel consumption) within certain ranges for launch and

arrival dates. The two solutions shown in Figure 4.5 can be interpreted as follows:
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Figure 4.5: An example of two different solutions for an interplanetary
trajectory problem in HGGA (Earth to Jupiter), and the equivalent chro-
mosomes with no hidden genes in GA.

1. First Solution: A trajectory with one flyby around Venus (Earth-Venus-Jupiter)

and one DSM in the second leg.

2. Second Solution: A trajectory with two flybys around Venus and Earth (Earth-

Venus-Earth-Jupiter or EVEJ) and two DSMs in the first and the third legs.

This is a VSDS problem; the proposed tags/Alleles mechanisms can be used to search

for the optimal solution and architecture.

In this study, three benchmark problems are investigated: Earth to Mars, Earth to

Jupiter, and Earth to Saturn. The best known solutions for these problems can be

found in the European Space Agency (ESA) website 3 and also in [3, 73].

3European Space Agency, Advanced Concept Team (ESA/ACT),
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The HGGA mechanisms are capable to search for the optimal variables including

flyby sequences, DSMs’ epochs, magnitudes, and directions, launch and arrival dates,

and flight direction. To reduce the computational cost, the problems are solved

in two phases. In the first phase, the number of design variables is reduced by

assuming that there are no DSMs (zero-DSM phase). Reducing the number of design

variables in this phase allows for search in larger range of remaining variables. Hence,

more planets can be explored for flyby sequence and wider launch, arrival, and flyby

dates can be investigated. The second phase is a multi-gravity-assist with DSMs

(MGADSM phase) that uses a fixed flyby sequence (obtained in the first step) to

optimize the rest of the design variables including the DSMs in the mission. The

range of launch, arrival, and flyby dates in the MGADSM phase are selected around

the results of the zero-DSM phase. This approach has shown to be computationally

efficient [3] compared to a single model where all the variables including DSMs and

flyby sequences are optimized together. However, it should be kept in mind that in

some missions (such as Messenger), solving the problem in two phases may result in

exclusion of fit solutions. For example, some mission trajectories are only fit when

there are DSMs and by removing the DSMs, they become unfit and hence get omitted

from the zero-DSM phase. Therefore, the feasibility of optimizing the trajectory in

two phases should be studied beforehand for each mission.

Each simulation is repeated 100 times for the purpose of statistical analysis on the

http://www.esa.int/gsp/ACT/inf/projects/ gtop/cassini2.html, date retrieved: December
06, 2017
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efficiency of the method. For all the problems, the elite count is 20, the crossover

probability is 0.95, and the algorithms stops if the average relative change of the

best solution over 25 generations is less than or equal to 10−6. The create function

for initial population is uniform, the selection function is roulette wheel. Single point

crossover and adaptive feasible mutation functions are used for the genes. For the sake

of comparison, the lower and upper boundaries of the variables in all problems are

compatible with the work done in [3, 73] and the results reported by ESA advanced

concept team. Similar to the simulations of the mathematical test functions, Superior,

the high-performance computing cluster at the Michigan Technological University,

was used in obtaining the results presented in this section.

4.3.1 Earth to Mars Mission Trajectory Optimization

The upper and lower boundaries of the variables are listed in Table 4.6. In the

mission to Mars, the spacecraft can have up to two flybys around any planet in Solar

system and up to two DSMs in each leg. Hence, the chromosome has two genes for

the flyby planets in the zero-DSM phase, and each flyby planet can be any one from

one (Mercury) to eight (Neptune). Each flyby gene carries the planet identification

number. One tag (two tags in the case of using the Alleles concept) is assigned to

each flyby gene and if the tag of any of the flybys is one, the corresponding flyby is

hidden. For example assume that the values of flybys are three (first flyby is around
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the third planet-Earth) and five (second flyby is around the fifth planet-Jupiter). If

the tags are [1, 0], the flyby around Earth is hidden and the solution has only one

flyby around Jupiter. Similarly, for the MGADSM phase, there can be a maximum

two DSMs in each leg. Since the maximum number of flybys is two, the maximum

number of legs is three, and hence, the maximum number of DSMs is six. For each

DSM, we need to compute the optimal time (TDSM) at which this DSM occurs. A

gene and a tag are added for each DSM time TDSM , and hence, there are six gens and

six tags for TDSMi (i = 1 · · · 6) in this mission. Note that if a flyby is hidden, then its

leg disappears and all the DSMs in that leg automatically become hidden. Note also

that even if a flyby exists, a DSM in its leg can be hidden depending on the value of

its own tag. The range for each DSM is set between [−5,−5,−5] km/s and [5, 5, 5]

km/s in three directions as shown in Table 4.11. Hence, the chromosome will have

genes for 6 × 3 = 18 scalar components of the DSMs. Note that these 18 genes are

classified in groups of three genes; hence if one DSM is hidden then its three genes

get hidden together. In the zero-DSM phase, the launch date range is 01 June 2004

to 01 July 2004 and the arrival date range is 01 April 2005 to 01 July 2005. The

TOF for each leg is between 40 and 300 days except the last one. The duration of

the last leg is determined by the launch and arrival dates and the TOF of the other

legs. There is a gene for each TOF in the mission. Hence, we have three genes for

the TOFs in this Mars mission. Note that there are no tags associated with the TOF

genes since the state of each gene (hidden or active) is determined based on the flyby
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tags. If a flyby exists then there is an active gene for a TOF associated with it. Two

genes for the two flyby altitudes hp and two genes for the two flyby plane angles η

are added. Similar to the TOF variables, no tags are needed for the hp and η genes.

There are also six genes for the departure impulse, flight direction, the arrival date

and the departure date.

Table 4.6
Lower and upper bounds of Earth-Mars problem

Design Variable Lower Bound Upper Bound

Flyby 1 planet 1 (Mercury) 8 (Neptune)
Flyby 2 planet 1 8

DSMi (km/s), i = 1 · · · 6 [−5,−5,−5] [5, 5, 5]
Flight Direction Posigrade Retrograde

Departure Date (t0) 01 Jun.2004 01 Jul.2004
Arrival Date (tf ) 01 Apr.2005 01 Jul.2005

TOF (days) [40, 40] [300, 300]
Flyby normalized pericenter altitude (hp) [0.1, 0.1, 0.1] [10, 10, 10]

Flyby plane rotation angle (η) (rad) [0, 0, 0] [2π, 2π, 2π]
Epoch of DSMs (εi, i = 1 · · · 6) 0.1 0.9

The problem is solved in two phase of zero-DSM and MGADSM models. For the

zero-DSM phase, the number of population is 200 and the number of generations is

100. The results of zero-DSM phase are presented in Table 4.7. All the mechanisms

found Earth-Venus-Mars (EVM) flyby sequence as the optimal solution. For the

MGADSM phase, the number of population is 300 and the number of generations is

200. The results of this phase are presented in Table 4.8. For both phases, the best

solution found (Best-km/s), average of the 100 simulation results (Average-km/s), the

variance of the 100 simulation results (Variance-km/s), the computational time for

100 simulations (hr), the average generations until convergence (Ng), and the success
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rate (SR%) are presented. As shown, mechanism H results in the lowest cost value.

The zero-DSM and MGADSM trajectories for mechanism H and alleles concept are

shown in Figure 4.6 and 4.7 and the mission details for these two mechanisms are

presented in Table 4.9 and 4.10. Based on the information in these tables, both of

these algorithms are able to reduce departure and arrival impulses in the MGADSM

phase by adding one DSM in the first leg and tuning the event times.

Table 4.7
Results of Earth-Mars problem in zero-DSM phase.

Mechanism Best Average Variance Tc Ng SR

Mechanism A 10.7800 10.9732 0.0700 7.1207 85.9300 93
Mechanism B 10.7792 11.1489 0.1892 15.1288 69.2600 82
Mechanism C 10.7805 11.1097 0.0921 15.3558 73.5400 88
Mechanism D 10.7890 11.1339 0.2156 14.6486 69.1700 92
Mechanism E 10.7854 10.9843 0.0500 6.7078 81.7100 90
Mechanism F 10.7819 10.9176 0.0241 7.4285 86.2300 98
Mechanism G 10.7797 10.9378 0.0326 7.1350 86.2100 95
Mechanism H 10.7788 11.0159 0.0819 7.7926 86.59 89

Logic A 10.7802 10.9386 0.0425 7.0009 82.8000 94
Logic B 10.7881 12.7345 11.2591 6.8406 83.1200 27
Logic C 10.7798 10.9048 0.0309 6.6724 78.1600 96
Alleles 10.7801 10.9006 0.0293 49.0959 87.16 97

The box diagram of the mechanisms for the MGADSM phase of Earth to Mars prob-

lem is shown in Figure 4.8. In this figure, A through H refer to mechanisms A

through mechanism H, and LA, LB, and LC refer to logic A, logic B, and logic C,

respectively. On each box, the central red mark is the median, the top and bottom

edges of the box are the 25th and 75th percentiles, respectively, the dotted black line

is the data considered in the calculations, and the red ‘+’ symbols are the outliers.

