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Abstract

Neuroinflammation has been implicated in hypertension, and microglia have been proposed to play an important role in
the progression of this disease. Here, we have studied whether microglia are activated within cardiovascular regulatory
area(s) of the brain during hypertension, especially in high blood pressure that is associated with chronic activation of the
renin-angiotensin-system. In addition, we determined whether prorenin, an essential component of the renin-angiotensin-
system, exerts direct pro-inflammatory effects on these microglia. Our data indicate that two rodent models which display
neurogenic hypertension and over activation of the renin-angiotensin-system in the brain (sRA mice and spontaneously
hypertensive rats) exhibit microglial activation, and increased levels of pro-inflammatory cytokines, in the paraventricular
nucleus of the hypothalamus, an area crucial for regulation of sympathetic outflow. Further, the renin-angiotensin-system
component prorenin elicits direct activation of hypothalamic microglia in culture and induction of pro-inflammatory
mechanisms in these cells, effects that involve prorenin receptor-induced NFkB activation. In addition, the prorenin-elicited
increases in cytokine expression were fully abolished by microglial inhibitor minocycline, and were potentiated by pre-
treatment of cells with angiotensin II. Taken together with our previous data which indicate that pro-inflammatory
processes in the paraventricular nucleus are involved in the hypertensive action of renin-angiotensin-system, the novel
discovery that prorenin exerts direct stimulatory effects on microglial activation and pro-inflammatory cytokine production
provides support for the idea that renin-angiotensin-system -induced neurogenic hypertension is not restricted to actions of
angiotensin II alone.
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Introduction

Hypertension is a global health problem, and ,20 to 30% of

hypertensive patients are resistant to the available anti-hyperten-

sive medications [1,2]. It is generally accepted that the uncon-

trolled, resistant hypertension is primarily neurogenic in origin,

involving chronic over activity of the sympathetic nervous system

that initiates and sustains high blood pressure [3–5]. It is well

known that angiotensin II (Ang II) acting via its type 1 receptor

(AT1R) within the paraventricular nucleus of the hypothalamus

(PVN), a brain site that plays a crucial role in regulating

sympathetic outflow [6,7], is a major contributor to this chronic

sympathoexcitation [8]. In addition to this Ang II/AT1R

mechanism it is now evident that another member of the renin-

angiotensin system (RAS), prorenin, and its receptor PRR [9] play

a role in the central control of neurogenic hypertension. For

example, we have shown that down-regulation of PRR in the

supraoptic nucleus via viral-mediated transduction significantly

attenuates blood pressure development in spontaneous hyperten-

sive rats (SHR) [10]. Furthermore, PRR levels are significantly

higher in the PVN of human renin-angiotensinogen double-

transgenic hypertensive mice, another model of neurogenic

hypertension, and knockdown of PRR in the brains of these

animals significantly decreased blood pressure and sympathetic

vasomotor tone [11]. A more recent study further confirms the

contribution of PRR in hypertension development showing that

neuron-specific knockdown of PRR lowers Ang II formation and

blood pressure in the deoxycorticosterone acetate-salt mouse

model of hypertension [12–14].

Accumulating evidence suggests that neuroinflammatory pro-

cesses make a significant contribution to the pathological processes

underlying sustained high blood pressure [11,12]. For example, in

previous studies we demonstrated that viral vector-mediated

increases in the expression of the anti-inflammatory cytokine

interleukin-10 (IL-10) specifically within the PVN significantly

reduced blood pressure in rats made hypertensive by chronic

systemic infusion of angiotensin II (Ang II) [15]. In the same set of

studies we demonstrated that Ang II induced hypertension was

significantly decreased by central (intracerebroventricular; ICV)

infusion of minocycline, a tetracycline antibiotic that inhibits

activation of microglia, the primary resident immune cells in the

brain. Furthermore, this minocycline treatment abolished the

increases in mRNAs for pro-inflammatory cytokines (IL-1b; IL-6;

tumor necrosis factora {TNFa}) and the decrease in IL-10 mRNA
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in the PVN elicited by Ang II infusion [15]. It has also been

demonstrated that Ang II-induced hypertension is dependent

upon activation of the inflammatory factor nuclear factor kappa B

(NFkB) in the PVN [16] and direct injection of IL-1b into the

PVN or via the intracerebroventricular route increases mean

arterial pressure [12,15,16]. Our recent studies show that prorenin

also induces the increases in pro-inflammatory cytokine expression

in the nucleus tractus solitarius (NTS), an effect that involves

activation of the nuclear factor kappa B (NFkB) complex [17].

