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 Abstract 
Certain toxic, semivolatile chemicals, also known as atmosphere-surface exchangeable 
pollutants (ASEPs) are emitted into the environment from anthropogenic activities and 
natural sources. This dissertation focused on the (i) evaluation and improvement of dry 
particle deposition and atmosphere-surface exchange parameterizations of ASEPs for use 
in chemical transport models (CTMs), and (ii) application of a dynamic multimedia model 
to examine recovery of Lake Superior from historical inputs of polychlorinated biphenyl 
(PCB) compounds (a class of ASEPs) contamination.  

Current knowledge has been inadequate to propose quantitative measures of the relative 
performance of available dry particle deposition parameterizations. In Chapter 1 of this 
dissertation, five dry deposition parameterizations were evaluated against field 
observations across five land use categories, in terms their ability to reproduce observed 
deposition velocities, Vd  (accuracy), the influence of imprecision in input parameter values 
on the modeled Vd (uncertainty), identification of the most influential parameter(s) 
(sensitivity), and complexity. Based on the evaluation, a recommendation for the superior 
parameterization for use in CTMs is made.  

In most CTMs, current parameterizations of atmosphere-terrestrial surface exchange of 
elemental mercury (Hg0) lack critical evaluation against field measurements. In Chapter 2 
of this dissertation, an extensive evaluation of most commonly used resistance-based dry 
gaseous deposition and soil re-emission parameterizations (base model) of Hg0 was 
performed using a direct comparison to micrometeorological flux measurements from two 
ecosystems. This evaluation elucidated two major shortcomings of the base model: 
significant overestimation of leaf Hg uptake in summer month and an inability of capture 
measured nighttime net depositions. A step-wise model calibration was performed to adjust 
certain stomatal, non-stomatal, and soil re-emission parameters of the base model, which 
enabled an improved prediction of measured net exchange fluxes and growing-season leaf 
Hg accumulation. Based on the evaluation, generic recommendations for improvement in 
modeling Hg0 exchange for CTMs were made. 

Despite the U.S. production ban on PCBs in 1979, the measured concentrations in Lake 
Superior fish exhibited only a slow decline over the last 20 years. Sediment recycling of 
PCBs is often invoked to explain this slow recovery in fish PCB concentrations. In Chapter 
3 of this dissertation, a dynamic multimedia model was applied to investigate the observed 
leveling-off of fish PCB concentrations in Lake Superior. Using historical to present-day 
PCB emissions (1930-2013) as the primary input in the multimedia model, the long-term 
trends in predicted PCB concentrations in different environmental media (water, sediment, 
and biota) were compared with available measurements for Lake Superior. The model-
predicted half-life of total PCBs in fish was not consistent with the observations, suggesting 
that food web changes in the lake may be affecting trajectories of PCB concentrations in 
fish.  
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 Introduction 

Certain toxic, semivolatile chemicals (sub-cooled liquid vapor pressure in the range from 

10-9 to 10-2 kPa) are emitted into the environment from anthropogenic activities and natural 

sources. These chemicals can be termed atmosphere-surface exchangeable pollutants 

(ASEPs) because they cycle between surface reservoirs (e.g., soils, vegetation, lakes, and 

oceans) and the atmosphere (Perlinger et al., 2016). From regional to global scales, certain 

ASEPs such as mercury (Hg) and a class of persistent, bioaccumulative, toxic chemicals, 

polychlorinated biphenyl (PCB) compounds are of interest because of concerns over 

human exposure, negative ecosystem impacts, and discovery in remote areas far from 

primary sources. At present, Hg and PCBs can be found in virtually all environmental 

compartments (e.g., air, soil, water, sediment, and food chains) around the globe. 

Methylmercury, a toxic form of organic Hg, has been routinely found in the Arctic marine 

food web (Brown et al., 2018; Dietz et al., 2013). In addition, there has been increasing 

evidence that the Arctic environment has been contaminated by PCBs (Friedman and Selin, 

2016; Borgå et al., 2005). Even in some remote locations in the Laurentian Great Lakes 

region, these chemicals have been found at levels that pose a threat to biota and ecosystems 

(Henry et al., 1998; Swackhamer and Hites, 1988). 

Efforts to reduce primary emissions of these two classes of ASEPs through regulations and 

management as exemplified by the Minamata (mercury; Giang et al., 2015) and Stockholm 

(PCBs; Lallas, 2001) Conventions are ongoing. Nevertheless, assessing the effectiveness 

of such efforts to mitigate impacts requires a thorough understanding of ASEP behavior in 
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the multimedia environment. Environmental fate and transport models are key tools for 

elucidating the complex pathways of ASEPs from their initial release (e.g., emission into 

the air) to their ultimate fate (e.g., sequestration in soils and sediments) in the environment. 

Between these two endpoints (i.e., releases and sinks), models enable an understanding of 

the ASEP distributions among multiple environmental compartments and their dynamic 

inter-compartmental exchange (e.g., air-water; air-soil, air-vegetation).  

Of the many types of models of environmental fate and transport of ASEPs, 3-D 

atmospheric or chemical transport models (CTMs) are used to simulate four general 

processes: emissions, atmospheric transport, chemistry, and deposition (Brasseur and 

Jacob, 2017). CTMs such as GEOS-Chem have been used to simulate ASEPs such as Hg 

(Selin et al. 2008), PCBs (Friedman and Selin, 2016), and polycyclic aromatic 

hydrocarbons (PAHs; Friedman and Selin, 2012). Collectively, these applications of CTMs 

enhance our knowledge of ASEP environmental processing in terms of ability to, e.g., 

predict future atmospheric concentrations under various climate, policy, and land-use/land-

cover change scenarios (Kumar et al., 2018), and understand source-receptor relationships 

(Song et al., 2016), and responses of deposition and bioaccumulation in the Great Lakes to 

policy and other large-scale drivers of emissions (Perlinger et al., 2018). Multimedia 

environmental models of chemicals are commonly applied to establish a link between 

chemical properties, emissions, and concentrations, providing insights into the processes 

that determine fate and transport in a defined environment (Macleod et al., 2011; Macleod 

et al., 2005). For PCBs, a suite of multimedia mass balance models of varying complexity 

has been developed with the objective to investigate the relationship between sources of 
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PCBs and their concentrations in air, water, sediments, and biota  (Meijer et al., 2006; Shen 

et al., 2012; Guo et al., 2017; Zhang et al., 2008; Rashleigh et al., 2009; Rowe, 2009). 

CTMs and multimedia environmental models are important decision-support tools for 

developing emission reduction strategies and monitoring progress toward targeted-

reductions and/or eliminating environmental impacts of ASEPs. Improved performance of 

these models largely depends upon the accuracy of emission estimates, chemical reactions 

and pathways (reactivity; partitioning; degradation), and parameterization of physical 

processes (dry and wet deposition; re-emission).  

Currently, there exist substantial knowledge gaps in regards to the performance of 

parameterizations of atmosphere-surface exchange processes of ASEPs in CTMs. In 

CTMs, the accuracy of estimates of dry deposition of particle-bound ASEPs such as Hg 

and PCBs, and other pollutants largely depends on the performance of the dry deposition 

parameterization. Many dry deposition models have been developed for scientific research 

and operational purposes (see review by Petroff et al., 2008). Despite considerable efforts 

to develop dry deposition parameterizations of varying complexity, there remain few gaps 

in systematic performance evaluation of existing schemes with reliable field 

measurements. More specifically, information regarding the accuracy, uncertainty, and 

sensitivity of a suite of dry particle deposition parameterizations has been lacking. In 

addition, the complexity of dry deposition model formulation is another issue given 

incomplete knowledge of particle deposition processes. It is currently unknown whether 

complex models perform better than simple models. Chapter 1 of this dissertation presents 
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a comprehensive evaluation of five dry deposition parameterizations in terms of their 

accuracy, uncertainty, sensitivity, and complexity.  

Understanding the global biogeochemical cycling of Hg using CTMs largely depends on 

how the atmosphere–surface exchange fluxes of elementary mercury (Hg0) are constrained 

in the models (Mason et al., 2012; Pirrone et al., 2010). Thus far, the parameterization of 

atmosphere-surface (e.g., air-soil) exchange has been developed based on a limited 

understanding of the processes that govern the deposition and emission from surfaces such 

as soils and leaves. An improved knowledge of exchange fluxes is necessary to assess the 

negative impact of mercury on humans and the effectiveness of policy actions to reduce 

the burden of anthropogenic mercury emissions (Selin, 2014). In addition, because mercury 

can undergo frequent deposition and re-emission cycles, it is of importance to better 

parameterize the secondary emission from natural reservoirs such as surface soils and 

vegetation in global CTMs such GEOS-Chem. The existing surface-atmosphere exchange 

parameterization of Hg0 in GEOS-Chem is yet to be tested against field measurements. 

Chapter 2 of this dissertation presents a study on improvement of dry gaseous deposition 

and soil re-emission parameterizations of Hg0 for use in CTMs.  

Following the ban on production in the U.S. in 1979, atmospheric concentrations of PCBs 

above Lake Superior, the largest of the five Laurentian Great Lakes, decreased rapidly. 

Subsequently, PCB concentrations in the lake surface water also approached equilibrium 

as the atmospheric levels of PCBs declined. PCBs are of great concern in Lake Superior 

because these compounds tend to bioaccumulate in the aquatic food chain (Swackhamer 

and Hites, 1988) causing risks to predator wildlife and humans through fish consumption 
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(Stow, 1995; Humphrey et al., 2000). Previous studies (Chang et al., 2012; Bhavsar et al., 

2007) on long-term PCB levels and trends in fish suggested that the initial rate of decline 

of PCB concentrations in fish has leveled off in Lake Superior. It is currently unknown 

what factor(s) control the current observed PCB levels in Lake Superior fish. However, 

recycling from sediments has often been proposed to explain this slow recovery in fish 

(Smith, 2000). Chapter 3 of this dissertation presents application of a dynamic multimedia 

model developed in this chapter to investigate the slow decrease in PCB concentrations in 

fish resulting from legacy PCB inputs to Lake Superior.   
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1      CHAPTER 1: Evaluation of five dry particle 
deposition parameterizations for atmospheric transport 
models 
Abstract 
Despite considerable effort to develop mechanistic dry particle deposition 
parameterizations for atmospheric transport models, current knowledge has been 
inadequate to propose quantitative measures of the relative performance of available 
parameterizations. In this study, we evaluated the performance of five dry particle 
deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang 
(2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and 
Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three 
dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy), the 
influence of imprecision in input parameter values on the modeled Vd (uncertainty), and 
identification of the most influential parameter(s) (sensitivity). The accuracy of the 
modeled Vd was evaluated using observations obtained from five land use categories 
(LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain 
the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input 
parameters, a Monte Carlo uncertainty analysis was performed. The Sobol’ sensitivity 
analysis was conducted with the objective to determine the parameter ranking, from the 
most to the least influential. Comparing the normalized mean bias factors (indicator of 
accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except 
for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, 
the estimated mean normalized uncertainties in the modeled Vd obtained for seven 
particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17%, 12%, 13%, 
16%, and 27% for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. 
From the Sobol’ sensitivity results, we suggest that the parameter rankings vary by 
particle size and LUC for a given parameterization. Overall, for dp = 0.001 to 1.0 μm, 
friction velocity was one of the three most influential parameters in all parameterizations. 
For giant particles (dp = 10 μm), relative humidity was the most influential parameter. 
Because it is the least complex of the five parameterizations, and it has the greatest 
accuracy and least uncertainty, we propose that the ZH14 parameterization is currently 
superior for incorporation into atmospheric transport models. 

9 
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1.1 Introduction 

Dry deposition is a complex process that is influenced by the chemical properties of 

aerosols and their sources, meteorological conditions, and surface characteristic features. 

The transference of particles from the atmosphere to the earth’s surface is controlled by 

forcings such as frictional drag and terrain induced flow modification (Giorgi, 1986; Stull, 

1988). Understanding the processes and factors controlling dry deposition is necessary to 

estimate the residence time of atmospheric particles, which governs their atmospheric 

transport distance, trans-boundary fluxes, and potential climate effects (IPCC, 2001; 

Nemitz et al., 2002; Pryor et al., 2008). An accurate estimation of dry deposition is also 

needed to quantify the atmospheric loads of particles containing sulfate, nitrate, and 

ammonium that contribute to acidification and eutrophication of ecosystems, toxic 

elements such as Pb, Zn, and Cd, and base cations such as Na+, K+, Ca2+, and Mg2+ that 

alter the nutrient cycling in soil (Ruijgrok et al., 1995; Petroff et al., 2008a).  

Over the last three decades, several indirect and direct methods were developed to measure 

dry particle deposition (hereinafter referred to as dry deposition) flux to ecosystems 

(McMahon and Denisot, 1979; Sehmel, 1980; Gallagher et al., 1997; Zhang and Vet, 2006; 

Pryor et al., 2008). Dry deposition velocity 𝑉𝑉𝑑𝑑 at height z is defined as the ratio of the total 

flux 𝐹𝐹(𝑧𝑧) divided by the particle concentration at the same height 𝐶𝐶(𝑧𝑧) (Pryor et al., 2013; 

Rannik et al., 2016) and is mathematically expressed as: 

 𝑉𝑉𝑑𝑑 = −𝐹𝐹(𝑧𝑧)
𝐶𝐶(𝑧𝑧)

                                                                                                               (1) 
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One of the major limitations of direct flux measurement is limited spatial coverage because 

the measurement stations are confined to only a limited number of sites (Nemitz et al., 

2002). The application of spatially and temporally resolved 3-D atmospheric transport 

models, from regional to global scale, can produce estimates of dry deposition fluxes for a 

suite of atmospheric species over various natural surfaces such as bare soil, grass, forest 

canopies, water, and ice/snow. To predict the dry deposition fluxes using atmospheric 

transport models, a parameterization/scheme that can adequately account for the major 

physical processes of particle deposition (e.g., turbulent diffusion, gravitational settling, 

interception, impaction, and Brownian diffusion) must be embedded in the host model.  

Many dry deposition models have been developed for scientific research and operational 

purposes (see model review by Petroff et al., 2008a). Significant advances in understanding 

the governing mechanisms of dry deposition were made through use of experimental 

deposition data on walls of vertical pipes in the developments of size-resolved 

parameterizations for atmospheric particle deposition on ground surface (Muyshondt et al., 

1998; Noll et al., 2001; Feng, 2008). In mechanistic or process-based dry deposition 

models, an electrical resistance based approach is widely used to parameterize the dry 

deposition velocity (Venkatram and Pleim, 1999). In this approach, dry deposition occurs 

via two parallel pathways: turbulent diffusion (expressed as aerodynamic resistance) and 

gravitational settling (expressed as resistance due to gravitation). In addition, particle 

collection by surfaces via Brownian diffusion, interception, and impaction are represented 

using separate surface resistance terms (Slinn, 1982; Hicks et al., 1987; Wesely and Hicks, 

2000; Zhang et al., 2001; Seinfeld and Pandis, 2006; Petroff and Zhang, 2010; Zhang and 
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He, 2014). In all these models, the conventional resistance-based approach does not 

consider surface inhomogeneity or terrain complexity (i.e., deposition over flat terrain is 

assumed). However, Hicks (2008) argued about the importance of considering terrain 

complexity in dry deposition models because the assumption of surface homogeneity in 

existing deposition models limits the accuracy of pollutant load estimation in sensitive 

ecosystems that are located in complex terrain (e.g., on mountaintops or hills). 

Despite considerable efforts in developing dry deposition parameterizations of varying 

complexity, there remain considerable gaps in systematic performance evaluation of 

existing schemes with reliable field measurements. We note that the evaluation of dry 

deposition parameterizations with field measurements is very limited and not up to date. 

Van Aalst (1986) evaluated the performance of six dry deposition parameterizations 

against field measurements, and reported large discrepancies in terms of the modeled 

deposition velocities. He reported that over water surfaces the modeled deposition 

velocities for 1.0-µm particles by the Williams (1982) scheme were factors of 10 to 50 

higher than those predicted by the Sehmel and Hodgson (1978) scheme. For forest canopy, 

the Wiman and Agren (1985) model over-predicted the deposition velocities of the Slinn 

(1982) model by a factor of five. In a recent study, Hicks et al. (2016) compared five 

deposition models with measurements conducted over forests. They found that for particle 

sizes less than ca. 0.2 μm, the modeled deposition velocities agreed fairly well with 

measured velocities. The largest discrepancy was observed for particle sizes of 0.3 to ca. 

5.0 μm. Studies also suggest that in many dry deposition parameterizations, the largest 

uncertainty exists for 0.1-1.0 µm particles because of the differing treatments of some key 
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particle deposition processes such as Brownian diffusion (Van Aalst, 1986; Petroff and 

Zhang, 2010; Zhang and Shao, 2014).  

Uncertainty in modeled dry deposition velocities is an area that requires a thorough 

investigation. Only a few studies have been conducted in quantifying the uncertainties in 

dry deposition parameterizations. Ruijgrok (1992) performed an uncertainty evaluation of 

the Slinn (1982) model by assessing the variabilities in nine input parameters to the model 

outputs. Using Slinn’s model, Gould and Davidson (1992) determined the influence of 

uncertainties in the size of the collection elements, roughness length, canopy wind profile 

and wind speed on the modeled deposition velocities. As far as we know, a detailed 

uncertainty analysis to address the influence of varying particle size, meteorological 

conditions, and surface features has not been performed on existing dry deposition 

parameterizations. The results from an uncertainty analysis could be used as one of the 

model’s performance indicators, and help guide the modeling community to adequately 

account for uncertainties in the modeled deposition fluxes of pollutants to ecosystems.  

Sensitivity analysis is often performed to determine the most influential parameters to the 

model outputs. Typically, a dry deposition model incorporates a large number of input 

parameters, which are subject to variability. In addition to identifying the most sensitive 

parameter(s), a sensitivity analysis can provide important insight as to the processes that 

control the overall deposition process, and identify those that may require further 

improvement. However, a detailed sensitivity test that encompasses exploring the entire 

parameter spaces of the input parameters of a dry deposition parameterization has not yet 

been performed. Some researchers conducted one-at-a-time (OAT) sensitivity analysis 
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(SA) (Ruijgrok et al., 1997; Zhang et al., 2001) of dry deposition models. In OAT-SA, the 

effect of varying one model input parameter is tested at a time while keeping all others 

fixed (Salteli and Annoni, 2010). Because in reality the variabilities in a set of model input 

parameters are expected to occur simultaneously, an OAT-SA is not a useful tool to 

determine the most influential parameter(s) in the deposition models. Rather, a variance-

based global sensitivity test approach is needed. In global sensitivity analysis, the potential 

effects from simultaneous variabilities of model input parameters over their plausible range 

is considered (Lilburne and Tarantola, 2008).  

In the present study, five dry deposition parameterizations, developed by Zhang et al. 

(2001), Petroff and Zhang (2010), Kouznetsov and Sofiev (2012), Zhang and He (2014), 

and Zhang and Shao (2014), are selected for an intercomparison of performance in terms 

of accuracy, uncertainty, and sensitivity. Throughout this paper, these models are referred 

to as Z01, PZ10, KS12, ZH14, and ZS14, respectively. The objectives of this study are 

threefold. The first objective is to evaluate the accuracy of five dry deposition 

parameterizations using measured dry deposition velocities obtained from field 

observations. Data of measured deposition velocities were collected from the literature, 

which comprised of measurements conducted over land use categories (LUCs) including 

grass, coniferous and deciduous forests, natural water, and ice/snow. The second objective 

is to perform an uncertainty analysis of the modeled dry deposition velocities related to 

imprecision in model input parameter values. The third objective is to quantify the most 

influential parameters in the modeled dry deposition velocities by applying a global 

variance-based sensitivity analysis.  
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1.2 Background 

1.2.1 Zhang et al. (2001) (Z01) scheme 
 

The Z01 scheme estimates dry deposition velocity as a function of particle size and density, 

meteorological variables, and surface properties. In the Z01 scheme, the dry deposition 

velocity (𝑉𝑉𝑑𝑑) is expressed as:                      

𝑉𝑉𝑑𝑑 = 𝑉𝑉𝑔𝑔 + 1
𝑅𝑅𝑎𝑎+𝑅𝑅𝑠𝑠

,                                                                                                                (2)                      

where 𝑉𝑉𝑔𝑔 is the gravitational settling velocity, 𝑅𝑅𝑎𝑎 is the aerodynamic resistance above the 

canopy, and 𝑅𝑅𝑠𝑠 is the surface resistance. The expression for gravitational settling velocity 

(𝑉𝑉𝑔𝑔) is given as:  

𝑉𝑉𝑔𝑔 = 𝜌𝜌𝑑𝑑𝑝𝑝2𝑔𝑔𝐶𝐶
18𝜂𝜂𝑉𝑉

,                                                                                                                            (3)                

where 𝜌𝜌 is the dry density of the particle, 𝑑𝑑𝑝𝑝 is the particle aerodynamic diameter, 𝑔𝑔 is the 

gravitational acceleration, 𝐶𝐶 is the Cunningham correction factor, and 𝜂𝜂𝑉𝑉 is the temperature 

dependent viscosity coefficient of air. The correction factor 𝐶𝐶 is applied to account for the 

molecular structure of the air and is expressed as:  

𝐶𝐶 = 1 + 2𝜆𝜆
𝑑𝑑𝑝𝑝
�1.257 + 0.4𝑒𝑒−

0.55𝑑𝑑𝑝𝑝
𝜆𝜆 �,                                                                                   (4)    

 where 𝜆𝜆 is the mean free path of air molecules.  

The aerodynamic resistance (𝑅𝑅𝑎𝑎) is calculated as: 

𝑅𝑅𝑎𝑎 =
ln�𝑧𝑧𝑅𝑅𝑧𝑧0

�−𝜓𝜓𝐻𝐻

𝜅𝜅𝑢𝑢∗
,                                                                                                                  (5)                                                                                                                                        
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where 𝑧𝑧𝑅𝑅 is the reference height where 𝑉𝑉𝑑𝑑 is typically computed, 𝑧𝑧0 is the roughness height, 

𝜅𝜅 is the von Kármán constant, 𝑢𝑢∗ is the friction velocity, and 𝜓𝜓𝐻𝐻 is the stability function 

for heat. The expression for 𝜓𝜓𝐻𝐻 is: 𝜓𝜓𝐻𝐻 = 2𝑙𝑙𝑙𝑙[0.5(1 + (1 − 16𝑥𝑥)0.5] when 𝑥𝑥 ∈ [−2; 0], 

and 𝜓𝜓𝐻𝐻 = −5𝑥𝑥 when 𝑥𝑥 ∈ [0; 1]. Here, 𝑥𝑥 = 𝑧𝑧/𝐿𝐿𝑂𝑂, where 𝑧𝑧 is the measurement height and 

𝐿𝐿𝑂𝑂 is the Monin-Obukhov length. 

The surface resistance term, 𝑅𝑅𝑠𝑠 in Eq. 2, is a function of particle collection efficiencies due 

to Brownian diffusion (𝐸𝐸𝐵𝐵), impaction (𝐸𝐸𝐼𝐼𝐼𝐼), and interception (𝐸𝐸𝐼𝐼𝐼𝐼). Accordingly, 𝑅𝑅𝑠𝑠 is 

parameterized as: 

𝑅𝑅𝑠𝑠 = 1
𝜀𝜀0𝑢𝑢∗(𝐸𝐸𝐵𝐵+𝐸𝐸𝐼𝐼𝐼𝐼+𝐸𝐸𝐼𝐼𝐼𝐼)𝑅𝑅1

,                                                                                                     (6)                                                                                                                           

where  𝜀𝜀0 is an empirical constant and its value is taken as 3 for all LUCs, and 𝑅𝑅1 is the 

correction factor for particle rebound, which is included to modify the collection 

efficiencies at the surface. 𝑅𝑅1 is parameterized as a function of Stokes number (𝑆𝑆𝑆𝑆) as:  

𝑅𝑅1 = exp(−𝑆𝑆𝑆𝑆−0.5).                                                                                                           (7)      

The parameterizations for 𝐸𝐸𝐵𝐵, 𝐸𝐸𝐼𝐼𝐼𝐼, and 𝐸𝐸𝐼𝐼𝐼𝐼 are expressed by Eqs. (8), (10), and (14), 

respectively. The particle collection efficiency (𝐸𝐸𝐵𝐵) is parameterized as a function of 

Schmidt number (𝑆𝑆𝑆𝑆) as: 

𝐸𝐸𝐵𝐵 = 𝑆𝑆𝑆𝑆−𝛾𝛾,                                                                                                                          (8)                                                                                                                                                                         

where 𝑆𝑆𝑆𝑆 is the ratio of kinematic viscosity of air (𝜈𝜈) to the particle Brownian diffusivity 

(𝐷𝐷). 𝛾𝛾 is a LUC dependent variable, and the typical values of 𝛾𝛾 range from 0.54 to 0.56 for 
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rough surfaces and from 0.50 to 0.56 for smooth surfaces. Brownian diffusivity (𝐷𝐷) is 

calculated as:   

𝐷𝐷 = 𝐶𝐶𝑘𝑘𝐵𝐵𝑇𝑇
3𝜋𝜋𝜋𝜋𝑑𝑑𝑝𝑝

,                                                                                                                              (9)      

where 𝐶𝐶 is the Cunningham correction factor as expressed by Eq. (4), 𝑘𝑘𝐵𝐵 is the Boltzmann’s 

constant (1.38 × 10-23 J K-1), and 𝜇𝜇 is the dynamic viscosity of air at temperature 𝑇𝑇.  

For smooth surfaces, particle collection efficiency by impaction (𝐸𝐸𝐼𝐼𝐼𝐼) is parameterized as: 

𝐸𝐸𝐼𝐼𝐼𝐼 = 10−
3
𝑆𝑆𝑆𝑆.                                                                                                                       (10)                                                                                                                                                                                 

And, for rough surfaces,  

𝐸𝐸𝐼𝐼𝐼𝐼 = � 𝑆𝑆𝑆𝑆
𝛼𝛼+𝑆𝑆𝑆𝑆

�
𝛽𝛽

,                                                                                                                    (11)                                                                                                                                                                      

where 𝛼𝛼 and 𝛽𝛽 are constants; values of 𝛼𝛼 are LUC dependent, and 𝛽𝛽 is taken as 2. In Eqs. 

(10-11), the Stokes number (𝑆𝑆𝑆𝑆) is expressed as: 

𝑆𝑆𝑆𝑆 = 𝑉𝑉𝑔𝑔𝑢𝑢∗
𝑔𝑔𝑔𝑔

     (for vegetative surfaces),                                                                          (12)                                                                                                                                                  

𝑆𝑆𝑆𝑆 = 𝑉𝑉𝑔𝑔𝑢𝑢∗2

𝜈𝜈
    (for smooth surfaces),                                                                                (13)                                                                                                                                             

where 𝐴𝐴 is the characteristic radius of the surface collector elements. The values of 𝐴𝐴 are 

given for different LUCs for various seasons by Zhang et al. (2001). 

Collection efficiency by interception (𝐸𝐸𝐼𝐼𝐼𝐼) is calculated as: 
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𝐸𝐸𝐼𝐼𝐼𝐼 = 1
2
�𝑑𝑑𝑝𝑝
𝑔𝑔
�
2

.                                                                                                                       (14)                                                                                                                                                                            

Growth of particles under humid conditions is considered in the Z01 scheme by replacing 

the 𝑑𝑑𝑝𝑝 with a wet particle diameter (𝑑𝑑𝑤𝑤), which is calculated as: 

𝑑𝑑𝑤𝑤 = �
𝐶𝐶1�

𝑑𝑑𝑝𝑝
2 �

𝐶𝐶2

𝐶𝐶3�
𝑑𝑑𝑝𝑝
2 �

𝐶𝐶4
−𝑙𝑙𝑙𝑙𝑔𝑔𝑅𝑅𝐻𝐻

+ �𝑑𝑑𝑝𝑝
2
�
𝐶𝐶3
�

1/3

,                                                                                   (15)                                                                                                                    

where 𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, and 𝐶𝐶4 are the empirical constants (values given in Table 1 of Zhang et 

al., 2001), and 𝑅𝑅𝑅𝑅 is the relative humidity.  

1.2.2 Petroff and Zhang (2010) (PZ10) scheme 

Petroff and Zhang (2010) parameterized dry deposition velocity using an expression 

similar to Eq. (2) with some improvements of the surface resistance and collection 

efficiency terms. In the PZ10 scheme, the effect of gravity and drift forces (e.g., phoretic 

effects) were taken into account by introducing the term drift velocity �𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆�. Thus, dry 

deposition velocity (𝑉𝑉𝑑𝑑) at a reference height (𝑧𝑧𝑅𝑅) is given as:  

𝑉𝑉𝑑𝑑 = 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 + 1
𝑅𝑅𝑎𝑎+𝑅𝑅𝑠𝑠

.                                                                                                           (16)            

Here, the drift velocity 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 is equal to the sum of gravitational settling velocity and 

phoretic velocity, and the expression of 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 is:  

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 = 𝑉𝑉𝑔𝑔 + 𝑉𝑉𝑝𝑝ℎ𝑙𝑙𝑑𝑑.                                                                                                           (17)                                                                                                                                         
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𝑉𝑉𝑔𝑔 is calculated using Eq. (3). The LUC dependent values of 𝑉𝑉𝑝𝑝ℎ𝑙𝑙𝑑𝑑 were given by Petroff 

and Zhang (2010).      

Surface resistance (𝑅𝑅𝑠𝑠) is commonly expressed as an inverse of the surface deposition 

velocity, 𝑉𝑉𝑑𝑑𝑠𝑠 (i.e., 𝑅𝑅𝑠𝑠 = 1/𝑉𝑉𝑑𝑑𝑠𝑠). In the PZ10 scheme, 𝑉𝑉𝑑𝑑𝑠𝑠 is parameterized as: 

𝑉𝑉𝑑𝑑𝑠𝑠
𝑢𝑢∗

= 𝐸𝐸𝑔𝑔
1+� 𝑄𝑄𝑄𝑄𝑔𝑔

−𝛼𝛼2�
tanh (𝜂𝜂)

𝜂𝜂

1+� 𝑄𝑄𝑄𝑄𝑔𝑔
+𝛼𝛼�tanh (𝜂𝜂)

𝜂𝜂

 .                                                                                                   (18)                                                                                                                                                                 

The parameters (e.g., 𝑄𝑄, 𝑄𝑄𝑔𝑔, 𝛼𝛼, and 𝜂𝜂) used in Eq. (18) are dependent on the aerodynamic 

and surface characteristic features. The parameterization of the total particle collection 

efficiency on the ground below the vegetation (𝐸𝐸𝑔𝑔) has two components: (i) collection by 

Brownian diffusion (𝐸𝐸𝑔𝑔𝑔𝑔) and (ii) collection by turbulent impaction (𝐸𝐸𝑔𝑔𝑆𝑆). In the PZ10 

scheme, formulation of 𝐸𝐸𝑔𝑔𝑔𝑔 is expressed as: 

𝐸𝐸𝑔𝑔𝑔𝑔 = 𝑆𝑆𝑆𝑆−2/3

14.5
�1
6
𝑙𝑙𝑙𝑙 (1+𝐹𝐹)2

1−𝐹𝐹+𝐹𝐹2
+ 1

√3
𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝑙𝑙 2𝐹𝐹−1

√3
+ 𝜋𝜋

6√3
�
−1

,                                                      (19)                 

where 𝐹𝐹 is a function of the Schmidt number (𝑆𝑆𝑆𝑆) and is expressed as 𝐹𝐹 = 𝑆𝑆𝑆𝑆
1
3/2.9.  

Collection efficiency by turbulent impaction, 𝐸𝐸𝑔𝑔𝑆𝑆, is a function of dimensionless particle 

relaxation time (𝜏𝜏𝑝𝑝ℎ+ ) and a coefficient 𝐶𝐶𝐼𝐼𝑇𝑇 (taken as 0.14). In the PZ10 scheme, 𝐸𝐸𝑔𝑔𝑆𝑆 is 

parameterized as: 

𝐸𝐸𝑔𝑔𝑆𝑆 = 2.5 × 10−3𝐶𝐶𝐼𝐼𝑇𝑇𝜏𝜏𝑝𝑝ℎ+2.                                                                                                    (20)                                                                                                                                               

𝜏𝜏𝑝𝑝ℎ+  is calculated as  𝜏𝜏𝑝𝑝ℎ+ = 𝜏𝜏𝑝𝑝𝑢𝑢𝑑𝑑2/ 𝜈𝜈. The local friction velocity (𝑢𝑢𝑑𝑑) is expressed as:  
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𝑢𝑢𝑑𝑑 = 𝑢𝑢∗𝑒𝑒−𝛼𝛼,                                                                                                                         (21)      

where 𝛼𝛼 is the aerodynamic extinction coefficient and is expressed as:  

𝛼𝛼 = � 𝑘𝑘𝑥𝑥𝐿𝐿𝑔𝑔𝐼𝐼

12𝜅𝜅2(1−𝑑𝑑ℎ)2
�
1/3

Ф𝑚𝑚
2/3 �ℎ−𝑑𝑑

𝐿𝐿𝑂𝑂
�.                                                                                         (22)                                                                                                                                                                                                                                                                                                               

In Eq. (20),  𝑘𝑘𝑥𝑥 is the inclination coefficient of canopy elements, 𝐿𝐿𝐴𝐴𝐿𝐿 is the leaf area index, 

𝑑𝑑 is the zero-plane displacement height, ℎ is the height of the canopy, 𝐿𝐿𝑂𝑂 is the Monin-

Obukhov length, and Ф𝑚𝑚 is the non-dimensional stability function for momentum. The 

expressions for Ф𝑚𝑚 is, Ф𝑚𝑚(𝑥𝑥) = (1 − 16𝑥𝑥)−1/4 when 𝑥𝑥 ∈ [−2: 0] and Ф𝑚𝑚(𝑥𝑥) =

(1 + 5𝑥𝑥)−1/4 when 𝑥𝑥 ∈ [0: 1]. 

In Eq. (18), the non-dimensional time-scale parameter, 𝑄𝑄, is defined as the ratio the 

turbulent transport time scale to the vegetation collection time scale. The magnitude of 𝑄𝑄 

can be used to characterize the dominant mechanism of the vertical transport of particles 

to the surface. For particle deposition over a canopy, 𝑄𝑄 ≪ 1 describes a condition in which 

homogeneous concentration of Aitken and accumulation mode particles prevails 

throughout the canopy. This condition occurs when turbulent mixing is very efficient and 

transfer of particles is limited by the collection efficiency on leaves. In contrast, 𝑄𝑄 ≫ 1 

characterizes a situation in which an inhomogeneous particle concentration within the 

canopy prevails, which is typical for coarse mode particles. Under such conditions, 

efficient collection of particles by leaves takes place and transfer to the surface is usually 

limited by the turbulent transport.   

In the PZ10 scheme, 𝑄𝑄 and 𝑄𝑄𝑔𝑔 are parameterized using Eqs. (23) and (24), respectively:  
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𝑄𝑄 = 𝐿𝐿𝑔𝑔𝐼𝐼𝐸𝐸𝑇𝑇ℎ
𝑙𝑙𝑚𝑚𝑝𝑝(ℎ)

,                                                                                                                           (23)                                                                                                                                                                             

 𝑄𝑄𝑔𝑔 = 𝐸𝐸𝑔𝑔ℎ
𝑙𝑙𝑚𝑚𝑝𝑝(ℎ),                                                                                                                         (24)        

where 𝐸𝐸𝑇𝑇 is the total particle collection efficiency by various physical processes and 

𝑙𝑙𝑚𝑚𝑝𝑝(ℎ) is the mixing height for the particles. The mixing height for particles, 𝑙𝑙𝑚𝑚𝑝𝑝(ℎ), is 

calculated as: 

𝑙𝑙𝑚𝑚𝑝𝑝(ℎ) = 𝜅𝜅(ℎ−𝑑𝑑)

Фℎ�
ℎ−𝑑𝑑
𝐿𝐿𝑂𝑂

�
,                                                                                                             (25)                                                                                                                                                                               

where Фℎ is the stability function for heat and expressed as: Фℎ(𝑥𝑥) = (1 − 16𝑥𝑥)−1/2 when 

𝑥𝑥 ∈ [−2; 0] and Фℎ(𝑥𝑥) = 1 + 5𝑥𝑥 when 𝑥𝑥 ∈ [0; 1]. 

The total collection efficiency (𝐸𝐸𝑇𝑇) is expressed as: 

𝐸𝐸𝑇𝑇 = 𝑈𝑈ℎ
𝑢𝑢∗

(𝐸𝐸𝐵𝐵 + 𝐸𝐸𝐼𝐼𝐼𝐼 + 𝐸𝐸𝐼𝐼𝐼𝐼) + 𝐸𝐸𝐼𝐼𝑇𝑇 ,                                                                                     (26)     

where 𝑈𝑈ℎ is the horizontal wind speed at canopy height ℎ, and 𝐸𝐸𝐵𝐵, 𝐸𝐸𝐼𝐼𝐼𝐼, 𝐸𝐸𝐼𝐼𝐼𝐼, and 𝐸𝐸𝐼𝐼𝑇𝑇 are 

the collection efficiencies by Brownian diffusion, interception, impaction, and turbulent 

impaction, respectively. Note that the physical meaning of the first three efficiency terms 

are similar to those of the Z01 scheme. However, the parameterizations of these terms differ 

from the Z01 scheme. The term describing turbulent impaction efficiency (𝐸𝐸𝐼𝐼𝑇𝑇) is absent 

in the Z01 scheme.  
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Parameterization of deposition efficiencies (i.e., 𝐸𝐸𝐵𝐵, 𝐸𝐸𝐼𝐼𝐼𝐼, 𝐸𝐸𝐼𝐼𝐼𝐼, and 𝐸𝐸𝐼𝐼𝑇𝑇) are given below 

according to the PZ10 scheme:  

Particle collection efficiency by Brownian diffusion (𝐸𝐸𝐵𝐵): 

𝐸𝐸𝐵𝐵 = 𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆−2/3𝑅𝑅𝑒𝑒ℎ
−1/2.                                                                                                       (27)         

In Eq. (27), 𝐶𝐶𝐵𝐵 is the LUC dependent coefficient, 𝑅𝑅𝑒𝑒ℎ is the Reynolds number of the 

horizontal air flow calculated at top of the canopy height ℎ as 𝑅𝑅𝑒𝑒ℎ = 𝑈𝑈ℎ𝐿𝐿
𝜈𝜈

. Here, 𝐿𝐿 is the 

LUC dependent characteristic length of the canopy obstacle elements.  

Particle collection efficiency by interception (𝐸𝐸𝐼𝐼𝐼𝐼): 

𝐸𝐸𝐼𝐼𝐼𝐼 = 𝐶𝐶𝐵𝐵
𝑑𝑑𝑝𝑝
𝐿𝐿

  (𝑓𝑓𝑓𝑓𝐴𝐴 𝑙𝑙𝑒𝑒𝑒𝑒𝑑𝑑𝑙𝑙𝑒𝑒 − 𝑙𝑙𝑙𝑙𝑘𝑘𝑒𝑒 𝑓𝑓𝑜𝑜𝑜𝑜𝑆𝑆𝐴𝐴𝑆𝑆𝑙𝑙𝑒𝑒),                                                                   (28)                                                                                                                                             

𝐸𝐸𝐼𝐼𝐼𝐼 = 𝐶𝐶𝐵𝐵
𝑑𝑑𝑝𝑝
𝐿𝐿
�2 + 𝑙𝑙𝑙𝑙 4𝐿𝐿

𝑑𝑑𝑝𝑝
�  (𝑓𝑓𝑓𝑓𝐴𝐴 𝑙𝑙𝑒𝑒𝐴𝐴𝑓𝑓 𝑓𝑓𝑓𝑓 𝑝𝑝𝑙𝑙𝐴𝐴𝑙𝑙𝑒𝑒 𝑓𝑓𝑜𝑜𝑜𝑜𝑆𝑆𝐴𝐴𝑆𝑆𝑙𝑙𝑒𝑒).                                              (29)                                                                                                            

In Eqs. 28-29, 𝐶𝐶𝐵𝐵 is the LUC dependent coefficient.  

Particle collection efficiency by impaction (𝐸𝐸𝐼𝐼𝐼𝐼): 

𝐸𝐸𝐼𝐼𝐼𝐼 = 𝐶𝐶𝐼𝐼𝐼𝐼 �
𝑆𝑆𝑆𝑆ℎ

𝑆𝑆𝑆𝑆ℎ+𝛽𝛽𝐼𝐼𝐼𝐼
�
2

.                                                                                                     (30)         

In Eq. (30), 𝑆𝑆𝑆𝑆ℎ is the Stokes number on top of the canopy, which is calculated as 𝑆𝑆𝑆𝑆ℎ =

𝜏𝜏𝑝𝑝𝑈𝑈ℎ
𝐿𝐿

. 𝜏𝜏𝑝𝑝 is the particle relaxation time calculated as 𝜏𝜏𝑝𝑝 = 𝑉𝑉𝑔𝑔/𝑔𝑔. 𝐶𝐶𝐼𝐼𝐼𝐼 and 𝛽𝛽𝐼𝐼𝐼𝐼 are LUC 

dependent coefficients.  
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Particle collection efficiency by turbulent impaction (𝐸𝐸𝐼𝐼𝑇𝑇) is parameterized as: 

𝐸𝐸𝐼𝐼𝑇𝑇 = 2.5 × 10−3𝐶𝐶𝐼𝐼𝑇𝑇𝜏𝜏𝑝𝑝ℎ+2  𝑙𝑙𝑓𝑓 𝜏𝜏𝑝𝑝ℎ+ ≤ 20,    (31)

𝐸𝐸𝐼𝐼𝑇𝑇 = 𝐶𝐶𝐼𝐼𝑇𝑇    𝑙𝑙𝑓𝑓 𝜏𝜏𝑝𝑝ℎ+ ≥ 20,  (32)

In Eqs. (31-32), the dimensionless particle relaxation time, 𝜏𝜏𝑝𝑝ℎ+ = 𝜏𝜏𝑝𝑝𝑢𝑢∗2/𝜈𝜈. 

The term 𝜂𝜂 in Eq. (18) is taken as: 

𝜂𝜂 = �𝛼𝛼2

4
+ 𝑄𝑄.  (33)

For non-vegetative surfaces, such as bare soil, natural water and ice/snow, a modified 

form of Eq. (16) is used in the form of Eq. (34), which is expressed as:  

𝑉𝑉𝑑𝑑 = 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 + 1
𝑅𝑅𝑎𝑎+1/(𝐸𝐸𝑔𝑔𝑔𝑔𝑢𝑢∗)

.   (34)  

1.2.3 Kouznetsov and Sofiev (2012) (KS12) scheme   

Kouznetsov and Sofiev (2012) developed a dry deposition parameterization by extending 

the conventional resistance-based analogy using the exact solution of the steady-state 

equation for aerosol flux. According to the KS12 scheme, for rough surfaces, dry deposition 

velocity (𝑉𝑉𝑑𝑑) is computed as: 

𝑉𝑉𝑑𝑑 = 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑉𝑉𝑑𝑑𝑖𝑖𝑆𝑆 + 𝑉𝑉𝑑𝑑𝑚𝑚𝑝𝑝 + 𝑉𝑉𝑔𝑔, (35)
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where 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑉𝑉𝑑𝑑𝑖𝑖𝑆𝑆, 𝑉𝑉𝑑𝑑𝑚𝑚𝑝𝑝, and 𝑉𝑉𝑔𝑔 are the velocities for the depositing particles due to 

Brownian diffusion, interception, impaction, and gravitational settling, respectively. The 

parameterizations for these terms are provided below. 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 was parameterized as: 

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 2𝑢𝑢∗𝑅𝑅𝑒𝑒∗
−1/2𝑆𝑆𝑆𝑆−2/3,     (36)

where  𝑅𝑅𝑒𝑒∗ is the canopy Reynolds number given by 

𝑅𝑅𝑒𝑒∗ = 𝑢𝑢∗𝑎𝑎
𝜈𝜈

,  (37)

where 𝐴𝐴 is the length scale for different LUCs. 

𝑉𝑉𝑑𝑑𝑖𝑖𝑆𝑆 is parameterized as: 

𝑉𝑉𝑑𝑑𝑖𝑖𝑆𝑆 = 𝑢𝑢∗𝑅𝑅𝑒𝑒∗
1/2 �𝑑𝑑𝑝𝑝

𝑎𝑎
�
2

,   (38)   

𝑉𝑉𝑑𝑑𝑚𝑚𝑝𝑝 is parameterized as: 

𝑉𝑉𝑑𝑑𝑚𝑚𝑝𝑝 = 2𝑢𝑢∗2

𝑈𝑈𝑆𝑆𝑡𝑡𝑝𝑝
𝜂𝜂𝑑𝑑𝑚𝑚𝑝𝑝 �𝑆𝑆𝑆𝑆 −

𝑢𝑢∗
𝑈𝑈𝑆𝑆𝑡𝑡𝑝𝑝

𝑅𝑅𝑒𝑒∗
−1/2�,    (39)

where 𝑈𝑈𝑆𝑆𝑙𝑙𝑝𝑝 is the mean horizontal wind speed on top of the canopy, 𝜂𝜂𝑑𝑑𝑚𝑚𝑝𝑝 is the particle 

collection efficiency due to impaction, and 𝑆𝑆𝑆𝑆 is the Stokes number.  Kouznetsov and 

Sofiev (2012) used Eq. (40) to parameterize 𝑢𝑢∗
𝑈𝑈𝑆𝑆𝑡𝑡𝑝𝑝

 as: 
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𝑢𝑢∗
𝑈𝑈𝑆𝑆𝑡𝑡𝑝𝑝

= 𝑚𝑚𝑙𝑙𝑙𝑙 �(𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑅𝑅𝐿𝐿𝐴𝐴𝐿𝐿/2)2, � 𝑢𝑢∗
𝑈𝑈𝑆𝑆𝑡𝑡𝑝𝑝

�
𝑚𝑚𝑎𝑎𝑥𝑥

�,                                                                     (40)                                                                                                                                 

where 𝐶𝐶𝑠𝑠 = 0.003, 𝐶𝐶𝑅𝑅 = 0.3, and � 𝑢𝑢∗
𝑈𝑈𝑆𝑆𝑡𝑡𝑝𝑝

�
𝑚𝑚𝑎𝑎𝑥𝑥

= 0.3 are constants.  

The Stokes number 𝑆𝑆𝑆𝑆 is expressed as: 

𝑆𝑆𝑆𝑆 = 𝜏𝜏𝑝𝑝𝑢𝑢∗
𝑎𝑎

,                                                                                                                          (41)                                                                                                                                                                                              

where 𝜏𝜏𝑝𝑝 is the particle relaxation time calculated as 𝜏𝜏𝑝𝑝 = 𝑉𝑉𝑔𝑔/g. 

The expression for 𝜂𝜂𝑑𝑑𝑚𝑚𝑝𝑝 is given as: 

𝜂𝜂𝑑𝑑𝑚𝑚𝑝𝑝 = 𝑒𝑒𝑥𝑥𝑝𝑝 � −0.1
𝑆𝑆𝑆𝑆𝑒𝑒−0.15

− 1
�𝑆𝑆𝑆𝑆𝑒𝑒−0.15

�        𝑙𝑙𝑓𝑓 𝑆𝑆𝑆𝑆𝑒𝑒 > 0.15,                                                       (42)                                                                                                                  

𝜂𝜂𝑑𝑑𝑚𝑚𝑝𝑝 = 0                                                  𝑙𝑙𝑓𝑓 𝑆𝑆𝑆𝑆𝑒𝑒 ≤ 0.15,                                                       (43)                                                                                                

where 𝑆𝑆𝑆𝑆𝑒𝑒 is the effective Stokes number calculated as: 

𝑆𝑆𝑆𝑆𝑒𝑒 = 𝑆𝑆𝑆𝑆 − 𝑅𝑅𝑒𝑒𝑆𝑆
−12,                                                                                                             (44)                                                                                                                                                                                    

where 𝑅𝑅𝑒𝑒𝑆𝑆 is the critical Reynolds number calculated as: 

𝑅𝑅𝑒𝑒𝑆𝑆 = �𝑈𝑈𝑆𝑆𝑡𝑡𝑝𝑝
𝑢𝑢∗
�
2
𝑅𝑅𝑒𝑒∗.                                                                                                            (45)                                                                                                                                                                        

The term 𝑉𝑉𝑔𝑔 in Eq. (35) is parameterized using Eq. (3). 
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Note that in the KS12 scheme, the parameterization of 𝑉𝑉𝑑𝑑 over smooth surfaces requires 

solving the universal velocity profiles (either numerically or analytically) described by 

Kouznetsov and Sofiev (2012). We exclude the details of the solution procedure in this 

paper. We used the analytical solutions of the velocity profile obtained from the authors of 

the KS12 scheme through personal communication. 

1.2.4 Zhang and He (2014) (ZH14) scheme 

Zhang and He (2014) developed an empirical resistance-based parameterization for dry 

deposition by modifying the Z01 scheme. The overall structure of the ZH14 scheme is 

similar to that of the Z01 scheme (i.e., 𝑉𝑉𝑑𝑑 is calculated using Eq. (2)). In the ZH14 scheme, 

the parameterizations of 𝑅𝑅𝑎𝑎 and 𝑅𝑅𝑔𝑔 are similar to those of the Z01 scheme. However, in the 

ZH14 scheme, parameterization for the surface resistance term 𝑅𝑅𝑠𝑠 were modified for three 

bulk particle sizes (i.e., PM2.5, PM2.5-10, and PM10+). Recalling, 𝑅𝑅𝑠𝑠 = 1/𝑉𝑉𝑑𝑑𝑠𝑠, the 

parameterizations of 𝑉𝑉𝑑𝑑𝑠𝑠 are given below. 

For particle sizes less than or equal to 2.5 µm (PM2.5), 𝑉𝑉𝑑𝑑𝑠𝑠 is expressed as: 

𝑉𝑉𝑑𝑑𝑠𝑠(𝑃𝑃𝐼𝐼2.5) = 𝐴𝐴1𝑢𝑢∗,                                                                                                               (46)                                                                                                                                                                                   

where 𝐴𝐴1 is an empirical constant derived by regression analysis. Values of 𝐴𝐴1 are given 

by Zhang and He (2014) for five groups of 26 LUCs.  

For particle sizes between 2.5 and 10 µm (PM2.5-10), 𝑉𝑉𝑑𝑑𝑠𝑠 is expressed as:   

𝑉𝑉𝑑𝑑𝑠𝑠(𝑃𝑃𝐼𝐼2.5−10) = (𝑜𝑜1𝑢𝑢∗ + 𝑜𝑜2𝑢𝑢∗2 +  𝑜𝑜3𝑢𝑢∗3)𝑒𝑒𝑘𝑘1�
𝐿𝐿𝐿𝐿𝐼𝐼

𝐿𝐿𝐿𝐿𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥
 −1�,                                                     (47)                                                                                                                    



27 

where 𝑜𝑜1, 𝑜𝑜2, and 𝑜𝑜3 are LUC dependent constants, 𝐿𝐿𝐴𝐴𝐿𝐿𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum leaf area index 

for a given LUC, and 𝑘𝑘1 is a constant, which is a function of 𝑢𝑢∗, and expressed as: 

𝑘𝑘1 = 𝑆𝑆1𝑢𝑢∗ + 𝑆𝑆2𝑢𝑢∗2 + 𝑆𝑆3𝑢𝑢∗3,                                                                                                  (48)                                                                                                                                             

where 𝑆𝑆1, 𝑆𝑆2, and 𝑆𝑆3 are the LUC dependent constants.  

For particle sizes larger than 10 µm (PM10+), 𝑉𝑉𝑑𝑑𝑠𝑠 is expressed as:   

𝑉𝑉𝑑𝑑𝑠𝑠(𝑃𝑃𝐼𝐼10+) = (𝑑𝑑1𝑢𝑢∗ + 𝑑𝑑2𝑢𝑢∗2 +  𝑑𝑑3𝑢𝑢∗3)𝑒𝑒𝑘𝑘2�
𝐿𝐿𝐿𝐿𝐼𝐼

𝐿𝐿𝐿𝐿𝐼𝐼𝑚𝑚𝑎𝑎𝑥𝑥
 −1�,                                                                (49)                                                                                                              

where 𝑑𝑑1, 𝑑𝑑2, and 𝑑𝑑3 are the LUC dependent constants, and 𝐿𝐿𝐴𝐴𝐿𝐿𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum leaf 

area index for a given LUC. The parameter 𝑘𝑘2 is a constant, which is a function of 𝑢𝑢∗, and 

is expressed as: 

𝑘𝑘2 = 𝑓𝑓1𝑢𝑢∗ + 𝑓𝑓2𝑢𝑢∗2 + 𝑓𝑓3𝑢𝑢∗3,                                                                                                  (50)                                                                                                                                                            

where 𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓3 are the LUC dependent constants.  

1.2.5 Zhang and Shao (2014) (ZS14) scheme 

Zhang and Shao (2014) used an analytical solution of the steady-state flux equation to 

derive an expression to compute dry deposition velocity 𝑉𝑉𝑑𝑑 as: 

𝑉𝑉𝑑𝑑 = �𝑅𝑅𝑔𝑔 + 𝑅𝑅𝑠𝑠−𝑅𝑅𝑔𝑔
exp (𝑅𝑅𝑎𝑎𝑅𝑅𝑔𝑔

)
�
−1

,                                                                                                       (51)                                                                                                                                     

For neutral atmospheric stability conditions, the parameterizations of 𝑅𝑅𝑎𝑎 for rough and 

smooth surfaces are given in Eqs. (52), and (53), respectively:  
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𝑅𝑅𝑎𝑎 = 𝑆𝑆𝑆𝑆𝑇𝑇
𝜅𝜅𝑢𝑢∗

𝑙𝑙𝑙𝑙 � 𝑧𝑧−𝑑𝑑
ℎ𝑐𝑐−𝑑𝑑

� ,        (𝐴𝐴𝑓𝑓𝑢𝑢𝑔𝑔ℎ 𝑜𝑜𝑢𝑢𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝑒𝑒𝑜𝑜)                                                                    (52)                                                                                                                                                  

𝑅𝑅𝑎𝑎 = 𝐵𝐵1𝑆𝑆𝑆𝑆𝑇𝑇
𝜅𝜅𝑢𝑢∗

𝑙𝑙𝑙𝑙 � 𝑧𝑧
𝑧𝑧0
� ,      (𝑜𝑜𝑚𝑚𝑓𝑓𝑓𝑓𝑆𝑆ℎ 𝑜𝑜𝑢𝑢𝐴𝐴𝑓𝑓𝐴𝐴𝑆𝑆𝑒𝑒𝑜𝑜)                                                                       (53)                                                                                                                         

where 𝐵𝐵1 is an empirical constant (0.45), and 𝑆𝑆𝑆𝑆𝑇𝑇 is the turbulent Schmidt number 

expressed as: 

𝑆𝑆𝑆𝑆𝑇𝑇 = �1 + 𝛼𝛼2𝑉𝑉𝑔𝑔2

𝑢𝑢∗2
�,                                                                                                            (54)                                                                                                                                     

where 𝛼𝛼 is a dimensionless coefficient taken as 1.  

The gravitational resistance term 𝑅𝑅𝑔𝑔 is calculated as 𝑅𝑅𝑔𝑔 = 1/𝑉𝑉𝑔𝑔. The 

parameterization of the surface resistance term 𝑅𝑅𝑠𝑠 is given by Zhang and Shao (2014) as 

follows:  

𝑅𝑅𝑠𝑠 = �𝑅𝑅𝑉𝑉𝑑𝑑𝑚𝑚 �
𝐸𝐸
𝐶𝐶𝑑𝑑

𝜏𝜏𝑐𝑐
𝜏𝜏

+ �1 + 𝜏𝜏𝑐𝑐
𝜏𝜏
� 𝑆𝑆𝑆𝑆−1 + 10

−3
𝑇𝑇𝑝𝑝,𝛿𝛿
+
� + 𝑉𝑉𝑔𝑔,𝑤𝑤�

−1

,                                                 (55)                                                                                                        

where  𝑅𝑅 = exp (−𝑜𝑜√𝑆𝑆𝑆𝑆) and where b is an empirical constant, 𝐸𝐸 is the total collection 

efficiency, 𝐶𝐶𝑑𝑑 is the drag partition coefficient, 𝑆𝑆𝑆𝑆 is the Schmidt number, 𝑇𝑇𝑝𝑝,𝛿𝛿
+  is the 

dimensionless particle relaxation time near the surface, and 𝑉𝑉𝑔𝑔,𝑤𝑤 is the gravitational settling 

velocity of particle after humidity correction. 𝜏𝜏𝑐𝑐
𝜏𝜏

 is the ratio of the drag on the roof of the 

roughness element (𝜏𝜏𝑆𝑆) to the total shear stress (𝜏𝜏) and is calculated as:  

𝜏𝜏𝑐𝑐
𝜏𝜏

=  𝛽𝛽𝜆𝜆𝑒𝑒
1+𝛽𝛽𝜆𝜆𝑒𝑒

,                                                                                                                        (56)                                                                                                                                                                                    
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where 𝛽𝛽 is the ratio of the pressure-drag coefficient to friction-drag coefficient, and 𝜆𝜆𝑒𝑒 is 

the effective frontal area index. The parameter 𝜆𝜆𝑒𝑒 is a function of frontal area index or 

roughness density (𝜆𝜆), and plane area index (𝜂𝜂). The expression of 𝜆𝜆𝑒𝑒 is 

𝜆𝜆𝑒𝑒 = 𝜆𝜆
(1−𝜂𝜂)𝑐𝑐2

𝑒𝑒𝑥𝑥𝑝𝑝 �− 𝑆𝑆1𝜆𝜆
(1−𝜂𝜂)𝑐𝑐2

�,                                                                                                  (57)                                                                                                                                      

where 𝑆𝑆1 = 6 and 𝑆𝑆2 = 0.1.  

Eq. (56) is used to compute 𝑇𝑇𝑝𝑝,𝛿𝛿
+  as: 

𝑇𝑇𝑝𝑝,𝛿𝛿
+ = 𝑇𝑇𝑝𝑝,𝛿𝛿𝑢𝑢∗2

𝜈𝜈
,                                                                                                                           (58)                                                                                                                                                                                                 

where 𝑇𝑇𝑝𝑝,𝛿𝛿 is the particle relaxation time near the surface (𝑇𝑇𝑝𝑝,𝛿𝛿 = 𝑉𝑉𝑔𝑔/𝑔𝑔).  

𝑉𝑉𝑑𝑑𝑚𝑚 is calculated using two separate expressions for rough and smooth surfaces, as 

expressed in Eqs. (59) and (60), respectively:  

𝑉𝑉𝑑𝑑𝑚𝑚 = 𝑢𝑢∗
𝑢𝑢𝑎𝑎ℎ𝑐𝑐

      (𝑓𝑓𝑓𝑓𝐴𝐴 rough surfaces),                                                                                 (59)                                                                                                                           

where 𝑢𝑢𝑎𝑎 is the horizontal air speed and ℎ𝑆𝑆 is the height of the roughness element.  