As shown, mechanisms A, E, F, G, H, logic A, and alleles have better performance
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Table 4.8
Results of Earth-Mars problem in MGADSM phase.

Mechanism Best Average Variance Tc Ng SR

Mechanism A 10.7778 10.9408 0.0134 30.3534 151.58 100
Mechanism B 10.8122 11.7328 0.3121 19.2612 58.56 37
Mechanism C 10.9309 12.0713 0.4475 14.2896 48.11 20
Mechanism D 10.8652 12.0938 0.3393 15.2857 47.11 34
Mechanism E 10.7626 10.9102 0.0123 17.1103 138.36 99
Mechanism F 10.7622 10.9130 0.0137 20.4235 155.17 99
Mechanism G 10.7569 10.8976 0.0141 19.2714 158.55 99
Mechanism H 10.7461 10.9217 0.0179 21.4197 162.32 98

Logic A 10.7857 10.9354 0.01944 20.7456 172.63 98
Logic B 10.7940 11.2717 0.1602 20.6973 166.58 69
Logic C 10.8481 12.1110 0.4971 5.6413 50.56 25
Alleles 10.7121 10.9178 0.0166 110.2948 132.4300 99

(a) Zero-DSM trajectory.
(b) MGADSM trajectory has one DSM in
the first leg.

Figure 4.6: Zero-DSM and MGADSM trajectories for Earth to Mars mis-
sion using mechanism H.

compared to the rest of the mechanisms.
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Table 4.9
Solution of Earth to Mars mission (EVM) using mechanism H

Mission parameter Zero-DSM model MGADSM model

Departure Date 05− Jun− 2004, 16 : 13 : 56 01− Jun− 2004, 06 : 00 : 36
Departure Impulse (km/s) 4.6121 3.9777
DSM date − 08− Jul − 2004, 15 : 06 : 54
DSM impulse (km/s) − |[−0.6080,−0.2763,−0.1587]| = 0.6864
Venus flyby date 20−Nov − 2004, 10 : 59 : 40 18−Nov − 2004, 20 : 04 : 05
Pericenter altitude (km) 8051.0917 8107.4551
Arrival date 13−May − 2005, 16 : 11 : 09 14−May − 2005, 21 : 41 : 46
Arrival impulse (km/s) 6.1667 6.082
TOF (days) 167.7818, 174.2163 170.5858, 177.0678
Mission duration (days) 341.9981 347.6536
Mission cost (km/s) 10.7788 10.7461

(a) Zero-DSM trajectory.
(b) MGADSM trajectory has one DSM in
the first leg.

Figure 4.7: Zero-DSM and MGADSM trajectories for Earth to Mars mis-
sion using alleles concept.
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Table 4.10
Solution of Earth to Mars mission (EVM) using alleles concept

Mission parameter Zero-DSM model MGADSM model

Departure Date 05− Jun− 2004, 23 : 19 : 34 30−May − 2004, 17 : 27 : 03
Departure Impulse (km/s) 4.6167 4.0871
DSM date − 28− Jul − 2004, 18 : 57 : 12
DSM impulse (km/s) − |[−0.4747,−0.3205,−0.1426]| = 0.5903
Venus flyby date 20−Nov − 2004, 14 : 37 : 28 18−Nov − 2004, 03 : 17 : 31
Pericenter altitude (km) 8042.5595 8015.4727
Arrival date 14−May − 2005, 16 : 42 : 04 17−May − 2005, 06 : 22 : 58
Arrival impulse (km/s) 6.1631 6.0347
TOF (days) 167.6374, 175.0865 171.4101, 180.1288
Mission duration (days) 342.724 351.5388
Mission cost (km/s) 10.7461 10.7121

Figure 4.8: Box diagram of all the mechanisms in Earth to Mars problem
(MGADSM phase).
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4.3.2 Earth to Jupiter Mission Trajectory Optimization

The variable boundaries are listed in Table 4.11. The spacecraft can flyby around

up to two planets in the solar system and there can be up to two DSMs in each leg.

For the zero-DSM phase, the launch date can be between 01 September 2016 and

30 September 2016 and the arrival date can be between 01 September 2021 and 31

December 2021. The TOF of each leg (except the last leg) can be between 80 and

800 days. In the MGADSM phase, there can be up to two DSMs in each leg (total

possible number of DSMs is six for maximum three legs) and the range for each DSM

is [−5,−5,−5] km/s to [5, 5, 5] km/s.

Table 4.11
Lower and upper bounds of Earth-Jupiter problem

Design Variable Lower Bound Upper Bound

Flyby 1 planet 1 (Mercury) 8 (Neptune)
Flyby 2 planet 1 8

DSMi (km/s), i = 1 · · · 6 [−5,−5,−5] [5, 5, 5]
Flight Direction Posigrade Retrograde

Departure Date (t0) 01 Sep.2016 30 Sep.2016
Arrival Date (tf ) 01 Sep.2021 31 Dec.2021

TOF (days) [80, 80] [800, 800]
Flyby normalized pericenter altitude (hp) [0.1, 0.1, 0.1] [10, 10, 10]

Flyby plane rotation angle (η) (rad) [0, 0, 0] [2π, 2π, 2π]
Epoch of DSMs (εi, i = 1 · · · 6) 0.1 0.9

The variables that have tags and the implementation of tags are similar to the descrip-

tion provided in Section 4.3.1 for Earth to Mars mission. For the zero-DSM model,

the population size is set to 400 and the number of generations is 300. This problem
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is solved using different mechanisms and the best cost values, computational time,

variance, and average cost of each mechanism in the zero-DSM model are reported in

Table 4.12.

Table 4.12
Results of Earth-Jupiter problem in zero-DSM model

Mechanism Best Average Variance Tc Ng SR

Mechanism A 10.1293 15.0380 11.1995 35.7936 186.6000 11
Mechanism B 16.4544 22.8396 3.5713 29.5913 72.0200 1
Mechanism C 11.6747 22.4008 8.8540 22.0437 49.1200 2
Mechanism D 12.2634 22.2984 8.6277 25.8117 57.4500 2
Mechanism E 10.1643 13.6744 1.3808 14.2629 78.2200 7
Mechanism F 10.1294 15.4224 11.0956 29.9687 150.2400 12
Mechanism G 10.1283 15.5772 10.5792 32.0933 159.3100 11
Mechanism H 10.1214 16.0900 13.1852 32.9162 164.5500 12

Logic A 10.2654 14.8729 10.0933 38.4243 162.3200 23
Logic B 17.1731 23.1896 5.0628 17.8781 107.8600 1
Logic C 10.1635 13.4421 10.3030 44.0043 180.47 32
Alleles 10.1448 13.7523 9.8504 69.7166 97.12 11

All the mechanisms could find the known optimal flyby sequence which is Earth-

Venus-Earth-Jupiter (EVEJ) in their zero-DSM model. The flyby sequences is set

in the MGADSM model and the range of time of launch, arrival, and flybys are set

around 10 days of the results of the zero-DSM model. The cost of final MGADSM

mission scenarios are presented in Table 4.13 for a population size of 600 and 200

generations. Note that the computational time is presented for 100 simulations.

Mechanism E has the lowest cost of 10.1179 km/s with one DSM in the first leg. Mech-

anism H has the second lowest cost of 10.1214 km/s. The zero-DSM and MGADSM

trajectories using mechanisms E and H are shown in Figures 4.9 and 4.10. The
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Table 4.13
Results of Earth-Jupiter problem in MGADSM model

Mechanism Best Average Variance Tc Ng SR

Mechanism A 10.1355 10.5788 0.1151 47.6756 175.61 69
Mechanism B 13.9969 14.7439 0.2144 57.0613 73.03 49
Mechanism C 10.8836 11.7026 0.2467 62.0653 73 29
Mechanism D 10.8786 12.0616 0.2227 60.7960 87.75 8
Mechanism E 10.1180 10.2134 0.0105 67.4248 163.94 94
Mechanism F 10.1296 10.3687 0.0501 67.4763 184.96 88
Mechanism G 10.1236 10.3560 0.0372 68.0114 187.16 91
Mechanism H 10.1226 10.3430 0.0484 69.3444 183.39 93

Logic A 10.2139 10.4654 0.0369 59.9637 186.49 91
Logic B 14.0996 15.6615 0.2108 13.3010 97.18 3
Logic C 11.2685 15.5756 6.2181 16.6324 75.11 4
Alleles 10.1437 10.3193 0.0148 360.6664 158.81 100

detailed mission scenario are presented in Table 4.14 and 4.15.

As a demonstration for how the tags evolve over subsequent generations, consider this

Earth to Jupiter problem solved using Logic C (MGADSM phase). The population

size is 300 and the number of generations is 100. Six tags are examined. Figure 4.11

(a) Zero-DSM trajectory.
(b) MGADSM trajectory has one DSM in
the first leg.

