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Abstract:  

Social media has reshaped business models, economies, politics, and culture around the 

world. In this paper, we identified social media stocks from various sectors by using a strict, 

academic definition and then studied their performance and return characteristics. 

Multivariate regression results demonstrate that being recognized as a social media firm 

yields extra return. The performance of social media stocks is not associated with macro-

level sentiment, but rather with firm-level attention paid by potential investors. Causality 

tests indicate that the default risk premium and volatility have incremental power in 

explaining the performance of social media stocks. 
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Abstract:  

Social media has reshaped business models, economies, politics, and culture around the world. In 

this paper, we identified social media stocks from various sectors by using a strict, academic 

definition and then studied their performance and return characteristics. Multivariate regression 

results demonstrate that being recognized as a social media firm yields extra return. The 

performance of social media stocks is not associated with macro-level sentiment, but rather with 

firm-level attention paid by potential investors. Causality tests indicate that the default risk premium 

and volatility have incremental power in explaining the performance of social media stocks. 
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“It took 38 years for the radio to attract 50 million listeners, and 13 years for television to gain the attention of 50 

million viewers. The Internet took only four years to attract 50 million participants, and Facebook reached 50 million 

participants in only one-and-a-half years.”         

   (Nair 2011) 

 

1. Introduction and Motivation 

Social media firms have drawn much attention from investors and the financial press. The 

initial public offerings of Facebook and Twitter represent examples of this intense investor interest. 

Facebook set several market records by its IPO on May 18, 2012, including: (1) the largest venture-

backed IPO debuting at over $100 billion, (2) the largest venture capital raised with $2.2 billion in 

equity financing acquired prior to IPO, and (3) the most active pre-IPO acquirer (Facebook acquired 

13 venture-backed enterprises prior to its IPO).1 Facebook facilitates social networking around the 

globe and is ubiquitous with the term “social media.” In November 2013, the IPO of Twitter also 

drew a lot of attention as its stock rose from the IPO price of $26 to a first trading day closing price 

of $44.90. Additionally, social media firms have become increasingly significant to the economy. In 

May 2017, for instance, two out of the top ten multi-billion-dollar “unicorns” ranked by Fortune 

magazine were social media startups that may be publicly-traded in the future.2  

Given this intense investor interest, we conducted this study to learn about the performance 

and return characteristics of social media stocks. Specifically, does being recognized as a social media 

firm yield extra value when controlling for possible pricing anomalies? Are social media firms merely 

a subset of dot-coms in terms of the stock price behavior? Is the performance of social media stocks 

related to market-wide sentiment or investor attention at the firm level? What factor loadings drive 

social media firm value? We explored the impact of various market risks, forward market volatility, 

investor attention, and investor sentiment on the performance of social media stocks. Though social 

                                                 
1 See http://venturebeat.com/2012/05/16/record-breaking-facebook-ipo/. 
2 See http://fortune.com/unicorns/. 
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media has been widely recognized as a specialized economic sector, the stocks currently are 

categorized across several industries. To answer these questions, we manually collected data on all 

publicly-listed social media firms using the definition proposed by Kaplan and Haenlein (2010). 

Social media has changed and reshaped business models, economies, politics, and culture 

throughout the world. The McKinsey Global Institute estimates that widespread use of social media 

technologies will transform communications from one-to-one interactions into many-to-many 

interactions, resulting in productivity gains of 20-25% amongst workers in knowledge-intensive 

professions. It was further estimated that this shift could result in a $900 billion to $1.3 trillion 

increase in economic surplus annually, if industries fully embrace the benefits offered by the 

adoption of social technologies throughout their business models.3 Clearly, the anticipated impact of 

social media as a new industry is more than a mere social matter. For instance, Cohen (2013) 

documented the impact of innovation on economic growth on long-term corporate performance 

and on security returns. Understanding the factors that are associated with the performance of social 

media stocks is useful to evaluating these assets for possible portfolio inclusion. 

The buzz surrounding the social media craze is reminiscent of that of the dot-com era from 

the late 1990s to the early 2000s. Ofek and Richardson (2003), Griffin et al. (2011), and Yu and Yuan 

(2011) analyzed how markets priced technology stocks through the previous wave of strong investor 

interest. Customer-to-customer feedback about experiences gave rise to the phrase “going viral.” By 

monitoring the social media posts of their customers, firms can respond to customers more quickly, 

accelerating both the pace of product response and obsolescence. 

The infrastructure used to support socialization provides opportunities for business, ranging 

from data analytics (e.g., Palantir and IBM-Watson), e-commerce (e.g., Amazon, Alibaba, and 

Flipkart), to the sharing economy (e.g., Uber and Airbnb). The business model of social media 

                                                 
3 http://www.mckinsey.com/insights/high_tech_telecoms_internet/the_social_economy.  
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service also leaves challenges for valuation. What drives corporate value? Is it the overall market 

sentiment or firm-level investor attention? Since the definition and scope of social media is not 

completely clear, even for financial regulators, a study on their stock performance remains uncharted 

territory. Given the fact that large, private social media companies, such as the aforementioned 

unicorns Snapchat and Pinterest, are becoming publicly-listed, a study of social media stock price 

behavior seems timely and relevant to both academia and Wall Street.  

In any era, investors can identify a group of investments that outperformed the market such 

as the concept stocks described by Hsieh and Walkling (2006). As an emerging technology sector, 

social media firms may be experiencing outperformance as predicted in the hype cycles. Gartner 

suggested that this is associated with a new business model advancing through various phases of 

development as entrepreneurial ventures.4 An ex ante expectation of this outperformance is rooted in 

investor-driven interest in the firms offering new technology formats. The “going viral” effect has 

quickly gained widespread adoption by users. Therefore, it is important to question whether social 

media stocks are influenced by behavioral factors that are beyond the risk factors documented by 

asset pricing models. 

To conduct our study, we thoroughly analyzed publicly-listed firms and identified the 

population of social media firms trading on the NYSE, Amex, and Nasdaq. The population includes 

obvious firms such as Facebook and LinkedIn. Missing from our population are several high-profile 

social media firms such as Snapchat, Linden Labs, and Wooga, which remain privately-held. For 

example, Pinterest, an online photo-sharing bulletin board, was valued at $2.5 billion in February 

2013, three years after its launch, following an injection of capital by Valiant. This is larger than the 

market value of some current public companies such as Zynga, Yelp, and Pandora.5  

                                                 
4 See http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp. 
5 http://www.bloomberg.com/news/2013-02-21/pinterest-gets-200-million-in-funding-at-2-5-billion-valuation.html. 
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We applied various models to evaluate the relation of behavioral measures, specifically those 

including attention and sentiment, with the performance of social media stocks, controlling for other 

known risk factors. We found that social media stocks outperformed the market by providing a 

positive abnormal return while controlling for various risk factors. Unlike the technology stocks of 

the previous dot-com era, social media stocks appear to be unaffected by market-level sentiment. 

Our results indicate that market sentiment does not appear to be priced in social media stocks. 

Rather, investors show firm-level interest in social media stocks, as captured by the abnormal 

Google search volume index (SVI), proposed by Da et al. (2011). 

This rest of the paper is organized as follows. Section 2 contains a literature review and 

theoretical development. In Section 3, we explain our data and methodology. Section 4 analyzes the 

performance of social media stocks and their relation to investor attention and investor sentiment. 

In Section 5, we study how various macroeconomic factors are associated with social media 

outperformance. Section 6 provides our conclusions.  