𝑉𝑉𝑑𝑑𝑚𝑚 = 𝐵𝐵2𝑢𝑢∗   (for smooth surfaces),                                                                                (60)                                                                                                                                                 

where 𝐵𝐵2 is an empirical constant taken as 3.  
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In Eq. (55), the total collection efficiency (𝐸𝐸) is comprised of collection efficiencies by 

Brownian diffusion (𝐸𝐸𝐵𝐵), impaction (𝐸𝐸𝐼𝐼𝐼𝐼), and interception (𝐸𝐸𝐼𝐼𝐼𝐼). The parameterizations 

for each of these three terms are given below: 

𝐸𝐸𝐵𝐵 = 𝐶𝐶𝐵𝐵𝑆𝑆𝑆𝑆−2/3𝑅𝑅𝑒𝑒𝑖𝑖𝐵𝐵−1,                                                                                                         (61)                                                                                                                                                                           

where 𝐶𝐶𝐵𝐵 and 𝑙𝑙𝐵𝐵 are empirical parameters function of flow regimes, and are given by 

Zhang and Shao (2014).  

𝐸𝐸𝐼𝐼𝐼𝐼 = � 𝑆𝑆𝑆𝑆
0.6+𝑆𝑆𝑆𝑆

�
2

 ,                                                                                                                (62)                                                                                                                                                                                      

where 𝑆𝑆𝑆𝑆 is the Stokes number and is expressed as 𝑆𝑆𝑆𝑆 = 𝜏𝜏𝑝𝑝𝑢𝑢∗/𝑑𝑑𝑆𝑆. Here, 𝑑𝑑𝑆𝑆 is the diameter 

of the surface collection element. Values of 𝑑𝑑𝑆𝑆 are given by Zhang and Shao (2014) for 

various surfaces.  

𝐸𝐸𝐼𝐼𝐼𝐼 = 𝐴𝐴𝑑𝑑𝑖𝑖𝑢𝑢∗10−𝑆𝑆𝑆𝑆 2𝑑𝑑𝑝𝑝,𝑤𝑤

𝑑𝑑𝑐𝑐
,                                                                                                     (63)                                                                                                                                                                     

where 𝐴𝐴𝑑𝑑𝑖𝑖 is a surface dependent micro-roughness characteristic element, and 𝑑𝑑𝑝𝑝,𝑤𝑤 is the 

wet diameter of the particle.  

1.3 Methods 

1.3.1 An evaluation of the dry deposition parameterizations  

To assess the accuracy of the five parameterizations, the modeled dry deposition velocities 

were compared with field measurements from both rough and smooth surfaces. The 

measurement studies conducted on various natural surfaces were collected from the 
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literature. More specifically, the studies citied in the review article on particle flux 

measurements by Pryor et al. (2008) were collected to acquire the meta-data on particle 

deposition. The availability of the measured and/or reported parameters (e.g., particle size 

and density, air temperature, relative humidity, horizontal wind speed, friction velocity, 

atmospheric stability parameter, canopy height, roughness height, zero-plane displacement 

height, and leaf area index) from these measurement studies was thoroughly investigated 

and compiled. It was found that many (ca. 50%) of the studies citied by Pryor et al. (2008) 

did not report most of the aforementioned parameters necessary to run the 

parameterizations to perform a valid comparison between the model output and 

measurements. To reduce uncertainty, those studies were excluded from the 

parameterization accuracy evaluation. In addition, a literature search was performed in 

Web of Science® to find measurement studies published after 2008, and those studies were 

thoroughly assessed to determine the availability of required input parameters to run the 

dry deposition models. Finally, 29 measurement studies covering five land use categories 

(LUCs) were selected to evaluate the accuracy of the five parameterizations. The five 

LUCs include grass, deciduous, and coniferous forests (rough surfaces), and natural water 

and ice/snow (smooth surfaces). Table 1 summarizes information related to sampling 

location, latitude, longitude, elevation above mean sea level (AMSL), sampling periods, 

and particle sizes reported in the measurement studies. The global spatial distribution of 

these measurement studies is shown in Figure 1 according to the five LUCs.  
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Figure 1. Global distribution of dry deposition measurement locations (listed in Table 1) 
used to evaluate the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations. Note that for 
multiple measurement campaigns conducted in one location, only one data point is shown. 
Two wind tunnel studies on water surfaces are not shown.               

Measurements conducted over grass by Wesely et al. (1977), Neumann and den Hartog 

(1985), Allen et al. (1991), Nemitz et al. (2002), and Vong et al. (2004) were used to 

evaluate the performance of the five parameterizations. For coniferous forest, modeled 

deposition velocities were compared with measurements from Lamaud et al. (1994), 

Wyzers and Duyzer (1996), Gallagher et al. (1997), Ruijgrok et al. (1997), Buzorius et al. 

(2000), Rannik et al. (2000), Gaman et al. (2004), Pryor et al. (2007), and Grönholm et al. 

(2009). Experiments conducted over deciduous forest are limited, and only three studies 

(Wesely et al., 1983; Pryor, 2006; Matsuda et al., 2010) were used in the present paper.  

To evaluate the performance of the parameterizations over water surfaces, studies by 

Möller and Schumann (1970), Sehmel et al. (1974), Zufall et al. (1998) and Caffrey et al. 

(1998) were used. We note that the studies by Möller and Schumann, and Sehmel et al. 

were conducted in the wind tunnels, and thus the observed deposition does not necessarily 
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reflect deposition under natural conditions. Particle deposition measurements on ice/snow 

pack were collected from eight studies: Ibrahim (1983); Duan et al. (1988); Nilsson and 

Rannik (2001); Gronlund et al. (2002); Contini et al. (2010); Held et al. (2011a); Held et 

al. (2011b); and Donateo and Contini (2014). The parameterizations were fed using 

reported values of particle properties (diameter and density), meteorological conditions 

(stability parameter, temperature, wind speed, etc.), and surface properties (canopy height, 

roughness length, leaf area index, etc.). However, reasonable values of the missing 

parameters were used when needed.  

In the present study, the accuracy of the dry deposition parameterizations was evaluated 

using the normalized mean bias factor (BNMBF). The BNMBF provides a statistically robust 

and unbiased symmetric measure of the factor by which the modeled dry deposition 

velocities differ from the measured ones, and the sense of that factor (i.e., the positive and 

negative values imply the oveprediction and underprediction by models, respectively). The 

interpretation of the BNMBF  is simple (i.e., average amount by which the ratio of modeled 

and measured quantities differ from unity), and it avoids any inflation that may be caused 

by low values of measured quantities (Yu et al., 2006).  

To quantify the disagreement between the modeled and observed quantities, the normalized 

mean bias factors were calculated for the pairs of modeled (𝑉𝑉𝑑𝑑(𝑚𝑚𝑙𝑙𝑑𝑑𝑒𝑒𝑙𝑙𝑒𝑒𝑑𝑑),𝑑𝑑) and measured 

dry deposition velocities (𝑉𝑉𝑑𝑑(𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑢𝑢𝑑𝑑𝑒𝑒𝑑𝑑),𝑑𝑑), respectively. In this study, the expressions for 

computing BNMBF used in two different forms, which are: 

 



For the 𝑉𝑉𝑑𝑑(𝑚𝑚𝑙𝑙𝑑𝑑𝑒𝑒𝑙𝑙𝑒𝑒𝑑𝑑),𝑑𝑑 > 𝑉𝑉𝑑𝑑(𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑢𝑢𝑑𝑑𝑒𝑒𝑑𝑑),𝑑𝑑 case (i.e., overestimation): 

𝐵𝐵𝐼𝐼𝐼𝐼𝐵𝐵𝐹𝐹 =
∑𝑉𝑉𝑑𝑑(𝑚𝑚𝑡𝑡𝑑𝑑𝑒𝑒𝑚𝑚𝑒𝑒𝑑𝑑),𝑖𝑖
∑𝑉𝑉𝑑𝑑(𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑),𝑖𝑖

− 1  (64)

For the 𝑉𝑉𝑑𝑑(𝑚𝑚𝑙𝑙𝑑𝑑𝑒𝑒𝑙𝑙𝑒𝑒𝑑𝑑),𝑑𝑑 < 𝑉𝑉𝑑𝑑(𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑢𝑢𝑑𝑑𝑒𝑒𝑑𝑑),𝑑𝑑 case (i.e., underestimation): 

𝐵𝐵𝐼𝐼𝐼𝐼𝐵𝐵𝐹𝐹 = 1 −
∑𝑉𝑉𝑑𝑑(𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑚𝑚𝑚𝑚𝑒𝑒𝑑𝑑),𝑖𝑖
∑𝑉𝑉𝑑𝑑(𝑚𝑚𝑡𝑡𝑑𝑑𝑒𝑒𝑚𝑚𝑒𝑒𝑑𝑑),𝑖𝑖

  (65)

The step-wise derivation of the Eqs. (64-65) and their application on training air quality 

data sets are illustrated by Yu et al. (2006).      

1.3.2 Uncertainty analysis 

To quantify the influence of imprecision in the model input parameter values on the 

modeled velocities, a classical Monte Carlo uncertainty analysis was applied. The Monte 

Carlo techniques have been widely used to evaluate the propagated uncertainty in the 

modeled outputs in many geophysical models (e.g., Alcamo and Bartnickj, 1987; Derwent 

and Hov, 1988; Chen et al., 1997; Tatang et al., 1997; Hanna et al., 1998, 2001; Bergin et 

al., 1999; Bergin and Milford, 2000; Beekman et al., 2003; Mallet and Sportisse, 2006). 

Monte Carlo uncertainty evaluation techniques are relatively straightforward and flexible 

means for incorporating probabilistic values in the modeled dry deposition velocities. 

Indeed, the techniques are less reliant on assumptions about distributions of the input 

parameters (Hanna et al., 2001).  

35 
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In this study, we define uncertainty in the parameterizations as the inability to confidently 

specify single-valued quantities because of the imprecision in the model input parameters. 

A classical Monte Carlo uncertainty method was applied to assess the overall uncertainty 

of a dry deposition parameterization with regard to the uncertainties in the following input 

parameters: RH, h, z0, d, LAI, U, u*, and LO. The uncertainty estimates for those input 

parameters were obtained from the literature and are presented in Table 2. Using the 

uncertainty ranges for each of these parameters, uniform probability distribution functions 

were assigned since information on their actual distributions are lacking.  It is noted that a 

constant dry particle density of 1500 kg m-3 (Petroff and Zhang 2010) was used in all Monte 

Carlo simulations. Because of the inhomogeneous nature of ambient particles, accurate 

measurement of particle density is challenging. In their work, Oskouie et al. (2003) 

developed methods using a time-of-flight instrument to minimize the effect of uncertainties 

in density estimation in particle size characterization.  
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Table 2. Parameter values and associated uncertainties in Monte Carlo simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

The Monte Carlo simulations were performed using R statistical software (version 3.2.4). 

Each simulation was run by randomly drawing 100 samples from the assigned uniform 

probability density function (PDF). The simulations were repeated 10,000 times. 

Frequency distributions or the PDFs of the modeled dry deposition velocity are the basic 

Parameter  Base value    
(assumed)            

Uncertainty  Reference* 

Relative humidity, RH (%) 80      (all LUCs) ±5% Heinonen 
(2002)  

Wind speed, U (m/s) 4        (all LUCs) ±3% 
Högström and 
Smedman 
(2004) 

Friction velocity, u* (m/s) 0.3     (all LUCs) ±10% Andreas (1992) 

Monin-Obukhov length, LO (m) 50      (all LUCs) ±10% Weidinger et al. 
(2000) 

Roughness length, z0 (m) 

0.04    (Grass) 

±25% 

 

Su et al. (2001) 

 

1.2      (Coniferous forest) 

1.5      (Deciduous forest) 

0.001  (Ice/snow) 

Canopy height, h (m) 

0.5      (Grass) 

±5% 
Larjavaara and 
Muller‐Landau 
(2013) 

15       (Coniferous forest) 

25       (Deciduous forest) 

Zero-plane displacement height,  

d (m) 

0.3      (Grass) 

±25% Su et al. (2001) 7         (Coniferous forest) 

16       (Deciduous forest) 

Leaf area index (one-sided),  

LAI (m2/m2) 

4         (Grass) 

10       (Coniferous forest) 

10       (Deciduous forest) 

±5% Richardson et al. 
(2011) 

* The references are for the uncertainty values (in percentage). 
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results of the Monte Carlo simulations. These PDFs were approximated assuming normal 

distributions, and then the 5th, 50th, and 95th percentile dry deposition velocities were 

computed. We use the range of the central 90% (the difference between 95th and 5th 

percentiles) of the PDFs as a convenient measure of uncertainty in the modeled deposition 

velocity. These steps were repeated for all five parameterizations using seven different 

particle sizes: 0.005, 0.05, 0.5, 1.0, 1.5, 2.0, and 2.5 µm on the selected five LUCs (i.e., 

grass, deciduous and coniferous forests, water, and ice/snow). These particle sizes were 

selected to represent four distinct particle modes: nucleation (<0.01 μm), Aitken (0.01-0.1 

μm), accumulation (0.1-1.0 μm), and coarse (>1.0 μm), respectively. 

1.3.3 Sensitivity analysis 

In this study, the Sobol’ sensitivity method (Sobol’ 1990) was applied to identify the most 

influential input parameter or the set of parameters of a dry deposition parameterization, 

and to characterize the relative contribution of the parameters to the overall variability in 

the modeled 𝑉𝑉𝑑𝑑. As opposed to the local sensitivity analysis (e.g., OAT approach), the 

Sobol’ method is a global sensitivity approach, in which a set of input parameters of a 

model can be varied simultaneously over their entire parameter value space to identify their 

relative contributions to the overall model output variance. The Sobol’ method has been 

applied in environmental modeling applications (Tang et al., 2007; Pappenberger et al., 

2008; van Werkhoven et al., 2008; Yang, 2011), but has not yet been applied in dry 

deposition modeling research. Given that in most of the dry deposition parameterizations, 

model inputs can span a wide range within their physical realms, the application of a global 
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sensitivity analysis used in this study should be viewed as a critical step toward the 

understanding of different sub-physical processes of particle deposition. 

In the Sobol’ method, the variance contributions to the total output variance of individual 

parameters and parameter interactions can be determined. These contributions are 

characterized by the ratio of the partial variance (𝑉𝑉𝑑𝑑) to the total variance (𝑉𝑉) as expressed 

in Eq. 66. This ratio is commonly termed as Sobol’ first order index (𝑆𝑆𝑑𝑑) (Saltelli et al., 

2010; Nossent et al., 2011). The first order indices represent the fractions of the 

unconditional model output variance. In this study, Sobol’ first order sensitivity indices 

were calculated as: 

𝑆𝑆𝑑𝑑 =
𝑉𝑉𝑑𝑑
𝑉𝑉

=
𝑉𝑉𝑋𝑋𝑖𝑖(𝐸𝐸𝑿𝑿~𝑖𝑖

(𝑉𝑉𝑑𝑑|𝑋𝑋𝑑𝑑))
𝑉𝑉(𝑉𝑉𝑑𝑑)

,                                                                                                      (66) 

where 𝑋𝑋𝑑𝑑 is the i-th input parameter and 𝑿𝑿~𝑑𝑑 denotes the matrix of all input parameters but 

𝑋𝑋𝑑𝑑. The meaning of the inner expectation operator is that the mean of 𝑉𝑉𝑑𝑑 is taken over all 

possible values of 𝑋𝑋~𝑑𝑑 while keeping 𝑋𝑋𝑑𝑑 fixed. The outer variance is taken over all possible 

values of 𝑋𝑋𝑑𝑑. The variance 𝑉𝑉(𝑉𝑉𝑑𝑑) in the denominator is the total (unconditional) variance.  

The numerator in Eq. (66) can be interpreted as follows: 𝑉𝑉𝑋𝑋𝑖𝑖(𝐸𝐸𝑿𝑿~𝑖𝑖
(𝑉𝑉𝑑𝑑|𝑋𝑋𝑑𝑑)) is the expected 

reduction in variance that would be obtained if 𝑋𝑋𝑑𝑑 could be fixed. In regard to the variability 

of the model input parameters in dry deposition schemes, 𝑆𝑆𝑑𝑑 provides a means to quantity 

the effect of parameter 𝑋𝑋𝑑𝑑 by itself. A higher order (𝑆𝑆𝑑𝑑𝑖𝑖) or total order (𝑆𝑆𝑇𝑇𝑑𝑑) can be 

computed when the total effect of a parameter, inclusive of all its interaction with other 



40 

model input parameters, are of interest. In this paper, we confine the sensitivity analysis to 

Sobol’ first order indices only.   

For each of the five parameterizations evaluated here, four to nine input parameters were 

selected for determining the first order Sobol’ sensitivity indices. An exception to applying 

the Sobol’ method was made for the KS12 parameterization while evaluating the parameter 

sensitivity for smooth surfaces. Due to the complex nature of KS12 smooth surface 

parameterization, it was not computationally feasible to apply the Sobol’ method. Instead, 

the OAT approach was applied for water and ice/snow surfaces. Note that the total number 

of input parameters that go into each model varies between parameterizations, and LUC 

types. For each parameterization, five particle sizes (dp = 0.001, 0.01, 0.1, 1.0, and 10 µm) 

were assessed for Sobol’ analysis. The sensitivity of each parameterization was tested for 

the following three sets of input parameters for five LUCs: (i) particle properties, (ii) 

aerodynamic parameters, and (iii) surface characteristics of particle deposition. First, the 

sensitivity of particle deposition to particle properties (aerodynamic diameter and density) 

was tested. Sensitivity indices were calculated for the particle size range of 0.001 μm to 10 

μm. Second, the sensitivity of the schemes was tested for aerodynamic parameters (friction 

velocity, wind speed, and stability condition) for different particle sizes one-at-a-time. 

Third, the sensitivity of the schemes to surface characteristics was tested. Surface 

characteristics include h, z0, d, and LAI. The sensitivity ranges for the parameter values 

used for Sobol’ analysis are reported in Table 3. 
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Table 3. Input parameter ranges for Sobol’ sensitivity analysis. 

Parameter Range Reference 

Relative humidity, RH (%) 10-100        (all LUCs) Assumed 

Dry particle density, ρ (kg m-3) 1500-2000  (all LUCs) Studies # 1-29 

Wind speed, U (m/s) 1-5              (all LUCs) Studies # 1-29 

Friction velocity, u* (m/s) 0.1-0.5        (all LUCs) Studies # 1-29 

Monin-Obukhov length, LO (m) 10-100        (all LUCs) Studies # 1-29 

Roughness length, z0 (m) 

0.02-.0.10   (Grass) Studies # 1-5 

0.9-3.0        (Coniferous forest) Studies # 6-14 

0.5-1.5        (Deciduous forest) Studies # 15-17 

0.00002-0.0066   (Ice/snow) Studies # 22-29 

Canopy height, h (m) 

0.15-0.77    (Grass) Studies # 1-5 

14-20      (Coniferous forest) Studies # 6-14 

20-25      (Deciduous forest) Studies # 15-17 

Zero-plane displacement height, d (m) 

0.10-0.49    (Grass) Studies # 1-5 

7-12      (Coniferous forest) Studies # 6-14 

8-16      (Deciduous forest) Studies # 15-17 

Leaf area index (one-sided), LAI (m2/m2) 

1-4      (Grass) Studies # 1-5 

0.2-10         (Coniferous forest) Studies # 6-14 

0.2-10         (Deciduous forest) Studies # 15-17 
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The Sobol 2007 package in R statistical software package (version 3.2.4) was used to 

perform the Sobol’ sensitivity analysis. In the Sobol’ method, the Monte Carlo simulations 

were performed by drawing samples from the assigned parameter value distribution. In this 

study, all the selected parameters were approximated using uniform PDFs. To assert 

uncertainty in the simulations, bootstrapping (Efron and Tibshirani, 1994) with re-

sampling was used to achieve 95% confidence intervals on the Sobol’ first order indices. 

For a fixed particle size, the simulations were run 100,000 times and samples were 

bootstrapped 1,000 times. To identify the most important parameters in each of the five dry 

deposition models with respect to particle size and LUC, a parameter ranking (e.g., from 

most to least influential) was conducted.  

The results section is organized in the following manner. First, the accuracy of five dry 

deposition parameterizations (i.e., Z01, PZ10, KS12, ZH14, and ZS14) are compared with 

measured dry deposition velocities obtained from five LUCs. Second, the uncertainties in 

modeled dry deposition velocities due to the imprecision in the model input parameter 

values quantified using Monte Carlo simulation techniques are presented. Third, the 

sensitivity analysis results for modeled dry deposition velocities by the five 

parameterizations are presented.   

1.4 Results 

1.4.1 Evaluation of the dry deposition parameterizations  

Field measurements conducted on five LUCs: grass, coniferous forest, deciduous forest, 

water surfaces, and ice/snow were used to evaluate the agreement between measured and 
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modeled dry deposition velocity (Vd). The parameterizations were run using reported 

values of the meteorological (e.g., U, u*, T, RH, and LO) and canopy (e.g., h, z0, d, and LAI) 

parameters, and particle properties (e.g., dp and 𝜌𝜌) from the measurement studies. 

Reasonable parameter values were assumed for any missing or unreported parameters. 

Normalized mean bias factors (BNMBF) were used as an indicator of the agreement between 

measured and modeled Vd. BNMBF is a signed quantity-its magnitude indicates the factor by 

which the modeled and observed Vd differ from each other, and its sign provides an 

indicator as to whether the modeled Vd is greater or less than the measured Vd. It is to be 

noted that uncertainties in the measured dry deposition velocities were not considered 

while evaluating the performance of the five parameterizations in terms of accuracy. 

Evaluation of dry deposition to grass 

Five measurement studies conducted on grass (Wesely et al., 1977; Allen et al., 1991; 

Neumann and den Hartog, 1985; Nemitz et al., 2002; and Vong et al., 2004) were used to 

evaluate the accuracy of the parameterizations. In those studies, reported values of 

meteorological parameters, canopy properties, and particle size vary widely. For example, 

the u* varies from 0.05 to 0.70 m/s, wind speed (U) varies from 0.67 to 6.20 m/s, particle 

size (dp) varies from 0.05 to 2.28 µm, and LAI varies from 2 to 4 m2/m2. The 

parameterizations were fed with reported values from each of the studies to reduce any 

uncertainty in the accuracy comparison; however, for any missing parameter value(s), the 

assumed input parameter values typically fell within the aforementioned ranges.  
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Table 4 summarizes the BNMBF for modeled Vd computed against five measurement studies 

on grass. The BNMBF is interpreted as follows: for example, if BNMBF is positive, the 

parameterization overestimates the measured Vd  by a factor of BNMBF+1. If BNMBF is 

negative, the model underestimates the measured Vd by a factor of 1-BNMBF. For the case 

using the observations from Allen et al. (1991), the BNMBF values of -17.61, -18.12, -0.55, 

and -5.13 indicate that the Z01, KS12, ZH14, and ZS14 parameterizations underestimated 

the measured Vd by factors of 18.61, 19.12, 1.55, and 6.13, respectively, whereas, the 

BNMBF value of +15.96 indicates that the PZ10 parameterization overestimated the 

observations by a factor of 16.96. 

Table 4. Results of the normalized mean bias factors for grass (boldfaced value indicates the 
most accurate parameterization). 

         Dry particle deposition parameterization 
Study Z01 PZ10 KS12 ZH14 ZS14 
Allen et al. (1991) -17.61 15.96 -18.12 -0.55 -5.13
Wesely et al. (1977) -2.78 -28.78 -7.56 -10.62 -102.92
Neumann and den 
Hartog (1985) 

0.96 -0.12 -0.50 4.79 0.56

Nemitz et al. (2002) 5.15 1.12 -3.82 2.17 -0.10
Vong et al. (2004) -4.55 -4.55 -25.71 -2.12 -4.03
Five studies 5.45 -1.80 -9.37 -0.54 -4.30

These results provide means for a relative comparison of the parameterizations’ accuracy. 

For instance, the BNMBF values corresponding to the Allen et al. study suggest that the ZH14 

parameterization is the most accurate and the KS12 parameterization is least accurate. 

Similar comparison between the modeled and observed Vd can be made using the BNMBF 

values for the remaining four studies in Table 4. Nonetheless, it is evident that none of the 

parameterizations performed best in terms of accuracy for all of the five studies since the 

BNMBF values show high variability both in terms of the magnitude and direction of the bias 

(i.e., positive or negative) when assessed against all the five studies listed in Table 4.  
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The characteristics of a parameterization (e.g., Z01) to simultaneously over-predict (i.e., 

the positive BNMBF for Neumann and den Hartog, and Nemitz et al.) and under-predict (i.e., 

the negative BNMBF for Allen et al. 1991, Wesely et al. 1977, and Vong et al., 2004) the 

measurements could be misleading, resulting in erroneous judgement of the performance 

of the parameterizations. To address this limitation, an ensemble approach was taken, in 

which BNMBF was calculated for each of the parameterizations using all the observations 

reported in the five studies. The results from this ensemble analysis indicate that, except 

for the Z01 parameterization, the other four parameterizations underestimated the measured 

Vd by factors ranging from 1.54 to 10.37. In contrast, the Z01 parameterization 

overestimated the observation by a factor of 6.45 (Table 4). Overall, these results indicate 

that the ZH14 parameterization provided the best agreement between the measured and 

modeled Vd of the five parameterizations. 

Evaluation of dry deposition to coniferous forest 

Nine studies conducted on coniferous forest (Lamaud et al., 1994; Wyers and Duyzers, 

1997; Gallagher et al., 1997; Ruijgrok et al., 1997; Rannik et al., 2000; Buzorious et al., 

2000; Gaman et al., 2004; Pryor et al., 2007; and Grönholm et al., 2009) were used to 

evaluate the accuracy of the parameterizations. In these studies, the largest variations 

(ranges are given in the parentheses) were associated with u* (0.06-1.30 m/s), U (0.60-6.19 

m/s), LAI (6-10 m2/m2), and dp (0.01-0.60 µm). For any missing parameter value(s), the 

assumed input parameter values typically fell within the aforementioned ranges. 
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Comparison of the computed BNMBF values for coniferous forest (Table 5) shows that the 

majority of the simulations performed using the five parameterizations underestimated the 

measured Vd. For example, the PZ10 parameterization underestimated observed Vd by 

factors ranged from 1.51 to 27.98 (BNMBF values varied from -0.51 to -26.98) for eight of 

the nine studies on coniferous forest. Table 5 also illustrates that both the magnitude and 

sign of the BNMBF values varied widely when the accuracy of the five parameterizations 

was evaluated against only one study (e.g., Pryor et al., 2007). Of the BNMBF values 

associated with the Rannik et al. (2000) study, the Z01 and KS12 parameterizations 

overestimated the measured Vd by factors of 4.16 and 1.51, respectively, whereas the PZ10, 

ZH14, and ZS14 parameterizations underestimated the measured Vd by factors of 3.54, 

2.13, and 19.75, respectively. The bias factors for the Z01 parameterization for the 

following studies: Lamaud et al. (1994), Gallagher et al. (1997), Buzorious et al. (2000), 

and Gaman et al. (2004), were +0.77, -1.74, +0.75, and -0.90, respectively. Comparing 

these values with the corresponding BNMBF values of the other four parameterizations, it 

can be deduced that the Z01 parameterization is the most accurate against those 

observations reported in these four studies. However, the accuracy of the Z01 

parameterization is not the best for the other five studies, as can be seen from Table 5.  
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Table 5. Results of the normalized mean bias factors for coniferous forest (boldfaced 
value indicates the most accurate parameterization). 

              Dry particle deposition parameterization 
Study Z01 PZ10 KS12 ZH14 ZS14 
Lamaud et al. (1994) 0.77 -12.75 -1.91 -2.14 -16.71
Wyers and Duyzers (1996) -25.98 -26.98 -81.39 -13.57 -4.51
Gallagher et al. (1997) -1.74 -6.34 -19.83 -1.90 -2.39
Ruijgrok et al. (1997) -5.70 -0.51 -0.93 -2.58 -0.48
Rannik et al. (2000) 3.16 -2.54 0.51 -1.13 -18.75
Buzorious et al. (2000) 0.75 -6.65 -2.91 -4.53 -67.41
Gaman et al. (2004) -0.90 -13.00 -6.12 -1.84 -17.45
Pryor et al. (2007) 0.69 -5.37 -0.26 -0.84 -12.22
Grönholm et al. (2009) 0.95 0.13 1.55 1.72 -1.90
Nine studies -2.35 -3.93 -1.75 -2.31 -3.67

An ensemble approach similar to the one described in the previous section was used to 

determine the most and the least accurate parameterizations. From this analysis, the bias 

factors for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations are -2.35, -3.93, -1.75, 

-2.31, and -3.67, respectively, suggesting that the KS12 is the most accurate

parameterization (i.e., under-predicted the observations by a factor of 2.75), and the PZ10 

is the least accurate parameterization (i.e., under-predicted the observations by a factor of 

4.93) for coniferous forest. It can be noted that the performance of the Z01 and ZH14 

parameterizations are nearly identical, while the ZH14 is the second most accurate (i.e., 

under-predicted the observations by a factor of 3.31). 

Evaluation of dry deposition to deciduous forest 

A similar comparison between measured and modeled Vd was performed using three 

studies (Wesely et al., 1983; Pryor, 2006; and Matsuda et al., 2010) for deciduous forest. 

In these studies, the largest variations (ranges are given in the parentheses) were associated 
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with u*  (0.12-1.13 m/s), U (1.20-6.00 m/s), LAI (0.20-10 m2/m2), and dp (0.05-2.50 µm). 

For any missing parameter value(s), the assumed input parameter values typically fell 

within the aforementioned ranges. 

Computed BNMBF values for deciduous forest are presented in Table 6. For the Wesely et 

al. (1983) study, comparison of the BNMBF values between the parameterizations show that 

the performance of the ZS14 parameterization was the most accurate (i.e., BNMBF = -2.28; 

under-predicted the observations by a factor of 3.28). The BNMBF values associated with 

the PZ10 parameterization showed strong variation between the studies (e.g., two orders 

of magnitude discrepancy between the Wesely et al. (1983) and Pryor (2006) or Matsuda 

et al. (2010) studies). 

Table 6. Results of the normalized mean bias factors for deciduous forest (boldfaced value 
indicates the most accurate parameterization). 

           Dry particle deposition parameterization 
Study Z01 PZ10 KS12 ZH14 ZS14 
Wesely et al. (1983) -9.25 -130.30 -34.58 -5.27 -2.28
Pryor (2006) 1.55 -2.42 -2.42 -0.90 -13.62
Matsuda et al. (2010) -5.19 -1.34 -1.91 -2.37 -0.15
Three studies -8.11 -4.51 -4.96 -3.75 -10.93

Evidently, none of the parameterizations performed consistently better for all the three 

studies. Overall, the results from the ensemble approach show that all the parameterizations 

overestimated the observations reported in three studies. Considering the BNMBF values 

obtained by this approach, it is apparent that the ZH14 is the most accurate parameterization 

(i.e., BNMBF = -3.75, underestimated the observed Vd by a factor of 4.75), and the ZS14 is the 

least accurate of the five parameterizations (i.e., BNMBF = -10.93, underestimated the 

observed Vd by a factor of 11.93) for deciduous forest. 
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Evaluation of dry deposition to water surfaces 

Only a limited number of measurement studies on size-segregated dry deposition over 

natural water surfaces are available in the literature. In this research, four studies (Möller 

and Schumann, 1970; Sehmel et al., 1974; Zuffal et al., 1998; and Caffery et al., 1998) 

conducted over water surfaces were used to evaluate the parameterizations’ accuracy. From 

these studies, the reported values of the parameters that show the largest variations (ranges 

are given in the parentheses) are u* (0.11-0.40 m/s) and dp (0.03 to 48 µm).  

Table 7 shows that the PZ10 parameterization performed best for two studies (i.e., Möller 

and Schumann, 1970; and Caffery et al., 1998), in which BNMBF values were -1.65 and 

+0.35, respectively. Comparison of the BNMBF values between the Z01 and ZH14

parameterizations reveal that the accuracy of the two parameterizations varied widely 

among the studies (e.g., BNMBF ranged from -0.144 to +18.87 and -0.33 to +10.28, 

respectively). Nevertheless, none of the five parameterizations was able to reproduce the 

measured Vd satisfactorily for all the four studies. Comparison of the BNMBF values obtained 

by the ensemble approach showed that the ZH14 parameterization is the most accurate, 

which underestimated the measured Vd by a factor of 1.25 (i.e., BNMBF = -0.25), and the 

PZ10 is the least accurate parameterization (i.e., BNMBF = -0.89). 
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Table 7. Results of the normalized mean bias factors for water surfaces (boldfaced value 
indicates the most accurate parameterization). 

        Dry particle deposition parameterization 
Study Z01 PZ10 KS12 ZH14 ZS14 
Möller and Schumann (1970) 18.87 -1.65 -2.51 10.28 106.00 
Sehmel et al. (1974) 0.44 0.45 -0.59 1.51 3.65 
Zufall et al. (1998) -0.144 -0.39 -0.47 -0.33 5.14 
Caffrey et al. (1998) 0.75 0.35 -0.85 0.70 3.61 
Four studies 0.52 -0.89 -0.64 -0.25 4.22 

Evaluation of dry deposition to snow and ice surfaces 

Two studies over snow (Ibrahim, 1983; and Duan et al., 1987), and six studies over ice 

surfaces (Nilsson and Rannik, 2001; Gronlund et al., 2002; Contini et al., 2010; Held et al., 

2011a; Held et al., 2011b; and Donateo and Contini, 2014) were used to evaluate the 

accuracy of the four parameterizations (Z01, PZ10, KS12, and ZH14) for smooth surfaces. 

The ZS14 parameterization was not included here because it does not allow prediction of 

deposition over ice/snow surfaces. The BNMFB values for the parameterizations are 

presented in Table 8.  

Table 8. Results of the normalized mean bias factors for ice/snow surfaces (boldfaced value 
indicates the most accurate parameterization). 

 Dry particle deposition parameterization 
Study Z01 PZ10 KS12 ZH14 
Gronlund et al. (2002) -1.22 -271.73 -105.92 -2.58
Contini et al. (2010) 5.68 -57.22 -24.96 0.62
Held et al. (2011a) 2.96 -38.66 -15.58 0.67
Held et al. (2011b) 2.78 -42.93 -16.71 0.52
Donateo and Contini (2014) 1.62 -35.26 -12.57 -0.32
Ibrahim (1983) 4.14 -6.72 -7.72 3.98
Duan et al. (1987) 0.22 -12.09 -15.49 0.42
Nilsson and Rannik (2001) 1.69 -37.78 -13.46 -0.74
Eight studies 1.98 -53.03 -21.80 0.26 
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Of the four parameterizations, agreement between the modeled and measured Vd is not 

satisfactory for the PZ10 and KS12 parameterizations because they significantly 

underestimated the measured Vd (e.g., the bias factors from ensemble approach are -53.03 

and -21.80, respectively). In contrast, the Z01 and ZH14 parameterizations predicted the 

measured Vd with reasonable accuracy (e.g., the bias factors from ensemble approach were 

+1.98 and +0.26, respectively). Table 8 also shows that the ZH14 parameterization

performed best for six of the eight measurements in which the BNMBF varied between -0.74 

to 3.98. Overall, for the nine studies combined (i.e., ensemble measurements), the ZH14 

parameterization is the most accurate (overestimated the measured Vd by a factor of 1.26), 

and the PZ10 is the least accurate parameterization (underestimated the measured Vd by a 

factor of 54.03).  

To summarize, the results from the ensemble evaluation of the parameterizations are 

graphically shown in Figs. 2(A-B) for the five LUCs. The horizontal dotted-dashed line in 

the plots indicates 100% agreement between modeled and measured Vd, whereas any 

dispersion from this line either above (i.e., over-estimation) or below (i.e., under-

estimation) indicates the degree of the model’s accuracy.  

Figure 2. Ensemble averaged, normalized mean bias factors for the five 
parameterizations: a) three rough surfaces and water, b) Ice/snow. 
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1.4.2 Uncertainty analysis results from the Monte Carlo simulations 

The overall uncertainty in the modeled Vd due to imprecision in the model inputs was 

assessed by performing a set of Monte Carlo simulations on the five dry deposition 

parameterizations.  Uncertainties (in terms of imprecision) in the following model input 

parameters: RH, U, u*, LO, h, z0, d, and LAI were approximated using uniform distributions. 

Note that not all of the five parameterizations require an identical number of input 

parameters. For example, Monte Carlo simulations performed on rough surfaces (i.e., 

grass, coniferous, and deciduous forests) for the Z01, PZ10, KS12, ZH14, and ZS14 

parameterizations, imprecision in four (RH, L, u*, and z0), eight (RH, L, u*, U, z0, h, d, and 

LAI), four (RH, u*, U, and LAI), four (RH, L, u*, and z0), and two (RH, u*) input parameters, 

respectively, were assessed to evaluate the overall uncertainty in modeled dry deposition 

velocities.   

The results from the Monte Carlo simulations are summarized in Table 9 and are presented 

and discussed in two steps. First, the uncertainty estimates that are shown in Table 9 for 

five parameterizations on five LUCs are used to elucidate the models’ precision, which is 

one of the indicators of overall performance of the parameterization. Second, the size-

dependent uncertainty ranges (i.e., the difference between the 95th and 5th percentiles) was 

divided by the 50th percentile Vd, which can be treated as a normalized measure of 

uncertainty. This approach was taken to make reasonable comparison between different 

particle sizes for different parameterizations. Note that the ZS14 parameterization does not 

treat different vegetative covers separately; therefore, inter-comparison of the Monte Carlo 

simulation results is confined to the first four parameterizations listed in Table 9. 
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 Uncertainties in the modeled Vd  for grass 

The uncertainties in simulated Vd (i.e., differences between 95th and 5th percentiles of 

distribution) for the given range of dp (i.e., 0.005-2.5 µm) on grass varied widely (Table 

9). In the Z01 parameterization, the estimated uncertainty for nucleation mode particles 

(0.0038 m s-1 for dp = 0.005 µm) was larger than that of coarse mode particles (0.0001 m 

s-1 for dp > 1.0 µm).  Overall, in the Z01 parameterization, the trend was that as the particle 

size increased from 0.005 to 2.5 µm, uncertainties in modeled Vd decreased considerably. 

In the PZ10 parameterization, the range of uncertainty for the simulated particle sizes is 

narrower as compared to those of the Z01 parameterization. Although not consistent, a 

decreasing trend in uncertainties can be seen for all the particle sizes in the PZ10 

parameterization.  Of the simulated particle sizes, the uncertainty for dp = 0.005 µm is the 

largest (0.0016 m s-1) in the KS12 parameterization. As particle size increased from 0.005 

to 2.5 µm, significant decrease in uncertainties is observed.  For dp = 0.05 to 1.5 µm, the 

5th and 95th percentile Vd were nearly identical (Table 9), suggesting that the KS12 

parameterization is the most precise of five parameterizations specifically for those particle 

sizes. From Table 9, it can be deduced that the uncertainties associated with the ZH14 

parameterization, which is an improved and simplified version of the Z01 parameterization, 

were fairly constant (ca. 0.0003 m s-1) for the seven particle sizes simulated here for grass.  

 Uncertainties in the modeled Vd  for coniferous forest 

For nucleation mode particles (i.e., dp = 0.005 µm), the largest uncertainty (0.0036 m s-1, 

median Vd = 0.0180 m s-1) was associated with the Z01 parameterization (Table 9).  
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Overall, the uncertainties in the Z01 parameterization showed a decreasing trend as the 

particle size increased from 0.005 to 2.5 µm. We note that in the PZ10 parameterization, 

the relative magnitude of the uncertainties associated with 0.005, 1.0, 1.5, 2.0, and 2.5 

µm particles were of the same order (i.e., varied between 0.0010 to 0.0031 m s-1). In 

comparison, uncertainties in modeled Vd for 0.05 and 0.5 µm particles were smaller by 

factors of ca. 10.  In the KS12 parameterization, the largest uncertainty was found for the 

nucleation mode particles (i.e., 0.0027 m s-1; median Vd = 0.0299 m s-1), and the 

uncertainties in modeled Vd decreased substantially as dp increased. The uncertainties in 

modeled Vd in the ZH14 parameterization were constant (0.0002 m s-1) for all seven 

particle sizes indicating the model’s ability to reproduce dry deposition velocities with 

high precision. 

 Uncertainties in the modeled Vd  for deciduous forest 

A similar comparison of the uncertainties in modeled Vd can be made for deciduous forest. 

It is seen from Table 9 that, for all the parameterizations except for ZH14, the largest 

uncertainties were associated with nucleation mode particles. That is, Z01 and KS12 

parameterizations showed substantially greater uncertainties for dp = 0.005 µm (0.0030 and 

0.0027 m s-1, respectively) as compared to the Aitken or coarse mode particles, for which 

the relative magnitude of the uncertainties were smaller by factors of ca. 13-30.  In the 

KS12 parameterization, the identical values of the 5th and 95th percentile Vd resulted in 

uncertainty values of zero for each simulated particle size of 0.5 to 2.0  µm, which indicates 

that it is the most precise of all four parameterizations. In addition, the uncertainties in the 
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modeled Vd in the ZH14 parameterization were constant (0.0004 m s-1) for all seven particle 

sizes. 

 Uncertainties in the modeled Vd  for water surface 

For water surfaces, the uncertainties in modeled Vd varied largely for the Z01 

parameterization (Table 9). That is, the largest uncertainty (0.0021 m s-1) was associated 

with dp = 0.005 µm (median Vd = 0.0099 m s-1), and as dp increased to 2.5 μm, the 

uncertainty decreased to 0.0001 m s-1 (for 2.5 μm particles, median Vd = 0.0009 m s-1). 

Relatively narrower ranges in the uncertainties in modeled Vd for the PZ10 and KS12, and 

constant uncertainties in the ZH14 parameterizations with regard to changes in particle size 

suggest their higher precision as compared to the Z01 parameterization under similar model 

input parameter uncertainties. Overall, as compared to the simulated uncertainties in the 

modeled Vd by the Z01, PZ10, KS12, and ZH14 parameterizations, uncertainties in the ZS14 

parameterization are larger for dp = 0.05 to 2.5 µm.  

 Uncertainties in the modeled Vd  for ice/snow surfaces 

Comparison between the simulated uncertainties in modeled Vd revealed that the 

uncertainties vary significantly for the Z01 and KS12 parameterizations as dp changes. For 

example, uncertainties estimated from Table 9 for these two parameterizations decreased 

from 0.0023 to 0.0003 m s-1 and 0.0027 to 0.0008 m s-1, respectively, as particle size 

increased from 0.005 to 2.5 µm. Note that the median Vd by the PZ10 parameterization is 

an order of magnitude lower than that of other three parameterizations, which results in 
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close to zero uncertainties for all seven particle sizes. Also revealed in Table 9, the 

uncertainties in the ZH14 parameterization are constant (0.0002 m s-1) with regard to 

changes in the particle size.  

Normalized uncertainties in the modeled Vd 

An extended analysis of the results presented in the previous sections are summarized here. 

The normalized uncertainties presented in the Table 10 can be interpreted as follows: any 

value that is closer to zero indicates higher model precision (i.e., less uncertainty). As 

shown in Table 10, the normalized uncertainties for grass and dp = 0.005 µm associated 

with the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations are 0.20, 0.11, 0.09, 0.20, 

and 0.20, respectively. These results suggest that KS12 is the least uncertain (i.e., most 

precise) parameterization for nucleation mode particles, whereas, the Z01, ZH14, and ZS14 

are the most uncertain (i.e., least precise) parameterizations. Similar comparisons can be 

made for other particle sizes, as well as between the different LUCs. For example, the 

uncertainties associated with dp = 0.05 µm is greater for the PZ10 parameterization for 

deciduous forest as compared to grass (0.20 > 0.13). 
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Table 10. Normalized uncertainties in modeled dry deposition velocities. 

             Dry particle deposition parameterization 
Land use 
category Particle size, dp (µm) Z01 PZ10 KS12 ZH14 ZS14 

Grass 
 

0.005 0.20 0.11 0.09 0.20 0.20 
0.05 0.18 0.13 0.00 0.20 0.00 
0.5 0.22 0.00 0.00 0.20 0.33 
1.0 0.16 0.11 0.07 0.17 0.34 
1.5 0.14 0.11 0.12 0.17 0.33 
2.0 0.12 0.12 0.14 0.16 0.32 
2.5 0.14 0.13 0.14 0.11 0.31 

Coniferous 
forest 

0.005 0.20 0.13 0.09 0.17   
0.05 0.18 0.11 0.13 0.17   
0.5 0.13 0.08 0.00 0.17   
1.0 0.16 0.10 0.16 0.17   
1.5 0.13 0.11 0.20 0.16   
2.0 0.11 0.13 0.22 0.15   
2.5 0.14 0.15 0.21 0.13   

Deciduous 
forest 

0.005 0.21 0.21 0.09 0.18   
0.05 0.20 0.20 0.13 0.18   
0.5 0.13 0.27 0.00 0.18   
1.0 0.16 0.29 0.04 0.18   
1.5 0.13 0.28 0.06 0.17   
2.0 0.10 0.28 0.08 0.16   
2.5 0.14 0.27 0.21 0.15   

Water 0.005 0.21 0.25 0.18 0.17 0.18 
0.05 0.18 0.00 0.18 0.17 0.36 
0.5 0.20 0.00 0.18 0.17 0.33 
1.0 0.17 0.03 0.18 0.18 0.31 
1.5 0.15 0.05 0.18 0.17 0.28 
2.0 0.15 0.07 0.18 0.16 0.26 
2.5 0.11 0.25 0.18 0.14 0.24 

Ice/snow 0.005 0.18 0.00 0.09 0.17   
0.05 0.16 0.00 0.07 0.17   
0.5 0.14 0.00 0.00 0.17   
1.0 0.17 0.05 0.20 0.17   
1.5 0.20 0.07 0.25 0.16   
2.0 0.28 0.08 0.27 0.15   
2.5 0.30 0.00 0.28 0.13   

 

 

 

Note: a normalized uncertainty value of zero indicates that the 95th and 5th percentile Vd are of equal magnitude.   
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Comparison of the normalized uncertainties in modeled Vd over smooth surfaces (i.e., water 

and ice/snow) also reveals interesting findings. For example, for dp = 0.5 µm, the 

normalized uncertainties over water surfaces for the Z01, PZ10, KS12, and ZH14 

parameterizations are 0.20, 0.00, 0.50, and 0.17, respectively. These results suggest that 

the PZ10 parameterization is the least uncertain (i.e., most precise), whereas, the KS12 is 

the most uncertain (i.e., least precise) parameterization for accumulation mode particles. 

Over ice/snow surfaces, with dp = 0.005 µm, both the Z01 and ZH14 parameterizations 

have large uncertainties (normalized uncertainties are 0.18 and 0.17). In contrast, PZ10 is 

the most precise parameterization with close to zero normalized uncertainty value.  

The normalized uncertainties presented in Table 10 also reveal interesting findings about 

the relative magnitude of imprecision for a given particle size on various LUCs by one 

parameterization. For example, with dp = 0.005 µm, the range in normalized uncertainties 

varies from 0.18-0.20 and 0.09-0.20 for all the five LUCs for the Z01 and KS12 

parameterizations, respectively.  

Figs. 3(A-E) show the relative comparison between uncertainties in modeled Vd by five 

parameterization for seven particle sizes across five LUCs. For LUC grass, Fig. 3A shows 

that in the uncertainties in the Z01 and ZH14 parameterizations show nearly identical 

trends, which are relatively narrow. That is, the uncertainties for particle sizes from 0.005 

to 2.5 µm varied from 12-22% and 11-20% in the Z01 and ZH14 parameterizations, 

respectively. In contrast, uncertainties in the PZ10 and KS12 parameterizations exhibit 

large dispersion (i.e., uncertainty ranges from ~0-13% in the PZ10, and ~0-14% in the 

KS12 parameterizations). The largest uncertainties in the simulated Vd are associated with 



60 

the ZS14 parameterization, in which the range of uncertainty varied from ~0-34% for the 

seven particle sizes. We note that the minimum Vd produced by the KS12 parameterization 

is at dp = 0.5 µm for grass, coniferous and deciduous forest, and ice/snow surfaces, which 

can be confirmed from the Fig. 3(A-C and E). In addition, Fig. 3(D-E) show that the 

position of this minimum Vd in the PZ10 parameterization ranged from dp = 0.5-1.0 µm for 

water and ice/snow surfaces. 

  

  

 

Figure 3. Comparison of the simulated uncertainties in the modeled dry deposition 
velocities as a function of particle size in five parameterizations for five LUCs. 
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1.4.3 Sensitivity analysis results: Sobol’ first order sensitivity index 

For Sobol’ first order sensitivity analysis, five particle sizes (i.e., dp = 0.001, 0.01, 0.1, 1.0, 

and 10 µm) were selected. A sample size (n) of 100,000 was used for model evaluations 

for each of the five particle sizes. To assess the confidence intervals for the first order 

Sobol’ sensitivity index, bootstrapping resampling was used. In the bootstrapping method, 

the n samples used for the sensitivity simulations were sampled 1,000 times with 

replacement. In the following sections, the results from the Sobol’ sensitivity analysis, and 

evolution of the parameter rankings are presented.  

The Sobol’ sensitivity analysis performed here is used to achieve a ranking of the model 

input parameters. The ranking of the parameters from most to least sensitive of the five 

particle sizes for the five parameterizations is shown in Table 11. Tables S1-S5 show the 

first order Sobol’ indices of the various input parameters used in five dry deposition 

parameterizations for five LUCs. In these tables, particle size-dependent first order Sobol’ 

index (Si) for different model input parameters are presented with 95% confidence intervals 

(CI) obtained by bootstrap sampling. For example, the results of the first order Sobol’ 

indices for the Z01 parameterization on five LUCs are presented in Table S1. It is important 

to note that the number of parameters tested for Sobol’ analysis varied between different 

LUCs, mainly because the number of parameters required for modeling Vd for one LUC 

may be more or less as compared to another LUC.  
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Table 11. Ranking of first order Sobol’ sensitivity indices for the five dry particle deposition 
parameterizations.  
 

Land use 
category dp (μm) Z01 PZ10 KS12 ZH14 ZS14 

Grass 

0.001 u*, z0, LO, (RH, 
ρP) 

u*, LAI, z0, U, LO, 
(h,  d, RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, (z0, LO, RH, ρP) U, u*, 
(RH, 
ρP) 

0.01 u*, z0, LO, (RH, 
ρP) 

LAI, U, u*, (LO, 
h), (z0, d, RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, (z0, LO, RH, ρP) U, u*, 
(RH, 
ρP) 

0.1 u*, (z0, LO, RH, 
ρP) 

LAI, U, d, (u*, LO, 
h, z0, RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, (z0, LO, RH, ρP) u*, U, 
(RH, 
ρP) 

1.0 u*, ρP , RH, (z0, 
LO)  

U, LAI, RH, u*, 
LO,  
(h, z0, d, ρP) 

RH, u*, ρP, 
LAI 

u*, (z0, LO, RH, ρP) u*, U, 
RH, ρP 

10 RH, u*, ρP, (z0, 
LO) 

RH, u*, U, LAI, 
(ρP, z0), LO, (h, d) 

RH, u*,  LAI, 
ρP 

RH, ρP , (u*, LO, z0) u*, U, 
RH, ρP 

Coniferous 
Forest 

0.001 u*, LO, z0, (RH, 
ρP) 

u*, LO, z0, LAI, h, 
(d, U,  RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, LO, (z0, RH, ρP)  

0.01 u*, LO, z0, (RH, 
ρP) 

LO, LAI, u*, U, z0, 
h, (d, RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, LO, (z0, RH, ρP)  

0.1 u*, LO, (z0, RH, 
ρP) 

LO, LAI, U, u*, (d, 
z0, h, RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, (LO, z0, RH, ρP)  

1.0 u*, ρP , RH, 
(LO,z0)  

LO, U, LAI, u*, 
RH, (ρP, d, z0, h) 

u*, RH, ρP, 
LAI 

u*, LO, (z0, RH, ρP)  

10 RH, u*, ρP, LO, 
z0 

u*, LO, RH, z0, (ρP, 
U), (LAI, d, h) 

RH, u*,  LAI, 
ρP 

RH, u*, LO, z0, ρP  

Deciduous 
Forest 

0.001 u*, z0, LO, (RH, 
ρP) 

LO, u*, LAI, z0, U, 
(h, d,  RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, LO, (z0, RH, ρP)  

0.01 u*, z0, LO, (RH, 
ρP) 

LO, LAI, u*, U, 
(z0, d), (h, RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, LO, (z0, RH, ρP)  

0.1 u*, z0, (LO, RH, 
ρP) 

LO, LAI, U, u*, d, 
(z0, h, RH, ρP) 

u*, (RH, ρP, 
LAI) 

u*, LO, (z0, RH, ρP)  

1.0 u*, ρP, (LO, z0, 
RH) 

LO, LAI, U, u*, 
RH, (z0, d), (h, ρP) 

RH, ρP, u*, 
LAI  

u*, LO, (z0, RH, ρP)  

10 RH, u*, ρP, z0, 
LO 

LO, RH, u*, LAI, 
ρP, U z0, (d, h) 

RH, ρP, u*, 
LAI 

RH, u*, LAI, LO, ρP, 
z0 

 

Water 

0.001 u*, (LO, RH, ρP) u*, (LO, RH, ρP) u*, LO, (ρP, 
RH) 

u*, (LO, RH, ρP)  

0.01 u*, (LO, RH, ρP) u*, (LO, RH, ρP) u*, LO, (ρP, 
RH) 

u*, (LO, RH, ρP)  

0.1 u*, (LO, RH, ρP) u*, ρP, (LO, RH) u*, LO, (ρP, 
RH) 

u*, (LO, RH, ρP)  

1.0 u*, ρP , (RH, 
LO)  

RH, ρP , (u*, LO)  ρP, u*, (RH, 
L) 

u*, (LO, RH, ρP)  

10 u*, RH, (ρP, LO) RH, ρP , (u*, LO) ρP, u*, LO, 
RH 

u*, RH, (LO, ρP)  

Ice/snow 

0.001 u*, LO, (z0, RH, 
ρP) 

u*, (LO, z0, RH, 
ρP) 

u*, RH, ρP u*, (LO, z0, RH, ρP)  

0.01 u*, z0, LO, (RH, 
ρP) 

u*, (LO, z0, RH, 
ρP) 

u*, RH, ρP u*, (LO, z0, RH, ρP)  

0.1 u*, (LO, z0, RH, 
ρP) 

u*, (LO, z0, RH, 
ρP) 

u*, RH, ρP u*, (LO, z0, RH, ρP)  

1.0 u*, (LO, z0, RH, 
ρP) 

RH, ρP, (z0, LO, 
z0) 

u*, RH, ρP u*, (LO, z0, RH, ρP)  

10 u*, RH, (ρP, LO, 
z0) 

RH, ρP, (z0, LO, 
z0) 

RH, u*, ρP u*, RH, (z0, LO, ρP)  
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As shown in Table S1, for the Z01 parameterization on grass, the importance of the most 

influential parameters on the modeled dry deposition velocities for five particles sizes can 

be compared using the corresponding Si values of the model input parameters (e.g., i = RH, 

ρ, LO, u*, etc.). For example, with dp = 0.001 µm, it can be clearly seen that the u* is by far 

the single most sensitive parameter with an Si value of 0.918, which indicates that 91.8% 

of the variation in the modeled Vd can be attributed to variations in u*. The other parameters 

that have significant effect on the modeled Vd are z0 and LO. These two parameters have Si 

values of 0.044 and 0.009, respectively. As compared to the first order Sobol’ value of u*,

these values are significantly smaller; however, the lower limits of the corresponding 95% 

C.I. intervals for z0 and LO are greater than zero, indicating that they have a significant

effect on the modeled velocities. The Si values for the other two parameters, RH and particle 

ρ, were approximately zero for dp = 0.001 µm (Table S1), and indicate that these variables 

have no influence on the modeled Vd.  

Comparison between the first order Sobol’ indices for different particle sizes for grass 

shows strong variations for certain input parameters, which reveals interesting findings 

about the relative importance (from the most to the least) of the model input parameters to 

the modeled dry Vd. For example, as seen from Table S1, as dp increases from 0.001 to 10 

µm, Si values of u* decrease from 0.918 to 0.245, which indicates that deposition of coarse 

particles is not strongly influenced by variations in friction velocity. From Table S1 it is 

also seen that parameters that influence particle properties (i.e., RH and ρP) have higher Si

values for the coarse particles as compared to the fine or accumulation mode particles. 

Similar comparisons between size-dependent behavior of parameter sensitivity for other 
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rough surfaces (i.e., coniferous and deciduous forests) can be made using the Si values 

reported in Table S1.  

The results of the first order Sobol’ indices for the Z01 parameterization on two smooth 

surfaces: water and ice/snow are also presented in Table S1. Over liquid water surfaces, 

variation in u* values has the largest influence modeled Vd for dp = 0.001 to 10.0 µm. As is 

seen from Table S1, the Si values of u* can alone explain 98.3-99.5% of the variations in 

modeled Vd for particle sizes up to fine mode (i.e., 0.001-0.01 µm). For coarse mode 

particles (e.g., dp = 10 µm), u* is also the most influential parameter, contributing ca. 56% 

of the total variation in modeled Vd, while relative humidity is the second most 

influential/sensitive parameter with an Si value of 0.393. The influence of u* also tends to 

dominate the modeled Vd over ice/snow surfaces. This theory can be confirmed by 

comparing the size-dependent Si values of u* shown in Table S1, which suggest that u* is 

the single most sensitive parameter (Si = 0.978) for dp = 1.0 µm. As the particle size 

increased to 10 µm, RH and u* can explain 92.7% of the total variation in modeled Vd  in 

the Z01 parameterization.  

The results of the first order Sobol’ indices for the PZ10 parameterization on five LUCs 

are presented in Table S2.  The size-dependent Si values on coniferous forest can be 

compared here to elucidate the contribution of different input parameters on the modeled 

Vd. It can be noted that, on rough surfaces, the PZ10 parameterization was tested for the 

most number of input parameters (i.e., nine) among the five parameterizations. Some 

canopy properties such as h, d, LAI, and meteorological properties such as U were tested 

for their influence on modeled Vd  in addition to those parameters that were tested for the 
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rough surfaces in the Z01 parameterization. As seen from Table S2, for coniferous forest, 

for dp = 0.001 µm, u* and LO are the two most influential parameters (Si values of 0.492 and 

0.462, respectively). Although LAI is not the most influential parameter for the range of dp 

tested here, its influence on the overall variability in the modeled Vd increase from 0.5 to 

31.3% as particle size increases from 0.001 to 0.1 µm. Similarly, wind speed tends to show 

an increasing influence as dp increases from 0.001 to 1.0 µm (overall contribution of U in 

the variability in Vd  shows an increase from 0.1% to 27.7%). For coarse particles (i.e., dp 

= 10 µm), u* and LO are the two most influential parameters with Si values of 0.372 and 

0.350, respectively. Together with RH, the three parameters can explain 92% of the 

variation in the modeled Vd . Results from the first order Sobol’ indices for the other LUCs 

for the PZ10 parameterization presented in Table S2 can be explained in a manner similar 

to that used to explain the contribution of the most sensitive parameters to the modeled dry 

deposition velocities. For the water surface, u* is the most influential parameter for dp = 

0.001 µm as 99.4% of the total variance on the modeled Vd is attributed to its variability. 