Down-regulation of PRR mediated by viral transfection in the

supraoptic nucleus (SON) significantly slows down high blood

pressure accompanied by decreased inflammatory markers [10].

Collectively these studies support the idea that neuroinflammatory

processes within the PVN are involved in the hypertensive action

of the RAS. It should also be pointed out that the inflammatory

mechanisms associated with neurogenic hypertension are not

restricted to the PVN in the brain, as studies indicate that the

nucleus tractus solitarius, another important cardiovascular

control center, exhibits an inflammatory state in spontaneously

hypertensive rats (SHR), an animal model of this disease [18].

Thus, the idea we are promoting is that a low (but persistent)

level of microglial activation in the PVN occurs via brain RAS

activation in neurogenic hypertension. Questions raised by the

above investigations are whether the inflammation observed in the

PVN during neurogenic hypertension is due to over activation of

the brain (rather than peripheral) RAS, and whether the pro-

inflammatory actions of prorenin include direct effects at

microglia. To address these questions in the present study we

have first assessed the levels of microglial activation and of

cytokine expression in the PVN of both double transgenic mice

(sRA mice) that have selective over activation of the brain RAS

(genetic overexpression of human renin and angiotensinogen

controlled by specific promoters in the brain) [19], and SHR.

Considering recent findings that the PRR in the brain contributes

to the pathogenesis of hypertension [20], we tested whether

prorenin exerts direct pro-inflammatory actions via microglia. We

have utilized cell culture systems, a mouse microglial cell line (N-9)

and microglia isolated from rat hypothalamus, to determine

whether prorenin has direct actions on these cells. The findings

made in this study support the general idea that brain RAS-

mediated activation of pro-inflammatory mechanisms is an

important contributor to neurogenic hypertension.

Methods

Animals and materials
Male spontaneously hypertensive rats (SHR), Wistar Kyoto

(WKY) rats (8-week-old), and timed pregnant (E13–15) Sprague-

Dawley (SD), SHR and WKY rats were obtained from Charles

River Farms (Wilmington, MA). Double transgenic sRA mice [19]

were bred and housed at the University of Iowa, and were used at

12–21 weeks of age. Male double-transgenic sRA mice were

generated as described previously by cross-mating C57BL/6J mice

that express human renin via the synapsin promoter (sR mice) with

mice expressing human angiotensinogen with its own promoter (A

mice). Littermates with either expression of human angiotensin-

ogen or renin were used as controls. These mice were 12–21 weeks

of age, matched exactly with the sRA mice. All rats and mice were

housed individually in shoebox style forced-air cages, with access

to tap water and food ad libitum and with a 12:12 hr light/dark

cycle. The Institutional Animal Care and Use Committees of the

University of Florida and the University of Iowa approved all

protocols for animal use. The reagents used in this study are as

follows: Human Prorenin was purchased from Innovative

Research (IHPREN, Novi, MI); Iba1 antibody was from Wako

(01–1974, Richmond, VA) and Abcam (ab5076, San Francisco,

CA); prorenin receptor antibody from Abcam (ab64957); anti-

CD11b from Abcam (ab52478); anti-b actin from Sigma (A2228,

St Louis, MO); real-time primers from Applied Biosystems (Grand

Island, NY); and antibodies for flow cytometry and ELISA from

eBioscience (San Diego, CA).

Microglial cultures
N-9 mouse microglial cells (gift from Dr. Gerry Shaw,

University of Florida) were cultured in Dulbecco’s Modified

Eagles Medium (DMEM) containing 10% fetal bovine serum

(FBS) and an antibiotic cocktail (10,000 IU/ml Penicillin and

10,000 mg/ml Streptomycin; Cellgro, Manassas, VA).

