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   Preface 

The first chapter “An Adaptive Fisher’s Combination Method for Joint Analysis of 

Multiple Phenotypes in Association Studies” was published in Scientific Reports in 

October 2016. The second chapter “Joint Analysis of Multiple Phenotypes in Association 

Studies Using Allele-based Clustering Approach for Non-Normal Distributions” was 

invited for revision and the revision is under the review in Annals of Human Genetics. 

The third chapter “A Hierarchical Clustering Method for Dimension Reduction in Joint 

Analysis of Multiple Phenotypes” was accepted by Genetic Epidemiology in February 

2018. For all three chapters, Dr. Shuanglin Zhang and Dr. Qiuying Sha designed 

researches, Dr. Shuanglin Zhang and Xiaoyu Liang performed statistical analyses, Dr. 

Shuanglin Zhang, Dr. Qiuying Sha, and Xiaoyu Liang wrote the manuscripts. In the first 

chapter, Zhenchuan Wang performed real data analysis. In the third chapter, Dr. 

Yeonwoo Rho was involved in designing the research. 
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   Abstract 

Genome-wide association studies (GWAS) have become a very effective research tool to 

identify genetic variants of underlying various complex diseases. In spite of the success 

of GWAS in identifying thousands of reproducible associations between genetic variants 

and complex disease, in general, the association between genetic variants and a single 

phenotype is usually weak. It is increasingly recognized that joint analysis of multiple 

phenotypes can be potentially more powerful than the univariate analysis, and can shed 

new light on underlying biological mechanisms of complex diseases. Therefore, 

developing statistical methods to test for genetic association with multiple phenotypes 

has become increasingly important. This dissertation contains three chapters and the three 

chapters include three new methods we developed for jointly analyzing multiple 

phenotypes.  

In the first chapter of this dissertation, we propose an Adaptive Fisher’s 

Combination (AFC) method for joint analysis of multiple phenotypes in association 

studies. The AFC method combines p-values obtained in standard univariate GWAS by 

using the optimal number of p-values which is determined by the data. In the second 

chapter, we propose an Allele-Based Clustering (ABC) approach for the joint analysis of 

multiple non-normal phenotypes in association studies. In the ABC method, we consider 

the alleles at a SNP of interest as a dependent variable with two classes, and the 

correlated phenotypes as predictors to predict the alleles at the SNP of interest. In the 

third chapter, we develop a novel variable reduction method using hierarchical clustering 

method (HCM) for joint analysis of multiple phenotypes in association studies. HCM 

involves two steps. The first step applies a dimension reduction technique by using a 

representative phenotype for each cluster of phenotypes. Then, existing methods are used 

in the second step to test the association between genetic variants and the representative 

phenotypes rather than the individual phenotypes. We perform extensive simulations to 

evaluate performances of AFC, ABC, and HCM methods and compare the powers of our 
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methods with the powers of some existing methods. Our simulation studies show that the 

proposed methods have correct type I error rates and are either the most powerful test or 

comparable with the most powerful test. Finally, we illustrate our proposed 

methodologies AFC and HCM by analyzing whole-genome genotyping data from a lung 

function study. The results of real data analysis demonstrated that the proposed methods 

have great potential in GWAS on complex diseases with multiple phenotypes.  
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1   An Adaptive Fisher’s Combination Method for Joint 
Analysis of Multiple Phenotypes in Association Studies 

Currently, the analyses of most genome-wide association studies (GWAS) have been 

performed on a single phenotype. There is increasing evidence showing that pleiotropy is 

a widespread phenomenon in complex diseases. Therefore, using only one single 

phenotype may lose statistical power to identify the underlying genetic mechanism. There 

is an increasing need to develop and apply powerful statistical tests to detect association 

between multiple phenotypes and a genetic variant. In this study, we develop an Adaptive 

Fisher’s Combination (AFC) method for joint analysis of multiple phenotypes in 

association studies. The AFC method combines p-values obtained in standard univariate 

GWAS by using the optimal number of p-values which is determined by the data. We 

perform extensive simulations to evaluate the performance of the AFC method and 

compare the power of our method with the powers of TATES, Tippett’s method, Fisher’s 

combination test, MANOVA, MultiPhen, and SUMSCORE. Our simulation studies show 

that the proposed method has correct type I error rates and is either the most powerful test 

or comparable with the most powerful test. Finally, we illustrate our proposed 

methodology by analyzing whole-genome genotyping data from a lung function study.  

 

1.1   Background 

To date, genome-wide association studies (GWAS) have become a tool of choice for the 

identification of genetic variants associated with complex human diseases. Currently, the 

analyses of most GWAS have been performed on a single phenotype. There is increasing 

evidence showing that pleiotropy, the effect of one variant on multiple phenotypes, is a 

widespread phenomenon in complex diseases (Sivakumaran et al., 2011; Wang et al., 

2016b). Therefore, using only one single phenotype may lose statistical power to identify 

the underlying genetic mechanism. By taking into account the correlated structure of 

multiple phenotypes, we can not only discover genetic variants influencing multiple 

phenotypes that may lead to better understanding of etiology of complex human diseases 
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(He et al., 2013; Wang, 2014), but also can improve the statistical power by aggregating 

multiple weak effects and provide new biological insights by revealing pleiotropic 

variants (Amos & Laing, 1993; Jiang & Zeng, 1995; Schifano et al., 2013). 

Consequently, there is an increasing need to develop powerful statistical methods to 

detect association between multiple phenotypes and genetic variants.  

Recently, several statistical methods for detecting association using multivariate 

phenotypes have been developed (Klei et al., 2008; Li et al., 2011; O’Reilly et al., 2012; 

Tang & Ferreira, 2012; van der Sluis et al., 2013; Yan et al., 2013). These methods can 

be divided into three groups: regression models, variable reduction method, and 

combining test statistics from univariate analysis (Yang & Wang, 2012). Regression 

models, such as linear mixed effects models, generalized mixed effects models, and 

generalized estimating equations, can be used to test the association between a genetic 

variant and multiple phenotypes. By using random effects to account for correlation 

among individuals, linear and generalized mixed effect models can model the covariance 

structure not only caused by correlated phenotypes, but also caused by population 

structure (Bates & DebRoy, 2004; Breslow & Clayton, 1993; Fitzmaurice & Laird, 1993; 

Laird & Ware, 1982; Yan et al., 2013). Generalized estimating equations collapse random 

effects and random residual errors in the model (Liang & Zeger, 1986). Existing variable 

reduction methods can be roughly divided into three categories, principal components 

analysis of phenotypes (PCP) (Aschard et al., 2014), canonical correlation analysis 

(CCA) (Tang & Ferreira 2012) and principal component of heritability (PCH) (Klei et al., 

2008; Ott & Rabinowitz, 1999). The PCP approach applies a dimension reduction 

technique and tests for associations between genetic variants and the principle 

components of the phenotypes rather than the individual phenotypes. CCA provides a 

convenient statistical framework to simultaneously test the association between any 

number of quantitative phenotypes and any number of genetic variants genotyped across 

a gene or region of interest for unrelated individuals. For each genetic variant, the PCH 

approach reduces the phenotypes to a linear combination of phenotypes that has the 

highest heritability among all linear combinations of the phenotypes. Based on PCH, 
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several advanced methods have been proposed such as penalized PCH applicable to high-

dimensional data (Wang et al., 2007a; Wang et al., 2007b) and principle components of 

heritability with coefficients maximizing the quantitative phenotype locus heritability 

(PCQH) (Ferreira & Purcell, 2009; Klei et al., 2008; Lange et al., 2002). The third group, 

combining test statistics from univariate tests, is to conduct univariate analysis on each 

phenotype, then combine the univariate test statistics (Yang et al., 2010). The Trait-based 

Association Test that uses Extended Simes procedure (TATES) (van der Sluis et al., 

2013) belongs to this group. TATES combines p-values obtained in standard univariate 

GWAS while correcting for the correlation between p-values. 

Motivated by TATES, in this article, we propose an Adaptive Fisher’s 

Combination (AFC) method for joint analysis of multiple phenotypes in genetic 

association studies. We first test the association between each of the phenotypes and a 

genetic variant of interest using standard GWAS software. Then, AFC uses the optimal 

number of p-values which is determined by the data to test the association. Using 

extensive simulation studies, we evaluate the performance of the proposed method and 

compare the power of the proposed method with the powers of TATES, Tippett’s method 

(Pesarin & Salmaso, 2010), Fisher’s Combination test (FC) (Yang et al., 2016), 

Multivariate Analysis of Variance (MANOVA) (Cole et al., 1994), joint model of 

Multiple Phenotypes (MultiPhen) (O’Reilly et al., 2012), and Sum Score method 

(SUMSCORE) (van der Sluis et al., 2013). Our simulation studies show that the proposed 

method has correct type I error rates and is either the most powerful test or comparable 

with the most powerful tests. Finally, we illustrate our proposed methodology by 

analyzing whole-genome genotyping data from a lung function study. 
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1.2   Methods 

1.2.1   Adaptive Fisher’s Combination Method  

Consider a sample of 𝑛 unrelated individuals. Each individual has 𝐾 phenotypes. Denote 

𝑌$ = (𝑦($,… , 𝑦+$)- as the 𝑘/0 phenotype of 𝑛 individuals. Denote 𝑋 = (𝑥(,… , 𝑥+)- as 

the genotypic score of 𝑛 individuals at a genetic variant of interest, where 𝑥3 ∈ {0, 1, 2} is 

the number of minor alleles that the 𝑖/0 individual carries at the genetic variant. We 

propose a new method to test the null hypothesis 𝐻<: none of the 𝐾 phenotypes are 

associated with the genetic variant.  

We test the association between each phenotypic vector 𝑌$ (𝑘 = 1, 2, … ,𝐾) and 

the genotypic score 𝑋 using a standard GWAS software (e.g. PLINK, Gen/ProbABEL, 

MaCH, SNPTEST, and FaST-LMM) (Aulchenko et al., 2007; Aulchenko et al., 2010; Li 

et al., 2009; Li et al., 2010; Lippert et al., 2011; Marchini et al., 2007; Purcell et al., 

2007). Let 	
  𝑝(,𝑝?,…,𝑝@  denote the p-values obtained by the standard univariate GWAS. 

Based on these p-values, we propose an Adaptive Fisher’s Combination (AFC) method to 

test the association between multiple phenotypes and the genetic variant. Let 𝑝($) denote 

the 𝑘/0 smallest p-value, 𝑇$ = −∑ Dlog𝑝(3)H$
3I( (	
  𝑘 = 1, 2,… , 𝐾), and 𝑝-J  denote the p-

value of 𝑇$	
  . The statistic of AFC to test the association between the 𝐾 phenotypes and 

the genetic variant is given by 𝑇KLL = min
(P$P@

𝑝-J . We use the following permutation 

procedure to evaluate the p-values of	
  	
  𝑇$  and	
  	
  𝑇KLL. 

1.   In each permutation, we randomly shuffle the genotypes and recalculate 

𝑝((), … , 𝑝(@) and 𝑇(,… , 𝑇@. Suppose that we perform 𝐵 times of permutations. Let 

𝑇$
(T) (𝑏 = 0,1, … , 𝐵) denote the value of 𝑇$ based on the 𝑏/0  permuted data, 

where 𝑏 = 0 represents the original data.  

2.   We transfer 𝑇$
(T) to 𝑝-J

(T) by 

𝑝-J
(T) = #{W:-J

(Y)Z-J
([)	
  \]^	
  _I<,(,…,`}
`

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (1)  
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3.   Let 𝑇KLL
(T) = min

(P$P@
𝑝-J
(T). Then, the p-value of 𝑇KLL is given by  

#{T:-abb
([)c-abb

(d)	
  \]^	
  TI(,?,…,`}
`

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (2)  

As shown in Appendix, the null distributions of 𝑝(,𝑝?,…,𝑝@  and thus of 𝑇KLL do not 

depend on the genetic variant being tested. Thus, the permutation procedure described 

above to generate an empirical null distribution of 𝑇KLL needs to be done only once for a 

GWAS. 

The R code of AFC is available at Shuanglin Zhang’s homepage 

http://www.math.mtu.edu/~shuzhang/software.html. 

 

1.2.2   Comparison of Methods 

We compare the performance of our method with those of TATES (van der Sluis et al., 

2013), Tippett’s method (Pesarin & Salmaso, 2010), Fisher’s Combination test (FC) 

(Yang et al., 2016), Multivariate Analysis of Variance (MANOVA) (Cole et al., 1994), 

joint model of Multiple Phenotypes (MultiPhen) (O’Reilly et al., 2012), and Sum Score 

method (SUMSCORE) (van der Sluis et al., 2013). Here we briefly introduce each of 

those methods using the notations in the method section. 

TATES: Combine the 𝐾 phenotype-specific p-values obtained in standard 

univariate GWAS to acquire one overall p-value, min
$
efgh(J)
fg(J)

i, where 𝑚k denotes the 

effective number of independent p-values of all 𝐾 phenotypes, and 𝑚k($) denotes the 

effective number of p-values among the top 𝑘 p-values. 

