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Abstract

A multi-core machine allows executing several applications simultaneously. Those jobs are sched-

uled on different cores and compete for shared resources such as the last level cache and memory

bandwidth. Such competitions might cause performance degradation. Data centers often utilize vir-

tualization to provide a certain level of performance isolation. However, some of the shared resources

cannot be divided, even in a virtualized system, to ensure complete isolation. If the performance

degradation of co-tenancy is not known to the cloud administrator, a data center often has to dedi-

cate a whole machine for a latency-sensitive application to guarantee its quality of service. Co-run

scheduling attempts to make good utilization of resources by scheduling compatible jobs into one

machine while maintaining their service level agreements. An ideal co-run scheduling scheme re-

quires accurate contention modeling. Recent studies for co-run modeling and scheduling have made

steady progress to predict performance for two co-run applications sharing a specific system. This

thesis advances co-tenancy modeling in three aspects. First, with an accurate co-run modeling for

one system at hand, we propose a regression model to transfer the knowledge and create a model

for a new system with different hardware configuration. Second, by examining those programs that

yield high prediction errors, we further leverage clustering techniques to create a model for each

group of applications that show similar behavior. Clustering helps improve the prediction accuracy

of those pathological cases. Third, existing research is typically focused on modeling two applica-

tion co-run cases. We extend a two-core model to a three- and four-core model by introducing a

light-weight micro-kernel that emulates a complicated benchmark through program instrumentation.

Our experimental evaluation shows that our cross-architecture model achieves an average prediction

error less than 2% for pairwise co-runs across the SPECCPU2006 benchmark suite. For more than

xv
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two application co-tenancy modeling, we show that our model is more scalable and can achieve an

average prediction error of 2-3%.
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Chapter 1

Introduction

Today’s computation has been continuously moved into the Cloud. Data centers often employ

thousands of heterogeneous modern machines, providing their customers with elastic, scalable, and

affordable computing and storage services. A modern machine is typically multi-core or many-core

and hence able to host multiple applications or virtual machines (VMs). Co-locating applications or

VMs can help improving server resource utilization and reduce operating costs. Certain resources,

such as disk and main memory, can be partitioned across VMs on the same machine. However,

some shared resources, such as the last level cache and memory bandwidth, are often implicitly

shared and cannot be easily partitioned. Interference due to shared resources contentions can lead

to performance degradation, a typical problem resulting from co-tenancy.

If the performance impact of co-tenancy is not predictable for latency-sensitive applications

where response time or throughput is critical, data centers often have to dedicate whole machines to

guarantee QoS even when this would result in under-utilization of the machine. Recent studies in co-

tenancy and data center scheduling have made steady progress toward scheduling co-run applications

to guarantee the performance [25, 26]. However, there still lacks an accurate model that can predict

co-run performance across machines of different architectures.

Modeling and predicting co-tenancy interference is critical for data center job scheduling and

guarantees QoS. Recent studies rely on two metrics, sensitivity and pressure, to quantify co-tenancy

interferences [70]. Sensitivity measures how an application’s performance is affected by co-run ap-

plications. Pressure measures how much an application impacts the performance of co-run applica-

1



CHAPTER 1. INTRODUCTION

tions. This dissertation shows that sensitivity and pressure are both application- and architecture-

dependent. We propose a regression model that predicts an application’s sensitivity and pressure

across architectures with high accuracy. Co-run performance degradation can be predicted accu-

rately by using the models of sensitivity and pressure for the co-run applications. High-accuracy

co-run performance modeling enables a data center scheduler to guarantee the QoS of the appli-

cations. Yet we find some programs’ performance degradation are difficult to predict using this

approach. Further study shows that cross-architecture patterns are different across different group

of benchmarks. Clustering is used to categorize programs and separate models are constructed for

each group to address the problem. Moreover, as there can be more than two cores sharing the last

level cache and memory bandwidth. Thus, co-tenancy is not limited to just the pairwise case. It

also includes the case for three cores and four cores. We propose a new micro-kernel design that ac-

curately resembles actual applications in a co-run setting and can be used to model the performance

slowdown in a contended environment.

1.1 Predicting contention for different architectures

with regressions

Models that use metrics such as sensitivity and pressure can predict pairwise co-run performance

accurately. However, an application’s sensitivity and pressure will change as the architecture con-

figuration changes. Therefore, such metrics must be measured on a per architecture basis. To

reduce the cost of profiling, we can model an application’s sensitivity and pressure, both of which

are architecture dependent, by employing machine learning techniques such as regression modeling.

1.1.1 Modeling sensitivity and pressure with regression

The miss ratio curve is widely used in application characterization and serves as a heuristic for

resource allocation, where the x-axis is the cache size assigned to the application and the y-axis is

2



CHAPTER 1. INTRODUCTION

its cache miss ratio. Program performance degradation with respect to different levels of co-runner

pressure can also be depicted as a function similar to a miss ratio curve. Performance degradation is

actually the “sensitivity” of a program towards various levels of contention, where the x-axis is the

co-runner’s pressure score and the y-axis is the performance degradation scaled by solo execution

time. Different applications react differently towards pressure, therefore the shape of the sensitivity

curve can be varied. We have tried several classes of regression functions to fit the curve, including

a linear model, quadratic model and a logistic model. We find that a logistic model of the form

c
1+e−b(x−a) fits best across all benchmark programs with different shapes. Moreover, the parameters

of the logistic function are easy to interpret. As for each co-running program, the performance

degradation will reach a point where cache is saturated and will no longer decrease, and one of the

parameter reveals this upper bound. On the contrary, the program will perform similarly as the solo

execution cases without too much slowdown when co-runner’s pressure is at a ‘benign’ range and

will be sharply increased after a certain point. The second parameter depicts such inflection point.

At last, the third parameter shows how fast is the slowdown towards pressure after the knee point.

We use a synthetic program, which is a memory bubble that can inflate or deflate to imitate the last

level cache contention, to profile each program’s slowdown with the bubble pressure ranging from 0

to the size of last level cache. We then fit those sample points into a logistic function. The fitting

accuracy across all the programs is over 99%.

1.1.2 Cross-architecture performance modeling with polynomial
curve fitting

In order to learn and model how a program’s sensitivity changes between different architectures,

a training set of applications are profiled on both machines. To reduce the profiling cost, only

representative applications are selected for profiling. We divide the SPEC CPU2006 benchmarks into

training and testing sets, and profile all training programs on each machine. We use a logistic function

3



CHAPTER 1. INTRODUCTION

to represent the sensitivity curve of each program, from which three parameters are extracted. In

order to capture the transition pattern of those logistic parameters from one machine to the other

machine, we fit the mapping of each parameter across two different architectures into a quadratic

function to create the cross-architecture model. We then profile the testing program set on one

architecture to generate logistic functions as their sensitivity curves. Using the logistic function

parameters as the input, we predict the parameters of the logistic functions for each testing program

on the other architecture to make final performance degradation prediction. The average prediction

error is within 2%.

1.2 Improving prediction accuracy using clustering

The framework’s performance depends significantly on how closely the bubble and reporters can

resemble the actual programs. However, some programs are benign to each other and some programs

are aggressive towards resources. A single micro kernel therefore cannot resemble every case. This

results in modeling errors. Even though average prediction error is within 2%, certain programs have

prediction errors around 10%. We examine the prediction procedure and find that programs can

be clustered such that programs within a cluster share similar cross-architecture transition pattern

while different clusters have different transition pattern. Therefore, we divided the programs into

clusters based on their cache access behavior and construct a model for each cluster. With three

clusters, the average prediction accuracy is improved and programs with high prediction errors are

now have much more accurate prediction result.

1.3 Predicting performance for more than two core

co-run scenarios

Co-run scenarios are not limited to only two cores. We move one step forward, aiming to solve

the co-run prediction problem for more than two cores. We find there is a scalability limitation in

4



CHAPTER 1. INTRODUCTION

our current approaches and propose using program-dependent bubbles to tackle this limitation. The

merit of using sensitivity and pressure is to decouple the pairwise co-run performance prediction into

a linear-solvable problem. However the profiling cost increases as the number of participating cores

increases. Moreover, the combinations of co-run peers expand exponentially, making the approach

infeasible in practice. The purpose of using a bubble is to provide a way to resemble the actual

program, and the bubble comes with various pressure scores. Therefore, we need an additional

step to measuring which one best mimics the actual application. However, we can eliminate the

measuring process if we can design a program-specific bubble that perfectly resembles the actual

application. Moreover, we can make predictions out of bubble-only co-run instead of program-bubble

co-run by observing the hardware statistics of the bubble when it co-runs with other bubbles. We use

IntelTM’s Pin tool to analyze memory-related behavior of each program, identify hot code segments

in the source code, and use that information to direct new bubble design. The new bubble has

the fine-grain property such that it behaves almost exactly as the actual program does whether

co-runners are present or not. With the newly designed bubbles, we can predict multi-core (3 or

4) co-run degradation still within 2% error and eliminate the process of measuring program bubble

score, which greatly reduces profiling time.

1.4 Dissertation organization

The rest of this dissertation is organized as follows. In Chapter 2, we briefly cover relevant back-

ground knowledge and discuss related work. In Chapter 3, our cross-architecture co-tenancy con-

tention performance modeling is presented. We will describe our implementation and experimental

results. In Chapter 4, we investigate the lower prediction accuracy of some programs and show

that clustering programs into different groups according their cache access behavior can significantly

improve overall performance. In Chapter 5, we expand the framework into a more than two core

5



CHAPTER 1. INTRODUCTION

co-run scenario. We also analyze the access behavior of each SPEC CPU2006 benchmark program

by using the Intel’s Pin tool. By identifying the hot code segments, we create program-dependent

bubbles, which duplicate the access behavior of an actual program. The program-dependent bubbles

are then compared with the bubbles we use in Chapter 3 and Chapter 4. We demonstrate that the

newly designed bubbles show a very similar behavior as the actual programs do and adapt well to the

changes of peer runners so that the prediction error is still within 2%. We conclude this dissertation

in Chapter 6 by summarizing contributions, discussing the limitations of our approach and possible

future work.

1.5 Summary of contributions

We make following contributions in this dissertation.

• A cross-architecture contention model that enables performance prediction on both source

machine and target machine with different hardware configurations.

• A categorization of applications according to memory subsystem sensitivity and pressure.

Category-specific modeling improves the prediction accuracy of cross-architecture co-tenancy

performance degradation.

• A contention prediction model for more than two core scenarios. We propose a new micro-

kernel design method that accurately imitates actual applications in terms of memory subsys-

tem accessing behavior.

6



Chapter 2

Background and Related Work

2.1 Modeling contentions for shared resources

Modern architectures contain multiple processors on a single die so that several tasks can run

simultaneously on the chip. To provide a certain level of isolation, each core has a dedicated L1

and L2 cache. However, applications usually require larger memory space, and a shared last level

cache and main memory hierarchy can guarantee such requirements. Contention exists as long as

applications share some resources. A wise job scheduling scheme makes good utilization of resources

while at the same time prevents significant performance degradation due to contentions. The studies

focus on resource allocation for contention environment has been a hot topic in the area. On one

hand, a significant amount of prior work focuses on performance modeling, such as cache miss ratio

modeling, memory bandwidth consumption modeling, and overall performance slowdown modeling.

On the other hand, a great portion of prior work focuses on how to schedule co-run applications

based on on-line or off-line heuristics so that system utilization and QoS are both satisfied whereas

quite a few studies focus on pinpointing the pathological portion of the code and make appropriate

modifications to alleviate contention. Related works will be given in the following section.

2.1.1 Scheduling or modeling various contentions with off-line or
on-line profiling

For a Von Neumann architecture, data is first loaded into memory and fetched by the CPU for

computation. On-chip cache can store frequently accessed data for such that loading cached data is

much faster than directly fetching it from main memory. Therefore the performance of an application

7
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is strongly related to its cache hit/miss behavior. Early studies try to model how an application’s

cache miss ratio is affected by the cache size allocated to it. Mattson et al. [71] and Kim et al. [60]

propose similar algorithms to calculate the cache miss ratio for a given cache size. The algorithm

scans through the memory trace of a program and maintains a LRU stack, where the most recently

used data is at top of stack and the least recently used data is at bottom. When a memory location

is accessed, one can first calculate the distance between the accessed location and the top of stack,

then move it to the top to ensure a LRU replacement policy. This distance can determine whether or

not current access will be a hit, as data located at the bottom section of the stack might be evicted

due to the limited cache size. In general, if the cache size is smaller than the reuse distance, the

data access will be a miss, vice versa if the cache size is larger than the reuse distance for the hit

case. Throughout the execution trace, one can collect such reuse distance information and build a

histogram. And calculate the miss ratio to a specific cache size C by adding up all memory accesses

whose stack distance is larger than C.

Recording a memory trace requires huge space, Bennett and Kruskal [6] find storing the last access

of each memory access is enough to recover the reuse distance histogram, as all windows between

a consecutive pair of last accesses have the same footprint and can be counted in a single step.

Olken [79] improve the memory trace algorithm efficiency by organizing a simplified trace as a tree

where each node stores the timing information of the data. However, as one tree node represents

a unique memory access, the resulting tree can become huge in size. Approximate algorithm is

introduced later to trim the tree. Zhong et al. [129] propose a scale tree, where each node represents

a collection of datum. Each tree node has a time range attribute, and a size attribute, where the

size indicates number of datum last accessed during the time range. A reuse distance histogram can

be constructed from the scale tree where different reuse distance are grouped into bins so that the

computational complexity can be reduced. Xiang et al. [113] improve the trace analysis algorithm
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by dividing trace into c sub-intervals, where each interval has k distinct data. The complexity

is O(ck logm), where m is the total data size of the program. In later study, Xiang et al. [114]

propose a linear algorithm for analyzing a length n trace without considering the data size m. The

algorithm measures the distribution of time distance of all data reuse, the first and last access of each

distinct data by scanning through the trace once with a hash table implementation. The algorithm

results in O(n) time complexity and O(m) space complexity with accurate average footprint for all

execution windows of the trace. Using the footprint and reuse histogram, one can predict the miss

ratio for difference cache size. However, as a program can accept input of different size, the miss

ratio curves (MRC) obtained through profiling using a specific input can not direct cache allocation

for the same program using a different size input . Zhong et al. [128] propose a way to predict

the MRC for various input size using two profiling runs. The histogram of two different runs are

divided into the same number of bins, where each bin contains same proportion of total access.

This is based on presumption that the proportion of each class of reference remains the same for

different inputs, which is experimentally hold for most programs tested. Then use a linear model

and solve the parameters with data collected from two runs. After that, one can recover an accurate

the histogram of references for any input size and further create MRC for a specific input. The

model predicts the MRC for different input sizes within 1-2% error compared with the actual MRC

collected from hardware performance monitoring units.

Berg and Hagersten [7, 8], Eklov and Hagersten [33], Eklov et al. [32] propose StatCache, which

is another approximated algorithm to derive the MRC based on reuse distance. The original reuse

distance is to count number of distinct memory accesses in-between two same memory references.

Statcache constructs a probabilistic model of memory references and using this model to derive the

reuse distance. Using a sample of 0.01% of memory references, experimental results show that the

shape of reuse statistic of the sampled set is very similar to the reuse statistic that uses every single
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memory access. In Shen [93, 92, 53]’s work, a similar probabilistic model is used to convert reuse

time to an estimation of distinct memory references in-between two accesses of the same datum. The

approximation accuracy is over 99% for cache block reuse and over 94% for element reuse, suggesting

a strong connection between reuse time and reuse distance.

Reuse distance, footprint and miss ratio are related but the relationship between them is unclear.

Ding et al. [115] revisit five metrics: footprint, the amount of data accessed during a time window;

volume fill time, the average time a program access a given volume of data; inter-miss time, the

average time between two cache misses; miss ratio, the fraction of references that cause a cache

miss; and reuse distance, number of distinct memory access between current and previous access

to the same datum. They demonstrate that those metrics can be derived from one another and

verify the transformation through exhaustive testing. StatStack [34] employs the footprint theory

and constructs MRC in linear time by converting reuse time to reuse distance. However, the space

complexity of StatStack is O(M), whereM is the distinct elements in the memory trace. For storage

workloads, which can last for days or weeks, the space requirement is huge. Counter Stack [110]

and SHARDS [106] are proposed to reduce the space complexity. Counter Stack uses a probabilistic

model to approximate MRC with guaranteed accuracy while at the same time uses sub-linear space.

SHARDS uses a splay tree to track distinct data, and both algorithms achieve low level space

requirement. Hu et al. [46] propose an average eviction time (AET) model which can quickly

construct MRC with very low cost. Moreover, the algorithm can characterize shared cache behavior

using footprint theory by modeling each application in a co-tenancy group.

Above researches build a cache model based on application’s memory access traces. It assumes

that only one application is running with a specific cache configuration, which is true for early

architectures that only have single CPU core on them. On one hand, different programs can be

executed in a sequential order, one can predict the cache misses for each program based on its own
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reuse distance analysis. On the other hand, programs can be executed in an interleave pattern, where

all participating applications contribute to a memory access trace, single program trace analysis will

fail to make accurate miss ratio prediction due to the interference.

Research on how a cache is affected by such interleave patterns has been done as early as

1980s [102]. Thiebaut and Stone [102] propose a probability model that can estimate the miss

ratio if two programs A and B running on a core in an interleave pattern. Their model calculates

the average number of occupations in cache NX̄ for A, the average number of A’s occupations

evicted when B takes over control NZ̄ and the average reload transient using A’s footprint FPA mi-

nus the difference between NX̄ and NZ̄. Their model also suggests that for a smaller cache, smaller

associativity tends to have a lower cache miss rate since the entries are more evenly distributed

to each congruent class and are less likely to overflow the cache. When cache size is significantly

larger than the footprint, the reload transient of a higher associativity cache is smaller than the

reload transient of a lower associativity cache, as rows that receive several lines because of a larger

associativity are truncated in cache with lower associativity. Thus the footprint is smaller for a

cache with a smaller associativity. Modern architecture now provides hardware support such that

the shared cache can be partitioned. Programs given sole access to a cache of optimized size can run

with a few or even without performance degradation. However, the profiling and simulation process

required to construct the MRC is time consuming. Even with on-line instrumentation tools, it still

significantly slows the execution. An on-line method is proposed by Tam [99] to quickly construct

the MRC for a given program with only several hundreds milliseconds. The approach records only

L1 data cache misses, which will become data accesses to L2 cache. With only a short burst of time

during execution, the PMU records a memory trace and the reuse histogram is built from this trace.

The MRC generated from the trace using the approaches described byMattson et al. [71] can be used

to direct cache partitioning for pair-wise co-run program groups. To be specific, suppose the MRC
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for program A and B are MRCA and MRCB , total shared cache size is C, the solution is to find

the cache size x, and C − x, such that MRC(x)A +MRC(C − x)B are minimized. As is mentioned

above, one cannot use single program reuse distance analysis to predict the situation in a contention

scenario. For example, Xiang et al. [115] show experimentally that the estimation of miss ratio of co-

run pair cannot be done through simple summation of individual miss ratio. However, the footprint

is linear composable, and the group miss ratio can be derived from the group footprint, which can

direct the co-scheduling of jobs on a multi-core architecture. Wang et al. [109] adopt higher order of

locality theory [115] and explore symbiosis scheduling through on-line sampling. They propose an

on-line based approach to quickly construct the group MRC. Their approach has a trade-off between

sampling frequency and model accuracy. Adaptive burst footprint (ABF) sampling is employed in

this paper. By setting up the threshold h, the sampling frequency is calculated each time such that

it is long enough to measure the miss ratio greater than or equal to h. Moreover, by setting up the

ratio between sampling and non-sampling interval, the overall cost of sampling is bounded, usually

below 1% of the overall execution time of actual program. With accurate miss ratio prediction based

on locality analysis, the MRC is a quantitative measurement for cache contention and can be used as

a heuristic to direct job scheduling. However, the relationship between miss ratio and performance

degradation is unclear. In [82], two metrics are given to depict the effect of cache on execution time.

In fact, Sun et al. [98] show that a significant portion of the performance slowdown comes from

the events unrelated to CPU and cache. Rather the memory controller, memory bus and DRAM

modules cause significant slowdown, as contention on memory bandwidth can affect performance

by increasing memory access latency and decreasing memory bandwidth [67]. This suggests that a

memory bandwidth consumption model might be more accurate in directing co-tenancy scheduling

over cache miss ratio model. Tools such as Cache Pirating [35] and Stressmark [116] can plot similar

performance metrics such as CPI as a function of allocated cache size, and can be used to quantify
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the relationship between performance and memory bandwidth consumption in a contention scenario.

Yan [20] propose a profiling based approach to predict inter-thread cache contention on a CMP

architecture. The MRC, with respect to different cache size, can be obtained through stack distance

profiling. For a given cache size, one can estimate the cache miss rate. The authors present three

methods to model cache miss prediction based on following: frequency of access (FOA) model, stack

distance competition (SDC) model and a probabilistic model. The FOA model suggests that as

programs co-run on a multi-core system can run at different pace in terms of cache access speed.

Thus, one can estimate a program’s effective cache size by calculating the proportion of its own

access speed over the overall access speed. This can be problematic since programs co-run together

can have different stack position shapes and reuse frequencies. The SDC model merges individual

stack distance profiling into a combined one and calculates the winner at each stack position. After

profiling, one can calculate the effective cache size based on this newly created, combined stack

position information. The probabilistic model considers ones step further. Previous methods build

on the assumption that an access will always be a hit as long as the reuse distance is less than given

cache size. However, even the access of a most recent use can become a miss if there are enough

misses introduced by other process. Thus the probabilistic model considers the probability an access

will turn from a hit into a miss. They test this model on a CMP machine with 14 pairs of co-run

groups. Experimental result show that the model prediction error is within 3.8%.

Xu, Chen, Dick, and Mao [116] propose the CAMP framework, which uses reuse distance his-

tograms, cache access frequencies, and the relationship between the throughput and cache miss rate

of each program to predict the effective cache size and instruction throughput estimation (IPC)

when running concurrently and sharing cache with other programs. The merit of this method is

that it requires no off-line profiling, operating system modification and additional hardware support.

CAMP calculates the effective cache size of programs running in a contention memory subsystem
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at a steady state, and treats non-repeating phases separately. To be specific, given a carefully

designed stress-mark (micro-kernel benchmark) which can be tuned to have a specified effective

cache size, CAMP co-runs the stress-mark with some program P several times with different ef-

fective cache sizes. CAMP constructs the probability of effective cache sizes of program P using

various performance statistics such as miss per access and further derives reuse distance.With the

performance degradation curves for various cache size and effective cache size of the program in a

specific co-run groups, one can predict the program’s performance degradation. A similar approach

is given byMars et al. [70]. On-line profiling of the reuse distance can reveal how much proportion

of cache each contention peer can occupy. CAMP is tested on a two-core CMP machine, with 55

different combination of SPEC CPU2000 benchmark programs. The average prediction accuracy

is 1.57%. Performance degradation results not only from cache contention but also congestion at

off-chip memory hierarchy. Quite a few works focus on mitigating contentions by memory request

scheduling [4, 58, 59] or using memory channel partitioning [51] or interleaving jobs to alleviate

interference [55]. Only a few researches focus on actual performance modeling. Riseman et al. [85]

observe that the number of instructions that can be issued per cycle is approximately the square

root of number of instructions in the window. Michaud et al. [73] also come up with power-law

relationship, which is essentially a square-root conclusion. This conclusion is later used for modeling

basic/sustained CPI [54, 39, 40], followed by building up the model for miss-event penalty, including

branch mis-prediction, instruction-cache miss and data-cache miss. Van Craeynest et al. [105] use

similar stack idea but predict program performance changes when migrating it from a small (big)

core to a big (small) core. The performance (CPI) is divided into two parts, base component and

memory component. Base component is used to model instruction level parallelism (ILP) changes

when migrating and memory component is used to model memory level parallelism (MLP) changes

when migrating.
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Eklov et al. [36] propose the Bandwidth Bandit to characterize how an application’s performance

is effected when memory bandwidth is decreased. The bandit engine co-runs with a target appli-

cation and monitors the target’s CPI while keeps increasing memory bandwidth consumption. The

bandit engine is essentially a carefully designed micro-kernel that can inflate or shrink in terms of its

memory bandwidth usage, we will use similar concept such as bubble and pirate interchangeably in

this dissertation to refer such probing kernel. The bandit manages to only stress memory bandwidth

without touching other shared resources. By running the bandit kernel at a specific rate in a con-

trolled manner, the target application’s performance changes due to contention for off-chip memory

resources alone can be quantified. To obtain the memory access latency for 3 different types, which

are page-hit, page-empty and page-miss, another carefully designed micro-kernel is run on the target

architecture, this program traverses a link-list, where each access is dependent on previous access.

Therefore, manipulating the layout of such link-list ensures the latency of a desired event can be

recorded.

Subramanian et al. [97] focus on modeling performance degradation of memory bound programs

in a contention environment. They observe that the slowdown of a memory bound application is

linear proportional to the memory request service rate. Therefore the slowdown can be estimated

by using the solo run memory request service rate divided by application’s co-run memory request

service rate. The application’s co-run memory request service rate can be directly observed on the

fly when it runs in an contention environment. The application’s solo run memory request service

rate can be estimated by assigning the program with the highest priority in accessing memory. For

non-memory bound programs, which spend significant amounts of time performing computation,

a parameter α is introduced which is calculated by ratio between the number of cycles stalled

because of memory request and total number of cycles elapsed. These statistics can be obtained

through PMU. Subramanian et al. [96] propose application slowdown model (ASM) in a follow up
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study. Prior studies assume an application’s sole execution information is known and create a model

to predict the slowdown in a contention scenario. In this study, programs are already running

in a contended environment, and one must instead predict its solo execution time to calculate the

slowdown, so that the progress information can be used for a fairness-aware scheduling scheme. They

find that program performance is strongly related to its access rate to the shared cache. Therefore,

slowdown prediction is reduced to estimating a program’s access rate to the memory subsystem.

Estimation of solo execution information is a two step process. The first step is to minimize memory

bandwidth contention by assigning the request from a program of interest with highest priority at

memory controller periodically. The second step is to quantify shared cache contention by using

an auxiliary tag store to estimate cache misses due to contention. The auxiliary tag directory

(ATD), first proposed by Qureshi and Patt [84], is a way to quantify utilization of shared cache and

direct scheduling according to that metric. Du Bois et al. [28] propose PTCA, which make use such

structure and estimate cache hit and miss for a solo execution using a co-run profiling result. Similar

work also found in Ebrahimi et al. [30].

To predict the performance of memory bound applications, the application access pattern should

be considered. However, as memory accesses issued from CPU cores are filtered by the private

L1 cache and shared last level cache, it is extremely difficult to capture accurate off-chip memory

access behavior. Instead, DRAM commands generated by the memory controller can be examined

to derive the memory access pattern [22]. Moreover, as the minimum time delay depends on different

cases of DRAM command pairs, the bank busy time is modeled as weighted summation of those

different cases of minimum time delays, and the weight is determined by the frequency of occurrence

for such pairs during program execution. Gulur et al. [44] propose ANATOMY, which uses a

three stage queue model to evaluate memory performance, including the command bus, memory

bank and data bus. The average memory request latency can be calculated as the summation of
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queuing delay and service time for all three stages. Wang et al. [107] consider multiple factors

in predicting the memory bandwidth consumption of programs in a contention environment. They

propose two models: Dramon-T and Dramon-R. Dramon-T is a memory trace based implementation

for bandwidth usage prediction. To estimate bandwidth consumption, Dramon-T considers both

program memory request rate and memory request service rate. Memory request rate prediction is

reduced to program request issue rate prediction, which is limited by the program behavior, and

DRAM service rate, which is limited by memory contentions. Memory request rate is reduced to

calculating the reciprocal of average memory request latency, which is further reduced to estimation

of memory request hit, miss, conflict ratios as these 3 cases will have different latency. Then a

probabilistic model is used to predict if an arbitrary request is a hit, miss or conflict. Dramon-R

is on-line bandwidth prediction model using PMU readings as input. Thus the probabilistic model

can be replaced by hardware statistics. Both model achieve high prediction accuracy over 95% on

portable benchmark proposed by McVoy and Staelin [72].