Primary microglial cells were prepared from newborn SD, SHR

and WKY rat pups based on published studies [21]. Meninges and

choroid plexus membranes were removed from brains, and a

hypothalamic block containing the PVN was dissected and minced

with small scissors. The dissected tissues were further dissociated

by filtering through a 100 mm pore nylon mesh (BD, Franklin

Lakes, NJ), followed by centrifuging three times (3006g; 5 min/

spin) at room temperature. After the third centrifugation the

pellets were re-suspended in DMEM containing 10% FBS and an

antibiotic cocktail (1%) as above. The microglial cells were seeded

onto Poly-D-lysine coated 100-mm dishes at a density of 12

56105/ml, and incubated with 95% O2/5% CO2 at 37uC for 7

days without changing the medium. After this time period, floating

microglia in the culture medium were collected and transferred to

6-well plates for 3 hr, and the original dishes were fed with fresh

medium. Microglia were collected in this way at weekly intervals.

Isolated cells were pure microglia based on the co-localization of

Iba1 immunoreactivity with DAPI fluorescence. After attachment

in the new plates, microglia were fed with fresh DMEM/10%

FBS/1% antibiotic cocktail, and incubated for another 2–3 days

before each treatment.

Iba1 immunohistochemistry
PVN: Immunoreactivity for the microglial marker Iba1 in the

PVN of mice (sRA and wild type) or rats (SHR and WKY) was

assessed as follows. Animals were deeply anesthetized with 5%

isoflurane mixed with O2, and perfused transcardially with

heparinized saline followed by 4% paraformaldehyde. Brains

were removed and coronal sections (20 mm) cut through the

hypothalamus to capture the PVN. Sections were incubated with a

polyclonal rabbit anti-Iba1 antibody (1:500, Wako) followed by

incubation with a biotinylated polyclonal rabbit anti-rabbit IgG

(1:200). After additional rinsing, sections were incubated with

avidin-peroxide conjugate containing 0.04% 3,39-diaminobenzi-

dine hydrochloride for 10 min. Sections were mounted on glass

slides with cover slips using Vectashield mounting medium with

DAPI (Vector Labs, Burlingame, CA).

Microglial cell cultures: Cultured N-9 cells or primary microglia

were washed with PBS and then fixed for 10 min with ice cold

0.3% Triton X-100 for 20 min to improve antibody penetration.

Goat serum (5%) in PBS was added to the dish for 30 min at 37uC
to reduce nonspecific binding, followed by an additional wash with

PBS. Immunocytochemistry was performed using either a rabbit

polyclonal antibody against Iba1 (1:2000) or a goat polyclonal

antibody against the PRR (1:500, Abcam). This was followed by

incubation with respective secondary antibodies, Alexa Fluor 488

goat anti-rabbit IgG (1:2000) or Alexa Fluor 594 horse anti-goat

IgG (1:2000) (Molecular Probes, Eugene, OR). PRR and Iba1

immunoreactivities were detected using an Olympus BX41

fluorescence microscope.

PVN Microglia and Hypetension
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Real-time RT-PCR
For the analysis of mRNA levels, brain tissues or microglial cells

(primary microglia or N-9 cells) were processed as described

previously [15]. In brief, RNA was extracted using RNeasy Mini

Plus kits (Qiagen, Valencia, CA). Purified RNA (200 ng) was

reverse transcribed using a high-capacity iScript cDNA synthesis

kit (Bio-Rad, Hercules, CA). The expression levels of PRR, IL-1b,

IL-10, TNFa, 18 s and GAPDH mRNAs were analyzed via

quantitative real-time RT-PCR using an ABI OneStep Plus

machine (Applied Biosystems). 18 s ribosomal RNA or GAPDH

was used as internal controls.

TNFa ELISA
Anteroventral 3rd ventricle (AV3V), PVN, NTS and rostral

ventrolateral medulla (RVLM) tissues from control and sRA mice

were dissected and homogenized in RIPA buffer (Thermo,

Rockford, IL). TNFa was measured using an ELISA kit according

to the manufacturer’s instructions (eBioscience) and analyzed by

Fluostar Omega microplate reader (BMG Labtech, Oretenberg,

Germany).

Western Blot for CD11b in cultured microglia
The collected microglial samples were homogenized with

Laemmli Sample buffer (BioRad), loaded onto 4–15% gradient

Criterion gels (Bio-Rad) followed by electrophoretic transfer to

Nitrocellulose membranes (Bio-Rad) using a standard protocol.