MANOVA: Consider a multivariate multiple linear regression model: 𝒀 =

𝑋𝛽- + 𝓔, where 𝒀 denotes the 𝑛 × 𝐾 matrix of phenotypes, 𝛽- = (𝛽(, … , 𝛽@) is a vector 

of coefficients corresponding to the 𝐾 phenotypes, and 𝓔 is the 𝑛 × 𝐾 matrix of random 

errors with each row of 𝓔 to be i.i.d. 𝑀𝑉𝑁(0, 𝚺), where 𝚺 is the covariance matrix of 𝓔. 
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To test 𝐻<: 𝛽 = 0, the likelihood ratio test is equivalent to the Wilk’s Lambda test 

statistic of MANOVA (Rencher, 2003), that is, −2 log𝛬 = 2 v𝑙D𝛽x, 𝚺yH − 𝑙D0,𝚺y<Hz =

𝑛 log |𝚺
yd|
|𝚺y|

= −𝑛 logv |𝑬|
|𝑬}𝑯|

z. Here Λ denote the ratio of the likelihood function under 𝐻< to 

the likelihood function under 𝐻(, 𝑙(𝛽, 𝜮) is the log-likelihood function,  𝑯 = 𝛽x(𝑋-𝑋)𝛽x- 

and 𝑬 = 𝒀-𝒀 − 𝛽x(𝑋-𝑋)𝛽x-, where 𝛽x = 𝒀-𝑋(𝑋-𝑋)�( is the maximum likelihood 

estimator (MLE) of 𝛽, and |∙| denotes the determinant of a matrix. Then the test statistic 

has an asymptotic 𝜒@?  distribution (Ray et al., 2016). 

MultiPhen: By performing ordinal regression, MultiPhen develops a reversed 

analysis for joint analysis of multiple phenotypes by considering a genetic variant of 

interest 𝑋 = (𝑥(,… , 𝑥+)- as a response variable, and the correlated phenotypes 𝑌$ =

(𝑦($, … , 𝑦+$)- as predictors. 

SUMSCORE: Let 𝑇��]^k$  denote the score test statistic to test the association 

between the 𝑘/0 phenotype and the genetic variant. The test statistic of SUMSCORE is 

given by 𝑇�������� = ∑ 𝑇��]^k$@
$I( . The p-value of 𝑇��������  is estimated using a 

permutation procedure.  

Tippett: The test statistic of Tippett is given by 𝑇-3hhk// = min
$
𝑝$ . The p-value 

of 𝑇-3hhk// is estimated using a permutation procedure.  

FC: The Fisher’s combination test statistic is defined as 𝑇�� = ∑ −2 log(𝑝$)@
$I( . 

Yang et al. (Yang et al., 2016) adopted three different approaches to calculate the p-value 

for correlated phenotypes. In this article, we calculate the p-value using a permutation 

procedure. 

AFC, FC, and Tippett are closely related. Intuitively, when only one phenotype or 

very few phenotypes are associated with the variant, Tippett is more powerful than FC 

because in this case FC contains a lot of noises. When all phenotypes or a large 

proportion of the phenotypes are associated with the variant, FC is more powerful than 
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Tippett because in this case Tippett only uses the minimum p-value and loses 

information. AFC can be adaptive to the number of phenotypes associated with the 

variant.   

 

1.3   Results 

1.3.1   Simulation Studies  

We generate genotype data at a genetic variant according to a minor allele frequency 

(MAF) under Hardy-Weinberg equilibrium. Phenotypes are generated similarly to that of 

van der Sluis et al. (van der Sluis et al., 2013). The phenotypic correlation structures 

mimic that of UK10K (UK10K Consortium, 2015), that is, the phenotypes are divided 

into several groups (factors) and the within-group correlation is larger than the between-

group correlation. Denote 𝑌$ = (𝑦($, … , 𝑦+$)- as the 𝑘/0 phenotype of 𝑛 individuals and 

𝑋 = (𝑥(, … , 𝑥+)- as the genotypic score of the 𝑛 individuals at the genetic variant.  

Scenario 1: considering one factor model with genetic variant effect on the 

factor. We first generate a common factor, 𝑓 = 𝛽𝑋, where 𝑓 is the 𝑛 by 1 common factor 

and 𝛽 is the effect size. Then we simulate 𝐾 phenotypes by  

𝑌$ = 𝑎𝑓 + 𝜀$ for 𝑘 = 1,2,… , 𝐾,                                         (3) 

where 𝑎 is a factor loading, 𝜀$ = (𝜀($,… , 𝜀+$)𝑻~𝑀𝑉𝑁(0, 𝑰𝒏), and 𝑰𝒏 is the identity 

matrix. 

Scenario 2: considering 4 factor model with the genetic variant effect on the 

fourth factor, each factor has @
�
 (𝐾 is a multiple of 4) phenotypes. We generate 4 

correlated factors using (𝑓(, 𝑓?, 𝑓�, 𝑓�)-~𝑀𝑉𝑁(0, 𝚺), where 𝚺 = D1 − 𝜌\KH𝑰 + 𝜌\K𝑨, 𝑨 is 

a matrix with elements of 1, 𝑰 is the identity matrix, and 𝜌\K  is the correlation between 

any two factors. Then, we transform the fourth factor 𝑓� to 𝑓�∗	
  by 𝑓�∗ = 𝑓� + 𝛽𝑋 and 

simulate 𝐾 phenotypes using  
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𝑌$ =

⎩
⎪
⎨

⎪
⎧𝑎𝑓( + 𝜀(	
  𝑓𝑜𝑟	
  𝑘 = 1,… , @

�
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where 𝑎 is a factor loading,	
  𝜀  = D𝜀( ,… , 𝜀+ H
-
~	
  𝑀𝑉𝑁(0, 𝑰𝒏) for 𝑗 = 1,… ,4, and 𝛽 is the 

effect size.  

Scenario 3: considering two factor model with the genetic variant effect on the 

second factor, each factor has @
?
 (𝐾 is a multiple of 2) phenotypes. We generate two 

correlated factors using (𝑓(, 𝑓?)-~𝑀𝑉𝑁(0, 𝚺), where 𝚺 = D1 − 𝜌\KH𝑰 + 𝜌\K𝑨, 𝑨 is a 

matrix with elements of 1, 𝑰 is the identity matrix, and 𝜌\K  is the correlation between any 

two factors. Then, we transform the second factor 𝑓? to 𝑓?∗	
  by 𝑓?∗ = 𝑓? + 𝛽𝑋 and simulate 

𝐾 phenotypes using  

𝑌$ = £
𝑎𝑓( + 𝜀(	
  𝑓𝑜𝑟	
  𝑘 = 1, … , @

?

𝑎𝑓?∗ + 𝜀?	
  𝑓𝑜𝑟	
  𝑘 =
@
?
+ 1,… ,𝐾

                                          (5) 

where 𝑎 is a factor loading,	
  𝜀  = D𝜀( ,… , 𝜀+ H
-
~	
  𝑀𝑉𝑁(0, 𝑰𝒏) for 𝑗 = 1,2, and 𝛽 is the 

effect size. 

Scenario 4: considering 4 factor model with genetic variant effect specific to the 

𝐾/0 phenotype, each factor has @
�
 (𝐾 is a multiple of 4) phenotypes. By using the original 

factors 𝑓(, 𝑓?, 𝑓�, 𝑓�	
   in scenario 2, we simulate 𝐾 phenotypes using  
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where 𝑎 is a factor loading,	
  𝜀  = D𝜀( ,… , 𝜀+ H
-
~𝑀𝑉𝑁(0, 𝑰𝒏) for 𝑗 = 1,… ,4, and 𝛽 is the 

effect size.   

Scenario 5: considering one factor model with the genetic variant effect specific 

to the 𝐾/0 phenotype. We simulate 𝐾 phenotypes by  

𝑌$ = ¤ 𝑎𝑓 + 𝜀$	
  𝑓𝑜𝑟	
  𝑘 = 1, … ,𝐾 − 1
𝑎(𝑓 + 𝛽𝑋)+𝜀$	
  𝑓𝑜𝑟	
  𝑘 = 𝐾	
  	
  	
  	
  	
  	
  	
                                 (7) 

where 𝑓~	
  𝑀𝑉𝑁(0, 𝑰𝒏), 𝑎 is a factor loading, 𝜀$ = (𝜀($,… , 𝜀+$)𝑻~𝑀𝑉𝑁(0, 𝑰𝒏), and 𝑰𝒏 is 

the identity matrix, and 𝛽 is the effect size  

Scenario 6: considering a network model, where the 𝐾 phenotypes are correlated 

and the correlation structure is not due to one or multiple underlying common factors. We 

generate 𝐾 phenotypes independent of genotypes for each individual by using 

D𝑌¥(,… , 𝑌¥@H
-
~𝑀𝑉𝑁(0, 𝚺), where 𝚺 = D1 − 𝜌h0kH𝑰 + 𝜌h0k𝑨, 𝑨 is a matrix with elements 

of 1, 𝑰 is the identity matrix, and 𝜌h0k  is the correlation between any two phenotypes. 

After generating	
  𝑌¥(, … , 𝑌¥@	
  , let 𝑌$ = 𝛽𝑋 + 𝑌¥$ + 𝜀$, where 𝜀$ =

(𝜀($,… , 𝜀+$)-~𝑀𝑉𝑁(0, 𝑰𝒏). 

In scenarios 2-5, the within-factor correlation is 𝑎? and between-factor correlaiton 

is 𝑎?𝜌\K . To evaluate type I error of the proposed method, we generate phenotypic values 

independent of genotypes by assigning  𝛽 = 0. To evaluate power, we generate 

phenotypic values according to the six scenarios described above. 
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1.3.2   Simulation Results  

We use two sets of simulations to evaluate the type I error rates of the proposed method. 

The first set of simulations is normal simulation studies and includes 10,000 replicated 

samples for each sample size under each scenario. The p-values are estimated using 

10,000 permutations. For 10,000 replicated samples, the 95% confidence intervals (CIs) 

for type I error rates at the nominal levels 0.01 and 0.001 are (0.008, 0.012) and (0.0004, 

0.0016), respectively. The estimated type I error rates of the proposed test (AFC) are 

summarized in Table 1.1. From Table 1.1, we can see that most of the estimated type I 

error rates are within the 95% CIs and those type I error rates not within the 95% CIs are 

very close to the bound of the corresponding 95% CI, which indicates that the proposed 

method is valid. 

The second set of simulations mimics GWAS. To be comparable with the real 

data analysis, we generate 6,000 unrelated individuals with 8 phenotypes at  variant 

sites under each scenario. The phenotypes are independent of genotypes. The MAF at 

each variant is a random number between 0.05 and 0.5. The null distributions of  

and 𝑇KLL are generated by  permutations using the genotypes at the first variant. We 

consider genotypes at  variants as  replicated samples. For  replicated 

samples, the 95% confidence intervals (CIs) for the type I error rates at the nominal levels 

, , and  are (0.94 × 10��, 1.06 × 10��), (0.8 × 10��, 1.20 × 10��), and 

(0.38 × 10�«, 1.62 × 10�«), respectively. The estimated type I error rates of the 

proposed test (AFC) are summarized in Table 1.2. From Table 1.2, we can see that all of 

the estimated type I error rates are within the 95% CIs, which indicates that the proposed 

method is valid. 

For power comparisons, we consider (1) power as a function of the effect size 

under all six scenarios, and (2) power as a function of factorial correlation (𝜌\K)	
  under 

scenarios 2-4 and power as a function of phenotypic correlation (𝜌h0k) under scenario 6 

because scenarios 1 and 5 are one factor model and thus have no 𝜌\K  and 𝜌h0k  involved. 

610

1 ,, KT T…
610

610 610 610

310- 410- 510-
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For Figures 1.1 and 1.2, the p-values of AFC, FC, Tippett, and SUMSCORE are 

estimated using 10,000 permutations and the p-values of TATES, MultiPhen, and 

MANOVA are estimated using asymptotic distributions. The powers of all tests are 

evaluated using 1,000 replicated samples at 0.1% significance level. For Figure 1.3, the 

p-values of AFC, FC, Tippett, and SUMSCORE are estimated using 107 permutations. 

The powers of all tests are evaluated using 1,000 replicated samples at 10-6 significance 

level. 

Figure 1.1 gives the power comparisons of the 7 tests (AFC, TATES, Tippett, FC, 

MANOVA, MultiPhen, and SUMSCORE) for the power as a function of the effect size 

based on the six scenarios for 20 phenotypes. This figure shows that (1) AFC is either the 

most powerful test (genotypes directly impact on a portion of the phenotypes: scenarios 

2-3) or comparable to the most powerful test (genotypes directly impact on all 

phenotypes or a single phenotype: scenarios 1, 4, 5, and 6); (2) TATES and Tippett have 

similar power and are much less powerful than other methods when genotypes directly 

impact on all phenotypes (scenarios 1 and 6); (3) MANOVA and MultiPhen have similar 

power and are much less powerful than other methods when genotypes directly impact on 

a portion of the phenotypes (scenarios 2-3); and (4) SUMSCORE and FC have similar 

power and are much less powerful than other methods when genotypes directly impact on 

a single phenotype (scenarios 4-5).  