Figure 4.9: Zero-DSM and MGADSM trajectories for Earth to Jupiter
mission using mechanism E.
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Table 4.14
Solution of Earth to Jupiter (EVEJ) mission using mechanism E

Mission parameter Zero-DSM model MGADSM model

Departure Date 05− Sep− 2016, 04 : 43 : 08 01− Sep− 2016, 16 : 36 : 49
Departure Impulse (km/s) 3.5147 3.3834
DSM date − 09−Nov − 2016, 05 : 05 : 37
DSM impulse (km/s) − |[0.0705,−0.0653,−0.0019]| = 0.0962
Venus flyby date 05− Sep− 2017, 09 : 12 : 37 06− Sep− 2017, 18 : 20 : 24
Pericenter altitude (km) 1261.1915 909.9072
Earth flyby date 29−Mar − 2019, 06 : 14 : 18 29−Mar − 2019, 05 : 55 : 57
Post-flyby impulse (km/s) 0.4453 0.4412
Pericenter altitude (km) 637.7999 637.8000
Arrival date 08− Sep− 2021, 22 : 50 : 57 13− Sep− 2021, 10 : 16 : 34
Arrival impulse (km/s) 6.2043 6.1972
TOF (days) 365.1871, 569.8762, 894.6921 370.07193, 568.483, 899.181
Mission duration (days) 1829.7554 1837.7359
Mission cost (km/s) 10.1643 10.1180

(a) Zero-DSM trajectory.
(b) MGADSM trajectory has one DSM in
the first leg.

Figure 4.10: Zero-DSM and MGADSM trajectories for Earth to Jupiter
mission using mechanism H.

shows the number of times each tag has a value of ’1’ in each generation. For example,

tag 6 takes a value of ’1’ in all the population members in generations 55 and above.

In the 30th generation, for instance, tag 6 takes a value of ’1’ in only 40 chromosomes

and takes a value of ’0’ in the other 260 chromosomes. The other 5 tags converge to

a value of ’0’ in the last population in all the chromosomes.
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Table 4.15
Solution of Earth to Jupiter (EVEJ) mission using mechanism H

Mission parameter Zero-DSM model MGADSM model

Departure Date 01− Sep− 2016, 20 : 07 : 38 01− Sep− 2016, 10 : 12 : 43
Departure Impulse (km/s) 3.4854 3.4807
DSM date − 17−Oct− 2016, 23 : 11 : 31
DSM impulse (km/s) − |[0.00904,−0.0216, 0.0020]| = 0.02348
Venus flyby date 05− Sep− 2017, 12 : 08 : 44 05− Sep− 2017, 13 : 40 : 00
Pericenter altitude (km) 1318.4348 1268.1977
Earth flyby date 30−Mar − 2019, 05 : 04 : 19 29−Mar − 2019, 20 : 47 : 51
Post-flyby impulse (km/s) 0.4407 0.4423
Pericenter altitude (km) 637.7999 637.8000
Arrival date 29− Sep− 2021, 04 : 41 : 57 27− Sep− 2021, 08 : 06 : 04
Arrival impulse (km/s) 6.1961 6.1889
TOF (days) 368.6674, 570.7053, 913.9845 369.14395, 570.2971, 912.471
Mission duration (days) 1853.3572 1851.912
Mission cost (km/s) 10.1214 10.1226

Figure 4.11: Evolution of tags using Logic C in the Earth to Jupiter
problem

The box diagram of the mechanisms for the MGADSM phase of Earth to Jupiter

problem is shown in Figure 4.12. In this figure, A through H refer to mechanisms

A through mechanism H, and LA, LB, and LC refer to logic A, logic B, and logic C,

respectively. On each box, the central red mark is the median, the top and bottom
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edges of the box are the 25th and 75th percentiles, respectively, the dotted black line

is the data considered in the calculations, and the red ‘+’ symbols are the outliers.

Similar to Earth to Mars simulation results, mechanisms A, E, F, G, H, logic A, and

alleles have better performance compared to the rest of the mechanisms.

Figure 4.12: Box diagram of all the mechanisms in Earth to Jupiter prob-
lem (MGADSM phase).
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4.3.3 Earth to Saturn (Cassini 2) Mission Trajectory Opti-

mization

A more complicated trajectory is the Cassini mission that was designed by NASA,

European Space Agency, and Italian Space Agency to discover the planet Saturn.

The mission consists of a satellite that orbits Saturn and a lander for its moon Titan

[74]. We only consider the first stage of the mission to design the trajectory from

Earth to rendez-vous with Saturn. High number of flybys and wide ranges for the

design variables make this problem challenging for optimizer tools. Here, a launch

window of 30 days is selected for the mission for the sake of comparison with the

reported results in the literature [3, 75]. The upper and lower boundaries of design

variables are shown in Table 4.16. For a fair comparison, these ranges are selected

in accordance to the literature. There can be up to four flybys (five legs) and up to

one DSM in each leg. Hence, the maximum possible number of DSMs in the mission

is five.

The goal here is to optimize the trajectory to Cassini as a VSDS problem with un-

known number of flybys and DSMs. However, the initial simulations show that the

algorithms converge to local solutions with higher cost value than reported in the lit-

erature. A niching method is used to help the optimization algorithms explore more
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Table 4.16
Lower and upper bounds of Earth-Saturn problem

Design Variable Lower Bound Upper Bound

Flyby planet identification (Pi, i = 1 . . . 4) 2 (V enus) 5 (Jupiter)
DSMi (km/s), i = 1 · · · 5 [−5,−5,−5] [5, 5, 5]

Flight Direction Posigrade Retrograde
Departure Date (t0) 01 Nov.1997 01 Sep.1997

Arrival Date (tf ) 01 Jan.2007 30 Jun.2007
TOF (days) [100, 100, 30, 400] [400, 500, 300, 1600]

Flyby normalized pericenter altitude (hp) [0.05, 0.05, 0.15, 0.7] [5, 5, 5.5, 290]
Flyby plane rotation angle (η) (rad) [0, 0, 0, 0] [2π, 2π, 2π, 2π]

Epoch of DSMs (εi, i = 1 · · · 6) 0.1 0.9

of the design space [3, 35, 57]. In this niching method, every 10 generations, the cur-

rent best solutions is saved (as a vector). In each generation, the solutions that have

similar flyby sequence or the solutions that are close to the saved best solution vectors

are given high cost. Moreover, every five generations a random solution is inserted

in place of an elite solution. For example if in the 10th generation the best solution

is in the form of ~x∗g10 = (x1, . . . , xlm) where lm is the total number of variables, then

in genrations 11th to 20th, the solutions with |~x − ~x∗g10| < 1 are given high cost. In

the 20th generation, another ~x∗g20 is saved and from generations 21th to 30th, the

solutions with similar flyby sequence to the flyby sequence of ~x∗g10 or ~x∗g20, or the solu-

tions that are close to these two points in IRlm are given high cost. These simulations

are carried out ten times with population size of 400, generation number of 200, elite

count of 40, and stall generation limit of 200. After the simulations are done, a vector

of niched flyby sequences are available for each mechanism. The simulations are re-

peated for each flyby sequence and no DSMs (fixed-sized design space problem) and
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Table 4.17
Success rates of Earth-Saturn problem in zero-DSM model

Mechanism SR

Mechanism A 0
Mechanism B 0
Mechanism C 0
Mechanism D 0
Mechanism E 10
Mechanism F 20
Mechanism G 20
Mechanism H 50

Logic A 50
Logic B 0
Logic C 70
Alleles 30

their cost are compared. The flyby sequence of Earth-Venus-Venus-Earth-Jupiter-

Saturn (EVEEJS) has the lowest cost of 10.7960 km/s compared to other niched

solutions. Mechanisms E, F, G, H, logics A, and C, and alleles concept are able

to find the optimal flyby sequence of Earth-Venus-Venus-Earth-Jupiter-Saturn. The

success rate of all these mechanisms are presented in Table 4.17.

For the MGADSM phase, only the mechanisms that were able to find the optimal

sequence are investigated. The launch and arrival dates are set to a range between

the results of the zero-DSM phase. The launch date can be between 18th and 24th

of November 1997 and the arrival date is set to be between 21st and 27th of May

2007. The results are summarized in Table 4.18 for 30 identical simulations. The

population size is 600 and number of generations is 1000. The crossover fraction is

95% and the stall generation limit is 1000.
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Table 4.18
Results of Earth-Saturn problem in MGADSM model

Mechanism Best Average Variance Tc SR

Mechanism E 9.8693 10.4591 0.0823 40.3351 20
Mechanism F 9.8444 10.4924 0.0634 112.9543 13.33
Mechanism G 10.5544 10.5899 9.1224e− 4 42.2296 100
Mechanism H 9.8352 10.5233 0.0708 112.9883 13.33

Logic A 10.0789 10.5631 0.0160 112.2977 41.37
Logic C 10.2682 11.2405 1.2425 106.8431 66.67
Alleles 10.8188 11.6096 0.2092 180.2406 40

The optimized mission trajectory using mechanism H is is shown in Figure 4.13 and

the mission details are presented in Table 4.19.