Indeed, for particle sizes up to 0.1 µm, the u* itself is the most sensitive parameter. As seen 

from Table 11, RH becomes the most influential model parameter for dp = 1.0 and 10.0 

µm, which alone contributes to 69.5% and 95.6% of the total variabilities in the modeled 

Vd, respectively. 

Table S3 shows the first order Sobol’ indices for the KS12 parameterization on five LUCs. 

For brevity, the results of the first order sensitivity indices for deciduous forest are 

discussed herein. It is seen that u* is the single most influential parameter for dp = 0.001 to 

0.1 µm (e.g., total contribution on the modeled Vd attributable to u* ranges from 94.4 to 
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96.7%). For dp = 1.0 and 10 µm, RH is the most influential parameter with Si values of 

0.629 and 0.934, respectively.  

Table S4 shows the first order Sobol’ indices for the ZH14 parameterization on five LUCs. 

The results show a strong influence of u* on the modeled Vd. As shown in Table S4, the Si 

values alone can explain nearly 100% of the variation in the modeled Vd for dp = 0.001 to 

1.0 µm. For large particles (e.g., dp = 10 µm), RH is the most influential parameter, 

however, the contributions of other parameters as listed in Table S4 vary with regard to 

changes in LUCs.  

1.5 Discussion 

The accuracy of the parameterizations should be interpreted within the context of the field 

measurements used in this study assuming that they were accurate. In addition, the inter-

comparison of the parameterizations’ accuracy is subject to uncertainties with regard to the 

assumed values of missing meteorological parameters, particle properties, or surface 

features. Evidently, the normalized mean bias factors obtained using the ensemble 

approach is a useful measure to inter-compare the parameterizations’ performance against 

a sub-set of field measurements for a given LUC. Extending the comparison of the 

normalized mean bias factors across the five LUCs for the five parameterizations 

investigated in this study provides a relative assessment of their accuracy. However, the 

ZH14 parameterization is most accurate for all parameterizations except coniferous forest, 

where it is a close second to the KS12 parameterization. 
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For rough surfaces, our results suggest that ZH14 is the most accurate parameterization for 

grass and deciduous forest, and it is the second most accurate parameterization for 

coniferous forest. In contrast, KS12, PZ10, and ZS14 are the least accurate 

parameterizations for grass, coniferous, and deciduous forests, respectively. It is interesting 

that in most cases the models under-predicted the measured dry deposition velocities 

(negative bias factors in Tables 4-8). Indeed, for grass, except for the Z01 parameterization, 

the other four parameterizations under-predicted the measured Vd  by factors of 1.54 to 

10.37 (BNMBF varied from -0.54 to -9.37). With regard to deciduous and coniferous forests, 

all of the five models (from the most to the least accurate: ZH14, PZ10, KS12, Z01, and 

ZS14; KS12, ZH14, Z01, ZS14, and PZ10) under-predicted the measured Vd  by factors of 

4.75 to 11.93, and 2.75 to 4.93, respectively.  

A direct quantitative comparison of the accuracy of the five parameterizations with those 

reported in other studies is impossible because the metric used in the present study (BNMBF) 

is not commonly used to evaluate the accuracy of the dry deposition models. However, 

qualitatively, our findings regarding the PZ10 performance for coniferous forests are in 

accordance with those reported by Petroff and Zhang (2010). They reported that the PZ10 

parameterization under-predicted the measured deposition velocities for the following 

subset of observations that we also investigated for coniferous forest: Lamaud et al. (1994), 

Gallagher et al. (1997), Buzorious et al. (2000), Gaman et al. (2004), and over-predicted 

for Grönholm et al. (2009).  

The accuracy results over smooth surfaces suggest that, for the water surface, the best 

agreement between the measured and modeled Vd was found for the ZH14 
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parameterization. Overall, the accuracy ranking from best to worst is as follows: ZH14, 

Z01, KS12, PZ10, and ZS14. Over ice/snow surface, the results suggest that the ZH14 is 

the most accurate parameterization, and PZ10 is the least accurate. Qualitatively, this 

finding is consistent with Petroff and Zhang (2010), who reported that their model 

significantly underestimated the measured deposition velocities over ice/snow surface for 

the following studies: Ibrahim (1983), Duan et al. (1987), Nilsson and Rannik (2001), and 

Contini et al. (2010), which were also investigated in the present study. We also note that 

the Z01 parameterization overestimated the measured Vd from the aforementioned studies. 

This finding is consistent with Petroff and Zhang (2010), as they compared their model 

with Z01 over the ice/snow surface. One possible explanation for a large discrepancy 

between modeled and measured Vd by PZ10 is an incorrect magnitude of the drift velocity 

applied, corresponding to phoretic effects on ice and snow.  

Collectively for both rough and smooth surfaces, it is found that the ZH14 scheme is the 

most accurate for these LUCs: grass, deciduous forest, water, and ice/snow surfaces. KS12 

performed slightly better for coniferous forest only. The performance of the PZ10 scheme 

could be viewed as moderate. This finding is interesting considering that the ZH14 is the 

simplest resistance-based scheme of the five parameterizations. We emphasize that Z01 

and ZH14 parameterizations share similar structural features, but simplifications of the 

particle collection processes by constant values by ZH14 (see Eqs. (46-50)) could produce 

better agreement. In addition, we note that the KS12 parameterization is based exclusively 

on wind tunnel measurements and its performance over forest canopies is not satisfactory, 

as reported by the model developers Kouznetsov and Sofiev (2012). However, we find that 
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KS12 performed the best over coniferous forests with the nine studies used in this research. 

However, Kouznetsov and Sofiev (2012) did not use the same subset of studies to evaluate 

the model performance as we used. 

Given the complex nature and incomplete knowledge of the dry deposition process, it is of 

importance to account for the uncertainties in the modeled deposition velocities in 

atmospheric transport models (Petroff and Zhang, 2010; Zhang et al., 2012). Although 

there have been many dry deposition models developed over the years, the information on 

the model output uncertainties is meager and not up-to-date. To assert uncertainty on the 

modeled dry deposition velocities, Gould and Davidson (1992) adopted a step-wise 

uncertainty test of Slinn’s (1982) model. However, in reality, the model parameters are 

subject to simultaneous variability, and a OAT test cannot adequately propagate the error 

to the overall model outputs. This limitation was partially overcome by Ruijgrok (1992), 

who performed a probabilistic uncertainty test of Slinn’s model.  

The Monte Carlo uncertainty analysis performed in this study assumes that in the five 

parameterizations all the major physical processes (e.g., turbulent diffusion, Brownian 

diffusion, impaction, interception, and gravitational settling) of dry deposition are 

accounted for satisfactorily. Thus, the uncertainty analysis conforms to the uncertainties in 

the model input variables and their overall contribution to the propagated uncertainties in 

the modeled dry deposition velocities. Additional uncertainties in the modeled deposition 

velocities may arise from inadequate model formulation and/or inappropriate use of certain 

micrometeorological parameters. For example, in dry deposition models (such as PZ10), d 

and z0 are often calculated as a fraction of h, and are often taken as d ≈ 2h/3 and z0 ≈ 0.1h. 
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These expressions are valid for dense canopies (Katul et al., 2010). If the leaf area density 

is highly skewed or shows a bimodal distribution, such approximations cannot be used 

(Katul et al., 2010). In addition, the parameter values of d and z0 are subject to large 

uncertainty and are very difficult to measure in urban areas (Cherin et al., 2015). Therefore, 

caution must be taken when using constant d and z0 values from lookup tables. Also, current 

deposition models do not consider terrain complexity in their formulations. Hicks (2008) 

argued that conventional use of d and z0 for non-flat terrain such as mountains is not 

appropriate for modeling deposition on complex terrain. In addition, experimentally 

derived values of d and z0 often represent local characteristics. Thus, it poses a challenge 

to scale those up in a model grid cell (Schaudt and Dickinson, 2000) in atmospheric 

transport models. Using remote sensing, robust scaling of these parameter values is 

achieved, which could be used to acquire representative values in a model grid cell (Tian 

et al., 2011). However, addressing the issue of a model’s structural uncertainty in a detailed 

manner was outside the scope of this paper.    

The values of the eight model parameters, covering four meteorological (U, u*, LO, and 

RH) and four canopy morphological (z0, d, h, and LAI) properties, used in the Monte Carlo 

simulations were assumed to be uniformly distributed because their true distributions were 

unknown. It is emphasized that these parameters are not all necessarily independent; z0 and 

d are functions of the surface characteristics (Zhang and Shao, 2014; Shao and Yang, 2005, 

2008). Considering these underlying assumptions, the uncertainties in modeled Vd reported 

in this paper should be viewed as the effect of the chosen parameter PDFs on the output 

uncertainty. The uncertainty bounds (i.e., the central 90% values) reported in the Table 9 
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could be treated as a metric of the quality of the modeled outputs. The normalized 

uncertainties reported in this study are a useful indicator to assess the overall performance 

of a model for four particle modes (seven particle sizes) across five LUCs.  

We applied Sobol’ sensitivity analysis to identify the most influential parameter(s) of the 

five parameterizations. Parameter rankings achieved using the Sobol’ first order indices for 

different models provide a robust evaluation of the models’ sensitivity by varying a set of 

input parameters within their plausible ranges. It is emphasized that a local sensitivity 

analysis such as OAT could lead to incomplete or misleading inference of the parameter 

sensitivity on the model’s output because assumptions of model linearity are not always 

justified for dry deposition parameterizations due to their complex formulations.  

The Sobol’ sensitivity rankings presented in Table 11 can be used for inter-comparison 

between models’ parameter sensitivity. Over rough surfaces, for nucleation size particles 

(e.g., dp = 0.001 µm), u* is the most sensitive parameter for Z01, PZ10, KS12, and ZH14 

parameterizations. As particle size increases from 0.001 µm to 1.0 µm, except for the PZ10 

scheme and for 1.0 μm for grass in KS12 scheme, u* remains the most influential parameter. 

This finding is in accordance with previous studies (Zhang et al., 2001; Zhang and He, 

2014) that show that dry deposition velocities for atmospheric particles are greatly 

influenced by friction velocity. We note that in the PZ10 scheme, LAI and LO are the two 

most commonly-found sensitive parameters for dp = 0.001 to 1.0 µm for rough surfaces. 

As seen from the parameter rankings (Table 11), for dp = 10 µm in the Z01, PZ10, KS10, 

ZH14 schemes, RH is the most influential factor. We postulate that with particle growth, 

high humidity may have a significant effect on coarse mode particles, and as a result, other 
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model input parameters become less sensitive. The parameter ranking of the PZ10 scheme 

for deciduous forest shows that LO is the most influential parameter. Similarly, for 

coniferous forest, LO is found to be one of the most sensitive parameters for most particle 

sizes. One possible reason for this finding could be the interdependency of the particle 

mixing length parameter and LO in the PZ10 scheme. Indeed, the mixing length indirectly 

relates to particle collection efficiencies in the PZ10 parameterization (see Eqs. 18, 25, and 

26). The rankings of the Z01 and ZH14 parameters are nearly identical for rough and 

smooth surfaces. This finding is not surprising given that these two parameterizations were 

developed by applying similar assumptions.  

In general, dry deposition parameterizations developed for different particle size ranges 

and surfaces vary widely in terms of their complexity in model structure. The complexity 

in their numerical formulations often depends on the purpose (e.g., operational or research) 

of the model development (Petroff et al., 2008a). Comparing two previously developed 

one-dimensional aerosol deposition models for broadleaf and coniferous canopies (see 

details in Petroff et al., 2008b; Petroff et al., 2009) with the PZ10 parameterization, Petroff 

and Zhang (2010) argued that the mathematical formulations in those models are too 

complex and require numerous input parameters for implementation in aerosol transport 

models. Following this hypothesis, we attempt to qualitatively evaluate the relative 

complexity of the five dry deposition parameterizations tested in this study for 

incorporation into atmospheric transport models.  

Of the five parameterizations, we note that the model structure of the PZ10 is relatively 

more complex than those of the Z01, ZH14, and ZS14 parameterizations. The complexity 
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of the KS12 parameterization tends to be different by a large degree between rough (i.e., 

vegetative canopies and snow) and smooth (i.e., water) surfaces. The ZS14 formulation 

(Eqs. (51-63)) is of comparable complexity to the rough surface formulation in the KS12 

parameterization (Eqs. (35-45)), and these parameterizations can be viewed as moderately 

complex. The formulation of the Z01 parameterization can be viewed as moderately 

complex as well. In this parameterization, three processes (Brownian diffusion, 

interception, and impaction) were parameterized using Eqs. (8-14) to describe the particle 

deposition at the collection surface. We claim that the KS12 parameterization for smooth 

surfaces is the most complex of the five models. This is mainly because it requires solving 

the dimensionless dry deposition velocity profiles over smooth surfaces using an analytical 

approach, which can be complex and computationally-expensive. 

A direct qualitative comparison of the relative complexities of the major process terms in 

the PZ10 and Z01 parameterizations is possible because both of these parameterizations 

are resistance-based (i.e., expressions of Vd in Eqs. 2 and 16 are of similar forms). It is 

evident from Eqs. (19-31) that the formulations in the PZ10 parameterization to compute 

the three surface collection process terms are relatively complex as compared to those in 

the Z01 parameterization. In the ZH14 parameterization (a resistance-based scheme as 

well), these process terms are not explicitly parameterized. Presumably, by incorporating 

a large number of LUC dependent constants to compute surface deposition velocity using 

Eqs. (46-50), simplifications were made possible to the ZH14 parameterization. The use of 

fitting parameters to account for poorly understood dry deposition processes in 

parameterizations is not uncommon. Due to the complex nature and inadequate 
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understanding of the particle collection processes to leaf surfaces, suggestions were made 

to treat particle deposition on vegetative surfaces in a simplified manner using empirically 

derived fitting parameters (Petroff et al., 2008a). Consequently, Petroff and Zhang (2010) 

also introduced a large number of artificial parameters to account for characteristic length 

and orientation of the canopy obstacle, and different LUCs to parameterize the particle 

collection efficiencies (e.g., due to Brownian diffusion, interception, turbulent and inertial 

impaction). Based on these considerations and those in the previous paragraph, we claim 

that the ZH14 is the simplest of the five parameterizations.  

1.6 Conclusions 

In terms of overall performance for incorporation in atmospheric transport models, we 

suggest that parameterization accuracy and uncertainty should be considered jointly, while, 

based on our findings, sensitivity of the model input parameters should be treated 

separately for each dry deposition parameterization. The paper presents a comprehensive 

evaluation of the performance of five parameterizations in terms of their accuracy, model 

output uncertainty, and parameter sensitivity. Based on the results, it is evident that the 

ZH14 parameterization is the most accurate for four of the five LUCs (grass, deciduous 

forest, water, and ice/snow surfaces) and second most accurate for the fifth LUC 

(coniferous forest). Of the five parameterizations, the uncertainty range for the ZH14 (11-

20%) has the lowest upper bound across the five LUCs for particle size ranging from 0.005-

2.5 µm. In terms of the lower bound of the uncertainty range, the ZH14 is second to the 

Z01 (10-30%) parameterization. We demonstrated that the Sobol’ sensitivity analysis can 
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be successfully applied to dry deposition models to rank the input parameters by taking 

into account the complex interactions between them. One could argue that, if the different 

models exhibited greatest sensitivities to different parameters, and those parameters were 

more uncertain, the models exhibiting greatest sensitivity to the least certain parameters 

would be the most uncertain. In this way, sensitivity plays a potential role in determining 

which model is better. However, because our results showed that all models were most 

sensitive to u*, or, at large size, RH, sensitivity does not end up playing a role in assigning 

which model is best. We also note that accurate measurement of u* is extremely challenging 

(Andreas, 1992; Weber, 1999), and there exists ambiguity in its definition in boundary-

layer meteorology (Weber, 1999).  

The large dispersion in the parameterizations’ accuracy may indicate that despite 

considerable efforts in developing sophisticated process-based dry deposition models, 

there remain major gaps in our understanding of the dry deposition process. Another 

possible explanation for the large dispersion may be that it is significantly caused by 

measurement uncertainties, which were not addressed in this paper. However, inter-

variability in modeled deposition velocities is not uncommon, as pointed out by Ruijgrok 

et al. (1995) in an inter-comparison study of several earlier dry deposition models. We 

emphasize that the accuracy results presented in this paper should be discussed in terms of 

the locations in which the parameterization accuracy has been evaluated against 

measurements for the five LUCs (Table 1; Figure 1). 

The results from the uncertainty analysis using the Monte Carlo simulations on the size-

segregated particles should be of interest to atmospheric transport modelers as well as to 
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the scientific community interested in quantifying the uncertainty bounds in the 

atmospheric deposition fluxes of pollutants to ecosystems using concentration data from 

monitoring stations. This is because until now, uncertainties in modeled Vd for size-

segregated particles for a suite of currently-available dry deposition parameterizations has 

been unavailable. We stress that future work on probabilistic uncertainty analysis should 

focus on quantifying uncertainties for additional LUCs than those covered in this study. 

One of the major limitations of our uncertainty analysis approach is the assumption of 

uniform distribution of all imprecise model input parameters. To address this limitation, 

accurate information on the input parameter PDFs is needed.  

With the help of field observations, and improved theoretical knowledge of dry deposition, 

the Sobol’ parameter rankings could be used to fine-tune dry deposition models to better 

account for processes that are currently lacking or poorly parameterized. Future work 

should focus on estimating higher order (i.e., second order and total order) Sobol’ indices. 

Such indices would be useful for model developers interested in understanding the joint 

influence of multiple input parameters on the modeled deposition velocities.  

Based on the qualitative evaluation of relative complexity of the five parameterizations, 

we suggest that the model structure of the ZH14 parameterization is the least complex. 

After reviewing over 100 air quality models, Kouznetsov and Sofiev (2012) reported that 

resistance-based approaches are extensively implemented in most of those models. Thus, 

in practice, it may be preferable to use a relatively simple parameterization over a complex 

(and potentially computationally expensive) one, if the accuracy and uncertainty of the 

model justify it. Based on these criteria (i.e., accuracy, uncertainty, and complexity), we 



77 

propose that, of the five parameterizations we tested, the ZH14 parameterization is 

currently superior for incorporation into atmospheric transport models.  

A supplemental information (S.I.) (section 1.8) is provided after the references. The S.I. 

section includes the table of first order Sobol’ indices and the computer codes written in R 

for model accuracy, uncertainty, and Sobol’ sensitivity analyses. 
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Codes for evaluation of model accuracy using Zhang et al. (2001) parameterization 
#Accuracy Evaluation: Grass 
#Dry deposition parameterization by Zhang et al. (2001) 

attach(Allen_etal_1991)  # Use separate text file to feed V1, V2,… for different studies  

C1 = 0.2789                                                 

C1 = 0.2789                       

C2 = 3.115 

C3 = 5.145*10^-11 

RH = 90/100  

dp_i = 0.48 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                                              

#Correction factor, C 

k_B = 1.38*10^-23                                       

Temp_1 = V1 

Temp = 273.15+V1                                        

P = 101325                                             

d_air = 3.72*10^-10                                     

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6    

rho = 2000                                             

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)                  

# Compute aerodynamic resistance Ra: 

z = 2 

L = V4 

x = z/L 

# Compute shi_H (stability function) 
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shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})                   

shi_H.2 = -5*x                                         

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 3.5                                               

z0 = 0.01   

u_star = V2                                            #Use from input text file 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance Rs: 

e_0 = 3 

R1 = 1 

# Compute E_B (collection efficiency from Brownian diffusion) 

kin.vis = ((9*10^-8)*Temp)+10^-5 

gamma = 0.54 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

# Compute E_IM (collection efficiency from impaction) 

alpha = 1.2 

beta =  2 

A = 2/1000  

St = (Vg*u_star)/(9.81*A) 

E_IM = {St/(alpha+St)}^beta 

# Compute E_IN (collection efficiency from interception) 

E_IN = 0.5*(dp/A)^2 

Rs = 1/{(e_0*u_star)*(E_B+E_IM+E_IN)*R1}   

# Compute Dry deposition velocity 
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 #Accuracy Evaluation: Coniferous forest 
 #Dry deposition parameterization by Zhang et al. (2001) 

attach(Rannik_etal_2000)     # Use separate text file to feed V1, V2,… for different studies 

C1 = 0.2789                        

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = 90/100 

dp_i = V1 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                

Temp = 273.15+25                

P = 101325                         

d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.891*10^-5               

rho = 1500                      

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)   

# Compute aerodynamic resistance Ra: 

z = 23.7 

L = 200 

x = z/L 

shi_H2 = -5*x                          

zR = 26                                 

z0 = 1.2  
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u_star = V2 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H2)/(k_c*u_star)   

e_0 = 3 

R1 =1 

kin.vis = 1.683*10^-5 

gamma = 0.56 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

# Compute E_IM (collection efficiency from impaction) 

alpha = 1.0 

beta =  2 

A = 5/1000  

St = (Vg*u_star)/(9.81*A) 

E_IM = {St/(alpha+St)}^beta 

# Compute E_IN (collection efficiency from interception) 

E_IN = 0.5*(dp/A)^2 

Rs = 1/{(e_0*u_star)*(E_B+E_IM+E_IN)*R1}   

# Compute Dry deposition velocity 

Vd =  Vg+(1/(Ra+Rs));Vd   #unit: m/s 
 
 #Accuracy Evaluation: Deciduous forest 
 #Dry deposition parameterization by Zhang et al. (2001) 
attach(Wesely_etal_1983)        # Use separate text file to feed V1, V2,… for different studies                                                            

C1 = 0.2789                       

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = 95/100 

dp_i = 0.4 
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dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = V1               

P = 101325                         

d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = V2     

rho = 2000                         

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)    

# Compute aerodynamic resistance Ra: 

z = 39 

L = V6 

x = z/L 

shi_H2 = -5*x                          

zR = 56                                

z0 = 1.6  

u_star = V4   

k_c = 0.41 

Ra = (log(zR/z0)-shi_H1)/(k_c*u_star)   

# Compute surface resistance Rs: 

e_0 = 3 

R1 =1 

kin.vis = V3 

gamma = 0.56 
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D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

# Compute E_IM (collection efficiency from impaction) 

alpha = 0.80 

beta =  2 

A = 5/1000  

St = (Vg*u_star)/(9.81*A) 

E_IM = {St/(alpha+St)}^beta 

# Compute E_IN (collection efficiency from interception) 

E_IN = 0.5*(dp/A)^2 

Rs = 1/{(e_0*u_star)*(E_B+E_IM+E_IN)*R1}   

# Compute Dry deposition velocity 

Vd =  Vg+(1/(Ra+Rs));Vd 

 
#Accuracy Evaluation: Water 
#Dry deposition parameterization by Zhang et al. (2001) 

attach(Caffrey_etal_1998)                      

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = 79/100  

dp_i = 0.005 

dp_d = dp_i*10^-6                

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                  
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Temp = 273.15+22                   

P = 101325                       

d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6    

rho = 2000                      

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)    

# Compute aerodynamic resistance Ra: 

z = 8/100 

L = 50 

x = z/L 

# Compute shi_H (stability function) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 5                           

u_star = 13.5/100 

z0_1 = 0.021*(u_star)^3.32 

z0_2 = 0.00098*(u_star)^1.65 

z0 = ifelse(u_star<= 0.16, z0_1, z0_2) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)  # m/s 

# Compute surface resistance Rs: 

e_0 = 3 

R1 = 1 

kin.vis = ((9*10^-8)*Temp)+10^-5 

gamma = 0.50 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 
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Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

alpha = 100 

beta =  2 

A = 2/1000  

St = (Vg*u_star^2)/(kin.vis) 

E_IM = {St/(alpha+St)}^beta 

Rs = 1/{(e_0*u_star)*(E_B+E_IM)*R1}   

# Compute Dry deposition velocity 

Vd =  Vg+(1/(Ra+Rs));Vd 

 
#Accuracy Evaluation: Ice/snow 

#Dry deposition parameterization by Zhang et al. (2001) 

attach(Ibrahim_et_al_1983)                            

C1 = 0.2789                          

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = 60/100 

dp_i = c(0.22, 0.73) 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                 

Temp = 273.15+25                   

P = 101325                         

d_air = 3.72*10^-10                
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lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6    

rho = 1500                     

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)   

# Compute aerodynamic resistance Ra: 

#z =   

#L = 

#x = z/L 

x = 0.2 

# Compute shi_H (stability function) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 5                          

u_star = 0.12  

z0 = 0.1/100 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance Rs: 

e_0 = 3 

R1 = 1 

kin.vis = ((9*10^-8)*Temp)+10^-5 

gamma = 0.54 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

alpha = 50 

beta =  2 
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A = 2/1000  

St = (Vg*u_star^2)/(kin.vis) 

E_IM = {St/(alpha+St)}^beta 

Rs = 1/{(e_0*u_star)*(E_B+E_IM)*R1}   

# Compute Dry deposition velocity 

Vd =  Vg+(1/(Ra+Rs));Vd 

 

Codes for evaluation of model accuracy using Petroff and Zhang (2010) parameterization 
#Accuracy Evaluation: Grass 

#Dry deposition velocity parameterization by Petroff and Zhang (2010) 

attach(Allen_etal_1991) 

C1 = 0.2789                       

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = 90/100  

dp_i = 0.48 

dp_d = dp_i*10^-6                

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = 273.15+25               

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6      
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rho = 1500                     

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

Ws = Tau*9.81                       

Vphor = 0                          

Vdrift = Ws+Vphor                   

# Compute aerodynamic resistance (Ra): 

z = 2                      

L = 200 

x = z/L                            

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H = ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 3.5                        

z0 = 0.01 

u_star = 0.5                 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)    

# Compute surface resistance (Rs) 

kin.vis = ((9*10^-8)*Temp)+10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-
1)/sqrt(3))+3.1416/6*sqrt(3)}^-1 

cd = 1/6 

kx = 0.216 

LAI = 4   

h =  0.07 
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d  = 0.04   

phi_H.1 = (1-16*x)^(-0.5)                

phi_H.2 = 1+5*x                          

phi_H = ifelse(x<=0, phi_H.1, phi_H.2) 

phi_M.1 = (1-16*x)^(-0.25)               

phi_M.2 = 1+5*x                          

phi_M = ifelse(x<=0, phi_M.1, phi_M.2) 

lmp = (0.41*(z-d))/(phi_H*(z-d)/abs(L)) 

lmp_h = (0.41*(h-d))/(phi_M*(h-d)/abs(L)) 

alphaPZ = {(kx*LAI)/(12*k_c^2*(1-d/h)^2)}^(1/3)*phi_M^(2/3)*{(h-d)/abs(L)} 

C_IT = 0.056                                 

Tau_phplus.1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.2 = C_IT 

Tau_phplus = ifelse(Tau_phplus.1<20,Tau_phplus.1, Tau_phplus.2) 

E_t.1 = 2.5*10^-3*C_IT*(Tau_phplus)^2       

E_t.2 = C_IT 

E_t = ifelse(Tau_phplus.1<20, E_t.1, E_t.2) 

u_starf = u_star*exp(-alphaPZ) 

Tau_phplus.f1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.f2 = 0.14 

Tau_phplusf = ifelse(Tau_phplus.f1<20,Tau_phplus.f1, Tau_phplus.f2) 

E_gt1 = 2.5*10^-3*0.14*(Tau_phplusf)^2 

E_gt2 = 0.14 

Egt = ifelse(Tau_phplus.f1<20, E_gt1, E_gt2) 

Eg = Egb + Egt                                 

# Compute Qg (non-dimensional number) 

Qg = Eg*h/lmp_h 

# Compute Q 

U_z = 2 
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U_h = U_z/(exp(alphaPZ*(z/h-1))) 

#Compute E_B (Brownian diffusion)  

L_obs = 0.01                    

C_B = 0.996 

Re_h = (U_h*L_obs)/(kin.vis) 

E_B = C_B*(Sc^(-2/3))*(Re_h^(-1/2)) 

#Compute E_IN (Interception)        

C_IN = 0.162                  

E_IN = C_IN*(dp/L_obs)                     

#Compute E_IM (Impaction)           

C_IM = 0.081                    

beta_IM = 0.47                  

St_h = (Tau*U_h)/L_obs 

E_IM = C_IM*(St_h/(St_h+beta_IM))^2 

E_T = (U_h/u_star)*(E_B+E_IN+E_IM)+E_t 

Q  = LAI*E_T*h/(lmp_h) 

# Compute etaPZ 

etaPZ = (alphaPZ^2/4+Q)^0.5  

Vds = u_star*Eg*{(1+Q/Qg-alphaPZ/2)*tanh(etaPZ)/etaPZ}/{(1+Q+alphaPZ/2)*tanh(etaPZ)/etaPZ} 

Vd = Vdrift+1/(Ra+1/Vds);Vd 

 
#Accuracy Evaluation: Coniferous forest 

#Dry deposition velocity parameterization by Petroff and Zhang (2010) 

attach(Rannik_etal_2000) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH= 0.90 
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dp_i = V1 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp =  273.15+25 

P = 101325                          

d_air = 3.7208*10^-10             

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.891*10^-5       

rho = 1500                     

Tau = (rho*(dp)^2*C)/(18*dyn.vis)  

Ws = Tau*9.81                       

Vphor = 0                             

Vdrift = Ws+Vphor                   

# Compute aerodynamic resistance (Ra): 

z = 23.7                          

L = 200 

x = z/L                        

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                               

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 26                         

z0 = 1.2 

u_star = V2                 



105 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)  

kin.vis = 1.683*10^-5   

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-1)/sqrt(3)) 

        +3.1416/6*sqrt(3)}^-1 

cd = 1/6 

kx = 0.216 

LAI = 6   

h =  13                

d  = 9.75  

phi_H.1 = (1-16*x)^(-0.5)                

phi_H.2 = 1+5*x                          

phi_H = ifelse(x<=0, phi_H.1, phi_H.2) 

phi_M.1 = (1-16*x)^(-0.25)               

phi_M.2 = 1+5*x                          

phi_M = ifelse(x<=0, phi_M.1, phi_M.2) 

lmp = (0.41*(z-d))/(phi_H*(z-d)/abs(L)) 

lmp_h = (0.41*(h-d))/(phi_M*(h-d)/abs(L)) 

alphaPZ = {(kx*LAI)/(12*k_c^2*(1-d/h)^2)}^(1/3)*phi_M^(2/3)*{(h-d)/abs(L)} 

C_IT = 0                                   

Tau_phplus.1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.2 = C_IT 

Tau_phplus = ifelse(Tau_phplus.1<20,Tau_phplus.1, Tau_phplus.2) 

E_t.1 = 2.5*10^-3*C_IT*(Tau_phplus)^2       

E_t.2 = C_IT 

E_t = ifelse(Tau_phplus.1<20, E_t.1, E_t.2) 
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u_starf = u_star*exp(-alphaPZ) 

Tau_phplus.f1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.f2 = 0.14 

Tau_phplusf = ifelse(Tau_phplus.f1<20,Tau_phplus.f1, Tau_phplus.f2) 

E_gt1 = 2.5*10^-3*0.14*(Tau_phplusf)^2 

E_gt2 = 0.14 

Egt = ifelse(Tau_phplus.f1<20, E_gt1, E_gt2) 

Eg = Egb + Egt                                

# Compute Qg (non-dimensional number) 

Qg = Eg*h/lmp_h 

# Compute Q 

U_z = V3 

U_h = U_z/(exp(alphaPZ*(z/h-1))) 

L_obs = 0.15                    

C_B = 0.887 

Re_h = (U_h*L_obs)/(kin.vis) 

E_B = C_B*(Sc^(-2/3))*(Re_h^(-1/2)) 

C_IN = 0.810                   

E_IN = C_IN*(dp/L_obs)                       

#Compute E_IM (Impaction)           

C_IM = 0.162                     

beta_IM = 0.60                    

St_h = (Tau*U_h)/L_obs 

E_IM = C_IM*(St_h/(St_h+beta_IM))^2 

E_T = (U_h/u_star)*(E_B+E_IN+E_IM)+E_t 

Q  = LAI*E_T*h/(lmp_h) 

# Compute etaPZ 

etaPZ = (alphaPZ^2/4+Q)^0.5  

Vds = u_star*Eg*{(1+Q/Qg-alphaPZ/2)*tanh(etaPZ)/etaPZ}/{(1+Q+alphaPZ/2)*tanh(etaPZ)/etaPZ} 
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Vd = Vdrift+1/(Ra+1/Vds);Vd 

 
#Accuracy Evaluation: Deciduous forest 

#Dry deposition parameterization by Petroff and Zhang (2010) 

attach(Wesely_etal_1983) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH= 95/100 

dp_i = 0.4 

dp_d = dp_i*10^-6                

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

k_B = 1.38*10^-23                  

Temp = V1 

P = 101325                         

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = V2              

rho = 2000                         

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

Ws = Tau*9.81                       

Vphor = 0                           

Vdrift = Ws+Vphor                 

# Compute aerodynamic resistance (Ra): 

z = 39                              
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L = (1*V6) 

x = z/L                             

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})        

shi_H.2 = -5*x                               

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 56                           

z0 = 1.6 

u_star = V4                  

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

kin.vis = V3  

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-1)/sqrt(3)) 

        +3.1416/6*sqrt(3)}^-1 

cd = 1/6 

kx = 0.216 

LAI = 0.2   

h =  28                    

d  = 21          

phi_H.1 = (1-16*x)^(-0.5)                

phi_H.2 = 1+5*x                         

phi_H = ifelse(x<=0, phi_H.1, phi_H.2) 

phi_M.1 = (1-16*x)^(-0.25)               

phi_M.2 = 1+5*x                          

phi_M = ifelse(x<=0, phi_M.1, phi_M.2) 

lmp = (0.41*(z-d))/(phi_H*(z-d)/abs(L)) 
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lmp_h = (0.41*(h-d))/(phi_M*(h-d)/abs(L)) 

alphaPZ = {(kx*LAI)/(12*k_c^2*(1-d/h)^2)}^(1/3)*phi_M^(2/3)*{(h-d)/abs(L)} 

C_IT = 0.056                                   

Tau_phplus.1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.2 = C_IT 

Tau_phplus = ifelse(Tau_phplus.1<20,Tau_phplus.1, Tau_phplus.2) 

E_t.1 = 2.5*10^-3*C_IT*(Tau_phplus)^2       

E_t.2 = C_IT 

E_t = ifelse(Tau_phplus.1<20, E_t.1, E_t.2) 

u_starf = u_star*exp(-alphaPZ) 

Tau_phplus.f1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.f2 = 0.14 

Tau_phplusf = ifelse(Tau_phplus.f1<20,Tau_phplus.f1, Tau_phplus.f2) 

E_gt1 = 2.5*10^-3*0.14*(Tau_phplusf)^2 

E_gt2 = 0.14 

Egt = ifelse(Tau_phplus.f1<20, E_gt1, E_gt2) 

Eg = Egb + Egt                                 

# Compute Qg (non-dimensional number) 

Qg = Eg*h/lmp_h 

# Compute Q 

U_z = V5 

U_h = U_z/(exp(alphaPZ*(z/h-1))) 

L_obs = 0.03                    

C_B = 1.262 

Re_h = (U_h*L_obs)/(kin.vis) 

E_B = C_B*(Sc^(-2/3))*(Re_h^(-1/2)) 

C_IN = 0.216                      

E_IN = C_IN*(dp/L_obs)*(2+log(4*L_obs/dp))  

C_IM = 0.130                   
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beta_IM = 0.47                    

St_h = (Tau*U_h)/L_obs 

E_IM = C_IM*(St_h/(St_h+beta_IM))^2 

E_T = (U_h/u_star)*(E_B+E_IN+E_IM)+E_t 

Q  = LAI*E_T*h/(lmp_h) 

# Compute etaPZ 

etaPZ = (alphaPZ^2/4+Q)^0.5  

Vds = u_star*Eg*{(1+Q/Qg-alphaPZ/2)*tanh(etaPZ)/etaPZ}/{(1+Q+alphaPZ/2)*tanh(etaPZ)/etaPZ} 

Vd = Vdrift+1/(Ra+1/Vds);Vd 

 
#Accuracy Evaluation: Water 

#Dry deposition parameterization by Petroff and Zhang (2010) 

attach(Moller_Schumann_1970) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = 90/100  

dp_i = V1 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                        

k_B = 1.38*10^-23                   

Temp = 273.15+25                

P = 101325                          

d_air = 3.7208*10^-10              

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 
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dyn.vis = ((5*10^-8)*Temp)+4*10^-6      

rho = 1500                     

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

Ws = Tau*9.81                       

Vphor = (5*10^-3)/100                          

Vdrift = Ws+Vphor                   

# Compute aerodynamic resistance (Ra): 

z = 8/100                      

L = 50 

x = z/L                             

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H = ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 5  

u_star = 0.4 

z0_1 = 0.021*(u_star)^3.32 

z0_2 = 0.00098*(u_star)^1.65 

z0 = ifelse(u_star<= 0.16, z0_1, z0_2)                        

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance (Rs) 

kin.vis = ((9*10^-8)*Temp)+10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-
1)/sqrt(3))+3.1416/6*sqrt(3)}^-1 

Eg = Egb  

Vd = Vdrift+1/(Ra+(1/(Eg*u_star)));Vd 
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#Accuracy Evaluation: Ice/snow 

#Dry deposition velocity parameterization by Petroff and Zhang (2010) 

attach(Ibrahim_1983) 

C1 = 0.2789                          

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = 60/100  

dp_i = c(0.22, 0.73) 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                        

#Correction factor, C 

k_B = 1.38*10^-23                  

#Temp_1 = 25 

Temp = 273.15+3                     

P = 101325                         

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6      

rho = 1500                         

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

Ws = Tau*9.81                       

Vphor = (2*10^-4)/100                         

Vdrift = Ws+Vphor                  

# Compute aerodynamic resistance (Ra): 

#z =                         
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#L = z/L 

#x = z/L 

x = 0.2 

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})        

shi_H.2 = -5*x                               

shi_H = ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 10  

u_star = 0.12 

z0 = 0.1/100 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)  # m/s 

# Compute surface resistance (Rs) 

kin.vis = ((9*10^-8)*Temp)+10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-1)/sqrt(3))+3.1416/6*sqrt(3)}^-1 

Eg = Egb  

Vd = Vdrift+1/(Ra+(1/(Eg*u_star)));Vd 

 

Codes for evaluation of model accuracy using Kouznetsov and Sofiev (2012) parameterization 
#Accuracy Evaluation: Grass 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

attach(Allen_etal_1990) 

C1 = 0.4809                           

C2 = 3.082 

C3 = 3.110*10^-11 

C4 = -1.428 
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RH = 90/100  

dp_a = 0.48 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp_1 = V1 

Temp = 273.15+V1                 

P = 101325                          

d_air = 3.7208*10^-10              

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6            

rho =  2000                    

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_s = Tau*9.81                       

u_star = V2 

a  =  2*10^-3 

kin.vis = ((9*10^-8)*Temp)+10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_star = (u_star*a)/kin.vis 

# Compute V_diff (velocity for diffusion) 

V_diff = 2*(Re_star^(-0.5))*Sc^(-2/3) #m/s 

# Compute V_int (velocity for interception) 
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V_int = 80*u_star*((dp/a)^2)*(Re_star^(0.5)) 

# Compute V_imp 

C_S = 0.003 

C_R = 0.3 

LAI = 4 

CsCR = (C_S+C_R/LAI)^0.5 

u.Uh = 0.3 

u_star.by.U_h = min(u.Uh, CsCR) 

#Compute Re_c 

Re_c = ((u_star.by.U_h)^-1)^2*Re_star 

# Calculate St 

St = (Tau*u_star)/a 

# Calculate St_e 

St_e = St - Re_c^(-0.5) 

eta_impSt.e1 = exp((-0.1/(St_e - 0.15 ) )-(1/sqrt(St_e -0.15))) 

eta_impSt.e2 = 0 

eta_impSt.e = ifelse(St_e>0.15,eta_impSt.e1,eta_impSt.e2) 

V_imp = ((2*u_star.by.U_h)/u_star)*eta_impSt.e*(St-u_star.by.U_h*Re_star^-0.5) 

# Dry deposition velocity 

Vd = V_diff+V_int+V_imp+V_s;Vd 

#Accuracy Evaluation: Coniferous forest 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

attach(Rannik_etal_2000) 

C1 = 0.2789                        

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = 0.90  
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dp_a = V1 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp =  273.15+25 

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.891*10^-5              

#dyn.vis = V2  

rho = 1500                      

Tau = (rho*(dp)^2*C)/(18*dyn.vis)  

V_s = Tau*9.81                      

# Need to compute Sc, Re_star 

u_star = V2 

a  =  0.7*10^-3 

kin.vis = 1.683*10^-5        

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_star = (u_star*a)/kin.vis 

# Compute V_diff (velocity for diffusion) 

V_diff = 2*(Re_star^(-0.5))*Sc^(-2/3)  

# Compute V_int (velocity for interception) 

V_int = 80*u_star*((dp/a)^2)*(Re_star^(0.5)) 

# Compute V_imp 
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C_S = 0.003 

C_R = 0.3 

LAI = 6 

CsCR = (C_S+C_R/LAI)^0.5 

u.Uh = 0.3 

u_star.by.U_h = min(u.Uh, CsCR) 

#Compute Re_c 

Re_c = ((u_star.by.U_h)^-1)^2*Re_star 

# Calculate St 

St = (Tau*u_star)/a 

# Calculate St_e 

St_e = St - Re_c^(-0.5) 

eta_impSt.e1 = exp((-0.1/(St_e - 0.15 ) )-(1/sqrt(St_e -0.15))) 

eta_impSt.e2 = 0 

eta_impSt.e = ifelse(St_e>0.15,eta_impSt.e1,eta_impSt.e2) 

V_imp = ((2*u_star.by.U_h)/u_star)*eta_impSt.e*(St-u_star.by.U_h*Re_star^-0.5) 

# Dry deposition velocity 

Vd = V_diff+V_int+V_imp+V_s;Vd 

#Accuracy Evaluation: Deciduous forest 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

attach(Wesely_etal_1983) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = 0.95  

dp_a = 0.4 

dp_i = dp_a*10^-6                  

rd = dp_i/2 
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r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = V1 

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = V2  

rho = 2000                          

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_s = Tau*9.81                      

# Need to compute Sc, Re_star 

u_star = V4 

a  = 0.7*10^-3 

kin.vis = 1.597*10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_star = (u_star*a)/kin.vis 

# Compute V_diff (velocity for diffusion) 

V_diff = 2*(Re_star^(-0.5))*Sc^(-2/3) #m/s 

# Compute V_int (velocity for interception) 

V_int = 80*u_star*((dp/a)^2)*(Re_star^(0.5)) 

# Compute V_imp 

C_S = 0.003 

C_R = 0.3 

LAI = 0.2 

CsCR = (C_S+C_R/LAI)^0.5 
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u.Uh = 0.3 

u_star.by.U_h = min(u.Uh, CsCR) 

#Compute Re_c 

Re_c = ((u_star.by.U_h)^-1)^2*Re_star 

# Calculate St 

St = (Tau*u_star)/a 

# Calculate St_e 

St_e = St - Re_c^(-0.5) 

eta_impSt.e1 = exp((-0.1/(St_e - 0.15 ) )-(1/sqrt(St_e -0.15))) 

eta_impSt.e2 = 0 

eta_impSt.e = ifelse(St_e>0.15,eta_impSt.e1,eta_impSt.e2) 

V_imp = ((2*u_star.by.U_h)/u_star)*eta_impSt.e*(St-u_star.by.U_h*Re_star^-0.5) 

#Dry deposition velocity 

Vd = V_diff+V_int+V_imp+V_s;Vd 

#Accuracy Evaluation: Ice/snow 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

attach(Ibrahim_1983) 

C1 = 0.4809                           

C2 = 3.082 

C3 = 3.110*10^-11 

C4 = -1.428 

RH = 0.90  

dp_a = c(0.22, 0.73)            

dp_i = dp_a*10^-6                 

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                   
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Temp = 273.15+3                     

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6            

rho =  1500                                   

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_s = Tau*9.81                       

u_star = 0.12 

a  =  0.5*10^-3 

kin.vis = ((9*10^-8)*Temp)+10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_star = (u_star*a)/kin.vis 

# Compute V_diff (velocity for diffusion) 

V_diff = 2*(Re_star^(-0.5))*Sc^(-2/3) #m/s 

# Compute V_int (velocity for interception) 

V_int = 80*u_star*((dp/a)^2)*(Re_star^(0.5)) 

#Compute V_imp 

C_S = 0.003 

C_R = 0.3 

LAI = 0 

CsCR = (C_S+C_R/LAI)^0.5 

u.Uh = 0.3 

u_star.by.U_h = min(u.Uh, CsCR) 

#Compute Re_c 

Re_c = ((u_star.by.U_h)^-1)^2*Re_star 

# Calculate St 
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St = (Tau*u_star)/a 

# Calculate St_e 

St_e = St - Re_c^(-0.5) 

eta_impSt.e1 = exp((-0.1/(St_e - 0.15 ) )-(1/sqrt(St_e -0.15))) 

eta_impSt.e2 = 0 

eta_impSt.e = ifelse(St_e>0.15,eta_impSt.e1,eta_impSt.e2) 

#V_imp = ((2*u_star.by.U_h)/u_star)*eta_impSt.e*(St-u_star.by.U_h*Re_star^-0.5) 

V_imp = (2*u_star.by.U_h*eta_impSt.e*(St-(u_star.by.U_h*Re_star^-0.5)))*u_star 

# Dry deposition velocity 

Vd = V_diff+V_int+V_imp+V_s;Vd 

#Accuracy Evaluation: Water 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

C1 = 0.2789                          

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

dp_i = c(0.22, 0.73) 

dp = dp_i*10^-6 

rho = 1500  

RH = 0.60     

Temp = 25+273.15 

u_star = 0.12   

z0 =0.1/100 

L = 40        

kin.vis = ((9*10^-8)*Temp)+10^-5    

dyn.vis = ((5*10^-8)*Temp)+4*10^-6   

d_air = 3.7208*10^-10                

k_B = 1.38*10^-23 

P = 101325 
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lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+((2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda))) 

tau_p = (rho*(dp)^2*C)/(18*dyn.vis) 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

v_s = 9.81*tau_p 

taup = (tau_p*u_star^2)/(kin.vis) 

Sc = (kin.vis/D) 

vsplus = v_s/u_star  

rplus = (dp*u_star)/(2*kin.vis) 

R_s = 0 

Rsplus = u_star*R_s   

z_meas = 8         

zpmax = (z_meas*u_star)/(kin.vis)    

MOplus = (kin.vis)/(u_star*L) 

#Fixed parameters 

Zbuf = 3  

Ztf = 18                             #turbophoretic sublayer height 

taultf = 5                           #Lagrangian time in turbophoretic layer 

Nutp_Ztf= (0.4*(Ztf)^3)/(Ztf^2+200)  #Dimensionless eddy viscosity of air 

It_Ztf = (2.5*log10(Ztf ))-(100/Ztf^2) 

It_Zbuf = (2.5*log10(Zbuf))-(100/Zbuf^2) 

S = Sc^(1/3) 

Zl = 20/S 

fTmp = 2.5/Sc 

fTmp1 = (fTmp^3/27+(fTmp*(100+5*sqrt(8*fTmp/27)+400)))^(1/3) 

Zl_1 = fTmp1+((fTmp*fTmp)/(9*fTmp1))+(1/3)*fTmp                #Zl updated as zl_1 

fTmp_1 = (Zl_1^2)/(Zl_1^2+200)                                 #fTmp updated as fTmp_1 

fTmp_2 = 1.2*(fTmp_1)-0.8*fTmp_1^2                             #fTmp_1 updated as fTmp_2 

fTmp1_1 = 1/(Sc*fTmp_2)                                        #fTmp1 updated as fTmp1_1 
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fTmp_3 = 1/Sc                                                  #ftmp_2 updated as fTmp_3 

x_1 = Zl_1 - fTmp1_1 

x_2 = Zl_1 

x_3 = Zl_1+fTmp1_1 

Nutp_x_1 = (0.4*x_1^3)/(x_1^2+200)          

Nutp_x_2 = (0.4*x_2^3)/(x_2^2+200)          

Nutp_x_3 = (0.4*x_3^3)/(x_3^2+200)          

fIvd = Rsplus+(Zl_1-fTmp1_1)*Sc+0.3333*fTmp1_1*(1/fTmp_3+((0.4*x_1^3)/(x_1^2+200)))+ 

4/(fTmp_3+((0.4*x_2^3)/(x_2^2+200)))+1/(fTmp_3+((0.4*x_3^3)/(x_3^2+200))) 

x_4 = zpmax 

x_5 = Zl_1 + fTmp1_1 

It_x_4 = 2.5*log10(x_4) - 100/(x_4^2) 

It_x_5 = 2.5*log10(x_5) - 100/(x_5^2) 

s = 2.35*(zpmax*MOplus+abs(zpmax*MOplus)) 

u1 = 0.5*(abs(zpmax*MOplus)-zpmax*MOplus) 

u = -4*u1/(2.65*sqrt(u1*sqrt(u1))+1) 

fu_Psi = s+u            

fTmp_4 = It_x_4 - It_x_5 + 2.5*fu_Psi 

fIvd_1 = fIvd+0.5*(fTmp_4+abs(fTmp_4))    #fIvd updated as fIvd_1 

fu_vdplus_smooth_1 = 1/fIvd_1             #mind fu_vdplus_smooth is denoted as _1 

Il_input1= Zl*S/7.92 

Il_input2= rplus*S/7.92 

Il_1 = -0.16667*log10(Il_input1^2-Il_input1+1)+0.57735*atan((2*Il_input1-1)*0.57735) 

+0.3333*log10(Il_input1+1) 

Il_2 = -0.16667*log10(Il_input2^2-Il_input2+1)+0.57735*atan((2*Il_input2-1)*0.57735) 

+0.3333*log10(Il_input2+1) 

R = 7.92*S^2*(Il_1-Il_2)  #laminar resistance 

R_1 = 0.5*(R+abs(R))      #R updated as R_1 #should be zero if rplus > Zl 

Zl_2 = 0.5*(rplus+Zl+abs(rplus-Zl))   #Zl updated as Zl_2, not to be confused  
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with Zl_1 as if statement is in use 

It_Zbuf = 2.5*log10(Zbuf) - (100/(Zbuf^2)) 

It_Zl_2 = 2.5*log10(Zl_2) - (100/(Zl_2^2)) 

R1 = It_Zbuf - It_Zl_2 

R_2 = R_1+0.5*(R1+abs(R1))                    #R_1 updated as R_2 

fTmp_5 = vsplus*R_2                           #fTmp used as fTmp_5.  

Not updated as previous fTmp_4 is for different condition 

fTmp_6 = exp(-fTmp_5)                         #fTmp_5 updated as fTmp_6 

fIvd_2  = Rsplus*fTmp_6+(1-fTmp_6)/vsplus     #fIvd denoted as fIvd_2 NOT updated  

previous fIvd_1 is for different condition 

fIvd_3 = Rsplus+R_2                           #fIvd_3 used; NOT updated  

fIvd_23 = ifelse(abs(fTmp_5)>0.001, fIvd_2, fIvd_3 ) 

#Use above values for the following calculations for turbophoretic layer  

V  = 0.81*taup/(Ztf-Zbuf)/(1+taup/taultf) + vsplus   #chcek for sign of vsplus 

It_Ztf = 2.5*log10(Ztf) - 100/(Ztf^2) 

R_3  = ((It_Ztf)-(It_Zbuf))*(1+taup/taultf)    #R_2 updated as R_3 

fTmp_7 = V*R_3                                 #fTmp_6 updated as fTmp_7 

fTmp_8 = exp(-fTmp_7)                          #fTmp_7 updated as fTmp_8 

fIvd_4 = (fIvd_23*fTmp_8)+(1-fTmp_8)/V         #fIvd_23 updated as fIvd_4 

fIvd_5 = fIvd_3+R_3                            #fIvd_5 used; NOT updated 

fIvd_45 = ifelse(abs(fTmp_7)>0.001, fIvd_4, fIvd_5) 

#Now calculations for the Lagrangian turbophoretic layer 

Ztf2 = 2*taup       

V_1 = 0.4+vsplus 

R_4 = 0.1667*((1+taup/(0.5*Ztf))/(Nutp_Ztf)+4*(1+taup/(0.25*(Ztf+Ztf2)))/ 

((0.4*(0.5*(Ztf+Ztf2))^3)/((0.5*(Ztf+Ztf2))^2+200))+(1+taup/(0.5*Ztf2))/ 

((0.4*Ztf2 ^3)/(Ztf2^2+200)))*(Ztf2-Ztf) 

fTmp_9 = V_1*R_4 

fTmp_10 = exp(-fTmp_9) 
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fIvd_6 = fIvd_45*fTmp_10 + (1-fTmp_10)/V_1   #fIvd_5 or fIvd_4 (fIvd_45) 

fIvd_7 = fIvd_45+R_3                         #Either fIvd_4 or fIvd_5,  

R_3 used not R_4 since outside if statement 

fIvd_67 = ifelse(abs(fTmp_9) > 0.001, fIvd_6, fIvd_7) 

Ztf2_2 = Ztf 

fIvd67_Ztf2 = ifelse(Ztf2>Ztf, fIvd_67, Ztf2_2) 

      

#Following calculations are for aerodynamic layer 

It_zpmax = 2.5*log10(zpmax) - 100/(zpmax^2)    

Ztf22 = ifelse(Ztf2>Ztf, Ztf2, Ztf2_2) 

It_Ztf22  = 2.5*log10(Ztf22) - 100/(Ztf22^2)       #be careful which Ztf2 to  

be used here based on previous condition 

R_5 = It_zpmax - It_Ztf22  + 2.5*fu_Psi            #R_5 used, NOT updated from R_4 

R_6 = 0.5*(R_5+abs(R_5))                           #R_5 updated as R_6 

fTmp_11  = vsplus*R_6                              #fTmp_11 used, NOT updated from fTmp_10 

fTmp_12 = exp(-fTmp_11)                            #fTmp_11 updated as fTmp_12 

fIvd_4567 = ifelse(Ztf2>Ztf, fIvd_67,fIvd_45) 

fIvd_8 = (fIvd_4567* fTmp_12)+(1-fTmp_12)/vsplus   # Caution:fIvd_45 or fIvd_67 may be used 

fIvd_9 = fIvd_4567 + R_6                           #fIvd_9 used, NOT updated.  

Caution:fIvd_5 or fIvd_4 may be used 

fIvd_10 = ifelse(abs(fTmp_11) > 0.001, fIvd_8, fIvd_9) 

fu_vdplus_smooth_3 = 1/fIvd_10                      #fu_vdplus_smooth_3 used.  