Power comparisons of the 7 tests for the power as a function of the factorial 

correlation ( 𝜌\K) under scenarios 2-4 and as a function of the phenotypic correlation 

(𝜌h0k) under scenario 6 are given by Figure 1.2. This figure shows that under scenario 4, 

the powers of all tests do not change with the factorial correlation because only one 

phenotype is associated with the variant and thus the factorial correlation does not change 

the information of association between the variant and phenotypes. Under scenarios 2, 3 

and 6, (1) the powers of SUMSCORE and FC decrease with the increasing of the 

factorial or phenotypic correlation because SUMSCORE and FC involve all phenotypes 

and thus information contained by all phenotypes will decrease with the increasing of the 
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factorial or phenotypic correlation; (2) the powers of TATES and Tippett do not change 

with the increasing of the factorial or phenotypic correlation because TATES and Tippett 

essentially only depend on the phenotype that has the strongest association with the 

variant; (3) under scenario 6, the power of AFC decreases with the increasing of the 

phenotypic correlation; under scenarios 2-3, the power of AFC does not change much 

with the factorial correlation; and (4) under scenario 6, the powers of MANOVA and 

MultiPhen decrease with the increasing of the phenotypic correlation; under scenarios 2-

3, the powers of MANOVA and MultiPhen increase with the increasing of the factorial 

correlation, which is consistent with the results of Ray et al.38. We also give power 

comparisons of the 7 tests using a significance level of 10-6 with 107 permutations and 

1,000 replicates for the power as a function of effect size (β) under scenario 2 (Figure 

1.3). Figure 1.3 shows that the patterns of the power comparisons using significance level 

10-6 are similar to that using a significance level of 0.1% in Figure 1.1 (scenario 2). 

In summary, the proposed method has correct type I error rates and is either the 

most powerful test or comparable with the most powerful tests. No other methods have 

consistently good performance under the six simulation scenarios. 

 

1.3.3   Real Data Analysis  

Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases 

characterized by long term poor airflow and is a major public health problem (Nazir & 

Erbland, 2009). The COPDGene Study (Regan et al., 2011) 

(http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000179.v1.p1) 

is a multi-center genetic and epidemiologic investigation to study COPD. This study is 

sufficiently large and appropriately designed for genome-wide association analysis of 

COPD. In this study, a total of more than 10,000 subjects have been recruited including 

non-Hispanic Whites (NHW) and African-Americans (AA). The participants in this study 

have completed a detailed protocol, including questionnaires, pre- and post-

bronchodilator spirometry, high-resolution CT scanning of the chest, exercise capacity 
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(assessed by six-minute walk distance), and blood samples for genotyping. The 

participants were genotyped using the Illumina OmniExpress platform. The genotype 

data have gone through standard quality-control procedures for genome-wide association 

analysis detailed at 

http://www.copdgene.org/sites/default/files/GWAS_QC_Methodology_20121115.pdf. 

Variants with MAF<1% were excluded in the data set.  

To evaluate the performance of our proposed method on a real data set, we 

applied all of the 7 methods to the COPDGene of NHW population to carry out GWAS 

of COPD-related phenotypes. Based on the literature studies of COPD (Chu et al, 2014; 

Han et al., 2011), we selected 7 key quantitative COPD-related phenotypes, including 

FEV1 (% predicted FEV1), Emphysema (Emph), Emphysema Distribution (EmphDist), 

Gas Trapping (GasTrap), Airway Wall Area (Pi10), Exacerbation frequency 

(ExacerFreq), Six-minute walk distance (6MWD), and 4 covariates, including BMI, Age, 

Pack-Years (PackYear) and Sex. EmphDist is the ratio of emphysema at -950 HU in the 

upper 1/3 of lung fields compared to the lower 1/3 of lung fields. Followed by Chu et al. 

(Chu et al, 2014), we did a log transformation on EmphDist in the following analysis. 

The correlation structure of the 7 COPD-related phenotypes is given in Figure 1.4. In the 

analysis, participants with missing data in any of the 11 variables were excluded. 

Therefore, a complete set of 5,430 individuals across 630,860 SNPs were used in the 

following analyses. In the analysis, we first adjusted each of the 7 phenotypes for the 4 

covariates using linear models. Then, we performed the analysis based on the adjusted 

phenotypes. 

To identify SNPs associated with the phenotypes, we adopted the commonly used 

genome-wide significance level 5 × 10�­. The results were summarized in Table 1.3. 

There were total 14 SNPs in Table 1.3. All of the 14 SNPs had previously been reported 

to be in association with COPD by eligible studies (Brehm et al., 2011; Cho et al., 2010; 

Cho et al., 2014; Cui et al., 2014; Du et al., 2016; Hancock et al., 2010; Li et al., 2011b; 

Lutz, et al., 2015; Pillai, et al., 2009; Wilk et al., 2009; Wilk et al., 2012; Young et al., 

2010; Zhang et al., 2011; Zhu et al., 2014). From Table 1.3, we can see that MultiPhen 
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identified 14 SNPs; MANOVA identified 13 SNPs; AFC identified 12 SNPs, FC and 

SUMSCORE identified 10 SNPs; and TATES and Tippett identified 9 SNPs. Among the 

five methods based on combining test statistics from univariate analysis (AFC, TATES, 

Tippett, FC, and SUMSCORE), AFC identified 2 or 3 more genome-wide significant 

SNPs than the other 4 methods.  

 

1.4   Discussion 

GWAS have identified many variants with each variant affecting multiple phenotypes, 

which suggests that pleiotropic effects on human complex phenotypes may be 

widespread. Therefore, statistical methods that can jointly analyze multiple phenotypes in 

GWAS may have advantages over analyzing each phenotype individually. In this article, 

we developed a new method AFC to jointly analyze multivariate phenotypes in genetic 

association studies. We used extensive simulation studies as well as real data application 

to compare the performance of AFC with TATES, Tippett, FC, MANOVA, MultiPhen, 

and SUMSCORE. Our simulation results showed that AFC has correct type I error rates. 

With respect to power, AFC is either the most powerful test or has similar power with the 

most powerful test under a variety of simulation scenarios. Additionally, the real data 

analysis results demonstrated that the proposed method has great potential in GWAS on 

complex diseases with multiple phenotypes such as COPD.  

AFC has several important advantages. First, it allows researchers to test genetic 

associations using standard GWAS software. Second, phenotypes of different types (e.g., 

dichotomous, ordinal, continuous) can be easily analyzed simultaneously. Third, since 

AFC is based on p-values obtained from standard univariate GWAS, it can not only test 

the association between multiple phenotypes and one genetic variant of interest, but also 

can test the association between multiple phenotypes and multiple genetic variants. For 

common variants, multiple-variant AFC can be applied based on p-values obtained in 

standard univariate GWAS for each variant and each phenotype. For rare variants, we can 

first combine genotypes of rare variants by giving different weights, hoping that we give 
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big weights to the variants having strong associations with the phenotypes. Then, we can 

apply AFC to test the association between the combined genotypes and multiple 

phenotypes. In conclusion, we showed that our proposed method provides a useful 

framework for joint analysis of multiple phenotypes in association studies. 

         It is well known that the effect sizes of identified variants are often small and that a 

large sample size is necessary to ensure sufficient power to detect such variants. A 

common strategy to increase sample size is to perform a meta-analysis by combining 

summary statistics from a series of studies. The proposed AFC method can be applied to 

meta-analysis. Suppose that there are 𝐿 independent studies containing the variant of 

interest and each study has 𝐾 phenotypes. Let 𝑇(L,… , 𝑇@L denote the summary statistics 

from the 𝑙/0 study. Suppose that 𝑇L = (𝑇(L, … , 𝑇@L)-~𝑁(0, ΣL) under the null hypothesis, 

where ΣL can be estimated from the values of  𝑇L for all independent SNPs in the GWAS 

from the 𝑙/0 study (Zhu et al., 2015b). Then, 𝑇 = (𝑇(-, … , 𝑇°-)-~𝑁(0, Σ), where Σ =

𝑑𝑖𝑎𝑔(Σ(,… , Σ°). From 𝑇, we can calculate the corresponding p-values 𝑃 = (𝑃(-, … , 𝑃°-)-, 

where 𝑃L = (𝑝(L, … , 𝑝@L)-. The AFC test statistic is based on the p-values 𝑃. In the 

permutation procedure, we can generate 𝑇 according to the distribution 𝑁(0, Σ) and then 

we can calculate the p-values 𝑃 in each permutation.  
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1.5   Tables and Figures 

Table 1.1. The estimated type I error rates of the proposed method for MAF equals 0.3.	
  𝛼 

is the significance level. 10,000 replicates are used in the simulations. 

𝜶  Sample 
size 

Scenario 
1 2 3 4 5 6 

0.01 
1000 0.0088 0.0110 0.0105 0.0083 0.0083 0.0108 
2000 0.0095 0.0107 0.0094 0.0083 0.0098 0.0110 

0.001 
1000 0.0008 0.0015 0.0012 0.0008 0.0007 0.0012 
2000 0.0015 0.0014 0.0007 0.0009 0.0011 0.0014 
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Table 1.2. The estimated type I error rates of the proposed method that mimic GWAS. α 

is the significance level.  

𝜶 Scenario 
1 2 3 4 5 6 

1.00× 10�� 1.02× 10�� 1.06× 10�� 0.94× 10�� 1.03× 10�� 1.00× 10�� 1.05× 10�� 

1.00× 10�� 1.03× 10�� 1.20× 10�� 0.80× 10�� 0.97× 10�� 1.20× 10�� 0.82× 10�� 

1.00× 10�« 1.30× 10�« 1.10× 10�« 1.50× 10�« 1.40× 10�« 1.00× 10�« 0.50× 10�« 
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Table 1.3. Significant SNPs and the corresponding p-values in the analysis of 

COPDGene. The p-values of AFC, Tippett, FC, and SUMSCORE are evaluated using 

109 permutations. The p-values of TATES, MANOVA, and MultiPhen are evaluated 

using asymptotic distributions. The graying out p-values indicate the p-values >

	
  5 × 10�­. 
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Figure 1.1. Power comparisons of the 7 tests for power as a function of effect size (𝛽) 

under the 6 scenarios. The total number of phenotypes is 20. The sample size is 1,000. 

MAF is 0.3. The factor loadings are 0.75. In scenarios 2, 3 and 4, the factorial correlation 

( 𝜌\K) is 0.1. In scenario 6, the phenotypic correlation (𝜌h0k) is 0.1. The powers are 

evaluated at 0.1% significance level.   
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Figure 1.2. Power comparisons of the 7 tests for power as a function of factorial 

correlation (𝜌\K) under scenarios 2 to 4, and as a function of phenotypic correlation 

(𝜌h0k) under scenario 6. The total number of phenotypes is 20. The sample size is 1,000. 

MAF is 0.3. The factor loadings are 0.75. In scenarios 2 and 3, the effect size (𝛽) is 0.2. 

In scenario 4, the effect size (𝛽) is 0.3. In scenario 6, the effect size (𝛽) is 0.1. The 

powers are evaluated at 0.1% significance level. 
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Figure 1.3. Power comparisons of the 7 tests for power as a function of effect size (𝛽) 

under scenario 2. The total number of phenotypes is 20. The sample size is 1,000. MAF is 

0.3. The factor loadings are 0.75. The factorial correlation ( 𝜌\K) is 0.1. The powers are 

evaluated at 10�¹ significance level while p-values of AFC, FC, Tippet, and 

SUMSCORE are evaluated by 10º permutations. 
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Figure 1.4. The correlation matrix plot of the 7 COPD-related phenotypes. 
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2   Joint Analysis of Multiple Phenotypes in Association 
Studies Using Allele-based Clustering Approach for Non-
Normal Distributions 

In the study of complex diseases, several correlated phenotypes are usually measured. 

There is also increasing evidence showing that testing the association between a single-

nucleotide polymorphism (SNP) and multiple-dependent phenotypes jointly is often more 

powerful than analyzing only one phenotype at a time. Therefore, developing statistical 

methods to test for genetic association with multiple phenotypes has become increasingly 

important. In this study, we develop an Allele-Based Clustering (ABC) approach for the 

joint analysis of multiple non-normal phenotypes in association studies. In the ABC 

method, we consider the alleles at a SNP of interest as a dependent variable with two 

classes, and the correlated phenotypes as predictors to predict the alleles at the SNP of 

interest. We perform extensive simulation studies to evaluate the performance of the 

ABC method and compare the power of the ABC method with the powers of Adaptive 

Fisher’s Combination test (AFC), Trait-based Association Test that uses Extended Simes 

procedure (TATES), Fisher’s Combination test (FC), the standard MANOVA, and the 

joint model of Multiple Phenotypes (MultiPhen). Our simulation studies show that the 

proposed method has correct type I error rates and is much more powerful than other 

methods for some non-normal distributions.   

 

2.1   Background 

In the study of a complex disease, data on multiple phenotypes are often collected to have 

a better understanding of the disease. For example, cardiovascular disease (CVD) is 

characterized by high levels of both low-density serum lipoprotein levels (LDL) and 

systolic blood pressure (SBP) (Newman III et al., 1986; Majumdar et al., 2015); Chronic 

obstructive pulmonary disease (COPD) is one of the most common lung diseases 

characterized by reduced expiratory airflow, symptoms of cough, sputum production, and 

dyspnea (Casaburi et al., 2002); Thromboembolic disease is characterized by the 
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intermediate correlated phenotypes such as Factor VII, VIII, IX, XI, XII, and von 

Willebrand factor (Germain et al.,2011; Ray et al. 2016; Souto et al. 2000).  