 
2. Literature Review and Theoretical Development 

Social media, as a new communication platform, has had a tremendous impact on the world 

economy. As more users enter into virtual gathering places, information delivery and 

communication have transitioned from traditional media (television, radio, and print media) to user-

generated social media platforms. The impact of social media on business is wide ranging, as noted 

by scholars in information systems (Luo et al. 2013), marketing (Kim & Ko 2012), law (Janoski-

Haehlen 2011; Bellin 2012), supply chain management (O'Leary 2011), and across the business 

disciplines (Trainor et al. 2014). 

Finance research on social media firms is also new. Social media stocks can be classified as 

concept stocks after 2000, according to the definition of Hsieh and Walkling (2006). Sornette and 

Cauwels (2012) suggest that Facebook and Groupon were overpriced according to their 
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fundamental value-based model of social media firms. Larcker et al. (2014) investigate the role that 

social media can play in assisting boards of directors with monitoring customer experiences. 

Specifically, they consider the word-of-mouth offered freely by customers as an early warning 

system before poor customer experiences go viral and damage a firm’s reputation. Chen et al. (2014) 

conduct a textual analysis of social posts and investigate its relation to stock returns and earnings 

surprises. Karabulut (2013) and Heimer and Simon (2015) study a proprietary database of retail 

investors that share a common social platform. They find that communications over social media 

platforms by active, professional investors led to more active trading. Most of the current research 

has focused on how the information revealed by social media affected market behavior, but has not 

investigated the investment value of social media stocks. 

Some of the firms in our population have their origins in the dot-com era; thus, we 

considered similarities and differences between the findings of the dot-com era and our study of 

social media companies. The mania for dot-coms was followed by a crash. Ofek and Richardson 

(2003) attribute the selloff of stocks to lockup expirations. In contrast, Griffin et al. (2011) attribute 

the selloff to institutions exiting the sector in a coordinated fashion. Ljungqvist and Wilhelm (2003) 

study the relation between severe IPO underpricing (as recently seen with Twitter) and firm 

characteristics unique to the dot-coms. Overall, Hendershott (2004) finds that value was created in 

his sample of venture-backed dot-coms, with 19% annual return, even after controlling for the 

known price surge and correction of the dot-com era. 

DeMarzo et al. (2007) provide a theoretical model that explains how technological firms tend 

to overinvest, resulting in synchronized mispricing of technology stocks. The prediction of their 

model is for overinvestment to arise from an impulse for investors to herd into these stocks, 

creating price pressure beyond the prediction of rational pricing models. This model explains why a 
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new type of industry creates heightened investor interest in the markets and how asset price bubbles 

result.  

Like the preceding technology firms, social media firms may therefore be experiencing 

outperformance due to the hype associated with this new business model. It is natural to question 

whether the factors affecting social media stock returns are the risk factors from asset pricing 

models or more behaviorally focused factors.  Fama and French (1993) establish the three-factor 

model which includes risk factors for an asset’s covariablility with market returns, a size effect and a 

value effect. Their model extended the single-factor capital asset pricing model appreciating that 

smaller firms exhibit higher returns than larger firms do and that the firms with high book-to-market 

ratios exhibit higher returns than low book-to-market firms do. Recently, Fama and French (2015) 

expanded the Fama-French three-factor model to include two new factors that capture profitability 

(RMW) and investment (CMA).  

With respect to behaviorally focused factors, Baker and Wurgler (2006) demonstrate that 

sentiment plays a role in explaining the cross section of equity returns. Using principal components 

analysis (PCA), they built an index of six factors thought to capture the overall sentiment in the 

equity markets: the closed-end fund discount, NYSE turnover,6 the number and average first-day 

returns of initial public offerings (IPOs), equity share in new issues, and the dividend premium. 

Baker and Wurgler (2006) found that periods of low sentiment were followed by higher than normal 

returns for certain stocks: those that were small, young, highly-volatile, unprofitable, non-dividend 

paying, fast-growing, and distressed. Yu and Yuan (2011) then considered the mean-variance relation 

of sentiment, demonstrating that sentiment is unrelated to the mean-variance relation during the 

periods of high sentiment. Tsukioka, Yanagi, and Takada (2018) find excessive optimism leads to the 

high initial returns and long-run underperformance of IPO by using text data on message boards. 

                                                 
6 NYSE turnover was removed from the index in 2015, because NYSE turnover now captures more than investor 
trading based on sentiment (high frequency trading artificially inflates turnover.)  
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Da et al. (2011) suggest using Google search volume index (SVI) of stock tickers as a 

measure of retail investor attention. Retail investors are thought to be susceptible to irrational, noise 

trading, and SVI is a direct revealed preference measure of investor attention. They found that 

changes in weekly search volume was a leading measure of investor attention which predicted future 

stock prices over the subsequent two week period. 

Social media offers a new business paradigm that may be attractive to investors interested in 

new investment opportunities. We therefore considered whether social media stocks have generated 

superior performance over our sample period. An ex ante expectation of this outperformance is 

rooted in demand driven interest by firms offering new technology formats which have quickly 

gained widespread adoption by users. Our first hypothesis is: 

(H1) Controlling for known risk factors, social media stocks exhibit outperformance. 

Finding outperformance would be consistent with interest in social media stocks early in 

their introduction. The attention pushes prices beyond the levels justified by fundamentals. It could 

also be consistent with heightened sentiment in the market as a whole. If sentiment was influential 

over the sample period, outperformance could be attenuated by the effect of sentiment. Our second 

hypothesis is therefore: 

(H2) Social media stock performance is influenced by sentiment. 

We expect sentiment to be significantly negative (outperformance associated with low 

sentiment) given that Baker and Wurgler (2006) found that sentiment exhibited stronger effects for 

firms with highly subjective valuations and stocks difficult to arbitrage. Given their newness, social 

media firms are likely more difficult to value and therefore to arbitrage.  

While sentiment offers a top-down view of how emotions can enter into investment 

selections, a more direct measure of firm-level scrutiny is captured by investor attention. Social 

media is a young industry intricately related to the technology industry. The hype cycles for 
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technologies retailed by Gartner indicated distinct phases of the maturity of a technology industry as 

it relates to their visibility.7 Gartner proposed that the visibility of a new technology product or 

service rapidly rises as it is introduced. After visibility peaks, expectations for the industry are 

brought back to normal levels as visibility returns to more sustainable levels. Then, as the technology 

gains widespread adoption and the industry matures, a more normal growth pattern emerges. We 

consider investor attention as a proxy for heightened visibility. Our third hypothesis is: 

(H3) Social media stock performance is influenced by investor attention. 

Consistent with the findings of Da et al. (2011), we expect greater attention to be focused on 

social media stocks and for that attention to be a significant factor in explaining outperformance.  

 
3. Materials and Methods 

Identifying social media firms that satisfy both investor intuition and academic precision was 

the first challenge of our study. An interesting event illustrates this ambiguity even to regulators. In 

July 2012, Netflix CEO, Reed Hastings, posted material information about Netflix to his personal 

page on Facebook. The Securities and Exchange Commission (SEC) brought charges of improper 

disclosure against Hastings in December 2012 for failing to make full disclosure through approved 

outlets. Following its investigation, the SEC ruled in April 2013 that news could flow into social 

media venues if investors are notified that announcements are routinely made through these venues. 

The SEC recognized the shift of information into social media spaces. However, it did not attempt 

to define social media outlets in its guidance. 