NOT updated. fIvd_8 could be used 

fu_vdplus_smooth = ifelse(Zl>Zbuf, fu_vdplus_smooth_1, fu_vdplus_smooth_3) 

Vd_smooth = fu_vdplus_smooth*u_star;Vd_smooth 

 

Codes for evaluation of model accuracy using Zhang and He (2014) parameterization 
#Accuracy Evaluation: Grass (code is similar for coniferous forest) 

#Dry deposition parameterization by Zhang and He (2014) 
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attach(Allen_etal_1991) 

C1 = 0.4809                          

C2 = 3.082 

C3 = 3.110*10^-11 

C4 = -1.428 

RH = 90/100  

dp_a = 0.48 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp_1 = V1 

Temp = 273.15+V1   

P = 101325                         

d_air = 3.7208*10^-10              

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6               # kg/m*s (temp. corrected viscosity coeff. of 
air) 

rho = 2000                       

Tau = (rho*(dp)^2*C)/(18*dyn.vis)  

V_g = Tau*9.81  

Rg = 1/V_g 

u_star = V2 

a1 = 4.8*10^-3 

z = 2                   

L = V4 



127 

x = z/L                             

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 3.5                     

z0 = 0.01 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Calculate Vds = 1/Rs 

#For PM2.5 

Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

# For PM2.5-10 

#b1= -1.6*10^-1 

#b2= 1.5*10^0 

#b3 = 7.8*10^-1 

#c1= 1.8 

#c2 = -2.0*10^-1 

#c3 = -5.3*10^-1 

#k = c1*u_star+c2*u_star^2+c3*u_star^3 

#LAI =  

#LAImax =  

#Vds_PM10 = (b1*u_star+b2*u_star^2+b3*u_star^3)  #*exp(k*(LAI/LAImax)-1) 

#Rds_PM10 = 1/Vds_PM10 

# For PM10+ 

#d1= -2.2 

#d2= 3.9*10^1 

#d3 = -6.7 
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#f1= 6.2 

#f2 = -1.2*10^1 

#f3 = 6.1 

#k = f1*u_star+f2*u_star^2+f3*u_star^3 

#LAI =  

#LAImax = 

#Vds_PM10Plus = (d1*u_star+d2*u_star^2+d3*u_star^3)*exp(k*(LAI/LAImax)-1) 

#Rds_PM10Plus = (1/Vds_PM10Plus) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5));Vd 

 

 
#Accuracy Evaluation: Deciduous forest 

#Dry deposition parameterization by Zhang and He (2014) 

attach(Rannik_etal_2000) 

C1 = 0.2789                        

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = 90/100 

dp_a = V1 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

k_B = 1.38*10^-23                  

Temp = 273.15+25            

P = 101325                         

d_air = 3.7208*10^-10               
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lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.891*10^-5               

rho = 1500                       

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_g = Tau*9.81  

Rg = 1/V_g 

u_star = V2 

a1 = 4.3*10^-3 

z = 23.7                     

L = 200 

x = z/L                            

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 26                       

z0 = 1.2 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Calculate Vds = 1/Rs 

#For PM2.5 

Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

# For PM2.5-10 

#b1= -1.6*10^-1 

#b2= 1.5*10^0 

#b3 = 7.8*10^-1 

#c1= 1.8 
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#c2 = -2.0*10^-1 

#c3 = -5.3*10^-1 

k = c1*u_star+c2*u_star^2+c3*u_star^3 

LAI = 12 

LAImax = 12 

Vds_PM10 = (b1*u_star+b2*u_star^2+b3*u_star^3)  #*exp(k*(LAI/LAImax)-1) 

Rds_PM10 = 1/Vds_PM10 

# For PM10+ 

#d1= -2.2 

#d2= 3.9*10^1 

#d3 = -6.7 

#f1= 6.2 

#f2 = -1.2*10^1 

#f3 = 6.1 

#k = f1*u_star+f2*u_star^2+f3*u_star^3 

#LAI =  

#LAImax = 

#Vds_PM10Plus = (d1*u_star+d2*u_star^2+d3*u_star^3)*exp(k*(LAI/LAImax)-1) 

#Rds_PM10Plus = (1/Vds_PM10Plus) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5));Vd 

 
#Accuracy Evaluation: Water 

#Dry deposition parameterization by Zhang and He (2014) 

attach(Caffrey_etal_1998) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 
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RH = 79/100  

dp_a = V1 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                           

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = 273.15+22  

P = 101325                         

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6                

rho = 2000                   

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_g = Tau*9.81  

Rg = 1/V_g 

a1 = 6.9*10^-3 

z = 8/100                   

L = 50 

x = z/L                            

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                               

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 5                      

u_star = 13.5/100 

z0_1 = 0.021*(u_star)^3.32 
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z0_2 = 0.00098*(u_star)^1.65 

z0 = ifelse(u_star<= 0.16, z0_1, z0_2) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)  # m/s 

# Calculate Vds = 1/Rs 

#For PM2.5 

Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5));Vd 

 
#Accuracy Evaluation: Ice/snow 

#Dry deposition parameterization by Zhang and He (2014) 

#attach(Nilsson_Rannik_2001) 

C1 = 0.2789                          

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = 60/100  

dp_a = c(0.22, 0.73) 

dp_i = dp_a*10^-6                 

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = 273.15+3  

P = 101325                          

d_air = 3.7208*10^-10               



133 

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6               

rho = 1500                   

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_g = Tau*9.81  

Rg = 1/V_g 

a1 = 4.3*10^-3 

#z =  

#L = 

#x = z/L 

x = 0.2 

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                               

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 10         

u_star = 0.12 

z0 = 0.1/100 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)  # m/s 

# Calculate Vds = 1/Rs 

#For PM2.5 

Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5));Vd 
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Codes for evaluation of model accuracy using Zhang and Shao (2014) parameterization 
#Accuracy Evaluation: Rough and smooth surfaces   
#Dry deposition parameterization by Zhang and He (2014) 

#attach(Allen_etal_1991) 

C1 = 0.4809                           

C2 = 3.082 

C3 = 3.110*10^-11 

C4 = -1.428 

RH_1 = 90 

RH = 90/100  

dp_a = 0.50 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = 273.15+25                

P = 101325                        

d_air = 3.7208*10^-10            

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

Temp = 273.15+25   

dyn.vis = ((5*10^-8)*Temp)+4*10^-6            

rho = 1500                

Tau = (rho*(dp_i)^2*C)/(18*dyn.vis)   

Tau_wet = (rho*(dp)^2*C)/(18*dyn.vis) 

Wt = Tau*9.81                      

Vg = Wt                             

Vg_wet = Tau_wet*9.81 
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u_star = 0.5 

k =  0.41 

z =  1   

zd = 0.20                           

h_c = 0.23                          

z0 = 0.002                          

B1 = 0.45 

Sc_T = (1+(Vg^2/u_star^2))^0.5 

Ra = (Sc_T/(k*u_star))*(log((z-zd)/(h_c-zd)))  # For rough surface 

#Ra = (B1*Sc_T/k*u_star)*log(z/z0)             # For smooth surface 

Rg = 1/Vg 

# Calculate surface resistance (Rs) 

U_h = 2 

kin.vis = ((9*10^-8)*Temp)+10^-5 

d_c = 0.005                          

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_h = (U_h*d_c)/(kin.vis) 

nB = 0.5 

C_B = 0.467 

E_B = C_B*Sc^(-2/3)*Re_h^(nB-1) 

#Compute impaction collection efficiency (E_IM) 

beta_IM = 0.6                     

St_h = (Tau*u_star)/d_c 

E_IM = (St_h/(St_h+beta_IM))^2 

#Compute interception efficiency (E_IN) 

Ain = 150 

E_IN = Ain*u_star*(10^(-St_h))*(2*dp/d_c) 

#Compute R 
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b = 2 

R = exp(-b*sqrt(St_h)) 

#Compute w_dm  

B2 = 3 

w_dm = (u_star/U_h*h_c)       #For rough surface 

#w_dm = B2*u_star             #For smooth surface 

#compute Tau_c/Tau (ratio of stress) 

Beta = 200 

C_1 = 6 

C_2 = 0.1 

lambda_FAI = 0.4 

n_FAI = (lambda_FAI)/(h_c*d_c) 

q = (3.1416*d_c^2)/4 

eta_BAI = n_FAI*q  

lambda_FAIe = ((lambda_FAI)/(1-eta_BAI)^C_2)*exp((-C_1*lambda_FAI)/(1-eta_BAI)^C_2) 

Tau_c_BY_Tau = (Beta*lambda_FAIe)/(1+Beta*lambda_FAIe) 

#Compute Rs   

E = E_B+E_IM+E_IN 

Tau_wetplus = (Tau_wet*u_star^2)/kin.vis 

Cd = 1/6 

Rs = (R*w_dm*((E*Tau_c_BY_Tau/Cd)+(1+Tau_c_BY_Tau)*Sc^-1+10^(-3/Tau_wetplus))+Vg_wet)^-1 

#Compute Vd 

Vd = (Rg+((Rs-Rg)/exp(Ra/Rg)))^-1;Vd 

 

Codes for Monte Carlo uncertainty evaluation for Zhang et al. (2001) parameterization 

#Dry deposition parameterization by Zhang et al. (2001) 

#Uncertainty test: Grass 

set.seed(5) 

C1 = 0.2789                        
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C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84)) 

dp_i = 2.0*10^-6                 

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = (273.15+25)                 

P = 101325                         

d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.8908*10^-5              

rho = 1500                          

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)    

# Compute aerodynamic resistance Ra: 

z = 5 

L = replicate(10000,runif(100,45,55)) 

x = z/L 

# Compute shi_H (stability function) 

shi_H2 = -5*x                          

zR = 3.5                                

z0 = replicate(10000,runif(100,0.03, 0.05)) 

u_star = replicate(10000,runif(100,0.27,0.33)) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H2)/(k_c*u_star)   
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# Compute surface resistance Rs: 

e_0 = 3 

R1 =1 

# Compute E_B (collection efficienty from Brownian diffusion) 

kin.vis = 1.6834*10^-5 

gamma = 0.54 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

# Compute E_IM (collection efficiency from impaction) 

alpha = 1.2 

beta =  2 

A = 2/1000  

St = (Vg*u_star)/(9.81*A) 

E_IM = {St/(alpha+St)}^beta 

# Compute E_IN (collection efficiency from interception) 

E_IN = 0.5*(dp/A)^2 

Rs = 1/{(e_0*u_star)*(E_B+E_IM+E_IN)*R1}   

# Compute Dry deposition velocity 

Vd <- Vg+(1/(Ra+Rs)) 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Zhang et al. (2001) 

#Uncertainty test: Coniferous forest 

set.seed(5) 

C1 = 0.2789                        

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 
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RH = replicate(10000,runif(100,0.76,0.84)) 

dp_i = 2.0*10^-6                #particle dia = 0.005-50 um (assumed, vary) 

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = (273.15+25)                

P = 101325                         

d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.8908*10^-5              

rho = 1500                          

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)   #m/s 

# Compute aerodynamic resistance Ra: 

L = replicate(10000,runif(100,45,55)) 

x = z/L 

shi_H2 = -5*x                         

zR = 30                                

z0 = replicate(10000,runif(100,0.9, 1.5)) 

u_star = replicate(10000,runif(100,0.27,0.33)) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H2)/(k_c*u_star)  # m/s 

# Compute surface resistance Rs: 

e_0 = 3 

R1 =1 

# Compute E_B (collection efficiency from Brownian diffusion) 

kin.vis = 1.6834*10^-5 
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gamma = 0.56 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

# Compute E_IM (collection efficiency from impaction) 

alpha = 1.0 

beta =  2 

A = 2/1000  

St = (Vg*u_star)/(9.81*A) 

E_IM = {St/(alpha+St)}^beta 

# Compute E_IN (collection efficiency from interception) 

E_IN = 0.5*(dp/A)^2 

Rs = 1/{(e_0*u_star)*(E_B+E_IM+E_IN)*R1}  #(m/s) 

# Compute Dry deposition velocity 

Vd <- Vg+(1/(Ra+Rs)) 

quantile(Vd, c(.05, 0.10, .50, 0.95))   

 

#Dry deposition parameterization by Zhang et al. (2001) 

#Uncertainty test: Deciduous forest 

set.seed(5) 

C1 = 0.2789                        

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84)) 

dp_i = 2.0*10^-6                 

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         
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#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = (273.15+25)                 

P = 101325                         

d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.8908*10^-5              

rho = 1500                         

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)    

# Compute aerodynamic resistance Ra: 

z = 35 

L = replicate(10000,runif(100,45,55)) 

x = 35/L 

# Compute shi_H (stability function) 

shi_H2 = -5*x                          

zR = 50                                

z0 = replicate(10000,runif(100,1.125, 1.875)) 

u_star = replicate(10000,runif(100,0.27,0.33)) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H2)/(k_c*u_star)  

# Compute surface resistance Rs: 

e_0 = 3 

R1 =1 

# Compute E_B (collection efficienty from Brownian diffusion) 

kin.vis = 1.6834*10^-5 

gamma = 0.56 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 
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E_B = Sc^(-gamma) 

# Compute E_IM (collection efficienty from impaction) 

alpha = 0.80 

beta =  2 

A = 5/1000  

St = (Vg*u_star)/(9.81*A) 

E_IM = {St/(alpha+St)}^beta 

# Compute E_IN (collection efficienty from interception) 

E_IN = 0.5*(dp/A)^2 

Rs = 1/{(e_0*u_star)*(E_B+E_IM+E_IN)*R1}   

# Compute Dry deposition velocity 

Vd <- Vg+(1/(Ra+Rs)) 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Zhang et al. (2001) 

#Uncertainty test: Water 

set.seed(5) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))                    

dp_i = 2.0 #Parameter to vary for MCs 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                  
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Temp = 273.15+25                   

P = 101325                         

d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6    

rho = 1500                        

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)    

# Compute aerodynamic resistance Ra: 

z = 8/100                      

L = replicate(10000,runif(100,45,55))                         

x = z/L                          

# Compute shi_H (stability function) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 5                           

u_star = replicate(10000,runif(100,0.27,0.33))                

z0_1 = 0.021*(u_star)^3.32 

z0_2 = 0.00098*(u_star)^1.65 

z0 = ifelse(u_star<= 0.16, z0_1, z0_2) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance Rs: 

e_0 = 3 

R1 = 1 

kin.vis = ((9*10^-8)*Temp)+10^-5 

gamma = 0.50 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 
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Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

alpha = 100 

beta =  2 

A = 2/1000  

St = (Vg*u_star^2)/(kin.vis) 

E_IM = {St/(alpha+St)}^beta 

Rs = 1/{(e_0*u_star)*(E_B+E_IM)*R1}  #(m/s) 

# Compute Dry deposition velocity 

Vd =  Vg+(1/(Ra+Rs)) 

quantile(Vd, c(.05, 0.10, .50, 0.95))  

 

#Dry deposition parameterization by Zhang et al. (2001) 

#Uncertainty test: Ice/snow 

set.seed(5) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))  

dp_i = 2.0 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = 273.15+0                    

P = 101325                         
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d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6    

rho = 1500                     

Vg = (rho*(dp)^2*9.81*C)/(18*dyn.vis)    

# Compute aerodynamic resistance Ra: 

z = 5 

L = replicate(10000,runif(100,45,55)) 

x = z/L 

# Compute shi_H (stability function) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                               

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 10                          

u_star = replicate(10000,runif(100,0.27,0.33))  

z0 = replicate(10000,runif(100,0.0075,0.0125)) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance Rs: 

e_0 = 3 

R1 = 1 

kin.vis = ((9*10^-8)*Temp)+10^-5 

gamma = 0.54 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

E_B = Sc^(-gamma) 

alpha = 50 

beta =  2 
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A = 2/1000  

St = (Vg*u_star^2)/(kin.vis) 

E_IM = {St/(alpha+St)}^beta 

Rs = 1/{(e_0*u_star)*(E_B+E_IM)*R1}  #(m/s) 

# Compute Dry deposition velocity 

Vd =  Vg+(1/(Ra+Rs)) 

quantile(Vd, c(.05, 0.10, .50, 0.95))  

 

Codes for Monte Carlo uncertainty evaluation for Petroff and Zhang (2010) parameterization 

#Dry deposition parameterization by Petroff and Zhang (2010) 

#Uncertainty test: Grass 

set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))    

dp_a = 2.0  

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = (273.15+25)                  

P = 101325                          

d_air = 3.7208*10^-10              

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 
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dyn.vis = 1.8908*10^-5              

rho = 1500                         

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

Ws = Tau*9.81                       

Vphor = 0                          

Vdrift = Ws+Vphor                   

# Compute aerodynamic resistance (Ra): 

z = 5                              

L = replicate(10000,runif(100,45,55))     

x = z/L                              

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                               

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 3.5                             

z0 = replicate(10000,runif(100,0.03,0.05))  

u_star = replicate(10000,runif(100,0.27,0.33))  

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)  

# Compute surface resistance (Rs) 

kin.vis = 1.6834*10^-5                 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-1)/sqrt(3)) 

        +3.1416/6*sqrt(3)}^-1 

cd = 1/6 

kx = 0.216 

LAI = replicate(10000,runif(100,3.8,4.2))   
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h = replicate(10000,runif(100,0.475,0.525))   

d = replicate(10000,runif(100,0.225,0.375))  

phi_H.1 = (1-16*x)^(-0.5)                

phi_H.2 = 1+5*x                         

phi_H = ifelse(x<=0, phi_H.1, phi_H.2) 

phi_M.1 = (1-16*x)^(-0.25)              

phi_M.2 = 1+5*x                         

phi_M = ifelse(x<=0, phi_M.1, phi_M.2) 

lmp = (0.41*(z-d))/(phi_H*(z-d)/abs(L)) 

lmp_h = (0.41*(h-d))/(phi_M*(h-d)/abs(L)) 

alphaPZ = {(kx*LAI)/(12*k_c^2*(1-d/h)^2)}^(1/3)*phi_M^(2/3)*{(h-d)/abs(L)} 

C_IT = 0.042                                   

Tau_phplus.1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.2 = C_IT 

Tau_phplus = ifelse(Tau_phplus.1<20,Tau_phplus.1, Tau_phplus.2) 

E_t.1 = 2.5*10^-3*C_IT*(Tau_phplus)^2       

E_t.2 = C_IT 

E_t = ifelse(Tau_phplus.1<20, E_t.1, E_t.2) 

u_starf = u_star*exp(-alphaPZ) 

Tau_phplus.f1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.f2 = 0.14 

Tau_phplusf = ifelse(Tau_phplus.f1<20,Tau_phplus.f1, Tau_phplus.f2) 

E_gt1 = 2.5*10^-3*0.14*(Tau_phplusf)^2 

E_gt2 = 0.14 

Egt = ifelse(Tau_phplus.f1<20, E_gt1, E_gt2) 

Eg = Egb + Egt                                 

Qg = Eg*h/lmp_h 

U_z = replicate(10000,runif(100,2.91,3.09))  

U_h = U_z/(exp(alphaPZ*(z/h-1))) 
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L_obs = 0.005                    

C_B = 0.7 

Re_h = (U_h*L_obs)/(kin.vis) 

E_B = C_B*(Sc^(-2/3))*(Re_h^(-1/2)) 

C_IN = 0.7                     

E_IN = C_IN*(dp/L_obs)                       

C_IM = 0.191                     

beta_IM = 0.60                    

St_h = (Tau*U_h)/L_obs 

E_IM = C_IM*(St_h/(St_h+beta_IM))^2 

E_T = (U_h/u_star)*(E_B+E_IN+E_IM)+E_t 

Q  = LAI*E_T*h/(lmp_h) 

etaPZ = (alphaPZ^2/4+Q)^0.5  

Vds = u_star*Eg*{(1+Q/Qg-alphaPZ/2)*tanh(etaPZ)/etaPZ}/{(1+Q+alphaPZ/2)*tanh(etaPZ)/etaPZ} 

Vd = Vdrift+1/(Ra+1/Vds) 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Petroff and Zhang (2010) 

#Uncertainty test: Coniferous forest 

set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))    

dp_a = 50  

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 
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dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = (273.15+25)                  

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.8908*10^-5               

rho = 1500                          

Tau = (rho*(dp)^2*C)/(18*dyn.vis)  

Ws = Tau*9.81                       

Vphor = 0                          

Vdrift = Ws+Vphor                 

# Compute aerodynamic resistance (Ra): 

z = 35                              

L = replicate(10000,runif(100,180,200))     

x = z/L                              

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})        

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 30                             

z0 = replicate(10000,runif(100,0.9,1.5))  

u_star = replicate(10000,runif(100,0.27,0.33))  

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance (Rs) 

kin.vis = 1.6834*10^-5                  
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D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-1)/sqrt(3)) 

        +3.1416/6*sqrt(3)}^-1 

cd = 1/6 

kx = 0.216 

LAI = replicate(10000,runif(100,9.5,10.5))   

h = replicate(10000,runif(100,14.25,15.75))   

d = replicate(10000,runif(100,5.25,8.75))  

phi_H.1 = (1-16*x)^(-0.5)                

phi_H.2 = 1+5*x                         

phi_H = ifelse(x<=0, phi_H.1, phi_H.2) 

phi_M.1 = (1-16*x)^(-0.25)               

phi_M.2 = 1+5*x                         

phi_M = ifelse(x<=0, phi_M.1, phi_M.2) 

lmp = (0.41*(z-d))/(phi_H*(z-d)/abs(L)) 

lmp_h = (0.41*(h-d))/(phi_M*(h-d)/abs(L)) 

alphaPZ = {(kx*LAI)/(12*k_c^2*(1-d/h)^2)}^(1/3)*phi_M^(2/3)*{(h-d)/abs(L)} 

C_IT = 0                                   

Tau_phplus.1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.2 = C_IT 

Tau_phplus = ifelse(Tau_phplus.1<20,Tau_phplus.1, Tau_phplus.2) 

E_t.1 = 2.5*10^-3*C_IT*(Tau_phplus)^2       

E_t.2 = C_IT 

E_t = ifelse(Tau_phplus.1<20, E_t.1, E_t.2) 

u_starf = u_star*exp(-alphaPZ) 

Tau_phplus.f1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.f2 = 0.14 
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Tau_phplusf = ifelse(Tau_phplus.f1<20,Tau_phplus.f1, Tau_phplus.f2) 

E_gt1 = 2.5*10^-3*0.14*(Tau_phplusf)^2 

E_gt2 = 0.14 

Egt = ifelse(Tau_phplus.f1<20, E_gt1, E_gt2) 

Eg = Egb + Egt                                 

# Compute Qg (non-dimensional number) 

Qg = Eg*h/lmp_h 

# Compute Q 

U_z = replicate(10000,runif(100,3.88,4.12))  

U_h = U_z/(exp(alphaPZ*(z/h-1))) 

#Compute E_B (Brownian diffusion)  

L_obs = 0.0015                   

C_B = 0.887 

Re_h = (U_h*L_obs)/(kin.vis) 

E_B = C_B*(Sc^(-2/3))*(Re_h^(-1/2)) 

#Compute E_IN (Interception)        

C_IN = 0.810                      

E_IN = C_IN*(dp/L_obs)                       

#Compute E_IM (Impaction)           

C_IM = 0.162                     

beta_IM = 0.60                    

St_h = (Tau*U_h)/L_obs 

E_IM = C_IM*(St_h/(St_h+beta_IM))^2 

E_T = (U_h/u_star)*(E_B+E_IN+E_IM)+E_t 

Q  = LAI*E_T*h/(lmp_h) 

# Compute etaPZ 

etaPZ = (alphaPZ^2/4+Q)^0.5  

Vds = u_star*Eg*{(1+Q/Qg-alphaPZ/2)*tanh(etaPZ)/etaPZ}/{(1+Q+alphaPZ/2)*tanh(etaPZ)/etaPZ} 

Vd = Vdrift+1/(Ra+1/Vds) 
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quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Petroff and Zhang (2010) 

#Uncertainty test: Deciduous forest 

set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))    

dp_a = 2.0  

dp_i = dp_a*10^-6                 

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = (273.15+25)                  

P = 101325                          

d_air = 3.7208*10^-10              

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.8908*10^-5             

rho = 1500                          

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

Ws = Tau*9.81                       

Vphor = 0                          

Vdrift = Ws+Vphor                   

# Compute aerodynamic resistance (Ra): 
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z = 35                             

L = replicate(10000,runif(100,45,55))    

x = z/L                              

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                              

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 50                             

z0 = replicate(10000,runif(100,1.125, 1.875))  

u_star = replicate(10000,runif(100,0.54,0.66))  

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance (Rs) 

kin.vis = 1.6834*10^-5                  

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-1)/sqrt(3)) 

        +3.1416/6*sqrt(3)}^-1 

cd = 1/6 

kx = 0.216 

LAI = replicate(10000,runif(100,9.5,10.5))   

h = replicate(10000,runif(100,23.75,26.25))   

d = replicate(10000,runif(100,12,20)) 

phi_H.1 = (1-16*x)^(-0.5)                

phi_H.2 = 1+5*x                         

phi_H = ifelse(x<=0, phi_H.1, phi_H.2) 

phi_M.1 = (1-16*x)^(-0.25)               

phi_M.2 = 1+5*x                         
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phi_M = ifelse(x<=0, phi_M.1, phi_M.2) 

lmp = (0.41*(z-d))/(phi_H*(z-d)/abs(L)) 

lmp_h = (0.41*(h-d))/(phi_M*(h-d)/abs(L)) 

alphaPZ = {(kx*LAI)/(12*k_c^2*(1-d/h)^2)}^(1/3)*phi_M^(2/3)*{(h-d)/abs(L)} 

C_IT = 0.056                                   

Tau_phplus.1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.2 = C_IT 

Tau_phplus = ifelse(Tau_phplus.1<20,Tau_phplus.1, Tau_phplus.2) 

E_t.1 = 2.5*10^-3*C_IT*(Tau_phplus)^2       

E_t.2 = C_IT 

E_t = ifelse(Tau_phplus.1<20, E_t.1, E_t.2) 

u_starf = u_star*exp(-alphaPZ) 

Tau_phplus.f1 = (Tau*u_star^2)/kin.vis 

Tau_phplus.f2 = 0.14 

Tau_phplusf = ifelse(Tau_phplus.f1<20,Tau_phplus.f1, Tau_phplus.f2) 

E_gt1 = 2.5*10^-3*0.14*(Tau_phplusf)^2 

E_gt2 = 0.14 

Egt = ifelse(Tau_phplus.f1<20, E_gt1, E_gt2) 

Eg = Egb + Egt                                

# Compute Qg (non-dimensional number) 

Qg = Eg*h/lmp_h 

U_z = replicate(10000,runif(100,3.88,4.12))  

U_h = U_z/(exp(alphaPZ*(z/h-1))) 

#Compute E_B (Brownian diffusion)   

L_obs = 0.03                    

C_B = 1.262 

Re_h = (U_h*L_obs)/(kin.vis) 

E_B = C_B*(Sc^(-2/3))*(Re_h^(-1/2)) 

#Compute E_IN (Interception)        
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C_IN = 0.216                      

E_IN = C_IN*(dp/L_obs)*(2+log(4*L_obs/dp))  

#Compute E_IM (Impaction)           

C_IM = 0.130                     

beta_IM = 0.47                  

St_h = (Tau*U_h)/L_obs 

E_IM = C_IM*(St_h/(St_h+beta_IM))^2 

E_T = (U_h/u_star)*(E_B+E_IN+E_IM)+E_t 

Q  = LAI*E_T*h/(lmp_h) 

# Compute etaPZ 

etaPZ = (alphaPZ^2/4+Q)^0.5  

Vds = u_star*Eg*{(1+Q/Qg-alphaPZ/2)*tanh(etaPZ)/etaPZ}/{(1+Q+alphaPZ/2)*tanh(etaPZ)/etaPZ} 

Vd = Vdrift+1/(Ra+1/Vds) 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Petroff and Zhang (2010) 

#Uncertainty test: Water 

set.seed(5) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84)) 

dp_i = 2.0 

dp_d = dp_i*10^-6                 

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

k_B = 1.38*10^-23                  
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Temp = 273.15+25                

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6      

rho = 1500                    

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

Ws = Tau*9.81                       

Vphor = (5*10^-3)/100                         

Vdrift = Ws+Vphor                  

# Compute aerodynamic resistance (Ra): 

z = 8/100                      

L = replicate(10000,runif(100,45,55)) 

x = z/L                             

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H = ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 5 

u_star = replicate(10000,runif(100,0.27,0.33))  

z0_1 = 0.021*(u_star)^3.32 

z0_2 = 0.00098*(u_star)^1.65 

z0 = ifelse(u_star<= 0.16, z0_1, z0_2)                        

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance (Rs) 

kin.vis = ((9*10^-8)*Temp)+10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 
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Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-
1)/sqrt(3))+3.1416/6*sqrt(3)}^-1 

Eg = Egb  

Vd = Vdrift+1/(Ra+(1/(Eg*u_star))) 

quantile(Vd, c(.05, 0.10, .50, 0.95))  

 

#Dry deposition parameterization by Petroff and Zhang (2010) 

#Uncertainty test: Ice/snow 

set.seed(5) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84)) 

dp_i = 2.0 

dp_d = dp_i*10^-6                

rd = dp_d/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = 273.15+0                    

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6      
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rho = 1500                    

Tau = (rho*(dp)^2*C)/(18*dyn.vis)  

Ws = Tau*9.81                      

Vphor = (2*10^-4)/100                         

Vdrift = Ws+Vphor                   

# Compute aerodynamic resistance (Ra) 

z = 5                      

L = replicate(10000,runif(100,45,55)) 

x = z/L                             

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H = ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 10  

u_star = replicate(10000,runif(100,0.27,0.33))  

z0 = replicate(10000,runif(100,0.0075,0.0125)) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Compute surface resistance (Rs) 

kin.vis = ((9*10^-8)*Temp)+10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

FSc = (Sc^(1/3))/2.9                  

Egb = (Sc^(-2/3)/14.5)*{1/6*log(1+FSc)^2/(1-FSc+FSc^2)+1/sqrt(3)*atan((2*FSc-
1)/sqrt(3))+3.1416/6*sqrt(3)}^-1 

Eg = Egb  

Vd = Vdrift+1/(Ra+(1/(Eg*u_star))) 

quantile(Vd, c(.05, 0.10, .50, 0.95))  
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Codes for Monte Carlo uncertainty evaluation for Kouznetsov and Sofiev (2012) parameterization 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

#Uncertainty test: Grass 

set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))    

dp_a =2.0 

dp_i = dp_a*10^-6                 

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = (273.15+25)                  

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.89*10^-5                

rho = 1500                          

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_s = Tau*9.81                       

u_star = replicate(10000,runif(100,0.27,0.33))  

a  = 2*10^-3 

kin.vis = 1.68*10^-5                

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 
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Sc = (kin.vis/D) 

Re_star = (u_star*a)/kin.vis 

# Compute V_diff (velocity for diffusion) 

V_diff = 2*(Re_star^(-0.5))*Sc^(-2/3)  

# Compute V_int (velocity for interception) 

V_int = 80*u_star*((dp/a)^2)*(Re_star^(0.5)) 

# Compute V_imp 

C_S = 0.003 

C_R = 0.3 

LAI = replicate(10000,runif(100,3.8,4.2))     

CsCR = (C_S+C_R/LAI)^0.5 

u.Uh = 0.3 

u_star.by.U_h = min(u.Uh, CsCR) 

#Compute Re_c 

Re_c = ((u_star.by.U_h)^-1)^2*Re_star 

# Calculate St 

St = (Tau*u_star)/a 

# Calculate St_e 

St_e = St - Re_c^(-0.5) 

eta_impSt.e1 = exp((-0.1/(St_e - 0.15 ) )-(1/sqrt(St_e -0.15))) 

eta_impSt.e2 = 0 

eta_impSt.e = ifelse(St_e>0.15,eta_impSt.e1,eta_impSt.e2) 

V_imp = ((2*u_star.by.U_h)/u_star)*eta_impSt.e*(St-u_star.by.U_h*Re_star^-0.5) 

# Dry deposition velocity 

Vd = V_diff+V_int+V_imp+V_s 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

#Uncertainty test: Coniferous forest 
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set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))    

dp_a = 2.0 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp =  273.15+25 

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.891*10^-5              

rho = 1500                      

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_s = Tau*9.81                       

u_star = replicate(10000,runif(100,0.27,0.33))  

a  =  0.7*10^-3 

kin.vis = 1.683*10^-5        

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_star = (u_star*a)/kin.vis 

# Compute V_diff (velocity for diffusion) 
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V_diff = 2*(Re_star^(-0.5))*Sc^(-2/3)  

# Compute V_int (velocity for interception) 

V_int = 80*u_star*((dp/a)^2)*(Re_star^(0.5)) 

# Compute V_imp 

C_S = 0.003 

C_R = 0.3 

LAI = replicate(10000,runif(100,5.7,6.3))     

CsCR = (C_S+C_R/LAI)^0.5 

u.Uh = 0.3 

u_star.by.U_h = min(u.Uh, CsCR) 

#Compute Re_c 

Re_c = ((u_star.by.U_h)^-1)^2*Re_star 

# Calculate St 

St = (Tau*u_star)/a 

# Calculate St_e 

St_e = St - Re_c^(-0.5) 

eta_impSt.e1 = exp((-0.1/(St_e - 0.15 ) )-(1/sqrt(St_e -0.15))) 

eta_impSt.e2 = 0 

eta_impSt.e = ifelse(St_e>0.15,eta_impSt.e1,eta_impSt.e2) 

V_imp = ((2*u_star.by.U_h)/u_star)*eta_impSt.e*(St-u_star.by.U_h*Re_star^-0.5) 

# Dry deposition velocity 

Vd = V_diff+V_int+V_imp+V_s 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

#Uncertainty test: Deciduous forest 

set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 
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C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))    

dp_a = 2.0 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = (273.15+25)                  

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.89*10^-5                

rho = 1500                          

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_s = Tau*9.81                       

u_star = replicate(10000,runif(100,0.27,0.33))  

a  = 7*10^-3 

kin.vis = 1.68*10^-5               

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_star = (u_star*a)/kin.vis 

# Compute V_diff (velocity for diffusion) 

V_diff = 2*(Re_star^(-0.5))*Sc^(-2/3)  

# Compute V_int (velocity for interception) 

V_int = 80*u_star*((dp/a)^2)*(Re_star^(0.5)) 
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# Compute V_imp 

C_S = 0.003 

C_R = 0.3 

LAI = replicate(10000,runif(100,9.5,10.5))    

CsCR = (C_S+C_R/LAI)^0.5 

u.Uh = 0.3 

u_star.by.U_h = min(u.Uh, CsCR) 

#Compute Re_c 

Re_c = ((u_star.by.U_h)^-1)^2*Re_star 

# Calculate St 

St = (Tau*u_star)/a 

# Calculate St_e 

St_e = St - Re_c^(-0.5) 

eta_impSt.e1 = exp((-0.1/(St_e - 0.15 ) )-(1/sqrt(St_e -0.15))) 

eta_impSt.e2 = 0 

eta_impSt.e = ifelse(St_e>0.15,eta_impSt.e1,eta_impSt.e2) 

V_imp = ((2*u_star.by.U_h)/u_star)*eta_impSt.e*(St-u_star.by.U_h*Re_star^-0.5) 

# Dry deposition velocity 

Vd = V_diff+V_int+V_imp+V_s 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

#Uncertainty test: Smooth surface (water) 

set.seed(5) 

C1 = 0.2789                          

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

dp_i = 0.5 
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dp = dp_i*10^-6 

rho = 1500  

RH = replicate(10000,runif(100,0.76,0.84))          

Temp = 25+273.15 

u_star = replicate(10000,runif(100,0.27,0.33))      

z0_1 = 0.021*(u_star)^3.32 

z0_2 = 0.00098*(u_star)^1.65 

z0 = ifelse(u_star<= 0.16, z0_1, z0_2)   

L = replicate(10000,runif(100,45,55))             

kin.vis = ((9*10^-8)*Temp)+10^-5     

dyn.vis = ((5*10^-8)*Temp)+4*10^-6  

d_air = 3.7208*10^-10                

k_B = 1.38*10^-23 

P = 101325 

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+((2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda))) 

tau_p = (rho*(dp)^2*C)/(18*dyn.vis) 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

v_s = 9.81*tau_p 

taup = (tau_p*u_star^2)/(kin.vis) 

Sc = (kin.vis/D) 

vsplus = v_s/u_star  

rplus = (dp*u_star)/(2*kin.vis) 

R_s = 0 

Rsplus = u_star*R_s   

z_meas = 8/100         

zpmax = (z_meas*u_star)/(kin.vis)    

MOplus = (kin.vis)/(u_star*L) 

#Fixed parameters 
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Zbuf = 3  

Ztf = 18                             #turbophoretic sublayer height 

taultf = 5                           #Lagrangian time in turbophoretic layer 

Nutp_Ztf= (0.4*(Ztf)^3)/(Ztf^2+200)  #Dimensionless eddy viscosity of air 

It_Ztf = (2.5*log10(Ztf ))-(100/Ztf^2) 

It_Zbuf = (2.5*log10(Zbuf))-(100/Zbuf^2) 

S = Sc^(1/3) 

Zl = 20/S 

fTmp = 2.5/Sc 

fTmp1 = (fTmp^3/27+(fTmp*(100+5*sqrt(8*fTmp/27)+400)))^(1/3) 

Zl_1 = fTmp1+((fTmp*fTmp)/(9*fTmp1))+(1/3)*fTmp                 

fTmp_1 = (Zl_1^2)/(Zl_1^2+200)                                  

fTmp_2 = 1.2*(fTmp_1)-0.8*fTmp_1^2                              

fTmp1_1 = 1/(Sc*fTmp_2)                                         

fTmp_3 = 1/Sc                                                   

x_1 = Zl_1 - fTmp1_1 

x_2 = Zl_1 

x_3 = Zl_1+fTmp1_1 

Nutp_x_1 = (0.4*x_1^3)/(x_1^2+200)          

Nutp_x_2 = (0.4*x_2^3)/(x_2^2+200)          

Nutp_x_3 = (0.4*x_3^3)/(x_3^2+200)          

fIvd = Rsplus+(Zl_1-fTmp1_1)*Sc+0.3333*fTmp1_1*(1/fTmp_3+((0.4*x_1^3)/(x_1^2+200)))+ 

4/(fTmp_3+((0.4*x_2^3)/(x_2^2+200)))+1/(fTmp_3+((0.4*x_3^3)/(x_3^2+200))) 

x_4 = zpmax 

x_5 = Zl_1 + fTmp1_1 

It_x_4 = 2.5*log10(x_4) - 100/(x_4^2) 

It_x_5 = 2.5*log10(x_5) - 100/(x_5^2) 

#Now calculate fu_Psi(zpmax*MOplus) 

s = 2.35*(zpmax*MOplus+abs(zpmax*MOplus)) 
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u1 = 0.5*(abs(zpmax*MOplus)-zpmax*MOplus) 

u = -4*u1/(2.65*sqrt(u1*sqrt(u1))+1) 

fu_Psi = s+u            

fTmp_4 = It_x_4 - It_x_5 + 2.5*fu_Psi 

fIvd_1 = fIvd+0.5*(fTmp_4+abs(fTmp_4))     

fu_vdplus_smooth_1 = 1/fIvd_1              

Il_input1= Zl*S/7.92 

Il_input2= rplus*S/7.92 

Il_1 = -0.16667*log10(Il_input1^2-Il_input1+1)+0.57735*atan((2*Il_input1-1)*0.57735)+ 

0.3333*log10(Il_input1+1) 

Il_2 = -0.16667*log10(Il_input2^2-Il_input2+1)+0.57735*atan((2*Il_input2-1)*0.57735)+ 

0.3333*log10(Il_input2+1) 

R = 7.92*S^2*(Il_1-Il_2)   

R_1 = 0.5*(R+abs(R))       

Zl_2 = 0.5*(rplus+Zl+abs(rplus-Zl))    

It_Zbuf = 2.5*log10(Zbuf) - (100/(Zbuf^2)) 

It_Zl_2 = 2.5*log10(Zl_2) - (100/(Zl_2^2)) 

R1 = It_Zbuf - It_Zl_2 

R_2 = R_1+0.5*(R1+abs(R1))                     

fTmp_5 = vsplus*R_2                            

fTmp_6 = exp(-fTmp_5)                          

fIvd_2  = Rsplus*fTmp_6+(1-fTmp_6)/vsplus     

fIvd_3 = Rsplus+R_2                             

fIvd_23 = ifelse(abs(fTmp_5)>0.001, fIvd_2, fIvd_3 ) 

V  = 0.81*taup/(Ztf-Zbuf)/(1+taup/taultf) + vsplus   #chcek for sign of vsplus 

It_Ztf = 2.5*log10(Ztf) - 100/(Ztf^2) 

R_3  = ((It_Ztf)-(It_Zbuf))*(1+taup/taultf)     

fTmp_7 = V*R_3                                  

fTmp_8 = exp(-fTmp_7)                          
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fIvd_4 = (fIvd_23*fTmp_8)+(1-fTmp_8)/V          

fIvd_5 = fIvd_3+R_3                          

fIvd_45 = ifelse(abs(fTmp_7)>0.001, fIvd_4, fIvd_5) 

#Now calculations for the Lagrangian turbophoretic layer 

Ztf2 = 2*taup       

V_1 = 0.4+vsplus 

R_4 = 0.1667*((1+taup/(0.5*Ztf))/(Nutp_Ztf)+4*(1+taup/(0.25*(Ztf+Ztf2)))/ 

((0.4*(0.5*(Ztf+Ztf2))^3)/((0.5*(Ztf+Ztf2))^2+200))+(1+taup/(0.5*Ztf2))/ 

((0.4*Ztf2 ^3)/(Ztf2^2+200)))*(Ztf2-Ztf) 

fTmp_9 = V_1*R_4 

fTmp_10 = exp(-fTmp_9) 

fIvd_6 = fIvd_45*fTmp_10 + (1-fTmp_10)/V_1    

fIvd_7 = fIvd_45+R_3                          

fIvd_67 = ifelse(abs(fTmp_9) > 0.001, fIvd_6, fIvd_7) 

Ztf2_2 = Ztf 

fIvd67_Ztf2 = ifelse(Ztf2>Ztf, fIvd_67, Ztf2_2) 

#Following calculations are for aerodynamic layer 

It_zpmax = 2.5*log10(zpmax) - 100/(zpmax^2)    

Ztf22 = ifelse(Ztf2>Ztf, Ztf2, Ztf2_2) 

It_Ztf22  = 2.5*log10(Ztf22) - 100/(Ztf22^2)        

R_5 = It_zpmax - It_Ztf22  + 2.5*fu_Psi             

R_6 = 0.5*(R_5+abs(R_5))                            

fTmp_11  = vsplus*R_6                               

fTmp_12 = exp(-fTmp_11)                             

fIvd_4567 = ifelse(Ztf2>Ztf, fIvd_67,fIvd_45) 

fIvd_8 = (fIvd_4567* fTmp_12)+(1-fTmp_12)/vsplus    

fIvd_9 = fIvd_4567 + R_6                            

fIvd_10 = ifelse(abs(fTmp_11) > 0.001, fIvd_8, fIvd_9) 

fu_vdplus_smooth_3 = 1/fIvd_10                       
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fu_vdplus_smooth = ifelse(Zl>Zbuf, fu_vdplus_smooth_1, fu_vdplus_smooth_3) 

Vd_smooth = fu_vdplus_smooth*u_star 

quantile(Vd_smooth, c(.05, 0.10, .50, 0.95))  

 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

#Uncertainty test: Ice/snow 

set.seed(5) 

C1 = 0.2789                          

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84)) 

dp_a = 2.0 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = 273.15+0                 

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6            

rho =  1500                     

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_s = Tau*9.81                       

# Need to compute Sc, Re_star 
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u_star = replicate(10000,runif(100,0.27,0.33))  

#u_star = replicate(10000,runif(100,0.27,0.33)) 

a  =  0.5*10^-3 

kin.vis = ((9*10^-8)*Temp)+10^-5 

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_star = (u_star*a)/kin.vis 

# Compute V_diff (velocity for diffusion) 

V_diff = 2*(Re_star^(-0.5))*Sc^(-2/3)  

# Compute V_int (velocity for interception) 

V_int = 80*u_star*((dp/a)^2)*(Re_star^(0.5)) 

# Compute V_imp 

C_S = 0.003 

C_R = 0.3 

LAI = 0 

CsCR = (C_S+C_R/LAI)^0.5 

u.Uh = 0.3 

u_star.by.U_h = min(u.Uh, CsCR) 

#Compute Re_c 

Re_c = ((u_star.by.U_h)^-1)^2*Re_star 

# Calculate St 

St = (Tau*u_star)/a 

# Calculate St_e 

St_e = St - Re_c^(-0.5) 

eta_impSt.e1 = exp((-0.1/(St_e - 0.15 ) )-(1/sqrt(St_e -0.15))) 

eta_impSt.e2 = 0 

eta_impSt.e = ifelse(St_e>0.15,eta_impSt.e1,eta_impSt.e2) 

V_imp = (2*u_star.by.U_h*eta_impSt.e*(St-(u_star.by.U_h*Re_star^-0.5)))*u_star 

# Dry deposition velocity 
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Vd = V_diff+V_int+V_imp+V_s 

quantile(Vd, c(.05, 0.10, .50, 0.95))  

 

Codes for Monte Carlo uncertainty evaluation for Zhang and He (2014) parameterization 

#Dry deposition parameterization by Zhang and He (2014) 

#Uncertainty test: Grass 

set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))   

dp_a = 2.0 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = (273.15+25)                  

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.89*10^-5                

rho = 1500                          

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_g = Tau*9.81  

Rg = 1/V_g 
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u_star = replicate(10000,runif(100,0.27,0.33))  

a1 = 5.4*10^-3 

z = 5                              

L = replicate(10000,runif(100,45,55))     

x = z/L                              

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 3.5                           

z0 = replicate(10000,runif(100,0.03,0.05))  

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Calculate Vds = 1/Rs 

# For PM2.5 

Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

#For PM2.5-10 

#b1=  

#b2=  

#b3 =  

#c1=  

#c2 =  

#c3 =  

#k = c1*u_star+c2*u_star^2+c3*u_star^3 

#LAI = replicate(10000,runif(100,3.8,4.2))  

#LAImax =  

#Vds_PM10 = (b1*u_star+b2*u_star^2+b3*u_star^3)*exp(k*(LAI/LAImax)-1) 

#Vds_PM10 = (b1*u_star+b2*u_star^2+b3*u_star^3) 
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#Rds_PM10 = 1/Vds_PM10 

# For PM10+ 

#d1=  

#d2=  

#d3 =  

#f1=  

#f2 =  

#f3 =  

#k = f1*u_star+f2*u_star^2+f3*u_star^3 

#LAI =  

#LAImax = 

#Vds_10plus = (d1*u_star+d2*u_star^2+d3*u_star^3)*exp(k*(LAI/LAImax)-1) 

#Vds_10plus = (d1*u_star+d2*u_star^2+d3*u_star^3) 

#Rds_PM2.5 = (1/Vds_PM2.5) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5)) 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Zhang and He (2014) 

#Uncertainty test: Coniferous forest 

set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))   

dp_a = 2.0 

dp_i = dp_a*10^-6                  

rd = dp_i/2 
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r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                         

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = (273.15+25)                  

P = 101325                         

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.89*10^-5                

rho = 1500                          

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_g = Tau*9.81  

Rg = 1/V_g 

u_star = replicate(10000,runif(100,0.27,0.33))  

a1 = 4.3*10^-3 

z = 35                              

L = replicate(10000,runif(100,45,55))     

x = z/L                              

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 30                             

z0 = replicate(10000,runif(100,0.9,1.5))  

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Calculate Vds = 1/Rs 

# For PM2.5 
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Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

#For PM2.5-10 

#b1=  

#b2=  

#b3 = 

#c1=  

#c2 =  

#c3 =  

#k = c1*u_star+c2*u_star^2+c3*u_star^3 

#LAI =  

#LAImax =  

#Vds_PM10 = 
(b1*u_star+b2*u_star^2+b3*u_star^3)*exp(k*(LAI/LAImax)-
1) 

#Vds_PM10 = (b1*u_star+b2*u_star^2+b3*u_star^3) 

#Rds_PM10 = 1/Vds_PM10 

# For PM10+ 

#d1=  

#d2=  

#d3 =  

#f1=  

#f2 =  

#f3 =  

#k = f1*u_star+f2*u_star^2+f3*u_star^3 

#LAI =  

#LAImax = 

#Vds_10plus = 
(d1*u_star+d2*u_star^2+d3*u_star^3)*exp(k*(LAI/LAImax)-
1) 

#Vds_10plus = (d1*u_star+d2*u_star^2+d3*u_star^3) 
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Rds_PM10plus = (1/Vds_PM2.5) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5)) 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Zhang and He (2014) 

#Uncertainty test: Deciduous forest 

set.seed(5) 

C1 = 0.2789                        

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))   

dp_a = 2.0 

dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = (273.15+25)                  

P = 101325                          

d_air = 3.7208*10^-10              

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.89*10^-5                

rho = 1500                          

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_g = Tau*9.81 # m/s 
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Rg = 1/V_g 

u_star = replicate(10000,runif(100,0.54,0.66)) 

a1 = 4.3*10^-3 

z = 35                             

L = replicate(10000,runif(100,45,55))     

x = z/L                              

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 50                             

z0 = replicate(10000,runif(100,1.125, 1.875)) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

#Calculate Vds = 1/Rs 

# For PM2.5 

Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

# For PM2.5-10 

#b1=  

#b2=  

#b3 =  

#c1=  

#c2 =  

#c3 =  

#k = c1*u_star+c2*u_star^2+c3*u_star^3 

#LAI =  

#LAImax =  
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#Vds_PM10 = 
(b1*u_star+b2*u_star^2+b3*u_star^3)*exp(k*(LAI/LAImax)-
1) 

#Rds_PM10 = 1/Vds_PM10 

# For PM10+ 

#d1= -2.2 

#d2= 3.9*10^1 

#d3 = -6.7 

#f1= 6.2 

#f2 = -1.2*10^1 

#f3 = 6.1 

#k = f1*u_star+f2*u_star^2+f3*u_star^3 

#LAI =  

#LAImax = 

#Vds_10plus = 
(d1*u_star+d2*u_star^2+d3*u_star^3)*exp(k*(LAI/LAImax)-
1) 

#Rds_10plus = (1/Vds_10plus) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5)) 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Zhang and He (2014) 

#Uncertainty test: Water 

set.seed(5) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))          

dp_a =2.0 
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dp_i = dp_a*10^-6                  

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = 273.15+25  

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6                

rho = 1500                    

Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_g = Tau*9.81  

Rg = 1/V_g 

a1 = 6.9*10^-3 

z = 8/100                   

L = replicate(10000,runif(100,45,55)) 

x = z/L                            

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})         

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 5                      

u_star = replicate(10000,runif(100,0.27,0.33)) 

z0_1 = 0.021*(u_star)^3.32 

z0_2 = 0.00098*(u_star)^1.65 

z0 = ifelse(u_star<= 0.16, z0_1, z0_2) 
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k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)  

# Calculate Vds = 1/Rs 

#For PM2.5 

Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

# For PM2.5-10 

#b1= 2.6*10^-1 

#b2= -1.3*10^0 

#b3 = 3.0*10^0 

#c1= 1.8 

#c2 = -2.0*10^-1 

#c3 = -5.3*10^-1 

#k = c1*u_star+c2*u_star^2+c3*u_star^3 

#LAI =  

#LAImax =  

#Vds_PM10 = 
(b1*u_star+b2*u_star^2+b3*u_star^3)*exp(k*(LAI/LAImax)-
1) 

#Rds_PM10 = 1/Vds_PM10 

#For PM10+ 

#d1= - 

#d2=  

#d3 =  

#f1=  

#f2 =  

#f3 =  

#k = f1*u_star+f2*u_star^2+f3*u_star^3 

#LAI =  

#LAImax = 
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#Vds_PM10Plus = 
(d1*u_star+d2*u_star^2+d3*u_star^3)*exp(k*(LAI/LAImax)-
1) 

#Rds_PM10Plus = (1/Vds_PM10Plus) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5)) 

quantile(Vd, c(.05, 0.10, .50, 0.95))  

 

#Dry deposition parameterization by Zhang and He (2014) 

#Uncertainty test: Ice/Water 

set.seed(5) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))          

dp_a = 2.0 

dp_i = dp_a*10^-6                 

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                 

Temp = 273.15+0  

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6                

rho = 1500                    
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Tau = (rho*(dp)^2*C)/(18*dyn.vis)   

V_g = Tau*9.81  

Rg = 1/V_g 

a1 = 4.3*10^-3 

z = 5                   

L = replicate(10000,runif(100,45,55)) 

x = z/L                             

# Compute stability function (shi_H) 

shi_H.1 = 2*log(0.5*{1+(1-16*x)^0.5})        

shi_H.2 = -5*x                                

shi_H =ifelse(x <= 0, shi_H.1 , shi_H.2)      

zR = 10                     

u_star = replicate(10000,runif(100,0.27,0.33)) 

z0 = replicate(10000,runif(100,0.0075,0.0125)) 

k_c = 0.41 

Ra = (log(zR/z0)-shi_H)/(k_c*u_star)   

# Calculate Vds = 1/Rs#For PM2.5 

Vds_PM2.5 = (a1*u_star) 

Rds_PM2.5 = (1/Vds_PM2.5) 

# For PM2.5-10 

#b1=  

#b2=  

#b3 =  

#c1=  

#c2 =  

#c3 =  

#k = c1*u_star+c2*u_star^2+c3*u_star^3 

#LAI = 

# LAImax =  
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#Vds_PM10 = (b1*u_star+b2*u_star^2+b3*u_star^3)*exp(k*(LAI/LAImax)-1) 

#Rds_PM10 = 1/Vds_PM10 

# For PM10+ 

#d1=  

#d2=  

#d3 =  

#f1=  

#f2 =  

#f3 =  

#k = f1*u_star+f2*u_star^2+f3*u_star^3 

#LAI =  

#LAImax = 

#Vds_PM10Plus = (d1*u_star+d2*u_star^2+d3*u_star^3)*exp(k*(LAI/LAImax)-1) 

#Rds_PM10Plus = (1/Vds_PM10Plus) 

#Compute Vd  

Vd = 1/Rg+(1/(Ra+Rds_PM2.5)) 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

Codes for Monte Carlo uncertainty evaluation for Zhang and Shao (2014) parameterization 

#Dry deposition parameterization by Zhang and Shao (2014) 

#Uncertainty test: Plant (Grass, coniferous, and deciduous forests) 

set.seed(5) 

C1 = 0.2789                         

C2 = 3.115 

C3 = 5.145*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84))    

dp_a = 2.0 

dp_i = dp_a*10^-6                  
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rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                           

#Correction factor, C 

k_B = 1.38*10^-23                   

Temp = (273.15+15)                  

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = 1.841*10^-5                

rho = 1500                        

Tau = (rho*(dp_i)^2*C)/(18*dyn.vis)   

Tau_wet = (rho*(dp)^2*C)/(18*dyn.vis) 

Wt = Tau*9.81                      

Vg = Wt                             

Vg_wet = Tau_wet*9.81 

u_star = replicate(10000,runif(100,0.27,0.33)) 

k =  0.41 

z =  1   

zd = 0.20                           

h_c = 0.23                          

z0 = replicate(10000,runif(100,0.0015, 0.0025)) 

B1 = 0.45 

Sc_T = (1+(Vg^2/u_star^2))^0.5 

Ra = (Sc_T/(k*u_star))*(log((z-zd)/(h_c-zd)))   

Rg = 1/Vg 

U_h = replicate(10000,runif(100,3.88,4.12)) 

kin.vis = 1.593*10^-5                   
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d_c = 0.005                           

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_h = (U_h*d_c)/(kin.vis) 

nB = 0.5 

C_B = 0.467 

E_B = C_B*Sc^(-2/3)*Re_h^(nB-1) 

#Compute impaction collection efficiency (E_IM) 

beta_IM = 0.6                     

St_h = (Tau*u_star)/d_c 

E_IM = (St_h/(St_h+beta_IM))^2 

#Compute interception efficiency (E_IN) 

Ain = 150 

E_IN = Ain*u_star*(10^(-St_h))*(2*dp/d_c) 

#Compute R 

b = 2 

R = exp(-b*sqrt(St_h)) 

#Compute w_dm  

B2 = 3 

w_dm = (u_star/U_h*h_c)       #For rough surface 

#compute Tau_c/Tau (ratio of stress) 

Beta = 200 

C1 = 6 

C2 = 0.1 

lambda_FAI = 0.4 

n_FAI = (lambda_FAI)/(h_c*d_c) 

q = (3.1416*d_c^2)/4 

eta_BAI = n_FAI*q  

lambda_FAIe = ((lambda_FAI)/(1-eta_BAI)^C2)*exp((-C1*lambda_FAI)/(1-eta_BAI)^C2) 
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Tau_c_BY_Tau = (Beta*lambda_FAIe)/(1+Beta*lambda_FAIe) 

#Compute Rs   

E = E_B+E_IM+E_IN 

Tau_wetplus = (Tau_wet*u_star^2)/kin.vis 

Cd = 1/6 

Rs = (R*w_dm*((E*Tau_c_BY_Tau/Cd)+(1+Tau_c_BY_Tau)*Sc^-1+10^(-3/Tau_wetplus))+Vg_wet)^-1 

#Compute Vd 

Vd = (Rg+((Rs-Rg)/exp(Ra/Rg)))^-1 

quantile(Vd, c(.05, 0.10, .50, 0.95)) 

 

#Dry deposition parameterization by Zhang and Shao (2014) 

#Uncertainty test: Water 

set.seed(5) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

RH = replicate(10000,runif(100,0.76,0.84)) 

dp_a = 2.0 

dp_i = dp_a*10^-6                   

rd = dp_i/2 

r_w = {(C1*rd^C2)/(C3*rd^C4-log10(RH))+rd^3}^(1/3) 

dp = r_w*2                          

#Correction factor, C 

k_B = 1.38*10^-23                  

Temp = 273.15+25                  

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 
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C = 1+(2*lambda/dp)*(1.257+0.4*exp(-0.55*dp/lambda)) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6            

rho = 1500                

Tau = (rho*(dp_i)^2*C)/(18*dyn.vis)   

Tau_wet = (rho*(dp)^2*C)/(18*dyn.vis) 

Wt = Tau*9.81                       

Vg = Wt                             

Vg_wet = Tau_wet*9.81 

u_star = replicate(10000,runif(100,0.27,0.33)) 

k =  0.41 

z0 = 0.3/1000 

z = 8/100 

U_h = replicate(10000,runif(100,4.85,5.15)) 

zd = 0                               

h_c = 30*z0                          

B1 = 0.45 

Sc_T = (1+(Vg^2/u_star^2))^0.5 

Ra = (B1*Sc_T/k*u_star)*log(z/z0)         # For smooth surface 

Rg = 1/Vg 

# Calculate surface resistance (Rs) 

kin.vis = ((9*10^-8)*Temp)+10^-5 

d_c = 0.005                           

D = (C*k_B*Temp)/(3*3.1416*dyn.vis*dp) 

Sc = (kin.vis/D) 

Re_h = (U_h*d_c)/(kin.vis) 

nB = 0.5 

C_B = 0.467 

E_B = C_B*Sc^(-2/3)*Re_h^(nB-1) 

#Compute impaction collection efficiency (E_IM) 
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beta_IM = 0.6                     

St_h = (Tau*u_star)/d_c 

E_IM = (St_h/(St_h+beta_IM))^2 

#Compute interception efficiency (E_IN) 

Ain = 100 

E_IN = Ain*u_star*(10^(-St_h))*(2*dp/d_c) 

#Compute R 

b = 2 

R = exp(-b*sqrt(St_h)) 

#Compute w_dm  

B2 = 3 

w_dm = B2*u_star                           #For smooth surface 

#compute Tau_c/Tau (ratio of stress) 

Beta = 200 

C_1 = 6 

C_2 = 0.1 

lambda_FAI = 0.538 

n_FAI = (lambda_FAI)/(h_c*d_c) 

q = (3.1416*d_c^2)/4 

eta_BAI = n_FAI*q  

lambda_FAIe = ((lambda_FAI)/(1-eta_BAI)^C_2)*exp((-C_1*lambda_FAI)/(1-eta_BAI)^C_2) 

Tau_c_BY_Tau = (Beta*lambda_FAIe)/(1+Beta*lambda_FAIe) 

#Compute Rs   

E = E_B+E_IM+E_IN 

Tau_wetplus = (Tau_wet*u_star^2)/kin.vis 

Cd = 1/6 

Rs = (R*w_dm*((E*Tau_c_BY_Tau/Cd)+(1+Tau_c_BY_Tau)*Sc^-1+10^(-3/Tau_wetplus))+Vg_wet)^-1 

#Compute Vd 

Vd = (Rg+((Rs-Rg)/exp(Ra/Rg)))^-1 
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quantile(Vd, c(.05, 0.10, .50, 0.95))  

 

Codes for Sobol’ sensitivity test for Zhang et al. (2001) parameterization 

#Dry deposition parameterization by Zhang et al. (2001) 

#Sobol sensitivity test: Grass (the code is similar for other LUCs) 

#Change LUC dependent parameters for other LUCs  

#Change sensitivity ranges for other LUCs  

set.seed(5) 

library(sensitivity) 

library(boot) 

C1 = 0.2789                          

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

dp_i = 10 

dp_d = dp_i*10^-6                

rd = dp_d/2 

k_B = 1.38*10^-23                 

Temp = 273.15+25                   

P = 101325                         

d_air = 3.72*10^-10                

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6    

z = 2 

zR = 3.5                           

k_c = 0.41 

e_0 = 3 

R1 = 1 

kin.vis = ((9*10^-8)*Temp)+10^-5 
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gamma = 0.54 

alpha = 1.2 

beta =  2 

A = 2/1000  

model <- function (X) ((((X[,2])*(2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))^2*9.81*(1+(2*lambda/(2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))*(1.257+0.4*exp(-0.55*((2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis)))+  

  (1/((((log(zR/(X[,4]))+5*z/(X[,3]))/(k_c*(X[,5]))))+ 

        (1/{(e_0*(X[,5]))* 

              ((((kin.vis/(((1+(2*lambda/(2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))*(1.257+0.4*exp(-0.55*(2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))))^(-gamma))+ 

                 ({(((((X[,2])*(2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))^2*9.81*(1+(2*lambda/(2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))*(1.257+0.4*exp(-0.55*((2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5]))/(9.81*A))/(alpha+(((((X[,2])*(2*
{(C1*rd^C2)/(C3*rd^C4-log10(X[,1]))+rd^3}^(1/3))^2*9.81*(1+(2*lambda/(2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))*(1.257+0.4*exp(-0.55*((2*{(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5]))/(9.81*A)))}^beta)+ 

                 (0.5*((2*{(C1*rd^C2)/(C3*rd^C4-log10(X[,1]))+rd^3}^(1/3))/A)^2))*R1}))) 

 

 

N <- 100000 

x1 = runif(1*N,0.1,1.0)           #RH 

x2 = runif(1*N,1500,2000)         #rho 

x3 = runif(1*N,10,100)            #L 

x4 = runif(1*N,0.02,0.10)         #z0 

x5 = runif(1*N,0.1,0.5)           #u_star 

x_1 = runif(1*N,0.1,1.0)          #RH 

x_2 = runif(1*N,1500,2000)        #rho 

x_3 = runif(1*N,10,100)           #L 

x_4 = runif(1*N,0.02,0.10)        #z0 

x_5 = runif(1*N,0.1,0.5)          #u_star 
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Y1 = matrix(c(x1,x2,x3,x4,x5), nrow=N) 

X1 = data.frame(matrix(Y1,nrow=N)) 

Y2 = matrix(c(x_1,x_2,x_3,x_4,x_5), nrow=N) 

X2 = data.frame(matrix(Y2, nrow=N)) 

a = sobol2007(model = model, X1 = X1, X2= X2, nboot = 2000, conf = 0.95);a 

 