Figure 4.13: MGADSM trajectory for Earth to Saturn mission using mech-
anism H.

4.4 Discussion

The Global Trajectory Optimization Problems (GTOP) database consists of a wide

variety of problems to asteroids and different planets, including Saturn and Mercury.
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Table 4.19
Solution of Earth to Saturn (EVVEJS) mission using mechanism H

Mission parameter MGADSM model

Departure Date 22−Nov − 1997, 15 : 40 : 15
Departure Impulse (km/s) 4.2582
DSM date 17− Apr − 1998, 10 : 20 : 24
DSM impulse (km/s) |[1.0944,−0.39532,−0.46847]| = 1.2543
Venus flyby date 21−May − 1998, 00 : 44 : 41
Pericenter altitude (km) 11653.4119
Venus flyby date 28− Jun− 1999, 02 : 52 : 55
Post-flyby impulse (km/s) 0.09639
Pericenter altitude (km) 340.9872
Earth flyby date 19− Aug − 1999, 21 : 12 : 37
Pericenter altitude (km) 2086.3034
Jupiter flyby date 04− Apr − 2001, 10 : 26 : 32
Pericenter altitude (km) 4791311.7441
Arrival date 25−May − 2007, 16 : 33 : 02
Arrival impulse (km/s) 4.2352
TOF (days) 179.3781, 403.089, 52.7637, 593.5513, 2242.2545
Mission duration (days) 3471.0367
Mission cost (km/s) 9.8441

The results presented in this chapter show that the proposed mechanisms are capable

of finding the optimal architecture of the mission (optimal flyby sequence as well as

optimal number of DSMs).

The three investigated problems or variations of them have been studied in different

researches. For the sake of comparison, only the methods that assume an impulsive

thrust are considered here. The Earth to Mars trajectory optimization problem has

been previously solved using extended primer vector theory [75]. In that solution, to

implement the primer vector method, the departure and arrival dates were assumed

fixed with a mission duration of 340 days. Moreover, it was assumed that the flyby
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around Venus is known to occur at 165 days from the departure. The results of that

work was a mission with one DSM in the first leg with a total cost of 10.786 km/s.

Gad et al.[3] implemented the initial HGGA concept (feasibility criteria) to optimize

the mission with unknown number of flybys and DSMs. The result was a mission

with one flyby around Venus and one DSM in the first leg of the mission with a

cost of 10.728 km/s. In another work using Dynamic-size multiple population GA,

the problem is solved with unknown number of flybys and DSMs and the solution

obtained is the EVM sequence with one DSM in each leg of the mission. The total cost

of this algorithm is 10.7 km/s. The structured-chromosome evolutionary algorithms

solution to this problem has a cost of 10.7788 km/s by optimizing the flyby sequence

and DSM structure [24]. All the mechanisms proposed in this dissertation are able to

find the EVM flyby sequence without any prior knowledge of the mission. The lowest

cost of this mission is obtained using alleles concept with one DSM in the first leg

and total cost of 10.7121 km/s with a success rate of 99%.

The success rate of all the proposed mechanisms in Earth to Mars problem (MGADSM

model) are shown is Figure4.14. As shown in this figure, the success rate curves of all

the mechanisms show a convergent behavior for 100 number of identical simulation

runs. Seven mechanisms including mechanisms A, E, F, G, H, logic A, and alleles

concept have success rates of higher than 90% with low objective function values (low

mission cost). The other five mechanisms have lower success rate while their cost

values are relatively higher.
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Figure 4.14: Success rate of the proposed mechanisms in the Earth to Mars
problem (MGADSM model).

For the Earth to Jupiter problem, Olympio and Marmorat used the primer vector

theory [75] and assumed a fixed flyby sequence as EVEJ. By setting the departure,

arrival, and flyby dates fixed, a mission with four DSMs (two DSM in the first two legs

and two DSM in the last leg) was obtained. The total cost of this mission was 10.267

km/s. The initial HGGA concept with feasibility criteria (original HGGA) was also

tested on this problem and found a solution of cost 10.178 km/s [3]. This algorithm

could find the optimal flyby sequence of EVEJ and one DSM in the second leg. The

Dynamic-size multiple population GA has also been tested on this problem and the

cost of its solution is 10.125 km/s [73] for EVEJ flyby sequence and one DSM in each

leg of the mission. By changing the mission launch and arrival windows to a range
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between 2018 and 2028, the structured-chromosome evolutionary algorithms solved

the VSDS version of this problem and found a cost of 8.9134 km/s for the MGADSM

phase with three flybys around Venus, Earth, and Earth (EVEEJ) and one DSM in the

last leg [24]. If the duration of the mission increases, the total cost would decrease.

This has been shown in the works done by Musegaas [76] and Myatt et. al. [58].

Musegaas solved the Earth to Jupiter problem as a tuning step for a mission to Saturn

(EVEJS). A fixed flyby sequence and large mission duration (almost 20 years and

eight months) are assumed in solving the problem. The spacecraft can have powered

flybys and is captured at Jupiter. No DSMs are assumed during the trajectory and by

optimizing only the event times, the cost found is 7.0144 km/s. Myatt et al. solved

the same problem assuming non-powered flybys and found a solution with a cost of

7.5483 km/s [58]. The total time of the mission in this dissertation is not allowed to

exceed five years and hence higher cost values are found. The minimum cost found

is 10.1226 km/s using Mechanism H which is slightly lower than the solutions found

by previous researches with the same mission times ranges. This solution has the

flyby sequence of EVEJ with one DSM in the first leg. Other references have also

solved this problem with different launch windows. For example, for a launch window

between 2020 and 2030, Reference [77] has reported a minimum cost of 9.558 km/s

for Earth-Earth-Jupiter flyby sequence and a minimum cost of 7.524 km/s for Earth-

Earth-Earth-Jupiter flyby sequence. However, the mission topology (flyby sequence)

is not optimized in their work. All the proposed mechanisms in the previous section
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found the optimal flyby sequence of EVEJ. Mechanism E has the lowest cost of 10.1180

with a success rate of 94% in the MGADSM phase. Mechanism H has the second

best performance. Note that the lowest cost of zero-DSM phase is for mechanism

H, while mechanism E has a higher cost and lower success rate in zero-DSM phase

compared to mechanism H. In the MGADSM phase, five mechanisms have a success

rate of higher than 90% while resulting in a cost value of around the best solution

found (0.95% maximum difference). Figure 4.15 shows the success rates of all the

mechanisms.

Figure 4.15: Success rate of the proposed mechanisms in the Earth to
Jupiter problem (MGADSM model).
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For the mission to Saturn, initial investigations show that the cost function is sen-

sitive to the events dates (dates of performing DSMs and flybys). As an example,

consider the variation of the cost function with the first flyby pericenter altitude hp.

Figure 4.16a shows the variation of the cost function with the pericenter altitude

when all other variables are fixed at their optimal values; clearly the optimal solution

corresponds to the red star in this figure. Figure 4.16b on the other hand shows the

variation of the cost function with the pericenter altitude when the departure date is

varied to a value different from its optimal value, while still keeping all other variables

at their optimal values. Two observations can be noted from Figure 4.16. First, the

impact of changing the departure date is significant on the cost; this can be depicted

by comparing the cost values between the two figures (the vertical axis) with 50 days

difference in their departure dates. Second, when the departure date is not optimal

(Figure 4.16b) the line relating the cost to hp is misleading to the optimizer. When

the departure date is optimal, the cost decreases with decreasing hp, while that is

not the case when the departure date is not optimized. Hence, when optimizing the

MGADSM phase, a small range is assumed around the zero-DSM variables.

The mission to Saturn has been investigated in many papers in different formats.

EVEJS, Casini 1, Cassini 2 (easy and complete versions) are some of the variations

on the mission that have been investigated. For the Cassini 2 (easy version), many al-

gorithms have been tested on missions with fixed flyby sequence and DSM structures.

Evolutionary algorithms and pruning techniques are applied in a mission with wide
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ranges of departure and arrival dates (between 1996 to 2029) and fixed flyby sequence

and DSM structure, resulting in a cost of 4.944 km/s 4. The minimum cost reported

in the literature for the VSDS version of the problem (unknown flyby sequence and

DSM structure) is 8.385 km/s [3].

Schlueter developed a nonlinear mixed integer based optimization algorithm based

on Ant Colony Optimization and the Oracle Penalty method. By assuming a known

fixed flyby sequence, this algorithm could find a cost of 8.282 km/s [78, 79]. This

problem is also solved using the parallel asynchronous generalized island model opti-

mization (PaGMO) software using differential evolution and genetic algorithms [76].