Samples were normalized to 1 mg/ml and the loading volume was

20 ml/well. The membranes were incubated with rabbit polyclonal

CD11b (2 mg/ml, Abcam) and mouse anti-b-actin (1:5000, Sigma)

over night at 4uC, followed by reactions with respective goat anti-

rabbit (1:5000) and –mouse (1:5000) (Sigma) peroxidase conju-

gates. The protein bands for CD11b and b-actin were visualized

by chemiluminescence reagents (Amersham, Piscataway, NJ) and

quantified by Image J software.

Flow Cytometry
To measure cytokine expression, mouse N-9 cells were cultured

with 5 mg/ml brefeldin A (eBioscience), which prevents protein

transportation and leads to cytokine accumulation intracellularly.

Cells were surface-stained with FITC-conjugated anti-CD11b

(BioLegend, San Diego, CA) followed by intracellular staining of

APC-conjugated anti-TNFa (eBioscience) and anti-IL-1b
(eBioscience) with fixation and permeabilization buffer

(eBioscience). The stained samples were analyzed on a Beckman

Coulter CyAn ADP and data were analyzed with FlowJo software.

Calculation of Microglial Fractional Area and Data
Analyses

The activation of PVN microglia, identified by Iba1 immuno-

reactivity, was analyzed by measuring the fractional area of the

cells using Image J software (NIH). The fractional area of each

image was analyzed based on the ratio of the calculated area of

Iba1-positive staining to the entire image as described previously

[15]. The PVN sections that were analyzed covered the entire

PVN (Rat: Bregma 21.6 to 22.2 mm; Mouse: Bregma 20.82 to

21.06 mm) at 406magnification. The number of microglia in a

0.260.2 mm2 area was counted from 3 different levels covering

anterior, medial and posterior of PVN in in each animal.

Morphological analysis and quantification of microglia were

performed within the PVN using a fluorescence microscope

(Olympus BX41). Five animals from each group were used for this

analysis, and 15–20 images were taken for each animal.

All N-9 cell and primary microglial culture experiments were

performed in quadruplicate wells and repeated at least three times.

Data are expressed as mean 6 SEM. Statistical significance was

evaluated with the use of Prism software (v5.0, GraphPad).

Results

Pro-inflammatory cytokine expression in central
cardiovascular regulatory nuclei in hypertensive animals

To characterize neuroinflammation in hypertension, we exam-

ined in hypertensive animals the expression of two major pro-

inflammatory cytokines in different brain regions related to

cardiovascular function, the AV3V region, the PVN, the NTS

Figure 1. Levels of pro-inflammatory cytokines within central
cardiovascular control centers of control and sRA mice. Levels
of IL-1b (A) and TNFa (B) mRNAs and TNFa protein (C) were measured
in the AV3V, PVN, NTS and RVLM of control and sRA mice as described
in the Methods. Data are mean 6 SEM., from 6 control and 6 sRA mice
for the mRNA and TNFa protein measurements. * P,0.05 vs. respective
control.
doi:10.1371/journal.pone.0092937.g001

PVN Microglia and Hypetension

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e92937



and the RVLM. The above brain regions were dissected from

hypertensive sRA and normotensive control mice. We found that

the expression of mRNAs for both IL-1b and TNFa (Figure 1)

were significantly increased in the PVN of hypertensive sRA mice

compared to the normotensive controls, which is consistent with

our previous study [15]. In addition, the mRNA levels of IL-1b in

the NTS and TNFa in the RVLM were significantly greater in the

sRA mice when compared to control mice. In further experiments,

we examined TNFa protein expression in the above four brain

regions of normotensive and sRA mice. The data demonstrated

that TNFa protein levels were significantly greater only in the

PVN of sRA mice compared to the controls. Collectively, these

data suggest that the hypothalamic PVN of hypertensive mice is a

primary site of neuroinflammation amongst the central cardiovas-

cular control centers.