Codes for Sobol’ sensitivity test for the Petroff and Zhang (2010) parameterization 

#Dry deposition parameterization by Petroff and Zhang (2010)  

#Sobol sensitivity test: Grass (the code is similar for other LUCs) 

#Change LUC dependent parameters for other LUCs  

#Change sensitivity ranges for other LUCs 

set.seed(5) 

library(sensitivity) 

library(boot) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

dp_i = 10 

dp_d = dp_i*10^-6                 

rd = dp_d/2                                             

k_B = 1.38*10^-23                   

Temp = 273.15+25                

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6 

kin.vis = ((9*10^-8)*Temp)+10^-5     

Vphor = 0       
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z = 2  

zR = 3.5                        

k_c = 0.41 

cd = 1/6 

kx = 0.216 

C_IT = 0.056                                  

L_obs = 0.01                   

C_B = 0.996 

C_IN = 0.162  

C_IM = 0.081                    

beta_IM = 0.47   

model <- function (X) ((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*9.81)+Vphor)+1/(((log(zR/(X[,4]))+(5*(z/(
X[,3]))))/(k_c*(X[,5])))+1/((X[,5])*(((((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(-
2/3)/14.5)*{1/6*log(1+((((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(1/3))/2.9))^2/(1-
((((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(1/3))/2.9)+((((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^
C4-log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(1/3))/2.9)^2)+1/sqrt(3)*atan((2*((((kin.vis/(((1+(2*lambda/(2
*({(C1*rd^C2)/(C3*rd^C4-log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-
0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(1/3))/2.9)-1)/sqrt(3))+3.1416/6*sqrt(3)}^-1) + (2.5*10^-
3*0.14*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5])^2)/kin.vis))^2) 

)*{(1+((X[,6])*((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-
1))))/(X[,5]))*((C_B*(((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(-2/3))*(((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1))))*L_obs)/(kin.vis))^(-
1/2)))+(C_IN*((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/L_obs)*(2+log(4*L_obs/(2*({(C1*rd^C2)/(C3*rd^C4-
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log10(X[,1]))+rd^3}^(1/3))))))+(C_IM*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)/((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)+(beta_IM)))^2))+(2.5*10^-
3*C_IT*(((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5])^2)/kin.vis)^2) 

)*(X[,7])/(((0.41*((X[,7])-(X[,8])))/((1+5*(z/(X[,3])))*((X[,7])-
(X[,8]))/((X[,3]))))))/((((((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(-
2/3)/14.5)*{1/6*log(1+((((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(1/3))/2.9))^2/(1-
((((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(1/3))/2.9)+((((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^
C4-log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(1/3))/2.9)^2)+1/sqrt(3)*atan((2*((((kin.vis/(((1+(2*lambda/(2
*({(C1*rd^C2)/(C3*rd^C4-log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-
0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(1/3))/2.9)-1)/sqrt(3))+3.1416/6*sqrt(3)}^-1) + (2.5*10^-
3*0.14*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5])^2)/kin.vis))^2))*(X[,7])/((0.41*(
(X[,7])-(X[,8])))/((1+5*(z/(X[,3])))*((X[,7])-(X[,8]))/((X[,3])))) 

)-({(kx*(X[,6]))/(12*k_c^2*(1-(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})/2)*tanh(((({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})^2/4+((X[,6])*((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-
1))))/(X[,5]))*((C_B*(((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(-2/3))*(((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1))))*L_obs)/(kin.vis))^(-
1/2)))+(C_IN*((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/L_obs)*(2+log(4*L_obs/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))))+(C_IM*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)/((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
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log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)+(beta_IM)))^2))+(2.5*10^-
3*C_IT*(((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5])^2)/kin.vis)^2) 

)*(X[,7])/(((0.41*((X[,7])-(X[,8])))/((1+5*(z/(X[,3])))*((X[,7])-
(X[,8]))/((X[,3])))))))^0.5))/((({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})^2/4+((X[,6])*((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-
1))))/(X[,5]))*((C_B*(((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(-2/3))*(((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1))))*L_obs)/(kin.vis))^(-
1/2)))+(C_IN*((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/L_obs)*(2+log(4*L_obs/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))))+(C_IM*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)/((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)+(beta_IM)))^2))+(2.5*10^-
3*C_IT*(((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5])^2)/kin.vis)^2) 

)*(X[,7])/(((0.41*((X[,7])-(X[,8])))/((1+5*(z/(X[,3])))*((X[,7])-
(X[,8]))/((X[,3])))))))^0.5)}/{(1+((X[,6])*((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-
1))))/(X[,5]))*((C_B*(((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(-2/3))*(((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1))))*L_obs)/(kin.vis))^(-
1/2)))+(C_IN*((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/L_obs)*(2+log(4*L_obs/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))))+(C_IM*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)/((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
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)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)+(beta_IM)))^2))+(2.5*10^-
3*C_IT*(((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5])^2)/kin.vis)^2) 

)*(X[,7])/(((0.41*((X[,7])-(X[,8])))/((1+5*(z/(X[,3])))*((X[,7])-
(X[,8]))/((X[,3]))))))+({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})/2)*tanh(((({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})^2/4+((X[,6])*((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-
1))))/(X[,5]))*((C_B*(((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(-2/3))*(((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1))))*L_obs)/(kin.vis))^(-
1/2)))+(C_IN*((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/L_obs)*(2+log(4*L_obs/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))))+(C_IM*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)/((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)+(beta_IM)))^2))+(2.5*10^-
3*C_IT*(((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5])^2)/kin.vis)^2) 

)*(X[,7])/(((0.41*((X[,7])-(X[,8])))/((1+5*(z/(X[,3])))*((X[,7])-
(X[,8]))/((X[,3])))))))^0.5))/((({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})^2/4+((X[,6])*((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-
1))))/(X[,5]))*((C_B*(((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))))))^(-2/3))*(((((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1))))*L_obs)/(kin.vis))^(-
1/2)))+(C_IN*((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/L_obs)*(2+log(4*L_obs/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))))+(C_IM*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)/((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
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log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis) 
)*((X[,9])/(exp(({(kx*(X[,6]))/(12*k_c^2*(1-
(X[,8])/(X[,7]))^2)}^(1/3)*(1+5*(z/(X[,3])))^(2/3)*{((X[,7])-
(X[,8]))/((X[,3]))})*((z)/(X[,7])-1)))))/L_obs)+(beta_IM)))^2))+(2.5*10^-
3*C_IT*(((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,5])^2)/kin.vis)^2) 

)*(X[,7])/(((0.41*((X[,7])-(X[,8])))/((1+5*(z/(X[,3])))*((X[,7])-
(X[,8]))/((X[,3])))))))^0.5)}))) 

 

N <- 100000 

x1 = runif(1*N,0.1,1.0)           #RH 

x2 = runif(1*N,1500,2000)         #rho 

x3 = runif(1*N,10,100)            #L 

x4 = runif(1*N,0.02,0.10)         #z0 

x5 = runif(1*N,0.1,0.5)           #u_star 

x6 = runif(1*N,1,4)               #LAI 

x7 = runif(1*N,0.15,0.77)         #h 

x8 = runif(1*N,0.10,0.49)         #d 

x9 = runif(1*N,1,5)               #U 

 

x_1 = runif(1*N,0.1,1.0)           #RH 

x_2 = runif(1*N,1500,2000)         #rho 

x_3 = runif(1*N,10,100)            #L 

x_4 = runif(1*N,0.02,0.10)         #z0 

x_5 = runif(1*N,0.1,0.5)           #u_star 

x_6 = runif(1*N,1,4)               #LAI 

x_7 = runif(1*N,0.15,0.77)         #h 

x_8 = runif(1*N,0.10,0.49)         #d 

x_9 = runif(1*N,1,5)               #U 

 

Y1 = matrix(c(x1,x2,x3,x4,x5,x6,x7,x8,x9), nrow=N) 

X1 = data.frame(matrix(Y1, nrow=N)) 



198 

Y2 = matrix(c(x_1,x_2,x_3,x_4,x_5,x_6,x_7,x_8,x_9), nrow=N) 

X2 = data.frame(matrix(Y2, nrow=N)) 

a = sobol2007(model = model, X1 = X1, X2=X2, nboot = 2000, conf= 0.95);a 

 

Codes for Sobol’ sensitivity test for Kouznetsov and Sofiev (2012) parameterization 

#Dry deposition parameterization by Kouznetsov and Sofiev (2012) 

#Sobol sensitivity test: Grass (the code is similar for other LUCs) 

#Change LUC dependent parameters for other LUCs  

#Change sensitivity ranges for other LUCs 

set.seed(5) 

library(sensitivity) 

library(boot) 

C1 = 0.2789                          

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

dp_a = 10            

dp_i = dp_a*10^-6                 

rd = dp_i/2 

k_B = 1.38*10^-23                   

Temp = 273.15+25                 

P = 101325                          

d_air = 3.7208*10^-10              

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6   

kin.vis = ((9*10^-8)*Temp)+10^-5 

a  =  2*10^-3 

kin.vis = ((9*10^-8)*Temp)+10^-5 

C_S = 0.003 
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C_R = 0.3 

u.Uh = 0.3 

eta_impSt.e2 = 0 

model<-function(X) ((2*((((X[,3])*a)/kin.vis)^(-
0.5))*(((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))))))^(-2/3))+(80*(X[,3])*(((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/(a))^2)*((((X[,3])*a)/kin.vis)^(0.5)))+(((2*((C_S+C_R/(X[,4]))^0.5
))/(X[,3]))*(ifelse(((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3]))/a) - 
(((((C_S+C_R/(X[,4]))^0.5))^-1)^2*(((X[,3])*a)/kin.vis))^(-0.5))>0.15,(exp((-
0.1/(((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3]))/a) - 
(((((C_S+C_R/(X[,4]))^0.5))^-1)^2*(((X[,3])*a)/kin.vis))^(-0.5)) - 0.15 ) )-
(1/sqrt(((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3]))/a) - 
(((((C_S+C_R/(X[,4]))^0.5))^-1)^2*(((X[,3])*a)/kin.vis))^(-0.5))-
0.15)))),(eta_impSt.e2)))*((((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3]))/a)-
((C_S+C_R/(X[,4]))^0.5)*(((X[,3])*a)/kin.vis)^-0.5))+((((X[,2])*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*9.81)) 

 

N <- 100000 

x1 = runif(1*N,0.1,1.0)            #RH 

x2 = runif(1*N,1500,2000)          #rho 

x3 = runif(1*N,0.1,0.5)            #u_star 

x4 = runif(1*N,1,4)                #LAI 

x_1 = runif(1*N,0.1,1.0)           #RH 

x_2 = runif(1*N,1500,2000)         #rho 

x_3 = runif(1*N,0.1,0.5)           #u_star 

x_4 = runif(1*N,1,4)               #LAI 

Y1 = matrix(c(x1,x2,x3,x4), nrow=N) 

X1 = data.frame(matrix(Y1,nrow=N)) 
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Y2 = matrix(c(x_1,x_2,x_3,x_4), nrow=N) 

X2 = data.frame(matrix(Y2, nrow=N)) 

a = sobol2007(model = model, X1 = X1, X2=X2, nboot = 2000, conf = 0.95);a 

Codes for Sobol’ sensitivity test for Zhang and He (2014) parameterization 

#Dry deposition parameterization by Zhang and He (2014) 

#Sobol sensitivity test: Grass (the code is similar for other LUCs) 

#Change LUC dependent parameters for other LUCs  

#Change sensitivity ranges for other LUCs 

set.seed(5) 

library(sensitivity) 

library(boot) 

C1 = 0.4809                           

C2 = 3.082 

C3 = 3.110*10^-11 

C4 = -1.428 

dp_a = 1 

dp_i = dp_a*10^-6                 

rd = dp_i/2 

k_B = 1.38*10^-23                   

Temp = 273.15+25  

P = 101325                         

d_air = 3.7208*10^-10              

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6               

z = 2                   

zR = 3.5                      

k_c = 0.41 

# For PM2.5-10 

b1= -7.9*10^-2 
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b2= 1.0*10^0 

b3 = 6.6*10^-1 

c1= 5.1*10^0 

c2 = -4.2*10^0 

c3 = 9.9*10^-1 

LAImax = 4 

model<- function(X) (1/(1/((((X[,2])*((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*9.81))+(1/(((log(zR/(X[,5]))-
(ifelse((z/(X[,4])) <= 0, (2*log(0.5*{1+(1-16*(z/(X[,4])))^0.5})),(-
5*(z/(X[,4]))))))/(k_c*(X[,3])))+(1/((b1*(X[,3])+b2*(X[,3])^2+b3*(X[,3])^3)*(exp((c1*(X[,3])+c
2*(X[,3])^2+c3*(X[,3])^3)*(X[,6])/LAImax)-1)))))) 

 

N <- 100000 

x1 = runif(1*N,0.1,1.0)           #RH 

x2 = runif(1*N,1500,2000)         #rho 

x3 = runif(1*N,0.1,0.5)           #u_star 

x4 = runif(1*N,10,100)            #L 

x5 = runif(1*N,0.02,0.10)         #z0 

x6 = runif(1*N,1,4)               #LAI 

x_1 = runif(1*N,0.1,1.0)           #RH 

x_2 = runif(1*N,1500,2000)         #rho 

x_3 = runif(1*N,0.1,0.5)           #u_star 

x_4 = runif(1*N,10,100)            #L 

x_5 = runif(1*N,0.02,0.10)         #z0 

x_6 = runif(1*N,1,4)               #LAI 

Y1 = matrix(c(x1,x2,x3,x4,x5,x6), nrow=N) 

X1 = data.frame(matrix(Y1,nrow=N)) 

Y2 = matrix(c(x_1,x_2,x_3,x_4,x_5,x_6), nrow=N) 

X2 = data.frame(matrix(Y2, nrow=N)) 

a = sobol2007(model = model, X1 = X1, X2=X2, nboot = 2000, conf = 0.95);a 
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Codes for Sobol’ sensitivity test for Zhang and Shao (2014) parameterization 

#Dry deposition parameterization by Zhang and Shao (2014) 

#Sobol sensitivity test: Grass (the code is similar for other LUCs) 

#Change LUC dependent parameters for other LUCs  

#Change sensitivity ranges for other LUCs 

set.seed(5) 

library(sensitivity) 

library(boot) 

C1 = 0.2789                           

C2 = 3.115 

C3 = 5.415*10^-11 

C4 = -1.399 

dp_a = 10 

dp_i = dp_a*10^-6      

rd = dp_i/2 

k_B = 1.38*10^-23                   

Temp = 273.15+25                

P = 101325                          

d_air = 3.7208*10^-10               

lambda = (k_B*Temp)/(sqrt(2)*3.1416*P*d_air^2) 

dyn.vis = ((5*10^-8)*Temp)+4*10^-6 

kin.vis = ((9*10^-8)*Temp)+10^-5 

Temp = 273.15+25   

k =  0.41 

z =  1   

zd = 0.20                           

z0 = 0.3/1000  

h_c = 0.3*z0                         

B1 = 0.45 
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d_c = 0.005                           

nB = 0.5 

C_B = 0.467 

beta_IM = 0.6  

Ain = 150 

b = 2 

B2 = 3 

Beta = 200 

C_1 = 6 

C_2 = 0.1 

lambda_FAI = 0.4 

n_FAI = (lambda_FAI)/(h_c*d_c) 

q = (3.1416*d_c^2)/4 

eta_BAI = n_FAI*q  

lambda_FAIe = ((lambda_FAI)/(1-eta_BAI)^C_2)*exp((-C_1*lambda_FAI)/(1-eta_BAI)^C_2) 

Tau_c_BY_Tau = (Beta*lambda_FAIe)/(1+Beta*lambda_FAIe) 

Cd = 1/6 

model<- function(X) ((((1/(((((X[,2])*(dp_i)^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*9.81)))+(((((exp(-
b*sqrt(((((X[,2])*(dp_i)^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3]))/d_c)))*(((X[,3])/(X[,4])*h_c)
)*(((((C_B*((kin.vis/(((1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4
-log10(X[,1]))+rd^3}^(1/3)))))))^(-2/3)*(((X[,4])*d_c)/(kin.vis))^(nB-
1))+(((((((X[,2])*(dp_i)^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3]))/d_c)/((((((X[,2])*(dp_i)^2*(1
+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-
0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3]))/d_c)+beta_IM))^2)+(Ain*(X[,3]
)*(10^((-((((X[,2])*(dp_i)^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3]))/d_c)))*(2*(2*({(C1*rd^C2)/(C3
*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/d_c))))*(Tau_c_BY_Tau/Cd))+(1+Tau_c_BY_Tau)*((kin.vis/(((1+(2*l
ambda/(2*({(C1*rd^C2)/(C3*rd^C4-log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-
0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda)))*k_B*Temp)/(3*3.1416*dyn.vis*(2*({(C1*rd^C2)/(C3*rd^C4
-log10(X[,1]))+rd^3}^(1/3)))))))^-1+10^((-3/(((((X[,2])*((2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
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log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*(X[,3])^2)/kin.vis))))+((((X[,2])*((2*
({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*9.81))^-1)-
(1/(((((X[,2])*(dp_i)^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*9.81))))/(exp(((((1+(((((X[,2])*((2*({
(C1*rd^C2)/(C3*rd^C4-log10(X[,1]))+rd^3}^(1/3))))^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*9.81)^2/(X[,3])^2))^0.5)/(k*(X[,3])))*
(log((z-zd)/(h_c-zd))))/(1/(((((X[,2])*(dp_i)^2*(1+(2*lambda/(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3))))*(1.257+0.4*exp(-0.55*(2*({(C1*rd^C2)/(C3*rd^C4-
log10(X[,1]))+rd^3}^(1/3)))/lambda))))/(18*dyn.vis))*9.81))))))))^-1) 

 

 

N <- 100000 

x1 = runif(1*N,0.1,1.0)            #RH 

x2 = runif(1*N,1500,2000)          #rho 

x3 = runif(1*N,0.1,0.5)            #u_star 

x4 = runif(1*N,1,5)                #U 

x_1 = runif(1*N,0.1,1.0)           #RH 

x_2 = runif(1*N,1500,2000)         #rho 

x_3 = runif(1*N,0.1,0.5)           #u_star 

x_4 = runif(1*N,1,5)               #U 

Y1 = matrix(c(x1,x2,x3,x4), nrow=N) 

X1 = data.frame(matrix(Y1, nrow=N)) 

Y2 = matrix(c(x_1,x_2,x_3,x_4), nrow=N) 

X2 = data.frame(matrix(Y2, nrow=N)) 

a = sobol2002(model = model, X1 = X1, X2=X2, nboot = 2000, conf= 0.95);a 
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2 CHAPTER 2: Improvement in atmosphere-terrestrial 
exchange parameterizations of gaseous elemental 
mercury for application in chemical transport models 

Abstract 

In chemical transport models (CTMs) for mercury (Hg), net elemental Hg0 surface-
atmosphere exchange is parameterized based on atmospheric dry deposition of Hg0 and re-
emission from terrestrial surfaces. Despite extensive use of the resistance-based Hg0 
deposition and subsequent re-emission approaches in models, there are gaps in 
performance evaluations of these implementations against field observations of net Hg0 
exchange. In this study, we evaluate performance of existing net exchange 
parameterizations (referred to here as the base model) by comparing modeled fluxes of Hg0 
to fluxes measured using micrometeorological techniques. Comparisons were performed 
with measurements conducted in two terrestrial ecosystems: a grassland site in Switzerland 
and an Arctic tundra site in Alaska, U.S. that spanned two seasons each: summer and 
winter. The base model included the dry deposition parameterization from Zhang et al. 
(2003) and the soil Hg0 re-emission scheme from the global CTM GEOS-Chem by Song 
et al. (2015). Comparisons of modeled and measured Hg0 fluxes showed large 
discrepancies for both sites, particularly in the summer months when the base model 
overestimated daytime net deposition by factors greater than 3 and 10, respectively. In 
addition, the base model was unable to capture a measured nighttime net Hg0 deposition at 
both sites. In winter months, the base model showed insufficient diel variability in modeled 
fluxes compared to field measurements and was unable to capture a measured net 
deposition. To improve overall performance of Hg0 exchange simulation, we conducted a 
step-wise model calibration, and recommend the following changes be made to the base 
model: (i) reduce stomatal uptake of Hg0 over vegetated ecosystems (grassland and tundra 
here) by a factor 5-7; (ii) to increase nighttime net Hg0 deposition, increase ground and 
cuticular uptake by reducing the respective resistance terms by factors of 3-4 and 2-4; and 
(iii) implement a new soil re-emission parameterization to produce larger simulated 
daytime and reduced nighttime emissions. We conclude that, in general, the use of 
resistance-based models combined with a soil re-emission flux parameterization is able to 
reproduce observed diel and seasonal Hg0 exchange in terrestrial ecosystems. However, 
continued improvement through model testing against reliable ecosystem-level flux and 
foliar uptake data is needed. 
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2.1 Introduction  

Atmosphere-surface exchange of gaseous elemental mercury (Hg0) is an important 

component of the global Hg budget (Zhu et al., 2016; Eckley et al., 2016). Despite advances 

in Hg0 exchange flux measurements and their incorporation in chemical transport models 

(CTMs; Kwon and Selin, 2016), there remain large uncertainties with regard to the 

magnitudes and mechanistic understanding of the bi-directional terrestrial surface-

atmosphere exchange processes of Hg0 (Agnan et al., 2016). Hg0 is the dominant form (ca. 

95%) of Hg in the atmosphere (Millhollen et al., 2006), and deposition of Hg0 can 

contribute significantly to total Hg deposition, particularly over vegetated ecosystems 

(Obrist et al, 2018; Jiskra et al., 2018). For example, evidence from stable Hg isotope 

studies suggest that atmospheric Hg0 contributes 57–94% of total Hg in ecosystems 

(Demers et al. 2013; Zheng et al. 2016; Enrico et al., 2016; Obrist et al. 2017; Jiskra et al. 

2015; Wang et al. 2016a). Moreover, it is also estimated that up to 65% of total present-

day Hg emissions to the atmosphere could be attributed to secondary emission (re-

emission) of Hg0 from previous deposition of Hg from terrestrial and aquatic surfaces 

(‘legacy emissions’; Corbitt et al., 2011; Amos et al., 2013).  Given the significance of 

atmospheric Hg0 as a source and sink to terrestrial ecosystems, and a complex bi-

directional exchange behavior that includes both deposition and emission processes, an 

adequate framework to parameterize atmosphere-surface exchange processes of Hg0 in 

CTMs is critical. 

In most CTMs, Hg0 dry deposition to and emission from terrestrial surfaces are 

parameterized separately (i.e., de-coupled treatment). A resistance-based approach 
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(Wesely, 1989; Walmsley and Wesely, 1996; Wesely and Hicks, 2000; Zhang et al., 2003) 

is commonly used to model dry deposition. The resistance-based deposition algorithm is 

implemented in all major global CTMs including GLEMOS (Travnikov et al., 2009), 

GEOS-Chem (Selin et al., 2008; Song et al., 2015), GEM-MACH-Hg (Dastoor et al., 

2015), ECHMERIT (Jung et al., 2009), and CAM-Chem (Lei et al., 2013). Similarly, 

regional models such as WRF-Chem (Gencarelli et al., 2017) also use the resistance-based 

approach for Hg0 deposition. In addition, adaptation to a coupled bi-directional exchange 

parameterization is conducted as well, but is limited, as for example in the CMAQ 

modeling system (CMAQ-Hem and CCLM-CMAQ; Bash, 2010). Currently, there exist 

large uncertainties in modeling dry gaseous deposition using resistance-based algorithms 

(Wu et al., 2011). These uncertainties stem from lack of process-based understanding of 

Hg0 deposition and emissions (Obrist et al., 2018), the model’s inability to fully describe 

physiological processes involved such as vegetation stomatal responses to various 

environmental conditions (Wu et al., 2011), lack of consideration of terrain complexity 

(Hicks et al., 2016), and exclusion of fast, within-canopy chemical reactions (Wesely and 

Hicks, 2000).  In an inter-comparison study of four resistance-based deposition models of 

reactive nitrogen species, Flechard et al. (2011) reported factors of 2 to 3 disagreement 

between the models. However, in addition to model inter-comparison, there is a need for 

evaluation of the existing and newly developed dry deposition parameterizations against 

field observations for a suite of atmospheric species (Zhang et al., 2009; Wu et al., 2011) 

and environmental settings, which for Hg0 is largely lacking.  
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To estimate Hg0 emissions to the atmosphere from soils and vegetative surfaces, several 

empirical models have been developed (Poissant and Casimir, 1998; Xu et al., 1999; Zhang 

et al., 2001; Lin and Tao, 2003; Bash et al., 2004; Gbor et al., 2006; Lin et al., 2010). These 

models are based primarily on measured field flux measurements and observed 

environmental drivers such as air and soil temperatures, solar radiation, soil moisture and 

soil Hg content (Zhu et al., 2016). Several of these formulations have been implemented in 

CTMs, with some modifications, to parameterize Hg0 fluxes from terrestrial surfaces. For 

example, in GEOS-Chem (Song et al., 2015), soil re-emission is parameterized following 

Zhang et al. (2001), in which re-emission of Hg0 is a function of incident solar radiation at 

the ground surface. Currently, due to knowledge gaps in a fundamental mechanistic 

understanding of Hg0 exchange between air and soil and air and vegetation (Pirrone et al., 

2013; Zhu et al., 2016), it is unfeasible to implement a fully mechanistic surface-

atmosphere exchange parameterizations in CTMs.  

In this study, we aim to test existing parameterizations of Hg0 exchange implemented in 

CTMs by evaluation using high quality exchange flux measurements at the ecosystem-

level (i.e., including both soil and vegetation exchanges) at two sites and two seasons. Our 

comparison includes the most commonly used dry gaseous Hg0 deposition scheme from 

Zhang et al. (2003) and a soil re-emission scheme implemented in GEOS-Chem (Song et 

al., 2015). We evaluate model performance against measured whole-ecosystem net 

exchange fluxes of Hg0 from a grassland in Switzerland and an Arctic tundra site in Alaska. 

The objectives of this study are to: (1) assess the performance of the current dry deposition 

and soil re-emission parameterizations in modeling net Hg0 exchange fluxes; (2) 
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characterize which model parameters most strongly influence modeled fluxes and how 

their adjustment improves comparison with measured field fluxes;  and (3) provide 

suggestions for future treatment and further development of Hg0 atmosphere-terrestrial 

surface exchange parameterizations in CTMs for a variety of environmental settings. 

2.2 Parameterizations of Hg0 atmosphere-terrestrial exchange 

examined 

The resistance-based model of Zhang et al. (2003) was used to model deposition flux of 

Hg0 because this is the most up-to-date and widely used resistance-based deposition 

parameterization. The framework of the Zhang et al. (2003) model is similar to the 

resistance analogy proposed by Wesely (1989). In both models, three parallel resistances 

to gaseous deposition are assumed: aerodynamic, boundary or quasi-laminar, and surface 

resistances. The model of Zhang et al. (2003) uses leaf area index (LAI) to scale Hg0 uptake 

by foliage and uses updated formulations for non-stomatal (e.g., cuticular) and ground 

deposition. The model allows selection of land use category (LUC) parameters that are 

specific for grassland (i.e., long grass) and tundra. The major resistance expressions in the 

Zhang et al. (2003) parameterization are described in section 2.2.1. To model soil re-

emission of Hg0, the parameterization used in the current GEOS-Chem (v-9-02) Hg model 

(Song et al., 2015) was applied. The soil re-emission modeling framework is described in 

section 2.2.2. 
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2.2.1 Modeling dry deposition of Hg0 

In global 3-D CTMs, the uptake of gaseous species at the surface is characterized by 

downward dry deposition flux (𝐹𝐹𝑑𝑑) to be applied at the lowest model layer located at finite 

distance, 𝑧𝑧, from the surface. Vertical flux in the surface layer is assumed to be conserved 

for a species, and its dry deposition velocity (𝑣𝑣𝑑𝑑) is calculated as 𝑣𝑣𝑑𝑑 = 𝐹𝐹𝑑𝑑(𝑧𝑧)/𝐶𝐶𝑧𝑧, where 

𝐶𝐶𝑍𝑍 is gaseous concentration at height 𝑧𝑧. In CTMs that use a resistance-based dry deposition 

parameterization, 𝑣𝑣𝑑𝑑 for gaseous species such as Hg0 is parameterized using the electrical 

resistance analogy (Zhang et al., 2003) as 

𝑣𝑣𝑑𝑑 = 1
𝑅𝑅𝑎𝑎+𝑅𝑅𝑔𝑔+𝑅𝑅𝑠𝑠

,                                                                                                                               (1) 

where 𝑅𝑅𝑎𝑎 is the aerodynamic resistance, 𝑅𝑅𝑔𝑔 is the quasi-laminar sublayer resistance, and 

𝑅𝑅𝑠𝑠 is the bulk surface resistance. The term 𝑅𝑅𝑠𝑠 in Eq. (1) has two components: the stomatal 

resistance (𝑅𝑅𝑠𝑠𝑆𝑆) and the non-stomatal resistance (𝑅𝑅𝑖𝑖𝑠𝑠𝑆𝑆). In the paper by Zhang et al. (2003), 

𝑅𝑅𝑠𝑠 is parameterized as 

1
𝑅𝑅𝑠𝑠

= 1−𝑊𝑊𝑠𝑠𝑆𝑆
𝑅𝑅𝑠𝑠𝑆𝑆+𝑅𝑅𝑚𝑚

+ 1
𝑅𝑅𝑛𝑛𝑠𝑠𝑆𝑆

,                                                                                                            (2) 

where 𝑊𝑊𝑠𝑠𝑆𝑆 is the fraction of stomatal blockage under wet conditions. 𝑅𝑅𝑠𝑠𝑆𝑆 is directly 

proportional to minimum stomatal resistance (rstmin), which is a LUC-dependent parameter 

based on water vapor transfer to leaves under optimal conditions (Zhang et al., 2003).   The 

𝑅𝑅𝑖𝑖𝑠𝑠𝑆𝑆 term is parameterized by Zhang et al. (2003) as 

1
𝑅𝑅𝑛𝑛𝑠𝑠𝑆𝑆

= 1
𝑅𝑅𝑎𝑎𝑐𝑐+𝑅𝑅𝑔𝑔𝑑𝑑

+ 1
𝑅𝑅𝑐𝑐𝑚𝑚𝑆𝑆

,                                                                                                        (3)  
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where 𝑅𝑅𝑎𝑎𝑆𝑆 is the in-canopy aerodynamic resistance, 𝑅𝑅𝑔𝑔𝑑𝑑 is the ground resistance, and 𝑅𝑅𝑆𝑆𝑢𝑢𝑆𝑆 

is the cuticular resistance. 𝑅𝑅𝑔𝑔𝑑𝑑 and 𝑅𝑅𝑆𝑆𝑢𝑢𝑆𝑆 are gaseous species dependent parameters. For any 

species i (except SO2 and O3), Zhang et al. (2003) suggested the following scaling approach 

to calculate 𝑅𝑅𝑥𝑥(𝑙𝑙) (𝑒𝑒.𝑔𝑔. ,𝑅𝑅𝑥𝑥= 𝑅𝑅𝑔𝑔𝑑𝑑 𝑓𝑓𝐴𝐴 𝑅𝑅𝑆𝑆𝑢𝑢𝑆𝑆): 

1
𝑅𝑅𝑥𝑥(𝑑𝑑)

= 𝛽𝛽
𝑅𝑅𝑥𝑥(𝑂𝑂3)

+ 𝛼𝛼
𝑅𝑅𝑥𝑥(𝑆𝑆𝑂𝑂2)

,                                                                                                     (4) 

where 𝛼𝛼 and 𝛽𝛽 are scaling factors for chemical species solubility and half-redox reactivity, 

respectively. For Hg0, 𝛼𝛼 = 0 and 𝛽𝛽 = 0.1 (Wang et al., 2014). The expressions used for 

calculating individual resistance terms shown in Eqs. (2-3) and LUC-specific base 

resistance parameter values can be found in the paper by Zhang et al. (2003) and references 

therein. 

2.2.2 Modeling re-emission of Hg0 

In GEOS-Chem (version 9-02; http://www.geos-chem.org), re-emission flux of Hg0 from 

terrestrial surfaces (𝐸𝐸𝑠𝑠𝑙𝑙𝑑𝑑𝑙𝑙) is parameterized as a function of solar radiation and soil Hg 

concentration (Song et al., 2015) as 

𝐸𝐸𝑠𝑠𝑙𝑙𝑑𝑑𝑙𝑙 = 𝛾𝛾𝐶𝐶𝑠𝑠𝑙𝑙𝑑𝑑𝑙𝑙 exp�1.1 × 10−3 × 𝑅𝑅𝑔𝑔�,                                                                              (5) 

where 𝐶𝐶𝑠𝑠𝑙𝑙𝑑𝑑𝑙𝑙 is the soil Hg concentration (ng g-1) and 𝑅𝑅𝑔𝑔 is the solar radiation flux at the 

ground (W m-2). The scaling factor 𝛾𝛾 (1.2 × 10−2 g m-2 h-1) is used to account for the global 

mass balance of the preindustrial model simulation. Selin et al. (2008) used the following 
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expression to calculate 𝑅𝑅𝑔𝑔 as functions of solar radiation (𝑆𝑆𝑅𝑅) at top of canopy and leaf 

area index (LAI), 

𝑅𝑅𝑔𝑔 = 𝑆𝑆𝑅𝑅 exp �−𝛼𝛼𝐿𝐿𝑔𝑔𝐼𝐼
cos𝜃𝜃

�,                                                                                                        (6) 

where 𝜃𝜃 is the solar zenith angle and 𝛼𝛼 = 0.5 is an extinction coefficient assuming random 

leaf angle distributions.   

2.3 Methods 

2.3.1 Data description 

Measured micrometeorological net exchange flux data of Hg0 were collected from two 

ecosystems: grassland and tundra (long grass and tundra LUCs, respectively, in the Zhang 

et al., 2003 parameterization) were used for model evaluation. The data of Hg0 exchange 

over a sub-alpine grassland site at Früebüel (47° 6’ 47’’ N, 8° 32’16’’ E, elevation of 1000 

m) in central Switzerland were acquired from Fritsche et al. (2008). At this site, Hg0 

exchange fluxes were measured using the aerodynamic method over a full year (September 

2005 to August 2006). The second site used for model evaluation was from Toolik Field 

Station (Obrist et al., 2017). This Arctic tundra site is located in the northern foothills of 

the Brooks Range, Alaska (68° 38’ N, 149° 38’ W, elevation of 760 m). Hg0 flux exchange 

measurements were conducted using the aerodynamic method at the Toolik Field station 

site from September 2014 to September 2016. In this study, we used exchange flux and 

meteorological data for year 2016 from this site for model evaluation. For both sites, the 

data included hourly averages for atmospheric Hg0 concentrations, Hg0 net exchange 
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fluxes, and corresponding values for the following meteorological variables: wind speed, 

friction velocity, air temperature, surface soil temperature, solar radiation, atmospheric 

pressure, relative humidity, and Monin-Obukhov length. For analysis of 24-hour temporal 

patterns (further referred to as diel variation), the aforementioned measured variables were 

averaged for hourly values for July and August (at both sites) and for December (grassland 

site) and January (tundra site). In addition, to reduce noise in measured flux variability and 

better track the diel patterns of Hg0 fluxes, a 5-hour moving average filter was used for 

measured Hg0 fluxes. This filtering was done due to the large variability in measured ½-

hourly averaged flux data, which stems from difficulties in measuring small exchange 

fluxes against a large background concentration (see, e.g., Fritsche et al., 2008; Obrist et 

al., 2017). For soil Hg0 emission model simulations, we used measured soil Hg 

concentrations of 100.8 ng g-1 at the grassland and 100.0 ng g-1 at the tundra site. 

2.3.2 Model evaluation and calibration  

To evaluate the performance of the base parameterizations (i.e., Zhang et al., 2003 and 

Song et al., 2015), LUC-specific (i.e., long grass or tundra) simulations were performed. 

Hourly averaged meteorological and atmospheric concentration data from the grassland 

and tundra sites were used as model inputs. To account for seasonal variability in modeling 

analysis, simulations were conducted for typical summer and winter meteorological 

conditions for each of the two ecosystems, which included July and August for summer 

measurements and December for winter measurements at the grassland site and January 
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for the tundra site.  Agreement between the measured and modeled exchange fluxes was 

evaluated using degree of agreement (d), calculated using Eq. (7): 

𝑑𝑑 = 1 − ∑ (𝑂𝑂𝑖𝑖−𝐼𝐼𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (|𝑂𝑂𝑖𝑖|+|𝐼𝐼𝑖𝑖|)2𝑛𝑛
𝑖𝑖=1

 ,                                                                                                     (7) 

where 𝑂𝑂𝑑𝑑 is the observed net flux, 𝑀𝑀𝑑𝑑 the modeled net flux, and n the number of 

observations. A d-value of 1 indicates perfect agreement between observed and modeled 

net flux. 

Based on the performance of the base model, systematic adjustments to the default model 

parameters were performed through application of adjustment factors. This modulation of 

specific model parameters serves as model calibration, with the main objective to increase 

the overall agreement between the modeled and measured exchange fluxes (i.e., to 

maximize the d-value using Eq. 7) and to assess which model settings result in the most 

relevant changes (both in magnitude and direction) of the net exchange fluxes.  Model 

response (referred to as the adjusted model) to these adjustments are assessed and discussed 

in detail, and suggestions are made to improve the treatment of net exchange processes of 

Hg0 in CTMs. To optimize the base model, a step-wise manual calibration was performed 

in the following order: (i) reduction in modeled stomatal uptake of Hg0, (ii) increase in 

modeled non-stomatal uptake of Hg0, and (iii) revision to soil Hg0 re-emission parameters. 

Because only three parameters in the base dry deposition model were selected for 

calibration, a manual step-wise method, as opposed to a sophisticated numerical 

optimization tool such as random-hyper parameter optimization (Bergstra et al., 2012) or 

Bayesian optimization (Snoek et al., 2012), was deemed a reasonable choice. 
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2.4 Results and discussion 

In sections 2.4.1 and 2.4.2, measured ecosystem-level atmosphere-terrestrial surface 

exchange fluxes of Hg0 from both sites are compared with modeled net exchange fluxes 

using the base parameterizations. Based on the evaluation results obtained using the base 

model configuration, a step-wise model parameter calibration was performed to assess the 

changes in net exchange behavior of Hg0 as a function of modulating certain default model 

parameters in sections 2.4.3 and 2.4.4. In section 2.4.5, growing season vegetation Hg 

uptake was calculated based on base and adjusted model parameterizations of Hg0 dry 

deposition and compared to observed Hg accumulation in plant leaves at the grassland and 

tundra sites as an additional model constraint.  

2.4.1 Evaluation of modeled net exchange fluxes in summer using the 

base model 

 Temperate grassland site at Früebüel, Switzerland 

The hourly averaged modeled (blue lines in Figure 1) and measured (black dotted lines) 

net exchange fluxes of Hg0 (Fnet) for the summer months using the base model with the 

default dry deposition and re-emission parameterizations are shown in Fig. 1 (panel A: July 

2006; panel B: August 2006). At this site, a leaf area index (LAI) of 5.0 m2 m−2 was used 

for July and August month simulations derived from monthly averaged MODerate 

resolution Imaging Spectroradiometer (MODIS) -Terra (ORNL DAAC, 2017).  
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Figure 1. Comparison of averaged diel variations of measured (black) and modeled (blue; 
base model) net exchange fluxes of Hg0 at the grassland site (Früebüel, Switzerland) in 
summer (LT = local time): A) July 2006 and B) August 2006. 

Diel Hg0 exchange (Fig. 1) of modeled Fnet was primarily controlled by the surface 

resistance term (Rs in Eq. 1) of the dry deposition model, which includes both stomatal and 

non-stomatal uptake. Of the two deposition pathways, stomatal uptake dominated over 

non-stomatal uptake. Increased net deposition of Hg0 in the daytime compared to nighttime 

deposition was attributed primarily to stomatal uptake during daytime (Rst term in Eq. 2). 

Comparison between measured and modeled Fnet in Fig. 1 suggests that while the base 

model was able to capture an observed diel pattern of fluxes, it considerably overestimated 

net deposition of Hg0 during daytime. In addition, the measurements showed a significant 

nighttime deposition of Hg0 during summer nights in the range of – 0.44 to –5.51 ng m-2 

hr-1 (for both months), which the model was unable to reproduce and instead predicted 

nighttime fluxes near zero (i.e., neither net deposition nor net emission). 

In July (Fig. 1A), measured Fnet showed bimodal peaks in deposition at 1100 and 1400 LT. 

An observed decline in measured net deposition at approximately 1300 LT can be caused 

by leaf stomatal closure, or alternatively by increased soil Hg0 emissions during midday 

when solar radiation and soil surface temperature peak (both of which are positively 
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correlated to soil Hg0 emissions; Agnan et al., 2016), reducing mid-day net dry Hg0 

deposition. The base model was able to reproduce the observed bimodal flux distribution 

during daytime, albeit with a small time lag of 1 to 2 hours. However, the absolute 

differences in measured and modeled Fnet are large (10.81 ng m-2 hr-1) throughout daytime. 

For example, mean measured and modeled daytime Fnet (0700 to 2000 LT) were -4.17 ng 

m-2 hr-1 and -14.98 ng m-2 hr-1, respectively, showing that the base model overestimated 

measured deposition by a factor of >3.5. In addition, at nighttime (2100 to 0600 LT), the 

base model largely failed to reproduce an observed net deposition, resulting in model 

underestimation of nighttime net deposition by a factor of 2. On a daily basis (daytime and 

nighttime), the base model overestimated the measured Fnet (i.e., net deposition) by a factor 

of ca. 2 in July (daily sum measured Fnet of -77.49 ng m-2 day-1 versus -219.32 ng m-2 day-

1 predicted by the base model). 

In August, modeled and measured Fnet exhibited patterns similar to July, with a few 

differences (Fig. 1B): (i) the base model showed a unimodal pattern of net exchange, and 

(ii) a midday decline in net exchange due to possible stomatal closure was not evident in 

the modeled Fnet, which was in relatively good accord with observations. Consistent with 

the July simulation, however, the base model overestimated measured daytime (0700 to 

2000 LT) Fnet by a factor of >2.5 and underestimated measured nighttime (2100 to 0600 

LT) Fnet by a factor >2. On a daily basis, the base model overestimated measured Fnet by a 

factor of ca. 3 (daily sum of measured Fnet of -97.46 ng m-2 day-1 versus -191.53 ng m-2 

day-1 predicted by the base model). 
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 Arctic tundra site at Toolik Field Station, Alaska  

Comparison between the hourly averaged modeled and measured Fnet for the summer 

months (July and August of 2016) at the tundra site is shown in Fig. 2. At this site, average 

LAIs of 1.5 and 2.0 m2 m−2 (ORNL, 2017) were used for July and August base model 

simulations, respectively. Although measured fluxes exhibit a net Hg0 emission during 

midday in July (Fig. 2A), average daytime (0400 to 2300 LT) fluxes showed a small net 

deposition (−0.11 ng m−2 hr−1). The modeled net deposition flux was substantially higher 

throughout daytime (-2.96 ng m-2 hr-1). In the short nighttime period (0000 to 0300 LT), 

measured Fnet was dominated by a strong Hg0 deposition (mean of -2.62 ng m-2 hr-1), which 

the base model was unable to reproduce (i.e., mean of -0.46 ng m-2 hr-1). Comparison 

between measured and modeled fluxes at nighttime shows that the base model 

underestimated measured net deposition by a factor >5.5.  

 

Figure 2. Comparison of averaged diel variations of measured and modeled (base model) 
net exchange fluxes of Hg0 at the Arctic tundra site (Toolik Field station, Alaska, U.S.) in 
summer: A) July 2016 and B) August 2016. 

In August (Fig. 2B), measured Fnet during daytime (0600 to 2200 LT) exhibited a small net 

deposition (-0.23 ng m-2 hr-1), yet a bi-modal diel trend was evident again, with net 
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deposition during the early and later parts of the day and net Hg0 emission during midday. 

Consistent with the July simulation (Fig. 2A), the base model over-predicted daytime net 

deposition by a factor of 12 in August, and was unable reproduce a shift from net deposition 

to net emission during midday. Also similar to the July simulation, the measured net 

exchange at nighttime (2300 to 0500 LT) in August (Fig. 2B) exhibited a substantial Hg0 

deposition (-2.89 ng m-2 hr-1), which the base model underestimated by a factor >30.  

2.4.2 Evaluation of modeled net exchange fluxes in winter using the base 

model 

Overall, in winter, Fig. 3A shows that measured Fnet of the temperate grassland showed a 

net Hg0 deposition in the range of -0.23 to -5.29 ng m-2 hr-1 during nighttime (1800 to 0800 

LT) and diel patterns during daytime showed a small net Hg0 emission (ca. 1.4 ng m-2 hr-1) 

in the afternoon (1400 to 1600 LT). In winter at the tundra site (Figure 3B), measured Fnet 

exhibited a small net deposition for most of the day with no clear differences between 

nighttime and daytime fluxes and with hourly fluxes ranging from –1.11 ng m-2 hr-1 (small 

net deposition) to 0.95 ng m-2 hr-1 (small net emission). As illustrated in Fig. 3, modeled 

Fnet fluxes at both sites largely lack diel flux patterns. Note that for winter months, we 

assumed a LAI of ~0 (i.e., no active vegetation activity), but did not implement any 

processes within the snow cover. At both sites, the base model was unable to reproduce a 

small measured net deposition and consistently produced a small rate of net Hg0 emissions 

during both daytime and nighttime. In winter months, cumulative modeled net daily 

emissions at the grassland and tundra sites were 18.90 and 23.36 ng m-2 day-1, respectively. 
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In contrast, measured net daily depositions were -34.67 and -5.17 ng m-2 day-1, 

respectively, at the two sites.  

 

Figure 3. Comparison of averaged diel variations of measured (black) and modeled (blue) 
(base model) net exchange fluxes of Hg0 in winter: A) temperate grassland site 
(December 2005) and B) Arctic tundra site (January 2016). 

The measurement-model comparisons shown in Figs. 2 and 3 suggest that in order to 

improve the performance of modeled exchange, three major components in the coupled 

(i.e., deposition and emission) models need to be addressed. First, net nighttime Hg0 

deposition observed at both sites is largely lacking in model simulations, suggesting that 

the current Hg0 deposition scheme, which is strongly driven by stomatal Hg0 uptake, needs 

to implement a stronger deposition pathway via non-stomatal pathways that are active 

during the night (i.e., cuticular, Rcut, and ground, Rgd, resistance terms in Eq. 3). Second, 

the modeled leaf Hg0 uptake needs to be reduced substantially (i.e., increased stomatal 

resistance Rst term in Eq. 2) as daytime deposition is over-predicted in the modeled Fnet by 

a factor of up to 26 (e.g., in July at the Arctic tundra site). Third, further improvement in 

model vs. measurement agreement can be reached by adjusting the soil Hg0 re-emission 

scheme. In section 2.4.3, we examine and discuss resulting flux responses of adjusting the 

Grassland Tundra 
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corresponding resistance parameters, Rst, Rcut, and Rgd, which directly affect the three main 

processes highlighted above.  

2.4.3 Model response to adjusted deposition parameterization (summer) 

 Model response to reduced stomatal uptake 

As discussed, modeled diel flux patterns in the default dry Hg0 deposition model rely 

heavily on stomatal Hg0 uptake, which generally accounts for over 90% of the daytime Hg0 

deposition and results in over-prediction of measured deposition by factors of 3 to 26, as 

illustrated above. In the Zhang et al. (2003) dry deposition parameterization, a set of default 

parameter values were suggested for the minimal stomatal resistance (rstmin) for different 

LUCs, including a default value rstmin of 100 s m-1 for long grass. To reduce the stomatal 

uptake of Hg0 at daytime, we performed a set of sensitivity tests by allowing the default 

rstmin value to vary over a wide range (e.g., 100 to 800 s m-1) and examining the 

corresponding responses to the modeled net exchange fluxes. These sensitivity tests served 

as the first step in model calibration. For the grassland site, we found that an increase in 

the default rstmin value by a factor of seven led to significant reduction of daytime Hg0 

deposition and reasonably good agreement between the measured and modeled daytime 

fluxes, as illustrated by Fig. 4A.  
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Figure 4. Model response to reduced stomatal uptakes of Hg0 and comparison of modeled 
and measured net exchange fluxes of Hg0 in July: A) temperate grassland site and B) 
Arctic tundra site. 

The default parameter value for rstmin was 150 s m-1 for the tundra LUC following Zhang 

et al.’s (2003) parameterization. Using a similar model calibration approach through 

sensitivity testing as in the first step, by allowing rstmin to vary from 150 to 1050 s m-1, we 

identified that a five-fold increase in the default rstmin (i.e., to 750 s m-1) led to an improved 

performance of the modeled Hg0 deposition during the daytime (Fig. 4B). Any further 

increase in the rstmin value caused worsening of model performance in the nighttime (Fig. 

4B). Hence, comparisons between base model and adjusted model simulations with 

increased stomatal resistance by factors of 7 (for the temperate grassland) and 5 (for the 

Arctic tundra) suggest that the dry deposition model is extremely sensitive to changes in 

rstmin. Reducing the modeled stomatal uptake of Hg0 substantially improved the agreement 

between measured and modeled net exchange fluxes during the daytime for both 

ecosystems in summer months (model simulation plots in August for both grassland and 

tundra are shown in Fig. S1). For example, at the grassland site, daytime net Hg0 deposition 

using the adjusted rstmin parameterization deviated on average by 2.14 ng m-2 hr-1 from 

Grassland     Tundra 
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measured fluxes, while deviations from the unadjusted model averaged 9.81 ng m-2 hr-1. At 

the tundra site, daytime net Hg0 deposition with the adjusted parameters deviated on 

average by 1.36 ng m-2 hr-1 from measured fluxes compared to 3.16 ng m-2 hr-1 for the base 

model.  

A consequence of adjustment of rstmin values was that model performance worsened at night 

at both sites compared to the base model. This finding suggests that while increased 

stomatal resistance leads to improvements in daytime fluxes and improved diel patterns, 

other resistance terms that are independent of stomatal behavior such as ground and 

cuticular resistances need to be revised to achieve better flux agreement at night, as 

described in the following section. 

 Model response to increased ground and cuticular uptake, and reduced 

stomatal uptake 

In both the temperate grassland and Arctic tundra sites, measured Fnet exhibited a net Hg0 

deposition during nighttime, which the base model and the stomatal-adjusted model were 

largely unable to reproduce. Increased nighttime Hg0 deposition (i.e., in the absence of 

significant stomatal uptake) can be achieved either through increasing the ground (Rgd) 

and/or cuticular (Rcut; i.e., to the leaf surface) uptake of Hg0, or by reducing soil re-emission 

fluxes (section 2.4.3.3). We first increased the ground and cuticular uptake along with the 

implemented reduced stomatal uptake described above, and show the resulting changes in 

model behavior in Fig. 5.  
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For the grassland site, we calibrated the model by adjusting the default parameters for 

cuticular resistance (dry) (RcutdO3) and ground resistance (dry) RgdO3, which in the base 

model were 4000 and 200 s m-1 (LUC: long grass), respectively (Zhang et al. (2003)). Note 

that the values for these resistance parameters are based on ozone (O3) assuming dry 

conditions. The model was calibrated through a series of sensitivity tests using the 

following ranges: 500-4000 s m-1 and 50-200 s m-1 for RcutdO3 and RgdO3, respectively. We 

found that reductions in the default parameter values RcutdO3 and RgdO3 by factors greater 

than four still resulted in only negligible improvements in nighttime model performance 

(Fig. 5A). However, such increases substantially worsened the daytime model performance 

for both summer months. Thus, we applied a factor of four reduction in the base model 

values for both of these parameters (RcutdO3 and RgdO3). 

 

Figure 5. Model response to increased cuticular and ground uptake, and reduced stomatal 
uptake, of Hg0, and comparison of modeled and measured net exchange fluxes of Hg0: A) 
temperate grassland site and B) Arctic tundra site. 

Similarly, for the tundra site, we calibrated the model by first testing the sensitivity of the 

default parameters for RcutdO3 and RgdO3, which were 8000 and 500 s m-1, respectively, in 

the Zhang et al. (2003) model. A series of sensitivity tests were performed using the 

Grassland     Tundra 
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following ranges: 500-8000 s m-1 and 50-200 s m-1 for RcutdO3 and RgdO3, respectively. From 

the model calibration results, we determined that factors of two and three decreases in 

RcutdO3 and RgdO3, respectively, in the base values of each of these parameters (RcutdO3 and 

RgdO3 ) produced an exchange flux pattern that exhibited small net nighttime deposition 

(Fig. 5B). Using the same adjustment factors for RcutdO3 and RgdO3, model simulation plots 

in August for both grassland and tundra are shown in Fig. S2.  

Collectively, these findings suggest that adjustments of resistance parameters alone (i.e., 

stomatal, cuticular, and ground) cannot satisfactorily reproduce measured fluxes, even 

though the increased stomatal resistance led to a large improvement in modeled daytime 

fluxes. However, we note that after revision of these resistance parameters, the mean 

modeled dry deposition velocity (vd) for Hg0 at the grassland site was 0.12 cm s-1, which 

falls within the range of suggested vd values for Hg0 deposition  (0.10-0.40 cm s-1) over 

vegetative surfaces (Zhang et al., 2009).  

 Model response to revised soil Hg0 re-emission and dry deposition 

parameterizations  

In many studies, secondary emission of Hg0 is parameterized as an exponential function of 

solar radiation and surface temperature in order to simulate re-emission from soil and other 

surfaces (Carpi and Lindberg, 1997; Moore and Carpi, 2005; Zhang et al., 2001; Agnan et 

al., 2016). Based on field measurements, we now also understand that nighttime soil Hg0 

re-emission are low and often negligibly small. Yet, based on the results shown above, we 

also stipulate that implementing a larger daytime soil emission would improve the 
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agreement between modeled and measured exchange fluxes. We achieve both of these 

requirements by also implementing a new soil Hg0 emission parameterization, which is 

based on a statistical relationship (Eq. 8) between soil Hg0 flux (𝐸𝐸𝑠𝑠𝑙𝑙𝑑𝑑𝑙𝑙_𝑖𝑖𝑒𝑒𝑤𝑤,𝑙𝑙𝑔𝑔 𝑚𝑚−2 ℎ𝐴𝐴−1), 

solar radiation (𝑅𝑅𝑔𝑔′ ,𝑊𝑊𝑚𝑚−2) and soil Hg concentration (𝐶𝐶𝑠𝑠𝑙𝑙𝑑𝑑𝑙𝑙, 𝜇𝜇𝑔𝑔 𝑔𝑔−1) derived using 

surface-air exchange flux data from Eckely et al. (2016).  Assuming that the diurnal 

variation in soil re-emission flux of Hg0 follows a symmetrical sine-curve relationship, we 

applied a sinusoidal function to better reproduce the observed diel pattern in exchange 

fluxes. The resulting expression is 

𝐸𝐸𝑠𝑠𝑙𝑙𝑑𝑑𝑙𝑙_𝑖𝑖𝑒𝑒𝑤𝑤 = 10[0.709+0.119 log(𝐶𝐶𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚)+0.137 log�𝑅𝑅𝑔𝑔′�] × 𝐴𝐴−1𝑜𝑜𝑙𝑙𝑙𝑙 𝜋𝜋𝑆𝑆
𝐷𝐷

.                                         (8) 

In Eq. (8), D is duration (in hour) between sunrise and sunset, and t is time (in hour) of 

daylight hours. The sinusoidal function (based on a sine-curve light distribution pattern) is 

consistent with the canopy light attenuation formulation provided by Liu (1996). To avoid 

double-counting solar position in Eq. (8), we estimated the solar radiation at the ground 

(𝑅𝑅𝑔𝑔′) without normalizing the exponential term by solar zenith angle as done previously, 

as shown in Eq. (6). The suggested expression for 𝑅𝑅𝑔𝑔′ is 

𝑅𝑅𝑔𝑔′ =  𝑆𝑆𝑅𝑅 exp(−𝛼𝛼𝐿𝐿𝐴𝐴𝐿𝐿).                                                                                                   (9) 

This model portion was calibrated by once again applying a series of sensitivity tests to 

determine the value of the coefficient a that produced the best-fit modeled soil flux values 

as compared to measured soil Hg0 flux values at both sites.  Following Eq. (8), we 

simulated net exchange fluxes using reduced nighttime and increased daytime soil Hg0 re-
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emission for summer months at the grassland and tundra sites. For both sites in summer, 

we found that a value of a of 1.5 produced the best agreement between the modeled and 

measured Fnet (Fig. 6). The major outcome of modifying the soil re-emission 

parameterization was that a substantial improvement in model ability to reproduce the 

observed diel pattern in Fnet was achieved. This improved ability was achieved through the 

combination of largely eliminating nighttime soil re-emission and substantially increasing 

daytime emissions.  

 

Figure 6. Model response to reduced nighttime and increased daytime soil re-emission and 
revised resistance parameters, and comparison of modeled and measured net exchange 
fluxes of Hg0 in July: A) temperate grassland site and B) Arctic tundra site. 

As a result of the adjustment in Hg0 emission fluxes, the ratio between modeled and 

measured daily sum of fluxes at the temperate grassland site decreased from factors of ca. 

3 to 1.1 (improved model) in July (Fig. 6A; mean modeled net fluxes of -3.72 vs. measured 

fluxes of -3.23 ng m-2 hr-1). Similarly, for August (Fig. S3A), the ratio between the modeled 

and measured fluxes was within a factor of 1.2. Degree of agreement (d) values between 

modeled fluxes and observations also support the improvement in model performance (i.e., 

0.94 vs. 0.68, and 0.96 vs. 0.72 for July and August, respectively). The improvement in 

d = 0.68 (base)  
d = 0.94 (adjusted) 

 

d = 0.49 (base)  
d = 0.96 (adjusted) 
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both the ratios and the d-values demonstrates that revising the soil re-emission function can 

significantly improve the agreement between modeled and measured Hg0 fluxes (see Table 

1). 

For the Arctic tundra site, we found that the ratio between the modeled and measured fluxes 

decreased from factors about 4.5 (base model) to 1.3 (improved model) in July (Fig. 6B). 

For August (Fig. S3B), the ratio between the modeled (improved model) and measured 

exchange fluxes was 0.96. The d-values (base vs. adjusted models) were 0.96 vs. 0.49, and 

0.97 vs. 0.35 for July and August, respectively. Table 2 presents the statistical summary of 

this comparison. 

Table 1. Mean measured and modeled Fnet (ng m-2 hr-1) at the grassland site. 
Month Measured Modeled (base) Modeled (improved) 

 Mean Fnet (daytime) 
July -4.17  -14.98  -5.81  
August -4.66  -12.62 -5.36  
December -0.98  0.69  -1.44  
 Mean Fnet (nighttime) 
July -1.91  -0.96  -0.79  
August -3.22  -1.48  -1.81  
December -1.72  0.85 -1.42  
 Mean Fnet (daily) 
July -3.23  -9.14 -3.72  
August -4.06 -7.98  -3.88  
December -1.44  0.79  -.1.43  
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Table 2. Mean measured and modeled Fnet (ng m-2 hr-1) at the Arctic tundra site. 