We first identified the population of social media firms. Facebook seemed to be an obvious 

social media firm, but whether to include others, such as Angie’s List or Groupon, was less clear. We 

applied the definition proposed by Kaplan and Haenlein (2010) to set the population. They are 

webspaces: (1) operating in a Web 2.0 environment (that is, real-time and dynamically updateable to 

                                                 
7 http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp. 
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make online communication feasible), (2) of user-generated content defined by the Organization for 

Economic Cooperation and Development(Vickery & Wunsch-Vincent 2007), and (3) demonstrating 

features of social presence, media richness, self-presentation, and self-disclosure. For the period 

January 1, 2004 – December 31, 2014, we identified 43 social media firms traded on the NYSE, 

Amex and Nasdaq. Global X Management Company LLC debuted a social media ETF on 

November 11, 2011. Its portfolio includes non-social media firms, such as Angie’s List, Groupon, 

and Nutrisystem. We selected this sample period to enable the tests of investor attention that rely on 

Google search volume index (SVI) available from January 1, 2004. See the appendix for further 

details on population identification. 

Table 1 contains the list of firms that form the social media population. A fair number of 

these social media firms are international enterprises that are traded in the U.S. markets as American 

Depository Receipts (ADRs). As such, it is appropriate to include them in the population and to use 

the U.S. market risk loadings to test their asset pricing behaviors. Furthermore, their membership as 

social media firms reflects the increasingly global nature of business.8 The population was further 

split into two main types of social media firms. The first type, most typically identified to be social 

media, is social networking, including Facebook and Twitter. The second type is social gaming in 

which a game is the forum for socializing. One might equate these to their face-to-face counterparts 

of a coffee klatch (social networking) and socializing over a game of dominos (social gaming). We 

also include the U.S. based online dating service providers in this study. 

<Insert Table 1 about here> 

We considered possible differences within the population between social gaming firms and 

social networking firms. Although both types fit the broad definition of social media, Kaplan & 

                                                 
8 We conducted robustness tests with and without international domiciled firms. Their presence or absence in the 
population did not change the results throughout this study. It is necessary to allow these international firms to remain in 
the population, given that they reflect the trade-off portfolio selections for investments in social media firms. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

Haenlein (2010) differentiate between social networking and virtual gaming spaces along two 

dimensions. Social networking spaces are believed to have a higher degree of self-presentation than 

social gaming spaces. For example, posting in a Facebook news feed offers highly personalized 

information about the author (and possibly the friends who the author chooses to include in the 

post), whereas participating in multi-player online gaming has less flexibility for specific 

personalization. Your picture sends different information than does your avatar. Conversely, social 

gaming spaces offer a higher degree of media richness than social networking spaces. This is due to 

the intention of drawing the player into the game through a high degree of apparent realism of the 

gaming space. 

To compare social media firms to the industry in which they are members, we constructed 

industry benchmark returns and collected monthly returns for all firms in the same 4-digit SIC code 

of the identified social media firms. We used monthly returns from the Center for Research in 

Security Prices (CRSP), for the data to compute the market value of equity, and for industry 

membership codes (SIC). We then formed an industry return by averaging the monthly returns 

within each SIC grouping.9  

Table 2 reports summary statistics of monthly returns and firm size between 2004 and 2014 

for social media firms, their industry peers, and all U.S. stocks. Panel A shows that social media 

firms had slightly lower average raw returns than the industries they came from, but that they were 

higher than the broader U.S. stock market. Risk, as captured by the standard deviation of returns, 

was stronger for social media than either their industry peers or the broader U.S. stock market. Panel 

B shows that the size of social media firms is generally larger than both their industries and the 

average U.S. stock. If we find abnormal returns for social media firms, it is not merely a firm size 

effect. 

                                                 
9 For robustness, we also conducted tests with daily and weekly returns. Results are consistent with our findings using 
monthly returns. 
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<Insert Table 2 about here> 

Figure 1 plots the cumulative returns of an equal-weighted social media index plotted against 

benchmark cumulative returns for the S&P 500 and Nasdaq from 2004 - 2014. Social media firms 

outperformed both these benchmarks in terms of raw return, but also exhibited greater 

fluctuations.10 This seems to be consistent with a general impression about the outperformance of 

social media stocks.  

<Insert Figure 1 about here> 

We computed abnormal returns by controlling for risk factors. Using the monthly return 

measure, we apply (1) the Fama and French (1993) three-factor model and (2) the Fama and French 

(2015) five-factor model to detect abnormal returns: 

	��� − ��� =	�	� + ��
��� − ���� + ������ + ������ +	��  ,                    (1) 

and 

	��� − ��� =	�	� + ��
��� − ���� + ������ + ������ +	������ + ������ + �� ,  (2) 

where ��� is firm i’s return, ��� is the risk-free rate, ��� is the market benchmark return, SMB is the 

size premium, HML is the value/growth premium, RMW is the robust minus weak profitability 

factor, CMA is the conservative minus aggressive investment factor, and �	� is the abnormal return 

from the regression.  

 For our tests of investor attention, we gathered Google search volume index (SVI) arrays for 

the tickers that are part of our social media population and for the firms in the industries from 

which social media firms come. We followed Da et al. (2011) and collected the SVI, available from 

January 1, 2004, for tickers from Google Trends. If the frequency of searching was strong enough, 

data was available weekly. Less frequently searched tickers were available monthly, while some 

                                                 
10 Social media does not fit neatly into either the S&P 500 or the Nasdaq. 
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tickers resulted in null searches. Because our tests were conducted using monthly returns, we 

converted SVI from weekly to monthly. We began by taking the natural logarithm of SVI plus one 

as ln(SVI) to keep firms without adequate search volume indexes from exiting the sample. Based on 

the methodology in Da et al. (2011), we used the prior two months of data as the benchmark of 

attention to generate abnormal SVI, ln(aSVI). Specifically, ln(aSVI) was constructed by taking the 

difference between current ln(SVI) and the mean of the previous two month’s ln(SVI). We used 

consumer sentiment from monthly surveys conducted by the University of Michigan.11  

For our mean-variance tests, we constructed Sharpe ratios to investigate the time-variation in 

the risk-return behavior of social media stocks. For each month, we formed Sharpe ratios by using 

the past 52 weekly returns. The yield for the 3-month Treasury bill was used as the proxy for the 

risk-free rate. We computed the expected return and standard deviation from the weekly returns of 

social media stocks and their corresponding industries. We then formed the average Sharpe ratio for 

the social media firms by taking the mean Sharpe ratio each week, t, for all of the firms, i, in our 

sample:  

∑
=

=
N

i
tit SR

N
SR

1
,

1
 .        (3) 

Figure 2 demonstrates the time-series behavior of the Sharpe ratio and its long-term 

smoothing curve (H-P) proposed by Hodrick and Prescott (1997). It shows no specific trend in the 

long term, but it is volatile over time. The time-variation of the mean-variance efficiency was 

particularly significant in the first half of the sample period. The pattern seems to follow the 

business cycle, which suggests that performance may be associated with macroeconomic factors.  

<Insert Figure 2 about here> 

                                                 
11 When our empirical work was being conducted, the Baker and Wurgler (2006) factors were not available to match our 
sample period. Because Baker and Wurgler (2006) noted the high degree of correlation between their measure and the 
University of Michigan sentiment measure, we conducted our study with the University of Michigan data. 
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4. Empirical Results 

4.1. Performance of social media index returns 

We formed both an equal-weighted and a value-weighted social media index by including all 

the social media stocks and examined their performance. Table 3 presents the regression analysis for 

the social media indexes. We control for risk factors by estimating the Fama and French (1993) 

three-factor model and the Fama and French (2015) five-factor model. Earlier enthusiasm for social 

media as a new business paradigm does not imply outperformance of social media stocks. Indeed, 

DeMarzo et al. (2007) predict that strong investor interest in technology firms can erode their 

performance through investors herding into the new investment opportunities. Hsieh and Walkling 

(2006) found overpricing of concept stocks after controlling for factors such as glamour, IPO, 

industry, or contrarian effects. Panel A presents the results for equal-weighted returns. For the 

period 2004 - 2014, the index showed a 12.7% abnormal annualized return for the three-factor 

model and a 16.3% abnormal annualized return for the five-factor model, both significant at the 1% 

level.  