Statistical methods for detecting association using multivariate phenotypes have 

been developed. These methods can be roughly divided into two groups: univariate 

methods and multivariate methods. Univariate methods are based on univariate analyses 

and combine the results of univariate analyses. Multivariate methods are based on models 

that jointly model multiple phenotypes. Univariate methods are popular in practice 

because it is much easier to construct a univariate association test statistic than a 

multivariate association test statistic. Recently, several univariate methods have appeared 

to explore the genetic association with multiple phenotypes by considering the correlation 

structure among phenotypes (Kwak & Pan, 2016; Liang et al., 2016; van der Sluis et al., 

2013; Yang et al., 2016). Kwak and Pan (2016) proposed an adaptive gene-based test and 

a pathway-based test for association analysis of multiple phenotypes with summary 

statistics from genome-wide association studies (GWAS). The Trait-based Association 

Test that uses Extended Simes procedure (TATES) combines p-values obtained in 

standard univariate GWAS while correcting for the correlation between p-values (van der 

Sluis et al., 2013). Adaptive Fisher’s Combination test (AFC) combines p-values 

obtained in standard univariate GWAS by using the optimal number of p-values which is 

determined by the data (Liang et al., 2016).  

Comparing univariate methods with multivariate methods, univariate methods 

may lose power since univariate methods ignore the extra information by analyzing 

multiple phenotypes in one unified analysis. Recently, several multivariate methods have 

been developed (Marchini et al., 2007; Galesloot et al., 2014; Zhou and Stephens, 2014; 

Korte et al., 2012; Casale et al., 2015; Zhang et al., 2014; Yan et al., 2013; O'Reilly et al., 

2012; Tang and Ferreira, 2012; Aschard et al., 2014; Lange et al., 2004; Klei et al., 2008; 

Zhou et al., 2015). However, most of the multivariate methods are based on the 

assumption of normality for phenotypes. In this article, we develop a novel multivariate 

method, named an Allele-Based Clustering (ABC) approach, for the joint analysis of 

multiple non-normal phenotypes. The ABC approach is nonparametric in that it does not 
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assume any particular genetic models. Using extensive simulation studies, we evaluate 

the performance of the proposed method and compare the power of the proposed method 

with the powers of AFC (Liang et al., 2016), TATES (van der Sluis et al., 2013), Fisher’s 

Combination test (FC) (Yang et al., 2016), MANOVA (Cole et al., 1994), and MultiPhen 

(O’Reilly et al., 2012). Our simulation studies show that the proposed method has correct 

type I error rates and is either the most powerful test or comparable with the most 

powerful tests for all simulation scenarios.  

 

2.2   Methods 

2.2.1   Allele-Based Clustering Method 

Consider a sample of 𝑁 unrelated individuals. Each individual has 𝑀 phenotypes. We 

propose an allele-based method to test the null hypothesis 𝐻<: none of the 𝑀 phenotypes 

are associated with a SNP of interest. Denote 𝑌3,f as the 𝑚/0 phenotype of the 𝑖/0 

individual. For the SNP of interest, we use 𝐴 (minor allele) and 𝑎 to denote the two 

alleles of this SNP. Because each individual has two alleles at the SNP of interest, we use 

𝑥?3�( and 𝑥?3 to code the two alleles of the 𝑖/0 individual. If the genotype of the 𝑖/0 

individual is	
  𝐴𝐴, we define	
  𝑥?3�( = 𝑥?3 = 1; if the genotype is	
  𝑎𝑎, we define	
  𝑥?3�( =

𝑥?3 = 0; and if the genotype is	
  𝐴𝑎, we define	
  𝑥?3�( = 1 and	
  𝑥?3 = 0. We define that each 

allele of each individual has 𝑀 phenotypes and define the 	
  𝑚/0	
   phenotype corresponding 

to the two alleles 𝑥?3�( and 𝑥?3 of the 𝑖/0 individual as 𝑦?3�(,f and 𝑦?3,f, where 

𝑦?3�(,f = 𝑦?3,f = 𝑌3,f. Hence, the total number of observations in the allele-based data 

is	
  2𝑁. We reindex the 2𝑁 allele-based data and use index 𝑗 to denote the 𝑗/0  allele-based 

data. Therefore, 𝑦 ,f and 𝑥  denote the 𝑗/0  allele-based phenotypic and genotypic data. 

We develop an Allele-Based Clustering (ABC) approach based on k-fold cross-

validation for joint analysis of multiple phenotypes in association studies. In the ABC 

method, we consider the alleles at the SNP of interest as a dependent variable with two 

classes, and the correlated phenotypes as predictors to predict the alleles at the SNP of 
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interest. In the k-fold cross-validation (in this study, 𝑘 = 10), the 2𝑁 allele-based 

phenotypic and genotypic data are divided into 𝑘 mutually exclusive groups. We use each 

of the 𝑘 groups as the testing set and the other 𝑘 − 1 groups as the training set. For each 

pair of the testing and training sets, we use the training set to calculate the centers of the 

phenotypes corresponding to allele 𝑎 and 𝐴, respectively, namely,  𝑦¼(<) =

v𝑦¼(
(<),… , 𝑦¼�

(<)z
-
 and 𝑦¼(() = v𝑦¼(

((), … , 𝑦¼�
(()z

-
 and use these centers to predict the alleles in 

the corresponding testing set, where 𝑦¼f
(<) and 𝑦¼f

(() denote the mean values of the 𝑚/0 

phenotype for subsets ½𝑗: 𝑥  = 0¾ and ½𝑗: 𝑥  = 1¾ in the training set, ½𝑗: 𝑥  = 0¾ and 

½𝑗: 𝑥  = 1¾ denote the subsets of index 𝑗 in which 𝑥  = 0 and 𝑥  = 1, respectively. In the 

testing set, we calculate the Euclidean distance between 𝑦  and 𝑦¼(<), and	
  𝑦 	
  	
  and 

𝑦¼((),	
  respectively. If  is closer to  than to , we predict the corresponding  as 

; otherwise, we predict the corresponding  as . In this way, each  has a 

predicted value  for . For the SNP of interest, let  and  denote the 

allele frequency of 𝑎 and 𝐴, respectively. For a given allele at the SNP of interest, the 

probability that we predict this allele by chance as allele 𝑎 is  and the probability that 

we predict this allele by chance as allele 𝐴 is . Therefore, we define the prediction 

accuracy as , where for a set 𝐷, #𝐷 denotes 

the number of elements in set 𝐷. We use  as the test statistic to test the association 

between the 𝑀 phenotypes and the SNP. 

First, we delete those phenotypes that have weak associations with the SNP of 

interest based on the univariate analysis. For a given threshold 𝑡, 0 < 𝑡 < 1, we delete 

phenotypes with 𝑝f > 𝑡 that means we select phenotypes with 𝑝f ≤ 𝑡, where 𝑝f is the 

p-value to test the association between the 𝑚/0 phenotype and the SNP. To test the 

association between the 𝑚/0 phenotype and the SNP, we use the score test statistic under 

jy
( )0y ( )1y jx

ˆ 0jx = jx ˆ 1jx = jx

ˆ jx ,21,j N= … 0q 1q

0q

1q

{ } { }
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q
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the logistic model logitD𝜋 H = 𝛼f + 𝑦 ,f𝛽f, 𝑗 = 1, 2, . . . , 2𝑁, where	
  𝜋  =

PrD𝑥  = 1Æ𝑦 ,fH. The score test statistic to test the null hypothesis 𝐻<: 𝛽f = 0 is given by 

𝑆f = 𝑈f? /𝑉f, where 𝑈f = ∑ 𝑦 ,fD𝑥  − 𝑥̅H?Ë
 I( , 𝑉f = (

?Ë
∑ D𝑦 ,f − 𝑦¼fH

??Ë
 I( ∑ D𝑥  −?Ë

 I(

𝑥̅H
?
, 𝑥̅ = (

?Ë
∑ 𝑥 ?Ë
 I( , and 𝑦¼f = (

?Ë
∑ 𝑦 ,f?Ë
 I( . Under the null hypothesis, 𝑆f follows a chi-

square distribution with 1 degree of freedom. Let  denote the p-value of  to test 

the association between the 𝑚/0 phenotype and the SNP of interest. For a given threshold 

𝑡, 0 < 𝑡 < 1, we denote the prediction accuracy using the selected phenotypes as 𝑇Ì�Í . 

Let  𝑃/ denote the p-value of the statistic 𝑇Ì�Í . Our test statistic of ABC approach is given 

by  

𝑇Ì`� = min
Î
𝑃/. 

𝑇Ì`�  can be obtained by a simple grid search across a range of 𝑡. We choose grids 

 such that . In this study, we use 

. By a grid search,  

.  

We use the following permutation procedure to evaluate the p-values of . 

1.   In each permutation, we randomly shuffle the genotypes and recalculate 

. Suppose that we perform 𝐵 times of permutations. Let  (𝑏 =

0,1,… , 𝐵) denote the value of  based on the 𝑏/0  permuted data, where 𝑏 = 0 

represents the original data.  

2.   We transfer  to  by  

                             (1) 

mp mS
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3.   Let . Then, the p-value of  is given by 

                                   (2) 

 

2.2.2   Comparison of Methods 

We compare the performance of our ABC method with those of AFC (Liang et al., 2016), 

TATES (van der Sluis et al., 2013), FC (Yang et al., 2016), MANOVA (Cole et al., 

1994), and MultiPhen (O’Reilly et al., 2012). 

 

2.3   Results 

2.3.1   Simulation Studies  

We generate genotype data at a SNP according to a minor allele frequency (MAF) 

(MAF=0.3 in all simulation studies) under Hardy-Weinberg equilibrium. Based on the 

genotype data, phenotypes are generated similar to that of Liang et al. (Liang et al., 2016) 

and van der Sluis et al. (van der Sluis et al., 2013). The phenotypic correlation structures 

(the phenotypes are divided into several groups (factors) and the within-group correlation 

is larger than the between-group correlation) are also similar to that of UK10K (UK10K 

Consortium, 2015).  

In the following six scenarios, we use the following notations. Denote 𝑌f =

D𝑌(,f, 𝑌?,f,… , 𝑌Ë,fH
-
 as the 𝑚/0 phenotype of 𝑁 individuals and 𝐺 = (𝑔(, 𝑔?,… , 𝑔Ë)- as 

the genotypic score of 𝑁 individuals at the SNP. Let 𝑅 denote the number of factors and 

(𝑓(,… , 𝑓�)-~𝑀𝑉𝑁(0, 𝚺), where 𝚺 is a correlation matrix with all off-diagonal elements 

equal to 𝜌\K  and 𝜌\K  is the correlation between any two factors. 𝛽 is the effect size; 𝑎 is a 

factor loading; 𝜀f = (𝜀(f, … , 𝜀Ëf)𝑻 and 𝜀3f	
  (𝑖 = 1,… , 𝑁;𝑚 = 1,… ,𝑀) are random 

errors.  

( ) ( ) ( ){ }1
min , ,

S

b b b
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Scenario 1: we simulate 𝑀 phenotypes by  

𝑌f = 𝑎𝛽𝐺 + 𝜀f for 𝑚 = 1,2,… ,𝑀                                         (3) 

Scenario 2: consider a 4-factor model (𝑅 = 4) with the SNP effect on the fourth 

factor. We simulate 𝑀 phenotypes using  

 𝑌f =

⎩
⎪
⎨

⎪
⎧𝑎𝑓( + 𝜀f	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  𝑚 = 1,… , �

�
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

𝑎𝑓? + 𝜀f	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  𝑚 = �
�
+ 1,… , �

?
	
  	
  	
  

𝑎𝑓� + 𝜀f	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  𝑚 = �
?
+ 1,… , ��

�

𝑎(𝑓� + 𝛽𝐺) + 𝜀f	
  	
  	
  for	
  𝑚 = ��
�
+ 1,… ,𝑀

                     (4) 

Scenario 3: consider a 2-factor model (𝑅 = 2) with the SNP effect on the second 

factor. We simulate 𝑀 phenotypes using  

𝑌f = £
𝑎𝑓( + 𝜀f	
  	
  	
  	
  	
  	
  	
  for	
  𝑚 = 1,… , �

?