PaGMO is an optimization software in which the user can define the problem and the

optimization algorithm. The lowest cost found in this reference is 8.2379 km/s given

4Advances in Global Optimisation for Interplanetary Trajectory Design,
https://www.esa.int/gsp/ACT/mad/projects/advancesingo.html

(a) All variables optimal (b) All variables optimal except td

Figure 4.16: Cost value vs. pericenter altitude of first flyby for Cassini 2
mission
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a known fixed flyby sequence and one DSM. Other references have reported close cost

values for this problem with a known fixed flyby sequence [80, 81, 82]. A list of these

solutions can be found in the ESA/ACT website.

In this study, seven mechanisms were able to find the optimal flyby sequence. Mech-

anism H found a cost of 9.8352 km/s for this mission, with one DSM in the first leg.

Despite that this cost is higher than the best known solution, the main advantage of

the proposed method is its capability of searching for the optimal flyby and DSM ar-

chitecture. Moreover, if by pruning the departure and arrival dates, lower cost values

can be found. This has been shown in Reference [5] where by pruning the dates to a

5-day range, mechanism A results in a cost of 8.4457 km/s.

Comparing the results of different mechanism in each problem, we can see that mech-

anisms B, C, D, logic B, and logic C do not perform as well as other mechanisms. In

these mechanisms, the number of active or hidden genes are a main factor in determin-

ing the status of the genes in the next generation. For example, in the mechanism C

the children tags tend to converge to the tags of the fitter parent with higher number

of hidden genes. In case of logic B and logic C, the children genes converge toward the

solutions with more hidden (logic B) or more active genes (logic C). Therefore, the

number of the hidden genes is determining the performance of the algorithms. How-

ever, different problems may have different number of hidden genes. An algorithm

that tends to converge to solutions with higher number of hidden genes (for example
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mechanism C and logic B), may not perform well when the number of hidden genes

in the optimal solution is low or zero. On the other hand, some algorithms that favor

higher number of hidden genes (for example mechanism B, logic C) do not perform

well when the optimal solution has high number of hidden genes. In some sense, the

tags’ evolution in these algorithms ignores (to some level) the specifications of the

problem being solved. The performance of each algorithm depends on the problem

being solve and in general, we can not claim that an algorithm performs well in all

the problems. However, in mechanisms A, E, F, G, H, logic A, and alleles concept,

stochastic processes (crossover and mutation) have more effects on the evolution of

the tags rather than the number of genes and they show better relative performance

in all the tested problems. In logic A, the number of hidden tags are distributed in

both children by assuming both Hidden-OR and Active-OR concepts.

Table 4.20 shows a performance comparisons of all the mechanisms in each problem.

The check mark (X) shows the mechanism that found the best objective value for each

problem. P1 to P8 represent problems Egg Holder, Schwefel 2.26, Styblinski-Tang,

Earth to Mars zero-DSM, Earth to Mars MGADSM, Earth to Jupiter zero-DSM,

Earth to Jupiter MGADSM, and Cassini 2 MGADSM, respectively. Mechanisms H

has the lowest objective value in four problems and alleles concept has the lowest

objective value in three problems. However, the time consumption and success rate

should be also considered when choosing suitable algorithm for a problem.
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Table 4.20
Comparison of Mechanisms in test cases.

Mechanism P1 P2 P3 P4 P5 P6 P7 P8

Mech.A
Mech.B
Mech.C
Mech.D
Mech.E X
Mech.F
Mech.G X X
Mech.H X X X X
Logic A
Logic B
Logic C X
Alleles X X X

4.5 Conclusion

The performance of the mechanisms were tested in this chapter. The results show that

the mechanisms are capable of autonomously optimizing the topology of the design

space. As seen in the examples of space trajectory optimization, all the mechanisms

found the (sub)optimal flyby sequence and DSMs’ structures. The implementation

of the new hidden genes assignment mechanisms to the space trajectory optimization

problem and the mathematical optimization problems demonstrated their capabil-

ity in searching for the optimal architecture, in addition to improving the solution

compared to the original hidden genes genetic algorithm approach that does not im-

plement the tags concept. It was demonstrated in this chapter that, for the trajectory

optimization problems, it is possible to autonomously compute the optimal number

of flybys, the planets to flyby, and the optimal number of deep space maneuvers, in
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addition to the rest of the design variables using the proposed algorithms.

Statistical analysis conducted in this chapter showed that, in terms of optimality of

the solution, Mechanism A, F, G, and H performed better than the other algorithms

in the investigated problems. However, there is no guarantee that a mechanism

works well for all the problems. Based on the problem specifications and the number

of optimal hidden genes (variables), the performance of the mechanisms may vary.

Even in a specific space trajectory optimization problem, the performance of the

mechanisms may vary in the zero-DSM and MGADSM phases of the problem (as

seen in the Earth to Jupiter problem). Therefore, an initial investigation is suggested

for utilizing a specific mechanism in any application.
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Chapter 5

Convergence Analysis

5.1 Introduction

In the evolutionary processes, chromosomes (solutions) evolve over subsequent iter-

ations generating new solutions 1. In HGGAs, the genes evolve in the same way

as that in the GAs, using selection, crossover, and mutation operations. The tags

have different mechanisms for evolution that were introduced in Section 3.2. In one

mechanism, the tags evolve through stochastic operations, while in another one the

tags evolve through logical operations. The performance of these mechanisms was

tested on different VSDS problems, including space trajectory optimization problems

in Sections 4.2 and 4.3. Although the HGGAs showed promising performance in the

1The material of this chapter are copied in part from Reference [8]
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covered problems, there is no analytical proof that HGGAs with the tags evolution

mechanisms are convergent. In [2], a simple implementation of a HGGA is presented

where no tags are used for hiding the genes. Rather, a simple criterion is used to

determine which genes are hidden in a chromosome depending on the feasibility of

the solutions. Then, Holland’s schema theorem [83] is implemented to prove the con-

vergence of that simple HGGA. Some previous works on GA, however, argue that the

detailed behavior of the GA can not be explained by the Schema Theorem [84, 85].

Hence, with the introduction of the new evolution mechanisms, a more comprehensive

investigation of the HGGAs properties and convergence characteristics is needed.

This chapter presents a convergence analysis that proves HGGAs generate a sequence

of solutions with the limit value of the global optima. For an analytical proof, the

homogeneous finite Markov models of different mechanisms proposed in Section 3.2

are derived, and the convergence of the HGGAs with tag evolution mechanisms are

investigated. The optimization problem is considered a maximization problem with

strictly positive values for the objective function. In a multi-gravity-assist space

trajectory optimization problem, the objective function can be defined as 1/∆Vtot > 0,

where ∆Vtot is proportionate to the fuel consumption. Hence, the problem can be

treated as a maximization problem.
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5.2 Markov Chain Model of Genetic Algorithms

The stochastic dependency between successive populations is created by applying

selection, mutation, and crossover operators to the current population to produce

the next population. Hence, the GA is a stochastic process in which the state of

each population only depend on the state of the immediate predecessor population.

Therefore, the GA can be modeled as a Markov process [86]. Several studies have

investigated the convergence behavior of the GA explicitly using the Markov chain

analysis [86, 87, 88, 89, 90]. The minimum conditions for convergence of ergodic

GAs in the realm of Markov chain model can be found in details in [86, 90, 91].

Here, these conditions are briefly reviewed and utilized to derive the convergence

conditions for the HGGAs. The GA is a Markov process and its transition matrix can

be calculated. It will be shown that the GA transition matrix is reducible. Hence, the

ergodic theorem for reducible transition matrix can be used to prove that ergodicity

is a sufficient condition for convergence. It is assumed that this analysis is in the

domain of binary genetic algorithms with bits as variables. Moreover the canonical

genetic algorithms (CGAs) are considered. CGAs were proposed by Holland in 1965

and refer to GAs in which the operations of selection, crossover, and mutations are

used to produce next generations. The materials of this section are a nearly verbatim

adaptation of works done by Rudolph [90] and Davis [86]. We start with a review for

few basic definitions:
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† Column-allowable matrix: a square matrix that has at least one positive entry

in each column.

† Stochastic matrix: a non-negative matrix A = (aij)i,j=1,...,n is said to be stochas-

tic if
∑

j=1,...,n aij = 1, for each i = 1, ..., n.

† Arithmetic crossover: a crossover that linearly combines two parents to get one

child. The child is the weighted average of the parents as follows:

C = λPt1 + (1− λ)Pt2 (5.1)

where C is the child, Pt1 and Pt2 are the parents, and λ is a random number in

(0, 0.5).

† Reducible matrix: if matrix A = (aij)i,j=1,...,n is non-negative and can be

brought into the form

D 0

R T

 by applying the same permutations to rows

and columns, it is called a reducible matrix. Note that D and T should be

square matrices.