Animal models of neurogenic hypertension display
increased microglial activation and RAS expression in the
PVN

In this set of studies we determined the profiles of microglial

activation and RAS expression in the PVN of sRA mice and SHR

versus their respective control animals. Both of these animal

models of neurogenic hypertension exhibit enhanced RAS activity

in the CNS, increased sympathetic outflow and resting arterial

blood pressure [16,22]. Iba1 immunostaining revealed that

microglia within the PVN of control mice exist primarily in the

‘‘resting’’ state, as illustrated by small somas and long branched

processes (Figure 2Ai). In contrast, the enlarged soma and shorter

processes of PVN microglia in sRA mice suggest that these cells

are activated (Figure 2Aii). Quantification of microglial activation

was performed using the fractional area method, counting the area

Figure 2. Microglial activation in the PVN of sRA mice and SHR. (A) Control vs. sRA mice: Panels (i) and (ii) are representative bright field
micrographs showing Iba1 immunoreactivity in the PVN of control and sRA mice. Panels (iii-v) are bar graphs comparing the microglial fractional area
(iii), and the levels of PRR (iv) and IL-10 (v) mRNAs in the PVN of control and sRA mice. Data are means 6 SEM from the numbers of mice indicated
within the bars. *P,0.05 vs. respective control. (B) SHR vs. WKY rats: Panels (i) and (ii) are representative bright field micrographs showing Iba1
immunoreactivity in the PVN of WKY rats and SHR. Panels (iii-vii) are bar graphs comparing the microglial fractional area (iii), and the levels of PRR (iv),
IL-1b v), TNFa (vi) and IL-10 (vii) mRNAs in the PVN from both strains. Data are means 6 SEM from the numbers of mice indicated within the bars. *P,
0.05 vs. respective control.
doi:10.1371/journal.pone.0092937.g002

PVN Microglia and Hypetension
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occupied by microglia based on Iba1 immunoreactivity. The

microglial fractional area was significantly increased in the PVN of

sRA mice compared to control mice (Figure 2Aiii). In addition,

real-time PCR analyses revealed that sRA mice exhibit increased

levels of PRR mRNA and a decreased level of mRNA for the anti-

inflammatory cytokine IL-10, in the PVN compared to controls

(Figure 2Aiv-v). The same strategy was used to examine microglial

activation in SHR and WKY rats (Figure 2B). Microglia within

the PVN of SHR, identified by Iba1 immunoreactivity, exhibited

increased activation based on a preponderance of cells exhibiting a

larger soma, compared with a largely ramified appearance and a

smaller soma in WKY rat PVN (Figure 2Bi-iii). Although there

was no obvious difference in PRR mRNA levels in the PVN of

SHR and WKY rats (Figure 2Biv), the levels of IL-1b and

TNFamRNAs were significantly increased, while IL-10 mRNA

was significantly decreased, in the PVN of SHR compared to

WKY rats (Figure 2Biv-vii).

Prorenin activates microglial cells in culture
Since sRA mice and SHR exhibit increased activation of

microglia within the PVN, along with increased levels of mRNAs

for PRR (only in sRA mice) at this site (Figure 2Aiv), we

investigated whether there were any direct actions of prorenin

on microglial cell activation. For these experiments we established

in vitro cultures of the mouse-derived microglial N-9 cell line and

also primary microglia dissociated from the hypothalamus of

newborn SD or WKY rats, or SHR. Immunocytochemistry clearly

demonstrated PRR immunoreactivity in the soma of Iba1-positive

N-9 cells and SD rat primary microglia (Figure 3A), with similar

staining obtained in WKY rat and SHR primary microglia (data

not shown). Incubation of either N-9 cells or SD rat primary

microglia with human recombinant prorenin (20 nmol/L) for

24 hr elicited significant increases in the levels of CD11b protein, a

marker expressed by activated microglia [18] (Figure 3B). These

data suggest that prorenin can directly activate microglia.

Prorenin elicits increases in cytokine production in
microglia

Prorenin is well known to increase pro-inflammatory cytokine

production in tissues such as the eye [23], the kidney [24] and the

vasculature [25], effects mediated by PRR. To further evaluate the

direct effects of prorenin on microglial activation, we tested its

effects on pro-inflammatory cytokine levels in cultured microglia.

Incubation of N-9 cells or SD rat primary microglia with human

recombinant prorenin (20 nmol/L; 3 or 24 hr) elicited significant

increases in IL-1b and TNFa mRNA levels, with similar effects at

each time point. Shown in Figure 4A are the data from 24 hr.

These effects of prorenin in N-9 cells and primary microglia were

concentration dependent, with a significant increase obtained at

5 nmol/L. This is illustrated by the data presented in Figure 4B,

which shows the concentration-dependency of prorenin’s effects in

WKY rat and SHR primary microglia. Similar profiles were

obtained in N-9 cells and SD rat microglia (data not shown). It was

also apparent that these effects of prorenin were significantly

greater in SHR than in WKY cells (Figure 4B) and SD rat cells

(data not shown). It is also important to point out that these

stimulatory effects of human prorenin on IL-1b and TNFa mRNA

levels in microglia were not affected by co-treatment with

polymixin B (10 ng/mL), excluding the possibility that they were

due to lipopolysaccharide contamination of the prorenin.