<Insert Table 3 about here> 

We also present the results of social gaming and social networking. Consistent with the 

results from the broader population, the social gaming index outperformed on a risk-adjusted basis, 

showing a 13.3% abnormal annualized return for the three-factor model and 17.0% abnormal 

annualized return for the five-factor model, statistically significant at the 5% and 1% levels. The 

coefficient on the investment aggressiveness factor (CMA) indicates that more aggressive 

investments had been made in social gaming than in either social media or social networking. 

Column 3 shows the results for social networking. There was marginal evidence of outperformance 

between 2004 and 2014 with a 12.0% abnormal annualized return for the three-factor model 
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(significant at the 10% level) and a 15.6% abnormal return for the five-factor model (significant at 

the 5% level).  

In Panel B, we show the results for the value-weighted indices, which are economically and 

statistically insignificant. The adjusted R2 is lower for the value-weighted returns (48.8%) than for 

the equal-weighted returns (61.3%), based on the five-factor model. Baker and Wurgler (2006) note 

that theory indicates that large firms will be less effected by sentiment; therefore, they do not 

conduct their tests of sentiment using value-weighted returns. We follow their approach, and, as a 

result, the rest of the paper will use equal-weighted indices in further statistical tests.  

The evidence from Table 3 is consistent with our first hypothesis that social media firms 

outperformed on a risk-adjusted basis. The null hypothesis, that the widely applied asset pricing 

models efficiently price social media stocks, is rejected. In the next section, we will investigate the 

effects of sentiment on and attention to social media stocks. 

 
4.2. Investor sentiment and attention in social media firms 

We considered whether abnormal returns of the social media index were associated with the 

sentiment of the overall market or investor attention to individual stocks. Over any particular period, 

one may observe a subset of firms outperforming or underperforming on a risk-adjusted basis. 

Rather than merely knowing the outperformance of social media stocks over the sample period, we 

were interested in what type of behavioral factors most likely affected the social media performance. 

Since the triumph of social media depends on “going viral,” what kind of behavioral measures 

affected its returns? Is social media stock performance associated with a macro level of interest 

captured by market-wide sentiment (Baker & Wurgler 2006)? Alternatively, did a micro level measure, 

as captured by investor attention (Da et al. 2011), better reflect the interest? Given that social media 

firms have generated intense interest from the market, it is worthwhile to understand which factors 

were most influential for social media stocks. 
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In Table 4, we report firm-level regression results investigating how sentiment affected social 

media stock returns. We show results for both the Fama and French three-factor and five-factor 

models. For each column we considered social media stocks, non-social media stocks from the same 

4-digit SIC code, and the combination of the two groups.  

<Insert Table 4 about here> 

 In the full sample shown as Column 1, we have conflicting evidence across the three-factor 

and five-factor models. The three-factor model shows insignificance of sentiment and a statistically 

insignificant intercept. The five-factor model shows a significantly positive abnormal return, coupled 

with a significantly negative coefficient on sentiment. The coefficients on RMW and CMA are 

significantly negative, having reduced explanatory power from the HML factor, which captures the 

value premium. The evidence in Column 3 for peer firms of social media firms echoes Column 1, 

with sentiment acting as a drag during the period 2004 – 2014. Column 2 shows the results for the 

social media firms. The coefficients on the intercept and sentiment are not statistically different from 

zero. Interestingly, the coefficients on profitability (RMW) and investment (CMA) are more 

significantly negative, indicating that social media stocks were weaker in profit margins, presumably 

due to more aggressive investments captured by a negative CMA coefficient. Column 2 shows the 

five-factor model fits the best capturing 17.61% of the variation, higher than adjusted R2 for 

Columns 1 or 3. Sentiment did not appear to be a priced factor for social media stocks, which rejects 

our hypothesis that sentiment was influential for social media stocks (H2). 

 To ensure that we had the power to detect a relation between social media performance and 

sentiment, we considered the level of sentiment during our sample period. Yu and Yuan (2011) 

found that sentiment was time dependent. In periods of low sentiment, the mean-variance tradeoff 

holds, while during high sentiment, it is not apparent. For our sample period, the average University 

of Michigan consumer sentiment level from 1978 - 2014 was 85.1. During the period 2004 - 2014, 
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average sentiment was 78.7, reflecting lower than average sentiment for our sample period. Of the 

132 months in the sample window, only 39 of these months were characterized by high sentiment 

(above the 85.1 average). Therefore, we believe that we had the power to detect the relation with 

sentiment, had there been one for social media stocks, which strengthens our findings. 

Recent studies by Barber and Odean (2008) and Da et al. (2011) indicated that investor 

attention can affect asset pricing. Given the interest in social media over the past decade, how are 

these attention-grabbing stocks associated with investor interest? We followed Da et al. (2011) and 

used the search volume index (SVI) data published by Google Trends as a direct measure of investor 

attention. We collected the SVI arrays for social media firms and their peer companies that shared 

the same 4-digit SIC code and compared their behavior. For our population, univariate results 

showed that social media firms had an average SVI and average abnormal SVI of 2.853 and 0.021, 

respectively. Their industry peers had a lower average SVI, but a slightly higher average abnormal 

SVI of 2.605 and 0.029, respectively. Note that the abnormal SVI represents the change in investor 

attention. 

Table 5 replaces sentiment with investor attention as a possible explanatory variable for 

explaining the outperformance of the social media stocks and non-social media stocks from the 

same 4-digit SIC code. We also studied the results of the combination of the two groups. Unlike the 

results for sentiment, investor attention appears to be an important factor across all groups for both 

three-factor and five-factor results, significant at the 1% level for all tests. Social media stocks on 

average received greater investor attention, and the return impact was slightly more economically 

significant than it was for peer firms in the same sectors with a lower statistical significance. 

Consistent with the results from the previous table, the coefficients on profitability (RMW) and 

investment (CMA) factors were also significantly negative. The results suggest weaker profitability 

and stronger investment in social media firms relative to their industry peers. The model significance 
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as captured by adjusted R2 is substantially higher for social media stocks (19.6%) than for their peer 

firms (12.5%).  

<Insert Table 5 about here> 

In Table 6, we show the relative significance of the factors driving asset prices by putting 

both sentiment and investor attention together in the model. Sentiment represents a market-wide 

excitement, while investor attention is a firm-level factor. Including both factors offers evidence as 

to which is more important in the pricing of social media stocks. On the one hand, mispricing of 

social media stocks may arise, as it did in the dot-com era, because investors were rushing to 

purchase a new generation of concept stocks. On the other hand, investors may be responding to 

firm information as captured by investor attention, which is a micro level variable.  

Tables 6 presents the findings of both three-factor and five-factor models for social media 

stocks, stocks of peer firms from the same 4-digit SIC code, and for each group separately between 

2004 and 2014. For social media stocks, the model intercepts disappear. Sentiment, while statistically 

insignificant, has driven out the remaining unexplained variation. Attention has a significantly 

positive association with the performance of social media firms. The adjusted R2 in the model was 

slightly lower when sentiment was included (18.4%) than when it was not included in Table 5 

(19.6%). Column 3 in Table 6 shows both market-wide sentiment and firm-level attention effects for 

the pricing of the peer firms. Sentiment acts as a drag on pricing for peer firms, and the result shows 

it is offset by the impact of investment attention. 