The finite state space S of a Markov chain has the cardinality of |S| = n, where the

states are numbered from 1 to n (n is the population size). Let l be the chromosome

length and M = 2l. m = 2nl is the cardinality of state space. Assume that the simple

GA consists of three standard operations: selection (S), mutation (M), and crossover

(C). To transform any state i to state j, the transition product matrix CMS is used
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and the convergence of the GA depends on this transition matrix [91]. The transition

matrix of a finite Markov chain consists of the transition probabilities from state i

to j, i.e. P = (pij). For each entry,
∑|S|

j=1(pij) = 1 for all i ∈ S. The GA transition

product matrix (CMS) is a Markov probability matrix (P).

First few needed theorems and lemmata are listed here:

Lemma 1: Let C, M and S be stochastic matrices, where M is positive and S is

column-allowable. Then the product CMS is positive [90].

Theorem 1: Let P be a primitive stochastic matrix. Then Pk converges as k →∞ to

a positive stable stochastic matrix P∞ = 1′p∞ , where p∞ = p0. limk→∞Pk = p0P∞

has nonzero entries and is unique regardless of the initial distribution [90].

Theorem 2: Let P be a reducible stochastic matrix defined as:

D 0

R T

 where D is

an m×m primitive stochastic matrix and R,T 6= 0. Then

P∞ = lim
k→∞

Pk = lim
k→∞

 Dk 0∑k−1
i=0 T

iRDk−i T k

 =

D∞ 0

R∞ 0

 (5.2)

is a stable stochastic matrix with P∞ = 1′p∞, where p∞ = p0P
∞ is unique regardless

of the initial distribution, and p∞ satisfies: p∞i > 0 for 1 ≤ i ≤ m and p∞i = 0 for

m < i ≤ n [90].
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Theorem 3: The transition matrix of the GA with mutation probability pm ∈ (0, 1),

crossover probability pc ∈ [0, 1] and proportional selection is primitive [90].

Corollary 1: The CGA with parameter ranges as in Theorem 1 is an ergodic Markov

chain, i.e., there exists a unique limit distribution for the states of the chain with

nonzero probability to be in any state at any time regardless of the initial distribution.

This is an immediate consequence of Theorems 1 and 2 [90].

Theorem 4: The CGA with parameter ranges as in Theorem 3 does not converge to

the global optimum [90].

Theorem 5: In an ergodic Markov chain the expected transition time between initial

state i and any other state j is finite, regardless of the states i and j [90].

Theorem 6: The canonical GA as in Theorem 3 maintaining the best solution found

over time after selection converges to the global optimum [90].

To maintain the best solution over time, the population is enlarged by adding the

super individual to it. The term super individual is used for the solution that does

not take part in the evolutionary process. Hence, the cardinality of the state space

grows from 2nl to 2(n+1)l. The super individual is placed at the leftmost position in

the (n + 1)-tuple and can be accessible by π0(i) from a population at state i, where

π0(i) is a function that calls the super individual from population i.
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The super individual does not take part in the evolutionary process, therefore, the

extended transition matrices for crossover C+, mutation M+, and selection S+ can

be written as [90]:

C+ =



C

C

...

C


,M+ =



M

M

...

M


,S+ =



S

S

...

S


(5.3)

Then we can write:

C+M+S+ =



CMS

CMS

...

CMS


(5.4)

where C+, M+, and S+ are block diagonal matrices and each of the 2l square matrices

C, M and S are of size 2nl × 2nl, and CMS > 0.

The upgrade matrix U is a matrix that upgrades the solutions in the population
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based on their objective function value (fitness). An intermediate state containing

a solution with an objective value better than the super individual will upgrade to

a state where the super individual equals the better solution. Let b be the best

individual of the population at state i, excluding the super individual. By definition,

uij = 1 if f(π0(i)) < f(b), otherwise uii = 1. Therefore, there is one entry in each row

and for every state j with f(π0(j)) < max[f(πk(j))|k = 1 . . . n], the elements will be

uij = 0 for all is. Hence, the structure of the upgrade matrix can be written as [90]:

U =



U11

U21 U22

... ... ...

U2l,1 U2l,2 ... U2l,2l


(5.5)

where the sub-matrices Uab are of size 2nl × 2nl. If the optimization problem has

only one global solution, then only U11 is a unit matrix, and all other matrices Uaa

with a ≥ 2 are diagonal matrices with some zero diagonal elements, and some unit

diagonal elements. Recall that in this Markov model for GA, P = CMS and hence

the transition matrix for the GA becomes:
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P+ =



P

P

...

P





U11

U21 U22

... ... ...

U2l,1 U2l,2 ... U2l,2l


=



PU11

PU21 PU22

... ... ...

PU2l,1 PU2l,2 ... PU2l,2l


(5.6)

Note that PU11 = P > 0. The sub-matrices PUa1, where a ≥ 2, are gathered in a

rectangular matrix R 6= 0. Note that The PU1j = 0 where ∀j > 1. Then comparing

Equation (5.6) to Equation (5.2), we can see that limk→∞P+k is unique regardless

of the initial distribution, concluding in the convergence of the canonical GA.

Note that to make the extended transition matrix in the form of Equation (5.6), we

assumed that C, M, and S are stochastic, positive, and column-allowable. Therefore,

the extended transition matrices C+, M+, and S+ are stochastic and positive. The

above proof also shows that the P+ in Equation (5.6) is a reducible matrix. Since

PU11 > 0 (PU11 corresponding to the D matrix in Theorem 2), then using Theorem 2

we can show that the GA converges to the optimal solution in the limit. In section 5.3,

these matrices are explicitly derived and it is shown that in the HGGA, the C, M,

and S are stochastic, positive, and column-allowable.
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5.3 Markov Chain Model of Hidden Genes Ge-

netic Algorithm

The HGGAs using any of the stochastic or logical mechanisms, defined in Chap-

ter 3, are here proved to be convergent. The approach to prove that these HGGA

mechanisms are convergent, in general, is as follows:

First we show that the HGGA can be modeled as a Markov process. Then it is

shown that the selection, mutation, and crossover matrices have the properties

described in Lemma 1. Therefore, the extended transition matrix of HGGA is

reducible and can be written in the form of Equation (5.6). Finally, Theorem

2 can be used to prove the convergence.

Similar to the canonical GA, any future state of the HGGA population is only depen-

dent on the current population and is independent from the previous history. Hence,

if the transition product matrix CMS of a HGGA mechanism is stochastic, then the

HGGA with that mechanism can be considered as a Markov processes.

To prove that the CMS matrix is stochastic and primitive, the intermediate matrices

of C, M and S need to be derived. They are derived in this section. It is assumed

that the single-point crossover is selected for the genes, unless otherwise stated. The
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number of genes is L and the number of the tags is Lt. H(i, j) is the Hamming distance

between the genes of i and j (number of bits that must be altered by mutation to

transform the genes of j into the genes of i) and is 0 ≤ H(i, j) ≤ L. Ht(i, j) is the

Hamming distance between the tags of i and j (number of bits that must be altered

by mutation to transform the tags of j into the tags of i) and is 0 ≤ Ht(i, j) ≤ Lt. In

all the mechanisms, the genes go thorough selection, mutation, and crossover similar

to the standard genetic algorithm and only the tags evolution is different.

The transition probability matrices determine the probability of transferring a solu-

tion i to solution j; that is to change the L genes of solution i to be the same as the

L genes of solution j, and change the Lt tags of solution i to be the same as the Lt

tags of solution j.

5.3.1 Selection Matrix S

The selection operator for the HGGA is not different from that of a canonical GA

one. For example, for a fitness proportionate selection, the probability that a solution

i is selected only depends on the objective value, which in turn is a function of the

values of the genes as well as the values of the tags. Hence, the selection matrix is

computed for the HGGA in a similar way to that of the GA as follows.

The probability of selecting a solution i ∈ S, from a population described by the
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probability distribution vector n̄ ∈ S ′ is [86]:

P1(i|n̄) =
n(i).R(i)∑

j∈S n(j).R(j)
(5.7)

where n̄ = (n(0), n(1), ..., n(2l − 1)) is the current generation and n(i) represents the

number of occurrences of solution i, and R(i) is the objective value for solution i

and is strictly positive. Therefore, given the present generation is n̄, the conditional

probability of the successor generation m̄ is a multinomial distribution [86]:

P1(m̄|n̄) =

(
M

m̄

)∏
i∈S

P1(i|n̄)m(i) (5.8)

where, (
M

m̄

)
=

M !∏
i∈S (m(i)!)

(5.9)

The transition probability matrix of the Markov chain where only the selection op-

eration is applied is P̄ = [P1(m̄|n̄)]. This matrix is positive, stochastic, and column-

allowable. Hence, the transition matrix due to only selection operation in HGGA is

stochastic, positive, and column-allowable.
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5.3.2 Mutation M and Crossover C Matrices

In this section, the explicit formulation of mutation and crossover matrices are derived

and it is shown that for all of the mechanisms, the mutation matrix is stochastic and

positive and the crossover matrix is stochastic. The general scheme for deriving

these matrices is first presented; then followed by its application to each mechanism.