The stimulatory effects of prorenin on IL-1b and TNFa mRNA

levels were unaltered by co-treatment of N-9 or SD rat primary

microglial cells with the AT1R blocker losartan (1 mmol/L)

(Figure 4A). In contrast, as shown in Figure 4C, the stimulatory

effects of prorenin on IL-1b and TNFa mRNA levels in SD rat

microglia were abolished by co-treatment of cells with the putative

PRR blocker HRP (Handle Region Peptide, 20 mmol/L) [26].

Higher concentrations of HRP (50 and 100 mmol/L) also reduced

the effects of prorenin on IL-1b and TNFa mRNA levels, but the

effects were not significant. Collectively, these data suggest that the

observed effects of prorenin are PRR-dependent.

Considering these effects of prorenin on pro-inflammatory

cytokine mRNA levels in cultured microglia, we examined

whether prorenin was able to alter the expression of TNFa
protein. Flow cytometry analyses revealed that treatment of N-9

cells with prorenin (20 nmol/L; 6 hr) elicited a highly significant

increase in TNFa protein (Figure 5A–C). Furthermore, similar

treatment of N-9 cells with prorenin (20 nmol/L) elicited a

significant increase in TNFa protein levels in the growth media,

based on ELISA analyses (Figure 5D).

Figure 3. PRR expression and function in microglia. (A) (i)
Representative fluorescence micrographs showing immunoreactive PRR
(P) and Iba1 co-localized (P+I) in mouse N-9 microglial cells and SD rat
primary microglia. (B) CD11b protein expression was analyzed in N-9
cells and SD rat primary microglia by western blotting following 24 hr
treatment with either control media (DMEM) or prorenin (20 nmol/L).
Top: Representative immunoblots showing CD11b and b-actin (loading
control) protein bands under each treatment condition; Bottom: Bar
graphs are band density ratios of CD11b protein normalized against b-
actin. Data are means 6 SEM, n = 6 experiments.
doi:10.1371/journal.pone.0092937.g003

PVN Microglia and Hypetension
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Prorenin elicited NFkb activation in microglia
To determine if prorenin/PRR-elicited pro-inflammatory

cytokine production is NFkB-dependent, we examined the

expression of mRNAs for the subunits of the NFkB complex,

NFkB1 and NFkBia mRNA, in both N-9 and primary microglial

cells. The results demonstrated that prorenin induced a dose-

dependent increase in both subunits (Figure 6A). Moreover,

prorenin (20 nmol/L) promoted nuclear translocation of NFkB

immunoreactivity (Figure 6B), suggesting that activation of NFkB

is involved in prorenin-induced transcription. In order to

Figure 4. Prorenin increases pro-inflammatory cytokine levels in microglia. (A) Mouse N-9 cells (i–ii) and SD rat primary microglial cells (iii–
iv) were treated with prorenin (20 nmol/L) in the absence or presence of losartan (1 mmol/L) for 24 hr, followed by analysis of IL-1b and TNFa mRNA
levels as detailed in the Methods. Data are means 6 SEM, n = 3 experiments. * P,0.05 vs. respective control. (B) Levels of IL-1b and TNFa mRNAs
were measured after 6 hr treatment with prorenin (5–50 nmol/L) in cultured microglial cells prepared from WKY rats and SHR. Data are means 6 SEM,
n = 4–5 experiments. All prorenin-treated groups were significantly different vs. their respective controls (P,0.05). * P,0.05 vs. respective WKY rat
group. (C) Levels of IL-1b and TNFa mRNAs were analyzed after 24 hr treatment of SD rat primary microglial cells with control solution (DMEM) or
prorenin (20 nmol/L) in the absence or presence of the indicated concentrations of HRP. Data are means 6 SEM from n = 3 experiments. * P,0.05 vs.
respective control; { P,0.05 vs. prorenin-alone group.
doi:10.1371/journal.pone.0092937.g004
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substantiate the role of NFkB in this process, we treated both N-9

and primary microglia with prorenin (20 nmol/L) in the presence

or absence of the NFkB inhibitor PDTC (50 mmol/L). The data

shown in Figure 6C indicates that PDTC fully abolished the

increases in cytokine mRNAs in both cell types, suggesting that the

cytokine upregulation by prorenin/PRR is dependent on NFkB

complex activation.