Sandberg et al. [87] make an interesting analogy of the cache behavior of two contended applica-

tions. As it can be viewed as two flow of liquid filling a glass. The liquids which overflow the glass

correspond to the data evicted by the cache due to the replacement policy, and the concentration

of each liquid inside the glass is proportional to its inflow rate. By this analogy, one may predict

performance using each application’s fetch rate and data reuse pattern and knowledge of how these

factors change due to contention. In a steady state, the amount of program data evicted by the cache

should equal the amount of program data fetched by the cache, which in other words, the replace-

ment rate is equal to the fetch rate. If the replacement is random, the probability of replacement is

proportional to the amount of cache allocated to the application. Cache pirating can generate the

function needed. To be specific, an application’s miss rate, fetch rate, hit rate, miss ratio, etc. as a

function of cache size can be obtained through cache pirating. Many performance modeling consider
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average slowdown of a program when it co-run with other applications. However, programs are

not always perfectly aligned and they can have phases that exhibit significantly different behavior,

using average can be misleading and result in high prediction errors. In Sandberg et al. [88] follow

up work, phase detection [29, 89] is employed to generate contention prediction model at a refined

granularity. Programs in execution are divided into slices and the prediction model is applied to

every slice. To reduce overhead, a dynamic window combines all slices within a phase together and

apply the prediction model only once. To further speed up the process, the predicted slowdown

of two specific phases from two applications can be cached and reused whenever the same pattern

occurs again. This fine-grained prediction model results in average prediction error of 0.41% and

maximum prediction error of 1.8%.

Mars et al. [70] propose “bubble-up” as an approach for tackling the contention prediction prob-

lem. Their approach relies on thorough off-line profiling of programs’ reaction toward pressures. For

a two core co-run scenario, for optimal scheduling, an oracle scheduler must obtain the performance

degradation of all possible pairs-wise slowdowns, which results in a O(n2) time complexity. The

framework decouples the pairwise performance prediction problem into measurement of sensitivity

and pressure of each individual programs, thus lowering the complexity to O(n) as oppose to O(n2)

with brute force. By combining one program’s sensitivity toward pressure and a co-run program’s

pressure score, the performance degradation of co-run group can be identified. Experimental result

show that the prediction accuracy is within 2% for co-run groups randomly generated from the SPEC

CPU2006 benchmark suite. A follow up paper proposes “bubble-flu” [120], which utilizes the bubble

up methodology for coarse scheduling, and at the same time utilizes on-line profiling to monitor IPC

changes. And the bubble-flux engine calculates the ratio between running and pausing of a program

if the group performance degradation violate the QoS requirement as a finer adjustment strategy.

“Bubble-up” creates a performance model with respect to contentions which happen at memory
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subsystem as a whole. Eyerman et al. [38] introduces the idea of a speedup stack to describe how

a program’s performance is affected by a stack of factors such as on-chip cache contention and off-

chip memory bandwidth consumption. Eklov et al. adopt the idea and use cache pirating [35], a

technique similar to bubble [70] to create speedup stack models [37]. Their pirate kernel is carefully

designed such that the fetch rate is close to zero so that this probe-kernel always stays in cache

when it co-runs with a program of interest. Therefore it can extract the effect of cache contention

from memory bandwidth contention, since program of interest will compete for cache with the pirate

kernel but exclusively use memory bandwidth. Moreover, for a system with cache size C, one can

run n copies of a program together, thus each program will actually receive C/n cache size in a

stable state. As these instances will compete for off-chip memory bandwidth, one can compare the

hardware statistics collected from this scenario with the one using cache pirating to extract the

memory bandwidth factor for the speedup stack model.

Zhao et al. [125, 124] distinguish SPEC CPU2006 programs into three categories, cache-bound,

memory-bound and cache/memory-bound, by plotting cache miss and memory bandwidth consump-

tion metrics. The authors use a series of contention models, each representing one shared resources,

to obtain the performance degradation through the aggregate pressure on these resources. For each

program Ai being characterized, first pick three co-runners to form a four core co-run group, and use

performance metrics to collect each program’s individual pressure on cache and memory bandwidth.

Then run them as a group and record program Ai’s slowdown, therefore, one sample point is collected

as a mapping of aggregate pressure and slowdown. A training set is constructed from 200 co-run

group executions (all including program Ai). As the theoretical memory bandwidth is known in

advance, the memory consumption range is then divided into three pieces to represent cache-bound,

memory-bound and cache/memory bound cases. Therefore, the training data falls into one of the

three categories based on their aggregate memory bandwidth consumption, from which a piecewise

19



CHAPTER 2. BACKGROUND AND RELATED WORK

model is created. The overall approach is a two phase process. In the first phase, a collection of

programs are selected and trained to determine the piecewise function, with the parameters unde-

termined. The second phase is to instantiate a model with application-specific parameters, using the

abstraction model yielded by phase one as a candidate regression model, and collect the slowdown

for only a small subset of co-run program to solve the parameters. The prediction error ranging

from 0 to 10.2%, with a average value of 0.1%.

In de Blanche and Lundqvist [24], four performance degradation prediction models are compared,

which are one slow-down based, two contention-based and one memory bandwidth consumption

based methods. These methods, use the similar idea by running programs with “bubble” on shared

resources multiple times to acquire sensitivity and pressure. The slowdown-based method “Memgen”

performs better than other methods, and memory bandwidth consumption based method can also

match the performance of “Memgen”, suggesting that using memory bandwidth, or performance as a

whole, is better than using cache miss rate as a metric or heuristic in co-scheduling prediction tasks.

The above studies provide quantitative methods to measure application performance whenever

contention presents. Other studies focus on characterizing the type of contention and use this

information as a heuristic to direct co-tenancy scheduling.

Focusing on the co-tenancy scheduling problem, Snavely and Tullsen [94] introduce “symbiosis”

as a performance metric composed of three parameters: ’diversity’, which describes whether or not

all functional unit are running throughout execution; ’balance’, which describes whether under-

utilization will lower system efficiency and over-utilization will result in conflict and jeopardize

performance; and ’conflicts’, which describes how programs behave toward a shared resource. In

their SOS framework, during a short sampling period, the permutation of all possible co-run groups

are test on the system. The hardware counters monitor IPC, total conflicts on integer queue,

floating point queue, .etc, L1 data cache hit rate, diverse of instructions, and a weighted sum score
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of diversity, balance and conflict can be calculated for each candidate group and the one with best

score is selected. With the help of SOS framework, a system with random job arrival and departure

gains as much as 17% performance over a framework without symbiosis.

For characterizing the source of contention between threads of an application or between multi-

ple applications, one straightforward way is to run application with dedicated resource first as the

baseline reference, then co-run a group of applications together multiple times, letting them share

one shared resources each time. The co-run cases are compared with baseline to determine if that

particular resource is contented by the peer runners. In Dey et al. [27], Parsec2.1, a multi-threaded

benchmark suite is selected and the characterization of contention focuses on L1 cache, L2 cache

and memory FSB. Hardware performance counters are used to quantify contentions and event UN-

HALTED_CORE_CYCLES is selected to determine both intra and inter application contentions.

The architectures used in the experiment have private L1 cache, and shared L2 cache for every two

cores. Interestingly, the intra-application contention is not much for L1 and L2 cache; programs

show performance improvement as they have data sharing. The contention on FSB result in perfor-

mance degradation as there is an increase in memory bandwidth consumption by multiple threads.

For inter-application contention, as different applications each access their own data, contention is

prominent compared to the intra-application cases. Even though profiling contention over multiple

applications is time consuming, characterization of applications provide significant information for

scheduling.

Co-scheduling of jobs can result in contention, and with a smart scheduling scheme, the overall

performance degradation due to such contention can be significantly reduced [52]. Some studies

suggest using reactive scheduling, which is runtime trials, keep changing the co-runner of a program

to record its performance degradation towards different peers and then schedules those programs

that are benign to each other together. This method can serve as the base of an on-line, lightweight
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scheduling algorithm. However, without knowing the optimal scheduling solution, it is hard to

compare the reactive scheduling method with the optimal one, and whether or not there will be sig-

nificant improvement if one scheduling adjustment is made. Other studies try to predict performance

of programs when co-tenancy exists and with that knowledge one can pro-actively schedule programs

by minimizing the overall co-run performance degradation. The paper [52] first demonstrates that

such a scheduling problem can be solved in polynomial time if the group size is fixed to two, oth-

erwise it is NP-complete problem. The authors give a scheduling scheme based on minimizing the

pair-wise degradation weights of a graph and also gives several approximate scheduling schemes that

can provide fast yet close to optimal scheduling options. The first scheduling scheme is a hierarchi-

cal perfect matching algorithm. It is derived from the solution of two core co-run problem. First

solving the dual-core pair scheduling in polynomial time. Then creates a new degradation graph

with each vertex representing co-run pairs in the first step and apply a minimum weight matching

algorithm on the new graph to obtain the solution to a quad-core scheduling solution. To generalize

the algorithm, one can approximate the optimal solution for the K core co-scheduling problem by

applying the minimum perfect matching algorithm log2K times. The second scheduling scheme uses

a greedy algorithm. Note that for a naive greedy scheduling scheme, which first sorts all k-cardinality

sets in ascending order of total degradation and always picks the minimum degradation group until

the final solution covers every job, yields a poor scheduling result. The reason is clear, programs

that generate less pressure are in-sensitive to pressure, and also benign to co-runners, are friendly

applications. Thus, in a naive greedy algorithm, the top set is likely to contain friendly applications;

after a while, this set is depleted as the scheduler has no choice but to pick jobs with aggressive

memory behaviors. Therefore, a more reasonable greedy job scheduling algorithm is to first obtain

the performance degradation of all k-tuple groups that contain each job, and sort the groups to get

the ’politeness’ of each job, then each time pick the co-run group with minimum degradation which
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contains the program with the current best politeness score while other programs in the co-run

group has not yet been selected into the final scheduling set. This yields much better scheduling

results as polite programs and unfriendly ones are scheduled together while at the same time total

performance degradation is minimized.

The above study tried to use different grouping mechanisms to alleviate the effect of resource

contention. Blagodurov et al. [11], Zhuravlev et al. [130] survey grouping mechanisms based on pro-

gram behavior characterization, comparing these approaches and proposing both off-line and on-line

solutions to the scheduling problem. There are three different grouping mechanisms discussed: the

Stack Distance Competition (SDC) algorithm, the Animal class algorithm and the Pain algorithm.

SDC is based on the profiling of the memory trace on a LRU cache. Rather than obtain the mem-

ory access (cache access) histogram of each individual program, one can monitor the access of two

candidate co-run peers, decide who wins (cache hit) on a specific cache line position and mark the

combined LRU stack position with the winner information. After multiple iterations, one can deter-

mine the effective cache size of each co-runner and make proper performance degradation prediction.

The Animal class algorithm classifies programs into different categories in terms of their sensitivity

towards contention. Turtle, sheep, rabbit and devil; these four types of animal categories are sorted

in ascending order with respect to contention sensitivity. With stack distance profiling, one can put

a program into the appropriate class and give each pair of animals a score, which serves as informa-

tion for scheduling. Pain classification introduces the sensitivity and intensity of a program, where

sensitivity depict how a program react towards pressure and intensity describe how much pressure

a program can stress onto the shared resources. By combining the two metrics for a given co-run

pair, one can calculate the pain score thus direct scheduling. Once again, the author make use of

LRU stack distance profiling. At each stack position, one can associate a loss probability to indicate

how likely a hit will become a miss when contention exists. Then scale the hit by the probability
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to calculate extra misses to obtain the sensitivity score. Intensity is measured as last level cache

accesses per million instructions as the measurement. Thus the Pain score for a program A when

co-run with a program B is the product of A’s sensitivity and B’s intensity. The pair Pain score of

program A and B is the sum of their Pain scores. Experimental result show that the Pain and the

animal class algorithms perform well, as the performance degradation is only slightly worse than

perfect scheduling. However, the SDC algorithm is only slightly better than a random scheduling

scheme. It is possible that because the SDC algorithm doesn’t consider the access speed of the

two co-run peers, and only focuses on cache contention without considering other factors that will

affect performance. The authors run a series of experiments to breakdown the factors that result

in performance degradation, and discover that cache contention itself does have an effect on per-

formance degradation, but sometimes contention for the memory controller, front-side bus (FSB),

and prefetcher resources play dominant roles in performance degradation. They found that cache

miss rate turns out to be a good heuristic for performance degradation prediction in a contention

scenario. Though Pain classification delivers the best performance, it has certain complexity when

stack distance is calculated on the fly. In contrast, using last level miss rate as heuristic is much

simpler and yields slightly worse result. Based on those observations, the author implements two

scheduling algorithms using miss rate as a scheduling heuristic. The first is Distributed Intensity

(DI), which uses stack distance profiling to estimate last level cache misses, then use the last level

cache miss estimation to make a classification. The second one is Distributed Intensity On-line algo-

rithm (DIO), which is a user level implementation of DI with only on-line profiling of last level cache

miss as the heuristic to direct classification. Experimental result suggest that the DIO algorithm is

within 2% of the optimal scheduling solution.

Xu et al. [117] propose a scheduling mechanism based on balancing memory bandwidth con-

tention. The situation is simplified as there is no shared cache on their testing platform. In selecting
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a candidate job to be scheduled, traditional approach usually picks candidates using the following

fitness function:

FITNESSP =
1

| BWremains

CPUremains
−BWrequired

p|

That is, the traditional approach always finds a job which maximizes the fitness function, which

always finds the candidate job p, whose memory bandwidth requirement is as close to average mem-

ory bandwidth as possible. Experimental results show that performance degradation starts before

the aggregated memory bandwidth reaches peak value. Thus an accurate BWremain is necessary

to make good scheduling decision, which in this paper, is estimated by IdealAverageBandwidth.

Ideally, programs run on a platform with infinite memory bandwidth. Those programs will run with-

out contention, with finishing time idealturnaroundtime, which is the shortest time a program can

finish its execution in a contention environment. The ideal average bandwidth is the ratio between

the total number of memory accesses and the ideal turnaround time. Combined with the fitness

function mentioned above, one can schedule a job whose combined memory bandwidth requirement

is close to the IdealAverageBandwidth. In other words, rather than targeting peak bandwidth uti-

lization when scheduling a job, one should keep the total bandwidth requirement close to the ideal

average bandwidth of the entire workload to avoid unnecessary contention. Feliu et al. [41] extends

the idea to situations with multiple level of shared memory. They propose the PC-Degradation

Cache-Hierarchy Contention-Aware Scheduler algorithm, which achieves almost double the average

speedup compared with state of art memory-aware scheduling algorithms.

As memory contention has been identified as the main cause for system wide unfairness [76,

30, 77]. Xu et al. [118] propose a fair-progress scheduling (FPS) policy. FPS uses the PMU to

monitor hardware statistics for programs being executed and derives forward progress throughout the

scheduling quantum. To be specific, FPS monitors number of instructions a program has executed

during the quantum, estimates the IPC of a program phase running alone during a time window of
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quantum length, and calculates the ratio between them to obtain the progress. To maintain fairness,

the policy always picks the program with the lowest progress value and lets them run during the

next scheduling quantum. The policy improves overall system fairness but has a slight overhead in

system throughput.

Different programs have different access speeds to cache, and the program with the fastest ac-

cess speed usually places more pressure than programs with slower access rates. However, giving

programs with fast access rate a larger cache size might not improve performance. For example,

video streaming access programs visit cache fairly fast, but the data is unlikely to be accessed again.

Qureshi and Patt [84] argue that one should allocate cache based on utilization rather than demand,

that is, when a program’s speedup stops increasing when the allocated cache size increases, one

should not allocate more cache to the program. They categorize different programs into low util-

ity, high utility and saturating utility based on how performance changes when allocated cache size

increases. Hardware performance counters can collect statistics while programs compete for shared

resources. However, the events are per-core based and cannot reflect the interactions between these

applications. Zhao et al. [126] propose CacheScouts, which motivates a hardware design to better

understand cache behaviors among contention peers. Counters and data structures are added to the

cache and are associated with monitor identity so that one can learn cache occupancy and cache

interference/share per application. To reduce overhead, only partial cache sets are tagged with

counter/structure as one can still obtain accurate cache behavior through set sampling [56, 103].

The framework provides insight for future architecture design for CMP machines. Implementing a

circuit to monitor cache utilization will bring significant hardware overhead. For an N -way associa-

tive cache of size C, the cache is divided into C/N sets. To estimate cache way utilization, one can

profile cache utilization for full N ways, and derive the situation by assigning less cache way to the

program based on LRU property. To record hit miss information at each cache position, a counter
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need to be attached. The UMON circuit simplifies this by only attaching a global counter to each

cache position for all sets, and UMON-SS further simplifies this by only monitoring partial sets to

represent a full cache set view. As [56, 103] point out, only less than 10% of the cache set needs to

be sampled to have an accurate estimation of cache behavior. For the two programs co-run case, the

scheduling problem can be solved by finding a cache way partition such that the summation of cache

misses is minimized. The experiments use a simulator that assigns certain cache ways to different

applications. Result show that partitions based on utilization are better than partitions based on

demand.

Page coloring can be used to ensure continuous virtual memory can be evenly distributed across

cache [101]. Later it is realized that this technique can also be used to enforce that an application

only uses a subset of the cache space, which is a form of cache partitioning. Studies [21, 66, 95]

demonstrate that performance, as well as fair utilization of cache resources in co-tenancy contention

cases can be improved by applying this page color constraint. As applications running on a machine

change over time, a dynamic re-coloring mechanism is needed. Zhang et al. [123] propose a hot-page

based coloring mechanism such that only those frequently used pages are mapped with colors to

guarantee good distribution across cache. As hardware page table entry has an access bit that can

be set whenever a page is accessed, and page access can also be captured by page fault event, these

features are employed for hot page identification.

As program phase transition can result in different cache utilization over time, a static coloring

technique cannot capture this dynamic behavior, on the other hand, dynamic re-coloring involves

allocating new page, page copying, and reclaiming old pages, which will introduce significant over-

head. Intuitively, each application should be assigned a different color to provide isolation, but this

may lead to low utilization. Therefore, assigning color based on an application’s cache demand is

more reasonable. Ye et al. [121] propose a page-coloring mechanism, COLORIS, which is embedded
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into the Linux kernel similarly to [123] but use a new definition of hotness. Instead of traversing

the page table to determine hot pages, they redefine hotness as the number of processes that share

the same color. Colors are redistributed based on this demand by monitoring the cache miss rate of

every process running on the machine. Initially, applications running on different cores are assigned

to different groups of colors to enforce isolation, applications running on the same core share the

same group of colors as they will run in an interleaved fashion, and thus there won’t be contention

between each other. During execution, the re-coloring engine emits a signal to expand the color

assignment if process miss rate exceeds a threshold, or emits a signal to indicate an application can

sacrifice subset of its cache partitions (color) if the cache miss rate below a threshold.

As cache partitioning is already supported by hardware, whether to partition or sharing the cache

for a co-run group is discussed [13]. The scheduling problem is converted into a dynamic programing

problem, such that, for a machine with cache size C and for each joining program pi, the program is

assigned with ci cache that minimize the miss count of current program and the total miss count of

an optimal partitioning for the first i-1 programs, whose allocated cache size is C − ci. Suppose the

scheduling of i programs with cache size k is Sk,i and mc is miss count, then the scheduling problem

is equal to solving the DP problem below:

ci = argmin{mr(SC−ci,i−1) +mri(ci)}

SC,i = SC−ci,i−1 + ci

The group miss ratio can be derived from individual footprints using the approach discussed in

[115].

The above research focus on performance modeling or scheduling in a contention environment.

A sizable body of literatures focuses on identifying pathological portions in source code that will
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result in contention and makes appropriate modifications to negate the effect.

Even when a single application is running on a multi-core machine, contention can still happen,

such as when a multi-threaded program is scheduled on multiple cores. One study [127] uses memory

shadowing and on-line monitoring to identify true and false sharing of memory/cache for multi-

threaded programs. The overhead is 5x slowdown but it is still better than using cache/memory

simulator to simulate the memory hierarchy. Suppose a program uses two threads but binds them

to different cores, it is possible that each thread updates a local variable that is mapped to the same

cache-line, resulting in false sharing and eventually resulting in a slowdown in performance. Such

a scenario is inevitable for some cases. A common way to tackle this is to schedule threads that

are frequently updating the same data onto cores with lower communication cost. In this paper,

author tracks memory behavior (cache-line ownership) of multi-threaded program at the granularity

of cache-lines. On assumption that no more than 32 threads/cores are active simultaneously, one

can keep a 32 bits bitmap to track the ownership of cache-line segment. If the bit is set, it means

the corresponding core/thread has a copy of the cache-line or owns the cache-line. By checking

the bitmap at every memory access, one can determine how much cache contention this particular

program causes. Moreover, one can easily determine the instructions that trigger lots of cache-

line invalidation and make further optimization. Eizenberg et al. [31] propose REMIX, a modified

version of the Oracle HotSpot JVM that detects contention and fixes false sharing bugs at runtime.

The framework distinguishes contention sources, such as true sharing, where multiple cores make

contended access to same bytes within a cache line and false sharing which multiple cores access

different bytes within the line. Similar to [127], a 64-bit map per cache line is maintained, where

each bit represents one byte in a cache-line. Each thread writes to the bitmap to identify the

access. Using this structure, it is fairly easy to distinguish between false sharing and true sharing.

The framework can either automatically or manually add the annotation @contended to code, so
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that additional care can be applied to the annotated section to avoid false sharing. Padding is

one common mechanism to avoid contention, but programmers are responsible for identifying the

contended code. Moreover, the annotation can not be added into standard library or existing third

party code. REMIX pads data only when it finds necessary at runtime. The framework is tested

on various benchmark suite: Dacapo 2006 and SPEC JVM2008 do not have much contention, and

receive no speedup, while Spring Reactor and LMAX Disruptor are high-performance inter-thread

java messaging library programs with a lot of false sharing cases, with speedups ranging up to two

times using the REMIX framework.

Tang et al. [100] make use of performance monitoring and regression modeling to identify patho-

logical code regions for programs running in a shared environment and modify those code regions to

make them less contentious, which in turn can significantly reduce performance degradation. They

first collect hardware statistics and feed them into a regression model to calculate a contention score,

and if the value exceeds certain threshold, it pinpoints the critical portion that results in shared

resource contention. Whenever such location is identified, padding or nap insertion is applied to

transform the code and alleviate the contention. Pinpointing contention region in source code is

straight forward. while monitoring hardware statistics during execution to calculate the contention

score, at the same time, the number of instructions executed is recorded during each sampling win-

dow. As the number of instructions is fixed for the entire execution, one can replay the program in a

software instrumentation tool and locate the high contention code section matching the instruction

counts, and apply padding or nap transformation to the code. Experimental result suggests that

this contention-aware code modification/compilation scheme improves overall program performance

by 21% and utilization by 36%. A similar code transformation scheme is proposed by Bao and

Ding [5], where code regions of loops are tiled based on their locality, aiming to reduce inclusive

cache misses due to contentions. Pathological program behavior adversely affects performance, those
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“impolite” behavior will in turn affect the peer during a co-run scenario. Yoo et al. [122] propose a

two-phase decision tree based approach to identify problematic code segments. In the first phase, a

set of micro-benchmark are created with parameters such as working set size and accessing pattern,

which can be tuned to mimic certain pathological behavior. As the pathological behavior is known

in advance, one can collect a set of hardware performance events whose attribute-class correlation

(representative) is high and attribute-attribute correlation (redundancy) is low, to characterize pro-

gram behavior, from which a decision tree is trained. In the second phase, actual programs are run

along with hardware performance monitoring, and the data is fed into the decision tree to diagnose

pathological behavior. Random forest are employed to not only avoid over-fitting problem but also

identify most dominate pathological factor of a program in a time-slice during execution. Their

framework can accurately identify pathological code as well as the type of pathological behavior

compared to manual examination conducted by domain experts.

2.1.2 Modeling various contention with machine learning
techniques

Machine learning, closely related to computational statistics, is a field in computer science that

gives a machine the ability to learn patterns without being explicitly programmed. These tech-

niques have seen great success in computer vision, robotics, economics and marketing, linguistics,

and bio-informatics, and can be applied to performance modeling in contention environment. For

example, authors [64] use artificial neural networks (ANN) and support vector machines (SVM) to

model the performance of a VM-hosted application as a function of the resources allocated to the

virtual machine (VM) and the resource contention experienced. The authors argue that while it is

common practice to use hardware performance counter statistic to predict performance, they are

difficult to use in a virtualized environment as those model specific registers are not exposed to

user. There are two other ways to make predictions: using queuing and control theory and using
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machine learning. A control theory based approach is built upon the assumption that performance

and resource allocation are linearly related. However, due to contention and non-linear application

characteristics, this assumption results in poor prediction. Machine learning approaches are well ex-

plored in the literature. CARVE [63, 111] uses a regression model to relate memory allocations and

performance. Kundu et al. [63], Wood et al. [111] create regression models for application resource

allocation between a physical machine and a virtualized machine, but the prediction result is poor

when applied to virtualized environments. Cohen et al. [23] propose a tree-augmented bayesian net-

work to reveal the relationship between resource allocation and quality of service degradation. The

authors use performance statistics to query the signature of an application, cluster programs with

similar behavior, and find previous allocations of same type to guarantee Service Level Agreement

(SLA). In a similar work, Bodik et al. [12] use a logistic regression model to replace the Bayesian

network. Even though the above works help predict whether certain resource allocations to an appli-

cation will result in SLA violation, they fail to make accurate prediction on how much performance

degradation would be with given statistics.

In contrast, recent studies borrow the ideas from the Netflix challenge and recommendation sys-

tem. Collaborate filtering is a technique employed by recommendation system to make predictions.

The most common examples are video recommendations provided to uses by YouTube or merchan-

dise suggested to interested users by Amazon. These methods usually involve large amount of big

data and sparse data collected from a recommendation provider’s database. Similarities are found

by comparing one user’s behavior with other users. It can be expressed in mathematic form as a

2-D array, where each row represents an user, and each column represents an item, and each entry

in the matrix represents a specific user’s score for a specific item. The matrix have dense part as it

accumulates rating information from other user over time, and the matrix also has sparse portion

as an active user only give partial scores on a subset of all items and the recommendation system
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tends to guess this user’s score on other items and provides recommended items with higher scores.

Singular Value Decomposition(SVD) is often employed to tackle above task. SVD is applied onto

dense matrix DNxM . The matrix D, D = UΣV T , where UNxN and VMxM are orthogonal and

ΣNxM is diagonal matrix. Column of U are eigenvectors of DDT and column of V are eigenvectors

of DTD. Entries in Σ are eigenvalues ordered according to eigenvectors. With the SVD solution,

we can estimate D̂ = UkΣkV
T
k is the best rank k approximation of D. In actual, D is sparse as some

rows contain entries with missing values. And SVD is undefined if there are missing entries. One

solution to this is to assign missing entries with weight either 0 or 1. And minimizing the weighted

difference between approximation and actual values. Numerical optimization using gradient descent

in U and V or Expectation Maximization(EM) are employed to solve the problem.