Month Measured Modeled (base) Modeled (improved) 

 Mean Fnet (daytime) 
July -0.11  -2.96 -0.45  
August -0.23  -2.79  -0.44  
January -0.56  0.96  -0.23  
 Mean Fnet (nighttime) 
July -2.62  -0.46  -2.37  
August -2.89  -0.10  -2.45  
January -0.15  0.98  -0.22  
 Mean Fnet (daily) 
July -0.53  -2.54 -0.77  
August -1.01  -2.01  -1.03  
January -0.22  0.97  -0.23  

 

2.4.4 Model response to revised dry deposition and soil re-emission 

parameterizations in winter  

For winter months, we performed the same adjustments for the dry deposition model for 

both respective LUCs and show results of these adjustments in Fig. 7. The results indicate 

that in winter months with sub-zero air temperature and snow on the ground, revisions of 

these resistance terms of dry deposition had no discernable effect on improving the 

agreement between measured and modeled exchange fluxes. However, the modeled fluxes 

of both the base simulation and the adjusted simulation largely replicated a generic lack of 

strong diel patterns in measured Hg0 fluxes.  
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Figure 7. Model response to reduced nighttime and increased daytime soil re-emission and 
revised resistance parameters, and comparison of modeled and measured net exchange 
fluxes of Hg0 in July: A) temperate grassland site and B) Arctic tundra site. 

However, neither simulation replicates the observed net Hg0 flux under snow cover. We 

suggest adding a net soil Hg0 sink in soils and completely eliminating emissions from 

ecosystems under snow, as can be inferred from experimental studies (Obrist et al. 2017; 

Obrist et al., 2014). We also recommend de-coupling wintertime fluxes from variability 

imposed by solar radiation and temperature. Figure 8 shows that turning off soil re-

emission (both at day- and nighttime) at both sites and adding a net soil Hg0 sink on the 

order of 1 ng m-2 hr-1 at the grassland site led to the best agreement between measured and 

modeled net Hg0 fluxes. Even still, the agreement between modeled and measured fluxes 

at both sites is not very good, possibly due to small fluxes during the winter, when stable 

atmospheric conditions make such measurements challenging (Obrist et al., 2017).   
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Figure 8. Model response to reduced soil re-emission and revised resistance parameters, 
and comparison of modeled and measured net exchange fluxes of Hg0 at the: A) grassland 
site in December 2005 and B) tundra site in January 2016. 

2.4.5 Seasonal mercury accumulation in leaves estimated using the 

deposition model  

In addition to constraining modeled net Hg0 deposition fluxes with measured field fluxes, 

an additional verification can be achieved by comparing foliar Hg uptake between 

modelled stomatal and non-stomatal uptake and measured leaf Hg contents from the field. 

Several studies have documented that during the growing season, net Hg uptake occurs in 

leaves resulting in increasing leaf Hg content over time (Risch et al., 2017; Rutter et al., 

2011; Rea et al., 2002). Other studies, in particular using stable isotope analysis, have 

confirmed that foliar Hg is primarily derived from atmospheric Hg0 uptake (Demers et al., 

2013; Enrico et al., 2016).   

To evaluate how implemented changes in stomatal and cuticular leaf resistance terms 

impact plant Hg0 accumulation, and hence total Hg tissue concentrations, we estimated 

seasonal (April to August) Hg accumulation in vegetation at the grassland site for both 

d = 0.09 (base)  
d = 0.74 (adjusted) 

 

d = 0.25 (base)  
d = 0.52 (adjusted) 
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base and adjusted model parameterizations. The following expression was used to estimate 

the leaf Hg concentration (C𝐻𝐻𝑔𝑔𝑙𝑙𝑒𝑒𝑎𝑎𝑑𝑑): 

C𝐻𝐻𝑔𝑔𝑙𝑙𝑒𝑒𝑎𝑎𝑑𝑑 �
𝑖𝑖𝑔𝑔
𝑔𝑔
� = 𝐹𝐹𝑑𝑑𝑒𝑒𝑝𝑝(𝑠𝑠𝑆𝑆+𝑆𝑆𝑢𝑢𝑆𝑆) ×  𝑆𝑆𝐿𝐿 ×  𝑆𝑆𝐿𝐿𝐴𝐴 × 1

𝐿𝐿𝑔𝑔𝐼𝐼
 ,                                                            (9) 

where 𝐹𝐹𝑑𝑑𝑒𝑒𝑝𝑝(𝑠𝑠𝑆𝑆+𝑆𝑆𝑢𝑢𝑆𝑆) is the net dry deposition flux of Hg0 (ng m-2 day-1) due to leaf uptake 

via stomatal and cuticular pathways, 𝑆𝑆𝐿𝐿 is the duration of the growing season in days, and 

𝑆𝑆𝐿𝐿𝐴𝐴 is the specific leaf surface area (leaf surface area per mass: m2 g-1). We used an SLA 

value of 0.017 m2 g-1 for Dactylis glomerata (Arredondo and Schnyder, 2003) in Eq. (9).  

Dactylis glomerata is one of the dominant plant species at the Früebüel grassland site. For 

the Arctic tundra site, we used an SLA value of 0.014 m2 g-1 for Batula nana (van Wijk et 

al., 2005), which is one of the dominant shrub vegetation types. In addition, monthly 

averaged LAI values obtained from MODIS-Terra database (ORNL DAAC, 2017) for each 

growing season month were used.  To calculate deposition fluxes, the average measured 

atmospheric Hg0 concentration (Fritsche et al., 2008) for each growing season month was 

used.  

Comparison between seasonal Hg accumulation using the base model and the adjusted 

model (Fig. 9) supports the findings shown earlier that the base model parameterization 

strongly overestimates Hg0 uptake. In fact, at the grassland site, the estimated tissue Hg 

concentrations would yield a value of 164 ng g-1, which is much higher than leaf Hg 

concentrations commonly measured across ecosystems in temperate regions (21-78 ng g-1; 

Wang et al., 2016b). In contrast, using the adjusted deposition model parameterization with 

increased stomatal resistance (i.e., reduced leaf Hg0 uptake), estimated growing season 
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tissue Hg concentrations of 76 ng g-1. This estimated value is comparable to commonly 

reported leaf and litterfall tissue concentrations across ecosystems in temperate regions. 

Similarly, at the tundra site, the base model over-predicts the leaf-tissue Hg concentration 

by a factor >2.5. At this site, the adjusted model-predicted growing-season (May-August) 

leaf Hg concentration (28.66 ng g-1) is in good agreement with the measured tissue Hg 

concentration (25.02 ng g-1, D. Obrist, personal communication).  

   

Figure 9. Growing season Hg accumulation in (A) Dactylis glomerata at the grassland 
site and (B) shrub vegetation (dominated by Betula nana) at the tundra site using base 
and adjusted dry deposition models. 

2.5 Conclusions 

This paper presents an evaluation of resistance-based dry gaseous deposition and soil Hg0 

re-emission parameterizations using direct comparison to micrometeorological flux 

measurements from two ecosystems. To our knowledge, this is the first direct performance 

evaluation of commonly used Hg0 net exchange parameterizations in CTMs with direct 

ecosystem-level flux measurements. In this work, we evaluated how the major resistance 

terms (including both stomatal and non-stomatal resistance terms) affect modeled Hg0 

exchange and how they can be best parameterized to simulate measured exchange fluxes. 
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The base model configuration overestimates net Hg deposition by factors of 3-4 in summer, 

leading to unreasonably high tissue concentrations during the growing season, and does 

not provide replication of strong diel variation with net nighttime deposition and daytime 

net Hg0 volatilization. We found that the largest source of deviation from measurements 

was caused by a strong overestimation of stomatal leaf Hg uptake, and that modeled Hg0 

fluxes responded most strongly to modulation of the stomatal uptake term.  

By adjusting resistance terms and implementing a revised soil Hg0 re-emission 

parameterization, both diel patterns and magnitudes of fluxes were replicated well within 

the current resistance-based modeling framework. Increases in stomatal and non-stomatal 

resistance terms that reduce plant Hg uptake and increased nighttime Hg deposition, along 

with revision of the soil re-emission parameterization, produced good agreement between 

measured and modeled exchange fluxes, particularly in summer months. As an independent 

model evaluation, modeled estimated growing season foliar accumulation using the 

adjusted model parameters was in much better agreement with observed foliar Hg contents 

in both ecosystems. Continued improvement in model parameterizations is needed for 

better agreement in winter months, when deposition dominates the overall exchange 

between the surface and the atmosphere. Because stomatal uptake generally accounts for 

over 90% of total Hg0 deposition during daytime as shown, for example, for the grassland 

site in Fig. S4, the model calibration was performed by adjusting the stomatal resistance 

term (e.g., rstmin) first, followed by adjusting the non-stomatal resistance terms RcutdO3 and 

RgdO3. One could argue that increasing soil Hg0 re-emission as the first step of model 

calibration followed by adjustment to the resistance parameters in the deposition model 
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could lead to improved agreement between modeled and measured net exchange fluxes as 

well. However, this approach requires a large increase in soil Hg0 re-emission, which 

would fall outside the measured ranges of Hg0 emission fluxes from background 

ecosystems (Eckely et al., 2016; Agnan et al., 2016). We stress that the physiological 

accuracy of the adjusted resistance parameter values should be viewed in the context of the 

intended application of those parameters in this work, to better reproduce the observed net 

exchange fluxes through applying adjustment factors to the base parameter values.  

Based on our findings, we make the following generic recommendations for improvement 

in modeling Hg0 exchange using resistance-based approaches. 1) We suggest that stomatal 

resistance be increased several times to reduce bias in overestimating Hg uptake. In the 

ecosystems we studied (long grass and tundra LUCs), the best performance was achieved 

through reduction by a factor of 5 (tundra) to 7 (grasslands); 2) cuticular uptake and ground 

uptake should be increased by reducing their respective resistance terms. This increase 

results in higher nighttime Hg0 deposition, which is supported by field observations and is 

currently not well predicted by the base model. In the ecosystems we studied, reductions 

in cuticular resistance by factors of 4 (grassland) and 2 (tundra), and reductions of ground 

resistance by factors of 4 (grassland) and 3 (tundra) provided the best results. 3) Finally, 

the soil re-emission parameterization currently adapted in GEOS-Chem should be revised 

to increase diel variability in Hg0 fluxes and to set fluxes at nighttime to zero. We 

implemented these features by combining an equation for a sinusoidal response to solar 

radiation by vegetation and a statistically-derived soil flux model that is consistent with 
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experimental flux measurements performed over background soils. Other soil flux models 

sensitive to solar radiation might also achieve the same results.  

Although the two LUCs studied here together comprise 48% (40% grassland and 8% 

tundra) of terrestrial land surface on Earth (Iversen et al., 2015; Foley et al., 2005), reliable 

ecosystem-level exchange flux data are currently not available for most other LUCs (in 

particular forests; Agnan et al., 2016). That said, we would expect the above generic 

recommendations for improving base model performance to be applicable to other 

ecosystems having background atmospheric Hg0 concentrations (e.g., 1.0 to 1.7 ng m-3; 

Agnan et al., 2016), with tests for applicability including both modeled seasonal Hg plant 

uptake and comparison with foliar Hg concentration data. Further tests include large-scale 

model comparison with regional atmospheric Hg0 deposition patterns across ecosystems. 

Although current understanding does not allow us to develop a fully mechanistic approach 

to model net Hg0 exchange, application of resistance-based models here is supported by 

experimental field data, including observations of stomatal and non-stomatal (Stamenkovic 

and Gustin, 2009), and soil (Agnan et al., 2016), Hg0 uptake. Coupling modeled deposition 

with a soil re-emission model based on an observed strong response to solar radiation is 

also experimentally supported (Eckley et al., 2016; Lin et al., 2010). A potential limitation 

of our approach is that we modeled net deposition to plants, as opposed to gross deposition 

corrected by a fractional re-emission loss. Such a fractional re-emission loss from plant 

surfaces has experimental support from both flux measurements and stable isotope data 

(Demers et al., 2013; Enrico et al., 2016). This fractional re-emission loss is also 

incorporated into some global models for Hg such as GEOS-Chem (Song et a., 2015). 
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However, the degree of re-emission from plant surfaces is poorly quantified (Graydon et 

al., 2008), and the approach of modeling net Hg0 deposition taken here resulted in 

satisfactory comparisons with both observed net exchange fluxes and foliar accumulation.  

A supplemental information (S.I.) (section 2.7) is provided after the references. The S.I. 

section includes the figures of modeled vs. measured net exchange fluxes in August at the 

grassland and tundra sites. 
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2.7 Supplemental information 

 

Figure S1. Model response to reduced stomatal uptakes of Hg0 and comparison of modeled 
and measured net exchange fluxes of Hg0 in August: A) temperate grassland site and B) 
Arctic tundra site.  

 

Figure S2. Model response to decreased cuticular and ground uptake, and reduced stomatal 
uptake, of Hg0, and comparison of modeled and measured net exchange fluxes of Hg0 in 
August: A) temperate grassland site and B) Arctic tundra site. 

 

 

Grassland     Tundra 

Grassland     Tundra 
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Figure S3. Model response to reduced nighttime and increased daytime soil re-emission 
and revised resistance parameters, and comparison of modeled and measured net 
exchange fluxes of Hg0 in August: A) temperate grassland site and B) Arctic tundra site. 

 

Figure S4. Contributions of stomatal and non-stomatal uptake of Hg0 using the base 
model in July at the temperate grassland. 

d = 0.72 (base)  
d = 0.96 (adjusted) 

 

d = 0.35 (base)  
d = 0.97 (adjusted) 
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3 CHAPTER 3: Application of a multimedia model to 
investigate recovery of Lake Superior from historical 
polychlorinated biphenyl (PCB) contamination  

Abstract 

Polychlorinated biphenyl (PCB) compounds are of major concern in the Laurentian Great 
Lakes because of their toxicity and historical use, primarily as additives to oils and 
industrial fluids, and discharge from industrial sources. Following the ban on production 
in the U.S. in 1979, atmospheric concentrations of PCBs in the Lake Superior region 
decreased rapidly. Subsequently, PCB concentrations in the lake surface water also reached 
near equilibrium as the atmospheric levels of PCBs declined. However, previous studies 
on long-term PCB concentrations and trends in top predatory fish suggested that an initial 
decline of PCB concentrations in fish has leveled off in Lake Superior. In this study, a 
dynamic multimedia model was developed with the objective to investigate the observed 
leveling off of PCB concentrations in Lake Superior lake trout. The model structure 
consists of two water layers (the epilimnion and the hypolimnion), and the surface mixed 
sediment layer, with atmospheric deposition as the primary external pathway of PCB input 
to the lake. The model was applied for different PCB congeners exhibiting a range in 
hydrophobicity and volatility. Using this model, we compare the long-term trends in 
predicted PCB concentrations in different environmental media with relevant available 
measurements for Lake Superior. The modeling results suggest that rates of PCB decline 
in Lake Superior lake trout (half-life, 𝑆𝑆1/2 ≈ 21 to 92 years) are slower than rates of decline 
in air (𝑆𝑆1/2 ≈ 12 years), water (𝑆𝑆1/2 ≈ 12 years), and sediment (𝑆𝑆1/2 ≈ 17 years). However, 
the model predictions are not consistent with observed trends in lake trout PCB 
concentrations for 1990-2013, with 𝑆𝑆1/2 > 90 years. The combination of the weak of role 
of sediment resuspension in elevating PCB levels in water, as predicted by the model, and 
the substantially longer time for recovery in lake trout as indicated by monitoring data leads 
us to suggest that food web changes in the lake may be affecting trends in PCB 
concentrations in lake trout. 
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3.1 Introduction 

Following their production, which began in 1930 in the United States (U.S.), 

polychlorinated biphenyl (PCB) compounds were primarily used in packing plants, paper 

mills, electric equipment manufacturers, tanneries, machine shops, and foundries in the 

U.S. Great Lakes region (Jeremiason et al., 1994; Hornbuckle et al., 2006). Despite the fact 

that new usages of PCBs were halted in 1976 (Hornbuckle et al., 2006) followed by 

complete production ban in 1979 in the U.S., PCBs continue to disseminate globally 

through repeated cycles of atmosphere-surface exchange (Perlinger et al., 2016).  

Because of this cycling, PCBs have been detected even in remote locations (e.g. Isle 

Royale, Lake Superior and the Arctic Ocean) with very little to no history of PCB usage 

(Swain et al., 1977; Sobek and Gustafsson, 2014). Lake Superior, the largest of the five 

Great Lakes, is sensitive to persistent and semi-volatile hydrophobic organic pollutants 

such as PCBs because of its large surface area and long water residence time (Eisenreich 

et al., 1981). More specifically, PCBs are of great concern in Lake Superior aquatic systems 

because these compounds tend to bioaccumulate in the aquatic food chain (Swackhamer 

and Hites, 1988) and pose health risks to wildlife and humans through fish consumption 

(Stow, 1995; Humphrey et al., 2000).  

Although at present PCBs are not being actively used in the U.S., they are still being 

emitted into the atmosphere in the Great Lakes basin through volatilization from waste 

disposal sites or burning of products containing high concentrations of PCBs (Hornbuckle 
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et al., 2006; Sun et al., 2006). In addition, secondary emissions (via surface-air exchange) 

also contribute to background atmospheric levels of PCBs (e.g., Rowe and Perlinger, 

2012). Given its large surface area coupled with a lack of industrial sources in the basin, 

atmospheric deposition is likely to be the major route of entry for PCBs in Lake Superior 

(Strachan and Eisenreich, 1988; Eisenreich and Hollod, 1979; Jeremiason et al., 1994). 

Following atmospheric deposition (wet and dry), PCBs accumulate in water and lake 

sediments, and every trophic level of the aquatic food web (Eisenreich and Hollod, 1979; 

Houde et al., 2008).  

Temporal trend analysis (1992-2010) of atmospheric PCB concentration data collected at 

Eagle Harbor in Michigan, one of the Lake Superior air monitoring locations monitored by 

the Integrated Atmospheric Deposition Network (IADN), revealed that atmospheric 

concentrations tend to respond rapidly (half-life, 𝑆𝑆1/2 = 13.0±2.8 years) to changes in PCB 

emissions (Salamova et al., 2013). Previous studies (e.g., Jeremiason et al., 1994) showed 

that the measured PCB concentrations Lake Superior waters also declined rapidly (𝑆𝑆1/2 = 

3.5 years) from 1980 to 1992 as a direct consequence of reduced atmospheric emissions. 

In contrast, temporal trend analysis (1999-2009) of fish PCB concentration data from 

several Lake Superior locations indicated a lack of statistically significant declining 

concentration trend in top predatory fish (Chang et al., 2012). Lin (2016) analyzed seven 

Lake Superior fish concentration data sets from 1978-2013 produced by three state and two 

federal agencies and found no statistically significant declining trends in fish PCB 

concentrations in five of the seven data sets from 1995-2013. The study by Lin (2016) 

found that the fish PCB concentrations declined rapidly in the late 1970s and 1980s; 
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however, in recent years, concentrations in Lake Superior fish have leveled off. This recent 

leveling off of PCB concentrations in Lake Superior fish was also observed independently 

in other studies (e.g., David et al., 1996; Bhavsar et al., 2007).  

To explain the lag in fish response to declining atmospheric and water PCB concentrations, 

and the current leveling off of observed fish PCB concentrations, a couple of hypotheses 

have been proposed. Some researchers (e.g., Smith, 2000) hypothesized that recycling of 

PCBs from sediments to water could be the cause of the observed slow recovery in fish in 

Lake Superior. A second hypothesis was that changes in lake food chain and climatic 

influences lead to the slower response in biota as compared to lake water (Lake Erie, Hebert 

et al., 2006; Lake Ontario, Gewurtz et al., 2011). However, both of these hypotheses are 

yet to be tested. 

In this study, we developed a dynamic coupled air-water-sediment model for Lake Superior 

with the primary objective to examine whether or not sediment resuspension fluxes of 

PCBs can adequately explain the lag in biota response despite a consistent decline in the 

atmospheric concentration of PCBs. Other objectives of this study were to compare and 

contrast environmental transport and fate of PCB congeners of varying thermodynamic 

properties based on their modeled and observed temporal trends in water and sediment 

concentrations, and to apply a simplified fish bioaccumulation model together with 

predicted aqueous concentrations to estimate the likely delay in fish recovery from legacy 

PCB inputs that can be attributed to sediment resuspension and bioaccumulation.  
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3.2 Methods 

3.2.1 Site description  

Of the five Laurentian Great Lakes, Lake Superior is the largest in terms of both volume 

(12,100 km3) and surface area (82,100 km2; Spence et al., 2011). The mean depth of the 

lake is ca. 150 m (Xue et al., 2017) and water residence time is ca. 180 years (Quinn, 1992). 

The lake receives ca. two-thirds of its water inputs from precipitation (2,071 m3 s-1), while 

the watershed contributes, on average, ca. 1,620 m3 s-1 (Lenters, 2004). Both over-lake air 

and surface water temperatures exhibit strong seasonal variability, which is evident from 

the time-series of mean monthly over-lake air temperature (from 1948 to 2014) and surface 

water temperature (from 1950 to 2015) shown in Fig. 1. The long-term record of wind 

speed data (from 1948 to 2011) measured over the lake surface also exhibit strong 

seasonality (Fig. 1) with a mean speed of 6 m s-1, while the mean difference between wind 

speed in winter and summer months is ca. 3.5 m s-1. 

 

Figure 1. Mean monthly over-water air and surface water temperatures, and wind speed for 
Lake Superior (data source: https://coastwatch.glerl.noaa.gov/statistic/).  

https://coastwatch.glerl.noaa.gov/statistic/


Lake Superior is generally dimictic (Assel, 1986). Thermal layers in lake waters begin to 

form in spring (April) and the lake becomes completely vertically stratified in middle to 

late July (Bennett, 1978; Ullman et al., 1998: from Urban et al., 2005) until September. 

During spring and fall, waters freely circulate from the surface to the bottom. In winter, ice 

cover forms on Lake Superior, with large inter-annual variability (Wang et al., 2012). 

3.2.2 Model inputs 

Congener-specific atmospheric PCB concentrations  

The coupled air-water-sediment model (described in section 3.2.3) was driven by 

atmospheric concentrations of six PCB congeners (Congeners 18, 52, 118, 153, 180, and 

194; their physicochemical properties are listed in Table S1) over the period 1930 to 2013. 

This time span conforms to the onset of commercial production of PCBs and the most 

recently measured PCB concentration data in air reported by the IADN for the Eagle 

Harbor, Michigan site. To reconstruct the historical atmospheric PCB concentrations from 

1930 to 1989, we utilized the PCB emissions inventory from Breivik et al. (2007). This 

inventory provides country-specific emissions of 22 individual PCB congeners (from 1930 

to 2000) including the six congeners selected for this study. Of the 22 congeners listed in 

the Breivik et al. (2007) emission inventory, 17 congeners have been routinely monitored 

at the Eagle Harbor site by the IADN since 1990. Total emissions of these 17 congeners in 

the U.S. from 1930 to 2000 are shown in Fig. 2A. Using these two data sets (i.e., the 

Breivik inventory and the IADN concentration measurements), we estimated the total 

(n = 17 congeners) PCB emissions in the U.S. and the total (n = 17) 

atmospheric PCB 
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concentrations from 1990 to 2000. Following these estimates, the ratios between total 

concentrations and total emissions were calculated for each year from 1990 to 2000. 

Because the resulting ratios exhibit a wide range (e.g., 1.6 to 12.6 pg m-3 yr tons-1), the 

lower bound estimate was used to calculate the total (n = 17) atmospheric PCB 

concentrations using the emission inventory for years 1930 to 1989 using Eq. (1). 

∑ 𝐶𝐶𝑃𝑃𝐶𝐶𝐵𝐵𝑖𝑖=17 = ∑ 𝐸𝐸𝑃𝑃𝐶𝐶𝐵𝐵𝑖𝑖=17  �𝑆𝑆𝑙𝑙𝑖𝑖𝑠𝑠
𝑦𝑦𝑒𝑒𝑎𝑎𝑑𝑑

� × 1.6 �𝑝𝑝𝑔𝑔
𝑚𝑚3

𝑦𝑦𝑒𝑒𝑎𝑎𝑑𝑑
𝑆𝑆𝑙𝑙𝑖𝑖𝑠𝑠

�,                                                        (1) 

where ∑ 𝐶𝐶𝑃𝑃𝐶𝐶𝐵𝐵𝑖𝑖=17  is the sum of total (n = 17) atmospheric PCB concentrations and 

∑ 𝐸𝐸𝑃𝑃𝐶𝐶𝐵𝐵𝑖𝑖=17  is the sum of total (n = 17) atmospheric emissions for each year from 1930 to 

1989.  

For the selected six congeners, the ratio between congener-specific to total (n = 17) 

concentrations was calculated using the data measured by the IADN from 1990 to 2000. 

Because the resulting ratios exhibited large ranges, geometric means were calculated for 

each of the six congeners. These congener-specific ratios were multiplied by ∑ 𝐶𝐶𝑃𝑃𝐶𝐶𝐵𝐵𝑖𝑖=17  

to estimate the corresponding congener-specific concentrations from 1930 to 1989 for the 

U.S. Reconstructing congener-specific concentration profiles in this manner assumes that 

the ratio: ∑ 𝐶𝐶𝑃𝑃𝐶𝐶𝐵𝐵𝑛𝑛=17
∑ 𝐸𝐸𝑃𝑃𝐶𝐶𝐵𝐵𝑛𝑛=17

 = 1.6 pg m-3 yr tons-1 was constant throughout over the period of 1930 

to 1989. For 1990-2013, we used atmospheric PCB concentrations measured by the IADN 

as input to the model. The concentration profiles of six congeners from 1930-2013 are 

shown in Fig. 2B. 
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Figure 2. (A). Historic emissions of 17 PCB congeners in the U.S. from 1930-2000. (B). 
Atmospheric concentration profiles of six PCB congeners from 1930-2013.  

 Lake and meteorological parameters 

The physical attributes of Lake Superior that were used in this study are listed in Table 1. 

The mean monthly over-lake air temperature, lake surface temperature, and over-lake wind 

speed data from 1948-2014 were obtained from the meteorological databases of NOAA-

Great Lakes Environmental Research Laboratory. The data points for each of these 

parameters were fitted using simple sinusoidal functions to enable data interpolation for a 

daily time step. In addition, mean monthly ice-cover data for Lake Superior was used to 

adequately represent the influence of lake ice coverage. Data for vertical diffusion 

coefficient across the thermocline were obtained from McCarthy (2016). These data points 

were fitted using a simple sinusoidal function to enable data interpolation for a daily time 

step. Table 2 lists the monthly mean meteorological parameter values used as inputs in this 

modeling study. The mean monthly ice coverage (the percentage of the total lake surface 

area) data from 1973 to 2002 are also provided in Table 2 (Assel, 2003). 

 

A B 
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Table 1. Lake parameter values used in the Lake Superior PCB model. 

Parameter Value Units 

Lake volume, V 12,230 km3 

Lake Surface area, A0 82,100 km2 

Throughflow of water (including precipitation), Qtotal  116 km3 yr-1 

Mean precipitation rate into the lake, Qprec 65 km3 yr-1 

Watershed runoff into the lake, Qwa 51 km3 yr-1 

The depth of epilimnion, hE  20 m 

The depth of hypolimnion, hH  110 m 

The depth of thermocline, hth 20 m 

Mass fraction of organic matter in atmospheric particles, fom 0.20 
 

Total suspended particulate matter concentration in air, TSP 10 µg m-3 

Aerosol particle scavenging efficiency of precipitation, Wp 50,000 
 

Total suspended solids in both water columns, TSS 0.0004 kg m-3 

Mass fraction of organic carbon in suspended solids (in water 
layers), foc 

0.20 
 

Mean particle settling velocity in water columns, Vs 394 m yr-1 

Aqueous boundary layer thickness in sediment layer, tbl 0.05 cm 

Sediment mixed layer depth, zmix 1 cm 

The density of solids in sediment, ρs 2,500 kg m-3 

The porosity of the sediment layer, ɸ 0.90 
 

Sediment resuspension rate, µres 0.25 kg m-2 yr-1 

Preservation factor of organic carbon in sediment layer, β 0.10  

Mass fraction of organic carbon in sediment layer, focs 0.06  
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Table 2. Mean monthly meteorological variables and ice coverage for Lake Superior. 

Month Over-water air 
temperature (°C) 

Surface water 
temperature (°C) 

Wind Speed 
(m s-1) 

Percent ice 
coverage 

January -9.9 1.2 7.6 18 

February -8.6 0.3 6.8 43 

March -3.9 0.2 6.4 44 

April 2.9 0.6 5.6 12 

May 8.2 1.6 4.8 1 

June 12.3 3.4 4.4 0 

July 15.6 6.9 4.2 0 

August 16.6 11.6 4.4 0 

September 12.9 12.2 5.7 0 

October 7.3 8.7 6.7 0 

November 0.5 5.9 7.6 0 

December -6.4 3.5 7.8 2 

3.2.3 Model description 

To simulate the historical to present-day (i.e., 1930-2013) concentrations of six PCB 

congeners in Lake Superior, a three-box model was developed. This modeling framework 

includes lake stratification; the lake is divided into the surface layer (epilimnion), the deep-

water layer (hypolimnion), and a surface mixed sediment layer (SMSL), which is in contact 

with the hypolimnion. Atmospheric deposition of PCBs was the primary input to the model 

lake. Because of its remote location and small number of point sources of PCBs 

(Jeremiason et al., 1994), the contribution from the Lake Superior watershed was assumed 

to be negligible. The conceptual schematic of the model lake is shown in Fig. 3.  
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Figure 3. Structure of the multimedia PCB model for Lake Superior. 

The mass balance equations for epilimnion, hypolimnion, and surficial sediment layer are  

𝑑𝑑𝐶𝐶𝑤𝑤𝐸𝐸
𝑑𝑑𝑆𝑆

= 𝐽𝐽𝑆𝑆 − �𝑘𝑘𝑤𝑤𝐸𝐸 + 𝑘𝑘𝑎𝑎𝑤𝑤𝑇𝑇𝑇𝑇 + 𝑘𝑘𝑠𝑠𝐸𝐸 + 𝑘𝑘𝑒𝑒𝑥𝑥𝐸𝐸�𝐶𝐶𝑤𝑤𝐸𝐸 + 𝑘𝑘𝑒𝑒𝑥𝑥𝐸𝐸𝐶𝐶𝑤𝑤𝑅𝑅 ,                                          (2) 

𝑑𝑑𝐶𝐶𝑤𝑤𝐻𝐻
𝑑𝑑𝑆𝑆

= −(𝑘𝑘𝑠𝑠𝐻𝐻 + 𝑘𝑘𝑒𝑒𝑥𝑥𝐻𝐻 + 𝑘𝑘𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥)𝐶𝐶𝑤𝑤𝑅𝑅 + �𝑘𝑘𝑠𝑠𝐻𝐻𝑠𝑠𝑆𝑆𝑎𝑎𝑚𝑚 + 𝑘𝑘𝑒𝑒𝑥𝑥𝐻𝐻�𝐶𝐶𝑤𝑤𝐸𝐸 + (𝑘𝑘𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥/𝑓𝑓𝑤𝑤𝐻𝐻/𝐾𝐾𝑑𝑑𝑠𝑠𝑆𝑆)𝐶𝐶𝑠𝑠 ,       

                                                                                                                                           (3) 

𝑑𝑑𝐶𝐶𝑠𝑠
𝑑𝑑𝑆𝑆

= (𝑚𝑚−1𝑉𝑉𝑠𝑠𝑓𝑓𝑠𝑠𝐻𝐻 + 𝑚𝑚−1𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥)𝐶𝐶𝑤𝑤𝑅𝑅 − (𝑉𝑉𝑠𝑠𝐴𝐴𝑠𝑠𝑤𝑤𝛽𝛽𝑚𝑚−1 + 𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥𝑓𝑓𝑤𝑤𝐻𝐻
−1𝐾𝐾𝑑𝑑𝑠𝑠𝑆𝑆

−1𝑚𝑚−1)𝐶𝐶𝑠𝑠 ,     (4) 

where 𝐶𝐶𝑤𝑤𝐸𝐸, 𝐶𝐶𝑤𝑤𝑅𝑅, and 𝐶𝐶𝑠𝑠 are the PCB concentrations in the epilimnion, hypolimnion, and 

SMSL, respectively. Total PCB inputs to the lake (𝐽𝐽𝑆𝑆) consist of net air-water exchange 

flux (𝐽𝐽𝑎𝑎𝑤𝑤), dissolved wet deposition flux (𝐽𝐽𝑑𝑑𝑤𝑤𝑒𝑒𝑆𝑆), dry particle deposition flux (𝐽𝐽𝑝𝑝𝑑𝑑𝑑𝑑𝑦𝑦), and 

wet particle deposition flux (𝐽𝐽𝑝𝑝𝑤𝑤𝑒𝑒𝑆𝑆). Hence, 𝐽𝐽𝑆𝑆 is expressed as 

𝐽𝐽𝑆𝑆 = 𝐽𝐽𝑎𝑎𝑤𝑤 + 𝐽𝐽𝑑𝑑𝑤𝑤𝑒𝑒𝑆𝑆 + 𝐽𝐽𝑝𝑝𝑑𝑑𝑑𝑑𝑦𝑦 + 𝐽𝐽𝑝𝑝𝑤𝑤𝑒𝑒𝑆𝑆.                                                                                     (5) 
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The net air-water exchange flux was calculated according to Schwarzenbach et al. (2003) 

as 

𝐽𝐽𝑎𝑎𝑤𝑤 = 𝑣𝑣𝑎𝑎/𝑤𝑤𝐶𝐶𝑎𝑎(1 − ɸ)(𝐴𝐴𝑙𝑙 −
𝑔𝑔𝑡𝑡𝐼𝐼𝐶𝐶
100

)/𝑉𝑉𝐸𝐸/𝐾𝐾𝑎𝑎𝑤𝑤,                                                                   (6) 

where 𝑣𝑣𝑎𝑎/𝑤𝑤 is air-water (epilimnion) exchange velocity, 𝐶𝐶𝑎𝑎 is atmospheric concentration 

of a PCB congener, 𝐴𝐴𝑙𝑙 is surface area of the lake, 𝑉𝑉𝐸𝐸 is volume of the epilimnion, 𝐾𝐾𝑎𝑎𝑤𝑤 is 

temperature-corrected dimensionless Henry’s law constant, 𝐿𝐿𝐶𝐶 is the monthly averaged ice 

coverage (%), and ɸ is the fraction of PCB congener sorbed to particles. Using the gas-

particle partitioning approach by Harner and Shoeib (2002), ɸ was calculated as 

ɸ = 𝐾𝐾𝑃𝑃𝑇𝑇𝑆𝑆𝑃𝑃
(𝐾𝐾𝑃𝑃𝑇𝑇𝑆𝑆𝑃𝑃+1)

,                                                                                                                  (7) 

where 𝑇𝑇𝑆𝑆𝑆𝑆 is the total suspended particulate concentration in the atmosphere, and 𝐾𝐾𝑃𝑃 is the 

particle-gas partition coefficient, which was calculated as 

log(𝐾𝐾𝑃𝑃) = log(𝐾𝐾𝑙𝑙𝑎𝑎) + log(𝑓𝑓𝑙𝑙𝑚𝑚) − 11.91,                                                                      (8)            

where 𝐾𝐾𝑙𝑙𝑎𝑎 is the congener-specific temperature corrected octanol-air partition coefficient, 

and 𝑓𝑓𝑙𝑙𝑚𝑚 is the fraction of organic matter on atmospheric particles. The wet deposition flux 

for gas-phase PCB congeners was calculated as 

𝐽𝐽𝑑𝑑𝑤𝑤𝑒𝑒𝑆𝑆 = 𝑄𝑄𝑝𝑝𝑑𝑑𝐶𝐶𝑎𝑎(1− ɸ)/𝑉𝑉𝐸𝐸/𝐾𝐾𝑎𝑎𝑤𝑤,                                                                                    (9) 

where 𝑄𝑄𝑝𝑝𝑑𝑑 is precipitation flow rate into the lake. The dry particle deposition flux was 

calculated as 



258 

𝐽𝐽𝑝𝑝𝑑𝑑𝑑𝑑𝑦𝑦 = 𝐶𝐶𝑎𝑎ɸ𝑣𝑣𝑑𝑑𝑑𝑑𝑑𝑑𝑔𝑔𝑡𝑡
𝑉𝑉𝑇𝑇

,                                                                                                          (10) 

where 𝑣𝑣𝑑𝑑 is the dry particle deposition velocity, and 𝑓𝑓𝑑𝑑 is the fraction of time it is not 

raining or snowing (0.9). The wet particle deposition flux was calculated as 

𝐽𝐽𝑝𝑝𝑤𝑤𝑒𝑒𝑆𝑆 = 𝑊𝑊𝑝𝑝𝑄𝑄𝑝𝑝𝑚𝑚𝐶𝐶𝑎𝑎ɸ
𝑉𝑉𝑇𝑇

.                                                                                                            (11) 

The rate constants in Eqs. (2-4) are defined as follows: 

Flushing rate of the epilimnion, 𝑘𝑘𝑤𝑤𝐸𝐸 = 𝑄𝑄
𝑉𝑉𝑇𝑇

, where 𝑄𝑄 is the total outflow rate from the lake.  

Air-water exchange rate, 𝑘𝑘𝑎𝑎𝑤𝑤𝑇𝑇𝑇𝑇 = 𝑓𝑓𝑤𝑤𝐸𝐸
𝑣𝑣𝑎𝑎/𝑤𝑤

ℎ𝑇𝑇
,                                                                   (12) 

where ℎ𝐸𝐸  is depth of the epilimnion, and 𝑓𝑓𝑤𝑤𝐸𝐸  is fraction dissolved in epilimnion, which 

was calculated as 

𝑓𝑓𝑤𝑤𝐸𝐸 = 1
1+𝑑𝑑𝑠𝑠𝑤𝑤𝐾𝐾𝑑𝑑𝑇𝑇

, 

where 𝐴𝐴𝑠𝑠𝑤𝑤 is the solid-to-water phase ratio, and 𝐾𝐾𝑑𝑑𝐸𝐸 is the distribution coefficient of 

suspended solids in the epilimnion. Equation (13) was used to calculate 𝐾𝐾𝑑𝑑𝐸𝐸. 

𝐾𝐾𝑑𝑑𝐸𝐸 = 𝐾𝐾𝑙𝑙𝑆𝑆𝐸𝐸𝑓𝑓𝑙𝑙𝑆𝑆,                                                                                                               (13) 

where 𝑓𝑓𝑙𝑙𝑆𝑆 is fraction of organic carbon content of suspended solids (in the epilimnion and 

hypolimnion), and the partition coefficient between organic carbon and water (in the 

epilimnion), 𝐾𝐾𝑙𝑙𝑆𝑆𝐸𝐸, was calculated as 
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𝐾𝐾𝑙𝑙𝑆𝑆𝐸𝐸 = 10(0.74 log�𝐾𝐾𝑡𝑡𝑤𝑤𝑇𝑇𝑇𝑇�+0.15),                                                                                       (14) 

where 𝐾𝐾𝑙𝑙𝑤𝑤𝑇𝑇𝑇𝑇 is the temperature-corrected (in epilimnion) octanol-water partition 

coefficient for different PCB congeners. An expression similar to 𝑓𝑓𝑤𝑤𝐸𝐸  was used to calculate 

the fraction dissolved in hypolimnion (𝑓𝑓𝑤𝑤𝐻𝐻), while 𝐾𝐾𝑑𝑑 was calculated using the relevant 

properties of the hypolimnion.  

The removal rate of particles from the epilimnion (𝑘𝑘𝑠𝑠𝐸𝐸) was calculated as 

𝑘𝑘𝑠𝑠𝐸𝐸 = 𝑉𝑉𝑠𝑠
ℎ𝑇𝑇

(1 − 𝑓𝑓𝑤𝑤𝐸𝐸),                                                                                                         (15) 

where 𝑉𝑉𝑠𝑠 is the particle settling velocity from water to sediment, and ℎ𝐸𝐸  is the depth of 

epilimnion.  

The exchange rate (loss from epilimnion by mixing across thermocline), 𝑘𝑘𝑒𝑒𝑥𝑥𝐸𝐸, and loss 

from the hypolimnion by mixing across thermocline (𝑘𝑘𝑒𝑒𝑥𝑥𝐻𝐻) were calculated as 

𝑘𝑘𝑒𝑒𝑥𝑥𝐸𝐸 = 𝑣𝑣𝑒𝑒𝑥𝑥
ℎ𝑇𝑇

,                                                                                                                       (16)                                          

𝑘𝑘𝑒𝑒𝑥𝑥𝐻𝐻 = 𝑣𝑣𝑒𝑒𝑥𝑥
ℎ𝐻𝐻

,                                                                                                                      (17) 

where 𝑣𝑣𝑒𝑒𝑥𝑥 is exchange velocity across thermocline, which was calculated as 

𝑣𝑣𝑒𝑒𝑥𝑥 = 𝐸𝐸𝑆𝑆ℎ
ℎ𝑆𝑆ℎ

,                                                                                                                         (18) 
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where 𝐸𝐸𝑆𝑆ℎ is vertical diffusion coefficient across thermocline, and ℎ𝑆𝑆ℎ is thermocline 

thickness. The rate of particle-bound PCB removal from hypolimnion (𝑘𝑘𝑠𝑠𝐻𝐻) was calculated 

as 

𝑘𝑘𝑠𝑠𝐻𝐻 = 𝑉𝑉𝑠𝑠
ℎ𝐻𝐻

(1 − 𝑓𝑓𝑤𝑤𝐻𝐻),                                                                                                        (19) 

The sediment-water exchange rate, 𝑘𝑘𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥 was calculated using 

𝑘𝑘𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥 = 𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥
ℎ𝐻𝐻

                                                                                                                 (20) 

where 𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥 is sediment exchange velocity. Equation (21) was used to calculate 𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥. 

𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑒𝑒𝑥𝑥 = 𝑓𝑓𝑤𝑤𝐻𝐻(𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐾𝐾𝑑𝑑𝑠𝑠𝑆𝑆𝜇𝜇𝑑𝑑𝑒𝑒𝑠𝑠)                                                                                 (21) 

In Eq. (21), the terms 𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝐾𝐾𝑑𝑑𝑠𝑠𝑆𝑆, and 𝜇𝜇𝑑𝑑𝑒𝑒𝑠𝑠 are the diffusive exchange velocity between 

the SMSL and the hypolimnion, the distribution coefficient in SMSL, and the sediment 

resuspension rate, respectively. The expressions for calculating these terms are provided 

below (Eqs. 22-23). 

𝑣𝑣𝑠𝑠𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐷𝐷𝑃𝑃𝐶𝐶𝐵𝐵𝑖𝑖
𝑤𝑤

𝛿𝛿𝑔𝑔𝑚𝑚
,                                                                                                             (22) 

where 𝐷𝐷𝑃𝑃𝐶𝐶𝐵𝐵𝑑𝑑𝑤𝑤  is the molecular diffusivity of congener in water (hypolimnion), and 𝛿𝛿𝑔𝑔𝑙𝑙 is the 

aqueous boundary layer thickness in SMSL.  

𝐾𝐾𝑑𝑑𝑠𝑠𝑆𝑆 = 𝐾𝐾𝑙𝑙𝑆𝑆𝐻𝐻𝑓𝑓𝑙𝑙𝑆𝑆𝑠𝑠,                                                                                                              (23) 

where 𝑓𝑓𝑙𝑙𝑆𝑆𝑠𝑠 is the mass fraction of organic carbon of SMSL.  
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The sediment mixed layer mass per area (𝑚𝑚) was calculated as  

𝑚𝑚 = 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥(1 − 𝜑𝜑𝑠𝑠𝑆𝑆)𝜌𝜌𝑠𝑠𝑆𝑆,                                                                                                  (24) 

where 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥 is sediment mixed layer depth, 𝜑𝜑𝑠𝑠𝑆𝑆 is porosity of sediment, and 𝜌𝜌𝑠𝑠𝑆𝑆 is density 

of sediment. Eqs. (2-4) were solved numerically using MATLAB® solver ODE45, which 

yielded the concentrations (𝐶𝐶𝑤𝑤𝐸𝐸, 𝐶𝐶𝑤𝑤𝑅𝑅, and 𝐶𝐶𝑠𝑠) at a daily time step from 1930 to 2013.   

3.2.4 Model validation 

 Data sets of measured PCB concentrations in water 

To compare the congener-specific modeled PCB concentrations in epilimnion water (i.e., 

𝐶𝐶𝑤𝑤𝐸𝐸) with measured concentrations, we used the following data sets: measurements from 

1986 reported by Baker and Eisenreich (1990), measurements conducted in fall 2002 and 

spring 2003 reported by Zhu (2003), the 1996-97 measurements reported by IADN 

(Galarneau et al., 2000; Buehler et al., 2001), and 2006 measurements from the Great Lakes 

Aquatic Contaminants Survey (GLACS; USEPA GLNPO, 2009). Together, these sources 

reported measured aqueous concentrations for congeners 18, 52, 118, 180, and 194. 

 Data sets of measured PCB concentrations in sediment  

Reliable data of congener-specific measured PCB concentrations from surficial sediment 

in Lake Superior are very limited. Moreover, measurements from recent years (e.g., after 

2002) are lacking. To evaluate the modeled sediment concentrations (𝐶𝐶𝑠𝑠), we used two data 

sets of PCB concentrations in sediments in Lake Superior in 1986 (Baker and Eisenreich, 
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1989) and 2002 (Li et al., 2009), respectively. These sources reported concentrations of 

congeners 18, 52, 118, and 180 measured across various Lake Superior sediment core 

locations. 

3.2.5 Uncertainty analysis 

Large uncertainties are associated with several input parameters relating to lake 

characteristics and thermodynamic properties of individual PCB congeners. To assess the 

influence of these uncertainties on the modeled concentrations, four parameters (𝑉𝑉𝑠𝑠, 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥, 

𝐾𝐾𝑙𝑙𝑤𝑤, and 𝐾𝐾𝑎𝑎𝑤𝑤) were varied over plausible ranges. These four parameters can be categorized 

into two groups: PCB thermodynamic properties (𝐾𝐾𝑙𝑙𝑤𝑤 and 𝐾𝐾𝑎𝑎𝑤𝑤) and lake characteristics 

(𝑉𝑉𝑠𝑠 and 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥). These PCB thermodynamic properties were chosen because of large 

uncertainties, primarily due to different measurement and estimation techniques used for 

the determination of their values (Mackay et al., 1997). In addition, we assumed lake-wide 

averaged values for certain lake characteristics (e.g., 𝑉𝑉𝑠𝑠 and 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥). However, in reality these 

parameters are likely to be spatially variable. To evaluate the uncertainty in modeled water 

and sediment concentrations, a one-at-a-time sensitivity analysis was performed using both 

high and low values of each of these four parameters, while keeping the other three 

parameters fixed at their base values (i.e., base scenario). The results obtained through this 

approach were used to determine which parameter contributes the largest uncertainty, in 

terms of magnitude, in the modeled aqueous and sediment concentrations from the base 

case scenario. A second objective of performing the uncertainty analysis was to estimate 
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the resulting half-lives of total (n = 6) PCBs in water and sediment for each parameter-

setting scenario (i.e., base case and upper and lower bound cases).  

3.2.6 Modeling of PCB concentrations in fish 

To provide an estimate of the time response of PCB concentrations in fish as a function of 

declining water concentrations, we applied a simple first-order bioaccumulation model. 

This model is based on the assumption that the rate of change in PCB concentrations in 

predatory fish (e.g., lake trout) is a function of two rate constants: (i) the PCB uptake rate 

via ingestion of diet (prey; 𝑘𝑘𝐷𝐷), and (ii) the mortality rate (𝑘𝑘𝐸𝐸) of predatory fish. The 

generic form of the time-varying bioaccumulation model is: 

𝑑𝑑𝐶𝐶𝑓𝑓𝑖𝑖𝑠𝑠ℎ
𝑑𝑑𝑆𝑆

= 𝑘𝑘𝐷𝐷𝐶𝐶𝐷𝐷 − 𝑘𝑘𝐸𝐸𝐶𝐶𝑑𝑑𝑑𝑑𝑠𝑠ℎ,                                                                                                (25) 

where 𝐶𝐶𝑑𝑑𝑑𝑑𝑠𝑠ℎ and 𝐶𝐶𝐷𝐷 are the PCB concentrations in the target predatory fish (e.g., lake trout) 

and in the prey (diet) item in the food web, respectively. The dietary uptake clearance rate 

constant 𝑘𝑘𝐷𝐷 is a linear function of the dietary chemical transfer efficiency (𝐸𝐸𝐷𝐷), the feeding 

rate (𝐺𝐺𝐷𝐷), and the weight of the organism (𝑊𝑊𝐵𝐵; Arnot and Gobas, 2004). Equations (26) – 

(28) were used to calculate each of these terms.  

𝑘𝑘𝐷𝐷 = 𝐸𝐸𝐷𝐷𝐺𝐺𝐷𝐷
𝑊𝑊𝐵𝐵

.                                                                                                                       (26) 

To provide an estimate of congener specific dietary PCB transfer efficiency, 𝐸𝐸𝐷𝐷 was 

calculated as a function of 𝐾𝐾𝑙𝑙𝑤𝑤 using Eq. (27).  

𝐸𝐸𝐷𝐷 = (3.0 × 10−7𝐾𝐾𝑙𝑙𝑤𝑤 + 2.0)−1.                                                                                    (27) 
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To estimate the feeding rates in cold-water fish species, Arnot and Gobas (2004) suggested 

the following bioenergetic relationship based on studies of lake trout.  

𝐺𝐺𝐷𝐷 = 0.022𝑊𝑊𝐵𝐵
0.85 exp(0.06𝑇𝑇),                                                                                       (28) 

where 𝑇𝑇 is the water temperature in °C.  

Assuming a first-order rate of decline in the modeled concentrations in hypolimnion water, 

𝐶𝐶𝑤𝑤𝑅𝑅 was expressed as 

𝑑𝑑𝐶𝐶𝑤𝑤𝐻𝐻
𝑑𝑑𝑆𝑆

= −𝑘𝑘𝑤𝑤𝐻𝐻𝐶𝐶𝑤𝑤𝑅𝑅.                                                                                                         (29) 

The concentration of any given PCB congener can be determined by integrating Eq. (29) 

as 

𝐶𝐶𝑤𝑤𝑅𝑅 = 𝐶𝐶𝑤𝑤𝑅𝑅(𝑆𝑆=0)𝑒𝑒−𝑘𝑘𝑤𝑤𝐻𝐻𝑆𝑆,                                                                                                 (30) 

where 𝑘𝑘𝑤𝑤𝐻𝐻 is the first-order rate of constant (yr-1) at which the PCB concentrations in the 

hypolimnion decrease, and 𝐶𝐶𝑤𝑤𝑅𝑅(𝑆𝑆=0) is the concentration at time, t = 0. We used a 

congener-specific bioaccumulation factors (𝐵𝐵𝐴𝐴𝐹𝐹; ratio of concentration of PCB congener 

in the organism to the concentration of PCB congener in water) to determine the 

concentrations in zooplankton (trophic level 2). Following this step, using the relationships 

between trophic magnification factor (𝑇𝑇𝑀𝑀𝐹𝐹) and trophic level (𝑇𝑇𝐿𝐿) developed for the lake 

trout food web from North American lakes by Houde et al. (2008), we transformed the 

individual congener-specific trophic level 2 concentrations to trophic level 4 

concentrations (𝐶𝐶𝐷𝐷). The transformed form of Eq. (25) is written as: 
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𝑑𝑑𝐶𝐶𝑓𝑓𝑖𝑖𝑠𝑠ℎ
𝑑𝑑𝑆𝑆

= 𝑘𝑘𝐷𝐷
𝐵𝐵𝑔𝑔𝐹𝐹𝑖𝑖
𝛼𝛼
𝐶𝐶𝑤𝑤𝑅𝑅 − 𝑘𝑘𝐸𝐸𝐶𝐶𝑑𝑑𝑑𝑑𝑠𝑠ℎ.                                                                                     (31) 

Substituting Eq. (30) into Eq. (31) yields 

𝑑𝑑𝐶𝐶𝑓𝑓𝑖𝑖𝑠𝑠ℎ
𝑑𝑑𝑆𝑆

+ 𝑘𝑘𝐸𝐸𝐶𝐶𝑑𝑑𝑑𝑑𝑠𝑠ℎ = 𝑘𝑘𝐷𝐷
𝐵𝐵𝑔𝑔𝐹𝐹𝑖𝑖
𝛼𝛼
𝐶𝐶𝑤𝑤𝑅𝑅(𝑆𝑆=0)𝑒𝑒−𝑘𝑘𝑤𝑤𝐻𝐻𝑆𝑆.                                                                  (32) 

The solution to Eq. (32) is  

𝐶𝐶𝑑𝑑𝑑𝑑𝑠𝑠ℎ =
𝐵𝐵𝐿𝐿𝐵𝐵𝑖𝑖
𝛼𝛼 𝑘𝑘𝐷𝐷𝑘𝑘𝑤𝑤𝐻𝐻𝐶𝐶𝑤𝑤𝐻𝐻(𝑆𝑆=0)

𝑘𝑘𝑇𝑇−𝑘𝑘𝑤𝑤𝐻𝐻
(𝑒𝑒−𝑘𝑘𝑤𝑤𝐻𝐻𝑆𝑆 − 𝑒𝑒−𝑘𝑘𝑇𝑇𝑆𝑆)                                                                  (33) 

where 𝛼𝛼 = 10(𝑚𝑚𝑡𝑡𝑔𝑔𝑇𝑇𝐼𝐼𝐵𝐵𝑖𝑖×𝑇𝑇𝐿𝐿2)

10(𝑚𝑚𝑡𝑡𝑔𝑔𝑇𝑇𝐼𝐼𝐵𝐵𝑖𝑖×𝑇𝑇𝐿𝐿4)  

Here, 𝑇𝑇𝐿𝐿𝑑𝑑 values were taken as 𝑇𝑇𝐿𝐿2 = 2 and 𝑇𝑇𝐿𝐿4 = 4. 𝑇𝑇𝑀𝑀𝐹𝐹𝑑𝑑 values of various PCB 

congeners were taken from the paper by Houde et al. (2008). 𝐵𝐵𝐴𝐴𝐹𝐹𝑑𝑑 values of individual 

PCB congeners related to 𝐾𝐾𝑙𝑙𝑤𝑤 values were based on water and zooplankton PCB 

concentration data (Borgå et al., 2006). Using a timestep of a day, the simulations were 

performed from 1990 to 2013 to estimate the total (n = 6) fish PCB concentrations. 

Subsequently, the 𝑆𝑆1/2 in fish was determined for the same period and compared with 

available measured 𝑆𝑆1/2 fish data.   

3.3 Results and discussion 

To enable an understanding of the role of sediment recycling in modifying PCB 

concentrations in water layers, the simulations were performed by i) allowing sediment 

resuspension and ii) turning-off sediment resuspension into the hypolimnion. Using the 
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assembled measurements of congener-specific PCB concentrations in water and sediments, 

the model simulation results were compared (sections 3.3.1 and 3.3.2, respectively). 

Temporal trends in the total (n = 6) modeled PCB concentrations in water and surficial 

sediments were analyzed and compared with the measured atmospheric and fish PCB 

concentrations trends in section 3.3.3. The results from model parameter uncertainty tests 

are discussed in section 3.3.4. Finally, the predicted fish PCB concentration trend was 

converted into half-life (𝑆𝑆1/2) in fish and compared with the 𝑆𝑆1/2 estimated using fish PCB 

concentration monitoring data from across Lake Superior (section 3.3.5).  

3.3.1 PCB concentrations in water 

The modeled 𝐶𝐶𝑤𝑤𝐸𝐸, both with and without particle resuspension fluxes from the sediment 

layer (i.e., SMSL) to epilimnion waters is shown by the solid black and dashed red lines, 

respectively, in Figs. 4 (A-F). These results suggest that particle resuspension from the 

SMSL has a small effect on PCB concentrations in the water, especially for the low to 

medium molecular weight (MW) congeners (i.e., congeners with three to six chlorine 

atoms such as PCBs 18 to 153). However, for the high MW congeners (congeners with 

more than six chlorine atoms), especially PCB 194 in the set of six congeners that were 

modeled, particle resuspension had a noticeable effect in increasing the aqueous 

concentration. This finding is not surprising because, of the six congeners, PCB 194 has 

the largest sediment resuspension flux due to its large solid-water distribution coefficient 

(𝐾𝐾𝑑𝑑) and consequent high fraction associated with particulates in the lake. 
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The measured and modeled concentrations (annual or seasonal mean) for six PCB 

congeners are contrasted in Figs. 4 (A-F). Since differences between modeled 𝐶𝐶𝑤𝑤𝐸𝐸 and 

𝐶𝐶𝑤𝑤𝑅𝑅 were small, the following results and discussion focus on the epilimnion only. In 

general, the ratio between the modeled and measured aqueous concentrations fell within 

factors of 0.2 to 3.7 (Table 3). For Congeners 18, 118, and 180 the model under-predicted 

the concentrations measured in 1986 (Baker and Eisenreich, 1989) by factors of 3.5 to 4.6. 

Large uncertainties associated with these measurements are noticeable from Figs. 4 (A, C, 

and E).  In contrast, the model over-predicted the measured concentrations from 1996 and 

1997 by factors of 1.2 to 3.6 for Congeners 18 and 52. Model-predicted seasonally 

averaged 𝐶𝐶𝑤𝑤𝐸𝐸 were in good agreement with the measured concentrations of Congeners 18 

and 52 by Zhu (2003) (the ratios between the modeled and measured concentrations were 

within 0.3 to ~1.0). The available measurements from the most recent year (GLACS, 2006) 

for Congeners 18, 52, 118, 180, and 194 exhibited relatively good agreement as the 

modeled 𝐶𝐶𝑤𝑤𝐸𝐸 fell within the reported uncertainty ranges of the measured PCB 

concentrations (the ratio between the modeled and measured concentrations ranged from 

1.2 to 3.6).  
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Table 3. Comparison between modeled and measured PCB concentrations in water. 