Ang II potentiates prorenin-induced cytokine production
in microglia

Considering that Ang II is a primary effector of the RAS, we

tested whether Ang II and prorenin exert any synergistic actions.

Flow cytometry analyses revealed that simultaneous co-treatment

of N-9 cells with Ang II (100 nmol/L) and prorenin (20 nmol/L)

for 6 hr produced no greater increase in TNFa protein levels

when compared with prorenin alone (data not shown). Interest-

ingly, after pre-treatment of N-9 cells with Ang II (100 nmol/L,

12 hr) the stimulatory effect of prorenin on TNFa levels was

significantly enhanced versus that obtained in cells that had been

pre-treated for 12 hr with control solution (Figure 7).

Minocycline abolishes prorenin-induced increases in
cytokine production

In order to investigate whether the prorenin-induced increases

in pro-inflammatory cytokine levels depends on microglial

activation, we examined the mRNA expression of IL-1b and

TNFa elicited by prorenin in the presence of minocycline, a potent

inhibitor of microglial activation. Co-treatment of N-9 cells or

primary microglia with minocycline (1 mmol/L) completely

abolished the prorenin (20 nmol/L) induced increases in these

cytokine mRNAs (Figure 8).

Discussion

The major findings of the present study are: (i) that two rodent

models which display neurogenic hypertension and over activation

of the RAS in the brain (sRA mice and SHR) exhibit microglial

activation, and increased levels of pro-inflammatory cytokines in

the PVN; (ii) that the RAS component prorenin elicits direct
activation of microglia and induction of pro-inflammatory

mechanisms, effects that involve PRR-induced NFkB activation;

(iii) that prorenin causes greater responses in cytokine production

in Ang II-pretreated microglia; and (iv) prorenin-elicited increases

in cytokine expression were fully abolished by microglial inhibitor

minocycline. Taken together with our previous data which

indicate that pro-inflammatory processes in the PVN are involved

in the hypertensive action of RAS [12], the novel discovery that

prorenin exerts direct stimulatory effects on microglial activation

and pro-inflammatory cytokine production provides support for

the idea that RAS-induced neurogenic hypertension is not

restricted to actions of Ang II alone.

The present work raises many questions that will require further

studies to answer. First of all, our in vitro studies suggest that the

direct pro-inflammatory effects of prorenin in microglia are

mediated through PRR, since they were not affected by the

AT1R antagonist losartan and were attenuated/blocked by the

putative PRR blocker HRP [27]. When considering the debatable

specificity of HRP in blocking PRR, an alternative approach to

address whether prorenin induced pro-inflammatory effects are

mediated by PRR would be to down-regulate PRR in the

microglia and then examine the effects on inflammation forma-

tion. While our in vitro data suggest a direct induction of pro-

inflammatory cytokines by prorenin, it is likely that in the in vivo
situation prorenin also operates indirectly via the generation of

Ang II.

Our studies also indicated that while the pro-inflammatory

actions of prorenin in microglia were AT1R-independent, they

were potentiated by pretreatment of the cultures with Ang II

(Figure 7). This ‘‘priming’’ action of Ang II appears similar to that

of interferon gamma (IFNc), a physiological activator of macro-

phages. By itself, IFNc has limited effects on cytokine production.

However, it primes the cells to produce a much stronger effects to

a second stimulation, such as elicited by LPS, Cytosine-phosphate-

guanosine (CpG) and TNFa [28–30]. A possible explanation is

that pretreatment of microglia with Ang II modulates an

intracellular event that potentiates the pro-inflammatory effects

of prorenin. Our data (Figure 6) indicate that the pro-inflamma-

tory action of prorenin action is involves an NFkB-dependent

mechanism. Thus, it will be interesting to determine whether the

priming actions of Ang II also involve an NFkB-dependent

mechanism, or a mechanism that is independent of that activated

by prorenin.