As contentions exist when co-scheduling happens, different applications react differently toward

pressure. One can create a sparse matrix [25] where each row represents a different application,

each column represents one type of the contention resources, and each entry corresponds to a score

for the application’s reaction towards a specific contention. The dense part is thorough profiling of

training programs running against micro-kernels that stress different aspect of contention resources.

The sparse part is the program need to be scheduled and only a small subset of the micro-kernels

are profiled against application of interest so that SVD is applied and entry value can be estimated.

With such framework, program contentions are quantified, not only the framework provides user

with a valid co-run groups scheduling solution but also actually provides user with information how

much performance degradation would be if the candidate scheduling group is executed.

Non-uniform memory access (NUMA) [119] is widely used for multi-socket machines. Though

different from CMP architectures, accessing remote memory from a local processor can also result in

contention and thus result in performance degradation. In this paper, the author proposes DR-BW,

a framework for identifying bandwidth contention on NUMA machines using supervised learning
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techniques. By co-running applications with micro-kernels designed to stress memory bandwidth

and measuring the number of remote memory accesses, remote access latency, and other hardware

statistics, a decision tree structure is built to classify if an application is remote memory bandwidth

friendly or a contention source. By tracking thread ID during a sampling period, the framework

also identifies the critical section/instructions of a program that will result in remote memory access

contention. This study once again shows that for a contention-related task, one can tackle it using

three methods/tools: 1) using the PMU to collect hardware statistics on the fly to understand

runtime behavior, 2) making use of micro-kernels to understand how application react with different

level of contention and 3) if necessary, dividing applications into groups and treating each group

separately to improve prediction/scheduling.

2.2 Machine learning: clustering and regressions

As machine learning techniques are frequently employed in the co-tenancy scheduling and modeling

frameworks, a brief introduction to those approaches are given in this section.

Clustering is a group of algorithms, root from mathematics, statistics and numeric analysis, that

gather data together who has similar properties or patterns [49, 74, 3, 2]. Putting data into groups

might lose fine details but brings simplicity. Without explicit indication, clustering manages to

reveal the hidden patterns among given data and it falls into the category of unsupervised learning

from a perspective of machine learning technique. This is a well-studied field and those algorithms in

the area has been put into practice of real-world tasks such as image processing, pattern recognition,

data mining, biological analysis and even medical diagnosis. A various of clustering method are

listed below.

• hierarchical clustering

• partitioning method
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• others: grid based method, constraint based methods, scalable clustering, clustering in machine

learning, clustering in high-dimension data

2.2.1 Hierarchical clustering

Hierarchical clustering in general builds a tree structure. Nodes sharing a common parent indicate

they share some common property, while at the same time, those siblings further divides the cluster

into finer details, which is one of advantaged of this method, as user can view the the clustering result

at different granularity. Creating the hierarchical tree is straightforward by calculating similarity

distance. However, the stop criterion for further split/aggregate the cluster is vague and usually is a

user-defined value, and this can result in sub-optimal clustering result. Further more, once the data

is assigned to a cluster, it is fixed and won’t be able to move to other clusters, which loses some

improvement opportunity.

Hierarchical clustering includes agglomerate and divisive clustering. Agglomerate clustering

builds the tree bottom up: each data point is a unique cluster at initial stage and the algorithm tries

to combine two or more data points together to form a larger cluster. The divisive, on the other

hand, builds the clustering tree from top to bottom: all data points belong to a single cluster at the

very beginning and algorithm splits the whole into half by calculating distance metrics. Calculating

distance between two points is straightforward, but it needs to be generalized to the distance between

two clusters. Linkage distance is proposed to serve as the measurement of (dis)similarity between

two intermediate clusters. In this metric, the distance between every pair of points, one from each

cluster is calculated to indicate how close the two clusters are. Variation exists as some metrics use

the summation, some metrics use the average distance and others use the largest distance.

In the field of document clustering, the mathematical method Singular Vector Decomposition

(SVD) is employed as a way to split the data into different clusters. SVD is known for collaborative

filtering and recommendation system. Take document clustering as an example, the problem is
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first translated into a matrix, where each entry in the matrix is the frequency on an attribute in

one document, then the algorithm splits the data by creating a hyper-plane passing through data

centroid, and orthogonal to the eigenvector direction with largest singular value. In general, the

data can be split into k clusters by considering k largest singular values.

2.2.2 Partitioning Relocation Clustering

Divisive clustering algorithm needs to calculate distance metric between clusters. However, some-

times the computational complexity of checking all possible subsets of a split is high and heuristics

need to be employed. Partitioning relocation clustering coarsely separates data set into initial groups

and iteratively refines the clustering by either adding in points into one group or moving points from

one group to others. One way to do this is probabilistic clustering, where data are assumed to be

randomly chosen from several models of different distributions. One can estimate the probability of

the assignment of a data point to a specific cluster. Thus the overall likely-hood of all training data

points is its probability to be drawn from a mixture of models. By maximizing the likely-hood func-

tion, one can solve the parameters of the model and refine the model and re-assign each data point

with a new cluster ID if necessary, so that the clustering result is refined iteration by iteration. An

other way is to establish an objective function so that the value of such function is minimized/max-

imized after each split iteration by iteration, which leads to the k-medoid and k-means algorithm.

In the k-medoid clustering, a single data point is selected and represents the cluster that includes it.

Points close to that medoid are considered as they belong to same group. k-means is another popular

clustering method: it uses the average of all points in one cluster, which is the centroid, to represent

the cluster. variation exists as one can use cluster radii or cluster standard deviation rather than

mean of the cluster, which is more reasonable when dispersion exist. As part of this dissertation

work employs the k-means algorithm to categorize programs into different groups according to their

cache contention behavior. We will discuss more on implementation of the algorithm. Most com-
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monly used k-means implementation is Lloyd’s algorithm. In general, the algorithm alternatively

runs in two steps such that for all clusters, the summation of squared distance of points within each

cluster and its mean is minimized.

argmin
k∑

i=1

∑
x∈Si

||x− µi||2

Initially, k points are selected as the centroid of each cluster.

• Assignment: For each data point, assign it to the cluster who has the smallest mean of squared

euclidean distance.

• Update: After assigning each data point with label information, re-calculate the cluster cen-

troid.

The algorithm keeps running until the result converges, which means the assignment of data points

no longer changes.

Despite the popularity, k-means suffers from following drawbacks:

• The result is largely depend on the initial centroid selections. Always yield local optimal rather

than global.

• The number of cluster, which is the value of k is not easy to choose.

• Algorithm sensitive to outliers.

Several attempts have been made to alleviate the problem such as:

• Randomly pick several subsets of the entire data set and assign random positions as the initial

centroid guess on each of them and run k-means on these sub-systems to create multiple k-

means clustering result. Selecting the centroid of the best subsystem as the initial guess and

run k-means on whole data set.
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• Rather than explicitly moving a data point from a cluster to another, soft assignment is used as

each data point has a weight associated with a cluster. The method considers how well a data

point fit into the candidate cluster, and it is known as harmonic means clustering algorithm.

• Other study also suggest using simulated annealing

Studies also suggest using k-d trees structure as cluster representation to accelerate k-means

algorithm. Suppose data point has n dimensions. Then calculate the standard deviation and find

the direction with largest value and split the space from this direction. Then iteratively split the

sub-space and construct the k-d tree. After splitting the space into k sub-spaces. search each data

point using the k-d tree and assign them with the cluster number whose representative node is the

closest one to it. Similar algorithm such as x-means goes one more step further, it tries to determine

the best k while in the process.

2.2.3 Others: Grid-based clustering

Grid based clustering is similar to k-d tree to some extent, but it focuses more on space rather

than data set. The algorithm STING [108] splits the space and constructs an corresponding tree

structure, the nodes store the statistic information of the data associated in the space, such as points

count, and attribute-dependent measurements: mean, standard deviation, minimum, maximum,

and distribution type. The algorithm Wave-cluster [90] borrows the idea from the field of signal

processing, where the edge of data corresponds to the high frequency part of data and lower frequency

with high magnitude part represents the dense part of data, which in other words, data points inside

one of the clusters. With wavelet filtering, it highlights the high density area and blurs the boundary

and those outliers. All these methods allow users to view the data space in different resolutions. It

has the advantage of finding cluster of irregular shape and has low complexity when data attribute

is low. On the other hand, the result of the algorithm is affected by the initial clustering assignment
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and the parameters such as the threshold that defines the connectivity.

2.2.4 Regression

In statistics, regression is a set of algorithms or processes aiming to learn and predict the relation

between the dependent variable (value) and one or more independent variable (features) [75]. The

dependent variable is usually a continuous value, when the variable is a discrete one (label), the

estimation turns into classification rather than regression. In general, the data is fit into a model

with unknown parameters and through the training process, those parameters can be learned by

minimizing the difference between observed value and predicted value. And the model is expected

to make correct estimation on dependent variable for new data with only independent variable infor-

mation as long as they are drawn from the same distribution. There are several different regression

models such as linear regression, non-linear regression, robust regression, step-wise regression and

logistic regression model. A brief description of these models is given in the following section.

In linear regression, it is assumed that the relationship between dependent variable yi and inde-

pendent variables(can be multi-dimension input data) xi is linear. However, the linear model can be

applied to non-linear distributed data such as fitting 2-D data drawn from a circular distribution.

To be specific, suppose the training data is of circular distribution and independent variables is

expressed as coordinates x1, x2. The radius is R. It is clear that x21 + x22 = R2. Therefore, one can

transform the input vector from x1, x2 into x21, x22 and still apply the linear model to it.

Least squares is the most commonly used approach for linear regression model parameter esti-

mation. It calculates the parameters by minimizing the sum of squared residuals, where residual

is the difference between the observed y value and the one generated by the the linear function.

The minimum of the sum of squared residuals is at the location where the gradient is equal to zero.

Therefore, for a linear model with m parameters, there are m gradient equation. One can set the

partial derivatives for each directions to zero and solve the equation, which will yield close form
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solution to the parameters.

Non-linear least square is used to fit data observations with a non-linear model. Setting the

gradient to zeros still applies. However, the derivatives are functions of both model parameters and

the independent variable, so there is not a closed solution to the gradient equation. With a initial

guess of all parameters, the process iteratively refines them.

Least squares estimation is straight forward and easy to implement. However, it is sensitive

towards outliers. Data points drawn from different distribution can yield same or even identical

linear functions. As oppose to least squares estimation, robust regression is proposed to deal this

problem. One way to make model less sensitive towards outliers, one can employ least absolute

deviations rather than least squares estimations. Further study proposes maximum likelihood, it is

robust to outliers in the dependent variable dimensions, but sensitive toward outliers in independent

variable domain. Least trimmed squares is later proposed to overcome the problem. S-estimate is

proposed as it is highly resistant towards outliers but is found to be inefficient. MM-estimate is

proposed as it tries to take advantage of the resistance property of S-estimation while at the same

time to be as efficient as maximum-likelihood estimation.

Logistic regression: In statistics, the distribution of dependent variable can be categorical. As

the value can only be 0 or 1. And if the possible value is more than 2, it is called multi-nominal

logistic regression. Logistic function estimates the probability of a given data belong to one of the

categories. Stochastic gradient descent (SGD) is usually employed to perform the logistic regression

estimation, which can be summarized as a following 2-step procedure: given a instance from the

training set, first calculate logistic function value using the current values of the coefficients, then

refine coefficient values based on the error in the prediction. To be specific, suppose Q(w) is model

function and w are the parameters need to be estimated. SGD update these parameters at each

observations.
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for i = 1 : n (n observations)

w := w − η∇Qi(w)

where η is the learning rate and ∇Qi(w) is the gradient of the cost function at each observations.

2.2.5 Performance modeling using machine learning

Bitirgen et al. [10] focus on resource allocation for a quad-application group. They use artificial

neural network to build a model between resource allocated to an application and its performance

gain. To reduce the huge search space in training the network, modified hill climbing algorithm [104]

is employed. Ould-Ahmed-Vall et al. [81] focus on creating a model between micro-architectural

event statistics and program performance(CPI). As programs have different phases that exhibits

independent behaviors, model for each specific phase should be trained separately, which is tackled

by model tree approach. Model tree is an extension of regression tree and it divides the input space

into tree structure and place predictive regression models at leaf nodes. To be specific, for each new

instance, the tree structure is use to categorize the instance into corresponding class, and predict its

CPI using the linear model stored at leaf node of corresponding class. The prediction error is 5%.

Similar idea such as using hardware events to predict user request for TCP-H workload is proposed

in [91]. And the study also discuss how correlation between request and hardware event statistics

are affected due to contentions.

2.3 Performance monitoring and binary instrumentation

Previous studies mentioned in this chapter model contentions through either on-line profiling or

off-line profiling. Each of these two methods have its own advantages and drawbacks. On-line

profiling captures program statistics on the fly, it reflects program behavior much more accurate

compared to off-line profiling, which often pass the program execution trace through hardware

simulators or probabilistic model to acquire access behavior. Modern architecture equipped with
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performance monitoring unit, which are essentially several counters that can record specific event

happened during the execution of a program. Each CPU core has 2-4 counters that can monitor

over hundred of hardware events. The overhead of extracting hardware event statistics is low, and

usually the PMU can monitor 4 events at a time. PAPI [14] is proposed to provide tool designer

and application engineer a standard interface to use hardware monitor unit. PerfSuite [62] is a

later proposed open source tool for linux user to explore PMUs. OProfile [65] is a software that

allows user to monitor hardware events by specifying the event name and unit mask, however, it can

only monitor a few number of events simultaneously. Therefore one must program those counters

to monitor different events in a interleave style to obtain statistics for more than 4 events. Intel

VTune [69] provides such flexibility with multiplexing so that users can collect an arbitrary number

of events. HPCTOOLKIT [1], PerfExpert [18] and periscope [43] are recently proposed that make

use of these hardware counters to detect the bottleneck in parallel applications.

One the other hand, off-line profiling usually runs slow but it captures program behavior in

a more understandable way as long as the parameters of simulator or instrumentation software

matches the actual hardware architecture. Early researches such as Paraver [83] and VAMPIR [78]

use instrumentation to examine and visualize execution trace of MPI applications. Intel’s PIN [68] is

a dynamic binary instrumentation tool that allows users to analyze programs at runtime by inject-

ing instrumentation code into the compiled binary files at different granularity, such as instruction

based or basic block based. It provides a rich collection of APIs that allows user to analyze mem-

ory trace, thus building up knowledge of a program’s accessing behavior. Functionality such as

tracking function calls as well as system calls and intercept signal are also provided by PIN. Other

instrumentation software include DynInst [16], namoRIO [15], JIFL [80],.etc.

To sum up, previous studies focus on different scheduling schemes in alleviating contention due

to co-tenancy. The heuristics behind each scheme are information acquired either from off-line traces
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or on-line hardware statistics. Performance degradation prediction can be a reasonable heuristic as

it provides job scheduler or cloud administrator quantitative information on how applications are

affected by different peer(s). In this dissertation, we propose a performance degradation model for

two-core co-run scenarios. Various machine learning techniques are employed to categorize applica-

tions into different groups in terms of their contention behavior. We also adopt this idea to cluster

programs according to their sensitivity/pressure characteristics and create dedicated model for each

cluster. Moreover, most studies focus on two-core co-tenancy problems, we propose a new way to

predict slowdown of applications in a group with more than one co-run peer. We test the approach

for three-core and four-core co-run cases. Nevertheless, the approach can be applied to predict the

performance of a co-run group whose size is equal to the number of cores on an architecture that

shares the last level cache and memory bandwidth.
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Chapter 3

Cross-architecture performance

modeling for two cores

This chapter uses contents from a published conference paper [61] by author. The author conducted

all the experiments and both advisors, Dr. Zhenlin Wang and Dr. Laura Brown provided advices

on the work and they are fully aware that the work is reorganized and written in this dissertation.

For a detailed acknowledgement of the permission granted by the holder of the conference paper

copyright, please see Appendix.

3.1 Bubble-up approach for performance degradation

prediction

The Bubble-Up approach is a general methodology designed to predict co-run application’s perfor-

mance interference [70]. Suppose there are two applications A and B that are co-run on a multi-core

machine. Application A’s performance degradation when co-run with B can be predicted if the

sensitivity curve of A and the pressure of application B are known. This overall methodology is

illustrated in Figure 3.1. First, application A is co-run with a bubble program. The bubble is a

program that can “inflate" or “deflate" so that different levels of contention pressure can be added

into the memory subsystem. Then by recording application A’s performance degradation at each

bubble pressure level, a sensitivity curve can be constructed. The sensitivity curve for application

A plots bubble pressure on the x-axis versus A’s performance degradation, which is measured as

normalized execution time, on the y-axis. In Figure 3.1(a)- 1○, application A’s sensitivity curve is

45



CHAPTER 3. CROSS-ARCHITECTURE PERFORMANCE MODELING FOR TWO CORES

plotted where the performance drops by 20%, 30% and 60% at bubble pressure of 1MB, 2MB and

10MB, respectively.
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Figure 3.1: Bubble-Up approach to predict co-run performance degradation

Next, an application’s pressure on the memory subsystem is characterized by using a program

called a reporter. The reporter is a program designed to use both last level cache and memory

bandwidth. The reporter’s sensitivity curve is found by co-running the reporter and the bubble;

Figure 3.1(b)- 2○ shows the reporter’s sensitivity curve. After the sensitivity curve of the reporter

is obtained, co-run the reporter with application B. The observed performance degradation along

with the reporter’s sensitivity curve is used to determine application B’s pressure score (application

B gives as much as the corresponding bubble pressure towards the memory subsystem). In Fig-

ure 3.1(b)- 3○, the 1.35 performance degradation value from B co-run with the reporter is used to

determine that application B’s pressure score is 2.

Finally, with application A’s sensitivity curve and application B’s pressure, the performance

degradation of A can be predicted when the two applications are run together. In Figure 3.1(a)- 4○
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application A’s sensitivity curve is again used with application B’s pressure, 2, to predict that A’s

execution time will increase, 1.3 times, when it co-run with B compared to running alone, without

co-run pressure. With the bubble-up methodology, the average prediction error is around 1% [70].

We implement the bubble and reporter as introduced by Mars et al. [70]. The current bubble

and reporter design stresses the memory subsystem, with a focus on cache and memory bandwidth.

Therefore, our design targets memory and CPU intensive applications. However, the general design

in the bubble-up approach and the methodology proposed in this paper can be extended to predict

co-run performance when an application’s performance depends on other shared resources such as

I/O, network bandwidth. The design focus then would be to find a bubble and a reporter that stress

these shared resources, which we leave as future work.

3.2 System framework

Figure 3.2: Development of cross-architecture prediction models for sensitivity parameters and pres-
sure

The overall methodology is illustrated in Figure 3.2. The methodology begins with data col-

lection. Profiling is used to collect sensitivity curves and pressures for a collection of bench-
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mark programs, X ∈ {A, . . . , Z}, on multiple architectures with different hardware configurations,

# ∈ {1, . . . , N}. In general, benchmarks/applications are denoted with upper-case letters, A or

B, architectures are denoted with numbers, 1 or 2, parameters of the sensitivity functions, f , with

lower-case letters, a or b, and parameters of the cross-architecture functions, g, with lower-case Greek

letters, α or β.

3.2.1 Cross-architecture sensitivity models

Simple functional models of the sensitivity curves are fitted for each program and architecture, fX# :

bubble pressure → performance degradation. The functional representation of a sensitivity curve

involves a small number of parameters, p ∈ {a, b, . . .}. From all the benchmarks, a set of parameters

is collected for each machine, a1 = {aA1, . . . , aZ1}, a2 = {aA2, . . . , aZ2}, b1 = {bA1, . . . , bZ1}, etc.

Then, for each parameter, p, a function is fit describing the relations between architectures, gp,1,2 :

p1 → p2, the cross-architecture sensitivity parameter model.

Example: A linear function can be used to model the benchmark’s sensitivity curves. Appli-

cations A’s sensitivity curve on the first machine’s hardware architecture, HW1, is represented as

y = aA1x+ bA1, where x is bubble pressure size, y is normalized performance degradation, aA1 and

bA1 are the benchmark- and architecture-dependent parameters. The same benchmark’s sensitivity

curve on a second machine, HW2, can be represented as y = aA2x + bA2. From the set of bench-

marks, each parameter is collected for each machine (a1 = {aA1, . . . , aZ1}, b1 = {bA1, . . . , bZ1}) and

(a2 = {aA2, . . . , aZ2}, b2 = {bA2, . . . , bZ2}), resulting in two cross-architecture sensitivity parameter

functions to be fit a2 = ga,1,2(a1) and b2 = gb,1,2(b1). For a linear model, the functions would be:

a2 = αaa1 +βa and b2 = αbb1 +βb, where αa, αb, βa and βb are architecture-dependent parameters.
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3.2.2 Cross-architecture pressure models

The pressure, PS, of a program can be determined through the process described in Sec. 3.1.

Through the data collection process, the pressure, PSX# is determined for each benchmark X

and architecture #. A cross-architecture pressure function is fit to describe the relationship between

pressures on different architectures, for example two architectures HW1 and HW2: PS2 = h1,2(PS1).

3.3 Cross-architecture prediction

With the cross-architecture sensitivity and pressure models identified, they can be used to make

predictions. Consider a new program Y run on HW1 whose sensitivity curve and pressure, PSY 1,

are found. The sensitivity function, y = fY 1(x), can be fit to the values from the sensitivity curve.

Using the sensitivity function on HW1 and the cross-architecture sensitivity parameter models, gp,1,2,

the parameters of the sensitivity function can be predicted for HW2, p̂Y 2 = gp,1,2(pY 1), . . . , p̂′Y 2 =

gp′,1,2(p′Y 1). With the predicted parameters, the sensitivity function of Y for HW2 is predicted.

The cross-architecture pressure model is also used for prediction. Given the new program Y ’s

pressure on HW1, PSY 1, it’s pressure on HW2 is predicted using the cross-architecture pressure

model P̂SY 2 = h1,2(PSY 2). The prediction methodology is shown in Figure 3.3.

This methodology allows the prediction of a program’s sensitivity curve parameters and pressure

for a new architecture. This information, using the bubble-up approach, can be used to predict

co-run performance degradation with other programs. The proposed model can be used in a cloud

data center to assist job scheduling and ensure SLA. We can bundle a scale that includes the bubble,

the reporter and a script to collect the sensitivity curve and pressure of an user application. The

scale can run either in-house or a data center benchmark machine. In a sense, the scale pre-measures

a user application’s performance-centric resource demand. The data center can build a database of

predictive functions across all types of its machines. With the scale measurement and the database,
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Figure 3.3: Use of cross-architecture prediction models

the data center scheduler can predict any application’s co-run performance on any machine and thus

accurately schedule jobs to maximize overall system throughput or to guarantee one application’s

minimum performance.

One significant advantage of cloud computing is that it provides computing as a utility. However,

the metric of computing utility is through resource allocation not through actual performance deliv-

ery about which the end users care. The major reasons include disparity of heterogeneous hardware

and multi-tenancy of multiple servers that compete for resources. For example, AWS often sells a

high-end server as a number of Elastic Computer Units (ECUs) where a user can subscribe a portion

of them that lead to co-tenancy. It has been reported the performance of VM of x ECUs is not x

times of that of the one-ECU benchmark machine [47]. The model proposed in this paper can help

the cloud provider to accurately predict a user application’s slowdown when it shares a physical

machine with another application. The prediction thus helps estimate the computing power of a

x-ECU VM when the rest of the machine is used for another co-run VMs. Thus, the SLA can be

contracted based on performance not just resource allocation.
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3.4 Evaluation settings and experimental result

Table 3.1: Hardware configurations of experimental machines

Intel Processors AMD Processors
Hardware Core2
Configuration Duo i5 i7 Xeon A8 A10
Processor Num. E8200 760 920 E5345 3850 7850K
CPU clock (GHz) 2.66 2.8 2.67 2.33 2.90 3.70
Cores per CPU 2 4 4 8 4 8
LLC size (MB) 6 8 8 4 1 2

3.4.1 Hardware architectures

We have several machines with different hardware configurations used in the evaluation; see Table 3.1.

Intel i7’s hyper-threading is disabled to avoid intra-core contention. To emulate thermal control in

data center, we also run the Intel i7 at a lower clock rate of 1.6GHz. The Intel Xeon CPU has two

sockets, each with 4 cores. In each socket, every two cores share a 4MB last level cache. AMD A8

has 1MB private last level cache and AMD A10 has 2MB shared last level cache. In general, we

use Core2 Duo as the base machine, HW1, and predict sensitivity and pressure for other machines,

HW2.

3.4.2 Training and test benchmarks

In order to perform predictions, we select a set of benchmark programs including SPEC CPU2006 [45],

a subset of PARSEC 3.0 [9], as well as a subset of CloudSuite 2.0 [42]. We use SPEC CPU2006 as

the training set and test the prediction models using PARSEC 3.0 and CloudSuite 2.0.

We run each of the programs with the bubble at various levels. The bubble expands from 0M to

10MB with an interval of 1MB. Therefore, the bubble can stress the cache resource from essentially

no pressure to fully occupying the cache and eventually competing for the memory bandwidth.

While collecting the program performance degradation along with bubble size, the Intel performance

51



CHAPTER 3. CROSS-ARCHITECTURE PERFORMANCE MODELING FOR TWO CORES

counters are used to monitor program behavior. Specifically, the number of the last level cache

misses per kilo instructions (LLCMPKI) and the number of instructions retired are collected, at a

two-second interval, to help us understand the relationship between performance degradation and

cache contentions.

3.4.3 Sensitivity curves and regression models

We profile each training program and record its execution times along with the different bubble

pressures. The run times are normalized using the execution time of the program at zero co-run

pressure and combined with bubble pressures to form the program’s original sensitivity curve. In

order to find a relationship between bubble pressure and performance, we fit the original curve with

a continuous function.

Different regression models are tested to model the sensitivity curves and fulfill the cross-

architecture prediction tasks. In our experiment, three functions have been used as regression

models for the sensitivity curves: a linear model, a degree 2 polynomial model (d2poly), and a

logistic model with 3 parameters (logistic3). The corresponding formulas are as follows,

y = ax+ b, (linear)

y = ax2 + bx+ c, (d2poly)

y = c/(1 + e−b(x−a)), (logistic3)

where x is the bubble pressure score and y is the normalized performance degradation. For the

logistic function, c is the maximum asymptote, b is the slope which describe the steepness of the

curve, and a is the inflection point, where the curve changes directions.

These functions were considered because each model is simple and can be expressed using a small

number of parameters. For a program that requires little cache, the performance degradation is not
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Figure 3.4: Sensitivity curves for libquantum and perlbench fitted to regression models

significant so that a linear function can characterize the sensitivity curve. For a program that is

very cache sensitive, its performance degradation rises rapidly as the cache contention increases,

and become rather flat when the pressure level is larger than the last level cache size, therefore a

degree 2 polynomial can characterize such scenario. Finally, the programs in between previous two

scenarios may have a logistic-like sensitivity curve. In Figure 3.4, the sensitivity curve and models

for libquantum are shown on the left; from the plot the logistic3 function fits the data the best. For

perlbench, although the logistic3 function still shows the best fit, a linear function may suffice in

describing the profiled sensitivity curve as shown on the right.