𝑎(𝑓? + 𝛽𝐺) + 𝜀f	
  	
  for	
  𝑚 = �
?
+ 1,… ,𝑀

                        (5)                                        

Scenario 4: consider a 4-factor model (𝑅 = 4) with the SNP effect on the 𝑀/0 

phenotype. We simulate 𝑀 phenotypes using  

𝑌f =

⎩
⎪⎪
⎨

⎪⎪
⎧𝑎𝑓( + 𝜀f	
  	
  	
  	
  for	
  𝑚 = 1,… , �

�
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

𝑎𝑓? + 𝜀f	
  	
  	
  	
  for	
  𝑚 = �
�
+ 1, … , �

?
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

𝑎𝑓� + 𝜀f	
  	
  	
  	
  for	
  𝑚 = �
?
+ 1,… , ��

�
	
  	
  	
  	
  	
  	
  	
  	
  	
  

𝑎𝑓� + 𝜀f	
  	
  	
  	
  	
  for	
  𝑚 = ��
�
+ 1,… ,𝑀 − 1

𝑎(𝑓� + 𝛽𝐺)+𝜀f	
  	
  	
  for	
  𝑚 = 𝑀	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

                          (6) 

Scenario 5: consider a 2-factor model (𝑅 = 2) with the SNP effect on the 𝑀/0 

phenotype. We simulate 𝑀 phenotypes using  
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𝑌f = Ó
𝑎𝑓( + 𝜀f	
  	
  	
  for	
  𝑚 = 1,… , �

?
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

𝑎𝑓? + 𝜀f	
  	
  	
  for	
  𝑚 = �
?
+ 1,… ,𝑀 − 1

𝑎(𝑓? + 𝛽𝐺) + 𝜀f	
  	
  	
  for	
  𝑚 = 𝑀	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

                             (7)                                                

Scenario 6: consider an 𝑀-factor model (𝑅 = 𝑀) with the SNP effect on all 

phenotypes. We simulate 𝑀 phenotypes using  

𝑌f = 𝑎(𝑓f + 𝛽𝐺) + 𝜀f for 𝑚 = 1,2,… ,𝑀                               (8) 

In scenarios 2-6, the within-factor correlation is 𝑎? and between-factor correlation 

is 𝑎?𝜌\K . In scenarios 1-6, we consider random errors having the following four non-

normal distributions: two log-normal distributions (  and 

), Student’s t-distribution (𝑡(2)), and Inverse-gamma distribution 

(Inverse-gamma(2,1)). We also consider random errors following the standard normal 

distribution. To evaluate type I error rates, we generate phenotypic values independent of 

genotypes by assigning  𝛽 = 0. To evaluate power, we generate phenotypic values 

according to the six scenarios described above. In type I error evaluations and power 

comparisons, MAF is 0.3, the total number of phenotypes (𝑀) is 8, the sample size (𝑁) is 

1,000, the factor loading (𝑎) is 0.75, and the factorial correlation (𝜌\K) conditional on 

genotypes is 0.1. 

 

2.3.2   Simulation Results  

In each simulation scenario, the p-values of the proposed test (ABC), AFC, and FC are 

estimated using 1,000 permutations and the p-values of TATES, MANOVA, and 

MultiPhen are estimated using asymptotic distributions. 

For type I error evaluation, we consider different distributions of random errors, 

different correlation structures of phenotypes, and different significance levels. In each 

( )log-norm 0,1

( )5log-norm 0,1
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simulation scenario, the type I error rates of all of the six tests are evaluated using 1,000 

replicated samples. For 1,000 replicated samples, the 95% confidence intervals (CIs) for 

the type I error rates at the nominal levels 0.01 and 0.05 are (0.0038, 0.0162) and 

(0.0365, 0.0635), respectively. The estimated type I error rates for random errors 

following Student’s 𝑡(2) distribution, Inverse-gamma(1,2) distribution, 

 distribution,  distribution, and the standard normal 

distribution are summarized in Tables 2.1 to 2.5, respectively. From these tables, we can 

see that most of the estimated type I error rates of ABC, AFC, FC, TATES, and 

MANOVA are within the 95% CIs and those type I error rates not within 95% CIs are 

very close to the bound of the corresponding 95% CI, which indicates that ABC, AFC, 

FC, TATES, and MANOVA are valid. MultiPhen for Inverse-gamma(1,2) distribution 

has little inflated type I error rates.  

The powers of all tests are evaluated using 1,000 replicated samples at 1% 

significance level. Figures 2.1 to 2.5 provide the power comparisons of the six tests 

(ABC, AFC, TATES, FC, MANOVA, and MultiPhen) for the power as a function of the 

effect size based on the six scenarios for 8 phenotypes. Figure 2.1 shows that when 

random errors follow a Student’s t distribution, ABC is the most powerful test in all the 

scenarios and is much more powerful than other methods. Figure 2.2 shows that when 

random errors follow an Inverse-gamma distribution, ABC is the most powerful test in all 

the scenarios and is much more powerful than the other methods when genotypes directly 

impact on a portion of phenotypes (scenarios 2-5). Figure 2.3 shows that when random 

errors follow a Log-normal distribution, ABC is the most powerful test when genotypes 

directly impact on a portion of phenotypes (scenarios 2-5) and is comparable to the most 

powerful one when genotypes directly impact on all phenotypes (scenarios 1 and 6). To 

show the robustness of ABC to phenotype outliers, we generate random errors following 

a Log-normal distribution with a variance 5 times as that in Figure 2.3. As shown in 

Figure 2.4, increasing variance 5 times, the pattern of power comparisons is still the same 

as that in Figure 2.3. We also provide power comparisons when random errors follow a 

standard normal distribution (Figure 2.5). As expected, ABC loses some power 

( )log-norm 0,1 ( )5log-norm 0,1
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comparing with that when random errors follow non-normal distributions, but is still 

more powerful than TATES for scenarios 1 and 6, more powerful than FC for scenarios 4 

and 5, and more powerful than MANOVA and MultiPhen for scenario 3. 

 

2.4   Discussion 

In GWAS for complex diseases, the association between a SNP and each phenotype is 

usually weak. Combining multiple related phenotypes can increase the power to identify 

causal SNPs, thus is a practically important area that requires methodology work. So far, 

existing methods for associations of multiple phenotypes primarily focus on the 

phenotypes with a normal distribution. However, when the normal assumption is 

violated, these methods may not control type I error rates or may lose power (Majumdar 

et al., 2015).  

In this study, we introduced an Allele-Based Clustering (ABC) approach for joint 

analysis of multiple non-normal distributed phenotypes in association studies. The ABC 

approach is nonparametric in that it does not assume any particular genetic models and 

there are no parameters need to be estimated. We use a data-driven approach to select 

phenotypes that are associated with a SNP and use these phenotypes to predict the alleles 

at the SNP by using Euclidean distance. Besides Euclidean distance, we can also use 

other similarity or dissimilarity measures to predict the alleles at a SNP, such as 

Minkowski distance, Mahalanobis distance, correlation coefficient, and cosine measure.  

We use extensive simulations to assess the performance of ABC. We are able to 

demonstrate that ABC has correct type I error rates and is much more powerful than other 

methods for some non-normal distributions. Therefore, our simulations show that ABC is 

especially useful for non-normal data and it truly adds to the geneticist’s toolbox. 

Moreover, ABC does not estimate any parameters and does not assume any particular 

models. It provides another way for analyzing multiple phenotypes simultaneously. In the 

method section, we describe our methods without considering covariates. If there are 
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covariates need to be considered, we can use the following approach to incorporate 

covariates in the ABC approach. Suppose that we have 𝑝 covariates. Let D𝑧3(, … , 𝑧3hH
-
 

denote the covariates of the 𝑖/0 individual. We can adjust the effects of covariates by 

applying the linear regression model 𝑌3,f = 𝑎< + 𝑎(f𝑧3( +⋯+ 𝑎hf𝑧3h + 𝜀3f  and using 

the residual of 𝑌3,f  to replace 𝑌3,f in the ABC approach. Although using the regular 

linear regression to regress effects of covariates out is more suited for normally 

distributed data, it can also be applied to non-normally distributed data. For examples, to 

correct for population stratification, Price et al. (2006) used the regular linear regression 

to regress effects of covariates out for a qualitative phenotype and genotypes (both a 

qualitative phenotype and genotypes are non-normally distributed data); to adjust effects 

of covariates in rare variant association studies, Sha et al. (2012) also used the regular 

linear regression to regress effects of covariates out for a qualitative phenotype and 

genotypes. 

The computation time required for running ABC depends on the sample size, the 

number of phenotypes, the number of folds in cross-validation, and the number of 

permutations. The running time of ABC with 1,000 permutations on the data set with 

10,000 individuals, 8 phenotypes, and 10-fold cross-validation on a laptop with 4 Intel 

Cores @ 2.00GHz and 4 GB memory is no more than 2.4s. To perform genome-wide 

studies, we can first select SNPs that show evidence of association based on a small 

number of permutations (e.g. 1,000), and then a large number of permutations are used to 

test the selected variants. 
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2.5   Tables and Figures 

Table 2.1. The estimated type I error rates of the 6 tests under Student’s 𝑡(2) 

distribution. MAF is 0.3. α is the significance level. The total number of phenotypes (𝑀) 

is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The factorial correlation 

(𝜌\K) conditional on genotypes is 0.1. The number of replications is 1,000. The type I 

error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝜶 Method 
Scenario 

1 2 3 4 5 6 

0.01 

ABC 0.009 0.010 0.015 0.012 0.008 0.011 
AFC 0.009 0.010 0.015 0.013 0.015 0.015 

TATES 0.007 0.007 0.011 0.007 0.007 0.007 

FC 0.009 0.011 0.011 0.008 0.011 0.018 
MANOVA 0.008 0.010 0.009 0.008 0.008 0.013 
MultiPhen 0.014 0.007 0.014 0.008 0.012 0.019 

0.05 

ABC 0.039 0.042 0.055 0.048 0.045 0.057 
AFC 0.050 0.058 0.051 0.050 0.049 0.049 

TATES 0.042 0.045 0.043 0.041 0.053 0.044 

FC 0.053 0.054 0.056 0.046 0.045 0.048 
MANOVA 0.050 0.051 0.046 0.04 0.044 0.046 
MultiPhen 0.062 0.052 0.063 0.042 0.058 0.069 
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Table 2.2. The estimated type I error rates of the 6 tests under Inverse-gamma(1,2) 

distribution. MAF is 0.3. α is the significance level. The total number of phenotypes (𝑀) 

is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The factorial correlation 

(𝜌\K) conditional on genotypes is 0.1. The number of replications is 1,000. The type I 

error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝛂 Method 
Scenario 

1 2 3 4 5 6 

0.01 

ABC 0.016 0.015 0.016 0.007 0.013 0.013 

AFC 0.012 0.019 0.009 0.010 0.014 0.007 
TATES 0.009 0.009 0.009 0.008 0.015 0.008 

FC 0.012 0.016 0.006 0.006 0.013 0.005 

MANOVA 0.009 0.009 0.008 0.009 0.014 0.004 

MultiPhen 0.010 0.020 0.013 0.013 0.019 0.017 

0.05 

ABC 0.063 0.056 0.059 0.041 0.054 0.050 

AFC 0.056 0.065 0.048 0.048 0.061 0.046 

TATES 0.040 0.050 0.035 0.035 0.051 0.042 
FC 0.055 0.061 0.046 0.052 0.062 0.046 

MANOVA 0.053 0.058 0.041 0.045 0.050 0.045 

MultiPhen 0.068 0.084 0.072 0.063 0.074 0.069 
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Table 2.3. The estimated type I error rates of the 6 tests under Log-norm(0,1) 

distribution. MAF is 0.3. α is the significance level. The total number of phenotypes (𝑀) 

is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The factorial correlation 

(𝜌\K) conditional on genotypes is 0.1. The number of replications is 1,000. The type I 

error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝛂 Method 
Scenario 

1 2 3 4 5 6 

0.01 

ABC 0.014 0.012 0.01 0.007 0.009 0.006 

AFC 0.013 0.013 0.009 0.013 0.012 0.012 

TATES 0.011 0.013 0.006 0.006 0.008 0.008 

FC 0.008 0.010 0.009 0.013 0.008 0.010 

MANOVA 0.007 0.011 0.009 0.011 0.012 0.009 

MultiPhen 0.014 0.011 0.005 0.015 0.012 0.010 

0.05 

ABC 0.057 0.057 0.050 0.054 0.049 0.050 

AFC 0.040 0.06 0.038 0.056 0.040 0.046 

TATES 0.043 0.046 0.038 0.049 0.037 0.048 

FC 0.037 0.057 0.038 0.053 0.050 0.044 

MANOVA 0.039 0.055 0.042 0.048 0.041 0.041 

MultiPhen 0.056 0.055 0.056 0.057 0.045 0.060 
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Table 2.4. The estimated type I error rates of the 6 tests under 

distribution. MAF is 0.3. α is the significance level. The total number of phenotypes (𝑀) 

is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The factorial correlation 

(𝜌\K) conditional on genotypes is 0.1. The number of replications is 1,000. The type I 

error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝛂 Method 
Scenario 

1 2 3 4 5 6 

0.01 

ABC 0.011 0.012 0.014 0.008 0.011 0.012 

AFC 0.015 0.013 0.010 0.014 0.008 0.014 
TATES 0.013 0.012 0.017 0.005 0.011 0.012 

FC 0.014 0.010 0.010 0.013 0.006 0.012 
MANOVA 0.014 0.009 0.008 0.013 0.006 0.011 

MultiPhen 0.017 0.014 0.014 0.017 0.011 0.012 

0.05 

ABC 0.052 0.058 0.054 0.045 0.049 0.049 

AFC 0.053 0.050 0.049 0.051 0.049 0.053 
TATES 0.043 0.056 0.053 0.039 0.048 0.052 

FC 0.066 0.055 0.044 0.050 0.045 0.049 
MANOVA 0.064 0.058 0.041 0.046 0.046 0.044 

MultiPhen 0.067 0.061 0.050 0.062 0.058 0.048 

 