An important question raised by these studies is whether the

pro-inflammatory cytokines that are induced by RAS activation

exert stimulatory effects on sympathetic outflow. We can speculate

that pro-inflammatory cytokines, or other microglial-derived

factors such as chemokines, elicit sustained increases in the activity

of PVN pre-sympathetic neurons that enhance the direct neuronal

actions of Ang II via AT1R to produce chronic sympathoexcita-

tion. However, while studies have demonstrated cardiovascular

actions of cytokines injected into the PVN [12,31], and it has been

demonstrated that IL-1b depolarizes parvocellular neurons at this

site [32], the presence of pro-inflammatory cytokine receptors on

Figure 5. Prorenin increases TNFa levels in N-9 microglial cells.
N-9 cells were treated with control medium or prorenin (20 nmol/L) for
6 hr, followed by analysis of TNFa-positive cells using flow cytometry
(A–C) and released TNFa by ELISA assay (D). FSC: forward scatter. Data
are means 6 SEM from n = 3 experiments. * P,0.05 vs. control.
doi:10.1371/journal.pone.0092937.g005
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pre-autonomic efferent neurons in the PVN has not been

demonstrated. In fact, one study has demonstrated the presence

of IL-1b receptors on magnocellular secretory neurons at this site

[33]. Thus, it is possible that pro-inflammatory cytokines, induced

by RAS activation, have no direct stimulatory effects on pre-

sympathetic neurons but operate to enhance sympathoexcitation

via effects on interneurons or by inhibition of GABAergic input, as

is the case in the aforementioned depolarization of PVN neurons

by IL-1b [32]. A major goal of our current and future research will

be to examine whether there is a direct linkage between prorenin-

induced pro-inflammatory actions in the PVN and activation of

pre-sympathetic neurons at that site.

The current studies were focused on microglia, the major

resident immune cells in the brain, because of our previous

observation that inhibition of microglial activation by minocycline

treatment blunted Ang II-induced hypertension. However, it is

likely that other immune cells may also contribute to RAS-induced

neuroinflammation. For example, it is well known that astrocytes

are also a major contributor to resident immune mechanisms in

the central nervous system [34], and contain both AT1R and PRR

Figure 6. NFkB activation mediated prorenin-induced cytokine production. (A) N-9 (i–ii) and primary microglial cells (iii–iv) were treated
with prorenin (10–50 nmol/L), and cell lysates were analyzed by real-time RT-PCR for NFkB1 and NFkBia. Data are mean 6 SEM, * P,0.05 vs. control,
n = 5 each group. (B) Representative images of NFkB immunoreactivity and Dapi nuclear stain in N-9 (i) and primary microglial cell (ii) 24 hr post
control (upper panels) and prorenin (20 nmol/L, lower panels) treatments. (C) N-9 (i–ii) and primary microglia (iii–iv) were treated with control
solution (DMEM) or prorenin (20 nmol/L) in the presence or absence of PDTC (50 mmol/L), and IL-1b and TNFa mRNA levels were quantified by real-
time RT-PCR. Experiments were performed triplicate. Data are mean 6 SEM, * P,0.05 vs. control, n = 5 each group.
doi:10.1371/journal.pone.0092937.g006
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[20,35]. In addition, perivascular macrophages have been shown

to be another source of inflammatory mediators in the CNS, and

factors released from these cells such as cyclooxygenase 2 and

prostaglandin E2 can infiltrate the blood-brain barrier and

increase neuronal activity in the PVN [36]. Since microglia are

resident immune cells and it is very likely that they are one of the

earliest players, and might recruit patrolling perivascular macro-

phages to exaggerate the inflammatory reactions with the progress

of hypertension. Therefore, the present study does not exclude the

possibility that perivascular macrophages contribute to the RAS-

dependent inflammation. A further possibility is that prorenin

induced activation of microglia functions as an initiating event,

recruiting and activating the adaptive immune system such as

circulating T lymphocytes [37] or monocytes [38] to the PVN to

exacerbate the immune reaction. Clearly, further studies/exper-

iments need to be performed to determine the contribution from

individual immune cell populations.

In conclusion, the data presented here provide evidence for

direct actions of prorenin at microglia to exert pro-inflammatory

actions. When considering that animal models of neurogenic

hypertension display increased RAS activation in the PVN and

also increased activation of microglia and levels of pro-inflamma-

tory mediators at this site, our findings support the notion that the

hypertensive action of prorenin via the brain includes a

neuroimmune component at the PVN.
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