<Insert Table 6 about here> 

We showed that the micro level measure of investor behavior, attention (ASVI), influenced 

social media stocks and their peers. This finding is consistent with the finance literature (Da et al. 

2011). The effect of sentiment on returns, however, varied between social media stocks and their 
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peer firm stocks. Specifically, unlike their peer stocks in the same industries, social media stocks 

were not associated with the general emotion of the market as captured by investor sentiment. We 

also found a major difference in the source of asset pricing in Tables 5 and 6. The finding that the 

investment coefficient (CMA) for social media is about four times higher than those of peer stocks 

suggests that social media stocks are more sensitive to investment than their peers, which is perhaps 

more reflective of their innovative nature as social media firms. 

 
5. What Macroeconomic Factors Drive Social Media Performance? 

Our previous analysis showed that social media stocks outperformed the market and that 

investor attention was a significant pricing factor, providing support for our third hypothesis (H3). 

We then extended our analysis of social media firms to analyze the macroeconomic factors that 

drove this performance. In this section, we examine the relation between risk-adjusted returns of 

social media stocks and macroeconomic factors. 

 

5.1. GARCH regression analysis 

 We initially considered risk premiums from Chen et al. (1986) and forward volatility captured 

by the VIX (the CBOE S&P 500 Volatility Index) of Fleming et al. (1995). Prior research suggests 

that the maturity risk premium (MRP) can be important in determining the equity premium (Fama & 

Gibbons 1982; Campbell 1987; Rapach et al. 2005). We measured MRP as the difference in yield 

between the 20-year Treasury bond and the 3-month Treasury bill. Campbell et al. (2008) and 

Vassalou and Xing (2004) found the economic importance of default risk in asset pricing. We set the 

default risk premium (DRP) as the difference in the average interest rate between Moody’s Baa and 

Aaa corporate bonds.  
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We also considered the impact of sentiment on performance. Yu and Yuan (2011) showed 

the relation between investor sentiment and the mean-variance relation.12 They found variation in 

the risk-return relation when investors had different attitudes about prospects. There is a positive 

tradeoff between risk and return during periods of low investor sentiment. However, the mean-

variance relation appeared to weaken during periods of high investor sentiment. Due to the time-

rolling nature of the Sharpe ratio calculation, it is appropriate to include a one-lag error in the 

regression. The dependent variable is the Sharpe ratio (���) of social media stocks13. To control the 

time-variation in error, we used the following GARCH model (Engle 1982): 

 1,
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where xj’s are the macroeconomic variables. In addition to equation (6), we considered single-

variable regressions.  

Table 7 reports the regression results. The GARCH regression results in Column 1 show 

statistically significant estimates for DRP and VIX. The findings are consistent with the risk-

adjusted returns for social media firms being associated with stress in credit markets, as modeled by 

the default risk premium. As credit markets required greater risk premiums for liquidity and default, 

the Sharpe ratio for social media stocks decreased. The negative estimate on the VIX suggests that 

investors of social media stocks in general were inversely sensitive to higher forward risk 

environments. This may be because social media stocks provided investors new opportunities for 

those who were sensitive to market volatility. The single-variable regressions showed similar results 

                                                 
12 Yu and Yuan (2011) use the Baker and Wurgler (2006) investor sentiment measure and check for robustness with the 
University of Michigan Consumer Sentiment Index. Results were similar with both measures; therefore, we elected to 
use the index more readily available to us. 
13 We computed the monthly Sharpe ratio of social media stocks by converting the weekly data to match the frequency 
of the control variables in the GARCH regressions.   
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to the multiple-variable regression. Consistent with our prior findings, sentiment was not an 

important factor for social media asset pricing.  

<Insert Table 7 about here> 

 
5.2. Causality tests 

We further applied Granger (1969) model to test whether these variables were associated 

with the risk-adjusted returns of social media stocks. We first confirmed that the series was 

stationary by using augmented Dickey–Fuller (1979) and Phillips–Perron (1988) tests. Using both 

the Akaike (1974) and the Schwarz (1978) criteria, we set 12 lags as the optimum in the time-series 

to test whether these variables Granger-cause the Sharpe ratio (SR) of the social media stocks.  

In Table 8, the F-statistics show that the null hypotheses cannot be rejected for the Granger 

causality test only for sentiment and the maturity risk premium. The regression results from Table 7 

suggest a statistical correlation between the Sharpe ratio and two risks: default risk and VIX. 

Granger causality tests further support the possibility that the changes in these variables determine 

the performance of social media stocks. Interestingly, it appears that projected risk captured by the 

VIX lends Granger causality to the performance of social media stocks. The performance of social 

media stocks appears to be associated with forward-looking risk and investor attention. 

<Insert Table 8 about here> 

Our empirical results showed that the return behavior of social media stocks was different 

from that of the dot-coms in terms of the influence of the overall-economy sentiment. Yu and Yuan 

(2011) considered the mean-variance implications of sentiment, demonstrating that sentiment seems 

to be a significant factor only during periods of low sentiment, with the relation decoupling during 

high sentiment. They suggest that dot-com stock pricing was associated with investor confidence. 

Our results showed that the risk factors in the economy, including default risk premium and forward 
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volatility, appear to determine the performance of this new group of stocks. We further confirmed 

the statistical correlation of these risk factors by showing Granger causality tests, which supported 

the notion that many of these factors influenced the relation for social media firms. 

 
6. Conclusion 

Social media has accelerated the pace at which people communicate, socialize, learn, and 

conduct business. A study of the performance and pricing factors of social media firms has become 

important to both academia and Wall Street. We studied the performance of social media stocks by 

following the definition proposed by Kaplan and Haenlein (2010) to set the population of social 

media firms. 

We found that social media firms generated abnormal returns of about 13% to 16% annually 

over the sample period. All five factors in the Fama-French (2015) model contribute to expected 

return, as well as investor attention. We also investigated various groups of social media: social 

networking and social gaming. Outperformance of social media stocks was related to and Granger-

caused by default risk premiums and forward volatility, but not investor sentiment. Our findings 

suggest the pricing behavior of social media stocks differs from their dot-com peers.  

Social media stocks should not be simply viewed as a subset of dot-com stocks because their 

stock prices behave differently. The results regarding the impact of macroeconomic factors on the 

excess industry-adjusted performance of social media stocks are insightful to understating their 

pricing behavior.   
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Table 1. Social media firms 
The table reports social media firms that form the population. We follow the definition of social media firms from Kaplan and Haenlein 
(2010) to manually identify the 43 social media firms. Column A lists the name of the firm. Column B classifies the firm as either social 
networking (N) or social gaming (G). Column C describes the rationale for membership as a social media firm. Columns D and E show the 
beginning and ending dates for membership as social media firms, listed by year and then month.  
  