Data source Year Congener 

Measured 
concentration, 

(pg/L) 
[mean±sd] 

Modeled 
concentration 
(epiliminon), 
(pg/L) 
[mean] 

Modeled 
concentration 
(hypolimnion), 
(pg/L) 
 [mean] 

Baker and 
Eisenreich 
(1990) 

1986 

PCB 18 33.8±15.5 7.34 7.59 

PCB 118 21.9±11.0 6.32 6.56 

PCB 180 23.1±23.7 5.61 5.85 

IADN data  

(Galarneau et 
al., 2000; 
Buehler et al., 
2001) 

1996 
PCB 18 2.50 4.43 4.60 

PCB 52 4.80 5.82 6.07 

1997 
PCB 18 1.50 4.05 4.20 

PCB 52 1.38 5.07 5.27 

Zhu (2003) 

Fall 
2002 

PCB 18 13.4±6.91 4.95 5.69 

PCB 52 19.2±10.9 5.10 5.72 

Spring 
2003 

PCB 18 4.79±1.13 4.96 4.87 

PCB 52 8.12±1.16 5.26 5.32 

GLACS 2006 

PCB 18 1.81±1.12 2.47 2.59 

PCB  52 1.47±1.88 5.14 5.15 

PCB 118 0.86±1.22 1.49 1.54 

PCB 180 0.61±1.10 2.20 2.29 

PCB 194 0.72±1.21 0.88 0.95 

In general, the long-term trends in the modeled PCB concentrations (𝐶𝐶𝑤𝑤𝐸𝐸) were in accord 

with the trends of historic production and atmospheric emissions of the six PCB congeners 

(Fig. 2) with few exceptions. Firstly, even though the U.S. production of PCBs peaked in 

1970, the highest modeled 𝐶𝐶𝑤𝑤𝐸𝐸 exhibited a time lag of 2 to 5 years (Fig. 4). This observed 
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time lag could result from an error in estimating the historic concentrations using a constant 

concentration to emission ratio based on present-day ratios. Another possible explanation 

for this time lag could pertain to secondary emissions (e.g., emissions of previously 

deposited PCBs from terrestrial and aquatic surfaces), that were not explicitly included in 

this study. Secondly, after the U.S. ban on PCB production in 1979, the concentrations in 

the water column declined more rapidly for the low MW congeners (e.g., Congeners 18, 

52 with three to four chlorine atoms) than those of the high MW congeners (e.g., Congeners 

180, 194 having seven or more chlorine atoms). This finding is not surprising because the 

low MW congeners undergo relatively faster air-water exchange as compared to the high 

MW congeners, resulting in a more rapid decline in aqueous concentrations. Overall, the 

declining temporal trends (1979-2013) in modeled PCB concentrations as shown in Figs. 

4 (A-F) suggest that the U.S. ban on PCB production in 1979 has been effective in reducing 

the PCB burden in Lake Superior water. However, the present-day (2013) PCB 

concentrations in water are yet to reach the early 1930s levels for all six PCB congeners.  
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Figure 4. Simulated historical congener-specific PCB concentrations in water (epilimnion), 
𝐶𝐶𝑤𝑤𝐸𝐸 and comparison with measurements. The vertical lines indicate the uncertainty (in 
terms of standard deviation) in measured concentrations. 
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3.3.2 PCB concentrations in surficial sediment 

It is evident from Figs. 5 (A-G) that sediment resuspension exhibited a noticeable effect on 

the modeled 𝐶𝐶𝑠𝑠 as chlorination increases (e.g., PCB 18 in Fig. 5A vs. PCB 194 in Fig. 5G). 

This finding suggests that the high MW congeners are more sensitive to sediment 

recycling. Moreover, the increased sensitivity to sediment recycling as a function of 

increasing MW as evident from Figs. 5(A-E, G) is consistent with the physicochemical 

properties of the six PCB congeners (Table S1). In general, the high MW PCB congeners 

exhibit higher hydrophobicity (large 𝐾𝐾𝑙𝑙𝑤𝑤 and 𝐾𝐾𝑑𝑑 values), thus stronger sorption to particles 

that eventually settle to sediments from waters (followed by recycling back to water). 

Therefore, when sediment resuspension was turned off, the resulting net sediment-water 

exchange flux of particle-bound PCBs yielded relatively high modeled 𝐶𝐶𝑠𝑠. Using the model 

results shown in Figs. 5(F-G), it was estimated that from 1979-2013, particle resuspension 

recycled to the water column ca. 20% of the PCB settling flux of PCBs 180 and 194. In 

contrast, the weak role of sediment resuspension for the low MW congeners is supported 

by their relatively weak hydrophobicity (low 𝐾𝐾𝑙𝑙𝑤𝑤 and 𝐾𝐾𝑑𝑑 values). Typically, the 𝐾𝐾𝑙𝑙𝑤𝑤 

values for high MW congeners (e.g., PCB 194) are up to three orders of magnitude higher 

than that of low MW congeners (e.g., PCB 18 or 52). 

The rates of decline in PCB concentrations in the SMSL were controlled partially by the 

physicochemical properties of the congeners. Figure 5(A-G) shows that after the U.S. 

production ban in 1979, the modeled 𝐶𝐶𝑠𝑠 of the low MW congeners declined relatively fast.  

It is likely that repeated sediment-water exchange of the low MW congeners tended to 

cause them to desorb into the water column and subsequently emit back into the 
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atmosphere, which resulted in their relatively faster decline in the SMSL (Hornbuckle et 

al., 2006). In contrast, concentrations of PCBs 180 and 194 declined at a slower rate since 

1979 to 2013.  

Because the sediment concentration data sets (i.e., Baker and Eisenreich, 1989 and Li et 

al., 2009) consisted of sediment core measurements collected across various locations in 

Lake Superior, these measurements were grouped based on proximity of the sampling 

locations. For example, sediment cores collected from the station 1383 (Baker-St. 1383) 

by Baker and Eisenreich (1989) were in closer proximity to sampling point Superior 12 

(SU-12) than to sampling point Superior 08 (SU-08) by Li et al. (2009). Figure 5 shows 

the modeled PCB concentrations for six congeners in SMSL with corresponding 

measurements (except Congeners 153 and 194) for years 1986 and 2002. Together, Fig. 

5(A-C and E-F) indicate that the model underestimated the measured 𝐶𝐶𝑠𝑠 at all measurement 

locations. Of the four congeners, the best agreement between the model and measurements 

was found for PCB 180 in 1986 (ratio of modeled to measured concentrations = 0.75, Fig. 

5E, Table 4). In general, for PCB 180, the modeled 𝐶𝐶𝑠𝑠 were in good agreement with 

measurements (Fig. 5(E-F), Table 4). However, for low to medium MW congeners (18, 52, 

118), the model largely under-predicted (by up to two orders of magnitude) the measured 

𝐶𝐶𝑠𝑠. It is not entirely evident what might have caused this large disagreement. However, 

measurements for multiple locations within the same data set varied by up to one order of 

magnitude (e.g., measured 𝐶𝐶𝑠𝑠 of Congeners 52 and 118 from Li et al., 2009 and Baker and 

Eisenreich, 1989, as shown in Fig. 5B and 5C, respectively). This large variability in 

measured sediment concentrations suggests strong site dependency (e.g., depositional vs. 
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non-depositional zones within the lake), which makes it challenging to reproduce these 

observed concentrations using the model of lake-wide average rates.  

Table 4. Comparison between modeled and measured PCB concentrations in SMSL. 

 

Data source 

 

Year Congener 

Measured 
Concentration 
(ng/kg)  
[mean] 

Modeled 
Concentration 
(ng/kg) 
[mean] 

Baker and 
Eisenreich 
(1989)  

Core: St. 1383 

 

1986 

PCB 18 30 6 

 PCB 118 1000 82 

 PCB 180 470 352 

Li et al. 
(2009)  

SU-12 

 

2002 

PCB 18 472 6 

 PCB 52 445 11 

 PCB180 390 173 

Baker and 
Eisenreich 
(1989)  

Core: St. 1387 

 

1986 

PCB 18 90 6 

 PCB 118 930 82 

 PCB 180 710 352 

Li et al. 
(2009)  

SU-08 

 

2002 

PCB 18 No data 6 

 PCB 52 972 11 

 PCB180 1093 173 
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Figure 5. Simulated historical congener-specific PCB concentrations in SMSL, 𝐶𝐶𝑠𝑠 , and 
comparison with measurement (denoted by the symbols). 

The results indicate that simulated PCB concentrations increased by seven to nine orders 

of magnitude as compared to early-1930s levels. The time lag between the highest modeled 

concentrations and the peak U.S. production year (1970) was from three to eight years. 

Even though sediment concentrations for Congeners 18, 52, 118, and 153 decreased rapidly 

after the PCB production ban in 1979, the present-day (2013) concentrations are yet to 

reach levels at or below the levels of the early 1930s. The modeled concentrations of the 

high MW congeners PCB 180 and 194 exhibited a relatively slow decline in the SMSL and 

their present-day concentrations are at or above 1960-levels.  

We invoke a few possible explanations for the disagreement between the modeled and 

measured water and sediment concentrations. First, the model applied herein was intended 

to provide lake-wide average concentrations; thus, it is challenging to capture the large 

spatial variability in PCB concentrations that is evident in the measurement studies. 

Second, several input parameters in the model have large uncertainties; therefore, selected 

values of those parameters could partially affect the degree of overall model vs. 

measurement agreement. Third, our modeling framework stems primarily from the concept 

G 
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of mass balance, where we applied rate constants to explain the lake and sediment 

processes for a relatively long period (1930-2013). This approach to modeling lakes is 

relatively simpler than using complex hydrodynamic models, which are often more 

realistically configured. Some researchers (e.g., Bennington et al., 2010) have argued that 

large-scale circulation models are better suited for modeling contaminant fate and transport 

in Lake Superior. 

3.3.3 Comparison of temporal trends of PCB concentrations in air, water, 

sediment, and fish 

To provide a relative comparison of how fast concentrations in the water layers (epilimnion 

and hypolimnion), sediment layer (SMSL), and fish are changing compared to atmospheric 

concentrations of PCBs, we fitted the annual mean modeled concentration data using a 

simple first-order rate model as 

ln(𝑆𝑆𝑓𝑓𝑙𝑙𝑆𝑆𝑒𝑒𝑙𝑙𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝑙𝑙𝑓𝑓𝑙𝑙) = 𝐴𝐴0 + 𝐴𝐴𝑆𝑆,                                                                                      (34) 

where concentration is the total (n = 6) PCB concentrations in air, water layers, SMSL, 

and fish, 𝐴𝐴 is the first-order rate constant with units of years-1 and 𝐴𝐴0 is the intercept. We 

used PCB concentrations in air and modeled concentrations in waters, sediment, and fish 

from 1990-2013 to perform the trend analyses. From the regression results obtained using 

Eq. (34), half-lives of total (n = 6) PCB congeners in four environmental compartments 

and fish were estimated using 

𝑆𝑆1/2 = −ln (2)
𝑎𝑎

.                                                                                               (35)                             
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The PCB concentration decline in all four environmental compartments and fish and the 

estimated half-lives are shown in Figure 6. For all cases, the regressions are statistically 

significant at p < 0.05. As illustrated in Fig. 6A, the concentration of ∑ 𝑆𝑆𝐶𝐶𝐵𝐵𝑖𝑖=6  in the 

atmosphere has been declining with 𝑆𝑆1/2  ≈ 12 years. This estimate is consistent with the 

reported 𝑆𝑆1/2 = 12.2 ± 3 years for total PCB concentrations from 1991 to 2010 in Lake 

Superior air by Salamova et al. (2013). From 1990 to 2013, the decline in PCBs in the 

water layer (epilimnion or hypolimnion) was ca. 6 % per year (first-order rate constant of 

-0.06 yr-1), which results in a 𝑆𝑆1/2 ≈ 12 years. However, at present, the rate of decline in

water is slower as compared to the rate derived from multiple measurement data sets from 

1980 to 1996 (22 % per year = first-order rate constant of -0.25 yr-1; Smith, 2000). The 

absence of virtually any lag between the PCB half-lives in Lake Superior air and water 

suggests (Fig. 6A) that aqueous concentrations will strongly reflect the future changes in 

atmospheric PCB inputs to the lake.  

Unlike lake water, lake sediments have been responding at a slower rate, ca. 4 % decline 

in ∑ 𝑆𝑆𝐶𝐶𝐵𝐵𝑖𝑖=6  concentrations per year (first-order rate constant of -0.04 yr-1) with a 𝑆𝑆1/2 = 

17.6 years. This rate of decline is consistent with rates derived using sediment core 

measurements. For example, measurements from 1977 to 1990 (Looney, 1984; Eisenreich, 

1987; Baker, 1988; Jeremiason, 1993) produced a range of 𝑆𝑆1/2 from ca. 6 to 23 years (first-

order rate constant from -0.11 yr-1 to -0.03 yr-1).  
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Figure 6. (A). Half-lives of total (n = 6) PCBs in various media in Lake Superior and (B). 
Comparison between half-lives in fish using modeled (in blue) and measured PCB 
concentrations at two sites: Keweenaw Point, MI (in red), and Wisconsin sites (in purple). 
The data points for the Wisconsin sites represent arithmetic mean of the measured fish PCB 
concentrations in each year at multiple sampling locations in Lake Superior. 

The PCB concentrations in top predator fish (e.g., lake trout) data have been regarded as a 

useful indicator of contamination and long-term trends in the aquatic system (Hites and 

Forti, 2005; Chang et al., 2012). Several monitoring agencies (U.S. Environmental 

Protection Agency, Environment and Climate Change Canada, Michigan Department of 

Environmental Quality, Minnesota Department of Natural Resources, and Wisconsin 

Department of Natural Resources) have assembled long-term (e.g., 1978-2013) lake trout 

PCB concentration data collected from various locations in Lake Superior. These data sets 

offer an opportunity to perform a long-term trend analysis on fish PCB concentrations to 

examine whether or not any significant declining trend is evident. Using data sets for seven 

fish monitoring locations across Lake Superior, Lin (2016) performed statistical trend 

analyses for years 1996 to 2013, and found no statistically significant temporal trends in 

PCB concentrations in lake trout at five locations. Fish concentration data from only two 

locations (Keweenaw Point, MI and Wisconsin sites) exhibited slow but statistically 

A B 
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significant declining trends over the period 1991 to 2013 (Table 5). In Fig. 6B, total (n = 

6) lake trout PCB concentrations from 1990 to 2013 modeled using Eq. (33) are compared 

with the measured fish PCB concentrations at the two Lake Superior monitoring locations 

having significant half-lives. We note that the set of congeners in the total measured and 

modeled fish PCB concentrations are not identical. Because the fish concentration data sets 

did not include congener-specific concentrations, it was not possible to perform a 

comparison between the measured and modeled fish concentrations using the six congeners 

modeled in this study.  It is evident from Fig. 6B that the model predicted decline was not 

consistent with the observed decline in fish PCB concentrations. The model-estimated 𝑆𝑆1/2 

was ca. 17 years, while measurements suggest an upper bound 𝑆𝑆1/2 of 92.5 years at the 

Wisconsin sites.  

Table 5. Summary of temporal trends in fish PCB concentrations in Lake Superior. 

Location Time period Data source2 Half-life, 𝑆𝑆1/2 (yrs) 
---- 1990-2013 This study ~17 
Keweenaw Point 1995-2009 U.S. EPA ~21 
WI sites 1991-2013 WI-DNR ~92 
Keweenaw Bay 1995-2009 MDEQ No significant trend1 
Apostle Islands 1996-2008 U.S. EPA No significant trend1 
MN sites 1996-2010 MN-DNR No significant trend1 
Thunder Bay 1997-2013 ECCC No significant trend1 
Whitefish Bay 1997-2013 ECCC No significant trend1 

1From Lin (2016). 
2U.S. EPA = United States Environmental Protection Agency, MDEQ = Michigan Department of 
Environmental Quality, WI-DNR = Wisconsin Department of Natural Resources, MN-DNR = Minnesota 
Department of Natural Resources, ECCC = Environment and Climate Change Canada. 

Collectively, the trend analysis results in Fig. 6 suggest that fish PCB concentrations in 

Lake Superior are declining at a much slower rate than that of air, water, and sediment. The 

coupled water-sediment model cannot explain this slow recovery in lake trout 
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concentrations observed in the monitoring data. Given the weak role of sediment 

resuspension as illustrated by the model simulations (sections 3.3.1 and 3.3.2), the lack of 

significant declining trends in fish concentrations at most sampling locations, and the 

substantially large difference between measured and modeled 𝑆𝑆1/2 in fish, factors other 

than sediment recycling appear to be causing the delay in fish recovery. One factor that 

may influence the observed temporal trends in PCB concentrations is changes in food web 

dynamics in Lake Superior. Previous studies focused in the Laurentian Great Lakes (e.g., 

Gewurtz et al., 2011; Hebert et al., 2000; 2006) suggested that the trajectories of persistent 

and bioaccumulative contaminants in upper trophic level biota could be altered by changes 

in lake food webs. However, testing this hypothesis is beyond the scope of this study.   

3.3.4 Uncertainty analysis 

A major objective of performing the uncertainty analysis was to examine how uncertainties 

in four selected parameter values affect the resulting half-lives of total PCBs estimated for 

water and sediment. Following this approach, one could compare the relative magnitude of 

these half-lives with the observed 𝑆𝑆1/2 of fish. In this way, the uncertainty analysis also 

serves as an additional tool to test the hypothesis that sediment recycling is contributing to 

the current observed leveling off of fish PCB concentrations in Lake Superior. 

Additionally, the uncertainty analysis results enable us to further examine the relative 

(dis)agreement between the modeled and measured water/sediment concentrations. Model 

sensitivity runs were performed using the lower and upper bound values of the four selected 
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parameters (𝑉𝑉𝑠𝑠, 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥, 𝐾𝐾𝑙𝑙𝑤𝑤, and 𝐾𝐾𝑎𝑎𝑤𝑤) from their uncertainty ranges and were compared with 

the base case simulations.  

 Uncertainties in modeled water (epilimnion) concentrations 

The resulting changes in the modeled PCB concentrations in the epilimnion in regard to 

uncertainties in 𝑉𝑉𝑠𝑠 are shown Fig. S1(A-F). These results indicated that the low to medium 

MW congeners (PCBs 18, 52, 118, and 153) were less sensitive to the uncertainties in 𝑉𝑉𝑠𝑠. 

In contrast, as expected, the two high MW congeners (PCB 180 and 194) were more 

sensitive to changes in 𝑉𝑉𝑠𝑠. The trajectories of water concentrations as shown in Fig. S1(E-

F) indicate an increase and a decrease in 𝑉𝑉𝑠𝑠 from its base value resulting in lower and higher 

𝐶𝐶𝑤𝑤𝐸𝐸, respectively. For high MW congeners the particle settling flux from the water layers 

to the sediment was a dominant process because of their large 𝐾𝐾𝑑𝑑 values. Likewise, as 

particle-bound PCBs settled through the water layer, their total concentrations in water 

decreased. Fig. S2(A-F) show the trajectories of 𝐶𝐶𝑤𝑤𝐸𝐸 resulting from the uncertainty range 

of 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥. In general, the response of the model to changing 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥   values was similar to that 

of changing 𝑉𝑉𝑠𝑠 (i.e., low to medium MW congeners were less sensitive to 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥   as compared 

to the high MW ones, and an increase and a decrease in 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥 from its base value resulted 

in lower and higher 𝐶𝐶𝑤𝑤𝐸𝐸, respectively). Of the four parameters tested, the model 

simulations were the most sensitive to the thermodynamic properties (𝐾𝐾𝑙𝑙𝑤𝑤 and 𝐾𝐾𝑎𝑎𝑤𝑤) of 

PCBs, as can be seen from Figs. S3(A-F) and S4(A-F). Increasing the 𝐾𝐾𝑙𝑙𝑤𝑤 value for a PCB 

congener tended to increase its hydrophobicity, which also increased its fraction sorbed in 

water layers. This enhanced partitioning between the dissolved and sorbed phases resulted 
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in increased settling of PCBs from waters to sediment, which in turn reduced PCB 

concentrations in water (Fig. S3(A-F)). Uncertainties in 𝐾𝐾𝑎𝑎𝑤𝑤 have a strong effect on the 

trajectories of 𝐶𝐶𝑤𝑤𝐸𝐸. As can be seen from Fig. S4(A-F), the low MW congeners (e.g., PCBs 

18 and 52) were very sensitive to 𝐾𝐾𝑎𝑎𝑤𝑤 values. A 3-fold decrease in 𝐾𝐾𝑎𝑎𝑤𝑤 from its base value 

resulted in a ca. 3-fold increase in the modeled 𝐶𝐶𝑤𝑤𝐸𝐸. Similarly, a 3-fold increase in 𝐾𝐾𝑎𝑎𝑤𝑤 

from its base value resulted in a ca. 3-fold decrease in the modeled 𝐶𝐶𝑤𝑤𝐸𝐸. This high 

sensitivity of the model to 𝐾𝐾𝑎𝑎𝑤𝑤 is consistent with the fundamental process of PCB air-water 

exchange; a higher 𝐾𝐾𝑎𝑎𝑤𝑤 indicates a greater tendency toward loss via volatilization, resulting 

in low water concentrations.  

For each sensitivity simulation, the half-lives of total (n = 6) PCB concentrations were 

calculated. The 𝑆𝑆1/2 in the epilimnion varied from 9.8 to 13.5 years, while the 𝑆𝑆1/2 for the 

base case was 12.2 years. In the hypolimnion, 𝑆𝑆1/2 varied from 11.3 to 13.8 years. 

Collectively, these estimates suggest that the 𝑆𝑆1/2 derived from the base-case simulations 

was precise.  

 Uncertainties in the modeled SMSL concentrations  

For low to medium MW congeners (PCBs 18, 52, 118, and 153), the uncertainties in 𝑉𝑉𝑠𝑠 

exhibited a small effect on the modeled 𝐶𝐶𝑠𝑠 (Fig. S5(A-D)). 𝐶𝐶𝑠𝑠 for PCBs 180 and 194 were 

the most sensitive to changes in 𝑉𝑉𝑠𝑠 (Fig. S5(E-F)). For these two congeners, particle-settling 

flux to the sediment layer (which increased as 𝑉𝑉𝑠𝑠 increased) dominated over the 

resuspension fluxes. For example, for the upper bound of 𝑉𝑉𝑠𝑠, the simulated 𝐶𝐶𝑠𝑠 increased by 

7-16% for PCBs 194 and 180. Fig. S6(A-F) show the resulting modeled 𝐶𝐶𝑠𝑠 for three 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥 
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values. The uncertainty in 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥  had a large influence on 𝐶𝐶𝑠𝑠 as MW increased (for 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥 = 

0.1 cm, 60% increase in the modeled 𝐶𝐶𝑠𝑠  for PCB 180, 180% increase in  𝐶𝐶𝑠𝑠 for PCB 194). 

The model was most sensitive to 𝐾𝐾𝑙𝑙𝑤𝑤 and 𝐾𝐾𝑎𝑎𝑤𝑤 as can be seen from Fig. S7(A-F). The 

resulting half-lives for each sensitivity simulation were calculated for the SMSL and are 

presented in Table 6. The resulting 𝑆𝑆1/2  ranged from 11.1 to 20.9 years (base 𝑆𝑆1/2 = 17.6). 

Following model uncertainty analysis, the simulated aqueous and sediment concentrations 

were interpreted to provide further insight into the relative (dis)agreement between the 

model and measurements. One can see from the model runs if these parameter uncertainties 

can explain the difference. It is evident that a very high value of 𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥, 𝐾𝐾𝑙𝑙𝑤𝑤, or 𝐾𝐾𝑎𝑎𝑤𝑤 is not 

supported by the measurements. However, the lower range of the parameter value could 

provide an improved agreement; however, the model vs. measurement discrepancy is large.  

From the uncertainty analysis, we determined the ranges in 𝑆𝑆1/2  for water (11.3 to 13.8 

years) and for sediment (11.1 to 20.9 years). These half-lives were well below the 

𝑆𝑆1/2  (measured) for fish as illustrated in Fig. 6B. This finding indicates that, within the 

range of uncertainty in model prediction, the 𝑆𝑆1/2  of the model is lower than that calculated 

from the fish measurements. Therefore, we posit that factors other than sediment recycling 

such as changes in food web dynamics are responsible for sustaining the PCB 

concentrations in lake trout in Lake Superior. 
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Table 6. Half-lives of total PCBs in Lake Superior water and sediment. 
 

 In epilimnion In hypolimnion In sediment layer 

Scenario Value 
𝑆𝑆1/2  

(yr) 

Uncertainty 

(±yr) 

𝑆𝑆1/2  

(yr) 

Uncertainty 

(±yr) 

𝑆𝑆1/2  

(yr) 

Uncertainty 

  (±yr) 

Base ---- 12.2 0.7 12.3 0.7 17.6 0.3 

Low 𝑉𝑉𝑠𝑠 0.5 m d-1 12.1 0.7 12.2 0.7 16.6 0.3 

High 𝑉𝑉𝑠𝑠 1.5 m d-1 12.2 0.7 12.4 0.7 17.8 0.3 

Low 
𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥 0.1 cm 11.2 0.7 11.3 0.7 11.1 0.2 

High 
𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥 2.0 cm 12.8 0.7 12.9 0.7 19.5 0.3 

Low 
𝐾𝐾𝑙𝑙𝑤𝑤 

Base 
𝐾𝐾𝑙𝑙𝑤𝑤/3 11.7 0.7 11.8 0.7 14.3 0.3 

High 
𝐾𝐾𝑙𝑙𝑤𝑤 

3×Base 
𝐾𝐾𝑙𝑙𝑤𝑤 13.0 0.7 13.1 0.7 20.4 0.2 

Low 
𝐾𝐾𝑎𝑎𝑤𝑤 

Base 
𝐾𝐾𝑎𝑎𝑤𝑤/3 13.8 0.5 13.8 0.5 20.9 0.2 

High 
𝐾𝐾𝑎𝑎𝑤𝑤 

3×Base 
𝐾𝐾𝑎𝑎𝑤𝑤 9.5 0.7 11.3 0.7 14.4 0.3 

Together, the range in half-lives obtained through uncertainty analysis were lower than the 

half-life of fish PCB concentrations at the Keweenaw Point and sites. This finding 

strengthens the hypothesis that sediment resuspension does not control the observed PCB 

levels in fish. It further supports the hypothesis that changes in food web dynamics are a 

likely factor in sustaining the current PCB levels in top predatory fish.  

3.4 Conclusions 

We applied a coupled atmosphere-water-sediment model to investigate the long-term 

(1930-2013) behavior of PCBs in Lake Superior. The findings point out that the U.S. ban 

on PCB production in 1979 has been effective in reducing atmospheric concentrations of 
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PCBs, which was followed by reductions in water and sediment concentrations of PCBs in 

Lake Superior. The trajectories of model-predicted water and sediment concentrations of 

six PCB congeners exhibiting a wide a range in MW and thermodynamic properties 

indicated that concentrations of low-MW congeners declined relatively quickly after the 

PCB production ban. However, these concentrations are yet to reach early 1930-levels.  

There are several limitations to our modeling approach. First, we did not include secondary 

emissions while estimating the congener-specific concentrations of the six congeners. 

Second, recycling of PCBs associated with carbon cycling was not included in the 

multimedia model. Third, we did not include fish population dynamics; instead, 

bioaccumulation factors were used to project the PCB concentrations in the fish diet.  

The temporal trend analyses from 1990 to 2013 indicated that the PCB concentrations in 

the atmosphere and the water are declining at about the same rate (𝑆𝑆1/2 ≈ 12 years). 

However, the estimated 𝑆𝑆1/2 in the sediment lags that in the water by ca. five years, 

suggesting a slower recovery from legacy PCB inputs. A simplified approach was taken to 

predict the biota (predatory fish) concentrations using the model-predicted aqueous 

concentrations, which resulted in a 𝑆𝑆1/2 ≈ 17 years in top predatory fish. This modeled 𝑆𝑆1/2 

was not supported by available long-term (1990-2013) fish PCB concentration 

measurements in Lake Superior, which produced a 𝑆𝑆1/2 > 90 years. This mismatch between 

modeled and observed time to recovery in fish negates the hypothesis that recycling of 

PCBs from sediments is controlling the current trajectory of fish PCB concentrations in 

Lake Superior. We suggest that other factors, such as changes in food web dynamics, as 
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pointed out by some earlier studies (e.g., Gewurtz et al., 2011; Hebert et al., 2006), may be 

affecting trajectories of top predator fish PCB concentrations in the lake.  

A supplemental information (S.I.) (section 3.6) is provided after the references. The S.I. 

section includes the table of PCB physiochemical properties and the figures from 

uncertainty analysis presented in section 3.3.4.  

 

 

 

 

 

 

 

 

 

 

 

 



287 

3.5 References 

 
Assel, R.A., 1986. Fall and winter thermal structure of Lake Superior. Journal of Great 
Lakes Research 12, 251-262. 
 
Assel, R.A., 2003. NOAA Atlas: An Electronic Atlas of Great Lakes Ice Cover, Winters 
1973-2002. Great Lakes Environmental Research Laboratory. 
 
Baker, J.E., 1988. The particle-mediated geochemistry of hydrophobic organic 
contaminants in large lakes. University of Minnesota. 
 
Baker, J.E., Eisenreich, S.J., 1989. PCBs and PAHs as tracers of particulate dynamics in 
large lakes. Journal of Great Lakes Research 15, 84-103. 
 
Baker, J.E., Eisenreich, S.J., 1990. Concentrations and fluxes of polycyclic aromatic 
hydrocarbons and polychlorinated biphenyls across the air-water interface of Lake 
Superior. Environmental Science & Technology 24, 342-352. 
 
Bennett, E.B., 1978. Characteristics of the thermal regime of Lake Superior. Journal of 
Great Lakes Research 4, 310-319. 
 
Bennington, V., McKinley, G.A., Kimura, N., Wu, C.H., 2010. General circulation of Lake 
Superior: Mean, variability, and trends from 1979 to 2006. Journal of Geophysical 
Research: Oceans 115. 
 
Bhavsar, S.P., Jackson, D.A., Hayton, A., Reiner, E.J., Chen, T., Bodnar, J., 2007. Are 
PCB levels in fish from the Canadian Great Lakes still declining? Journal of Great Lakes 
Research 33, 592-605. 
 
Borgå, K., Fisk, A.T., Hargrave, B., Hoekstra, P.F., Swackhamer, D., Muir, D.C., 2005. 
Bioaccumulation factors for PCBs revisited. Environmental science & technology 39, 
4523-4532. 
 
Borgmann, U., Whittle, D., 1992. Bioenergetics and PCB, DDE, and mercury dynamics in 
Lake Ontario lake trout (Salvelinus namaycush): a model based on surveillance data. 
Canadian Journal of Fisheries and Aquatic Sciences 49, 1086-1096. 
 
Breivik, K., Sweetman, A., Pacyna, J.M., Jones, K.C., 2007. Towards a global historical 
emission inventory for selected PCB congeners—a mass balance approach: 3. An update. 
Science of the Total Environment 377, 296-307. 
 
 



288 

Buehler, S., Hafner, W., Basu, I., Audette, C.V., Brice, K.A., Chan, C., Froude, F., 
Galarneau, E., Hulting, M.L., Jantunen, L., 2001. Atmospheric deposition of toxic 
substances to the Great Lakes: IADN results through 1998. Rep. EPA 905-R-01 7. 
 
Chang, F., Pagano, J.J., Crimmins, B.S., Milligan, M.S., Xia, X., Hopke, P.K., Holsen, 
T.M., 2012. Temporal trends of polychlorinated biphenyls and organochlorine pesticides 
in Great Lakes fish, 1999–2009. Science of the total environment 439, 284-290. 
 
David, S., Hesselberg, R., Rodgers, P.W., Feist, T.J., 1996. Contaminant trends in lake 
trout and walleye from the Laurentian Great Lakes. Journal of Great Lakes Research 22, 
884-895. 
 
Eisenreich, S.J., 1987. The chemical limnology of nonpolar organic contaminants: 
polychlorinated biphenyls in Lake Superior. ACS Publications. 
 
Eisenreich, S.J., Hollod, G.J., Johnson, T.C., 1979. Accumulation of polychlorinated 
biphenyls (PCBs) in surficial Lake Superior sediments. Atmospheric deposition. 
Environmental Science & Technology 13, 569-573. 
 
Eisenreich, S.J., Looney, B.B., Thornton, J.D., 1981. Airborne organic contaminants in the 
Great Lakes ecosystem. Environmental Science & Technology 15, 30-38. 
 
Galarneau, E., Audette, C., Bandemehr, A., Basu, I., Bidleman, T., Brice, K., Burniston, 
D., Chan, C., Froude, F., Hites. R., Hulting, M., Neilson, M., Orr, D., Simcik, M., Strachan, 
W., Hoff, R., 2000. Atmospheric deposition of toxic substances to the Great Lakes: IADN 
results to 1996. Rep. EPA 905-R-00004. 
 
Gewurtz, S.B., Backus, S.M., Bhavsar, S.P., McGoldrick, D.J., de Solla, S.R., Murphy, 
E.W., 2011. Contaminant biomonitoring programs in the Great Lakes region: review of 
approaches and critical factors. Environmental Reviews 19, 162-184. 
 
Hebert, C.E., Arts, M.T., Weseloh, D.C., 2006. Ecological tracers can quantify food web 
structure and change. Environmental science & technology 40, 5618-5623. 
 
Hebert, C.E., Hobson, K.A., Shutt, J.L., 2000. Changes in food web structure affect rate of 
PCB decline in herring gull (Larus argentatus) eggs. Environmental science & technology 
34, 1609-1614. 
 
Hites, R., Forti, T., 2005. Program Review of the Great Lakes Fish Monitoring Program 
(GLFMP). 
 
Hornbuckle, K.C., Carlson, D.L., Swackhamer, D.L., Baker, J.E., Eisenreich, S.J., 2006. 
Polychlorinated biphenyls in the Great Lakes, Persistent Organic Pollutants in the Great 
Lakes. Springer, pp. 13-70. 
 



289 

Houde, M., Muir, D.C., Kidd, K.A., Guildford, S., Drouillard, K., Evans, M.S., Wang, X., 
Whittle, D.M., Haffner, D., Kling, H., 2008. Influence of lake characteristics on the 
biomagnification of persistent organic pollutants in lake trout food webs. Environmental 
toxicology and chemistry 27, 2169-2178. 
 
Humphrey, H., Gardiner, J.C., Pandya, J.R., Sweeney, A.M., Gasior, D.M., McCaffrey, 
R.J., Schantz, S.L., 2000. PCB congener profile in the serum of humans consuming Great 
Lakes fish. Environmental health perspectives 108, 167. 
 
Jeremiason, J.D., Hornbuckle, K.C., Eisenreich, S.J., 1994. PCBs in Lake Superior, 1978-
1992: decreases in water concentrations reflect loss by volatilization. Environmental 
science & technology 28, 903-914. 
 
Lenters, J.D., 2004. Trends in the Lake Superior water budget since 1948: A weakening 
seasonal cycle. Journal of Great Lakes Research 30, 20-40. 
 
Li, A., Rockne, K.J., Sturchio, N., Song, W., Ford, J.C., Wei, H., 2009. PCBs in sediments 
of the Great Lakes–Distribution and trends, homolog and chlorine patterns, and in situ 
degradation. Environmental Pollution 157, 141-147. 
 
Lin, H., 2016. Temporal trends and spatial variabilities of PCB concentrations in lake trout 
from Lake Superior from 1995 to 2013. Michigan Technological University. 
 
Looney, B.B., 1984. Dynamic behavior of chlorinated organics in Lake Superior: sediment, 
water and air interactions. 
 
McCarthy, S.M., 2016. Modeling the physical and biogeochemical processes in Lake 
Superior using LAKE2K. Michigan Technological University. 
 
Mackay, D., Shiu, W.Y., Ma, K.-C., 1997. Illustrated handbook of physical-chemical 
properties of environmental fate for organic chemicals. CRC press. 
 
Perlinger, J.A., Gorman, H.S., Norman, E.S., Obrist, D., Selin, N.E., Urban, N.R., Wu, S., 
2016. Measurement and Modeling of Atmosphere-Surface Exchangeable Pollutants 
(ASEPs) To Better Understand their Environmental Cycling and Planetary Boundaries. 
ACS Publications. 
 
Quinn, F.H., 1992. Hydraulic residence times for the Laurentian Great Lakes. Journal of 
Great Lakes Research 18, 22-28. 
 
Rowe, M., Perlinger, J.A., 2012. Micrometeorological measurement of hexachlorobenzene 
and polychlorinated biphenyl compound air-water gas exchange in Lake Superior and 
comparison to model predictions. Atmospheric Chemistry and Physics 12, 4607-4617. 
 



290 

Salamova, A., Pagano, J.J., Holsen, T.M., Hites, R.A., 2013. Post-1990 temporal trends of 
PCBs and organochlorine pesticides in the atmosphere and in fish from Lakes Erie, 
Michigan, and Superior. Environmental science & technology 47, 9109-9114.  

Schwarzenbach, R. P., Gschwend, P. M. and Imboden, D. M., 2003. Environmental 
Organic Chemistry, John Wiley & Sons, Inc., Hoboken, NJ, USA.  
 
Shoeib, M., Harner, T., 2002. Using measured octanol‐air partition coefficients to explain 
environmental partitioning of organochlorine pesticides. Environmental toxicology and 
chemistry 21, 984-990. 
 
Smith, D.W., 2000. Analysis of rates of decline of PCBs in different Lake Superior media. 
Journal of Great Lakes Research 26, 152-163. 
 
Sobek, A., Gustafsson, O.r., 2014. Deep water masses and sediments are main 
compartments for polychlorinated biphenyls in the Arctic Ocean. Environmental science 
& technology 48, 6719-6725. 
 
Spence, C., Blanken, P., Hedstrom, N., Fortin, V., Wilson, H., 2011. Evaporation from 
Lake Superior: 2: Spatial distribution and variability. Journal of Great Lakes Research 37, 
717-724. 
 
Stow, C.A., 1995. Factors associated with PCB concentrations in Lake Michigan fish. 
Environmental science & technology 29, 522-527. 
 
Sun, P., Basu, I., Hites, R.A., 2006. Temporal trends of polychlorinated biphenyls in 
precipitation and air at Chicago. Environmental science & technology 40, 1178-1183. 
 
Swackhamer, D.L., Hites, R.A., 1988. Occurrence and bioaccumulation of organochlorine 
compounds in fishes from Siskiwit Lake, Isle Royale, Lake Superior. Environmental 
science & technology 22, 543-548. 
 
Swackhamer, D.L., Skoglund, R., 1993. Bioaccumulation of PCBs by algae: kinetics 
versus equilibrium. Environmental Toxicology and Chemistry 12, 831-838. 
 
Swain, W.R., 1978. Chlorinated organic residues in fish, water, and precipitation from the 
vicinity of Isle Royale, Lake Superior. Journal of Great Lakes Research 4, 398-407. 
 
Ullman, D., Brown, J., Cornillon, P., Mavor, T., 1998. Surface temperature fronts in the 
Great Lakes. Journal of Great Lakes Research 24, 753-775. 
 
Urban, N., Auer, M., Green, S.A., Lu, X., Apul, D., Powell, K., Bub, L., 2005. Carbon 
cycling in Lake Superior. Journal of Geophysical Research: Oceans 110. 

U.S. EPA GLNPO (2009). “Great Lakes Aquatic Contaminants Survey Final Report.” 



291 

 
Wang, J., Bai, X., Hu, H., Clites, A., Colton, M., Lofgren, B., 2012. Temporal and spatial 
variability of Great Lakes ice cover, 1973–2010. Journal of Climate 25, 1318-1329. 
 
Xue, P., Pal, J.S., Ye, X., Lenters, J.D., Huang, C., Chu, P.Y., 2017. Improving the 
simulation of large lakes in regional climate modeling: Two-way lake–atmosphere 
coupling with a 3D hydrodynamic model of the Great Lakes. Journal of Climate 30, 1605-
1627. 

 

 

 

 

 

 

 

 

 

 

 

 



292 

3.6 Supplemental information  

Table S1. Physicochemical properties of six PCB congeners. 
Congener Molecular 

formula 
MW1 
(g mol-1) 

MV2 
(cm3 mol-1) log 𝐾𝐾𝑙𝑙𝑎𝑎3  log 𝐾𝐾𝑙𝑙𝑤𝑤4  𝐾𝐾𝑎𝑎𝑤𝑤5  

PCB 18 C12H7Cl3 257.5 247.3 7.6 5.1 4.9×10-3 
PCB 52 C12H6Cl4 292 268.2 8.3 5.6 3.2×10-3 
PCB 118 C12H5Cl5 326.4 289.1 9.4 6.4 1.5×10-3 
PCB 153 C12H4Cl6 360.9 310 9.7 6.6 1.3×10-3 
PCB 180 C12H3Cl7 395.3 330.9 10.5 7.1 6.9×10-4 
PCB 194 C12H2Cl8 429.8 351.8 11.2 7.7 4.6×10-4 

1Molecular weight (MW) (Shiu and Mackay, 1986). 
2Le Bas molar volume (MV) (Shiu and Mackay, 1986). 
3,4,5Octanol-air partition coefficient (Koa), octanol-water partition coefficient (Kow), dimensionless 
Henry’s law constant (Kaw) at 25°C calculated using Poly-Parameter Linear Free Energy 
Relationships (Environmental Organic Chemistry, 3rd Edition, Schwarzenbach et al., 2016). 
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Figure S1. Sensitivity of modeled epilimnion PCB concentrations (𝐶𝐶𝑤𝑤𝐸𝐸) to particle settling 
velocity (𝑉𝑉𝑠𝑠). 
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Figure S2. Sensitivity of modeled epilimnion PCB concentrations (𝐶𝐶𝑤𝑤𝐸𝐸) to sediment mixed 
layer depth (𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥). 
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Figure S3. Sensitivity of modeled epilimnion PCB concentrations (𝐶𝐶𝑤𝑤𝐸𝐸) to octonal-water 
partition coefficient (𝐾𝐾𝑙𝑙𝑤𝑤). 
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Figure S4. Sensitivity of modeled epilimnion PCB concentrations (𝐶𝐶𝑤𝑤𝐸𝐸) to dimensionless 
Henry’s law constant (𝐾𝐾𝑎𝑎𝑤𝑤). 
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Figure S5. Sensitivity of modeled sediment layer PCB concentrations (𝐶𝐶𝑠𝑠) to particle 
settling velocity (𝑉𝑉𝑠𝑠). 
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Figure S6. Sensitivity of modeled sediment layer PCB concentrations (𝐶𝐶𝑠𝑠) to sediment 
mixed layer depth (𝑧𝑧𝑚𝑚𝑑𝑑𝑥𝑥). 
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Figure S7. Sensitivity of modeled sediment layer PCB concentrations (𝐶𝐶𝑠𝑠) to octonal-
water partition coefficient (𝐾𝐾𝑙𝑙𝑤𝑤). 
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Figure S8. Sensitivity of modeled sediment layer PCB concentrations (𝐶𝐶𝑠𝑠) to 
dimensionless Henry’s law constant (𝐾𝐾𝑎𝑎𝑤𝑤). 
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	1      CHAPTER 1: Evaluation of five dry particle deposition parameterizations for atmospheric transport models
	Abstract
	1.1 Introduction
	Dry deposition is a complex process that is influenced by the chemical properties of aerosols and their sources, meteorological conditions, and surface characteristic features. The transference of particles from the atmosphere to the earth’s surface i...
	Over the last three decades, several indirect and direct methods were developed to measure dry particle deposition (hereinafter referred to as dry deposition) flux to ecosystems (McMahon and Denisot, 1979; Sehmel, 1980; Gallagher et al., 1997; Zhang a...
	,𝑉-𝑑.=−,𝐹(𝑧)-𝐶(𝑧).                                                                                                               (1)
	One of the major limitations of direct flux measurement is limited spatial coverage because the measurement stations are confined to only a limited number of sites (Nemitz et al., 2002). The application of spatially and temporally resolved 3-D atmosph...
	Many dry deposition models have been developed for scientific research and operational purposes (see model review by Petroff et al., 2008a). Significant advances in understanding the governing mechanisms of dry deposition were made through use of expe...
	Despite considerable efforts in developing dry deposition parameterizations of varying complexity, there remain considerable gaps in systematic performance evaluation of existing schemes with reliable field measurements. We note that the evaluation of...
	Uncertainty in modeled dry deposition velocities is an area that requires a thorough investigation. Only a few studies have been conducted in quantifying the uncertainties in dry deposition parameterizations. Ruijgrok (1992) performed an uncertainty e...
	Sensitivity analysis is often performed to determine the most influential parameters to the model outputs. Typically, a dry deposition model incorporates a large number of input parameters, which are subject to variability. In addition to identifying ...
	In the present study, five dry deposition parameterizations, developed by Zhang et al. (2001), Petroff and Zhang (2010), Kouznetsov and Sofiev (2012), Zhang and He (2014), and Zhang and Shao (2014), are selected for an intercomparison of performance i...

	1.2 Background
	1.2.1 Zhang et al. (2001) (Z01) scheme
	,𝑉-𝑑.=,𝑉-𝑔.+,1-,𝑅-𝑎.+,𝑅-𝑠..,                                                                                                                (2)
	where ,𝑉-𝑔. is the gravitational settling velocity, ,𝑅-𝑎. is the aerodynamic resistance above the canopy, and ,𝑅-𝑠. is the surface resistance. The expression for gravitational settling velocity (,𝑉-𝑔.) is given as:
	,𝑉-𝑔.=,𝜌,𝑑-𝑝-2.𝑔𝐶-18,𝜂-𝑉..,                                                                                                                            (3)
	where 𝜌 is the dry density of the particle, ,𝑑-𝑝. is the particle aerodynamic diameter, 𝑔 is the gravitational acceleration, 𝐶 is the Cunningham correction factor, and ,𝜂-𝑉. is the temperature dependent viscosity coefficient of air. The correct...
	𝐶=1+,2𝜆-,𝑑-𝑝..,1.257+0.4,𝑒-−,0.55,𝑑-𝑝.-𝜆...,                                                                                   (4)
	where 𝜆 is the mean free path of air molecules.
	The aerodynamic resistance (,𝑅-𝑎.) is calculated as:
	,𝑅-𝑎.=,,ln-,,,𝑧-𝑅.-,𝑧-0....−,𝜓-𝐻.-𝜅,𝑢-∗..,                                                                                                                  (5)                                                                                   ...
	where ,𝑧-𝑅. is the reference height where ,𝑉-𝑑. is typically computed, ,𝑧-0. is the roughness height, 𝜅 is the von Kármán constant, ,𝑢-∗. is the friction velocity, and ,𝜓-𝐻. is the stability function for heat. The expression for ,𝜓-𝐻. is: ,...
	The surface resistance term, ,𝑅-𝑠. in Eq. 2, is a function of particle collection efficiencies due to Brownian diffusion (,𝐸-𝐵.), impaction (,𝐸-𝐼𝑀.), and interception (,𝐸-𝐼𝑁.). Accordingly, ,𝑅-𝑠. is parameterized as:
	,𝑅-𝑠.=,1-,𝜀-0.,𝑢-∗.(,𝐸-𝐵.+,𝐸-𝐼𝑀.+,𝐸-𝐼𝑁.),𝑅-1..,                                                                                                     (6)                                                                                       ...
	where  ,𝜀-0. is an empirical constant and its value is taken as 3 for all LUCs, and ,𝑅-1. is the correction factor for particle rebound, which is included to modify the collection efficiencies at the surface. ,𝑅-1. is parameterized as a function of...
	,𝑅-1.=,exp-,−,𝑆𝑡-−0.5....                                                                                                           (7)
	The parameterizations for ,𝐸-𝐵., ,𝐸-𝐼𝑀., and ,𝐸-𝐼𝑁. are expressed by Eqs. (8), (10), and (14), respectively. The particle collection efficiency (,𝐸-𝐵.) is parameterized as a function of Schmidt number (𝑆𝑐) as:
	,𝐸-𝐵.=,𝑆𝑐-−𝛾.,                                                                                                                          (8)                                                                                                           ...
	where 𝑆𝑐 is the ratio of kinematic viscosity of air ,𝜈. to the particle Brownian diffusivity (𝐷). 𝛾 is a LUC dependent variable, and the typical values of 𝛾 range from 0.54 to 0.56 for rough surfaces and from 0.50 to 0.56 for smooth surfaces. Br...
	𝐷=,𝐶,𝑘-𝐵.𝑇-3𝜋𝜇,𝑑-𝑝..,                                                                                                                              (9)
	where 𝐶 is the Cunningham correction factor as expressed by Eq. (4), ,𝑘-𝐵. is the Boltzmann’s constant (1.38 × 10-23 J K-1), and 𝜇 is the dynamic viscosity of air at temperature 𝑇.
	For smooth surfaces, particle collection efficiency by impaction (,𝐸-𝐼𝑀.) is parameterized as:
	,𝐸-𝐼𝑀.=,10-−,3-𝑆𝑡...                                                                                                                       (10)                                                                                                       ...
	And, for rough surfaces,
	,𝐸-𝐼𝑀.=,,,𝑆𝑡-𝛼+𝑆𝑡..-𝛽.,                                                                                                                    (11)                                                                                                   ...
	where 𝛼 and 𝛽 are constants; values of 𝛼 are LUC dependent, and 𝛽 is taken as 2. In Eqs. (10-11), the Stokes number (𝑆𝑡) is expressed as:
	𝑆𝑡=,,𝑉-𝑔.,𝑢-∗.-𝑔𝐴.     ,for vegetative surfaces.,                                                                          (12)                                                                                                                     ...
	𝑆𝑡=,,𝑉-𝑔.,𝑢-∗-2.-𝜈.    ,for smooth surfaces.,                                                                                (13)                                                                                                                    ...
	where 𝐴 is the characteristic radius of the surface collector elements. The values of 𝐴 are given for different LUCs for various seasons by Zhang et al. (2001).
	Collection efficiency by interception (,𝐸-𝐼𝑁.) is calculated as:
	,𝐸-𝐼𝑁.=,1-2.,,,,𝑑-𝑝.-𝐴..-2..                                                                                                                       (14)                                                                                              ...
	Growth of particles under humid conditions is considered in the Z01 scheme by replacing the ,𝑑-𝑝. with a wet particle diameter (,𝑑-𝑤.), which is calculated as:
	,𝑑-𝑤.=,,,,𝐶-1.,,,,𝑑-𝑝.-2..-,𝐶-2..-,𝐶-3.,,,,𝑑-𝑝.-2..-,𝐶-4..−𝑙𝑜𝑔𝑅𝐻.+,,,,𝑑-𝑝.-2..-,𝐶-3...-1/3.,                                                                                   (15)                                                      ...
	where ,𝐶-1., ,𝐶-2., ,𝐶-3., and, 𝐶-4. are the empirical constants (values given in Table 1 of Zhang et al., 2001), and 𝑅𝐻 is the relative humidity.

	1.2.2 Petroff and Zhang (2010) (PZ10) scheme
	Petroff and Zhang (2010) parameterized dry deposition velocity using an expression similar to Eq. (2) with some improvements of the surface resistance and collection efficiency terms. In the PZ10 scheme, the effect of gravity and drift forces (e.g., p...
	,𝑉-𝑑.=,𝑉-𝑑𝑟𝑖𝑓𝑡.+,1-,𝑅-𝑎.+,𝑅-𝑠...                                                                                                           (16)
	Here, the drift velocity ,𝑉-𝑑𝑟𝑖𝑓𝑡. is equal to the sum of gravitational settling velocity and phoretic velocity, and the expression of ,𝑉-𝑑𝑟𝑖𝑓𝑡. is:
	,𝑉-𝑑𝑟𝑖𝑓𝑡.=,𝑉-𝑔.+,𝑉-𝑝ℎ𝑜𝑟..                                                                                                           (17)                                                                                                       ...
	,𝑉-𝑔. is calculated using Eq. (3). The LUC dependent values of ,𝑉-𝑝ℎ𝑜𝑟. were given by Petroff and Zhang (2010).
	Surface resistance (,𝑅-𝑠.) is commonly expressed as an inverse of the surface deposition velocity, ,𝑉-𝑑𝑠. (i.e., ,𝑅-𝑠. = 1/,𝑉-𝑑𝑠.). In the PZ10 scheme, ,𝑉-𝑑𝑠. is parameterized as:
	,,𝑉-𝑑𝑠.-,𝑢-∗..=,𝐸-𝑔.,1+,,𝑄-,𝑄-𝑔..−,𝛼-2..,tanh(𝜂)-𝜂.-1+,,𝑄-,𝑄-𝑔..+𝛼.,tanh(𝜂)-𝜂.. .                                                                                                   (18)                                               ...
	The parameters (e.g., 𝑄, ,𝑄-𝑔., 𝛼, and 𝜂) used in Eq. (18) are dependent on the aerodynamic and surface characteristic features. The parameterization of the total particle collection efficiency on the ground below the vegetation (,𝐸-𝑔.) has two...
	,𝐸-𝑔𝑏.=,,𝑆𝑐-−2/3.-14.5.,,,1-6.𝑙𝑛,(1+,𝐹)-2.-1−𝐹+,𝐹-2..+,1-,3..𝐴𝑟𝑐𝑡𝑎𝑛,2𝐹−1-,3..+,𝜋-6,3...-−1.,                                                      (19)
	where 𝐹 is a function of the Schmidt number (𝑆𝑐) and is expressed as 𝐹=,𝑆𝑐-,1-3../2.9.
	Collection efficiency by turbulent impaction, ,𝐸-𝑔𝑡., is a function of dimensionless particle relaxation time (,𝜏-𝑝ℎ-+.) and a coefficient ,𝐶-𝐼𝑇. (taken as 0.14). In the PZ10 scheme, ,𝐸-𝑔𝑡. is parameterized as:
	,𝐸-𝑔𝑡.=2.5×,10-−3.,𝐶-𝐼𝑇.,𝜏-𝑝ℎ-+2..                                                                                                    (20)                                                                                                         ...
	,𝜏-𝑝ℎ-+. is calculated as  ,𝜏-𝑝ℎ-+.=,𝜏-𝑝.,𝑢-𝑓-2./ 𝜈. The local friction velocity (,𝑢-𝑓.) is expressed as:
	,𝑢-𝑓.=,𝑢-∗.,𝑒-−𝛼.,                                                                                                                         (21)
	where 𝛼 is the aerodynamic extinction coefficient and is expressed as:
	𝛼=,,,,𝑘-𝑥.𝐿𝐴𝐼-12,𝜅-2.,(1−,𝑑-ℎ.)-2...-1/3.,Ф-𝑚-2/3.,,ℎ−𝑑-,𝐿-𝑂....                                                                                         (22)                                                                                  ...
	In Eq. (20),  ,𝑘-𝑥. is the inclination coefficient of canopy elements, 𝐿𝐴𝐼 is the leaf area index, 𝑑 is the zero-plane displacement height, ℎ is the height of the canopy, ,𝐿-𝑂. is the Monin-Obukhov length, and ,Ф-𝑚. is the non-dimensional sta...
	In Eq. (18), the non-dimensional time-scale parameter, 𝑄, is defined as the ratio the turbulent transport time scale to the vegetation collection time scale. The magnitude of 𝑄 can be used to characterize the dominant mechanism of the vertical trans...
	In the PZ10 scheme, 𝑄 and ,𝑄-𝑔. are parameterized using Eqs. (23) and (24), respectively:
	𝑄=,𝐿𝐴𝐼,𝐸-𝑇.ℎ-,𝑙-𝑚𝑝.(ℎ).,                                                                                                                           (23)                                                                                           ...
	,𝑄-𝑔.=,,𝐸-𝑔.ℎ-,𝑙-𝑚𝑝.,ℎ..,                                                                                                                         (24)
	where ,𝐸-𝑇. is the total particle collection efficiency by various physical processes and ,𝑙-𝑚𝑝.(ℎ) is the mixing height for the particles. The mixing height for particles, ,𝑙-𝑚𝑝.(ℎ), is calculated as:
	,𝑙-𝑚𝑝.,ℎ.=,𝜅(ℎ−𝑑)-,Ф-ℎ.,,ℎ−𝑑-,𝐿-𝑂....,                                                                                                             (25)                                                                                            ...
	where ,Ф-ℎ. is the stability function for heat and expressed as: ,Ф-ℎ.,𝑥.=,(1−16𝑥)-−1/2. when 𝑥 ∈,−2;0. and ,Ф-ℎ.,𝑥.=1+5𝑥 when 𝑥 ∈,0;1..
	The total collection efficiency (,𝐸-𝑇.) is expressed as:
	,𝐸-𝑇.=,,𝑈-ℎ.-,𝑢-∗..,,𝐸-𝐵.+,𝐸-𝐼𝑁.+,𝐸-𝐼𝑀..+,𝐸-𝐼𝑇.,                                                                                     (26)
	where ,𝑈-ℎ. is the horizontal wind speed at canopy height ℎ, and ,𝐸-𝐵., ,𝐸-𝐼𝑁., ,𝐸-𝐼𝑀., and ,𝐸-𝐼𝑇. are the collection efficiencies by Brownian diffusion, interception, impaction, and turbulent impaction, respectively. Note that the physica...
	Parameterization of deposition efficiencies (i.e., ,𝐸-𝐵., ,𝐸-𝐼𝑁., ,𝐸-𝐼𝑀., and ,𝐸-𝐼𝑇.) are given below according to the PZ10 scheme:
	Particle collection efficiency by Brownian diffusion ,(𝐸-𝐵.):
	,𝐸-𝐵.=,𝐶-𝐵.,𝑆𝑐-−2/3.,𝑅𝑒-ℎ-−1/2..                                                                                                       (27)
	In Eq. (27), ,𝐶-𝐵. is the LUC dependent coefficient, ,𝑅𝑒-ℎ. is the Reynolds number of the horizontal air flow calculated at top of the canopy height ℎ as ,𝑅𝑒-ℎ.=,,𝑈-ℎ.𝐿-𝜈.. Here, 𝐿 is the LUC dependent characteristic length of the canopy obs...
	Particle collection efficiency by interception ,(𝐸-𝐼𝑁.):
	,𝐸-𝐼𝑁.=,𝐶-𝐵.,,𝑑-𝑝.-𝐿.  ,𝑓𝑜𝑟 𝑛𝑒𝑒𝑑𝑙𝑒−𝑙𝑖𝑘𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒.,                                                                   (28)                                                                                                     ...
	,𝐸-𝐼𝑁.=,𝐶-𝐵.,,𝑑-𝑝.-𝐿.,2+𝑙𝑛,4𝐿-,𝑑-𝑝... ,𝑓𝑜𝑟 𝑙𝑒𝑎𝑓 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒..                                              (29)                                                                                                   ...
	In Eqs. 28-29, ,𝐶-𝐵. is the LUC dependent coefficient.
	Particle collection efficiency by impaction ,(𝐸-𝐼𝑀.):
	,𝐸-𝐼𝑀.=,𝐶-𝐼𝑀.,,,,𝑆𝑡-ℎ.-,𝑆𝑡-ℎ.+,𝛽-𝐼𝑀...-2..                                                                                                     (30)
	In Eq. (30), ,𝑆𝑡-ℎ. is the Stokes number on top of the canopy, which is calculated as ,𝑆𝑡-ℎ.=,,𝜏-𝑝.,𝑈-ℎ.-𝐿.. ,𝜏-𝑝. is the particle relaxation time calculated as ,𝜏-𝑝.=,𝑉-𝑔./𝑔. ,𝐶-𝐼𝑀. and ,𝛽-𝐼𝑀. are LUC dependent coefficients.
	Particle collection efficiency by turbulent impaction ,(𝐸-𝐼𝑇.) is parameterized as:
	,𝐸-𝐼𝑇.=2.5×,10-−3.,𝐶-𝐼𝑇.,𝜏-𝑝ℎ-+2.             𝑖𝑓 ,𝜏-𝑝ℎ-+.≤20,                                                                     (31)                                                                                                         ...
	,𝐸-𝐼𝑇.=,𝐶-𝐼𝑇.                                        𝑖𝑓 ,𝜏-𝑝ℎ-+.≥20,                                                                  (32)                                                                                                       ...
	In Eqs. (31-32), the dimensionless particle relaxation time, ,𝜏-𝑝ℎ-+.=,𝜏-𝑝.,𝑢-∗-2./𝜈.
	The term 𝜂 in Eq. (18) is taken as:
	𝜂=,,,𝛼-2.-4..+𝑄.                                                                                                                      (33)                                                                                                              ...
	For non-vegetative surfaces, such as bare soil, natural water and ice/snow, a modified form of Eq. (16) is used in the form of Eq. (34), which is expressed as:
	,𝑉-𝑑.=,𝑉-𝑑𝑟𝑖𝑓𝑡.+,1-,𝑅-𝑎.+1/(,𝐸-𝑔𝑏.𝑢∗)..                                                                                                                    (34)                                                                              ...