3.4.4 Model selection criteria

The R-square value, root-mean squared error (RMSE), and Akaike information criterion (AIC) were

calculated for selecting the best regression model. In statistics, the R-square value, which is also

called the coefficient of determination, denoted R2, is calculated to indicate how well the data fits

to a model. Suppose a data set has n points, each data has value yi, and each data also has an

associated predicted value ŷi. R2 is calculate as,
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R2 = 1− SSres

SStot
, (3.1)

where

ȳ = 1
n

∑n
i=1 yi,

SStot =
∑n

i=1(yi − ȳ)2,

and SSres =
∑n

i=1(yi − ŷi)2.

RMSE is a measurement of the difference between the value predicted by a model, ŷi, and the

actual observed value, yi, as,

RMSE =

2

√√√√ n∑
i=1

(ŷi − yi)2

n
. (3.2)

AIC, specifically the second-order corrected AICC , uses K as the number of parameters for the

model plus 1 [17]. The AICC is then found as,

AICC = n ln
SS

n
+ 2K +

2K(K + 1)

n−K − 1
. (3.3)

To compare and select the best model, choose the model with the minimum AICC value.

Note, the linear function has 2 parameters and the d2poly and logistic3 function have 3 param-

eters. It is expected that the more parameters used, the more accurate the function fits the data.

A F-test can be used to determine whether the linear or degree 2 polynomial functions better fits

the data (taking into account the number of parameters). However, the F-test is not used to select

between models that are not nested (the linear is nested with the degree 2 polynomial function;

however, the polynomial functions do not nest with the logistic function). Therefore, AIC is used

for model selection between all models.
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Table 3.2: R2 for SPEC06int models on Core2 Duo and Intel i5

Core2 Duo Intel i5
Program linear d2poly logistic3 linear d2poly logistic3
astar 90.54 96.16 99.83 94.10 99.58 98.46
bzip2 93.80 95.17 99.90 96.99 97.02 99.52
gcc 90.63 96.17 99.88 96.46 99.49 98.00
gobmk 96.60 97.03 99.47 98.73 98.77 98.16
hmmer 87.06 91.64 98.90 87.03 87.21 98.10
h264ref 92.78 92.98 98.54 94.48 97.28 98.86
libqauntum 83.22 95.62 99.78 74.16 96.36 99.54
mcf 82.85 98.06 99.86 84.51 99.34 98.94
omnetpp 88.10 97.08 99.91 90.08 97.73 99.74
perlbench 96.12 96.13 98.28 96.72 99.61 98.05
sjeng 94.05 94.38 98.35 90.77 97.04 98.91
xalancbmk 90.82 96.14 99.87 89.80 98.39 99.45

3.4.5 Selection of sensitivity function model

First, we profile the training benchmarks (SPEC CPU2006) on both Core2 Duo and Intel i5 machines

independently. The sensitivity curves are fit to the three models described in Section 3.4.3. We only

discuss the results for SPEC integer programs (SPEC INT). The results for SPEC floating point

programs (SPEC FP) are similar, and lead to the same conclusions.

From Table 3.2, we observe that the R-square values are always higher for the logistic function

model on the Core2 Duo. For the Intel i5, the logistic function is highest in a majority of benchmarks;

when the degree 2 polynomial has the highest R-squared value the logistic model often delivers a

quite similar value. Similarly, the RMSE values are smaller for the logistic model on the Core2 Duo

and a majority of programs on the Intel i5; see Table 3.3. In Table 3.4, AICC values are reported.

Note, that the lower AIC value indicates the preferred model to be selected. For these benchmarks,

the criteria reveal the logistic model best fits the data for almost all programs. The few exceptions

are that of astar, gcc, gobmk, mcf and perlbench on the i5 architecture. We thus pick the logistic3

function to model sensitivity curves.
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Table 3.3: RMSE value for SPEC06int models on Core2 Duo and Intel i5

Core2 Duo Intel i5
Program linear d2poly logistic3 linear d2poly logistic3
astar 0.040 0.029 0.005 0.006 0.002 0.003
bzip2 0.036 0.031 0.004 0.005 0.006 0.002
gcc 0.060 0.043 0.007 0.006 0.002 0.004
gobmk 0.008 0.008 0.003 0.001 0.001 0.001
hmmer 0.003 0.002 0.001 0.001 0.001 0.001
h264ref 0.013 0.013 0.006 0.002 0.002 0.001
libquantum 0.135 0.071 0.015 0.028 0.011 0.004
mcf 0.099 0.033 0.009 0.022 0.005 0.005
omnetpp 0.098 0.049 0.008 0.020 0.010 0.003
perlbench 0.010 0.010 0.007 0.004 0.002 0.003
sjeng 0.012 0.012 0.006 0.005 0.003 0.002
xalancbmk 0.075 0.054 0.009 0.021 0.009 0.005

3.4.6 Cross-architecture predictions for sensitivity curves

Since we selected the logistic3 function for modeling the sensitivity curves, we need to predict the

three parameters in the logistic3 function for cross-architecture sensitivity curve prediction. The

cross-architecture function, pi5 = gp,c2duo,i5(pc2duo), is fit to a degree 2 polynomial function, which

outperforms other functions we have tested. We follow the design described in Sec. 3.2.2 using the

parameters from HW1, Core2 Duo, to predict the parameters of the sensitivity function for the i5

machine, HW2. Using these predicted parameters, the performance degradation is predicted for

each benchmark on the i5 machine. The predicted performance degradation, ŷi5 is compared to the

known profiling value, yi5 via the absolute and relatives errors to show prediction accuracy (note,

the absolute error is reported as a percentage, value*100). The errors are calculated for each bubble

input values of 0 to 10MB. The mean absolute and relative errors are reported for each benchmark.

In Table 3.5, the training model can predict the sensitivity curve for program running on Intel

i5 with an overall average error lower than 2% across all discrete bubble pressures. The worst case

is cactusADM for which the error is still within 5%. The cross-architecture sensitivity parameter

function is then tested on new benchmarks, those not used to train the function. We test the cross-
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Table 3.4: AICC value for SPEC06int models on Core2 Duo and Intel i5

Core2 Duo Intel i5
Program linear d2poly logistic3 linear d2poly logistic3
astar -61.2 -63.3 -100.7 -102.0 -126.0 -112.2
bzip2 -64.0 -61.6 -104.7 -108.5 -103.4 -123.8
gcc -52.6 -54.7 -95.7 -103.5 -119.5 -105.3
gobmk -95.4 -91.6 -111.1 -137.8 -132.9 -128.9
hmmer -122.3 -122.1 -143.5 -141.0 -135.9 -156.8
h264ref -85.5 -80.5 -97.1 -124.8 -127.5 -137.3
libquantum -34.6 -43.7 -77.3 -68.9 -85.4 -108.3
mcf -41.5 -62.2 -89.4 -74.6 -103.9 -99.2
omnetpp -41.8 -51.8 -91.2 -76.6 -85.7 -112.2
perlbench -92.7 -87.5 -96.2 -110.4 -128.7 -111.8
sjeng -88.1 -81.9 -96.5 -109.3 -116.8 -128.2
xalancbmk -47.6 -49.4 -89.5 -75.1 -88.5 -102.6

architecture prediction for a subset of the PARSEC and CloudSuite programs; results are given

in Table 3.6. The errors on the test benchmarks suggest the cross-architecture prediction model

delivers high accuracy with a maximum relative error < 2%.

We observe similar accuracy from Table 3.7 for predictions from Core2 Duo to other architec-

tures, Xeon, Intel i7, AMD A8, and AMD A10. The mean relative error of the cross architecture

bubble versus performance degradation from Core 2 Duo to Xeon are 3.75% and 3.45% for SPEC

INT and FP, respectively. The mean relative error for the other architectures are all within 3.8%.

For almost every pair of cross-architecture sensitivity prediction, we observe that the prediction ac-

curacy is always low for a certain set of benchmark programs, such as bzip2, libquantum, and lbm.

Such observation suggests that those programs be treated as a different group for cross-architecture

prediction to improve accuracy.

3.4.7 Cross-architecture predictions for program pressure

As described in Section 3.1, using the reporter and its sensitivity curve, a pressure score can be

determined for every benchmark when the benchmark co-runs with the reporter. In Table 3.8, the

benchmarks’ pressure is reported on multiple machine architectures. For the Intel i7 machine, the
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Table 3.5: Mean errors of cross-architecture sensitivity curve prediction for Intel i5 on SPEC06

Program absolute error (%) relative error (%)
astar 2.04 1.94
bzip2 2.24 2.13
gcc 3.51 3.30
gobmk 0.73 0.72
hmmer 0.21 0.21
h264ref 1.01 0.99
libquantum 2.04 1.83
mcf 2.04 1.84
omnetpp 1.98 1.81
perlbench 2.26 2.16
sjeng 0.58 0.57
xalancbmk 3.16 2.82
bwaves 0.45 0.44
milc 3.09 2.90
zeusmp 1.40 1.36
gromacs 0.22 0.22
leslie3d 3.35 3.17
namd 0.15 0.15
dealII 1.42 1.38
soplex 1.64 1.50
povray 0.29 0.29
GemsFDTD 0.53 0.50
tonto 1.29 1.26
lbm 2.61 2.31
sphinx3 3.96 3.53
gamess 0.17 0.17
calculix 0.78 0.75
cactusADM 4.84 4.46

clock is set to two values: 2.6GHz and 1.6GHz. Note, how the pressure can change with different

hardware configurations. Therefore, we need to predict the pressure of programs across architecture.

The cross-architecture pressure function can be fit using the pressures of programs running on

Core2 Duo to predict the pressure of programs running on other machines, such as an i5 or i7. The

cross-architecture functions considered are linear, degree 2 polynomial, and degree 3 polynomial

functions.

We look at the prediction performance for the cross-architecture function of P̂Si7 = hc2duo,i7(PSc2duo),

compared to the actual pressure as measured by the reporter on i7. The mean RMSE value of the
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Table 3.6: Mean errors of cross-architecture sensitivity curve prediction for Intel i5 on test bench-
marks

absolute relative
Program error (%) error (%)
bodytrack 0.19 0.19
swaptions 0.12 0.12
ferret 0.46 0.45
fluidanimate 0.89 0.87
freqmine 0.62 0.62
streamcluster 0.53 0.51
x264 0.56 0.54
graphic analysis 2.05 1.96
software testing 1.38 1.31
data caching 0.90 0.87

pressure, mean relative error of the pressure, and mean absolute error are calculated, where the

average is over all of the training benchmarks. The linear model’s RMSE is 0.526, relative error is

22.5%, and absolute error is 38.7%. The degree 2 polynomial model performance is 0.4461, 36.6%,

33.5% and the degree 3 polynomial model performance is 0.391, 19.1%, 30.0% for the RMSE, relative

and absolute errors, respectively. Though relative error is around 20%, the absolute error is less

than 0.4 compared to the range of pressures from 0 to 8MB (the maximum cache size of the given

architectures). The Xeon predicted pressure from the Core2 Duo pressure results in a relative error

of ∼15% and an absolute error of less than 0.25.

We see a program exhibits different pressures on different machines. Let the pressure a program

gives on Core2 Duo be a baseline reference. The same program gives ∼1MB less pressure for most

cases on Intel Xeon machine, suggesting there might exist a relationship between pressure change

and different cache sizes in the two machines. On the other hand, the pressure fluctuates on Intel

i5 machines. For some of the programs, the pressure decreases and the rest of the programs had

increases in pressure. The watershed for such discrepancy is close to 3MB, which is half the cache

size of Core2 Duo. This may relate to the fair use of cache and further research may be needed.
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3.4.8 Cross-architecture co-tenancy performance prediction

In order to test the correctness of our cross-architecture prediction models, we run the benchmark

programs pair-wise to observe the co-run performance of real programs. We consider several methods

to predict the co-run performance. First, we use the sensitivity curve created by the profiling result

and the pressure generated by the reporter to predict the performance degradation (the bubble-up

methodology or Bubble). In PredPres, we use the sensitivity curve created by the profiling result

and the pressure predicted by the cross-architecture model to predict the performance degradation.

Finally, we use both the sensitivity curve and pressure predicted by cross-architecture models to

predict the performance degradation, PredSens+PS. The three methods are evaluated as the

mean absolute and mean relative error comparing each predicted performance degradation with the

actual performance degradation averaged over the pair-wise co-run benchmarks.

Table 3.9 shows the average prediction errors when each individual benchmark co-runs with

each SPEC program. Bubble’s largest relative error is 1.94% on the training benchmarks which is

consistent with the conclusion of the original results by Mars et al. [70]. The largest relative error

for the test benchmarks is 2.26%. For PredPS, the relative error is always of equal or greater value

than Bubble, the baseline approach. However, the maximum relative error of 2.57% is of similar

magnitude. Lastly, PredSens+PS’s maximum relative error is merely 5.30%, although a few see

a substantial increase in error over the baseline Bubble approach, e.g., libquantum, mcf, omnetpp,

xalancbmk.

In Table 3.10, the detailed prediction error (presented as a percentage, value*100) is given for

PredSens+PS on the pair-wise co-run benchmarks. Overall, the prediction error is relatively small

for most SPEC integer programs. However, the prediction error is high whenever a program co-runs

with libquantum. One possible reason for this may be in the design of the bubble program. We need

to look up the reporter’s sensitivity curve to generate a pressure score comparable with a certain

60



CHAPTER 3. CROSS-ARCHITECTURE PERFORMANCE MODELING FOR TWO CORES

bubble size for a given program. However, the sensitivity curve doesn’t change much beyond the

point where bubble size equals the last level cache size. This may not accurately characterize the

actual pressure level of libquantum which also stresses the memory bandwidth. As a result, the

reporter will give a small value for libquantum than its actual pressure level.

Table 3.11 shows the prediction accuracy when SPEC FP is chosen as the co-run programs. Most

predictions are close to actual performance degradation within 2% error, while when libquantum co-

run with bwaves, the predict value is 12% away from real value. This is because the predicted

bwaves pressure is 5.6MB and the actual bwaves pressure is 3.1MB. Moreover, the sensitivity curve

of libquantum changes rapidly along with bubble pressure, thus the predicted value is very different

from the actual value.

The ”bubble-up” methodology uses 2 ruler to quantify the performance of two co-run programs.

For most cases, the predicted degradation are as close as the actual co-run result. Our framework

extent the idea to a cross-architecture settings, using simple machine learning techniques to transfer

knowledge from a source machine to multiple target machine with different hardware configurations.

Yet the framework uses the same ruler as a quantitative measure, thus to make accurate prediction,

one must make sure that these 2 measurements are predicted accurately, moreover, this requirement

also implies that the profiled sensitivity should be also accurate in the first place or otherwise the

error can be propagated through logistic regression and several following prediction step. In the

next section, we discuss how to elevate the prediction accuracy by categorize programs into different

access behavior groups and how to generate program specific bubble/reporter to make the ruler even

more accurate.
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Table 3.7: Mean relative errors of cross-architecture sensitivity curve prediction for Intel Xeon, i7,
AMD A8 and A10 on SPEC06

xeon i7 A8 A10
Program error (%) error (%) error (%) error (%)
astar 1.46 2.60 2.46 2.07
bzip2 17.80 3.06 2.14 13.62
gcc 4.83 3.43 0.52 1.35
gobmk 0.42 1.00 0.77 0.55
hmmer 0.63 0.24 0.62 1.46
h264ref 2.72 2.12 0.89 1.12
libquantum 4.25 5.93 5.66 5.47
mcf 3.26 2.75 2.59 2.69
omnetpp 1.56 4.06 3.06 6.57
perlbench 2.05 1.32 1.20 2.52
sjeng 3.64 2.52 1.31 5.11
xalancbmk 2.38 4.56 3.52 1.61
Average 3.75 2.80 2.06 3.68
bwaves 9.31 4.98 0.95 1.47
milc 5.79 3.05 3.24 4.29
zeusmp 4.00 0.72 1.12 1.09
gromacs 1.71 0.74 0.06 2.10
leslie3d 8.29 2.55 2.45 6.89
namd 0.24 0.10 0.15 0.93
dealII 1.12 0.80 2.12 1.85
soplex 3.63 6.29 0.31 6.10
povray 1.99 1.14 0.31 0.32
GemsFDTD 4.52 3.31 1.12 2.50
tonto 1.81 1.18 0.69 0.78
lbm 2.37 14.59 0.70 2.95
sphinx3 3.18 2.03 0.39 7.93
gamess 1.10 0.46 0.43 2.21
calculix 2.35 0.36 0.04 1.18
cactusADM 3.79 4.00 1.28 0.89
Average 3.45 2.89 0.96 2.72
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Table 3.8: Benchmark programs pressures on different hardware configurations

i7
Program Core2 Xeon i5 A8 A10 2.6Ghz 1.6Ghz
astar 2.5 1.5 2.2 1.1 1.8 3.2 2.1
bzip2 2.3 1.3 1.8 1.2 0.8 2.6 2.0
gcc 2.5 1.5 3.4 1.5 0.7 3.7 3.0
gobmk 2.0 1.0 1.2 0.5 0.5 1.6 1.0
hmmer 2.2 1.2 1.4 1.0 0.8 1.1 1.0
h264ref 2.1 1.1 1.5 0.4 0.1 1.8 1.3
libquantum 3.9 4.0 5.1 8.0 8.0 8.0 8.0
mcf 3.2 2.1 8.0 1.2 0.9 4.3 4.7
omnetpp 2.8 1.8 4.6 1.4 1.2 3.4 3.6
perlbench 1.9 0.9 1.2 0.5 0.3 0.9 0.9
sjeng 1.6 0.6 0.9 0.2 0.4 0.8 0.6
xalancbmk 2.5 1.6 3.4 1.2 1.1 3.4 2.4
bwaves 3.2 2.4 3.1 1.2 1.8 4.1 3.4
milc 3.8 4.0 8.0 8.0 8.0 5.1 6.2
zeusmp 2.6 1.5 2.4 1.2 0.6 3.4 2.8
gromacs 1.5 0.6 0.7 0.3 0.2 0.9 0.7
leslie3d 3.7 3.0 8.0 4.0 3.1 5.2 5.6
namd 1.2 0.3 0.5 0.2 0.1 0.5 0.3
dealII 2.2 1.3 1.5 1.2 0.9 2.7 1.5
soplex 3.2 2.5 8.0 8.0 3.3 5.0 6.0
povray 1.2 0.4 0.5 0.2 0.1 0.3 0.5
lbm 3.5 1.5 8.0 8.0 8.0 8.0 8.0
tonto 2.2 1.3 1.4 1.1 0.6 2.5 1.8
sphinx3 2.8 2.5 3.2 1.9 1.1 3.7 3.8
cactusADM 2.3 1.2 2.1 1.0 1.0 2.9 1.9
calculix 1.4 0.4 0.4 0.2 0.3 0.6 0.5
gamess 1.4 0.4 0.4 0.2 0.2 0.5 0.5
GemsFDTD 4.8 4.0 8.0 3.0 8.0 5.6 5.3
blackscholes 1.3 0.3 0.5 0.4 0.4 0.7 0.7
bodytrack 1.3 0.5 0.5 0.4 0.4 0.6 0.7
ferret 2.3 1.2 0.5 0.9 0.8 2.1 1.4
fluidanimate 2.0 1.0 1.6 1.2 1.0 2.2 1.5
streamcluster 3.0 2.7 2.1 2.0 1.7 4.4 4.6
swaptions 1.0 0.6 0.1 0.2 0.2 0.1 0.3
x264 2.0 1.1 1.5 1.1 1.1 1.3 1.3
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Table 3.9: Co-tenancy performance degradation prediction error on training (SPEC06int) and test
benchmarks

Bubble PredPS PredSens+PS
absolute relative absolute relative absolute relative

Program error (%) error (%) error (%) error (%) error (%) error (%)
astar 0.93 0.89 1.15 1.10 2.00 1.87
bzip2 1.87 1.69 2.19 1.97 2.25 2.03
gcc 1.20 1.07 1.65 1.48 2.37 2.14
gobmk 2.16 1.94 2.57 2.30 0.77 0.74
hmmer 0.54 0.52 0.69 0.67 0.70 0.66
h264ref 0.09 0.09 0.14 0.14 0.59 0.58
libquantum 1.22 1.18 1.43 1.38 3.55 3.19
mcf 1.98 1.80 2.27 2.09 5.43 4.78
omnetpp 0.01 0.50 0.67 0.65 4.96 4.25
perlbench 1.51 1.24 2.30 1.93 2.88 2.75
sjeng 0.76 0.71 1.13 1.06 1.07 1.02
xalancbmk 2.02 1.70 3.01 2.57 6.21 5.30
bodytrack 0.29 0.28 0.33 0.33 0.89 0.87
swaptions 0.12 0.12 0.12 0.12 1.17 1.16
ferret 0.49 0.47 0.66 0.64 1.00 0.98
fluidanimate 0.38 0.36 0.42 0.40 0.72 0.70
freqmine 0.69 0.67 0.70 0.67 0.85 0.83
streamcluster 0.96 0.92 1.14 1.09 2.07 1.99
x264 0.63 0.60 0.78 0.75 1.13 1.08
graphic analysis 1.20 1.17 1.06 1.05 1.76 1.68
data caching 2.44 2.26 2.64 2.46 2.85 2.67
software testing 1.10 1.01 1.24 1.14 2.02 1.95
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Table 3.10: Detailed performance degradation prediction error using PredSens+PS against SPEC
INT06

Program as
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astar 2.24 0.91 0.05 0.54 1.54 0.12 4.92 0.48 1.04 0.09 0.78
bzip2 2.71 2.14 0.02 1.08 2.38 1.89 10.52 1.48 1.13 0.80 1.24
gcc 3.95 1.57 1.03 0.79 2.22 2.22 7.30 1.17 3.47 0.61 1.64
mcf 1.40 0.26 3.03 0.17 1.26 2.02 13.35 0.34 0.53 0.10 1.23
gobmk 0.57 0.10 0.48 0.08 0.40 0.07 2.93 0.12 0.12 0.17 0.23
libquantum 4.67 1.64 0.48 0.35 2.12 2.87 4.75 0.58 4.70 0.33 3.26
h264ref 0.92 0.67 0.37 0.44 0.86 0.71 2.17 0.47 0.35 0.23 0.31
sjeng 0.21 0.26 0.86 0.06 0.36 0.38 5.30 0.27 1.16 0.14 0.95
perlbench 1.49 2.12 2.56 1.81 1.51 1.65 6.38 1.33 3.49 1.89 2.71
omnetpp 5.08 0.64 2.03 0.65 1.56 2.45 15.88 0.33 0.46 0.35 0.27
xalancbmk 3.74 0.10 4.85 0.59 0.59 2.18 17.86 0.07 3.97 0.26 5.86
bodytrack 0.18 0.32 0.19 0.29 0.33 0.10 4.60 0.48 2.01 0.59 0.49
swaptions 0.48 0.02 0.31 0.09 0.04 0.00 8.25 0.09 3.23 0.00 0.31
ferret 0.89 0.50 1.77 0.20 0.10 0.30 2.14 0.30 2.77 0.30 1.48
fluidanimate 0.30 0.20 0.50 0.20 0.20 0.10 4.11 0.30 0.99 0.20 0.60
freqmine 0.30 0.20 0.30 0.70 0.50 0.20 5.30 0.60 0.30 0.40 0.30
streamcluster 1.68 1.01 3.55 1.85 2.19 0.89 1.57 1.46 2.51 0.79 4.37
x264 1.18 0.88 1.58 1.28 1.13 0.49 0.98 0.73 1.01 0.24 2.38
graphic analysis 0.99 0.63 1.95 0.02 0.00 0.14 7.42 0.00 3.00 1.47 2.88
data caching 0.95 3.22 4.18 0.32 0.69 2.73 8.49 1.67 4.01 0.37 2.75
software testing 1.75 1.22 2.97 0.52 2.45 0.35 2.15 1.57 4.04 1.22 3.15
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Table 3.11: Detailed performance degradation prediction error using PredSens+PS against SPEC
FP06

Program bw
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astar 4.47 0.94 1.02 1.11 0.39 0.84 0.33 0.02 0.50 0.23 0.44
bzip2 1.49 1.34 2.29 0.56 1.21 1.16 2.16 1.15 0.35 0.56 1.49
gcc 8.55 1.24 2.46 3.36 1.27 1.44 2.68 1.43 0.25 0.57 0.53
mcf 5.68 1.23 0.67 1.46 1.24 1.16 2.47 0.69 0.43 0.40 3.34
gobmk 1.81 1.12 0.14 0.12 0.18 0.34 0.07 0.50 0.03 0.01 0.59
libquantum 12.10 3.47 3.46 6.71 1.95 1.23 2.76 2.61 0.04 0.13 1.92
h264ref 1.02 0.00 0.61 0.50 0.35 0.21 0.74 0.46 0.27 0.03 0.12
sjeng 2.10 2.51 0.56 1.74 0.32 0.30 0.38 0.73 0.02 0.15 2.67
perlbench 1.61 3.91 3.47 3.24 0.33 0.11 2.86 2.20 0.75 0.51 4.36
omnetpp 3.50 3.22 1.09 1.10 1.88 1.78 0.90 2.25 0.07 0.32 5.08
xalancbmk 4.11 5.19 0.02 5.19 1.43 1.70 6.39 2.30 0.18 0.28 6.24
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Chapter 4

Cross-architecture performance

modeling with clustering

4.1 Reasons for prediction errors and how we tackle

the problem with a K-means clustering algorithm

In our proposed framework, a profiled sensitivity curve is first fit to a logistic function for both source

and target hardware configurations, whose parameters are modeled using a degree-2 polynomial

function for cross-architecture sensitivity prediction. The assumption behind this is that all programs

follow exactly the same transition pattern from a source machine to a target machine. However, due

to different access patterns and memory bandwidth consumption behaviors, this assumption may

not always hold. We select a few profiled sensitivity curves to illustrate such phenomenon.

Figure 4.1 shows the profiled sensitivity curves of astar, bzip2, perlbench and sjeng on both

Intel core2duo and i5 machines with solid and dash line respectively. The sensitivity curves become

flat when the bubble size is larger than 8MB as the the program saturated the entire last level cache.

By comparing astar with bzip2, we find both programs have approximately the same slowdown at

10MB and the overall sensitivity curve shapes are similar. A cross architecture model can be applied

to both programs as they basically have roughly the same transition behavior and we can expect

that the model will generate accurate prediction.

However, as shown in Figure 4.1, at 10MB, the gap for program perlbench and sjeng are

much narrower than that for astar or bzip2. If we were to use the cross architecture model
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(b) bzip2
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(c) perlbench
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(d) sjeng

sensivity on core2duo

sensitivity on i5

Figure 4.1: Cross architecture sensitivity curve for (a) astar, (b) bzip2, (c) perlbench,(d) sjeng
on core2duo and i5

obtained from the first two programs and try to make prediction, astar and bzip2 might have

reasonable prediction, while the slowdown of perlbench can be overestimated and thus it will lose

some potential co-run opportunities. Similarly, underestimation can also happen vice versa and thus

bring unacceptable slowdown which can violate the QoS requirement. This observation suggests

that programs should be put into correct categories while making cross-architecture predictions. We

therefore introduce clustering as a preliminary preparation for cross-architecture regression modeling.