 

(A) Company Name (B) Social (C) Description (D) Begin 

(E) 

End 

A O L INC N media platform, social networking (bebo and about.me)  200912 201412 

ANCESTRY COM INC N genealogy community 200911 201212 

BAIDU COM INC N news service, content, and social chat 200508 201412 

FACEBOOK INC N social networking 201205 201412 

GEEKNET INC N technology social networking and news 200401 201412 

GOOGLE INC N social networking (Orkut, Google Blog, Picasa, Google+) 200408 201412 

IAC INTERACTIVECORP N search applications, online dating, vimeo, ask.com 200401 201412 

JIAYUAN COM INTL LTD N Chinese online dating social network space 201105 201412 

LINKEDIN CORP N professional social networking 201105 201412 

REDIFF COM INDIA LTD N Indian news; social networking (Rediff MyPage)  200401 201412 

RENREN INC N Chinese social networking service 201105 201412 

SINA CORP N Chinese social networking (personal and professional) 200401 201412 

SOHU COM INC N Chinese content community and social networking 200401 201412 

TWITTER N real-time conversation - social expression 201311 201412 

UNITED ONLINE LTD N social networking and Internet provider 200401 201412 

WEIBO CORPORATION N social media in support of Chinese language acquisition 201404 201412 

YAHOO INC N news and social chat (Flickr, Tumblr, Yahoo 360)  200401 201412 

YANDEX N V N Russian social network and search engine 201105 201412 

YELP INC N business reviews and online yelper social space 201203 201412 

YOUKU COM INC N Chinese video content library; Internet television & video 201012 201412 

YY INC. N Chinese social networking 201211 201412 
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ACTIVISION BLIZZARD INC G social gaming 200401 201412 

ANSWERS CORP G user generated answers + reference materials 200410 201104 

CHANGYOU COM LTD G Chinese social gaming 200904 201412 

CHINA MOBILE GAMES  G Chinese social gaming 201209 201412 

ELECTRONIC ARTS INC G social gaming and software services 200401 201412 

GIANT INTERACTIVE GROUP G Chinese social gaming 200711 201407 

GIGAMEDIA LIMITED G Taiwanese social gaming and cloud computing 200401 201412 

GLU MOBILE INC. G social gaming 200703 201412 

GRAVITY CO. LTD G social gaming 200502 201412 

KING DIGITIAL ENTERTAINMENT G social gaming 201403 201412 

KONGZHONG CORP. G Chinese social gaming 200407 201412 

MAJESCO ENTERTAINMENT CO G social gaming 200501 201412 

NETEASE COM INC G Chinese social gaming 200401 201412 

PERFECT WORLD CO LTD G Chinese social gaming 200707 201412 

PHEONIX NEW MEDIA LTD G Chinese social gaming 201105 201412 

SHANDA GAMES LTD G Chinese social gaming 200909 201412 

TAKE TWO INTERACTIVE  G social gaming and video gaming 200401 201412 

TAOMEE HOLDINGS LTD G Chinese social gaming 201106 201412 

THE9 LIMITED G Chinese social gaming 200412 201412 

WEBZEN INC G South Korean social gaming 200401 201007 

XUNLEI LTD G Chinese social gaming and cloud services 201406 201412 

ZYNGA INC G social gaming 201112 201412 
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Table 2. Summary statistics  
The table reports the number of firm-month observations, minimum, median, maximum, mean, and standard deviation of the monthly 
returns and market value of equity of social media stocks, industries in which social media firms are members (peer firms), and the universe 
of U.S. stocks from CRSP (excluding penny stocks). Panel A includes the monthly returns. Panel B contains the natural logarithm of 
market value of equity (in millions). The time period for the population is January 1, 2004 – December 31, 2014. We follow the definition 
of social media firms from Kaplan and Haenlein (2010) to manually identify the 43 social media firms.  
 
 

 
Firm type N Min Median Max Mean Standard Deviation 

 

Panel A: Monthly returns 

Social Media 2,127 -0.4802 0.0113 1.1907 0.0212 0.1376 

Peer Firms 37,726 -0.8562 0.0121 3.8594 0.0219 0.1288 

US Stocks 611,024 -0.8686 0.0096 13.4951 0.0136 0.1037 

 

Panel B: Natural logarithm of market value of equity (except N) 

Social Media 2,127 16.7140 21.6712 26.5482 21.8234 1.8816 

Peer Firms 37,726 13.9043 20.5247 26.6930 20.4704 1.9680 

US Stocks 611,024 11.1211 20.3179 27.2640 20.2997 2.0117 
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Table 3. Regression results for social media indexes 
This table contains regression results for indices of social media firms for the period January 1, 2004 - December 31, 2014. The indices are 
formed by equal weighting (Panel A) or by value weighting (Panel B) monthly raw returns to form three indices: social media (43 firms) and 
its two subgroups of social gaming (22 firms) and social networking (21 firms). The index returns are regressed on risk factors (excess 
market return (Mkt - Rf), size (SMB), value (HML), profitability (RMW) and investment patterns (CMA)) for the Fama-French three-factor 
(1993) and five-factor (2015) models. The coefficients shown reflect the coefficient on the intercept and their associated t statistics. 
Monthly returns are calculated by subtracting the adjusted stock price from CRSP from the previous month’s adjusted stock price and by 
dividing by the previous month’s adjusted stock price. Panel A shows results for equal-weighted index returns for social media (Column 1), 
social gaming (Column 2), and social networking (Column 3) indices. Panel B shows results for value-weighted index returns for social 
media (Column 4), social gaming (Column 5), and social networking (Column 6) indices. The risk factors are obtained from Ken French’s 
website. Tests of significance at traditional levels of 1%, 5%, and 10% are indicated with ***, **, and *. 
 Dependent Variable - Monthly Returns 

 Panel A: Equal weighted 

 Column 1: Social Media Column 2: Social Gaming Column 3: Social Networking 

Variables Three-factor Five-factor  Three-factor Five-factor  Three-factor Five-factor  

Intercept 0.0106*** 0.0136***  0.0111** 0.0142***  0.0100* 0.0130**  
 (2.42) (3.04)  (2.07) (2.61)  (1.86) (2.32)  

Mkt - Rf 1.3257*** 1.1827***  1.2983*** 1.1414***  1.3602*** 1.2301***  
 (11.07) (9.26)  (8.85) (7.33)  (9.28) (7.69)  

SMB 0.5694*** 0.4540**  0.3803 0.2801  0.6839*** 0.5515**  
 (2.67) (2.10)  (1.45) (1.06)  (2.62) (2.04)  
HML -0.8038*** -0.6242***  -0.4770** -0.1648  -1.0965*** -1.0310***  
 (-4.08) (-2.93)  (-1.98) (-0.63)  (-4.55) (-3.86)  

RMW  -0.7181**   -0.6958*   -0.7436*  
  (2.16)   (-1.71)   (-1.78)  

CMA  -0.8616***   -1.3150***   -0.4473  
  (-2.41)   (-3.02)   (-1.00)  

          

Adjusted R2 0.5895 0.6130  0.4598 0.4966  0.5138 0.5209  
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 Panel B: Value weighted 

    

 Column 4: Social Media Column 5: Social Gaming Column 6: Social Networking 

          

Variables Three-factor Five-factor  Three-factor Five-factor  Three-factor Five-factor  

Intercept -0.0007** -0.0006*  -0.0005 -0.0002  -0.0004 -0.0002  
 (-2.04) (-1.72)  (-0.52) (-0.25)  (-0.56) (-0.23)  
Mkt - Rf 0.0940*** 0.0892***  0.1858*** 0.1728***  0.1712*** 0.1586***  
 (9.69) (8.38)  (7.15) (6.06)  (8.25) (6.99)  

SMB 0.0130 0.0106  0.0228 0.0161  0.0210 0.0132  
 (0.75) (0.59)  (0.49) (0.33)  (0.57) (0.34)  

HML -0.0774*** -0.0668***  -0.1016*** -0.0762  -0.1485*** -0.1228***  
 (-4.84) (-3.76)  (-2.38) (-1.60)  (-4.35) (-3.24)  

RMW  -0.0197   -0.0568   -0.0559  
  (-0.71)   (-0.76)   (-0.95)  

CMA  -0.0452   -0.1040   -0.1038  
  (-1.52)   (-1.30)   (-1.64)  
          

Adjusted R2 0.4850 0.4878  0.3285 0.3294  0.4033 0.4095  
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Table 4. Stock pricing and sentiment 

The table reports regression results of sentiment in asset pricing for the period January 1, 2004 – December 31, 2014, for the Fama- French 
three-factor (1993) and five-factor (2015) models, and shows results for social media stocks and stocks from the same 4-digit SIC code 
combined (Column 1) and for each group separately (Columns 2 and 3). Returns are regressed on risk factors (excess market return (Mkt - 
Rf), size (SMB), value (HML), profitability (RMW), and investment patterns (CMA)) for the Fama-French three-factor (1993) and five-
factor (2015) models. The coefficients shown reflect the coefficient on the intercept and their associated t statistics. We use monthly stock 
return data for 43 social media stocks and 1,299 non-social media stocks that share the 4-digit SIC code. The risk factors are obtained from 
Ken French’s website. Tests of significance at traditional levels of 1%, 5%, and 10% are indicated with ***, **, and *. 
 