Assume that the mutation probability has a nonzero value, i.e., 0 < pm(k) ≤ 1/2.

In the mutation operation in the CGA, the probability of transforming j into i can

be calculated as p
H(i,j)
m (1 − pm)L−H(i,j). Thus the transition probability, due to both

selection and mutation operations, is [86]:

P2(i|n̄) =
∑
j∈S

pH(i,j)
m (1−pm)L−H(i,j)P1(j|n̄) =

1

(1 + α)L

∑
j∈S

αH(i,j)P1(j|n̄), n̄ ∈ S ′, i ∈ S

(5.10)

where α = pm
1−pm .

∴ P2(i|n̄) =

∑
j∈S α

H(i,j)(n(j).R(j))

(1 + α)L.
∑

k∈S n(k).R(k)
(5.11)

The multinomial distribution for P2(m̄|n̄) can be defined as [86]:

P2(m̄|n̄) =

(
M

m̄

)∏
i∈S

P2(i|n̄)m(i) (5.12)

Then the transition matrix of selection and mutation would be P̄ = [P2(m̄|n̄)]. Note

that α is positive for 0 < pm ≤ 1/2. As can be seen from Equation (5.11), since α
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is positive, R is positive, and n ≥ 0, then the P̄ matrix is primitive.

Regarding the crossover operation, assume that a single-point crossover is applied.

The new function I(i, j, k, s) is defined where i,j, k ∈ S, and s ∈ [1, ..., L − 1] is

a bit string. The selected parents are i, j and k is a potential descendant string

after a crossover at random location s which is assumed uniformly distributed. If

k is produced by crossing i and j at the location s, then I(i, j, k, s) = 1, otherwise

I(i, j, k, s) = 0. The conditional probability of producing k via selection and crossover

operations can be derived as [86]:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄).P1(j|n̄).

pc
L− 1

∑
s

I(i, j, k, s)

)
+ (1− pc).P1(k|n̄) (5.13)

Therefore the conditional probability of producing k via selection, mutation, and

crossover operations is [86]:

P3(i|n̄) =
1

(1 + α)L

∑
j∈S

αH(i,j)P ′2(j|n̄) (5.14)

Then:

P3(m̄|n̄) =

(
M

m̄

)
.
∏
i∈S

P3(i|n̄)m(i) (5.15)

By inspection of Equation (5.13) and Equation (5.14), it can be seen that this

three-operator Markov chain is primitive. Then, based on the results of section 5.2

this GA model, maintaining the best solution found over time, converges to the global
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optimum.

Here, the above results are applied to each of the HGGA mechanisms.

† Mechanism A: In this mechanism, the tags can crossover independently from

the genes and there is is a 10% mutation probability in the tags. This implies

that the intermediate transition matrix for mutation (M) consists of two parts,

where the Hamming distance of H(i, j) is the number of bits in the genes only

that need to be altered by mutation, and Ht(i, j) is the number of bits in the

tags only that need to be altered by mutation. Hence the probability can be

described as follows:

P2(i|n̄) =
∑
j∈S

pH(i,j)
m (1− pm)L−H(i,j)p

Ht(i,j)
mt (1− pmt)

Lt−Ht(i,j)P1(j|n̄) (5.16)

Note that the probability that solution j is transfered to solution i is p
H(i,j)
m (1−

pm)L−H(i,j)(0.1)Ht(i,j)(0.9)Lt−Ht(i,j) > 0 for all i, j ∈ S when 0 < Pm < 0.5. Thus,

M is positive. For the crossover operation:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄)P1(j|n̄)

pc
L− 1

1

Lt − 1

∑
s

I ′(i, j, k, s, st)

)

+(1− pc)P1(k|n̄)

(5.17)

The I ′(i, j, k, s, st) takes values {0, 1}, where 1 shows that child k (genes and
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tags) is produced by the crossover of parents i and j at site s in the genes and

at site st in the tags. Therefore, the conditional probability of constructing a

bit string k via selection, mutation, and crossover operations in HGGA is:

P3(i|n̄) =
1

(1 + α)L+Lt

∑
j∈S

αH(i,j)P ′2(j|n̄) (5.18)

Then the transition matrix for Mechanism A can be computed by substituting

Equation (5.18) into Equation (5.15). Note that L is replaced by L + Lt to

account for the additional tags. By inspection of Equation (5.18), it can be

concluded that this transition matrix of HGGA with mechanism A is stochastic

and positive.

† Mechanism B: In this mechanism, the tags are considered as design variables

in the crossover operation. The arithmetic crossover is used in this mechanism,

where the number of variables in this case is L+Lt. Hence, it can be concluded

that the crossover transition matrix P ′2(k|n̄) (defined in Equation (5.13)) for

mechanism B is stochastic. The mutation operation in mechanism B is similar

to that of mechanism A, and hence the mutation transition matrix P2(i|n̄) can

be computed using Equation (5.25) for mechanism B, which is positive when

0 < Pm < 0.5. Finally, the P2(i|n̄) and P ′2(k|n̄) matrices are used to compute

P3(m̄|n̄) using Equations (5.14) and (5.15). Then the overall transition matrix

P3(m̄|n̄) is primitive for mechanism B.
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† Mechanism C: here an arithmetic crossover operation is used for the genes, while

the tags are copied from one of the parents as described in Section 3.2. The

selection and crossover transition probability is defined as follows:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

P1(i|n̄)P1(j|n̄)pcFA(i, j, k, λ)FT1(i, j, k, fm1(i), fm1(j))

+(1− pc)P1(k|n̄)

(5.19)

where FA is 1 if the arithmetic crossover of genes in parents i and j, along with

the weight coefficient λ result in the genes of solution k; otherwise FA = 0.

Also, FT1 is 1 if the tags of solution k are similar to the tags of the parent that

has better fm1 ; otherwise FT1 = 0. For example, if parents i and j are selected

and their modified cost values are fm1(i) and fm1(j) (defined in Section 3.2,

Mechanism C), then if fm1(i) is better than fm1(j) and the tags of k are similar

to the tags of i, then FT1 = 1; otherwise FT1 = 0. Hence, the resulting crossover

probability matrix is stochastic. The Mutation operation is similar to that of

mechanisms A and B, and therefore, it is stochastic and positive.

† Mechanism D: similar to mechanism C, the crossover probability can be written
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as:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

P1(i|n̄)P1(j|n̄)pcFA(i, j, k, λ)FT2(i, j, k, fm2(i), fm2(j))

+(1− pc)P1(k|n̄)

(5.20)

where FA is 1 if the arithmetic crossover of genes in parents i and j along with

weight the coefficient λ result in the genes of solution k; otherwise FA = 0.

Also, FT2 is 1 if the tags of solution k are similar to the tags of the parent that

has better fm2 ; otherwise FT2 = 0. Hence, the resulting crossover probability

matrix is stochastic. The Mutation operation is similar to that of mechanisms

A and B, and therefore, it is stochastic and positive.

† Mechanism E: tags evolve through a mutation operation with a certain mutation

probability. Let pmt be the mutation probability of the tags, then:

P2(i|n̄) =
∑
j∈S

pH(i,j)
m (1− pm)L−H(i,j)p

Ht(i,j)
mt (1− pmt)

Lt−Ht(i,j)P1(j|n̄) (5.21)

which is stochastic. Also since pm and pmt are positive and less than 0.5, then

P2(i|n̄) is positive. The crossover is only applied to the genes in this mechanism,
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hence:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄).P1(j|n̄).

pc
L− 1

∑
s

I(i, j, k, s)

)
+ (1− pc).P1(k|n̄)

(5.22)

Similar to the CGA, the matrix P ′2(k|n̄) above is stochastic.

† Mechanism F: In this mechanism, the tags are considered as discrete variables

similar to the design variables in the chromosome. The crossover and mutation

operations are performed on all the variables (genes and tags). The mutation

transition probability is then as follows:

P2(i|n̄) =
∑
j∈S

pH(i,j)+Ht(i,j)
m (1− pm)L+Lt−H(i,j)−Ht(i,j)P1(j|n̄) (5.23)

which results in a positive and stochastic mutation matrix. Also the stochastic

crossover transition probability can be calculated as follows:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄).P1(j|n̄).

pc
L+ Lt − 1

∑
s

I(i, j, k, s)

)

+(1− pc).P1(k|n̄)

(5.24)

† Mechanism G: In this mechanism, the tags are considered as discrete variables

similar to the design variables in the chromosome; yet only the crossover opera-

tion is applied to the tags. Since there is no mutation in the tags, the mutation

99



transition probability is as follows:

P2(i|n̄) =
∑
j∈S

pH(i,j)
m (1− pm)L+Lt−H(i,j)P1(j|n̄) (5.25)

which results in a positive and stochastic mutation matrix. The stochastic

crossover probability matrix is similar to Equation (5.24).