Notice that this additional step wouldn’t violate the O(n) time complexity since eventually a certain

quantity of benchmark programs need to be collected as the training set, and clustering and cross-

architecture modeling within these sampling is a one time off-line process. Instead of maintaining

just one single cross-architecture prediction model for sensitivity, we keep k models, where k equals
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the number of clusters we have. Whenever a new program comes in, profiling is still needed on the

source machine. In addition, we use this information to compare with different clusters and put it into

correct class and use the corresponding model to predict sensitivity on the target machine. We adopt

a k-means algorithm to form clusters. As all sensitivity curves on the source machine (core2duo)

show how each benchmark reacts to different bubble pressures, it preserves certain information about

what transition pattern type each program will be on the target machine. Therefore, the curves of

those benchmark programs are served as the input of the k-means algorithm and we test various k

values for the best result. Intuitively, the more models we keep, the more accurate prediction result

would be. However, due to the limit number of training programs, we test k from 2 to 5. Silhouette

criterion values [86] and Calinski-Harabasz criterion [19] (CH index) are used to find the optimal k

values. The silhouette of a data instance is a measure of how closely it is matched to data within its

cluster and how loosely it is matched to data of the neighboring clusters. And CH index evaluates

the cluster validity based on the average between- and within-cluster sum of squares. CH index is

calculated as follows:

CH(k) =
TraceB
K−1

TraceW
N−K

(4.1)

TraceB =

K∑
k=1

|Ck|||C̄k − x̄||2 (4.2)

TraceW =

K∑
k=1

N∑
i=1

wk,i||xi − C̄k||2 (4.3)

|Ck| =
N∑
i=1

wk,i (4.4)
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where N is the number of observations, and K is the number of clusters. The value wk,i equals 1 if

observation xi belongs to cluster k and equals 0 otherwise. The value B denotes the error sum of

squares between different clusters (inter-cluster), and W the squared differences of all objects in a

cluster from their respective cluster center (intra-cluster). After finding the optimal k value, all the

training benchmark programs are then categorized into the corresponding cluster.

We apply the framework shown in Figure 3.2 to each cluster independently. Experiment results

for cross-architecture sensitivity prediction with clustering will be presented in Section 4.2.

Both sensitivity curve and program pressure prediction error can result in performance degrada-

tion prediction errors. As different programs react differently towards pressure, some of programs’

sensitivity curve will be steeper compared to others. Therefore, even though a small program pres-

sure prediction error will bring large performance degradation prediction error. Table 4.1 illustrates

this interesting discovery. It shows several programs’ partial sensitivity profiling results and the

actual performance degradation when it co-runs with lbm. The lbm’s pressure is larger than 5MB

bubble kernel when it co-runs with perlbench. However, when gcc running as the peer, lbm’s

pressure is in-between 4MB to 5MB. And at last, when 2 lbm co-run together, the pressure even

drops below 4MB, suggesting that a program’s pressure can change whenever its co-running peer

changes. We can explain this with some domain knowledge. Perlbench, gcc and lbm are listed in

ascending order with respect to its own pressure, therefore, as the co-runner, lbm, which working

as an elastic rubber band, its own pressure will change from a higher value to a lower score. To be

specific, when lbm co-run with perlbench, lbm’s pressure exceeds a 5MB bubble. gcc’s pressure is

higher than perlbench, so when it co-run with lbm, lbm’s pressure score should be close to 4MB

bubble. For the extreme case, when two lbm co-run together, the pressure is way below 4MB. As a

program’s pressure will change according to its competing peer, if we were to predict the pressure

with a unique reporter, it is clear that the prediction will more or less introduces error depending
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on the steepness of sensitivity and the pressure score itself.

Table 4.1: lbm pressure changes with different peer co-runner

Program Program execution time(s)

Name @pressure 4MB @pressure 5MB co-run with lbm

perlbench 484 488 500

gcc 470 485 471

lbm 557 666 520

Similarly to maintain a certain number of cross architecture sensitivity models, we should have

multiple reporters to represent programs with aggressive contention power or mild ones rather than

using a single reporter and create cross-architecture models for different reporters. Whenever a new

program comes in, we first profile its sensitivity on source machine and put it into proper cluster

based on this information. Then the reporter corresponding to such cluster is used to measure the

pressure score of the program on source machine. At last we apply the cross architecture model

to predict the sensitivity and pressure on target machine to make final slowdown prediction. The

training and testing steps for this cluster-based cross architecture model is summarized as a pseudo-

code style in Algorithms 1 and 2. Experiment results for cross-architecture performance degradation

prediction with clustering will be shown in Section 4.2.

First we select a variety of programs as the training set. Then we collect the sensitivity of these

programs on both source machine and target machines. With k-means algorithm, we categorize

programs into different groups based on their sensitivity. Then for each cluster, extract program

sensitivity parameters using logistic function regression for both source and target, at last, create the

cross architecture sensitivity model using quadratic model regression from source to target. Similar

steps can be applied to pressure prediction model. As we need different reporter to represent different
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peer pressure, we collect the sensitivity of three different reporter kernel, which are a binary search

tree kernel, a stream access kernel and a matrix access kernel. Calculate the distance between a

reporter and different cluster centroids to determine which group it belongs to. Collect the pressure

score for each program on both source and target machine and then create the cross-architecture

pressure model for the cluster this very reporter corresponds using quadratic model regression.

Predicting performance using the cluster-specific model is straightforward. For each new pro-

grams, first collect the sensitivity on source machine and extract the logistic parameter using re-

gression. Then, depending on the pressure type of the peer this program co-runs with, we choose

the corresponding reporter and collect program’s pressure on source machine. Then, calculate the

sensitivity distance between the program with our database and pick the cross-architecture sensitiv-

ity/pressure model with shortest distance. At last, generate the sensitivity and pressure on target

machine to make final prediction.

Algorithm 1: Training for cluster-based cross-architecture prediction model
Input : A set of programs and machines with different configurations served as source and

target machines
Output: Cross-architecture sensitivity/pressure models
step 1: Select a variety of programs as training set;
step 2: Sensitivity profiles on source/target machines;
step 3: Clustering based on sensitivity with k-means;
step 4: Create cross-architecture models
for each cluster
a. sensitivity model
From profiled sensitivity on source/target to logistic parameters;
Train a degree 2 polynomial model from source to target with the logistic parameters.
b. pressure model
Find a reporter for the cluster by measure the distance between reporter’s own sensitivity and
cluster centroid;
Measure training programs’ pressure on source/target machine with the reporter determined
in previous step;
Train a degree 2 polynomial model from source to target with the pressure scores.
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Algorithm 2: Testing/Using cluster-based cross-architecture prediction model
Input : New program A and B
Output: Slowdown for A when it co-runs with B on target machine
step 1: Sensitivity prediction for A;
a. Profile A’ sensitivity on source machine
b. Find cluster whose centroid is closest to A
c. Predict A’s sensitivity using the model corresponding to cluster determined in b
step 2: Pressure prediction for B;
a. Profile B’s pressure using the corresponding reporter associated with cluster for A on
source machine
b. Predict pressure for B on target machine using model associated with cluster for A
step 3: Co-run slowdown prediction for A;

4.2 Evaluation settings and experimental results

Table 4.6 shows the cross-architecture sensitivity curve prediction from source machine, core2duo,

to five target machines with different hardware configurations. Even though the average error are all

below 3.8%, certain program gets as high as over 10% prediction error. Therefore, we divide programs

into different clusters as discussed in previous section and make the predictions independently for

each cluster.

Table 4.2: Sensitivity prediction for different machines

prediction errors %

Program name int fp

INTEL i5 1.69 1.52

INTEL i7 2.80 2.89

INTEL Xeon 3.75 3.45

AMD A8 2.06 0.96

AMD A10 3.68 2.72

As we separate SPEC CPU2006 integer and floating point programs into training set and testing
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set, respectively, the scaled sensitivity of Integer programs on Core2Duo are fed into the k-means

algorithm for initial clustering. Both silhouette and CH index values show that three is the optimal

cluster number for the k-means algorithm. Therefore, programs are clustered into three groups,

from which three cross-architecture prediction models are generated. Given a new program (floating

point programs in our example), we calculate the Euclidean distances between the program and

three different clusters’ centroids, and put it into the one with closest disparity. The clustering

result is shown in Table 4.3.

Table 4.3: SPEC2006 clustering result using sensitivity as input

cluster training testing

1 astar,bzip,gcc milc,GemsFDTD

leslie3d,sphinx3

2 omnetpp,xalancbmk bwaves,soplex

mcf,libquantum lbm

3 gobmk,hmmer, zeusmp,

h264ref,perlbench gromaces,gamess

sjeng dealII,povray,tonto,namd

calculix,cactusADM

Figure 4.2 shows all three parameters of logistic sensitivity curve in different clusters. Programs

mcf, omnetpp, soplex, lbm, are in the same cluster, which is consistent with the plot, as they all

have small knee point and steep slope, as well as high upper bound, suggesting they are sensitive to

pressure and will have large slowdown even with relatively small co-run pressure. Programs sjeng,

povray, and namd are in same category for they all have low upper bound and large knee point,

indicating those programs are insensitive to pressure changes. This classification is reasonable as
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Figure 4.2: logistic parameters distribution

previously shown in Figure 4.1, astar and bzip2 are very similar in terms of cross architecture

transition pattern and they belong to the same category. This is also true for other programs,

especially for those programs which are sensitive towards pressure changes in cluster two, which

we might need a much more accurate model compared with the ones who has negligible pressure as

programs in cluster three. The sensitivities of those programs within cluster two change significantly

at each granularity unit, so the prediction must be accurate so that the QoS requirement will not

be violated.

The detailed program sensitivity prediction on target machines using the corresponding model

and the comparison with actual profiled curves are shown in Table 4.4. As we have five groups

of cross-architecture configurations, for simplicity, the rest are given average prediction error in

Table 4.6. We also show the result for k = 1, which treats all programs as a whole, meaning no
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clustering is applied to the programs and only one model was generated.

Table 4.4: Sensitivity prediction from c2 to i5 using cluster

prediction errors %
Program name 1 cluster 3 clusters
astar 1.94 1.12
bzip2 2.13 1.12
gcc 3.30 2.46
gobmk 0.72 0.99
hmmer 0.21 0.10
h264ref 0.99 1.16
libquantum 1.83 0.57
mcf 1.84 0.51
omnetpp 1.81 0.48
perlbench 2.16 1.99
sjeng 0.57 0.72
xalancbmk 2.82 2.27
avg of int 1.69 1.13
bwaves 0.44 0.28
milc 2.90 1.24
zeusmp 1.36 1.50
gromacs 0.22 0.22
leslie3d 3.17 2.69
namd 0.15 0.15
dealII 1.38 1.67
soplex 1.50 0.54
povray 0.29 0.30
GemsFDTD 0.50 1.51
tonto 1.26 1.52
lbm 2.31 0.50
sphinx3 3.53 3.10
gamess 0.17 0.15
calculix 0.75 0.77
cactusADM 4.46 4.34
avg of fp 1.52 1.28

In Table 4.4, program libquantum, mcf, omnetpp, soplex and lbm have relatively high im-

provement, strongly suggesting these program follow the same transition pattern. By once again

examining Figure 4.2, we can observe that GemsFDTD and dealII are visually mis-classified, so they

have slightly decreasing in prediction accuracy. leslie3d might need to put into libquantum group
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to have a better prediction result. Other programs’ prediction accuracy either stays the same or is

slightly improved. Nevertheless, the overall prediction accuracy has been improved, indicating clus-

tering definitely helps. There is no unique distance metric to fulfill the clustering tasks, therefore

additional information might be incorporated to yield a better clustering result.

Table 4.5 compares the results using two different criteria for clustering programs. The overall

prediction accuracy is about the same. To be more specific, programs such as leslie3d, dealII

are in cluster one using sensitivity as criterion. But they are in cluster two if using parameter as

criterion, which yields better accuracy. This suggests that by only looking at sensitivity curve itself

might not necessarily gives enough information. Other than that, the rest prediction accuracy with

these two different criteria are very similar to each other. Further study may be needed to give a

more reasonable clustering criterion.

Table 4.6 and Table 4.7 show the sensitivity curve prediction on INTEL i5 machine with seven

clusters and three clusters respectively. Using clusters improves the overall prediction result. Pre-

diction accuracy further improved as the number of clusters increases. However, having too many

clusters can result in over-fitting problem, therefore, we use a partition of three clusters for the rest

of experiments in this chapter.

By observing those five groups of cross architecture sensitivity prediction result, we find certain

programs are always have low prediction accuracy no matter what hardware it runs on, such as

bzip2, bwaves, libquantum, leslie3d and lbm, which also suggest that those benchmarks are of

different access pattern compared to others. Experiment shows that sensitivity prediction improved

significantly for these programs and so as the overall prediction as number of clusters increases.

Programs such as mcf, omnetpp, libquantum, xalancbmk, are very sensitive toward pressure, so

they are grouped as one cluster. sjeng, perlbench, gobmk, hmmer, h264ref, are grouped together

as these programs are insensitive toward contention. lbm, because of its unique accessing pattern,
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stand alone as a different cluster. Therefore, the prediction accuracy improvement for this program

may not fair since it both serve as the training and testing program. Nevertheless, as more and

more programs profiled on the source machine, some of programs’ accessing pattern might match

lbm and thus yield good prediction accuracy.

Clustering should also apply to cross-architecture pressure prediction. As mentioned in previous

example, when it comes to actual co-run scenario with real applications, the pressure score of a

program varies according to the pressure its peer runner gives. For a better prediction result,

each application should have its own representative reporter. However, this will jeopardize O(n)

complexity and moreover, this is not necessary as the pressure of program varies by at most 2MB

and some of the program is even not sensitive to such changes. The trade-off between prediction

accuracy and complexity determine how many clusters it should be for this pressure prediction

task. We adopt three type of reporters from Smashbench [70], one is a blockie bubble, one a binary

search tree bubble and one is a er-naive bubble. These 3 bubbles are all accessing approximately

20MB array space, however, they have different last level cache miss ratios and memory bandwidth

consumption. As shown in Figure 4.3, the distribution of last level cache misses and memory

bandwidth consumption of the 3 kernels at different sizes is given. BST has high miss ratio but

low memory bandwidth consumption, and blockie consumes much more bandwidth, and er-naive is

in-between of the two. They resemble aggressive, mild and average programs, respectively in terms

of pressure. The actual program are then divided into 3 clusters and corresponding reporters are

selected to generate the score.

Table 4.9 shows the cross-architecture performance degradation prediction result with clustering

as preliminary step. The table lists both the predicted slowdown and the actual slowdown of a subset

of SPEC CPU2006 integer programs when they co-run with different programs, including gobmk,

libquantum, h264ref, bwaves. Table 4.10 further compares the performance prediction with and
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Figure 4.3: Smashbench kernel distribution

without clustering. Each workload corresponds to 2 columns, where the left one is the prediction

error with the original method and the right one is the prediction error using cluster-based cross-

architecture prediction framework. Without clustering, gobmk and h264ref have lower error rate

but libquantum and bwaves have significant prediction error. Some of them even have an error over

15%. And notice that the sensitivity prediction without clustering is already within 2-3% error, thus

the huge error must result from the inaccuracy of pressure score the reporter gives, which strongly

suggests that using a unique score for a program towards different co-runners is not appropriate.

With the clustering and multiple cross-architecture modeling for both sensitivity and pressure, the

prediction accuracy has been significantly improved.
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Table 4.5: Sensitivity prediction from c2 to i5 using cluster extra

prediction errors %
Program name 1 cluster 3 clusters 3 clusters (para)
astar 1.94 1.12 0.75
bzip2 2.13 1.12 1.14
gcc 3.30 2.46 2.62
gobmk 0.72 0.99 1.08
hmmer 0.21 0.10 0.26
h264ref 0.99 1.16 1.29
libquantum 1.83 0.57 0.78
mcf 1.84 0.51 0.58
omnetpp 1.81 0.48 0.51
perlbench 2.16 1.99 1.87
sjeng 0.57 0.72 0.82
xalancbmk 2.82 2.27 1.84
avg of int 1.69 1.13 1.13
bwaves 0.44 0.28 0.79
milc 2.90 1.24 1.65
zeusmp 1.36 1.50 1.58
gromacs 0.22 0.22 0.22
leslie3d 3.17 2.69 1.83
namd 0.15 0.15 0.14
dealII 1.38 1.67 0.19
soplex 1.50 0.54 1.06
povray 0.29 0.30 0.31
GemsFDTD 0.50 1.51 0.94
tonto 1.26 1.52 1.67
lbm 2.31 0.50 0.93
sphinx3 3.53 3.10 3.21
gamess 0.17 0.15 0.14
calculix 0.75 0.77 0.79
cactusADM 4.46 4.34 4.21
avg of fp 1.52 1.28 1.29

Table 4.6: Cross architecture sensitivity prediction for different machines w/o clustering

Int prediction errors % FP prediction errors %
Architecture w/o w w/o w
INTEL i5 1.69 0.36 1.52 1.13
INTEL i7 2.80 1.74 2.89 1.15

INTEL Xeon 3.75 1.75 3.45 1.41
AMD A8 2.06 0.43 0.96 0.43
AMD A10 3.68 1.84 2.72 2.01
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Table 4.7: Cross architecture sensitivity prediction for different machines w/o using 3 clusters

Int prediction errors % FP prediction errors %
Program name w/o w w/o w

INTEL i5 1.69 1.13 1.52 1.28
INTEL i7 2.80 2.32 2.89 1.61

INTEL Xeon 3.75 2.80 3.45 3.01
AMD A8 2.06 1.38 0.96 0.84
AMD A10 3.68 2.78 2.72 2.52

Table 4.8: Performance degradation prediction for i5 using clustering

prediction error%
Program name gobmk libquantum h264ref bwaves
astar 0.17 1.62 1.53 3.54
bzip2 0.31 2.02 0.48 2.54
gcc 2.12 3.06 2.54 3.51
mcf 0.43 2.22 0.43 0.80
gobmk 0.17 2.25 0.34 0.17
libquantum 1.05 1.18 1.29 2.19
h264ref 0.12 0.83 0.12 0.62
hmmer 0.00 0.98 0.00 0.00
sjeng 0.45 2.02 0.45 2.50
perlbench 1.25 1.57 0.84 0.62
omnetpp 0.25 3.68 0.21 2.10
xalancbmk 1.30 5.11 0.32 1.20

Table 4.9: Performance degradation prediction for i5 using clustering

prediction error%
Program name gobmk libquantum h264ref bwaves
astar 0.46 1.57 0.42 1.47
bzip2 0.68 3.52 0.98 0.49
gcc 0.90 1.80 0.77 2.55
mcf 0.13 2.33 0.24 2.86
gobmk 0.17 2.61 0.34 1.00
libquantum 0.20 1.48 0.99 2.49
h264ref 0.19 0.83 1.02 0.12
hmmer 0.00 0.38 0.00 0.00
sjeng 0.05 3.30 0.07 1.10
perlbench 1.11 1.88 0.53 0.90
omnetpp 0.65 3.56 0.21 1.50
xalancbmk 2.30 3.31 0.32 2.11
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Table 4.10: Performance degradation prediction original versus cluster-based method

prediction error%
Program name gobmk libquantum h264ref bwaves

w/o w w/o w w/o w w/o w
astar 0.54 0.46 4.92 1.57 0.48 0.42 4.47 1.47
bzip2 1.08 0.68 10.52 3.52 1.48 0.98 1.49 0.49
gcc 0.79 0.90 7.30 1.80 1.17 0.77 8.55 2.55
mcf 0.17 0.13 13.35 2.33 0.34 0.24 5.68 2.86
gobmk 0.08 0.17 2.93 2.61 0.12 0.34 1.81 1.00
libquantum 0.35 0.20 4.75 1.48 0.58 0.99 12.10 2.49
h264ref 0.44 0.19 2.17 0.83 0.47 1.02 1.02 0.12
hmmer 0.00 0.00 0.50 0.38 0.00 0.00 0.00 0.00
sjeng 0.06 0.05 5.30 3.30 0.27 0.07 2.10 1.10
perlbench 1.81 1.11 6.38 1.88 1.33 0.53 1.61 0.90
omnetpp 0.65 0.65 15.88 3.56 0.33 0.21 3.50 1.50
xalancbmk 0.59 2.30 17.86 3.31 0.07 0.32 4.11 2.11
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Chapter 5

Performance modeling for more

than two cores

In Chapters 3 and 4, we show that by using a cross-architecture model, we can predict performance

slowdown due to contention on both source and target machines with relatively high accuracy.

Therefore we try to apply the framework onto a contention scenario of more than two participating

applications. In this chapter, we show the limitation of our previous approach and propose a new

bubble design. The newly constructed bubble can accurately simulate actual programs in terms of

memory subsystem contention behavior. Moreover, the profiling cost can be significantly reduced

while building the performance model using this new design.

5.1 Scalability issues for cross-architecture modeling

for contentions

In light of the bubble-up approach, Chapters 3 and 4 show how to transfer knowledge of a program’s

sensitivity and pressure profiled on a source machine onto a target machine using a logistic and

a polynomial model, respectively. Clustering techniques help to further improve the prediction

accuracy by dividing programs into groups such that the ones within a group share similar behavior

in terms of cache and memory contention characteristics.

The next question is how to expand the framework so that one can predict the performance

degradation in a contention scenario for more than two cores. One way is to simply apply the

same framework into a more-than-two-cores scenario. This simple approach involves reconstructing
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a program’s sensitivity by co-running it with multiple bubbles rather than a single bubble. This

also applies to the construction of the reporter’s sensitivity curve. We take three-core co-run as an

example. Suppose one needs to predict A’s slowdown when it co-runs with B and C, the following

steps need to be done:

1. Obtain A’s three core co-run sensitivity curve: co-run A with two bubbles at different pressure

scores. Originally, if the bubble pressure ranges from 1MB to 10MB, now there are 100

combinations from (1MB, 1MB) to (10MB, 10MB), as there are two co-run peers alongside A.

2. Run reporter with B and C to report a combined pressure score: co-run the reporter with

two bubbles at different pressure score to obtain the reporter’s three cores co-run sensitivity

curve. Then co-run the reporter with B and C and look up the combined pressure score in the

reporter’s sensitivity curve.

3. Predict A’s slowdown when co-run with B and C: Find A’s performance degradation (y-axis)

at the point where the pressure score (x-axis) matches the value obtained in step 2.

Note above steps are exactly the bubble-up methodology in a more than two core setting. Ad-

ditional profiling needs to be done on a target machine and a cross-architecture model needs to be

trained if one needs to predict performance degradation on that machine. We choose a small subset

of programs to verify the framework. Initial experiments show that the prediction error is still within

2-3%.

By examining the steps stated above, we find a scalability issue in the framework. The profiling

cost of sensitivity increases because of an increasing in contention pressure as the number of peers

increases. And this process needs to be done for different number of co-run peers, which ranges

from 2 to 8. Moreover, as the program co-runs with two or even more bubbles, the number on

x-axis of the sensitivity curve becomes ambiguous. The bubbles in each combination can be of

different values, thus a sensitivity curve becomes sensitivity grid, surface, or even hyper-surface.
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Preliminary experimentation shows that multiple combinations of bubble pressures result in the

same performance slowdown. To keep the sensitivity simple, we only profile a subset of those

values, for example, bubbles in the combination are of same values in each profiling run. The

performance degradation corresponding to bubble pressure of different values can only be obtained

through interpolation, which will introduce errors. The profiling of combined co-run peer pressure

is even more problematic. The SPEC CPU2006 benchmark suite contains 29 programs, there are

406 possible combinations of 2 co-run peers, and 3654 combinations of 3 co-run peers. Profiling the

29 single ones is time consuming. 406 to 3654 combinations will yield a prohibitive cost. Profiling

time doubles if we need to build the cross-architecture prediction model.

One merit of bubble-up methodology is to decouple/linearize the co-run problem into sensitivity

and pressure. Does the combined pressure of co-run programs have the linear property so that we

can decouple it? Thus in a more than two core co-run scenario, one question is if we can decouple the

combined program pressure as a simple summation. To be specific, taking the example of programs

A, B and C co-running together again and supposing that B yields 3MB pressure and C yields 4MB

when they co-run with A separately, can we directly use A’s sensitivity at 7MB pressure to predict

its slowdown? Experiments show that the prediction is way off the actual performance degradation

as even though it is possible that 7MB matches the effective cache size B and C together, these two

programs will consume memory bandwidth simultaneously and a single 7MB bubble cannot take as

much memory bandwidth as B+C do. Then the next question is can we predict using A’s sensitivity

at the position where one bubble is at 3MB and the other one is at 4MB? Unfortunately, this also

fails as the predicted slowdown is much longer than the actual one, which suggests that B and C’s

pressure changes (becoming smaller compared to bubble).

We use the performance counter while running the bubbles and actual programs in both solo-run

and co-run scenarios to examine what happened during execution. Bubbles are small kernels in
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which an array is accessed in random/sequential pattern and the size of the array can be tuned,

usually from 0 to the last level cache size. The memory bandwidth consumption is usually extremely

small as most accesses are covered by last level cache. However, the actual program often has higher

memory bandwidth consumption, and for a two-core co-run case, the actual program and bubble

reach a convergence point where their the memory bandwidth consumption and last level cache

misses match. (In more detail: the memory bandwidth consumption of the bubble increases sharply

and memory bandwidth consumption of an actual program increases or decreases slightly). It is

expected that the prediction is accurate as the bubble behaves like the real program. In three cores

co-run cases, the memory bandwidth consumption of the bubble keeps increasing and these hardware

statistics diverge again and bring in prediction errors. The starting point of a bubble and an actual

program is not matching and it is coincidence they intersect in two-core co-run case, there is no

guarantee the change of their behavior can intersect again at three or four cores co-run cases, thus

it is likely to make a wrong prediction as the number of peers increases. A better way to solve

this problem is to create a bubble that simulates the critical code segments of an actual application

so that their behavior matches no matter how many co-run peers there are in the group. In such

settings, we use a bubble with specific parameters, such as array size, accessing stride size, etc.,

to represent the actual program. Therefore, we eliminate the steps required for combined pressure

profiling while at the same time eliminates the execution alignment issue as bubble has no phase

changes and the execution time can be controlled.

5.2 Program-specific bubble design

By instrumenting application memory traces, we can identify hot sections that trigger most last

level cache hits and misses. Moreover, related cache access pattern and working set size can also be

obtained. The code segments can be extracted from the source file and put into a bubble kernel to
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represent the actual application. The kernel is expected to behave as the actual program as they

share same data structure, accessing pattern and memory footprints. Compared to the bubble-up

framework, our program-specific bubble is created off-line and can be used without measuring bubble

pressure score to match the actual one no matter if co-run peers are present or not. The overall

design is shown in Figure 5.1.

Program trace C

Program trace B

Program trace A

CPU0

Memory hierarchy

CPU1 CPU2

PIN TOOL

Cache behavior

extractor

Array size:

Stride pattern:

...

for(int i=0;i<N;i=i+4)

{}

BubbleA
deploy

BubbleC

PMU: IPC

Figure 5.1: Program-specific bubble prediction framework

Suppose we have an interest in how program A performs in terms of execution slowdown when

it co-runs with peer runners B and C. Individual programs A, B, C are then fed into the instrumen-

tation module to have their cache access behavior extracted. The module locates the critical code
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segments in the source file and copies them into the bubble kernel associated with the program-

specific access pattern. The closeness of solo run hardware statistics between an actual program and

its corresponding bubble indicates how well the match is. Oftentimes, the bubble exhibits higher

pressure and minor adjustment needs to be injected to alleviate the effect. As the program IPC is

strongly related to the execution time, we can deploy bubbles onto cores to simulate a correspond-

ing program co-run group and make prediction by monitoring IPC changes. In the next section,

we will show how to extract the hot code segments and their corresponding accessing pattern using

instrumentation tools in detail.