 Dependent Variable - Monthly Returns 

 Column 1: All Column 2: Social Media Column 3: Peer Firms 

Variables Three-factor Five-factor  Three-factor Five-factor  Three-factor Five-factor  

Intercept 0.00036 0.0886***  -0.05049 0.09659  0.00512 0.08877***  
 (0.01) (3.73)  (-0.55) (1.01)  (0.22) (3.62)  
Mkt - Rf 0.9916*** 0.9229***  1.3759*** 1.2645***  0.9664*** 0.8994***  
 (47.19) (42.40)  (15.72) (13.71)  (44.65) (40.15)  

SMB 0.7520*** 0.5757***  0.5746*** 0.4054***  0.7642*** 0.5892***  
 (23.28) (16.59)  (4.13) (2.79)  (23.02) (16.49)  

HML -0.4467*** -0.3780***  -0.8058*** -0.4837***  -0.4247*** -0.3754***  
 (-13.26) (-9.64)  (-5.82) (-3.07)  (-12.23) (-9.27)  

RMW  -0.6577***   -0.7674***   -0.6487***  
  (-12.67)   (-3.35)   (-12.17)  

CMA  -0.3672***   -1.1738***   -0.3115**  
  (-6.11)   (-4.73)   (-5.03)  
ln(Sentiment) 0.0058 -0.04006***  0.03118 -0.04534  0.00340 -0.04004***  

 (0.48) (-3.19)  (0.64) (-0.90)  (0.27) (-3.09)  

          

Adjusted R2 0.1130 0.1177  0.1640 0.1761  0.1102 0.1146  
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Table 5. Stock pricing and attention  
The table reports regression results of investor attention in asset pricing for the period January 1, 2004 – December 31, 2014, for the Fama-
French three-factor (1993) and five-factor (2015) models, and shows results for social media stocks and stocks of peer firms from the same 
4-digit SIC code combined (Column 1) and for each group separately (Columns 2 and 3). Returns are regressed on risk factors (excess 
market return (Mkt - Rf), size (SMB), value (HML), profitability (RMW), and investment patterns (CMA)) for the Fama-French three-factor 
(1993) and five-factor (2015) models. The coefficients shown reflect the coefficient on the intercept and their associated t statistics. We use 
monthly stock return data for 43 social media stocks and 1,299 non-social media stocks that share the 4-digit SIC code. Abnormal Search 
Volume Index (ln (ASVI)) is defined by Da et al. (2011) to directly measure the change in investor attention. The risk factors are obtained 
from Ken French’s website. Tests of significance at traditional levels of 1%, 5%, and 10% are indicated with ***, **, and *. 
 Dependent Variable - Monthly Returns 

 Column 1: All Collumn  2: Social Media Column 3: Peer Firms 

Variables Three-factor Five-factor  Three-factor Five-factor  Three-factor Five-factor  

Intercept 0.0110*** 0.0127***  0.0101*** 0.0130***  0.0111*** 0.0128***  
 (16.71) (19.01)  (3.62) (4.49)  (16.44) (18.57)  

Mkt - Rf 0.9911*** 0.9215***  1.3573*** 1.2242***  0.9665*** 0.9000***  
 (51.28) (45.96)  (17.26) (14.49)  (48.47) (43.59)  

SMB 0.6767*** 0.5304***  0.5353*** 0.4145***  0.6868*** 0.5407***  
 (21.46) (15.74)  (3.93) (2.93)  (21.20) (15.59)  
HML -0.4486*** -0.4026***  -0.8324*** -0.5667***  -0.4247*** -0.3964***  
 (-13.87) (-10.62)  (-6.26) (-3.74)  (-12.74) (-10.12)  

RMW  -0.5779***   -0.6570***   -0.5705***  
  (-11.84)   (-3.06)   (-11.39)  

CMA  -0.3214***   -1.0206***   -0.2712***  
  (-5.42)   (-4.18)   (-4.43)  

ln(ASVI) 0.0115*** 0.0113***  0.0142*** 0.0140***  0.0113*** 0.0111***  

 (11.41) (11.31)  (3.22) (3.18)  (10.93) (10.84)  

          

Adjusted R2 0.1250 0.1292  0.1866 0.1963  0.1214 0.1253  
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Table 6. Stock pricing, sentiment, and attention 
The table reports regression results of sentiment and attention in asset pricing for the period January 1, 2004 – December 31, 2014, for the 
Fama-French three-factor (1993) and five-factor (2015) models, and shows results for social media stocks and stocks of peer firms from 
the same 4-digit SIC code combined (Column 1) and for each group separately (Columns 2 and 3). Returns are regressed on risk factors 
(excess market return (Mkt - Rf), size (SMB), value (HML), profitability (RMW), and investment patterns (CMA)) for the Fama-French 
three-factor (1993) and five-factor (2015) models. The coefficients shown reflect the coefficient on the intercept and their associated t 
statistics. We use monthly stock return data for 43 social media stocks and 1,299 non-social media stocks that share the 4-digit SIC code. 
Abnormal Search Volume Index (ln (ASVI)) is defined by Da et al. (2011) to directly measure the change in investor attention. The risk 
factors are obtained from Ken French’s website. Tests of significance at traditional levels of 1%, 5%, and 10% are indicated with ***, **, 
and *. 
 Dependent Variable - Monthly Returns 

 Column 1: All Column 2: Social Media Column 3: Peer Firms 

Variables Three-factor Five-factor  Three-factor Five-factor  Three-factor Five-factor  

Intercept -0.00385 0.08686***  -0.07217 0.08423  0.00230 0.08766***  
 (-0.16) (3.54)  (-0.76) (0.85)  (0.09) (3.46)  

Mkt - Rf 1.00502*** 0.9329***  1.3858*** 1.2763***  0.9800*** 0.9092***  
 (47.14) (41.82)  (15.59) (13.45)  (44.63) (39.61)  

SMB 0.7222*** 0.5722***  0.5383*** 0.4053***  0.7348*** 0.5853***  
 (21.84) (16.36)  (3.78) (2.76)  (21.61) (16.26)  
HML -0.4831*** -0.3913***  -0.8277*** -0.4646***  -0.4615*** -0.3909***  
 (-14.00) (-9.67)  (-5.84) (-2.87)  (-12.97) (-9.35)  

RMW  -0.6154***   -0.6673***   -0.6103***  
  (-11.52)   (-2.82)   (-11.14)  