  

( )5log-norm 0,1
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Table 2.5. The estimated type I error rates of the 6 tests under the standard normal 

distribution. MAF is 0.3. α is the significance level. The total number of phenotypes (𝑀) 

is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The factorial correlation 

(𝜌\K) conditional on genotypes is 0.1. The number of replications is 1,000. The type I 

error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝛂 Method 
Scenario 

1 2 3 4 5 6 

0.01 

ABC 0.007 0.012 0.011 0.009 0.013 0.008 
AFC 0.015 0.012 0.008 0.006 0.007 0.011 

TATES 0.012 0.015 0.009 0.012 0.005 0.009 
FC 0.013 0.014 0.009 0.007 0.007 0.007 

MANOVA 0.014 0.008 0.009 0.008 0.008 0.008 
MultiPhen 0.010 0.010 0.012 0.007 0.009 0.008 

0.05 

ABC 0.047 0.052 0.049 0.051 0.054 0.051 
AFC 0.062 0.048 0.049 0.042 0.054 0.045 

TATES 0.050 0.052 0.051 0.042 0.053 0.048 
FC 0.050 0.052 0.040 0.046 0.051 0.049 

MANOVA 0.052 0.050 0.055 0.051 0.057 0.044 
MultiPhen 0.055 0.055 0.060 0.048 0.056 0.044 
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Figure 2.1. Power comparisons of the 6 tests for power as a function of effect size (𝛽) for 

Student’s 𝑡(2) distribution under the 6 scenarios. MAF is 0.3. The total number of 

phenotypes (𝑀) is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The 

factorial correlation (𝜌\K) conditional on genotypes is 0.1. The powers are evaluated at 

1% significance level.   
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Figure 2.2. Power comparisons of the 6 tests for power as a function of effect size (𝛽) for 

Inverse-gamma (𝛼 = 2, 𝛽 = 1) distribution under the 6 scenarios. MAF is 0.3. The total 

number of phenotypes (𝑀) is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 

0.75. The factorial correlation (𝜌\K) conditional on genotypes is 0.1. The powers are 

evaluated at 1% significance level.   
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Figure 2.3. Power comparisons of the 6 tests for power as a function of effect size (𝛽) for 

Log-norm (0, 1) distribution under the 6 scenarios. MAF is 0.3. The total number of 

phenotypes (𝑀) is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The 

factorial correlation (𝜌\K) conditional on genotypes is 0.1. The powers are evaluated at 

1% significance level.  
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Figure 2.4. Power comparisons of the 6 tests for power as a function of effect size (𝛽) for 

 distribution under the 6 scenarios. MAF is 0.3. The total number of 

phenotypes (𝑀) is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The 

factorial correlation (𝜌\K) conditional on genotypes is 0.1. The powers are evaluated at 

1% significance level.  

 
  

( )5log-norm 0,1
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Figure 2.5. Power comparisons of the 6 tests for power as a function of effect size (𝛽) for 

Normal (0, 1) distribution under the 6 scenarios. MAF is 0.3. The total number of 

phenotypes (𝑀) is 8. The sample size (𝑁) is 1,000. The factor loading (𝑎) is 0.75. The 

factorial correlation (𝜌\K) conditional on genotypes is 0.1. The powers are evaluated at 

1% significance level.   
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3   A Hierarchical Clustering Method for Dimension 
Reduction in Joint Analysis of Multiple Phenotypes 

Genome-wide association studies (GWAS) have become a very effective research tool to 

identify genetic variants of underlying various complex diseases. In spite of the success 

of GWAS in identifying thousands of reproducible associations between genetic variants 

and complex disease, in general, the association between genetic variants and a single 

phenotype is usually weak. It is increasingly recognized that joint analysis of multiple 

phenotypes can be potentially more powerful than the univariate analysis, and can shed 

new light on underlying biological mechanisms of complex diseases. In this study, we 

develop a novel variable reduction method using hierarchical clustering method (HCM) 

for joint analysis of multiple phenotypes in association studies. The proposed method 

involves two steps. The first step applies a dimension reduction technique by using a 

representative phenotype for each cluster of phenotypes. Then, existing methods are used 

in the second step to test the association between genetic variants and the representative 

phenotypes rather than the individual phenotypes. We perform extensive simulation 

studies to compare the powers of MANOVA, MultiPhen, and TATES using HCM with 

those of without using HCM. Our simulation studies show that using HCM is more 

powerful than without using HCM in most scenarios. We also illustrate the usefulness of 

using HCM by analyzing a whole-genome genotyping data from a lung function study. 

 

3.1   Background 

The successful applications of genome-wide association studies (GWAS) to numerous 

complex diseases established a large number of genetic associations (Lutz et al., 2017). 

Through GWAS, numerous genes have been shown to affect multiple phenotypes and yet 

the effect size on each phenotype is small for complex diseases (Yang et al., 2017). For 

example, multiple GWAS have found significant signals in the chromosome 15q25 

region associated with lung cancer (Chen et al., 2015), chronic obstructive lung disease 

(COPD) (Cho et al., 2014), emphysema (Cho et al., 2015), and cigarette smoking 



45 

 

(Hancock et al., 2015). 

Simultaneous testing of multiple phenotypes has been widely recognized as a 

valuable approach complementary to single phenotype tests. There are two main reasons: 

one is to increase statistical power, and the other is to shed light on underlying biology to 

possibly repurpose the use of existing drugs (Deng & Pan, 2017). Therefore, there is an 

increasing interest in joint analysis of multiple phenotypes with many new tests being 

recently proposed (Aschard et al., 2014; Casale et al., 2015; Cole et al., 1994; Galesloot 

et al., 2014; Klei et al., 2008; Korte et al., 2012; Lange et al., 2004; Liang et al., 2016; 

Marchini et al., 2007; O'Reilly et al., 2012; Tang & Ferreira, 2012; Wang et al., 2016; 

Yan et al., 2013; Zhang et al., 2014; Zhou & Stephens, 2014; Zhou et al., 2015; Zhu et 

al., 2015a).  

Existing methods for joint analysis of multiple phenotypes roughly fall into three 

categories: regression methods, combining test statistics from univariate analyses, and 

variable reduction methods (Yang & Wang, 2012). In the first category, regression 

methods, there are three different approaches for analyzing the association of a genetic 

variant with multiple phenotypes: mixed effects models (Bates & DebRoy, 2004; Yan et 

al., 2013), generalized estimating equations (Liang & Zeger, 1986), and frailty models 

(Therneau et al., 2003). Tests that fall into the second category, combining test statistics 

from univariate analyses, conduct a univariate analysis first and then aggregate univariate 

test statistics. This approach is simple and feasible for meta-analyses (Schaid et al., 2016; 

Yang et al., 2016). Recently, many methods of combining test statistics from univariate 

analyses have been developed to explore the genetic association with multiple 

phenotypes by considering the correlation structure among phenotypes (Kwak & Pan, 

2016; Liang et al., 2016; Van der Sluis et al., 2013; Yang et al., 2016). In the last 

category, tests based on variable reduction methods are roughly depending on three 

dimension reduction techniques. The first one is the principal component analysis of 

phenotypes (PCP) (Aschard et al., 2014). In PCP, the first few principal components 

(PCs) explaining most of the total phenotype variance are tested for association with a 

genetic variant, and the remaining components are not analyzed. However, Aschard et al. 
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(2014) showed that considering only the first few PCs often causes low power, whereas 

considering all PCs can improve the power. The second one is the canonical correlation 

analysis (CCA) (Tang & Ferreira, 2012). CCA searches for the linear combinations that 

maximize the correlation between two sets of multidimensional variables. It provides an 

efficient and powerful approach for both univariate and multivariate tests of association 

without the need for the permutation test. The last one is the principal component of 

heritability (PCH) (Klei et al., 2008; Ott & Rabinowitz, 1999; Wang et al., 2016a). PCH 

reduces multiple phenotypes to a linear combination of phenotypes that has the highest 

heritability among all linear combinations of phenotypes. 

In this article, we develop a novel variable reduction method called hierarchical 

clustering method (HCM) for joint analysis of multiple phenotypes. HCM is a dimension 

reduction technique by using a representative phenotype for each cluster of phenotypes, 

then using existing methods for joint analysis of multiple phenotypes to test the 

association between a genetic variant of interest and the representative phenotypes rather 

than the individual phenotypes. One way to understand the dimension reduction 

technique of HCM is that when one cluster consists of highly positively correlated 

phenotypes, any linear combination of the phenotypes within this cluster can represent 

the cluster reasonably well (Bühlmann et al., 2013; Shah & Samworth, 2013). HCM does 

not require phenotypes themselves, it only requires a dissimilarity matrix of the 

phenotypes. This dissimilarity matrix can be estimated from the values of summary 

statistics using all independent single-nucleotide polymorphisms (SNPs) in a GWAS 

(Zhu et al., 2015b). We use extensive simulation studies to show the validity of the 

proposed two-step method and to investigate the power. In particular, the performance of 

three existing methods using HCM, multivariate analysis of variance (MANOVA) (Cole 

et al., 1994), joint model of multiple phenotypes (MultiPhen) (O’Reilly et al., 2012), and 

trait-based association test that uses extended simes procedure (TATES) (Van der Sluis et 

al., 2013), is compared with that of without using HCM. Our simulation studies show that 

MANOVA, MultiPhen, and TATES using HCM have correct type I error rates and are 

more powerful than MANOVA, MultiPhen, and TATES without using HCM in most 
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scenarios. We also apply MANOVA, MultiPhen, and TATES with and without using 

HCM to COPDGene data to further demonstrate the usefulness of HCM.  

 

3.2   Methods 

3.2.1   Hierarchical Clustering Method for Joint Analysis of Multiple Phenotypes 

Consider a sample with 𝑛 unrelated individuals. Each individual has 𝐾 phenotypes. 

Denote 𝑌$ = (𝑦($,… , 𝑦+$)- as the 𝑘/0 phenotype of 𝑛 individuals and 𝒀 = (𝑌(, … , 𝑌@) as 

the 𝑛 × 𝐾 phenotype matrix. Denote 𝑋 = (𝑥(,… , 𝑥+)- as the genotypic score of 𝑛 

individuals at a genetic variant of interest, where 𝑥3 ∈ {0, 1, 2} is the number of minor 

alleles that the 𝑖/0 individual carries at the genetic variant.  

The proposed hierarchical clustering method (HCM) involves two steps. In the 

first step, we divide the 𝐾 phenotypes into 𝑀 clusters and use a representative phenotype 

for each of the 𝑀 clusters. In the second step, we apply existing methods to the 𝑀 

representative phenotypes rather than directly to the individual phenotypes to test the 

association between phenotypes and the variant. In the first step, we need to find a 

partition 𝒢 that partitions 𝐾 phenotypes into 𝑀 disjoint clusters 𝐺(, … , 𝐺�, where 𝒢 =

{𝐺(,… , 𝐺�} with ⋃ 𝐺f�
fI( = {1,… , 𝐾} and 𝐺f ∩ 𝐺ℓ𝓁 = ∅	
  (𝑚 ≠ ℓ𝓁). In this article, we use 

a hierarchical clustering strategy to cluster the phenotypes. 

Strategies for hierarchical clustering generally fall into two types: agglomerative 

(bottom-up) and divisive (top-down). The agglomerative method starts with all 

phenotypes in their own cluster and merges the two clusters that have the smallest 

dissimilarity in each clustering iteration until there is only one single cluster left. The 

divisive method starts with all phenotypes in one cluster and splits the cluster into two 

that have the largest dissimilarity in each clustering iteration until all phenotypes are in 

their own cluster. Both methods can be described by a dendrogram which is frequently 
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used to illustrate the arrangement of the clusters produced by hierarchical clustering. We 

need a stopping criterion to cut the dendrogram into several clusters.  

In this study, we use the bottom-up hierarchical clustering method based on the 

dissimilarity matrix of the phenotypes. We define the dissimilarity matrix 𝐷 with entries 

𝑑3  = 1 − 𝑃3 � , where 𝑃3 �  is the 𝑖𝑗/0 entry of 𝑃�(𝒀) and 𝑃�(𝒀) is the sample correlation 

matrix of 𝒀 = (𝑌(, … , 𝑌@). We choose the average linkage as the dissimilarity between 

two clusters. Hence, the dissimilarity between clusters 𝐺f and 𝐺ℓ𝓁 is given by 
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where |𝐺f| denote the number of phenotypes in 𝐺f. Using the bottom-up hierarchical 

clustering method, we start with each phenotype as a singleton cluster and then 

successively merge pairs of clusters with the smallest dissimilarity calculated by equation 

(1) until all clusters have been merged into a single cluster that contains all phenotypes. 

We refer the smallest dissimilarity in each iteration as the height of the merged cluster in 

the dendrogram. We determine the number of clusters in the HCM using a stopping 

criterion. The stopping criterion is similar to an established principle (Bühlmann et al., 

2013). Let ℎT denote the smallest dissimilarity between two clusters in iteration 𝑏 (𝑏 ≥

1) or the height of iteration 𝑏. We define: 
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Then, we choose the number of clusters identified at the iteration 𝑏â.   