5.3 Identify critical code segments with

instrumentation

There are several ways to profile a program’s accessing behavior. We choose Intel’s Pin tool to fulfill

the task as it provides users with a significant amount of useful APIs which allows one to profile

a program at different granularity. It also implements the basic structure of the cache simulator

which is a core utility in understanding cache behavior. One can instantiate the cache simulator by

assigning parameters such as set associativity and size corresponding to the L1, L2 and last level

cache, and make sure that the cache replacement policy matches the actual hardware policy. The

simulator can update statistics related to all memory accesses, which reflects the runtime cache

behavior as if the program is running on actual hardware architecture.

5.3.1 Identify instruction miss/hit last level cache the most

Modern architecture usually has two to three levels of processor cache. The first one or two layers

of cache are smaller but faster and private to each core. The third layer is larger but slower and is

usually shared by all cores on the chip. One could create a cache simulator exactly matching the

actual hardware. We argue that one can just simulate the last level cache for simplicity as the shared
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cache accessing behavior is of focus. We execute all SPEC CPU2006 benchmark programs through

a simplified cache simulator following algorithm 3. Note that every program in the benchmark suite

has been re-compiled with “-ggdb” option on so that information such as the line numbers in the

source code associated with the identified hot instructions will be obtained through the debugging

tool. Previous experimental results show that programs with a higher miss rate usually exert higher

pressure toward peer runners. This implies that instructions that trigger cache misses will bring

pressure. This suggests that we should identify instructions that misses the cache most and extract

them to simulate the actual program. A hit-miss balance issue needs to be considered since the

bubble will give higher pressure than an actual program if only those last level cache sensitive access

patterns are simulated. Similar to adding water to dilute concentrated juice to make it tastier, we

might need to add top hit instructions, which access memory with good localities, so that we can
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dilute bubble pressure in order to make the hardware statistics match the actual program.

Algorithm 3: Identify instructions hit/miss cache the most
Data: Program executables and ref input

Result: top 50 instructions that trigger most last level hits/misses

initialization: create 2 hash tables, one for cache hits, one for cache misses;

the key is instruction program counter(PC) and value is the hit/miss count throughout the

execution of program;

while application running do

examine current instruction;

if Is a memory read/write then

extract memory address associated with this load/store;

run it through cache simulator;

if Is a cache hit then
hash[pc][hit]+1

else
hash[pc][miss]+1

end

else

continue;

end

end

sorting hash table by values;

output top 50 hit/miss instructions
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5.3.2 Profiling access behavior of last level related instructions

With the gdb debugging tool, we can identify the source code locations that trigger most last level

cache hits/misses. But a significant piece of information is missing as we barely have any information

about the accessing pattern of that line of code. Therefore, another round of profiling needs to be

done to tile the jigsaw puzzle. To be specific, the identified instructions are usually array or pointer

calculations across a memory chunk. Therefore, we should understand the boundary of the memory

related to that array access and how the program iterates through the array, either randomly or

sequentially.

Boundary and range: this information is easy to obtain, during the execution of a program, we

can keep track of the lowest memory address and highest memory address and calculate the range

by doing subtraction between the two. Special care needs to be taken for some cases. For example,

suppose the program is accessing multiple data chunks. Each data chunk is small enough that it

can be fit into the cache, but there can be a huge gap between chunks. This scenario is common in

programs, as those tight data chunks are allocated dynamically and indexed by pointers. Therefore,

a much larger range will be obtained than actual one if we use simple subtraction. This can be

detected by the algorithm 4 and we will explain in detail later.

Random/Sequential access pattern: we can keep track of the difference between two consecutive

accesses and create a histogram of such difference. This helps to understand the access pattern of

a memory related instruction. Moreover, the maximum/minimum difference in the histogram also

reveals the boundary of a tight memory chunk, as a program tends to access more often within each

tight data chunk than jump between memory chunks. We can filter out those “jump differences”

whose count value is smaller than a pre-defined threshold. Hardware prefetcher always monitors the

memory access pattern and will fetch data in advance if it identifies some fixed accessing pattern.

We can incorporate this idea and capture the fixed accessing pattern by recording historical data.
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To be specific, we record the last memory address and last memory difference, which is the difference

between the last memory address and the one an instruction referred to before last memory address.

We calculate the current memory address difference and compare it with the last memory difference.

If they are identical, it is highly possible that the instruction is running in a stride pattern. If

they don’t match, it means the last continuous stride sequence has ended, thus we may start a new

sequence and add the total number of sequences corresponding to the last stride value by one. With

this information, we can also obtain the average sequence length of a certain stride value by using

the total number of occurrences of that stride divided by the total number of segments corresponding

to it. This also reveals the changing pattern of the loop carried variable of the innermost loop which
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contains the instruction.
Algorithm 4: Identify accessing behavior
Data: Program executables, ref input with program counter for each identified instructions

Result: accessing range, stride information for each candidate instruction

initialization:

while application running do

if instruction PC matches one of the candidates then

extract memory address associated with this load/store;

update mem_max and mem_min if neccessary

; if (current_mem-last_mem == last_diff) then
stridemap[diff].cnt++;

stridemap[diff].curseg_cnt++;

else

if stridemap[last_diff].curseg_cnt< threshold then
randommap[last_diff]+=stridemap[last_diff].curseg_cnt;

stridemap[last_diff].cnt -= stridemap[last_diff].curseg_cnt;

stridemap[last_diff].curseg_cnt=0;

else
stridemap[last_diff].curseg_cnt=0;

stridemap[last_diff].seg++;

randommap[diff]++;

end

end

else

continue;

end

end
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Note in algorithm 4, two hash tables are used for recording the histogram for stride and random

access patterns. For the random access hash table, key is memory difference, and value is the count.

For the stride access hash table, key is stride and value is a structure including: count (cnt), which

is the total number of occurrences of a specific stride access, segments (seg), and current segment

count (curseg_cnt), which is the total number of consecutive accesses corresponding to a specific

stride value in the current segment.

5.4 Bubble creation using instrumentation results

Following the steps mentioned in algorithm 3 and 4, we profile every program in SPEC CPU2006

benchmark suite using Pin. In Chapter 3, we show that prediction error is high if the co-run group

contains certain programs, such as libquantum, lbm, etc. In this section, we pick four of them

and show their accessing pattern and how we generate program-specific bubbles out of the profiling

result.

5.4.1 case study: soplex

450.soplex is based on SoPlex Version 1.2.1. SoPlex solves a linear program using the Simplex

algorithm. Linear program is to maximize/minimize an object function with several constraint

conditions as the following linear algebra form.

minimize CTX

subject to AX ≤ b

with X > 0
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where X is the vector that needs to be solved for, constraints are expressed in the form of

multiplication of a sparse matrix A and a vector X.

The solution of finding vector X is straightforward. As the constraints define the searching space

where we can only find the minimum objective function value within the area (inclusive). In fact,

the area is a convex polygon, the optimal value is usually located at a vertex of the polygon. The

algorithm iteratively finds an updating direction through which the objective function gains the

most, moves toward to one vertex each time and keeps finding the next candidate direction until no

candidate direction is possible. Due to the nature of this problem, the matrix usually is a sparse

one.

450.soplex has two reference inputs and we take the second input as our case study example.

The program accepts the input and transforms it into linear algebra form. We feed the program

into Pin and identify that code section in Listing 5.1 has either top last level cache hit count or top

last level cache miss count.

Listing 5.1: critical code in soplex

// s s v e c t o r . cc

SSVector& SSVector : : a s s i gn2produc tFu l l ( const SVSet& A, const SSVector& x)

{

. . .

for ( i=x . s i z e ( ) ; i−− >0; ++xi )

{

svec = const_cast<SVector∗>(& A[∗ x i ] ) ;

elem = &(svec−>element ( 0 ) ) ;

l a s t = elem + svec−>s i z e ( ) ;

y = v l [∗ x i ] ;
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for ( ; elem < l a s t ; ++elem )

v [ elem −> idx ] +=y ∗ elem−>val ; //985

}

. . .

}

Line 985 is one of the hot instructions, located in ssvector.cc. From the name of the function

containing that instruction we can guess this function calculates multiplication of matrix A with

vector X. Each time a row from A is picked as svec. And the inner loop iterates through that row

and calculates the result of the multiplication. As the matrix is a sparse one, to save space, the

representation of a row in such matrix is a dense but much shorter array, with each element recording

the value and index corresponding to the sparse one, elem->idx stores the position information

and elem->val is the actual value at corresponding position. The Pin tool finds three assembly

instructions out of this code section as two loads and one store, which are reads to elem->val,

elem->idx and stores of v[elem->idx]. Let’s examine the access pattern of these three instructions.

elem->idx and elem->val’s accessing range is 128MB and the stride is 16 byte long. elem is a

structure that only contain two members, idx and val, each member is an 8-byte long variable. We

can clearly see from listing 5.1 that the accessing of elem is purely sequential.

v[elem->idx] accessing range is 7.3 MB. The accessing pattern is a mixture of sequential access

of 8 byte for each stride (65% of time during execution) and random access. Array v is a Real

type array, which is a double type that is 8-bytes long. Thus the memory difference of 8 indicates a

sequential access pattern, and other memory difference suggests the array is accessed with a stride of

several elements. The matrix A’s size is 2586*920683. A simple calculation of 920683*8 = 7365464

(byte) shows that v’s size is identical to the size of a single row in A. The fact that average stride

96



CHAPTER 5. PERFORMANCE MODELING FOR MORE THAN TWO CORES

sequence length of v is much smaller than A’s column size also indicates the sparsity of A.

Listing 5.2: critical code in soplex

// s v e c t o r . h

Real operator ∗( const Vector& w) const

{

Real x=0;

int n = s i z e ( ) ;

Element∗ e = m_elem ;

while (n−−)

{

x += e−>val ∗ w[ e−>idx ] ; //295

e++;

}

return x ;

}

Similar to the previous code segment analysis, line 295 is identified as a hot instruction, which

is located at svector.h file. The access range of e is 142MB and range of w is 20680 bytes. The

function overloads the operator “*” for vector multiplication. Throughout the execution, the piece

of code iterates through the sparse matrix, the resulting access range is similar to the previous code

segment. The access pattern is sequential access with a 16-byte-long stride as e shares the same

structure with elem. w is an array whose length is the same as the row size of A as 2586*8 = 20688

(bytes). The accessing pattern of w is a mixture of sequential access of 8-bytes (20%) and random

access (80%) with majority ranging from 8-bytes to 104-bytes. Array v is a Real type array, which
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is actually a double type of 8 bytes long. Thus, the memory difference of 8 indicates a sequential

access pattern, and an accessing range from 8 to 104 bytes suggests the array is accessed mostly

within a stride ranging from one element to 13 elements. Function assign2productFull in soplex

is identified as a pathological region in [122]. This is consistent with our Pin tool result.

5.4.2 case study: libquantum

462.libquantum is a C library simulating quantum computer. The program exhibits significant

high pressure to other peer runner and due to the limited capability of bubble used in two-core cross

architecture prediction framework. The slowdown prediction for co-run groups including libquan-

tum usually yields large error. We run this program through Pin to understand run-time cache

behavior, which will be described in listing 5.3.

Listing 5.3: critical code in libquantum

// ga te . c

void quantum_tof fo l i ( int contro l1 , int contro l2 , int target , quantum_reg ∗ reg )

{

. . .

for ( i =0; i<reg−>s i z e ; i++)

{

i f ( reg−>node [ i ] . s t a t e & ( (MAX_UNSIGNED) 1 << cont ro l 1 ) )

{

i f ( reg−>node [ i ] . s t a t e & ( (MAX_UNSIGNED) 1 << cont ro l 2 ) )

{

reg−>node [ i ] . s t a t e ^=((MAX_UNSIGNED) 1 << ta rg e t ) ;

}
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}

}

. . .

}

Listing 5.4: critical code in libquantum

// ga te . c

void quantum_sigma_x( int target , quantum_reg ∗ reg )

{

. . .

for ( i =0; i<reg−>s i z e ; i++)

{

reg−>node [ i ] . s t a t e ^=((MAX_UNSIGNED) 1 << ta rg e t ) ;

}

. . .

}

These two pieces of code are identified by our Pin tool and located in gate.c. These code segments

stand out not only because of their high last level hit/miss count, but also their high execution

frequency, which shows at least 10x more than other hot instructions. We identify this section as

the critical part of the program. Interestingly, the structure of libquantum is one of the simplest

one as the access range is 64MB and access pattern is sequential access of 16-bytes long, which can

be confirmed by inspecting the source code directly. reg->node points to an array with each element
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being a structure, the structure only contains two fields, a floating point variable “amplitude” of

8-byte long and an unsigned long long type variable “state” of 8-byte long, a sequential access of

such array will have a stride of 16-byte long.

5.4.3 case study: lbm

470.lbm is another program which gives high contention pressure and results in the worst prediction

accuracy. It implements the lattice boltzmann method to simulate fluid dynamics.

Listing 5.5: critical code in lbm

void LBM_performStreamCollide ( LBM_Grid srcGrid , LBM_Grid dstGrid ) {

. . .

SWEEP_START( 0 , 0 , 0 , 0 , 0 , SIZE_Z )

. . .

u2 = 1 .5 f ∗ ( ux∗ux + uy∗uy + uz∗uz ) ;

DST_C( dstGrid ) = (1 . 0 f−OMEGA)∗SRC_C( srcGr id ) + DFL1∗OMEGA∗ rho ∗ ( 1 . 0 f− u2 ) ;

. . .

SWEEP_END

}

In fact, multiple lines of code in this LBM_performStreamCollide function are identified as hot

instructions. The program makes extensive use of macros and it is hard to understand them without

knowing their definitions. We track these macros and in general, the program performs calculation

within a 3D grid, with its size equal to 100*100*130. Every point in this grid has 20 directions.

The program simulates particle movement and it involves with two grids, one serves as source and

the other one serves as destination and these two grids are flipped in each iteration. The for loop

iterates through every point in the grid sequentially. However, due to additional calculations to the
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index in source and destination array, within each iteration, the source grid has both good temporal

and spatial locality while the destination grid have bad locality.

We attempt to create the corresponding bubble by copying the source to destination assignment

block in the for loop and give explicit index to these two arrays. However, this results in a bubble

with extremely low IPC compare to the actual lbm itself. We then adopt all the macro definition in

the original header file and copy the content in listing 5.5, the bubble yields very close imitation in

terms of hardware statistics. These macros generate a large of computing instructions which yield

a high IPC.

5.4.4 case study: mcf

429.mcf is derived from MCF, which is a program used for the simulation of a single-depot vehicle

scheduling problem in a public mass transportation setting.

Listing 5.6: critical code in mcf

// mc f u t i l . c

#ifde f _PROTO_

long r e f r e s h_po t en t i a l ( network_t ∗net )

#else

long r e f r e s h_po t en t i a l ( net )

network_t ∗net ;

#endif

{

node_t ∗node , ∗tmp ;

node_t ∗ root = net−>nodes ;

long checksum = 0 ;
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root−>po t en t i a l = ( cost_t ) −MAX_ART_COST;

tmp = node = root−>ch i l d ;

while ( node != root )

{

while ( node )

{

i f ( node−>or i e n t a t i o n == UP )

node−>po t en t i a l = node−>basic_arc−>cos t +

node−>pred−>po t en t i a l ; //86

else /∗ == DOWN ∗/

{

node−>po t en t i a l = node−>pred−>po t en t i a l −

node−>basic_arc−>cos t ;

checksum++;

}

tmp = node ;

node = node−>ch i l d ;

}

node = tmp ;
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while ( node−>pred )

{

tmp = node−>s i b l i n g ;

i f ( tmp )

{

node = tmp ;

break ;

}

else

node = node−>pred ;

}

}

return checksum ;

}

The instruction that triggers most last level cache misses is located at line 86 in mcfutil.c file. The

single-depot vehicle scheduling problem is expressed as tree nodes and arcs connecting them. The

function traverses the entire tree structure and updates potential for each node. MCF uses an n-

nary tree where each node can have multiple children rather than two. Therefore, it uses a left-child,

right-sibling implementation to construct the tree, where the left child node is current node’s very

first child and the right child node is the sibling of current node. Even though the allocation of all

nodes is done at the initialization stage and are within continuously memory chunk, the connectivity

of the tree structure changes over time thus the traversal usually can be considered as a random

access.
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Our Pin tool finds that the memory access pattern associated with this instruction is random,

but the memory difference is of a multiple of 104 bytes and the access range is 5228496 bytes. 104

bytes is the structure size of a single node and based on input file, and there are 25137 nodes. For

calculation purpose, the program doubles the node numbers and 25137*2*104 = 5228496 bytes.

The program also involves arc calculation. The program allocates an array of arc structure (64

bytes) at the initialization stage with an upper-bound of 0x1a1000L total arcs. 0x1a10000L ∗ 64 ≈

1.75GB, which is consistent with the footprint size during execution.

Listing 5.7: Critical code in mcf

//pbeampp . c

#ifde f _PROTO_

arc_t ∗primal_bea_mpp( long m, arc_t ∗ arcs , arc_t ∗ stop_arcs ,

cost_t ∗ red_cost_of_bea )

#else

arc_t ∗primal_bea_mpp( m, arcs , stop_arcs , red_cost_of_bea )

long m;

arc_t ∗ a r c s ;

arc_t ∗ stop_arcs ;

cost_t ∗ red_cost_of_bea ;

#endif

{

. . .

NEXT:

/∗ p r i c e next group ∗/
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arc = arc s + group_pos ;

for ( ; arc < stop_arcs ; arc += nr_group )

{

i f ( arc−>ident > BASIC )

{

red_cost = arc−>cos t − arc−>ta i l−>po t en t i a l +

arc−>head−>po t en t i a l ;

. . .

}

}

}

The calculation with red_cost involves several assembly instructions. Pin tool finds that the

accessing range is 1.75GB and accessing pattern is stride access as 90% of the access is a stride of

5830144 byte. By examining the source code, we find that a total number of 0x1a1000L arcs are

divided into groups and each group contains 300 arcs. The variable nr_group is equal to 0x1a1000L

divided by 300. And the value of nr_group multiplies 64 bytes yields 5830144 bytes. With the Pin

tool result, we don’t have to go into details of source file and just create a stride access bubble to

simulate such hot block.

SPEC CPU2006 benchmark programs are analyzed using Yoo et al. [122] approach and patho-

logical code segments are identified. The functions replace_weaker_arc and refresh_potential in

mcf are identified as pathological regions: the first one is array access- or memory-intensive and

the second one is linked-list last level cache intensive. This is consistent with our PIN analysis

result, as there are a significant number of nodes are allocated and organized in a tree structure,

and the function refresh_potential traverses the tree and updates tree node values, which is a
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linked-list style access pattern. The number of nodes multiplies the size of each node is close to last

level cache size, which makes it a last level cache intensive. Moreover, there are a huge number of

arcs created between those nodes and it occupies up to 1.75GB memory space, which makes the

replace_weaker_arc a memory intensive pathological region.

5.5 Evaluation for performance prediction using new

bubbles

Ideally, the bubble is a perfect matching in every aspect and can be used alternatively with the

actual applications without changing the overall cache accessing behavior of a co-run group. Thus,

the performance prediction can be done by co-running all representative bubbles together and ob-

serving IPC changes. The merit of this design is it extremely reduces the prediction overhead to a

constant time, whereas profiling the actual program takes a much longer time, and the cost grows

exponentially with the number of participating peers. Nevertheless, a significant portion of source

code in an actual program is trimmed out in our bubble kernel, and there might exist discrepancies

for the bubble in simulating the actual one except for cache/memory-related behavior. As we can-

not guarantee other metrics such as IPC changes at the same pace with the actual program’s IPC

changes, using bubbles alone might bring prediction error.

Therefore, in the remaining section, we conduct the experiment using the below steps.

1. Create the program-specific bubbles using Pin.

2. Randomly pick programs from clusters to form co-run groups.

3. Run actual programs together to record performance degradation.

4. Pick corresponding bubbles and co-run them together to predict performance based on IPC

changes, and compare with the result generated in step 3.
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5. Keep one actual program, co-run it with bubbles that represent other programs within the

group, and record the actual program’s slowdown. Compare it with the result generated in

both step 3 and step 4.

There are 29 programs in the SPEC2006 benchmark suite. To verify our framework for a more

than two-core scenario, let’s first examine how many combinations there are for a possible co-run

group. There are
(
29
2

)
= 406 possibilities for two-core co-run,

(
29
3

)
= 3654 possibilities for three-core

co-run , and
(
29
4

)
= 23751 possibilities for four-core co-run cases. The number of combinations

sharply increases as the number of co-run peers increases. Moreover, most programs exhibit phase

behavior and they give higher pressure in one or more phases and give lower pressure in other phases.

To guarantee the accuracy of the profiled co-run performance degradation result, all the programs in

a group should be run at least once to prevent a biased pressure. As the execution times of programs

are not aligned perfectly, some of the programs need to be run multiple times and this extends the

profiling times even longer. Due to these limitations, we can only pick a subset of the combinations

to verify our framework.

We use clustering to identify representative co-run groups. The 29 benchmark programs are

clustered in groups based on three distance metrics. As we are using newly designed bubbles,

it might be meaningless if we use logistic function parameters of the sensitivity curves of those

programs as the clustering criterion. In contrast, we can make use of performance counters and

categorize programs as cache-benign ones or aggressive ones based on hardware statistics. We still

use the k-means algorithm and set k to be the optimal number and randomly pick one program

from those candidate clusters. Therefore, for a five-cluster separation, we can have 10 combinations

for a three core co-run group or five combinations for a four core co-run group. To create even more

combination, and we can pick more than one program from a cluster. For extreme cases, we can

pick everything from just one cluster, which might generate special cases whose group pressure is
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extremely small or high.

We program the performance counter to monitor hardware events L3_LAT_CACHE.MISS,

L3_LAT_CACHE.MISS, OFF_CORE_RESPONSE_0 and INST_RETIRED.ANY_P, which pro-

vide us with the metric for memory bandwidth consumption and cache access behavior. The statistics

for all SPEC CPU2006 benchmark solo executions on an Intel i7-920 machine are shown in Table 5.1.

The values shown in the table are the average count of the corresponding event for every two seconds.

Table 5.1: SPECCPU06 benchmark programs solo execution hardware statistics for Intel i7

Program MBW miss ratio (%) miss rate IPS
astar 8.92 ∗ 106 10.40 0.0036 4.4 ∗ 109

bzip2 1.06 ∗ 106 1.71 0.0001 7.39 ∗ 109

gcc 3.88 ∗ 107 27.30 0.006 5.51 ∗ 109

gobmk 4.58 ∗ 106 27.70 0.0006 5.84 ∗ 109

mcf 6.33 ∗ 107 40.40 0.038 1.69 ∗ 109

hmmer 0.25 ∗ 106 1.27 0.000005 5.87 ∗ 109

h264ref 0.35 ∗ 106 2.25 0.000027 8.47 ∗ 109

libquantum 1.40 ∗ 108 94.00 0.0039 5.77 ∗ 109

omnetpp 4.59 ∗ 107 45.70 0.013 3.11 ∗ 109

perlbench 3.41 ∗ 106 17.00 0.00025 8.98 ∗ 109

sjeng 2.71 ∗ 106 44.00 0.00039 6.90 ∗ 109

xalancbmk 2.37 ∗ 107 27.00 0.0031 7.48 ∗ 109

bwaves 6.52 ∗ 107 64.00 0.0021 6.39 ∗ 109

gamess 0.034 ∗ 106 1.05 0.0000025 9.87 ∗ 109

milc 1.31 ∗ 108 97.00 0.016 4.90 ∗ 109

zeusmp 2.66 ∗ 107 64.00 0.0021 5.88 ∗ 109

gromacs 0.55 ∗ 106 1.54 0.000033 6.07 ∗ 109

cactusADM 1.10 ∗ 107 56.60 0.003 3.83 ∗ 109

leslie3d 7.77 ∗ 107 60.20 0.003 6.28 ∗ 109

namd 0.53 ∗ 106 18.00 0.000017 8.18 ∗ 109

dealII 2.04 ∗ 107 35.50 0.00064 7.78 ∗ 109

soplex 1.06 ∗ 108 43.00 0.0075 4.68 ∗ 109

povray 0.016 ∗ 106 0.67 0.0000025 7.27 ∗ 109

calculix 1.89 ∗ 106 25.00 0.0000426 9.77 ∗ 109

GemsFDTD 7.55 ∗ 107 57.00 0.0054 4.58 ∗ 109

tonto 2.61 ∗ 106 2.59 0.0001 8.00 ∗ 109

lbm 1.18 ∗ 108 34.80 0.0026 6.5 ∗ 109

sphinx3 1.04 ∗ 107 7.84 0.00055 8.47 ∗ 109

We use the memory bandwidth consumption (MBW), cache miss ratio and cache miss rate as

the criterion for program clustering. MBW not only reflects how many main memory accesses are
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due to last level cache misses but also shows the prefetcher behavior, which is strongly related to

fixed stride accessing patterns. Cache miss ratio reflects the locality of a program and cache miss

rate also reveals how many memory related instructions are there and hit/miss ratios per unit time.

The data is three dimensional and scaled using the raw value divided by the difference between

maximum value and minimum value from each corresponding dimension. The clustering results are

listed in Table 5.2. There are five clustering groups in total.

Table 5.2: Clustering of programs based on hardware statistics

Cluster No. Programs

1 libquantum, milc

2 gcc, omnetpp, xalan, zeusmp, dealII

3 mcf, bwaves, leslie3d, GemsFDTD

4 soplex, lbm

5 perlbench, bzip2, gobmk, hmmer,

sjeng, h264ref, astar,gamess, gromacs,

namd,tonto, povray, sphinx3, calculix,cactusADM

libquantum and milc are grouped together in a cluster as they both have over 90% last level

cache misses and high memory bandwidth consumption. We previously show the hot sections in

libquantum and the hot section in milc is shown in listing 5.8 (both libquantum and milc are

implemented in C).

Listing 5.8: critical code in milc

//s_m_a_mat. c

for ( i =0; i <3; i++){

for ( j =0; j <3; j++){
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c−>e [ i ] [ j ] . r e a l = a−>e [ i ] [ j ] . r e a l+ s ∗b−>e [ i ] [ j ] . r e a l ;

c−>e [ i ] [ j ] . imag = a−>e [ i ] [ j ] . imag+ s ∗b−>e [ i ] [ j ] . imag ;

}

}

Listing 5.8 is a code segment in s_m_a_mat.c, identified as the hot section by our Pin tool. The

accessing array is much smaller than libquantum, and the program has good locality as it accesses

the array sequentially. The similar hot section is also identified as the su3_projector function in

su3_proj.c, which executes complex number calculations in a sequential manner. Moreover, the

function uses three pointers a, b and c as inputs. And the function is called inside a loop, iterating

all possible a, b, c in a sequential pattern and those possible objects are allocated as a continuous

memory chunk. The only difference is that milc is accessing multiple arrays and that might be the

reason it has four times as many the last level cache misses per instructions as does libquantum.

459.GemsFDTD solves the Maxwell equations in 3D in the time domain using the finite-

difference time-domain (FDTD) method. The code is written in FORTRAN. Two sections of code

in update.F90 stand out as they trigger the most last level cache misses. The access range is around

92MB and over 95% of the memory accesses follow a stride of 8 bytes long.