† Mechanism H: In this mechanism, the tags are considered as discrete variables

similar to the design variables in the chromosome; yet only the mutation oper-

ation is applied to the tags. Hence, the mutation matrix is similar to Equa-

tion (5.23) which is stochastic and positive. The crossover probability matrix

is similar to Equation (5.22); which is stochastic.

† Alleles: In this concept, the HGGA is developed by simulating alleles and con-

sidering two tags for each gene, one recessive and one dominant. The alleles go

through mutation and crossover.

Let the length of the alleles be 2Lt, and let Ha be the Hamming distance between

the tags of the i and j alleles (number of bits that must be altered by mutation

to transform the tags of j into the tags of i). The maximum of Ha is 2Lt. Since

all the bits go through mutation with probability pm, the mutation conditional

probability can be calculated as:

P2(i|n̄) =
∑
j∈S

pH(i,j)+Ha(i,j)
m (1− pm)L+2Lt−H(i,j)−Ha(i,j)P1(j|n̄) (5.26)
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which results in a stochastic and positive mutation matrix. There are two

crossover points, one in the genes and one in the tags such that st ∈ [1, ..., Lt−1].

The crossover points in tags (st) are similar in the dominant and recessive alleles.

Hence:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

(
P1(i|n̄).P1(j|n̄).

pc
L− 1

.
1

Lt − 1

∑
s

I ′(i, j, k, s, st)

)

+(1− pc).P1(k|n̄)

(5.27)

where I ′(i, j, k, s, st) is 1 if the crossover of i and j at site s in genes and site

st in tags produce k, otherwise I ′(i, j, k, s, st) = 0. The crossover matrix in

Equation (5.27) is stochastic.

† Logic A: the member of the current generation (n̄) is split into two groups

of equal size. For the first group, the Hidden-Or logic is applied on the tags

and for the other half, the Active-Or logic is used in the tags. There is no

mutation in the tags; hence the mutation probability matrix is defined as in

Equation (5.25). Let FHO and FAO be functions that can have values of 0

or 1. If the Hidden-Or operator on the tags of i and j results in the tags of

k, then FHO(i, j, k) = 1, otherwise FHO(i, j, k) = 0. If the Active-Or operator

on the tags of i and j results in the tags of k, then FAO(i, j, k) = 1, otherwise

FAO(i, j, k) = 0. For the first half of the children the crossover probability
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matrix is then:

P ′2(k|n̄1) =
∑
i∈S

∑
j∈S

P1(i|n̄1).P1(j|n̄1).FHO(i, j, k).
pc

L− 1

∑
s

I(i, j, k, s)

+(1− pc).P1(k|n̄1)

(5.28)

and for the second half of the children:

P ′′2 (k|n̄2) =
∑
i∈S

∑
j∈S

P1(i|n̄2).P1(j|n̄2).FAO(i, j, k).
pc

L− 1

∑
s

I(i, j, k, s)

+(1− pc).P1(k|n̄2)

(5.29)

Where n̄1 represents one half of the GA search space, and n̄2 represents the

other half of the GA search space. The conditional probability of producing k

with i and j via selection and crossover is P ′2(k|n̄1)×P ′′2 (k|n̄2), which results in

a stochastic matrix.

† Logic B: The Hidden-OR logic is used for both children. Even though the

tags will be the same in both children, the two children represent two different

solutions because they have different gene values. There is no mutation for the

tags, hence, the mutation probability matrix is defined as in Equation (5.25).

The crossover probability matrix is:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

P1(i|n̄).P1(j|n̄).FHO(i, j, k).
pc

L− 1

∑
s

I(i, j, k, s)

+(1− pc).P1(k|n̄)

(5.30)
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Both mutation and crossover matrices are stochastic; in addition the mutation

conditional probability is positive.

† Logic C: The Active-OR logic is used for both children. Even though the tags

will be the same in both children, the two children represent two different solu-

tions because they have different gene values. The mutation probability matrix

is defined as in Equation (5.25). The crossover probability matrix is:

P ′2(k|n̄) =
∑
i∈S

∑
j∈S

P1(i|n̄).P1(j|n̄).FAO(i, j, k).
pc

L− 1

∑
s

I(i, j, k, s)

+(1− pc).P1(k|n̄)

(5.31)

Both mutation and crossover matrices are stochastic; in addition the mutation

conditional probability is positive.

By calculating the C, M, and S matrices of different mechanisms, we can now continue

on the convergence analysis. As shown, the mutation matrices in all the mechanisms

are stochastic and positive. The selection matrix is also stochastic and positive; and

hence it is column-allowable. Also the crossover matrices are stochastic. Hence, the

CMS matrix is positive (Lemma 1). Since the HGGA maintains the best solution

found over time after selection, Theorem 6 can be used to prove that all mechanisms

of HGGA presented above are convergent.
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5.4 Numerical Analysis

The results of the previous section show that the HGGAs using any of the proposed

tags evolution mechanisms are convergent. Here, the numerical convergence is in-

vestigated on interplanetary trajectory optimization problems. In Chapter 4, it was

demonstrated that HGGAs can search for optimal solution architectures, and find the

optimal topology for bench mark interplanetary trajectory optimization problems.

As example, the convergence of logic A in the zero-DSM phase of Earth to Mars

problem is shown in Figure 5.1. The simulation are repeated 100 times and the

cost value in each generation of each simulation is calculated in each generation. To

have a clear figure, Only 5 simulation are shown (chosen randomly). As shown, the

algorithm is convergent in this problem.

The convergence of mechanism D in the MGADSM phase of Earth to Jupiter problem

is shown in Figure 5.2. The simulations are repeated 100 times and again, this

algorithm show a convergent behavior (only 5 simulations are shown).

Other mechanisms also show convergent behavior in all the tested problems; including

mathematical and space trajectory optimization problems (zero-DSM and MGADSM

phases).
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Figure 5.1: Numerical Convergence of 5 simulations in Earth to Mars
problem (zero-DSM model) using logic A.

Figure 5.2: Numerical Convergence of 5 simulations in Earth to Jupiter
problem (MGADSM model) using mechanism D.
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Chapter 6

Conclusion

6.1 Dissertation Summary and Conclusion

Optimization of problems with variable number of design variables can be a compli-

cated task especially when the number of design variables increase. In this dissertation

novel optimization algorithms are proposed for these types of problems. The biologi-

cally inspired HGGAs are developed to enable the creation of feasible solutions with

variable length of variables. HGGAs are based on GAs in which the design variables

are modeled as genes. In the first chapter, the required background on optimization

algorithms and VSDS problems are presented and in the second chapter, the concept

of GAs and HGGAs are explained. The initial method of implementing HGGAs,
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which was proposed in literature, is presented and its limitations are presented. In

HGGAs, the genes can be hidden or active. Hidden genes do not affect the objective

function of the optimization but take part in the evolutionary process to produce the

next generation. By hiding some genes in each chromosome, different solutions with

different number of variables can be obtained. In the initial method of implement-

ing HGGAs, genes are hidden one by one from one side until a feasible solution is

achieved. New concepts for HGGAs are developed in chapter three. In these con-

cepts, binary tags are assigned to the gens that can determine if the corresponding

gene should be hidden or not. Different evolutionary mechanisms are developed for

these tags. These evolutionary mechanisms autonomously determine the status of

the genes and can be implemented to any problem easily.

The proposed algorithms are tested on three mathematical problems and their per-

formance is evaluated compared to initial method of implementing HGGAs and stan-

dard GAs. As an example to show the efficiency of the algorithms on more complex

problems, three interplanetary trajectory optimization problems are also tested. The

results are compared to other heuristic algorithms and the initial method of imple-

menting HGGAs. The results show that the proposed HGGAs can be successfully

utilized to search for optimal solutions as well as the optimal architecture of the

solutions. In some cases, the algorithms perform better than other excising methods.

Moreover, the convergence of these algorithms are mathematically and numerically
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analyzed. Markov chain matrices are derived for all the proposed mechanisms. Their

ergodicity and elitism conditions are investigated and it is proven that all the pro-

posed mechanisms are convergent. Numerical analysis are also performed on the

investigated mathematical and interplanetary trajectory problems and their conver-

gence are graphically presented.

The proposed algorithms use general concepts and can be used for any VSDS op-

timization problem including constrained or non-constrained, discontinuous, non-

differentiable, stochastic, or highly nonlinear problems. Some algorithms including

mechanism E, F, and H showed better performance in the investigated problems.

However, the results of the tested problems can not be generalized to other prob-

lems and to select the best mechanism for any problem, an initial investigation is

suggested.

For future studies, the convergence rate of the proposed mechanisms can be ana-

lytically investigated. In any problem, it is important and beneficial to know how

fast the algorithm converges to the optimum. The convergence rate is defined as

the normalized mean of the change in the objective function value over a generation.

The lower bounds of the convergence rate has been previously calculated in Markov

chain models of evolutionary algorithms. Based on the transition matrices derived

in this dissertation, the lower bounds of the convergence rates can be calculated for

each mechanism. It is interesting to compare the analytical rates to the results of
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