Before we define the representative phenotype for each cluster, we first scale each 

phenotype. We define the representative phenotype for the 𝑚/0 cluster as the average 

phenotype values in the cluster, that is 
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Let 𝒀å denote the 𝑛 × 𝑀 design matrix whose 𝑚/0 column is given by 𝑌¼(f). Then we 

apply existing methods to test the association between 𝒀å and 𝑋. 

 

3.2.2   Comparison of Methods 

We compare the performance of MANOVA, MultiPhen, and TATES with using HCM 

with that of without using HCM. We refer the ones with using HCM as HCMANOVA, 

HCMultiPhen, and HCTATES, respectively. Since principal component analysis (PCA) 

is a popular dimension reduction method, we also compare the performance of 

MANOVA, MultiPhen, and TATES using HCM with that of using the first few PCs of 

the phenotypes. We choose the number of PCs that explain 95% of the total variance of 

the phenotypes. We refer MANOVA, MultiPhen, and TATES using PCs as 

PCMANOVA, PCMultiPhen, and PCTATES, respectively.   

 

3.3   Results 

3.3.1   Simulation Studies  

To evaluate the type I error rates and powers of HCM, we generate genotypes at a genetic 

variant according to the minor allele frequency (MAF) under Hardy Weinberg 

equilibrium. Then, we generate 𝐾 phenotypes by the factor model (Wang et al., 2016a) 
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where 𝑦 = (𝑦(, … , 𝑦@)- ; 𝑥 is the genotype score at the variant; 𝜆 = (𝜆(,… , 𝜆@)- is the 

vector of effect sizes of the genetic variant on the 𝐾 phenotypes;	
  𝑓 is a vector of factors, 

𝑓 = (𝑓(, … , 𝑓�)-~𝑀𝑉𝑁(0, Σ), Σ = (1 − 𝜌)𝐼 + 𝜌𝐴, 𝐴 is a matrix with elements of 1, 𝐼 is 

the identity matrix, 𝑅	
  is the number of factors, and 𝜌 is the correlation between factors; 𝛾 

is a 𝐾 by 𝑅 matrix; 𝑐 is a constant number; and 𝜀 = (𝜀(,… , 𝜀@)- is a vector of residuals, 
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and 𝜀(, … , 𝜀@  are independent, and 𝜀$~𝑁(0,1) for 𝑘 = 1,… , 𝐾. Based on equation (4), 

we consider the following four models with different number of factors and different 

number of factors affected by genotypes. In the four models, the within-factor correlation 

is 𝑐? and the between-factor correlation is 𝜌𝑐?. 

Model 1: There is only one factor and genotypes impact on all phenotypes. That 

is, 𝑅 = 1, 𝜆 = 𝛽(1,2,… , 𝐾)-, and 𝛾 = (1,… ,1)-. 

Model 2: There are two factors and genotypes impact on one factor. That is, 𝑅 =

2, 𝜆 = ë0,… ,0, 𝛽,… , 𝛽ìíîíï
@ ?⁄

ñ
-

, and 𝛾 = 𝑑𝑖𝑎𝑔(𝐷(, 𝐷?), where 𝐷3 = ë1,… ,1ìîï
@ ?⁄

ñ
-

 for 𝑖 = 1, 2. 

Model 3: There are five factors and genotypes impact on two factors. That is, 𝑅 =

5, 𝜆 = (𝛽((, … , 𝛽($, 𝛽?(, … , 𝛽?$ , 𝛽�(, … , 𝛽�$ , 𝛽�(,… , 𝛽�$, 𝛽«(, … , 𝛽«$)-, and 𝛾 =

𝑑𝑖𝑎𝑔(𝐷(, 𝐷?, 𝐷�, 𝐷�, 𝐷«), where 𝐷3 = ë1,… ,1ìîï
@ «⁄

ñ
-

 for 𝑖 = 1,… ,5, 𝑘 = @
«
, 𝛽(( = ⋯𝛽($ =

𝛽?( = ⋯ = 𝛽?$ = 𝛽�( = ⋯ = 𝛽�$ = 0, 𝛽�( = ⋯ = 𝛽�$ = −𝛽, and (𝛽«(,… , 𝛽«$) =
?ò
$}(

(1,… , 𝑘). 

Model 4: There are five factors and genotypes impact on four factors. That is, 

𝑅 = 5, 𝜆 = (𝛽((,… , 𝛽($, 𝛽?(,… , 𝛽?$, 𝛽�(,… , 𝛽�$, 𝛽�(, … , 𝛽�$ , 𝛽«(, … , 𝛽«$)-, and 𝛾 =

𝑑𝑖𝑎𝑔(𝐷(, 𝐷?, 𝐷�, 𝐷�, 𝐷«), where 𝐷3 = ë1,… ,1ìîï
@ «⁄

ñ
-

 for 𝑖 = 1,… ,5, 𝑘 = @
«
, 𝛽(( = ⋯𝛽($ =

0, 𝛽?( = ⋯ = 𝛽?$ = 𝛽, 𝛽�( = ⋯ = 𝛽�$ = −𝛽, 𝛽�( = ⋯ = 𝛽�$ = − ?ò
$}(

(1,… , 𝑘), and 

(𝛽«(, … , 𝛽«$) =
?ò
$}(

(1,… , 𝑘). 

To evaluate type I error rates, we let 𝛽 = 0. To evaluate powers, we let 𝛽 > 0. In 

the simulation studies for evaluation of type I error rates and powers, we set MAF = 0.3, 

𝑐 = √0.5, and 𝜌 = 0.2. 
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3.3.2   Simulation Results  

For each model, we estimate the p-values of all test statistics using their asymptotic 

distributions.  

For type I error evaluation, we consider different numbers of phenotypes, 

different significance levels, different sample sizes, and different models. For 10,000 

replicated samples, the 95% confidence intervals (CIs) for type I error rates at the 

nominal levels 0.05, 0.01, and 0.001 are (0.0457, 0.0543), (0.008, 0.012), and (0.0004, 

0.0016), respectively. The estimated type I error rates of HCMANOVA, HCMultiPhen, 

and HCTATES are summarized in Tables 3.1 to 3.3. The estimated type I error rates of 

PCMANOVA, PCMultiPhen, and PCTATES are summarized in Tables S1 to S3. From 

these tables, we can see that most of the estimated type I error rates are within the 95% 

CIs. In addition, the type I error rates outside of the 95% CIs are very close to the bounds 

of the corresponding 95% CI, which indicates that HCMANOVA, HCMultiPhen, 

HCTATES, PCMANOVA, PCMultiPhen, and PCTATES are valid tests.  

For power comparisons, we consider different numbers of phenotypes and 

different models. The powers of all tests are evaluated based on 1000 replications and 

5000 subjects at 5% significance level. Figure 3.1 and Figure 3.2 provide the power 

comparisons of the six tests (HCMANOVA, MANOVA, HCMultiPhen, MultiPhen, 

HCTATES, and TATES) for the power as a function of the effect size under the four 

models. We consider 20 phenotypes and 40 phenotypes in Figure 3.1 and Figure 3.2, 

respectively.  

These two figures show that (1) when the effect sizes of the genetic variant on 

phenotypes show no groups (Model 1), HCMANOVA, HCMultiPhen, and HCTATES 

are slightly less powerful than MANOVA, MultiPhen, and TATES, respectively, because 

in most replications, HCM clusters each phenotype in a singleton cluster; (2) when the 

effect sizes show some groups and have the same direction (Model 2), HCMANOVA, 
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HCMultiPhen, and HCTATES are much more powerful than MANOVA, MultiPhen, and 

TATES, respectively; (3) when the effect sizes show some groups and have different 

directions (Models 3 and 4), HCMANOVA and HCMultiPhen are more powerful than 

MANOVA and MultiPhen, respectively, but HCTATES is less powerful than TATES; 

(4) HCMANOVA and HCMultiPhen have similar power; MANOVA and MultiPhen 

have similar power; (5) HCTATES and TATES are much less powerful than other 

methods when genotypes directly impact on all phenotypes (Model 1). Figures A.1 and 

A.2 provide the power comparisons of HCM with those of using PCs of phenotypes that 

explain 95% of the total variance. These figures show that using HCM as a dimension 

reduction method is more powerful than using PCs that explain 95% of the total variance. 

We also set up an additional simulation model (Model S1) to compare the powers of 

MANOVA, MultiPhen, and TATES with those of HCMANOVA, HCMultiPhen, and 

HCTATES (Figure A.3). Figure A.3 shows that under Model S1, HCMANOVA, 

HCMultiPhen, and HCTATES are more powerful than MANOVA, MultiPhen, and 

TATES, respectively.      

In summary, the existing methods using HCM have correct type I error rates and 

are more powerful than or comparable with those without using HCM, and the existing 

methods using HCM are also more powerful than those using PCs of phenotypes as a 

dimension reduction method. 

 

3.3.3   Real Data Analysis  

Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disease 

including chronic bronchitis, emphysema, non-reversible asthma, and some forms of 

bronchiectasis. This disease is characterized by reduced maximum expiratory flow and 

slow forced emptying of the lungs (Siafakas et al., 1995). Despite being a treatable and 

preventable disease, it is still a major cause of morbidity and mortality. The prevalence 

continues to rise because of the worldwide epidemic of smoking (Nazir & Erbland, 
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2009). In this article, we demonstrated the application of the proposed method by 

conducting analysis on the data from the Genetic Epidemiology of COPD (COPDGene). 

The COPDGene Study was designed to investigate the underlying genetic factors of 

COPD, to define and characterize disease-related phenotypes, and to assess the 

association of disease-related phenotypes with the identified susceptibility genes (Regan 

et al., 2011). 

To evaluate the performance of our proposed method on a real data set, we 

applied the six methods to the COPDGene of non-Hispanic Whites population to carry 

out GWAS of COPD-related phenotypes. Similar to Liang et al., 2016, we selected 7 

quantitative COPD-related phenotypes, including % predicted FEV1 (FEV1), 

Emphysema (Emph), Emphysema Distribution (EmphDist), Gas Trapping (GasTrap), 

Airway Wall Area (Pi10), Exacerbation Frequency (ExacerFreq), Six-minute Walk 

Distance (6MWD), and 4 covariates, including BMI, Age, Pack-Years (PackYear) and 

Sex. In our analysis, EmphDist is the ratio of emphysema at -950 HU in the upper 1/3 of 

lung fields compared to the lower 1/3 of lung fields. Followed by Chu et al. (Chu et al., 

2014), we did a log transformation on EmphDist in the following analysis. We excluded 

participants with missing data in any of the 11 variables. There were total 5,430 

individuals across 630,860 SNPs used in the analyses. We first adjusted each of the 7 

phenotypes for the 4 covariates using linear models. Then, we performed the analysis 

based on the adjusted phenotypes. The detailed information can be found in Liang et al. 

(Liang et al., 2016). 

 Based on the correlation structure of the 7 COPD-related phenotypes given in 

Figure 4 in Liang et al. 2016, we changed the signs for phenotypes of FEV1 and 6MWD 

because the correlations of FEV1 and 6MWD with other 5 phenotypes are all negative. 

After changing the signs for the phenotypes of FEV1 and 6MWD, the pair-wise 

correlations among the 7 phenotypes are all positive.  

To identify SNPs associated with the 7 COPD-related phenotypes, we adopted the 

commonly used genome-wide significance level 5 × 10�­ to account for multiple testing. 
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HCM divided the 7 phenotypes into 5 clusters (Figure 3.3). The first cluster contains 

three phenotypes including FEV1, Emph, and GasTrap. Each of the other four clusters 

contains only one phenotype. Table 3.4 summarized the significant SNPs identified by at 

least one method. There are 14 SNPs in Table 3.4. All of the 14 SNPs had previously 

been reported to be in association with COPD (Brehm et al., 2011; Cho et al., 2010 & 

2014; Cui et al., 2014; Du et al., 2016; Hancock et al., 2010; Li et al., 2011; Lutz et al., 

2015; Pillai et al., 2009; Wilk et al., 2009 & 2012; Young et al., 2010; Zhang et al., 2012; 

Zhu et al., 2014). From Table 3.4, we can see that HCMANOVA identifies 13 SNPs 

which are same as MANOVA; HCMultiPhen identifies 13 SNPs which are one less than 

MultiPhen; and HCTATES identifies 10 SNPs which are one more than TATES. The 

results of the real data analysis are consistent with our simulation results, that is, the 

existing methods using HCM are more powerful than or comparable with those without 

using HCM. 

 

3.4   Discussion 

In this study, we developed a HCM for joint analysis of multiple phenotypes in 

association studies. The proposed method is a dimension reduction technique by using a 

representative phenotype for each cluster of phenotypes. Applying HCM, we used 

existing methods to test the association between genetic variants and the representative 

phenotypes rather than the individual phenotypes. 

HCM has several important advantages over other dimension reduction 

techniques. First, it can produce a dendrogram of the phenotypes, which may provide 

more information on the structure of phenotypes. Second, it is computationally fast and 

easy to implement. Third, it has the distinct advantage that any valid measure of distance 

can be used in the hierarchical clustering procedure. In fact, HCM does not require 

phenotypes themselves, it only requires a dissimilarity matrix of phenotypes. This 

dissimilarity matrix of phenotypes can be estimated from the values of summary statistics 
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using independent SNPs in a GWAS (Zhu et al., 2015b). Last, any linear combination of 

the phenotypes within each cluster can represent the cluster reasonably well when the 

cluster consists of highly positively correlated phenotypes (Bühlmann et al., 2013; Shah 

& Samworth, 2013).  