Listing 5.9: critical code in GemsFDTD

do k=1,nz

do j =1,ny

do i =1,nx

Hx( i , j , k ) = Hx( i , j , k )+((Ey( i , j , k+1)−Ey( i , j , k ) )∗Cbdz)

+(Ez( i , j , k)−Ez( i , j +1,k ) )∗Cbdy)
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Hy( i , j , k ) = Hy( i , j , k )+((Ez( i +1, j , k)−Ez( i , j , k ) )∗Cbdx)

+(Ex( i , j , k)−Ex( i , j , k+1))∗Cbdz)

Hz( i , j , k ) = Hz( i , j , k )+((Ex( i , j +1,k)−Ex( i , j , k ) )∗Cbdy)

+(Ey( i , j , k)−Ey( i +1, j , k ) )∗Cbdx)

end do

end do

end do

Listing 5.10: critical code in GemsFDTD

do k=2,nz

do j =2,ny

do i =2,nx

Ex( i , j , k ) = Ex( i , j , k )+((Hz( i , j , k)−Hz( i , j −1,k ) )∗Dbdz)

+(Hy( i , j , k−1)−Hy( i , j , k ) )∗Dbdy)

Ey( i , j , k ) = Ey( i , j , k )+((Ez( i , j , k)−Ez( i , j , k−1))∗Dbdx)

+(Ex( i −1, j , k)−Ex( i , j , k ) )∗Dbdz)

Ez( i , j , k ) = Ez( i , j , k )+((Ex( i , j , k)−Ex( i −1, j , k ) )∗Dbdy)

+(Ey( i , j −1,k)−Ey( i +1, j , k ) )∗Dbdx)

end do

end do

end do
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437.leslie3d is a FORTRAN code for Computational Fluid Dynamic in 3D space. It shares a lot

in common with GemsFDTD. leslied3d source code is implemented in a single file named tml.f.

The code segment located at line 1640 in the source file is identified as the hot section by our Pin

tool.

Listing 5.11: critical code in Leslie3d

// tml . f

DO L=1,5

DO K=K1,K2

DO j=J1 , J2

DO I=I1 , I2

I I = I + IADD

IBD = I I − IBDD

ICD = I I + IBDD

QAV( I , J ,K,L) = R6I ∗ ( 2 . 0D0 ∗ Q(IBD , J ,K,L ,N) +

5 .0D0 ∗ Q( II , J ,K,L ,N) −

Q(ICD, J ,K,L ,N)

END DO

END DO

END DO

The differences between IBD, II and ICD are always one. Therefore, the piece of code is sequential

access with good locality. The Pin tool identifies that the code accessing behavior is fairly regular,

as over 95% accesses are of a stride of 8 bytes. The access range is approximately 12.4MB, thus the

last level cache cannot cover the entire array. Therefore, the memory bandwidth consumption will

112



CHAPTER 5. PERFORMANCE MODELING FOR MORE THAN TWO CORES

contain a great proportion coming from hardware prefetch and main memory access due to the last

level cache misses.

A similar behavior is also shown in block_solver.f in bwaves’s source code. bwaves is a floating-

point benchmark which is doing Computational Fluid Dynamics in 3D space. The calculation

involves nine arrays with good locality inside a five-level nested loop. Therefore, it is reasonable that

bwaves, leslie3d andGemsFDTD are categorized into the same cluster. Note thatGemsFDTD,

leslie3d, bwaves are all written in FORTRAN, which takes column-major array layout. We find

those codes have good locality by examining the loop structure of the source code.

Listing 5.12: critical code in bwaves

// b lock_so lver . f

do k=1,nz

km1=mod(k+nz−2,nz)+1

kp1=mod(k , nz)+1

do j =1,ny

jm1=mod( j+ny−2,ny)+1

jp1=mod( j , ny)+1

do i =1,nx

im1=mod( i+nx−2,nx)+1

ip1=mod( i , nx)+1

do l =1,nb

y ( l , i , j , k )=0.0D0

do m=1,nb

y ( l , i , j , k)=y( l , i , j , k)+

axp ( l ,m, i , j , k )∗x (m, ip1 , j , k)+
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ayp ( l ,m, i , j , k )∗x (m, i , jp1 , k)+

azp ( l ,m, i , j , k )∗x (m, i , j , kp1)+

axm( l ,m, i , j , k )∗x (m, im1 , j , k)+

aym( l ,m, i , j , k )∗x (m, i , jm1 , k)+

azm( l ,m, i , j , k )∗x (m, i , j , k1 )

end do

end do

end do

end do

end do

Cluster five has 14 programs and previous experiments show that those programs have less

contention power compared with others. We examine several programs using Pin, trying to explain

why they are “cache-polite” ones.

416.gamess is a floating-point benchmark program doing quantum chemical computation. It is

a sequential version of the parallel program GAMESS, which is written in FORTRAN programming

language. There are three reference inputs and we feed them into the Pin tool and identify similar

hot sections/instructions. Line 3433 in int2a.fppized.f generates one of the hot instructions. The

code is calculating the index of an array GHONDO and assigning the corresponding position with

value 0. The access range is 10360 bytes and the access pattern is random, but the difference is

always a multiple of 8-bytes. From this information we can imply that each element in that array

is 8-bytes long and even though the access pattern is random, the size of the array can fit into

the L1/L2 private cache and will result in lower last level cache miss ratio. Due to the random

access pattern, the hardware prefetcher cannot capture any fixed pattern, thus the program will

have relatively low memory bandwidth consumption.
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Listing 5.13: critical code in gamess

// in t2a . fpp i z ed . f

DO 260 I = MINI ,MAXI

IF (IANDJ) JMAX = I

DO 240 J = MINJ,JMAX

IJN = IJN+1

N1 = IJGT( IJN)

LMAX = MAXL

KLN = 0

DO 220 K = MINK,MAXK

IF (KANDL) LMAX = K

DO 200 L = MINL,LMAX

KLN = KLN+1

IF (SAME .AND. KLN .GT. IJN) GO TO 240

NN = N1+KLGT(KLN)

GHONDO(NN) = ZERO//3433

200 CONTINUE

220 CONTINUE

240 CONTINUE

260 CONTINUE

454.calculix is a finite element code for linear and nonlinear 3D structural applications written

in a mixture of C and FORTRAN programming languages.

Listing 5.14: critical code in calculix
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. . .

//Uti l i t ies_DV . c

f o r ( i =0; i<n ; i++){

r e g i s t e r double r0 i , r1 i , r2 i , c0 i , c1 i , c 2 i ;

r 0 i = row0 [ i ] ; r 1 i = row1 [ i ] ; r 2 i = row2 [ i ] ; //1245

c0 i = co l 0 [ i ] ; c 1 i = co l 1 [ i ] ; c 2 i = co l 2 [ i ] ;

s00 += r 0 i ∗ c 0 i ; s01 += r 0 i ∗ c 1 i ; s02 += r 0 i ∗ c 2 i ;

s10 += r 1 i ∗ c 0 i ; s11 += r 1 i ∗ c 1 i ; s12 += r 1 i ∗ c 2 i ;

s20 += r 2 i ∗ c 0 i ; s21 += r 2 i ∗ c 1 i ; s22 += r 2 i ∗ c 2 i ;

}

. . .

The miss ratio corresponding to Listing 5.14 is below 1% due to good locality. However, the absolute

count of last level cache misses stands out compare to other sections because the code has been

executed quite frequently during the execution of the program. It involves a significant portion of

scaler operations and this may result in high IPC for this particular benchmark program. The access

range is around 106MB. However, each tight memory chunk is only 4792 bytes long, and over 97%

of its execution is a stride pattern equal to 8-bytes. This is consistent with the fact that row0, row1,

row2, col0, col1, col2 are defined as double type arrays.

464.h264ref is C implementation of H.264 protocol, which is the compression standard for

Advanced Video Coding (AVC). The program itself exerts little pressure to co-run peers, and the

PMU readings show that this program has lower value in both memory bandwidth consumption

and last level cache misses. The entries for instruction trigger most last level cache misses obtained

from Pin have very small numbers, suggesting that the program either has good locality or is a
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CPU-bound application rather than a memory-bound one. Thus we only examine instructions that

trigger most last level cache hits, as these instructions also contribute to most last cache misses due

to a large execution count base. These instructions are at lines 419, 985, and 1093 in mv-search.c.

Listing 5.15: critical code in h264ref

. . .

// l i n e 419 in mv−search . c

r e f p t r = PelYline_11 ( re f_pic , abs_y++, abs_x , img_height , img_width ) ;

. . .

f o r ( pos=0; pos<max_pos ; pos++, block_sad++)

{

i f (∗ block_sad < min_mcost ) // l i n e 985

{

. . .

}

}

. . .

f o r (dd=d [ k=0] ; k<16;dd=d[++k ] ) / / l i n e 1093

{

satd ==(dd < 0 ? −dd : dd ) ;

}

PelYline_11 is a function pointer pointing to 2 functions FastLine16Y_11 and UMVLine16Y_11,

which are defined in file refbuf.c. The assembly corresponding to line 419 is callq ∗ 0x240d76(%rip),

and the stride difference only has two values of equal count number, suggesting that both functions
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are evenly called throughout the execution. The remaining two hot instructions are of a regular

4-byte-long stride access pattern (over 99% execution) with an overall accessing range of less than

1MB. This is consistent with syntax as block_sad and d are integer type arrays where each element

in the array is 4-bytes long.

458.sjeng is an AI program that plays chess using game tree search and pattern recognition

techniques. The program only has one reference input. We feed it into PIN and obtain the following

results. Line 500 in neval.c is identified as a hot instruction and evalRoutines[] is a pointer pointing

to different functions. piecet(i) is the parameter evalRoutines accepts to determine whether the

current piece is a king, queen, rook, bishop, knight or a pawn. The access range is actually scattered

and the access pattern is random. The rest of the hot instructions in the benchmark are accessing

memory chunks less than 100MB with a random access pattern. Therefore, compared to gamess,

it has higher last level cache miss ratio, and since there is no stride access pattern, the prefetcher

won’t work either, therefore, the memory bandwidth consumption is higher than gamess due to

higher last level cache misses.

Listing 5.16: critical code in sjeng

// neval . c

f o r ( j = 1 , a = 1 ; ( a <= piece_count ) ; j++) {

i = p i e c e s [ j ] ; / / 494

i f ( ! i )

cont inue ;

e l s e

a++;

s co r e += (∗ ( eva lRout ines [ p i e c e t ( i ) ] ) ) ( i , p i e c e s i d e ( i ) ) ; / /500

. . .
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445.gobmk is another AI program playing the game “GO”. The Pin tool identifies lines 2172

through 2174 in file engine/board.c as hot instructions.

Listing 5.17: critical code in gobmk

//board . c

i n t

cha i n l i nk s 2 ( i n t s t r , i n t adj [MAXCHAIN] , i n t l i b )

{

s t r u c t str ing_data ∗ s , ∗ t ;

i n t k ;

i n t ne ighbors ;

ASSERT1(IS_STONE( board [ s t r ] ) , s t r ) ;

/∗ We already have the l i s t ready , j u s t copy the s t r i n g s with the

∗ r i g h t number o f l i b e r t i e s .

∗/

ne ighbors = 0 ;

s = &s t r i n g [ string_number [ s t r ] ] ;

f o r ( k = 0 ; k < s−>neighbors ; k++) { //2172

t = &s t r i n g [ s−>ne i g h b o r l i s t [ k ] ] ; //2173

i f ( t−>l i b e r t i e s == l i b ) //2174

adj [ ne ighbors++] = t−>o r i g i n ;

}

re turn ne ighbors ;
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}

The assembly code corresponding to these three lines of code are as follows.

l i n e 2172 : cmp %eax , 0 x60(% r s i )

l i n e 2173 : movslq 0x64(%r s i ,%rcx ,4) ,% rax

l i n e 2174 : cmp %ebx , 0 xc(%rax )

The access range of these three instructions are 43896 bytes, 43904 bytes, and 46128 bytes,

respectively. The indirect accessing behavior makes the access pattern a random one. To be specific,

line 2173’s access pattern is random, but with a multiple of 4-bytes, this is consistent with the

assembly code movslq 0x64(%rsi,%rcx, 4),%rax, where the offset is %rcx multiplied by 4. Line

2174 is a random but with a multiple of 744-bytes, suggesting that string_data type t is a structure

744 bytes long once allocated. The array size of gobmk is small and the accessing pattern is random,

making the program run with low memory bandwidth consumption and last level cache miss ratio,

which is consistent with our PMU result.

482.sphinx3 is a C implementation of a speech recognition system. Hot sections are identified

at lines 653 to 654 in cont_mgau.c and line 523 in vector.c file.

Listing 5.18: critical code in sphinx3

//cont_mgau . c

. . .

f o r ( i =0; i<vec l en ; i++){

d i f f 1 = x [ i ] − m1[ i ] ;

dval1 −= d i f f 1 ∗ d i f f 1 ∗ v1 [ i ] ;

}

. . .
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Listing 5.19: critical code in sphinx3

// vec to r . c

. . .

f o r ( i =0; i<vec l en ; i++){

d i f f 1 = x [ i ] − m1[ i ] ;

dval1 −= d i f f 1 ∗ d i f f 1 ∗ v1 [ i ] ;

d i f f 2 = x [ i ] − m2[ i ] ;

dval2 −= d i f f 1 ∗ d i f f 1 ∗ v2 [ i ] ;

}

. . .

Source code in Listing 5.18 and Listing 5.19 are very similar, array m1, m2 as well as v1, v2 are

always in one element of difference within each loop iteration. Therefore, the second piece of code

is an unrolled version of the first one with a factor of 2. Pin shows that the accessing pattern is

stride equals 4-bytes long and the accessing range is 7.4MB and 1.2MB, respectively. Even though

second code segment is an unrolled version of the first one, these two pieces of code do not operate

on the same memory space. Due to the good locality and large working set size, the program will

have significant memory bandwidth consumption but low last level cache misses, which is consistent

with PMU statistics.

401.bzip2 is a compression program. It has six reference inputs. Though the memory foot-

prints of those inputs range from 100MB to over 800MB, the Pin tool in general yields similar hot

section/instruction results.

Listing 5.20: critical code in bzip2

b l o ck s o r t . c
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f o r ( ; i >= 3 ; i −= 4) {

quadrant [ i ] = 0 ;

j = ( j >> 8) | ( ( ( UInt16 ) block [ i ] ) << 8 ) ;

f t ab [ j ]++;

quadrant [ i −1] = 0;//825

j = ( j >> 8) | ( ( ( UInt16 ) block [ i −1]) << 8 ) ;

f t ab [ j ]++;

quadrant [ i −2] = 0 ;

j = ( j >> 8) | ( ( ( UInt16 ) block [ i −2]) << 8 ) ;

f t ab [ j ]++;

quadrant [ i −3] = 0 ;

j = ( j >> 8) | ( ( ( UInt16 ) block [ i −3]) << 8 ) ;

f t ab [ j ]++;

}

Line 825 in blocksort.c is identified as hot instruction. The difference between the maximum

memory address and the minimum memory address is 1.1GB. However, the program iterates multiple

tight memory chunks and this results in a much smaller memory accessing range. The accessing

pattern is stride access equal to 8 bytes long. This is consistent with program implementations as the

“quadrant” array is UInt16, which is a 2 bytes long data type and the implementation in Listing 5.20

is a loop unrolling with a factor of 4, therefore, the stride is 2*4 = 8 bytes.

Listing 5.21: critical code in bzip2

b l o ck s o r t . c

f o r ( ; i >= 3 ; i −= 4) {
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s = ( s >> 8) | ( b lock [ i ] << 8 ) ;

j = f tab [ s ] −1;

f tab [ s ] = j ;

ptr [ j ] = i ;

s = ( s >> 8) | ( b lock [ i −1] << 8 ) ;

j = f tab [ s ] −1;

f tab [ s ] = j ;

ptr [ j ] = i −1;//862 UInt32∗ ptr ,

s = ( s >> 8) | ( b lock [ i −2] << 8 ) ;

j = f tab [ s ] −1;

f tab [ s ] = j ;

ptr [ j ] = i −2;//866 UInt32∗ f t ab s

s = ( s >> 8) | ( b lock [ i −3] << 8 ) ;

j = f tab [ s ] −1;

f tab [ s ] = j ;

ptr [ j ] = i −3;

}

Lines 862, 866 are similar code sections identified by the Pin tool. Our Pin tool finds that the

tight memory chunk size is 0.3MB. The accessing pattern is random access. In the implementation

of bzip2, the program divides the memory into blocks. There are 256 blocks, each block has 256

elements, and each element (ptr array) is a UInt32, which is a 4 bytes long data type. Therefore,

the total accessing range for a tight memory chunk is 256*256*4 = 262144 bytes, which is close to

0.3MB.

473.astar is an AI game for path finding. It has two reference inputs: BigLakes and rivers.
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Listing 5.22: critical code in astar

RegMng . cpp

i32 regmngobj : : g e t r e g f i l l num ( )

{

i32 i ;

r e g f i l l num++;

i f ( r e g f i l l num==1024∗1024∗1024)

r e g f i l l num=1;

f o r ( i =0; i<rarp . elemqu ; i++)

rarp [ i ]−>f i l l num =0;//490

return r e g f i l l num ;

}

Line 490 in the file RegMng.cpp is identified as a hot instruction. The corresponding assembly code

is movl$0x0, 0x20(%rax). The code stores value 0 to the corresponding memory locations. 0x20 is

the offset of the field “fillnum” and %rax holds the memory location of rarp[i]. The accessing range

is 245MB and the accessing pattern is random with a multiple of 112 bytes. Over 30% of random

access is of a multiple of 2192 bytes, suggesting the program iterates an array of a structure that is

2192 bytes long. This pattern is identified for both reference inputs, which suggests that 2192 is a

fixed program-dependent allocation size.

Similar code is identified at line 8 in RegWay_.cpp. The corresponding assembly loads the value
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in memory location 0x20(%rdx) to a register %eax. The accessing range is also 245MB with the

same minimum and maximum memory addresses and the access pattern is random with a multiple

of 2192 bytes. This suggests the object regionp is identical to rarp[i] in the previous code example.

Listing 5.23: critical code in astar

//RegWay_. cpp

bool regwayobj : : isaddtobound ( regob jpt i n i t i a l r e g i o n p ,

r egob jpt reg ionp )// l i n e 8

{

i f ( regionp−>f i l l num==reg f i l l num )

return f a l s e ;

// i n s e r t add i t i o na l game l o g i c here

re turn true ;

}

astar is calculating distance between a source point to a target point in a 2D grid. For each point

it accesses, the program examines all 8 neighbors surrounding it. Related code is identified by our Pin

tool such as line 187 in file RegBounds_.cpp. The assembly code is cmpq $0x0, (%rdx, %rax, 8),

which compares the value in a memory location with 0. The offset is %rax multiply 8, suggesting the

stride is 8 bytes long. The Pin tool identifies a total size of 580MB accessing range and a mixture of

stride and random patterns with a multiple of 8 bytes (over 60% of overall execution), and a random

pattern of 16368 bytes (over 20% of overall execution). The program actually runs on a grid map of

2048*2048 points, where each row contains 2048 points and each point is represented as a structure

of 8 bytes long. The difference between a point and its neighbors located at the previous row is
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roughly 2048*8 = 16384, which confirms the Pin result.

Listing 5.24: critical code in astar

//RegBounds_ . cpp

void regboundobj : : makebound2 ( boundart& b1arp , boundart& b2arp )

{

i32 j ;

i 32 x , y ;

i 32 x1 , y1 , x2 , y2 ;

b2arp . c l e a r ( ) ;

f o r ( j =0; j<b1arp . elemqu ; j++)

{

x1=b1arp [ j ] . x−1;

y1=b1arp [ j ] . y−1;

x2=b1arp [ j ] . x+1;

y2=b1arp [ j ] . y+1;

i f ( x1<0) x1=0;

i f ( y1<0) y1=0;

i f ( x2>mapmaxx) x2=mapmaxx ;

i f ( y2>mapmaxy) y2=mapmaxy ;
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f o r ( y=y1 ; y<=y2 ; y++)

f o r ( x=x1 ; x<=x2 ; x++)

i f ( regmapp (x , y)==n i l )//187

addtobound ( b2arp , x , y ) ;

}

}

The accessing range of astar is greater than the cache size (8MB) and there is a mixture of stride

and random accessing patterns. This makes astar run with higher memory bandwidth consumption

and last level cache misses.

403.gcc is a program derived from GCC version 3.2. It runs a compiler and analyzes source code

inputs. There are 9 reference inputs. The code segment in Listing 5.25 (line 175 in file sbitmap.c)

is identified by the Pin tool as a hot section. sbitmap is a data type supported in gcc to represent

sets. sbitmap_union_of_diff function is built to manipulate those sets.

Listing 5.25: critical code in gcc

// sbitmap . c

i n t sbitmap_union_of_diff ( dst , a , b , c )

sbitmap dst , a , b , c ;

{

unsigned i n t i ;

sbitmap_ptr dstp , ap , bp , cp ;

i n t changed = 0 ;
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f o r ( dstp = dst−>elms , ap = a−>elms , bp = b−>elms , cp = c−>elms , i = 0 ;

i < dst−>s i z e ; i++, dstp++)

{

SBITMAP_ELT_TYPE tmp = ∗ap++ | (∗bp++ & ~∗cp++);// sbitmap175

i f (∗ dstp != tmp)//177

{

changed = 1 ;

∗dstp = tmp ;

}

}

return changed ;

}

The accessing range is scattered, which suggests that there are multiple tight memory chunks. The

Pin tool suggests each tight memory chunk is only 1032 bytes long and the access pattern is 8-byte

stride for the most of the execution time.

483.xalancbmk is a XSLT processor for transforming XML documents into HTML, text, or

other XML document types. It extensively makes use of C++’s standard template library algorithms,

as lines 208, 212, 216 and 220 of the stl_algo.h file are identified as hot section by our Pin tool. The

accessing pattern follows a stride of 32 bytes, which is consistent with the syntax, as the program

tries to find a value in an array in an unrolled manner. There are four look-ups executed in each

iteration and each element is 8 bytes long. Therefore, the next access is 8*4, which is 32 bytes in

difference. The piece of code operates on a memory space of 346MB. Based on the Pin tool result,

each tight memory chunk is at most 32160 bytes long.
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Listing 5.26: critical code in Xalancbmk

// f i l e s t l_a lgo . h

. . .

template <c l a s s _RandomAccessIter , c l a s s _Tp>

_RandomAccessIter f i nd (_RandomAccessIter __first ,

_RandomAccessIter __last ,

const _Tp & __val ,

random_access_iterator_tag )

{

typename i t e r a t o r_ t r a i t s <_RandomAccessIter >: : d i f f e r ence_type

__trip_count = (__last − __first ) >> 2 ;

f o r ( ; __trip_count > 0 ; −−__trip_count ) {

i f (∗ __first == __val ) re turn __first ;//208

++__first ;

i f (∗ __first == __val ) re turn __first ;//212

++__first ;

i f (∗ __first == __val ) re turn __first ;//216

++__first ;

i f (∗ __first == __val ) re turn __first ;//220

++__first ;
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}

switch (__last − __first ) {

case 3 :

i f (∗ __first == __val ) re turn __first ;

++__first ;

case 2 :

i f (∗ __first == __val ) re turn __first ;

++__first ;

case 1 :

i f (∗ __first == __val ) re turn __first ;

++__first ;

case 0 :

d e f au l t :

r e turn __last ;

}

}

. . .

Moreover, as the program is doing string operations for the most of the time, a function “StringLen”

is called multiple times at line 1584 of the file XMLString.hpp. The access pattern is a stride of 2

bytes, which is consistent with the syntax as the program keeps accessing a memory chunk at the

pace of a Wide-Char, which is 2 bytes long, until it hits a null to obtain the string length. The

piece of code operates on a memory space of 325MB. Based on the Pin tool result, both the “find”

function and “StringLen” function in stl_algo.h work on the same memory chunks, the latter one
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accesses 21MB less memory.

Listing 5.27: critical code in Xalancbmk

// f i l e XMLString . hpp

. . .

i n l i n e unsigned i n t XMLString : : s t r ingLen ( const XMLCh∗ const s r c )

{

i f ( s r c == 0 | | ∗ s r c == 0)

{

return 0 ;

}

e l s e

{

const XMLCh∗ pszTmp = s r c + 1 ;

whi l e (∗pszTmp) //1584

++pszTmp ;

re turn ( unsigned i n t ) ( pszTmp − s r c ) ;

}

}

. . .

447.dealII is a C++ program that solves partial differential equations using the adaptive finite

element method. The hot sections triggering the most last level cache hits or misses are located

at line 353 of sparse_matrix.templates.h, line 92 and line 116 of dof_constraints.cc and line 515 of
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mapping_q1.cc.

Listing 5.28: critical code in dealII

// f i l e sparse_matrix . template . h

. . .

f o r ( unsigned i n t row=0; r<n_rows ; ++row )

{

typename OutVector : : value_type s = 0 . ;

const number ∗ const val_end_of_row = &val [ co l s−>rowstar t [ row+1 ] ] ;

whi l e ( val_ptr != val_end_of_row )

s += ∗val_ptr++ ∗ s r c (∗ column_ptr++) // l i n e 353

∗dst_ptr ++ =s ;

}

. . .

It is clear that the code in Listing 5.28 is doing vector multiplication for a sparse matrix, as a

similar pattern is also seen in the benchmark soplex. In line 353, there are three memory accesses,

which are val_ptr, column_ptr and src(*column_ptr). The accessing patterns for the first two are

fairly regular, which are 4-bytes and 8-bytes long, and accessing range is scattered. By dividing

the number of stride accesses that are is to either 4 bytes or 8 bytes by the number of continuous

segments, we find that the maximum tight memory chunk is 22MB and 44MB, respectively. The

access of src array is indirect an access through column_ptr and the pattern is a mixture of stride

and random but at a multiple of 8 bytes, suggesting the element size is 8 bytes.

Line 92 in dof_constraints.cc files is also identified as a hot instruction with frequent last level

cache hits, where an array is accessed sequentially and each element is compared with the value in

a register. The access pattern is a regular stride access of 32 bytes, suggesting each element in the
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“lines” array is a structure of 32 bytes long.

Listing 5.29: critical code in dealII

// do f_cons t ra in t s . cc

. . .

f o r ( unsigned i n t i =0; i != l i n e s . s i z e ();++ i )

{

i f ( l i n e s [ i ] . l i n e == l i n e )

re turn ;

}

. . .

The third hot section is located at line 515 in mapping_q1.cc. A significant portion of the dealII

is executing this piece of code with only a few last level cache misses. The Pin tool shows that the

accessing range is only 6864 bytes long and most access strides are equal to 0, suggesting that the

program reuses array elements frequently. The array index corresponding to the innermost loop is

j, therefore, the value for data.mapping_support_points[k][i] will not change for that loop.

Listing 5.30: critical code in dealII

//mapping_q1 . cc

. . .

f o r ( unsigned i n t po int =0; point<n_q_points ; ++point )

f o r ( unsigned k=0; k<data . n_shape_functions ; ++k)

f o r ( unsigned i n t i =0; i<dim ; i++)

f o r ( unsigned i n t j =0; j<dim ; j++)

data . cont rava r i an t [ po int ] [ i ] [ j ]
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+= ( data . d e r i v a t i v e ( po int+data_set , k ) [ j ]

∗

data . mapping_support_points [ k ] [ i ] ) ; / / l i n e 515

. . .