CMA  -0.3843***   -1.2457***   -0.3243***  
  (-6.19)   (-4.87)   (-5.07)  

ln(Sentiment) 0.00798 -0.03924***  0.04305 -0.03877  0.00484 -0.0396***  

 (0.64) (-3.03)  (0.86) (-0.74)  (0.38) (-2.96)  

ln(ASVI) 0.0112*** 0.01107***  0.01442*** 0.01460***  0.01096*** 0.01083***  

 (10.73) (10.64)  (3.21) (3.27)  (10.23) (10.13)  
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Adjusted R2 0.1193 0.1237  0.1720 0.1842  0.1163 0.1203  
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Table 7. GARCH regression of macroeconomic factors on Sharpe ratios of social media stocks 
The table reports the GARCH regression results of the variables affecting the Sharpe ratio of social 
media stocks (SR) using monthly data for January 1, 2004 - December 31, 2014. The regression 

models are , and the variance equation is , 

where xj’s are the macroeconomic variables. The maturity risk premium (MRP) is the difference in 
yield between the 20-year Treasury bond and the 3-month Treasury bill; the default risk premium 
(DRP) is the difference in the average interest rate between Moody’s Baa and Aaa corporate bonds; 
and VIX is the CBOE S&P 500 Volatility Index. Sentiment is taken as the University of Michigan 
Consumer Sentiment Index. Panel A shows the results of the regressions. The variance equations are 
reported in Panel B. Tests of significance at traditional levels of 1%, 5%, and 10% are indicated with 
***, **, and *. 
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Panel A: GARCH Regression       

Variable Column 1 Column 2 Column 3 Column 4 Column 5 

      Constant 0.030 0.035*** 0.027*** 0.042*** 0.039 

 
(0.34) (2.34) (2.54) (3.07) (0.99) 

MRP 0.884* 0.720 

   
 

(1.73) (1.15) 

   DRP 4.483*** 

 

0.522*** 

  
 

(3.46) 

 

(3.76) 

  VIX -0.004*** 

  

-0.005*** 

 
 

(-3.28) 

  

(-3.83) 

 Sentiment -0.001 

   

-0.001 

 
(-0.09) 

   

(-0.15) 

      

Durbin-Watson  0.304 0.306 0.307 0.304 0.306 

            

Panel B: Variance Equation       

      ω 0.003** 0.002*** 0.002*** 0.002*** 0.002*** 

 
(2.24) (2.46) (2.53) (2.48) (2.50) 

α 0.853*** 0.723** 0.710* 0.736* 0.716** 

 
(3.42) (2.02) (1.93) (1.95) (1.99) 

δ -0.230 0.039 0.073 0.011 0.054 

 
(-1.36) (0.28) (0.56) (0.09) (0.41) 
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Table 8. Granger causality tests 
The table reports the results of pairwise Granger (1969) causality tests. The null hypotheses are the 
variables (MRP, DRP, ln(VIX), ln(aSVI), and ln(Sentiment)) do not Granger cause the Sharpe ratio of 
social media stocks (SRSM). We first check that the series are stationary by using augmented Dickey–
Fuller (1979) and Phillips–Perron (1988) tests and find that all series are stationary. Using both the 
Akaike (1974) and the Schwarz (1978) criteria, we set 12 lags as the optimum in the time-series to 
test whether these variables Granger-cause SR. The F-statistics and probabilities are shown.  
 

 

F value Prob. 

MRP does not Granger cause SRSM 0.895 0.555 

DRP does not Granger cause SRSM 2.028 0.030 

VIX does not Granger cause SRSM 2.346 0.011 

ln(aSVI) does not Granger cause SRSM 2.248 0.021 

ln(Sentiment) does not Granger cause SRSM 1.333 0.213 
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Figure 1. Social media index vs. S&P 500 and Nasdaq 
The social media index plotted against the returns on the S&P500 and the Nasdaq Index. Returns 
were computed monthly for the period January 1, 2004 - December 31, 2014. The social media 
index was computed as an equal-weighted index of the 43 social media firms that comprise the 
population. 
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Figure 2. Sharpe ratio of social media stocks 
The mean of Sharpe ratios of social media stocks between the period January 1, 2004 - December 
31, 2014, and its smoothing curve are presented. The Sharpe ratio is computed by using the 52 
weekly returns. The long-term trend is illustrated and smoothed by the filter proposed by Hodrick 
and Prescott (1997) for the actual time-series (H-P) which is the gray curve.  
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Appendix: Population Identification 

The social media firms do not emanate from a common SIC or NAICS industry code. Thus, 

setting the population was a laborious process of searching firms and testing stocks against an 

objective, academic definition. In this study, we applied the definition proposed by Kaplan and 

Haenlein (2010) to a subpopulation of firms that we deemed unequivocally to be members of the 

social media industry, such as Facebook, Google, and Yelp. The common Yahoo! industry category 

for these firms was Internet Information Providers. Each of the 217 firms from the Yahoo! list for 

this industry, downloaded on May 2015, was considered as a potential member of social media 

(whether or not the firm was public). In addition, Global X Funds retails a social media ETF 

(SOCL) with 29 firms as of December 31, 2014. From these initial lists of candidate firms, we 

eliminated firms that did not meet the social media definition. Given the requirements of a web-

based platform, we also searched the 1,000 most active websites by web traffic from the Alexa List 

of Top Million websites based on one-month average traffic, downloaded on May 14, 2015. 

We then searched for additional candidate firms by identifying the competitors of our initial 

list of social media firms and testing these firms against the objective social media definition using 

Mergent Online, Lexis Nexis, and Value Line. These databases provided a list of competitors, which 

we added to our list as potential firms of the population. We compiled a list of industry codes and 

searched all CRSP-listed firms within these 18 sectors defined by 4-digit SIC codes traded on the 

NYSE, Amex, and Nasdaq. We considered each firm that appeared in these SIC codes as a 

candidate for the social media population.  

We manually investigated whether and when the firm had a user interface that fit the three 

criteria defined by Kaplan and Haenlein (2010). These sites could also have a more enhanced, fee-

based model (like LinkedIn), but they needed to host a platform beyond merely a comment portal in 

support of a normal product line for the firm. For example, Amazon.com has a very active user-
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generated comment interface, but the portal exists to complement Amazon’s business model of 

retailing products. Thus, Amazon.com was not deemed to be a social media firm. On the other 

hand, Google has a very active search interface that is widely used. It also offers a social media 

interface known as Google+. The presence of the Google+ social space merits Google’s inclusion in 

the social media population. Many firms fit the definition of a social media firm, but remained either 

privately-held, traded on an exchange outside the United States, or traded as penny stocks. We list 

them in Table A1. Our final population consists of 43 social media firms between the years 2004-

2014.  
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Table A1 Social media firms not in the population 

We present social media companies that were not included in the current study. We report their type 
(privately-held, publicly-traded, or penny stocks), country of firm headquarters, exchange that shares 
are traded on, and category (social networking or social gaming).  
 
Firm Name Type Country Exchange Category 

Arkadium private United States N/A SG 

Linden Labs private United States N/A SG 

Peak Games private Turkey N/A SG 

Pinterest private United States N/A SN 

Pretty Simple private France N/A SG 

Socialpoint private Spain N/A SG 

Supercell private Finland N/A SG 

Wooga private Germany N/A SG 

Com2uS Corp  public Korea KRX SG 

Cupid public London LSE SN 

CyberAgent, Inc.  public Japan TYO SN 

Daum Kakao Corp.  public South Korea KRX SG 

Dena Co. Ltd. public United States OTC SG 

Forgame Holdings Ltd  public Hong Kong  SEKH SG 

Gameloft SE  public France EPA SG 

Gree public Japan Shenzen SN 

Mail.Ru Group Limited  public United Kingdom LSE SN 

Snapchat public United States OTC SN 

Tencent Holdings Limited  public Hong Kong SEKH SG 

Xing AG public Germany FWB SN 

Mixi Inc  public Japan TYO SN 

MeetMe, Inc. penny United States Nasdaq SN 

Spark Networks penny United States NYSE SN 
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