We used extensive simulation studies as well as real data application to compare 

the performance of MANOVA, MultiPhen, and TATES with using HCM with that of 

without using HCM. Our simulation results showed that the three methods using HCM 

have correct type I error rates and are more powerful than or comparable with those 

without using HCM under a variety of simulation scenarios. Additionally, the real data 

analysis results demonstrated that HCM has great potential in GWAS with multiple 

phenotypes such as COPD. We also compared the proposed method with a popular 

dimension reduction method, PCA of phenotypes. Our simulation results showed that the 

three methods using HCM are more powerful than those using PCs of phenotypes. 

In this study, we use the average phenotype in each cluster as the representative 

phenotype of the cluster. We can also use the first PC of the phenotypes in each cluster as 

a representative phenotype of the cluster. However, our simulation studies (Figure A.4 

and Figure A.5) show that using the average as the representative has very similar 

performance as using the first PC as the representative. As we pointed out in the 

introduction section, any linear combination of the phenotypes within one cluster can 

represent the cluster reasonably well when the cluster consists of highly positively 

correlated phenotypes. The proposed method is more suitable for quantitative 

phenotypes. After scaling the phenotypes, the proposed method can be applied to binary 

or mixed traits. However, the performance of this approach for applying to binary or 

mixed traits needs further investigation.  
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3.5   Tables and Figures 

Table 3.1. The estimated type I error rates of HCMANOVA. MAF is 0.3. 𝐾 is the 

number of phenotypes.	
  𝛼 is the significance level. 10,000 replicates are used in the 

simulations. The type I error rates in bold indicate the values out of the bounds of the 

95% CIs. 

𝑲 𝜶 Sample 
Size 

Model 

1 2 3 4 

20 

0.050 
2000 0.0491 0.0479 0.0491 0.0512 

5000 0.0488 0.0507 0.0482 0.0491 

0.010 
2000 0.0092 0.0084 0.0102 0.0108 

5000 0.0113 0.0107 0.0077 0.0089 

0.001 
2000 0.0015 0.0002 0.0014 0.0009 

5000 0.0010 0.0013 0.0006 0.0009 

40 

0.050 
2000 0.0482 0.0473 0.0495 0.0505 

5000 0.0509 0.0487 0.0500 0.0509 

0.010 
2000 0.0091 0.0080 0.0098 0.0104 

5000 0.0120 0.0104 0.0100 0.0094 

0.001 
2000 0.0013 0.0005 0.0009 0.0008 

5000 0.0012 0.0009 0.0005 0.0005 
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Table 3.2. The estimated type I error rates of HCMultiPhen. MAF is 0.3. 𝐾 is the number 

of phenotypes.	
  𝛼 is the significance level. 10,000 replicates are used in the simulations. 

The type I error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝑲 𝜶 Sample 
Size 

Model 

1 2 3 4 

20 

0.050 
2000 0.0519 0.0474 0.0515 0.0501 

5000 0.0482 0.0479 0.0484 0.0513 

0.010 
2000 0.0100 0.0082 0.0109 0.0104 

5000 0.0112 0.0111 0.0085 0.0100 

0.001 
2000 0.0018 0.0006 0.0011 0.0008 

5000 0.0013 0.0013 0.0008 0.0006 

40 

0.050 
2000 0.0513 0.0464 0.0512 0.0502 

5000 0.0539 0.0484 0.0496 0.0490 

0.010 
2000 0.0112 0.0078 0.0104 0.0091 

5000 0.0127 0.0111 0.0096 0.0102 

0.001 
2000 0.0013 0.0007 0.0009 0.0010 

5000 0.0013 0.0012 0.0002 0.0004 
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Table 3.3. The estimated type I error rates of HCTATES. MAF is 0.3. 𝐾 is the number of 

phenotypes.	
  𝛼 is the significance level. 10,000 replicates are used in the simulations. The 

type I error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝑲 𝜶 Sample 
Size 

Model 

1 2 3 4 

20 

0.050 
2000 0.0445 0.0469 0.0509 0.0491 

5000 0.0452 0.0516 0.0498 0.0478 

0.010 
2000 0.0105 0.0088 0.0119 0.0091 

5000 0.0096 0.0102 0.0087 0.0088 

0.001 
2000 0.0016 0.0006 0.0013 0.001 

5000 0.0007 0.0012 0.0007 0.0013 

40 

0.050 
2000 0.0409 0.0464 0.0519 0.0495 

5000 0.0413 0.0486 0.0488 0.0499 

0.010 
2000 0.0088 0.0098 0.0095 0.0096 

5000 0.0097 0.011 0.0096 0.0094 

0.001 
2000 0.0008 0.0005 0.001 0.0009 

5000 0.0012 0.0009 0.0013 0.0008 
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Table 3.4. Significant SNPs and the corresponding p-values in the analysis of 

COPDGene. The p-values of six tests are evaluated using asymptotic distributions. The 

bold p-values indicate the p-values > 	
  5 × 10�­. 
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Figure 3.1. Power comparisons of the six tests (HCMANOVA, MANOVA, 

HCMultiPhen, MultiPhen, HCTATES, and TATES) for the power as a function of effect 

size 𝛽 for 20 quantitative phenotypes. MAF is 0.3. The sample size is 5000. The number 

of replication is 1000. The within-factor correlation is 0.5 (𝑐? = 0.5) and the between-

factor correlation is 0.1 (𝜌𝑐? = 0.1). The powers are evaluated at 5% significance level.   
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Figure 3.2. Power comparisons of the six tests (HCMANOVA, MANOVA, 

HCMultiPhen, MultiPhen, HCTATES, and TATES) for the power as a function of effect 

size 𝛽 for 40 quantitative phenotypes. MAF is 0.3. The sample size is 5000. The number 

of replication is 1000. The within-factor correlation is 0.5 (𝑐? = 0.5) and the between-

factor correlation is 0.1 (𝜌𝑐? = 0.1). The powers are evaluated at 5% significance level.   
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Figure 3.3. The dendrogram of the seven phenotypes in the COPDGene study. 
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Appendix 

A.1   An Adaptive Fisher’s Combination Method for Joint Analysis 
of Multiple Phenotypes in Association Studies 

Without loss of generality, we assume that all phenotypes are quantitative. We use the 

linear model  to relate the  phenotype and the genotype. Let  

denote the score test statistic to test the null hypothesis . Then,  is given by 

, 

where  and . Under the null 

hypothesis, the statistic  asymptotically follows a standard normal distribution. It is 

reasonable to assume that  follows a multivariate normal distribution 

with mean 0 and covariance matrix  under the null hypothesis1. Note that 

, where  is the variance of the  phenotype. We 

have 

 

as , where  denotes the correlation coefficient between the  phenotype and 

the  phenotype. We can see that under null hypothesis, the distribution of 
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, and thus distributions of  and , are independent of 

genotypes. 

Using the same arguments as above, we can show that if  come from z 

score statistics or Wald statistics, distributions of  and  are also independent 

of the genotype (Zhu et al., 2015b). 

 

A.2   A Hierarchical Clustering Method for Dimension Reduction in 
Joint Analysis of Multiple Phenotypes 

We use PCMANOVA, PCMultiPhen, and PCTATES to represent MANOVA, 

MultiPhen, and TATES applying to the first few principal components (PCs) of 

phenotypes that explain 95% of the total variance, respectively; we use HCMANOVA-

PC1, HCMultiPhen-PC1, and HCTATES-PC1 to represent HCMANOVA, 

HCMultiPhen, and HCTATES using the first PC of the phenotypes in each cluster as a 

representative of the cluster, respectively. 

In power comparisons (Figures A.1 – A.5), we use the following set up: MAF is 

0.3; the sample size is 5000; the number of replication is 1000; and the significance level 

is 5%. In Figures A.1, A.2, A.4, and A.5, the within-factor correlation is 0.5 (𝑐? = 0.5) 

and the between-factor correlation is 0.1 (𝜌𝑐? = 0.1). 

Simulation Model S1: phenotypes 𝑦 = (𝑦(,… , 𝑦@)- are generated according to 

multivariate normal distribution 𝑀𝑉𝑁@(𝜇, Σ) with 𝜇 = 𝑥𝛽(1,… , 𝐾)- and Σ = D𝜎3 H, 

where 𝜎3  = 𝜌|3� | and 𝑥 is the genotype score at the variant.  
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Table A.1. The estimated type I error rates of PCMANOVA. MAF is 0.3. 𝐾 is the 

number of phenotypes.	
  𝛼 is the significance level. 10,000 replicates are used in the 

simulations. The type I error rates in bold indicate the values out of the bounds of the 

95% CIs. 

𝑲 𝜶 Sample 
Size 

Model 
1 2 3 4 

20 

0.05 
2000 0.0499 0.0529 0.0494 0.0477 
5000 0.0493 0.0462 0.0495 0.0495 

0.01 
2000 0.0105 0.011 0.0108 0.0092 
5000 0.0098 0.0104 0.0101 0.0101 

0.001 
2000 0.0012 0.001 0.0008 0.0009 
5000 0.0008 0.001 0.0012 0.0014 

40 

0.05 
2000 0.0467 0.0521 0.0491 0.0476 
5000 0.05 0.0498 0.0492 0.0529 

0.01 
2000 0.0099 0.0112 0.0088 0.0099 
5000 0.01 0.0111 0.0097 0.011 

0.001 
2000 0.0013 0.0008 0.0011 0.0009 
5000 0.0013 0.001 0.0011 0.0015 
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Table A.2. The estimated type I error rates of PCMultiPhen. MAF is 0.3. 𝐾 is the number 

of phenotypes.	
  𝛼 is the significance level. 10,000 replicates are used in the simulations. 

The type I error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝑲 𝜶 Sample 
Size 

Model 
1 2 3 4 

20 

0.05 
2000 0.0522 0.0523 0.0507 0.0488 
5000 0.0509 0.0492 0.0507 0.0477 

0.01 
2000 0.0111 0.0114 0.0107 0.0106 
5000 0.0103 0.0104 0.0113 0.0104 

0.001 
2000 0.0013 0.0008 0.0007 0.001 
5000 0.0007 0.0009 0.0009 0.0014 

40 

0.05 
2000 0.0541 0.0566 0.0561 0.0528 
5000 0.051 0.0537 0.0504 0.0539 

0.01 
2000 0.0118 0.0112 0.0095 0.0106 
5000 0.0103 0.0115 0.0096 0.011 

0.001 
2000 0.0017 0.0009 0.0014 0.0009 
5000 0.0012 0.0012 0.0006 0.0012 
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Table A.3. The estimated type I error rates of PCTATES. MAF is 0.3. 𝐾 is the number of 

phenotypes.	
  𝛼 is the significance level. 10,000 replicates are used in the simulations. The 

type I error rates in bold indicate the values out of the bounds of the 95% CIs. 

𝑲 𝜶 Sample 
Size 

Model 
1 2 3 4 

20 

0.05 
2000 0.0476 0.0487 0.0474 0.0505 
5000 0.0472 0.053 0.047 0.0485 

0.01 
2000 0.0085 0.0103 0.0105 0.0098 
5000 0.0105 0.0094 0.0084 0.0099 

0.001 
2000 0.0005 0.0013 0.0015 0.0008 
5000 0.0011 0.0012 0.0008 0.0009 

40 

0.05 
2000 0.0524 0.0484 0.0491 0.0541 
5000 0.0503 0.0501 0.051 0.0492 

0.01 
2000 0.0088 0.0102 0.0088 0.0108 
5000 0.0128 0.0096 0.0104 0.0099 

0.001 
2000 0.0013 0.0012 0.0014 0.0016 
5000 0.0007 0.0012 0.0007 0.0012 
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Figure A.1. Power comparisons of the six tests (HCMANOVA, PCMANOVA, 

HCMultiPhen, PCMultiPhen, HCTATES, and PCTATES) for the power as a function of 

effect size 𝛽 for 20 quantitative phenotypes.  
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Figure A.2. Power comparisons of the six tests (HCMANOVA, PCMANOVA, 

HCMultiPhen, PCMultiPhen, HCTATES, and PCTATES) for the power as a function of 

effect size 𝛽 for 40 quantitative phenotypes.  
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Figure A.3. Power comparisons of the six tests (HCMANOVA, MANOVA, 

HCMultiPhen, MultiPhen, HCTATES, and TATES) for the power as a function of effect 

size 𝛽 for 20 quantitative phenotypes under Model S1.  
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Figure A.4. Power comparisons of the six tests (HCMANOVA, HCMANOVA-PC1, 

HCMultiPhen, HCMultiPhen-PC1, HCTATES, and HCTATES-PC1) for the power as a 

function of effect size 𝛽 for 20 quantitative phenotypes  
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Figure A.5. Power comparisons of the six tests (HCMANOVA, HCMANOVA-PC1, 

HCMultiPhen, HCMultiPhen-PC1, HCTATES, and HCTATES-PC1) for the power as a 

function of effect size 𝛽 for 40 quantitative phenotypes.  
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