With accessing patterns gathered by the Pin tool, we could design program-specific bubbles as

follows. In the very beginning, arrays or other data structures such as tree are declared with program

specific sizes. Array elements or tree nodes are initialized with random values instead of 0. The

value does not have to be exactly the same or even close to the actual program, what we really care

about is the access pattern. We copy all hot sections into a while loop so that the kernel will run

long enough to cope with co-run profiling. We make sure the ratio between stride access and random

access matches the actual application as well as the stride value by manipulating the loop carried

variables in a for loop. We find that by integrating sections that contribute 75% overall cache misses

among top 50 cache misses instructions and partial instructions collected from top 50 hit will yield a

bubble whose PMU reading matches the actual program. Occasionally the bubble will exert a higher

pressure as it may have higher bandwidth consumption and cache miss ratio, and we can adjust the

ratio between most misses part and most hits part, and make sure the PMU reading between the

actual application and its corresponding bubble are as close as possible. Certainly, the bubble

with a lower discrepancy in PMU statistics is expected to have better representativeness. In this

dissertation, not every SPEC CPU2006 benchmark has its own bubble. We don’t create bubbles for

omnetpp and xalancbmk. The hot sections identified by our Pin tool for these programs happen

to be function calls in the source code, in addition, top misses instructions are too scattered to form

a tight bubble. Thus further study needs to be done for such cases, but due to the time limits, we

leave it to future work.
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5.5.1 Prediction using bubbles alone

With new bubbles developed, we replace the actual programs in a co-run group with bubbles and

run them together to predict slowdown by examining the IPS changes and we compare prediction

results with the execution times when actual programs co-run together.

As mentioned above, a significant number of code segments has been pruned out and only those

last level cache sensitive instructions are preserved in our bubbles. The new kernel should perform

exactly the same as the actual program in terms of cache access behavior, but there is no guarantee

that other metrics such as IPC match exactly the same. Since we predict by observing IPC changes of

the bubble, it is likely that errors could be introduced. Therefore, in this section, we use the actual

co-run execution time of a program in a group divided by its solo run time as the baseline, and

compare both prediction results using (1) purely bubble kernels and (2) actual program slowdown

time when it co-runs with bubbles which represent the rest of members in a co-run group divided

by the program solo run time. In Table 5.3, we show the actual programs’ name in each row, and

the first one in each group serves as the program of interest. For each column, we will use bubbles,

actual+bubbles to represent prediction using (1) and prediction using (2) respectively. The baseline

is the scaled co-run execution time of ‘program of interest’ versus its solo-run execution time.

In Table 5.3, the programs of interest are libquantum and lbm, respectively. As we use different

bubbles to represent actual programs, each of them could bring in error. For simplicity, other than

the program of interest, we use n = 1, 2, 3 copies of a single program for the co-run peers in the group.

We co-run libquantum bubble with other bubbles. On one hand, when actual libquantum co-

run with other bubbles, its slowdown matches the slowdown when we replace all bubbles by the

actual programs (baseline case) within 2-3%. This demonstrates that bubbles can closely imitate

programs in the group. One the other hand, prediction results obtained by examining bubble’s IPC

changes also match the baseline, with maximum error at 5.67%, showing the capability of make
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Table 5.3: Prediction using bubbles only vs program+bubbles

Relative prediction error(%)
Program A + co-run peers Bubble only Program A + bubbles
lib + 1x lib 0.65 0.82
lib + 2x lib 0.87 1.01
lib + 3x lib 1.57 2.29
lib + 1x lbm 5.67 1.95
lib + 2x lbm 3.01 2.41
lib + 3x lbm 2.82 1.79
lib + 3x astar 1.26 0.89
lib + 3x bzip2 1.61 1.66
lib + 3x gcc 2.61 0.22
lib + astar + bzip2 1.72 0.91
lbm + 1x lib 7.59 2.27
lbm + 2x lib 4.58 1.32
lbm + 3x lib 4.10 1.01
lbm + 1x lbm 2.20 2.46
lbm + 2x lbm 4.03 2.04
lbm + 3x lbm 1.80 1.79

contention prediction using pure bubbles alone. The case for lbm also yields accurate prediction

results. The maximum prediction error is 7.59% using pure bubbles as opposed to 2.27% using a

mixture of actual lbm and other bubbles in the group. We find that compared to lbm, the bubble

for libquantum is of better match in terms of IPC changes. We examine more programs in the

Table 5.4.

As shown in Table 5.4, the prediction accuracy is still within 2-3% using a mixture of an actual

program and several bubbles together. However, predictions made by monitoring the bubble’s IPC

perform poorly for some cases shown in Table 5.4. The maximum prediction error is as high as 17%

compared to the baseline result. It shows that the bubbles, as the co-run peers, can provide similar

contention power as actual programs do, but their IPC changes are not accurate.

5.5.2 Prediction with a mixture of bubbles and an actual program

As is shown in Table 5.3 and Table 5.4, predictions using pure bubbles can cause significant error

whereas prediction using an actual application with bubbles together has consistently high prediction
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Table 5.4: Prediction using bubbles only vs program+bubbles (continue)

Relative prediction error(%)
Program A + co-run peers Bubbles only Program A + bubbles
astar + 1x lib 3.17 2.70
astar + 2x lib 1.99 2.15
astar + 3x lib 0.60 0.71
astar + 1x lbm 3.05 3.29
astar + 2x lbm 0 0.91
astar + 3x lbm 2.48 2.66
bzip2 + 1x lib 6.50 2.68
bzip2 + 2x lib 16.46 3.60
bzip2 + 3x lib 10.93 2.48
bzip2 + 1x lbm 11.02 2.36
bzip2 + 2x lbm 4.35 2.86
bzip2 + 3x lbm 12.99 3.39
mcf + 1x lib 3.82 1.65
mcf + 2x lib 9.51 1.64
mcf + 3x lib 3.60 1.60
mcf + 3x astar 12.70 0.50
mcf + 3x bzip2 17.60 2.36
soplex + 1x lbm 4.09 1.25
soplex + 2x lbm 2.23 0.89
soplex + 3x lbm 3.18 1.55
soplex + 1x lib 9.90 2.77
soplex + 2x lib 5.50 0.31
soplex + 3x lib 2.60 0.79

accuracy. Therefore, we adopt the second prediction scheme and show detailed prediction results in

this section.

Table 5.5 shows the relative prediction errors for SPEC CPU2006 running with four different co-

run groups. The first co-run group includes libquantum and lbm which come from cluster one and

cluster four respectively. Note that we divide the SPEC CPU2006 into five clusters. The average for

cluster one, whose members are libquantm and milc, is 3.88% and milc has the highest prediction

error which is 6.54%. Cluster two has programs gcc, omnetpp, xalancbmk, zeusmp and dealII

and the average is 1.55%. Cluster three has programs mcf,bwaves,leslie3d and GemsFDTD, the

average is 4.17%. Cluster four has soplex and lbm, its average prediction error is 1.41%. The rest

of the programs are from cluster five and the average is 0.79%.
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We increase the number of co-run peers by adding bzip2 into the first co-run group to form

a four-core co-run scenario. The average prediction error for all five clusters are below 2%. The

highest prediction error also comes from program milc, which is 3.36%. We also form a four-core

group by co-running SPEC CPU2006 with three lbms. The average prediction error is below 2%

and the highest prediction error is 3.88% from GemsFDTD.

We choose soplex from cluster four and use two instances to co-run with SPEC CPU2006. The

average prediction errors for each cluster are 3.33%, 2.65%, 1.59%, 1.59% and 1.18%, respectively.

The highest prediction error comes from program gcc, which is 5.70%.

Table 5.6 shows the result for SPEC CPU2006 co-run with two gccs. The reference run of

actual gcc has nine inputs thus it has roughly nine phases. Ideally, we should create a bubble that

represents these nine phases. However, we only use one critical code segment to create the micro-

kernel as its PMU statistics match the average statistics of actual gcc program. It turns out that

the bubble can represent the program very well. The average prediction error for five clusters are

all below 1.41%. The highest prediction error comes from sphinx3, which is 4.63%.

We further examine how the number of program-specific bubbles will affect prediction ability. In

Table 5.7, a subset of programs libquantum, zeusmp, astar, xalancbmk are co-run with one gcc

bubble, two gcc bubbles and three gcc bubbles, respectively. As for the old bubbles, whose kernel

array ranges from 1 to 10MB, the error will be accumulated as the number of bubbles increases,

our new bubble won’t suffer from the issue as it can change its pressure as the actual program does

when co-run peers accumulate.

We create a bubble for mcf, whose working set is the largest among all SPEC CPU2006 bench-

mark programs, which is approximately 1.75GB. As discussed above, the critical code segment in

this benchmark is a tree traversal associated with node and arc structures. The connectivity of

nodes and arcs are dynamically changed. In our bubble implementation, we preserve the post-order
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tree traversal, and we adjust the tree structure at initialization stage by tuning the proportion be-

tween the children and the siblings while keeping the total number of tree nodes fixed. We verify

the capability of this bubble by co-running two mcf instances with SPEC CPU2006 together. The

result is shown in Table 5.8. The average prediction errors are 1.26%, 3.73%, 0.86%, 3.00% and

1.05% for five clusters respectively. The highest prediction error comes from program xalancbmk,

which is 6.89%.

Considering a very interesting phenomenon, our previous bubble construction follows the bubble-

up methodology. We create stream or random access bubble whose array size ranges from 1 to 10 MB.

Suppose for a two-core co-run case, we obtain mcf ’s pressure score which equals 5MB. Experimental

result suggests that in a three-core co-run scenario, where, to be more specific, two instances of mcf

co-run with other programs, the mcf ’s pressure is decreasing. This means that we should use the

same bubble but decrease its array size. The PMU reading of the solo-run bubble doesn’t match

the actual program and it converges with the actual program in a two-core co-run case and once

again diverges in three-core co-run cases. However, in this new bubble design, the bubble’s PMU

statistics matches the actual program in all cases. For example, libquantum finishes in 985s when

it co-runs with mcf and the prediction using bubble is 987s. libquantum finishes in 1210 seconds

while co-run with two mcf, while the bubble result predicts as 1200 seconds. zeusmp finishes in

726s when it co-runs with mcf and bubble predicts as 734s, while zeusmp finishes in 814s when

it co-runs with two mcf, the bubble result predicts as 823s. These results suggest no adjustment

should be made from two cores to three cores and the bubble acts exactly the same as the actual

program, as it ‘stretches’ as the real mcf does, which means the pressure changes accordingly.

Table 5.9 shows the prediction results for SPEC CPU2006 when these programs co-run with two

instances of bzip2 and three instances of bzip2 respectively. The average prediction error for both

groups are below 1.5%. The largest prediction error is 4.62%, in which case, an instance of dealII
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co-runs with two bzip2.

Table 5.10 shows the prediction results for SPEC CPU2006 when these programs co-run with

two instances of astar and three instances of astar respectively. The average prediction error for

both groups are below 1.50%. We can observe an trend that whenever number of astar increases,

the prediction error accumulates, but within a fairly small range. And most prediction error comes

from soplex and lbm. Those two programs come from cluster four, whose pressure power is the

highest, mostly from memory bandwidth consumption. Our astar bubble’s PMU statistic is lower

than actual one. Therefore, it exerts fewer contention power and that’s why our predicted slowdown

is lower than actual one, which brings in errors.

Table 5.11 shows the prediction results for SPEC CPU2006 co-run with astar+gcc andmcf+gcc

respectively. The prediction error are below 1.5% for both groups, suggesting that the simulation of

gcc, mcf as well as astar are fairly accurate. Similar result also show in Table 5.12, where SPEC

CPU2006 co-run with sphinx3+dealII.

Table 5.13 shows the prediction results for SPEC CPU2006 co-run with two instances of sphinx3

and sphinx3+namd respectively. They are all three-core co-run cases. The standard deviation

is small as most program’s prediction error is close to average. However, we can observe that

gcc, xalan, mcf all have relatively larger prediction error. Both sphinx3 and namd are from

cluster five, whose contention power is small as programs in that group all have small memory

bandwidth consumption and last level cache misses. The PMU statistic for sphinx3 bubble solo

execution has relative large gap with actual one compared to others. As it’s memory bandwidth

consumption is higher than the actual one. Therefore, for those memory-bounded applications such

asmcf, xalancbmk, etc., they experience much more pressure than the actual sphinx3 can exhibit.

Therefore the prediction gives higher performance slowdown values.

Table 5.14 shows prediction result for another three-core co-run case. Both program leslie3d

140



CHAPTER 5. PERFORMANCE MODELING FOR MORE THAN TWO CORES

and GemsFDTD comes from cluster three. We co-run them with SPEC CPU2006 benchmarks.

The prediction errors are 2.14%, 1.50%, 3.24%, 1.39% and 1.27% for the five clusters, respectively,

and the highest prediction error comes from leslie3d, which is 5.98%.

Table 5.15 shows two groups of four-core co-run prediction result. SPEC CPU2006 is co-run with

libquantum, gcc, namd, which are from cluster one, two, five, bwaves, sjeng, soplex, which are

from cluster three, five, four, respectively. The average prediction errors are below 2%. We examine

the results cluster by cluster and find that the prediction for cluster four are 3.76% and 4.94%

respectively. The highest prediction error comes from xalancbmk, which is 7.58%. We observe

that the highest prediction across various co-run groups are from milc, gcc, lbm, xalancbmk.

This is also true in our two-core cross-architecture settings, which suggest that it is more difficult

to make accurate prediction for those programs than others.

To sum up, the tables listed in this section show the experimental results for predicting application

slowdown for more than two core co-run cases using program specific bubbles. The highest co-run

performance prediction error is 7.58%, and the average prediction accuracy is around 97%. Note all

experimental results for more than two core co-run cases are only collected on a single machine due

to time limits. We have not applied the cross-architecture model to this scenario. We argue it is

not necessary to use the cross-architecture framework as we eliminate the sensitivity and pressure

measurement processes. The newly designed bubble should behave similarly to the actual application

even when it is executed on a machine with different hardware configurations. We assume that

the hot sections which trigger most last level cache hits and misses should stay the same if no

major changes have been made to the architecture on which the application is running. However,

appropriate modification in our Pin tool needs to be made to match the actual architecture as newer

cache replacement policies are recently proposed [50, 112, 57, 48] as opposed to the LRU policy which

is implemented in our cache simulator. Therefore hot sections need to be re-collected and bubbles
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need to be re-created in order to make predictions on such architecture. We leave the verification

on newer architectures to future work.

142



CHAPTER 5. PERFORMANCE MODELING FOR MORE THAN TWO CORES

Table 5.5: Performance degradation prediction using specific bubbles for more than two cores co-run
scenario

Relative prediction error(%)
Program lbm + lib lbm + lib+bzip2 3x lbm 2x soplex
perlbench 0.72 2.27 1.83 0.37
bzip2 1.96 2.78 1.74 0.11
gcc 1.15 1.22 2.61 5.70
mcf 5.61 0.79 2.56 1.47
gobmk 0.15 0.43 1.69 0.60
hmmer 0 0.97 0.95 0.49
sjeng 2.19 0.76 0.80 0.52
libquantum 1.22 0.49 1.79 3.01
h264ref 1.23 1.29 1.08 0.46
omnetpp 1.04 1.03 0.62 5.00
astar 0 2.30 3.48 3.06
xalan 1.89 1.87 2.79 0.21
Geometric mean 1.43 1.35 1.83 1.24
bwaves 4.34 0 1.22 2.76
gamess 0 1.71 0 0
milc 6.54 3.36 2.56 3.64
zeusmp 1.41 1.34 2.23 0.24
gromacs 0.85 0.83 1.11 0.56
cactusADM 0.53 2.24 0.49 1.68
leslie3d 2.07 0.65 1.02 5.27
namd 0.34 0.51 1.34 0.34
dealII 2.28 1.30 0.42 2.09
soplex 1.25 1.70 1.55 0.95
povray 1.05 1.37 0.68 0.69
calculix 0.55 0.27 0.52 0.28
GemsFDTD 4.66 0.61 3.88 1.91
tonto 1.98 0 0.84 0
lbm 1.57 0.63 0 2.21
sphinx3 1.23 0.52 0.82 0.71
Geometric mean 2.04 1.07 1.17 1.46
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Table 5.6: Performance degradation prediction using gcc bubble for three-core co-run scenario

Relative prediction error(%)
Program 2x gcc
perlbench 0.20
bzip2 0.42
gcc 3.22
mcf 1.78
gobmk 1.29
hmmer 0
sjeng 0.57
libquantum 0.12
h264ref 0.73
omnetpp 1.45
astar 0.31
xalan 0.79
Geometric mean 0.91
bwaves 0.82
gamess 0
milc 0.96
zeusmp 0.67
gromacs 0.44
cactusADM 0.61
leslie3d 2.02
namd 0.17
dealII 0.39
soplex 0
povray 0.36
calculix 0.58
GemsFDTD 1.00
tonto 0.88
lbm 0.24
sphinx3 4.63
Geometric mean 0.86

Table 5.7: Performance degradation prediction using gcc bubble for 2/3/4 core co-run scenario

Relative prediction error(%)
Program 1x gcc 2x gcc 3x gcc
libquantum 0.27 0.12 0.22
zeusmp 0.71 0.67 0.64
astar 0.65 0.31 0.86
xalan 0.88 0.79 0.73
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Table 5.8: Performance degradation prediction using mcf bubble for 3 core co-run scenario

Relative prediction error(%)
Program 2x mcf
perlbench 0.20
bzip2 6.12
gcc 4.83
mcf 0.86
gobmk 0.16
hmmer 0
sjeng 0.57
libquantum 0.83
h264ref 0.73
omnetpp 4.69
astar 1.25
xalan 6.89
Geometric mean 2.26
bwaves 0.81
gamess 0.90
milc 1.69
zeusmp 1.11
gromacs 0.15
cactusADM 0.62
leslie3d 0.74
namd 0.17
dealII 1.15
soplex 5.73
povray 0.72
calculix 0.58
GemsFDTD 1.02
tonto 1.00
lbm 0.27
sphinx3 2.56
Geometric mean 1.20
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Table 5.9: Performance degradation prediction using bzip2 bubble for 3/4 core co-run scenario

Relative prediction error(%)
Program 2x bzip2 3x bzip2
perlbench 0.61 0.60
bzip2 3.17 1.11
gcc 0.45 1.85
mcf 0.39 2.36
gobmk 0.33 0.33
hmmer 0.99 0
sjeng 0.73 0.58
libquantum 0.91 1.66
h264ref 0.88 0.86
omnetpp 1.58 0.64
astar 1.60 0.94
xalan 1.16 1.09
Geometric mean 1.07 1.00
bwaves 0.85 2.50
gamess 0 0
milc 0.38 2.25
zeusmp 0.14 1.11
gromacs 0 0.30
cactusADM 1.26 0.62
leslie3d 1.09 2.33
namd 0.17 0
dealII 1.17 4.62
soplex 2.16 0.78
povray 0.36 0.36
calculix 0 0.58
GemsFDTD 1.59 1.42
tonto 1.54 3.83
lbm 0.67 0.72
sphinx3 0.49 0.23
Geometric mean 0.70 1.35
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Table 5.10: Program performance degradation prediction using astar bubble for 3/4 core co-run
scenario

Relative prediction error(%)
Program 2x astar 3x astar
perlbench 0.60 2.42
bzip2 1.43 0.55
gcc 2.18 1.26
mcf 0.38 0.50
gobmk 0.66 1.63
hmmer 0 0.98
sjeng 0.86 1.71
libquantum 1.36 0.89
h264ref 0 1.47
omnetpp 0 0.59
astar 0.48 2.20
xalan 1.68 3.20
Geometric mean 0.72 1.46
bwaves 1.68 1.60
gamess 0 0.90
milc 0.87 1.65
zeusmp 0.42 0.68
gromacs 0.15 0.29
cactusADM 0.62 1.23
leslie3d 1.84 1.15
namd 0 0.87
dealII 0.39 1.14
soplex 3.10 1.21
povray 0.36 1.79
calculix 0.58 1.16
GemsFDTD 1.41 0.93
tonto 0.26 0.25
lbm 1.78 3.42
sphinx3 1.48 0.89
Geometric mean 0.97 1.20
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Table 5.11: Performance degradation prediction using program specific bubbles for three-core co-run
scenario

Relative prediction error(%)
Program astar+gcc mcf+gcc
perlbench 0.20 0.40
bzip2 0.71 1.74
gcc 1.10 0.19
mcf 0.76 0.48
gobmk 0.33 0.63
hmmer 0 0.98
sjeng 0.29 0.14
libquantum 0.87 0.44
h264ref 0.25 0.59
omnetpp 0.64 0.88
astar 1.28 0.73
xalan 1.11 0.47
Geometric mean 0.63 0.64
bwaves 0 1.14
gamess 0 0.88
milc 1.08 1.51
zeusmp 1.67 0.66
gromacs 0.45 0.73
cactusADM 0.62 0.90
leslie3d 1.07 1.86
namd 0.17 0.69
dealII 0.39 0.74
soplex 1.32 0.65
povray 0.72 1.05
calculix 0 0.57
GemsFDTD 0.24 2.13
tonto 1.16 1.46
lbm 2.01 3.72
sphinx3 0.59 2.44
Geometric mean 0.72 1.32
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Table 5.12: Performance degradation prediction using sphinx3 and dealII bubbles for 3 core co-run
scenario

Relative prediction error(%)
Program sphinx3 + dealII
perlbench 2.24
bzip2 0.56
gcc 2.39
mcf 1.52
gobmk 1.82
hmmer 0
sjeng 1.30
libquantum 2.48
h264ref 1.72
omnetpp 1.29
astar 0.94
xalan 3.28
Geometric mean 1.63
bwaves 3.39
gamess 1.82
milc 3.33
zeusmp 0.98
gromacs 0.44
cactusADM 2.52
leslie3d 2.12
namd 0.17
dealII 2.31
soplex 1.06
povray 1.07
calculix 0
GemsFDTD 3.13
tonto 2.54
lbm 1.54
sphinx3 2.11
Geometric mean 1.86
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Table 5.13: Performance degradation prediction using sphinx3 and namd bubbles for three-core
co-run scenario

Relative prediction error(%)
Program 2x sphinx3 sphinx3 + namd
perlbench 0.79 2.67
bzip2 2.56 2.03
gcc 3.31 3.86
mcf 3.63 2.95
gobmk 1.64 2.36
hmmer 0.99 0
sjeng 1.12 0.29
libquantum 1.16 1.83
h264ref 0.96 0.99
omnetpp 1.89 3.08
astar 2.75 1.92
xalan 3.55 3.72
Geometric mean 2.03 2.14
bwaves 0.80 1.42
gamess 0.91 0.88
milc 0.58 2.40
zeusmp 2.35 3.09
gromacs 0.74 1.89
cactusADM 3.12 2.40
leslie3d 2.33 2.90
namd 0.52 0.86
dealII 2.12 3.61
soplex 3.45 2.33
povray 1.08 1.06
calculix 1.16 1.14
GemsFDTD 2.93 2.46
tonto 1.80 1.94
lbm 1.19 0.95
sphinx3 2.33 0.90
Geometric mean 1.71 1.89

150



CHAPTER 5. PERFORMANCE MODELING FOR MORE THAN TWO CORES

Table 5.14: Performance degradation prediction using leslie3d and GemsFDTD bubbles for three-
core co-run scenario

Relative prediction error(%)
Program leslie3d + GemsFDTD
perlbench 1.13
bzip2 1.83
gcc 0.65
mcf 1.83
gobmk 1.52
hmmer 0
sjeng 0.81
libquantum 2.06
h264ref 1.95
omnetpp 2.96
astar 2.32
xalan 0.81
Geometric mean 1.49
bwaves 2.32
gamess 0
milc 2.22
zeusmp 1.35
gromacs 1.01
cactusADM 1.11
leslie3d 5.98
namd 0.34
dealII 1.74
soplex 0.31
povray 0.35
calculix 1.98
GemsFDTD 2.83
tonto 1.80
lbm 2.46
sphinx3 2.86
Geometric mean 1.79
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Table 5.15: Performance degradation prediction using specific bubbles for four-core co-run scenario

Relative prediction error(%)
Program lib+gcc+namd bwaves+sjeng+soplex
perlbench 1.28 1.95
bzip2 3.28 1.38
gcc 2.47 2.56
mcf 0.46 1.32
gobmk 0.91 1.73
hmmer 0 0
sjeng 2.06 1.97
libquantum 2.11 0.88
h264ref 0.80 0.29
omnetpp 0.44 1.43
astar 0.65 2.62
xalan 2.97 7.58
Geometric mean 1.29 1.98
bwaves 1.88 1.54
gamess 0.87 1.75
milc 1.31 3.23
zeusmp 0.69 1.91
gromacs 1.14 1.74
cactusADM 0.27 0.87
leslie3d 0 0.76
namd 0.85 1.03
dealII 1.29 1.38
soplex 1.32 2.82
povray 0.35 1.75
calculix 0 1.14
GemsFDTD 2.52 2.75
tonto 0.22 0.23
lbm 6.19 7.07
sphinx3 2.88 0.43
Geometric mean 1.36 1.90

152



Chapter 6

Conclusion

From the perspective of resource utilization and power consumption, one should schedule as many

workloads as possible onto available cores. However, competition for shared resources among those

co-running applications results in performance degradation. A smart scheduling scheme not only

keeps the system from low utilization but also guarantees applications’ QoS requirement. This

dissertation proposes a framework that provides cloud providers and system administrators a way to

predict the performance degradation of co-run application groups. We show the promising solutions

by examining techniques employed by our framework through extensive experiments. This chapter

summarizes our contributions and discusses future work.

6.1 Contributions

We propose a framework that maps the sensitivity and pressure of a program from a source machine

to a target machine. Using sensitivity and pressure prediction for each program on target archi-

tecture, we manage to predict two-core co-run performance degradation within an average error of

2%. We refine the cross-architecture contention prediction approach by clustering SPEC CPU2006

benchmark programs and maintaining models for each group. By using different reporters to rep-

resent programs rather than using a unique one, we make the imitation even closer as a program’s

pressure will change accordingly towards peers with different pressure. With these refinements,

programs with over 10% prediction error previously are decreased to 2%.

Compared to building bubble programs from scratch, we propose an off-line profiling based
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approach for constructing bubble programs. The constructed bubbles are program-specific and the

memory accessing behavior and pressure of the bubbles will change accordingly whenever a co-run

peer changes, which resembles the behavior of actual programs. This eliminates the bubble score

profiling step because of that property. We expand the contention prediction from the pair-wise case

to more than two core cases and find that the prediction error remains within 2-3%.

6.2 Future work

Our future interests include automating the program-specific bubble creation process by generalizing

an application’s access behavior into one or more candidate types, such as random access, stream

access, indirect access or tree traversal, and parameterizing the associated access range, stride value,

random/sequential access ratio, etc. Machine learning techniques such as regression tree might be

employed as one can first categorize new programs into candidate kernels with their PMU statistics

as inputs to a decision tree. Then at each leaf node, a regression model associated with that

particular candidate kernel is used to predict those bubble specific parameters. To increase bubble

representation accuracy compared with actual applications, we might also consider factors other than

memory related behavior, such as branch prediction and network IO. Recently, newer replacement

policies such as RRIP, SDB, SHiP HAWKEYE are proposed as an alternative to the LRU policy.

Such changes might affect the critical code segment selection. Therefore, we are interested in studying

how cache replacement policies affect our contention modeling approach.

We are also interested in extending the cross-architecture framework to more than two core cases.

To make the framework even more powerful, we might employ transfer learning techniques to create

a mapping between a small training input to a large reference input, so further reduction to the

profiling time can be achieved.
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