	1.2.3 Kouznetsov and Sofiev (2012) (KS12) scheme
	Kouznetsov and Sofiev (2012) developed a dry deposition parameterization by extending the conventional resistance-based analogy using the exact solution of the steady-state equation for aerosol flux. According to the KS12 scheme, for rough surfaces, d...
	,𝑉-𝑑.=,𝑉-𝑑𝑖𝑓𝑓.+,𝑉-𝑖𝑛𝑡.+,𝑉-𝑖𝑚𝑝.+,𝑉-𝑔.,                                                                                         (35)                                                                                                        ...
	where ,𝑉-𝑑𝑖𝑓𝑓., ,𝑉-𝑖𝑛𝑡., ,𝑉-𝑖𝑚𝑝., and ,𝑉-𝑔. are the velocities for the depositing particles due to Brownian diffusion, interception, impaction, and gravitational settling, respectively. The parameterizations for these terms are provided...
	,𝑉-𝑑𝑖𝑓𝑓. was parameterized as:
	,𝑉-𝑑𝑖𝑓𝑓.=,2𝑢-∗.,𝑅𝑒-∗-−1/2.,𝑆𝑐-−2/3.,                                                                                                 (36)                                                                                                        ...
	where  ,𝑅𝑒-∗. is the canopy Reynolds number given by
	,𝑅𝑒-∗.=,,𝑢-∗.𝑎-𝜈.,                                                                                                                          (37)                                                                                                      ...
	where 𝑎 is the length scale for different LUCs.
	,𝑉-𝑖𝑛𝑡. is parameterized as:
	,𝑉-𝑖𝑛𝑡.=,𝑢-∗.,𝑅𝑒-∗-1/2.,,,,𝑑-𝑝.-𝑎..-2.,                                                                                                         (38)                                                                                             ...
	,𝑉-𝑖𝑚𝑝. is parameterized as:
	,𝑉-𝑖𝑚𝑝.=,2,𝑢-∗-2.-,𝑈-𝑡𝑜𝑝..,𝜂-𝑖𝑚𝑝.,𝑆𝑡−,,𝑢-∗.-,𝑈-𝑡𝑜𝑝..,𝑅𝑒-∗-−1/2..,                                                                              (39)                                                                                  ...
	where ,𝑈-𝑡𝑜𝑝. is the mean horizontal wind speed on top of the canopy, ,𝜂-𝑖𝑚𝑝. is the particle collection efficiency due to impaction, and 𝑆𝑡 is the Stokes number.  Kouznetsov and Sofiev (2012) used Eq. (40) to parameterize ,,𝑢-∗.-,𝑈-𝑡𝑜𝑝...
	,,𝑢-∗.-,𝑈-𝑡𝑜𝑝..=𝑚𝑖𝑛,,,,𝐶-𝑠.+,𝐶-𝑅.𝐿𝐴𝐼/2.-2.,,,,,𝑢-∗.-,𝑈-𝑡𝑜𝑝...-𝑚𝑎𝑥..,                                                                     (40)                                                                                       ...
	where ,𝐶-𝑠. = 0.003, ,𝐶-𝑅. = 0.3, and ,,,,𝑢-∗.-,𝑈-𝑡𝑜𝑝...-𝑚𝑎𝑥.= 0.3 are constants.
	The Stokes number 𝑆𝑡 is expressed as:
	𝑆𝑡=,,𝜏-𝑝.,𝑢-∗.-𝑎.,                                                                                                                          (41)                                                                                                     ...
	where ,𝜏-𝑝. is the particle relaxation time calculated as ,𝜏-𝑝.=,𝑉-𝑔./g.
	The expression for ,𝜂-𝑖𝑚𝑝. is given as:
	,𝜂-𝑖𝑚𝑝.=𝑒𝑥𝑝,,−0.1-,𝑆𝑡-𝑒.−0.15.−,1-,,𝑆𝑡-𝑒.−0.15...       𝑖𝑓 ,𝑆𝑡-𝑒.>0.15,                                                       (42)                                                                                                       ...
	,𝜂-𝑖𝑚𝑝.=0                                                  𝑖𝑓 ,𝑆𝑡-𝑒.≤0.15,                                                       (43)
	where ,𝑆𝑡-𝑒. is the effective Stokes number calculated as:
	,𝑆𝑡-𝑒.=𝑆𝑡−,𝑅𝑒-𝑐-−,1-2..,                                                                                                             (44)                                                                                                          ...
	where ,𝑅𝑒-𝑐. is the critical Reynolds number calculated as:
	,𝑅𝑒-𝑐.=,,,,𝑈-𝑡𝑜𝑝.-,𝑢-∗...-2.,𝑅𝑒-∗..                                                                                                            (45)                                                                                              ...
	The term ,𝑉-𝑔. in Eq. (35) is parameterized using Eq. (3).
	Note that in the KS12 scheme, the parameterization of ,𝑉-𝑑. over smooth surfaces requires solving the universal velocity profiles (either numerically or analytically) described by Kouznetsov and Sofiev (2012). We exclude the details of the solution ...

	1.2.4 Zhang and He (2014) (ZH14) scheme
	Zhang and He (2014) developed an empirical resistance-based parameterization for dry deposition by modifying the Z01 scheme. The overall structure of the ZH14 scheme is similar to that of the Z01 scheme (i.e., ,𝑉-𝑑. is calculated using Eq. (2)). In ...
	For particle sizes less than or equal to 2.5 µm (PM2.5), ,𝑉-𝑑𝑠. is expressed as:
	,𝑉-𝑑𝑠(𝑃𝑀2.5).=,𝑎-1.,𝑢-∗.,                                                                                                               (46)                                                                                                        ...
	where ,𝑎-1. is an empirical constant derived by regression analysis. Values of ,𝑎-1. are given by Zhang and He (2014) for five groups of 26 LUCs.
	For particle sizes between 2.5 and 10 µm (PM2.5-10), ,𝑉-𝑑𝑠. is expressed as:
	,𝑉-𝑑𝑠(𝑃𝑀2.5−10).=,,𝑏-1.,𝑢-∗.+,𝑏-2.,𝑢-∗-2.+ ,𝑏-3.,𝑢-∗-3..,𝑒-𝑘1,,𝐿𝐴𝐼-,𝐿𝐴𝐼-𝑚𝑎𝑥.. −1..,                                                     (47)                                                                                         ...
	where ,𝑏-1., ,𝑏-2., and ,𝑏-3. are LUC dependent constants, ,𝐿𝐴𝐼-𝑚𝑎𝑥. is the maximum leaf area index for a given LUC, and 𝑘1 is a constant, which is a function of ,𝑢-∗., and expressed as:
	𝑘1=,𝑐-1.,𝑢-∗.+,𝑐-2.,𝑢-∗-2.+,𝑐-3.,𝑢-∗-3.,                                                                                                  (48)                                                                                                      ...
	where ,𝑐-1., ,𝑐-2., and ,𝑐-3. are the LUC dependent constants.
	For particle sizes larger than 10 µm (PM10+), ,𝑉-𝑑𝑠. is expressed as:
	,𝑉-𝑑𝑠(𝑃𝑀10+).=,,𝑑-1.,𝑢-∗.+,𝑑-2.,𝑢-∗-2.+ ,𝑑-3.,𝑢-∗-3..,𝑒-𝑘2,,𝐿𝐴𝐼-,𝐿𝐴𝐼-𝑚𝑎𝑥.. −1..,                                                                (49)                                                                                 ...
	where ,𝑑-1., ,𝑑-2., and ,𝑑-3. are the LUC dependent constants, and ,𝐿𝐴𝐼-𝑚𝑎𝑥. is the maximum leaf area index for a given LUC. The parameter 𝑘2 is a constant, which is a function of ,𝑢-∗., and is expressed as:
	𝑘2=,𝑓-1.,𝑢-∗.+,𝑓-2.,𝑢-∗-2.+,𝑓-3.,𝑢-∗-3.,                                                                                                  (50)                                                                                                      ...
	where ,𝑓-1., ,𝑓-2., and ,𝑓-3. are the LUC dependent constants.

	1.2.5 Zhang and Shao (2014) (ZS14) scheme
	Zhang and Shao (2014) used an analytical solution of the steady-state flux equation to derive an expression to compute dry deposition velocity ,𝑉-𝑑. as:
	,𝑉-𝑑.=,,,𝑅-𝑔.+,,𝑅-𝑠.−,𝑅-𝑔.-exp(,,𝑅-𝑎.-,𝑅-𝑔..)..-−1.,                                                                                                       (51)                                                                               ...
	For neutral atmospheric stability conditions, the parameterizations of ,𝑅-𝑎. for rough and smooth surfaces are given in Eqs. (52), and (53), respectively:
	,𝑅-𝑎.=,,𝑆𝑐-𝑇.-𝜅,𝑢-∗..𝑙𝑛,,𝑧−𝑑-,ℎ-𝑐.−𝑑..,        (𝑟𝑜𝑢𝑔ℎ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠)                                                                    (52)                                                                                           ...
	,𝑅-𝑎.=,,𝐵-1.,𝑆𝑐-𝑇.-𝜅,𝑢-∗..𝑙𝑛,,𝑧-,𝑧-0...,      (𝑠𝑚𝑜𝑜𝑡ℎ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑠)                                                                       (53)                                                                                        ...
	where ,𝐵-1. is an empirical constant (0.45), and ,𝑆𝑐-𝑇. is the turbulent Schmidt number expressed as:
	,𝑆𝑐-𝑇.=,1+,,𝛼-2.,𝑉-𝑔-2.-,𝑢-∗-2...,                                                                                                            (54)                                                                                                  ...
	where 𝛼 is a dimensionless coefficient taken as 1.
	The gravitational resistance term ,𝑅-𝑔. is calculated as ,𝑅-𝑔.=1/,𝑉-𝑔.. The parameterization of the surface resistance term ,𝑅-𝑠. is given by Zhang and Shao (2014) as follows:
	,𝑅-𝑠.=,,𝑅,𝑉-𝑑𝑚.,,𝐸-,𝐶-𝑑..,,𝜏-𝑐.-𝜏.+,1+,,𝜏-𝑐.-𝜏..,𝑆𝑐-−1.+,10-,−3-,𝑇-𝑝,𝛿-+....+,𝑉-𝑔,𝑤..-−1.,                                                 (55)                                                                                     ...
	where  𝑅=exp(−𝑏,𝑆𝑡.) and where b is an empirical constant, 𝐸 is the total collection efficiency, ,𝐶-𝑑. is the drag partition coefficient, 𝑆𝑐 is the Schmidt number, ,𝑇-𝑝,𝛿-+. is the dimensionless particle relaxation time near the surface, ...
	,,𝜏-𝑐.-𝜏.= ,𝛽,𝜆-𝑒.-1+𝛽,𝜆-𝑒..,                                                                                                                        (56)                                                                                         ...
	where 𝛽 is the ratio of the pressure-drag coefficient to friction-drag coefficient, and ,𝜆-𝑒. is the effective frontal area index. The parameter ,𝜆-𝑒. is a function of frontal area index or roughness density (𝜆), and plane area index (𝜂). The e...
	,𝜆-𝑒.=,𝜆-,(1−𝜂)-,𝑐-2...𝑒𝑥𝑝,−,,𝑐-1.𝜆-,(1−𝜂)-,𝑐-2....,                                                                                                  (57)                                                                                     ...
	where ,𝑐-1.=6 and ,𝑐-2.=0.1.
	Eq. (56) is used to compute ,𝑇-𝑝,𝛿-+. as:
	,𝑇-𝑝,𝛿-+.=,,𝑇-𝑝,𝛿.,𝑢-∗-2.-𝜈.,                                                                                                                           (58)                                                                                       ...
	where ,𝑇-𝑝,𝛿. is the particle relaxation time near the surface (,𝑇-𝑝,𝛿.= ,𝑉-𝑔./𝑔).
	,𝑉-𝑑𝑚. is calculated using two separate expressions for rough and smooth surfaces, as expressed in Eqs. (59) and (60), respectively:
	,𝑉-𝑑𝑚.=,,𝑢-∗.-,𝑢-𝑎.,ℎ-𝑐..      ,𝑓𝑜𝑟 rough surfaces.,                                                                                 (59)                                                                                                        ...
	where ,𝑢-𝑎. is the horizontal air speed and ,ℎ-𝑐. is the height of the roughness element.
	,𝑉-𝑑𝑚.=,𝐵-2.,𝑢-∗.   ,for smooth surfaces.,                                                                                (60)                                                                                                                        ...
	where ,𝐵-2. is an empirical constant taken as 3.
	In Eq. (55), the total collection efficiency (𝐸) is comprised of collection efficiencies by Brownian diffusion (,𝐸-𝐵.), impaction (,𝐸-𝐼𝑀.), and interception (,𝐸-𝐼𝑁.). The parameterizations for each of these three terms are given below:
	,𝐸-𝐵.=,𝐶-𝐵.,𝑆𝑐-−2/3.,𝑅𝑒-,𝑛-𝐵.−1.,                                                                                                         (61)                                                                                                   ...
	where ,𝐶-𝐵. and ,𝑛-𝐵. are empirical parameters function of flow regimes, and are given by Zhang and Shao (2014).
	,𝐸-𝐼𝑀.=,,,𝑆𝑡-0.6+𝑆𝑡..-2. ,                                                                                                                (62)                                                                                                      ...
	where 𝑆𝑡 is the Stokes number and is expressed as 𝑆𝑡=,𝜏-𝑝.,𝑢-∗./,𝑑-𝑐.. Here, ,𝑑-𝑐. is the diameter of the surface collection element. Values of ,𝑑-𝑐. are given by Zhang and Shao (2014) for various surfaces.
	,𝐸-𝐼𝑁.=,𝐴-𝑖𝑛.,𝑢-∗.,10-−𝑆𝑡.,2,𝑑-𝑝,𝑤.-,𝑑-𝑐..,                                                                                                     (63)                                                                                         ...
	where ,𝐴-𝑖𝑛. is a surface dependent micro-roughness characteristic element, and ,𝑑-𝑝,𝑤. is the wet diameter of the particle.


	1.3 Methods
	1.3.1 An evaluation of the dry deposition parameterizations
	To assess the accuracy of the five parameterizations, the modeled dry deposition velocities were compared with field measurements from both rough and smooth surfaces. The measurement studies conducted on various natural surfaces were collected from th...
	Figure 1. Global distribution of dry deposition measurement locations (listed in Table 1) used to evaluate the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations. Note that for multiple measurement campaigns conducted in one location, only one data poi...
	Measurements conducted over grass by Wesely et al. (1977), Neumann and den Hartog (1985), Allen et al. (1991), Nemitz et al. (2002), and Vong et al. (2004) were used to evaluate the performance of the five parameterizations. For coniferous forest, mod...
	To evaluate the performance of the parameterizations over water surfaces, studies by Möller and Schumann (1970), Sehmel et al. (1974), Zufall et al. (1998) and Caffrey et al. (1998) were used. We note that the studies by Möller and Schumann, and Sehme...
	In the present study, the accuracy of the dry deposition parameterizations was evaluated using the normalized mean bias factor (BNMBF). The BNMBF provides a statistically robust and unbiased symmetric measure of the factor by which the modeled dry dep...
	To quantify the disagreement between the modeled and observed quantities, the normalized mean bias factors were calculated for the pairs of modeled (,𝑉-𝑑,𝑚𝑜𝑑𝑒𝑙𝑒𝑑.,𝑖.) and measured dry deposition velocities (,𝑉-𝑑,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑.,𝑖.), res...
	For the ,𝑉-𝑑,𝑚𝑜𝑑𝑒𝑙𝑒𝑑.,𝑖. > ,𝑉-𝑑,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑.,𝑖. case (i.e., overestimation):
	,𝐵-𝑁𝑀𝐵𝐹.=,,,𝑉-𝑑,𝑚𝑜𝑑𝑒𝑙𝑒𝑑.,𝑖..-,,𝑉-𝑑,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑.,𝑖...−1                                                                                     (64)                                                                                     ...
	For the ,𝑉-𝑑,𝑚𝑜𝑑𝑒𝑙𝑒𝑑.,𝑖. < ,𝑉-𝑑,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑.,𝑖. case (i.e., underestimation):
	,𝐵-𝑁𝑀𝐵𝐹.=1−,,,𝑉-𝑑,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑.,𝑖..-,,𝑉-𝑑,𝑚𝑜𝑑𝑒𝑙𝑒𝑑.,𝑖...                                                                                  (65)                                                                                        ...
	The step-wise derivation of the Eqs. (64-65) and their application on training air quality datasets are illustrated by Yu et al. (2006).

	1.3.2 Uncertainty analysis
	To quantify the influence of imprecision in the model input parameter values on the modeled velocities, a classical Monte Carlo uncertainty analysis was applied. The Monte Carlo techniques have been widely used to evaluate the propagated uncertainty i...
	In this study, we define uncertainty in the parameterizations as the inability to confidently specify single-valued quantities because of the imprecision in the model input parameters. A classical Monte Carlo uncertainty method was applied to assess t...
	Table 2. Parameter values and associated uncertainties in Monte Carlo simulation.
	The Monte Carlo simulations were performed using R statistical software (version 3.2.4). Each simulation was run by randomly drawing 100 samples from the assigned uniform probability density function (PDF). The simulations were repeated 10,000 times. ...

	1.3.3 Sensitivity analysis
	In this study, the Sobol’ sensitivity method (Sobol’ 1990) was applied to identify the most influential input parameter or the set of parameters of a dry deposition parameterization, and to characterize the relative contribution of the parameters to t...
	In the Sobol’ method, the variance contributions to the total output variance of individual parameters and parameter interactions can be determined. These contributions are characterized by the ratio of the partial variance (,𝑉-𝑖.) to the total vari...
	,𝑆-𝑖.=,,𝑉-𝑖.-𝑉.=,,𝑉-,𝑋-𝑖..(,𝐸-,𝑿-~𝑖..,,𝑉-𝑑.-,𝑋-𝑖..)-𝑉(,𝑉-𝑑.).,                                                                                                      (66)
	where ,𝑋-𝑖. is the i-th input parameter and ,𝑿-~𝑖. denotes the matrix of all input parameters but ,𝑋-𝑖.. The meaning of the inner expectation operator is that the mean of ,𝑉-𝑑. is taken over all possible values of ,𝑋-~𝑖. while keeping ,𝑋-𝑖...
	The numerator in Eq. (66) can be interpreted as follows: ,𝑉-,𝑋-𝑖..(,𝐸-,𝑿-~𝑖..,,𝑉-𝑑.-,𝑋-𝑖..) is the expected reduction in variance that would be obtained if ,𝑋-𝑖. could be fixed. In regard to the variability of the model input parameters in...
	For each of the five parameterizations evaluated here, four to nine input parameters were selected for determining the first order Sobol’ sensitivity indices. An exception to applying the Sobol’ method was made for the KS12 parameterization while eval...
	Table 3. Input parameter ranges for Sobol’ sensitivity analysis.
	The Sobol 2007 package in R statistical software package (version 3.2.4) was used to perform the Sobol’ sensitivity analysis. In the Sobol’ method, the Monte Carlo simulations were performed by drawing samples from the assigned parameter value distrib...
	The results section is organized in the following manner. First, the accuracy of five dry deposition parameterizations (i.e., Z01, PZ10, KS12, ZH14, and ZS14) are compared with measured dry deposition velocities obtained from five LUCs. Second, the un...


	1.4 Results
	1.4.1 Evaluation of the dry deposition parameterizations
	Field measurements conducted on five LUCs: grass, coniferous forest, deciduous forest, water surfaces, and ice/snow were used to evaluate the agreement between measured and modeled dry deposition velocity (Vd). The parameterizations were run using rep...
	1.4.1.1 Evaluation of dry deposition to grass
	Five measurement studies conducted on grass (Wesely et al., 1977; Allen et al., 1991; Neumann and den Hartog, 1985; Nemitz et al., 2002; and Vong et al., 2004) were used to evaluate the accuracy of the parameterizations. In those studies, reported val...
	Table 4 summarizes the BNMBF for modeled Vd computed against five measurement studies on grass. The BNMBF is interpreted as follows: for example, if BNMBF is positive, the parameterization overestimates the measured Vd  by a factor of BNMBF+1. If BNMB...
	These results provide means for a relative comparison of the parameterizations’ accuracy. For instance, the BNMBF values corresponding to the Allen et al. study suggest that the ZH14 parameterization is the most accurate and the KS12 parameterization ...
	The characteristics of a parameterization (e.g., Z01) to simultaneously over-predict (i.e., the positive BNMBF for Neumann and den Hartog, and Nemitz et al.) and under-predict (i.e., the negative BNMBF for Allen et al. 1991, Wesely et al. 1977, and Vo...
	1.4.1.2 Evaluation of dry deposition to coniferous forest
	Nine studies conducted on coniferous forest (Lamaud et al., 1994; Wyers and Duyzers, 1997; Gallagher et al., 1997; Ruijgrok et al., 1997; Rannik et al., 2000; Buzorious et al., 2000; Gaman et al., 2004; Pryor et al., 2007; and Grönholm et al., 2009) w...
	Comparison of the computed BNMBF values for coniferous forest (Table 5) shows that the majority of the simulations performed using the five parameterizations underestimated the measured Vd. For example, the PZ10 parameterization underestimated observe...
	An ensemble approach similar to the one described in the previous section was used to determine the most and the least accurate parameterizations. From this analysis, the bias factors for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations are -2.35...
	1.4.1.3 Evaluation of dry deposition to deciduous forest
	A similar comparison between measured and modeled Vd was performed using three studies (Wesely et al., 1983; Pryor, 2006; and Matsuda et al., 2010) for deciduous forest. In these studies, the largest variations (ranges are given in the parentheses) we...
	Computed BNMBF values for deciduous forest are presented in Table 6. For the Wesely et al. (1983) study, comparison of the BNMBF values between the parameterizations show that the performance of the ZS14 parameterization was the most accurate (i.e., B...
	Evidently, none of the parameterizations performed consistently better for all the three studies. Overall, the results from the ensemble approach show that all the parameterizations overestimated the observations reported in three studies. Considering...
	1.4.1.4 Evaluation of dry deposition to water surfaces
	Only a limited number of measurement studies on size-segregated dry deposition over natural water surfaces are available in the literature. In this research, four studies (Möller and Schumann, 1970; Sehmel et al., 1974; Zuffal et al., 1998; and Caffer...
	Table 7 shows that the PZ10 parameterization performed best for two studies (i.e., Möller and Schumann, 1970; and Caffery et al., 1998), in which BNMBF values were -1.65 and +0.35, respectively. Comparison of the BNMBF values between the Z01 and ZH14 ...
	1.4.1.5 Evaluation of dry deposition to snow and ice surfaces
	Two studies over snow (Ibrahim, 1983; and Duan et al., 1987), and six studies over ice surfaces (Nilsson and Rannik, 2001; Gronlund et al., 2002; Contini et al., 2010; Held et al., 2011a; Held et al., 2011b; and Donateo and Contini, 2014) were used to...
	Of the four parameterizations, agreement between the modeled and measured Vd is not satisfactory for the PZ10 and KS12 parameterizations because they significantly underestimated the measured Vd (e.g., the bias factors from ensemble approach are -53.0...
	To summarize, the results from the ensemble evaluation of the parameterizations are graphically shown in Figs. 2(A-B) for the five LUCs. The horizontal dotted-dashed line in the plots indicates 100% agreement between modeled and measured Vd, whereas a...
	Figure 2. Ensemble averaged, normalized mean bias factors for the five parameterizations: a) three rough surfaces and water, b) Ice/snow.

	1.4.2 Uncertainty analysis results from the Monte Carlo simulations
	The overall uncertainty in the modeled Vd due to imprecision in the model inputs was assessed by performing a set of Monte Carlo simulations on the five dry deposition parameterizations.  Uncertainties (in terms of imprecision) in the following model ...
	The results from the Monte Carlo simulations are summarized in Table 9 and are presented and discussed in two steps. First, the uncertainty estimates that are shown in Table 9 for five parameterizations on five LUCs are used to elucidate the models’ p...
	1.4.2.1 Uncertainties in the modeled Vd  for grass
	The uncertainties in simulated Vd (i.e., differences between 95th and 5th percentiles of distribution) for the given range of dp (i.e., 0.005-2.5 µm) on grass varied widely (Table 9). In the Z01 parameterization, the estimated uncertainty for nucleati...
	1.4.2.2 Uncertainties in the modeled Vd  for coniferous forest
	For nucleation mode particles (i.e., dp = 0.005 µm), the largest uncertainty (0.0036 m s-1, median Vd = 0.0180 m s-1) was associated with the Z01 parameterization (Table 9).  Overall, the uncertainties in the Z01 parameterization showed a decreasing t...
	1.4.2.3 Uncertainties in the modeled Vd  for deciduous forest
	A similar comparison of the uncertainties in modeled Vd can be made for deciduous forest. It is seen from Table 9 that, for all the parameterizations except for ZH14, the largest uncertainties were associated with nucleation mode particles. That is, Z...
	1.4.2.4 Uncertainties in the modeled Vd  for water surface
	For water surfaces, the uncertainties in modeled Vd varied largely for the Z01 parameterization (Table 9). That is, the largest uncertainty (0.0021 m s-1) was associated with dp = 0.005 µm (median Vd = 0.0099 m s-1), and as dp increased to 2.5 μm, the...
	1.4.2.5 Uncertainties in the modeled Vd  for ice/snow surfaces
	Comparison between the simulated uncertainties in modeled Vd revealed that the uncertainties vary significantly for the Z01 and KS12 parameterizations as dp changes. For example, uncertainties estimated from Table 9 for these two parameterizations dec...
	1.4.2.6 Normalized uncertainties in the modeled Vd
	An extended analysis of the results presented in the previous sections are summarized here. The normalized uncertainties presented in the Table 10 can be interpreted as follows: any value that is closer to zero indicates higher model precision (i.e., ...
	Table 10. Normalized uncertainties in modeled dry deposition velocities.
	Comparison of the normalized uncertainties in modeled Vd over smooth surfaces (i.e., water and ice/snow) also reveals interesting findings. For example, for dp = 0.5 µm, the normalized uncertainties over water surfaces for the Z01, PZ10, KS12, and ZH1...
	The normalized uncertainties presented in Table 10 also reveal interesting findings about the relative magnitude of imprecision for a given particle size on various LUCs by one parameterization. For example, with dp = 0.005 µm, the range in normalized...
	Figs. 3(A-E) show the relative comparison between uncertainties in modeled Vd by five parameterization for seven particle sizes across five LUCs. For LUC grass, Fig. 3A shows that in the uncertainties in the Z01 and ZH14 parameterizations show nearly ...
	Figure 3. Comparison of the simulated uncertainties in the modeled dry deposition velocities as a function of particle size in five parameterizations for five LUCs.

	1.4.3 Sensitivity analysis results: Sobol’ first order sensitivity index
	For Sobol’ first order sensitivity analysis, five particle sizes (i.e., dp = 0.001, 0.01, 0.1, 1.0, and 10 µm) were selected. A sample size (n) of 100,000 was used for model evaluations for each of the five particle sizes. To assess the confidence int...
	The Sobol’ sensitivity analysis performed here is used to achieve a ranking of the model input parameters. The ranking of the parameters from most to least sensitive of the five particle sizes for the five parameterizations is shown in Table 11. Table...
	As shown in Table S1, for the Z01 parameterization on grass, the importance of the most influential parameters on the modeled dry deposition velocities for five particles sizes can be compared using the corresponding Si values of the model input param...
	Comparison between the first order Sobol’ indices for different particle sizes for grass shows strong variations for certain input parameters, which reveals interesting findings about the relative importance (from the most to the least) of the model i...
	The results of the first order Sobol’ indices for the Z01 parameterization on two smooth surfaces: water and ice/snow are also presented in Table S1. Over liquid water surfaces, variation in u* values has the largest influence modeled Vd for dp = 0.00...
	The results of the first order Sobol’ indices for the PZ10 parameterization on five LUCs are presented in Table S2.  The size-dependent Si values on coniferous forest can be compared here to elucidate the contribution of different input parameters on ...
	Table S3 shows the first order Sobol’ indices for the KS12 parameterization on five LUCs. For brevity, the results of the first order sensitivity indices for deciduous forest are discussed herein. It is seen that u* is the single most influential para...
	Table S4 shows the first order Sobol’ indices for the ZH14 parameterization on five LUCs. The results show a strong influence of u* on the modeled Vd. As shown in Table S4, the Si values alone can explain nearly 100% of the variation in the modeled Vd...


	1.5 Discussion
	The accuracy of the parameterizations should be interpreted within the context of the field measurements used in this study assuming that they were accurate. In addition, the inter-comparison of the parameterizations’ accuracy is subject to uncertaint...
	For rough surfaces, our results suggest that ZH14 is the most accurate parameterization for grass and deciduous forest, and it is the second most accurate parameterization for coniferous forest. In contrast, KS12, PZ10, and ZS14 are the least accurate...
	A direct quantitative comparison of the accuracy of the five parameterizations with those reported in other studies is impossible because the metric used in the present study (BNMBF) is not commonly used to evaluate the accuracy of the dry deposition ...
	The accuracy results over smooth surfaces suggest that, for the water surface, the best agreement between the measured and modeled Vd was found for the ZH14 parameterization. Overall, the accuracy ranking from best to worst is as follows: ZH14, Z01, K...
	Collectively for both rough and smooth surfaces, it is found that the ZH14 scheme is the most accurate for these LUCs: grass, deciduous forest, water, and ice/snow surfaces. KS12 performed slightly better for coniferous forest only. The performance of...
	Given the complex nature and incomplete knowledge of the dry deposition process, it is of importance to account for the uncertainties in the modeled deposition velocities in atmospheric transport models (Petroff and Zhang, 2010; Zhang et al., 2012). A...
	The Monte Carlo uncertainty analysis performed in this study assumes that in the five parameterizations all the major physical processes (e.g., turbulent diffusion, Brownian diffusion, impaction, interception, and gravitational settling) of dry deposi...
	The values of the eight model parameters, covering four meteorological (U, u*, LO, and RH) and four canopy morphological (z0, d, h, and LAI) properties, used in the Monte Carlo simulations were assumed to be uniformly distributed because their true di...
	We applied Sobol’ sensitivity analysis to identify the most influential parameter(s) of the five parameterizations. Parameter rankings achieved using the Sobol’ first order indices for different models provide a robust evaluation of the models’ sensit...
	The Sobol’ sensitivity rankings presented in Table 11 can be used for inter-comparison between models’ parameter sensitivity. Over rough surfaces, for nucleation size particles (e.g., dp = 0.001 µm), u* is the most sensitive parameter for Z01, PZ10, K...
	In general, dry deposition parameterizations developed for different particle size ranges and surfaces vary widely in terms of their complexity in model structure. The complexity in their numerical formulations often depends on the purpose (e.g., oper...
	Of the five parameterizations, we note that the model structure of the PZ10 is relatively more complex than those of the Z01, ZH14, and ZS14 parameterizations. The complexity of the KS12 parameterization tends to be different by a large degree between...
	A direct qualitative comparison of the relative complexities of the major process terms in the PZ10 and Z01 parameterizations is possible because both of these parameterizations are resistance-based (i.e., expressions of Vd in Eqs. 2 and 16 are of sim...

	1.6 Conclusions
	In terms of overall performance for incorporation in atmospheric transport models, we suggest that parameterization accuracy and uncertainty should be considered jointly, while, based on our findings, sensitivity of the model input parameters should b...
	The large dispersion in the parameterizations’ accuracy may indicate that despite considerable efforts in developing sophisticated process-based dry deposition models, there remain major gaps in our understanding of the dry deposition process. Another...
	The results from the uncertainty analysis using the Monte Carlo simulations on the size-segregated particles should be of interest to atmospheric transport modelers as well as to the scientific community interested in quantifying the uncertainty bound...
	With the help of field observations, and improved theoretical knowledge of dry deposition, the Sobol’ parameter rankings could be used to fine-tune dry deposition models to better account for processes that are currently lacking or poorly parameterize...
	Based on the qualitative evaluation of relative complexity of the five parameterizations, we suggest that the model structure of the ZH14 parameterization is the least complex. After reviewing over 100 air quality models, Kouznetsov and Sofiev (2012) ...
	A supplemental information (S.I.) (section 1.8) is provided after the references. The S.I. section includes the table of first order Sobol’ indices and the computer codes written in R for model accuracy, uncertainty, and Sobol’ sensitivity analyses.
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	* The references are for the uncertainty values (in percentage).
	Note: a normalized uncertainty value of zero indicates that the 95th and 5th percentile Vd are of equal magnitude.
	2 CHAPTER 2: Improvement in atmosphere-terrestrial exchange parameterizations of gaseous elemental mercury for application in chemical transport models
	Abstract
	In chemical transport models (CTMs) for mercury (Hg), net elemental Hg0 surface-atmosphere exchange is parameterized based on atmospheric dry deposition of Hg0 and re-emission from terrestrial surfaces. Despite extensive use of the resistance-based Hg...
	2.1 Introduction
	Atmosphere-surface exchange of gaseous elemental mercury (Hg0) is an important component of the global Hg budget (Zhu et al., 2016; Eckley et al., 2016). Despite advances in Hg0 exchange flux measurements and their incorporation in chemical transport ...
	In most CTMs, Hg0 dry deposition to and emission from terrestrial surfaces are parameterized separately (i.e., de-coupled treatment). A resistance-based approach (Wesely, 1989; Walmsley and Wesely, 1996; Wesely and Hicks, 2000; Zhang et al., 2003) is ...
	To estimate Hg0 emissions to the atmosphere from soils and vegetative surfaces, several empirical models have been developed (Poissant and Casimir, 1998; Xu et al., 1999; Zhang et al., 2001; Lin and Tao, 2003; Bash et al., 2004; Gbor et al., 2006; Lin...
	In this study, we aim to test existing parameterizations of Hg0 exchange implemented in CTMs by evaluation using high quality exchange flux measurements at the ecosystem-level (i.e., including both soil and vegetation exchanges) at two sites and two s...

	2.2 Parameterizations of Hg0 atmosphere-terrestrial exchange examined
	The resistance-based model of Zhang et al. (2003) was used to model deposition flux of Hg0 because this is the most up-to-date and widely used resistance-based deposition parameterization. The framework of the Zhang et al. (2003) model is similar to t...
	2.2.1 Modeling dry deposition of Hg0
	In global 3-D CTMs, the uptake of gaseous species at the surface is characterized by downward dry deposition flux (,𝐹-𝑑.) to be applied at the lowest model layer located at finite distance, 𝑧, from the surface. Vertical flux in the surface layer is...
	,𝑣-𝑑.=,1-,𝑅-𝑎.+,𝑅-𝑏.+,𝑅-𝑠..,                                                                                                                               (1)
	where ,𝑅-𝑎. is the aerodynamic resistance, ,𝑅-𝑏. is the quasi-laminar sublayer resistance, and ,𝑅-𝑠. is the bulk surface resistance. The term ,𝑅-𝑠. in Eq. (1) has two components: the stomatal resistance ,(𝑅-𝑠𝑡.) and the non-stomatal resista...
	,1-,𝑅-𝑠..=,1−,𝑊-𝑠𝑡.-,𝑅-𝑠𝑡.+,𝑅-𝑚..+,1-,𝑅-𝑛𝑠𝑡..,                                                                                                            (2)
	where ,𝑊-𝑠𝑡. is the fraction of stomatal blockage under wet conditions. ,𝑅-𝑠𝑡. is directly proportional to minimum stomatal resistance (rstmin), which is a LUC-dependent parameter based on water vapor transfer to leaves under optimal conditions ...
	,1-,𝑅-𝑛𝑠𝑡..=,1-,𝑅-𝑎𝑐.+,𝑅-𝑔𝑑..+,1-,𝑅-𝑐𝑢𝑡..,                                                                                                        (3)
	where ,𝑅-𝑎𝑐. is the in-canopy aerodynamic resistance, ,𝑅-𝑔𝑑. is the ground resistance, and ,𝑅-𝑐𝑢𝑡. is the cuticular resistance. ,𝑅-𝑔𝑑. and ,𝑅-𝑐𝑢𝑡. are gaseous species dependent parameters. For any species i (except SO2 and O3), Zhang ...
	,1-,𝑅-𝑥.(𝑖).=,𝛽-,𝑅-𝑥.(,𝑂-3.).+,𝛼-,𝑅-𝑥.(,𝑆𝑂-2.).,                                                                                                     (4)
	where 𝛼 and 𝛽 are scaling factors for chemical species solubility and half-redox reactivity, respectively. For Hg0, 𝛼 = 0 and 𝛽 = 0.1 (Wang et al., 2014). The expressions used for calculating individual resistance terms shown in Eqs. (2-3) and LUC...

	2.2.2 Modeling re-emission of Hg0
	In GEOS-Chem (version 9-02; http://www.geos-chem.org), re-emission flux of Hg0 from terrestrial surfaces (,𝐸-𝑠𝑜𝑖𝑙.) is parameterized as a function of solar radiation and soil Hg concentration (Song et al., 2015) as
	,𝐸-𝑠𝑜𝑖𝑙.=𝛾,𝐶-𝑠𝑜𝑖𝑙.,exp-,1.1×,10-−3.×,𝑅-𝑔...,                                                                              (5)
	where ,𝐶-𝑠𝑜𝑖𝑙. is the soil Hg concentration (ng g-1) and ,𝑅-𝑔. is the solar radiation flux at the ground (W m-2). The scaling factor 𝛾 (1.2×,10-−2. g m-2 h-1) is used to account for the global mass balance of the preindustrial model simulation...
	,𝑅-𝑔.=𝑆𝑅,exp-,,−𝛼𝐿𝐴𝐼-,cos-𝜃....,                                                                                                        (6)
	where 𝜃 is the solar zenith angle and 𝛼=0.5 is an extinction coefficient assuming random leaf angle distributions.


	2.3 Methods
	2.3.1 Data description
	Measured micrometeorological net exchange flux data of Hg0 were collected from two ecosystems: grassland and tundra (long grass and tundra LUCs, respectively, in the Zhang et al., 2003 parameterization) were used for model evaluation. The data of Hg0 ...

	2.3.2 Model evaluation and calibration
	To evaluate the performance of the base parameterizations (i.e., Zhang et al., 2003 and Song et al., 2015), LUC-specific (i.e., long grass or tundra) simulations were performed. Hourly averaged meteorological and atmospheric concentration data from th...
	𝑑=1−,,𝑖=1-𝑛-,,,𝑂-𝑖.−,𝑀-𝑖..-2..-,𝑖=1-𝑛-,,,,𝑂-𝑖..+,,𝑀-𝑖...-2... ,                                                                                                     (7)
	where ,𝑂-𝑖. is the observed net flux, ,𝑀-𝑖. the modeled net flux, and n the number of observations. A d-value of 1 indicates perfect agreement between observed and modeled net flux.
	Based on the performance of the base model, systematic adjustments to the default model parameters were performed through application of adjustment factors. This modulation of specific model parameters serves as model calibration, with the main object...


	2.4 Results and discussion
	In sections 2.4.1 and 2.4.2, measured ecosystem-level atmosphere-terrestrial surface exchange fluxes of Hg0 from both sites are compared with modeled net exchange fluxes using the base parameterizations. Based on the evaluation results obtained using ...
	2.4.1 Evaluation of modeled net exchange fluxes in summer using the base model
	2.4.1.1 Temperate grassland site at Früebüel, Switzerland
	The hourly averaged modeled (blue lines in Figure 1) and measured (black dotted lines) net exchange fluxes of Hg0 (Fnet) for the summer months using the base model with the default dry deposition and re-emission parameterizations are shown in Fig. 1 (...
	Figure 1. Comparison of averaged diel variations of measured (black) and modeled (blue; base model) net exchange fluxes of Hg0 at the grassland site (Früebüel, Switzerland) in summer (LT = local time): A) July 2006 and B) August 2006.
	Diel Hg0 exchange (Fig. 1) of modeled Fnet was primarily controlled by the surface resistance term (Rs in Eq. 1) of the dry deposition model, which includes both stomatal and non-stomatal uptake. Of the two deposition pathways, stomatal uptake dominat...
	In July (Fig. 1A), measured Fnet showed bimodal peaks in deposition at 1100 and 1400 LT. An observed decline in measured net deposition at approximately 1300 LT can be caused by leaf stomatal closure, or alternatively by increased soil Hg0 emissions d...
	In August, modeled and measured Fnet exhibited patterns similar to July, with a few differences (Fig. 1B): (i) the base model showed a unimodal pattern of net exchange, and (ii) a midday decline in net exchange due to possible stomatal closure was not...
	2.4.1.2 Arctic tundra site at Toolik Field Station, Alaska
	Comparison between the hourly averaged modeled and measured Fnet for the summer months (July and August of 2016) at the tundra site is shown in Fig. 2. At this site, average LAIs of 1.5 and 2.0 m2 m−2 (ORNL, 2017) were used for July and August base mo...
	Figure 2. Comparison of averaged diel variations of measured and modeled (base model) net exchange fluxes of Hg0 at the Arctic tundra site (Toolik Field station, Alaska, U.S.) in summer: A) July 2016 and B) August 2016.
	In August (Fig. 2B), measured Fnet during daytime (0600 to 2200 LT) exhibited a small net deposition (-0.23 ng m-2 hr-1), yet a bi-modal diel trend was evident again, with net deposition during the early and later parts of the day and net Hg0 emission...

	2.4.2 Evaluation of modeled net exchange fluxes in winter using the base model
	Overall, in winter, Fig. 3A shows that measured Fnet of the temperate grassland showed a net Hg0 deposition in the range of -0.23 to -5.29 ng m-2 hr-1 during nighttime (1800 to 0800 LT) and diel patterns during daytime showed a small net Hg0 emission ...
	Figure 3. Comparison of averaged diel variations of measured (black) and modeled (blue) (base model) net exchange fluxes of Hg0 in winter: A) temperate grassland site (December 2005) and B) Arctic tundra site (January 2016).
	The measurement-model comparisons shown in Figs. 2 and 3 suggest that in order to improve the performance of modeled exchange, three major components in the coupled (i.e., deposition and emission) models need to be addressed. First, net nighttime Hg0 ...

	2.4.3 Model response to adjusted deposition parameterization (summer)
	2.4.3.1 Model response to reduced stomatal uptake
	As discussed, modeled diel flux patterns in the default dry Hg0 deposition model rely heavily on stomatal Hg0 uptake, which generally accounts for over 90% of the daytime Hg0 deposition and results in over-prediction of measured deposition by factors ...
	Figure 4. Model response to reduced stomatal uptakes of Hg0 and comparison of modeled and measured net exchange fluxes of Hg0 in July: A) temperate grassland site and B) Arctic tundra site.
	The default parameter value for rstmin was 150 s m-1 for the tundra LUC following Zhang et al.’s (2003) parameterization. Using a similar model calibration approach through sensitivity testing as in the first step, by allowing rstmin to vary from 150 ...
	A consequence of adjustment of rstmin values was that model performance worsened at night at both sites compared to the base model. This finding suggests that while increased stomatal resistance leads to improvements in daytime fluxes and improved die...
	2.4.3.2 Model response to increased ground and cuticular uptake, and reduced stomatal uptake
	In both the temperate grassland and Arctic tundra sites, measured Fnet exhibited a net Hg0 deposition during nighttime, which the base model and the stomatal-adjusted model were largely unable to reproduce. Increased nighttime Hg0 deposition (i.e., in...
	For the grassland site, we calibrated the model by adjusting the default parameters for cuticular resistance (dry) (RcutdO3) and ground resistance (dry) RgdO3, which in the base model were 4000 and 200 s m-1 (LUC: long grass), respectively (Zhang et a...
	Figure 5. Model response to increased cuticular and ground uptake, and reduced stomatal uptake, of Hg0, and comparison of modeled and measured net exchange fluxes of Hg0: A) temperate grassland site and B) Arctic tundra site.
	Similarly, for the tundra site, we calibrated the model by first testing the sensitivity of the default parameters for RcutdO3 and RgdO3, which were 8000 and 500 s m-1, respectively, in the Zhang et al. (2003) model. A series of sensitivity tests were...
	Collectively, these findings suggest that adjustments of resistance parameters alone (i.e., stomatal, cuticular, and ground) cannot satisfactorily reproduce measured fluxes, even though the increased stomatal resistance led to a large improvement in m...
	2.4.3.3 Model response to revised soil Hg0 re-emission and dry deposition parameterizations
	In many studies, secondary emission of Hg0 is parameterized as an exponential function of solar radiation and surface temperature in order to simulate re-emission from soil and other surfaces (Carpi and Lindberg, 1997; Moore and Carpi, 2005; Zhang et ...
	,𝐸-𝑠𝑜𝑖𝑙_𝑛𝑒𝑤.=,10-[0.709+0.119,log-,,𝐶-𝑠𝑜𝑖𝑙...+0.137,log-,,𝑅-,𝑔-′...]..×,𝑎-−1.𝑠𝑖𝑛,𝜋𝑡-𝐷..                                         (8)
	In Eq. (8), D is duration (in hour) between sunrise and sunset, and t is time (in hour) of daylight hours. The sinusoidal function (based on a sine-curve light distribution pattern) is consistent with the canopy light attenuation formulation provided ...
	,𝑅-,𝑔-′..= 𝑆𝑅,exp-,−𝛼𝐿𝐴𝐼...                                                                                                   (9)
	This model portion was calibrated by once again applying a series of sensitivity tests to determine the value of the coefficient a that produced the best-fit modeled soil flux values as compared to measured soil Hg0 flux values at both sites.  Followi...
	Figure 6. Model response to reduced nighttime and increased daytime soil re-emission and revised resistance parameters, and comparison of modeled and measured net exchange fluxes of Hg0 in July: A) temperate grassland site and B) Arctic tundra site.
	As a result of the adjustment in Hg0 emission fluxes, the ratio between modeled and measured daily sum of fluxes at the temperate grassland site decreased from factors of ca. 3 to 1.1 (improved model) in July (Fig. 6A; mean modeled net fluxes of -3.72...
	For the Arctic tundra site, we found that the ratio between the modeled and measured fluxes decreased from factors about 4.5 (base model) to 1.3 (improved model) in July (Fig. 6B). For August (Fig. S3B), the ratio between the modeled (improved model) ...
	Table 1. Mean measured and modeled Fnet (ng m-2 hr-1) at the grassland site.
	Table 2. Mean measured and modeled Fnet (ng m-2 hr-1) at the Arctic tundra site.

	2.4.4 Model response to revised dry deposition and soil re-emission parameterizations in winter
	For winter months, we performed the same adjustments for the dry deposition model for both respective LUCs and show results of these adjustments in Fig. 7. The results indicate that in winter months with sub-zero air temperature and snow on the ground...
	Figure 7. Model response to reduced nighttime and increased daytime soil re-emission and revised resistance parameters, and comparison of modeled and measured net exchange fluxes of Hg0 in July: A) temperate grassland site and B) Arctic tundra site.
	However, neither simulation replicates the observed net Hg0 flux under snow cover. We suggest adding a net soil Hg0 sink in soils and completely eliminating emissions from ecosystems under snow, as can be inferred from experimental studies (Obrist et ...
	Figure 8. Model response to reduced soil re-emission and revised resistance parameters, and comparison of modeled and measured net exchange fluxes of Hg0 at the: A) grassland site in December 2005 and B) tundra site in January 2016.

	2.4.5 Seasonal mercury accumulation in leaves estimated using the deposition model
	In addition to constraining modeled net Hg0 deposition fluxes with measured field fluxes, an additional verification can be achieved by comparing foliar Hg uptake between modelled stomatal and non-stomatal uptake and measured leaf Hg contents from the...
	To evaluate how implemented changes in stomatal and cuticular leaf resistance terms impact plant Hg0 accumulation, and hence total Hg tissue concentrations, we estimated seasonal (April to August) Hg accumulation in vegetation at the grassland site fo...
	,C-𝐻𝑔𝑙𝑒𝑎𝑓.,,𝑛𝑔-𝑔..=,𝐹-𝑑𝑒𝑝(𝑠𝑡+𝑐𝑢𝑡).×, 𝑡-𝐿.× 𝑆𝐿𝐴 ×,1-𝐿𝐴𝐼. ,                                                            (9)
	where ,𝐹-𝑑𝑒𝑝(𝑠𝑡+𝑐𝑢𝑡). is the net dry deposition flux of Hg0 (ng m-2 day-1) due to leaf uptake via stomatal and cuticular pathways, ,𝑡-𝐿. is the duration of the growing season in days, and 𝑆𝐿𝐴 is the specific leaf surface area (leaf surfa...
	Comparison between seasonal Hg accumulation using the base model and the adjusted model (Fig. 9) supports the findings shown earlier that the base model parameterization strongly overestimates Hg0 uptake. In fact, at the grassland site, the estimated ...
	Figure 9. Growing season Hg accumulation in (A) Dactylis glomerata at the grassland site and (B) shrub vegetation (dominated by Betula nana) at the tundra site using base and adjusted dry deposition models.


	2.5 Conclusions
	By adjusting resistance terms and implementing a revised soil Hg0 re-emission parameterization, both diel patterns and magnitudes of fluxes were replicated well within the current resistance-based modeling framework. Increases in stomatal and non-stom...
	Based on our findings, we make the following generic recommendations for improvement in modeling Hg0 exchange using resistance-based approaches. 1) We suggest that stomatal resistance be increased several times to reduce bias in overestimating Hg upta...
	Although the two LUCs studied here together comprise 48% (40% grassland and 8% tundra) of terrestrial land surface on Earth (Iversen et al., 2015; Foley et al., 2005), reliable ecosystem-level exchange flux data are currently not available for most ot...
	A supplemental information (S.I.) (section 2.7) is provided after the references. The S.I. section includes the figures of modeled vs. measured net exchange fluxes in August at the grassland and tundra sites.
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	Figure S1. Model response to reduced stomatal uptakes of Hg0 and comparison of modeled and measured net exchange fluxes of Hg0 in August: A) temperate grassland site and B) Arctic tundra site.
	Figure S2. Model response to decreased cuticular and ground uptake, and reduced stomatal uptake, of Hg0, and comparison of modeled and measured net exchange fluxes of Hg0 in August: A) temperate grassland site and B) Arctic tundra site.
	Figure S3. Model response to reduced nighttime and increased daytime soil re-emission and revised resistance parameters, and comparison of modeled and measured net exchange fluxes of Hg0 in August: A) temperate grassland site and B) Arctic tundra site.
	Figure S4. Contributions of stomatal and non-stomatal uptake of Hg0 using the base model in July at the temperate grassland.
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	3 CHAPTER 3: Application of a multimedia model to investigate recovery of Lake Superior from historical polychlorinated biphenyl (PCB) contamination
	Abstract
	Polychlorinated biphenyl (PCB) compounds are of major concern in the Laurentian Great Lakes because of their toxicity and historical use, primarily as additives to oils and industrial fluids, and discharge from industrial sources. Following the ban on...
	3.1 Introduction
	Following their production, which began in 1930 in the United States (U.S.), polychlorinated biphenyl (PCB) compounds were primarily used in packing plants, paper mills, electric equipment manufacturers, tanneries, machine shops, and foundries in the ...
	Because of this cycling, PCBs have been detected even in remote locations (e.g. Isle Royale, Lake Superior and the Arctic Ocean) with very little to no history of PCB usage (Swain et al., 1977; Sobek and Gustafsson, 2014). Lake Superior, the largest o...
	Although at present PCBs are not being actively used in the U.S., they are still being emitted into the atmosphere in the Great Lakes basin through volatilization from waste disposal sites or burning of products containing high concentrations of PCBs ...
	Temporal trend analysis (1992-2010) of atmospheric PCB concentration data collected at Eagle Harbor in Michigan, one of the Lake Superior air monitoring locations monitored by the Integrated Atmospheric Deposition Network (IADN), revealed that atmosph...
	To explain the lag in fish response to declining atmospheric and water PCB concentrations, and the current leveling off of observed fish PCB concentrations, a couple of hypotheses have been proposed. Some researchers (e.g., Smith, 2000) hypothesized t...
	In this study, we developed a dynamic coupled air-water-sediment model for Lake Superior with the primary objective to examine whether or not sediment resuspension fluxes of PCBs can adequately explain the lag in biota response despite a consistent de...

	3.2 Methods
	3.2.1 Site description
	Of the five Laurentian Great Lakes, Lake Superior is the largest in terms of both volume (12,100 km3) and surface area (82,100 km2; Spence et al., 2011). The mean depth of the lake is ca. 150 m (Xue et al., 2017) and water residence time is ca. 180 ye...
	Figure 1. Mean monthly over-water air and surface water temperatures, and wind speed for Lake Superior (data source: https://coastwatch.glerl.noaa.gov/statistic/).
	Lake Superior is generally dimictic (Assel, 1986). Thermal layers in lake waters begin to form in spring (April) and the lake becomes completely vertically stratified in middle to late July (Bennett, 1978; Ullman et al., 1998: from Urban et al., 2005)...

	3.2.2 Model inputs
	3.2.2.1 Congener-specific atmospheric PCB concentrations
	The coupled air-water-sediment model (described in section 3.2.3) was driven by atmospheric concentrations of six PCB congeners (Congeners 18, 52, 118, 153, 180, and 194; their physicochemical properties are listed in Table S1) over the period 1930 to...
	,𝑛=17-,𝐶-𝑃𝐶𝐵..=,𝑛=17-,𝐸-𝑃𝐶𝐵.. ,,𝑡𝑜𝑛𝑠-𝑦𝑒𝑎𝑟..×1.6 ,,𝑝𝑔-,𝑚-3..,𝑦𝑒𝑎𝑟-𝑡𝑜𝑛𝑠..,                                                        (1)
	where ,𝑛=17-,𝐶-𝑃𝐶𝐵.. is the sum of total (n = 17) atmospheric PCB concentrations and ,𝑛=17-,𝐸-𝑃𝐶𝐵.. is the sum of total (n = 17) atmospheric emissions for each year from 1930 to 1989.
	For the selected six congeners, the ratio between congener-specific to total (n = 17) concentrations was calculated using the data measured by the IADN from 1990 to 2000. Because the resulting ratios exhibited large ranges, geometric means were calcul...
	Figure 2. (A). Historic emissions of 17 PCB congeners in the U.S. from 1930-2000. (B). Atmospheric concentration profiles of six PCB congeners from 1930-2013.
	3.2.2.2 Lake and meteorological parameters
	The physical attributes of Lake Superior that were used in this study are listed in Table 1. The mean monthly over-lake air temperature, lake surface temperature, and over-lake wind speed data from 1948-2014 were obtained from the meteorological datab...
	Table 1. Lake parameter values used in the Lake Superior PCB model.
	Table 2. Mean monthly meteorological variables and ice coverage for Lake Superior.

	3.2.3 Model description
	To simulate the historical to present-day (i.e., 1930-2013) concentrations of six PCB congeners in Lake Superior, a three-box model was developed. This modeling framework includes lake stratification; the lake is divided into the surface layer (epilim...
	Figure 3. Structure of the multimedia PCB model for Lake Superior.
	The mass balance equations for epilimnion, hypolimnion, and surficial sediment layer are
	,𝑑,𝐶-𝑤.𝐸-𝑑𝑡.=,𝐽-𝑡.−,,𝑘-𝑤𝐸.+,𝑘-𝑎,𝑤-𝑇𝐸..+,𝑘-𝑠𝐸.+,𝑘-𝑒𝑥𝐸..,𝐶-𝑤.𝐸+,𝑘-𝑒𝑥𝐸.,𝐶-𝑤.𝐻 ,                                          (2)
	,𝑑,𝐶-𝑤.𝐻-𝑑𝑡.=−,,𝑘-𝑠𝐻.+,𝑘-𝑒𝑥𝐻.+,𝑘-𝑠𝑒𝑑𝑒𝑥..,𝐶-𝑤.𝐻+,,𝑘-𝑠,𝐻-𝑠𝑡𝑎𝑟..+,𝑘-𝑒𝑥𝐻..,𝐶-𝑤.𝐸+(,𝑘-𝑠𝑒𝑑𝑒𝑥./,𝑓-𝑤𝐻./,𝐾-𝑑-𝑠𝑐.),𝐶-𝑠. ,                                                                                         ...
	,𝑑,𝐶-𝑠.-𝑑𝑡.=,(𝑚-−1.,𝑉-𝑠.,𝑓-𝑠𝐻.+,𝑚-−1.,𝑣-𝑠𝑒𝑑𝑒𝑥.),𝐶-𝑤.𝐻−(,𝑉-𝑠.,𝑟-𝑠𝑤.𝛽,𝑚-−1.+,𝑣-𝑠𝑒𝑑𝑒𝑥.,,𝑓-𝑤𝐻.-−1.,,𝐾-𝑑-𝑠𝑐.-−1.,𝑚-−1.),𝐶-𝑠. ,     (4)
	where ,𝐶-𝑤.𝐸, ,𝐶-𝑤.𝐻, and ,𝐶-𝑠. are the PCB concentrations in the epilimnion, hypolimnion, and SMSL, respectively. Total PCB inputs to the lake (,𝐽-𝑡.) consist of net air-water exchange flux (,𝐽-𝑎𝑤.), dissolved wet deposition flux (,𝐽-𝑑...
	,𝐽-𝑡.=,𝐽-𝑎𝑤.+,𝐽-𝑑𝑤𝑒𝑡.+,𝐽-𝑝𝑑𝑟𝑦.+,𝐽-𝑝𝑤𝑒𝑡..                                                                                     (5)
	The net air-water exchange flux was calculated according to Schwarzenbach et al. (2003) as
	,𝐽-𝑎𝑤.=,𝑣-𝑎/𝑤.,𝐶-𝑎.(1−ɸ)(,𝐴-𝑜.−,,𝐴-𝑜.𝐼𝐶-100.)/,𝑉-𝐸./,𝐾-𝑎𝑤.,                                                                   (6)
	where ,𝑣-𝑎/𝑤. is air-water (epilimnion) exchange velocity, ,𝐶-𝑎. is atmospheric concentration of a PCB congener, ,𝐴-𝑜. is surface area of the lake, ,𝑉-𝐸. is volume of the epilimnion, ,𝐾-𝑎𝑤. is temperature-corrected dimensionless Henry’s la...
	ɸ=,,𝐾-𝑃.𝑇𝑆𝑃-,(𝐾-𝑃.𝑇𝑆𝑃+1).,                                                                                                                  (7)
	where 𝑇𝑆𝑃 is the total suspended particulate concentration in the atmosphere, and ,𝐾-𝑃. is the particle-gas partition coefficient, which was calculated as
	,log-,,𝐾-𝑃...=,log-,,𝐾-𝑜𝑎...+,log-,,𝑓-𝑜𝑚...−11.91,                                                                      (8)
	where ,𝐾-𝑜𝑎. is the congener-specific temperature corrected octanol-air partition coefficient, and ,𝑓-𝑜𝑚. is the fraction of organic matter on atmospheric particles. The wet deposition flux for gas-phase PCB congeners was calculated as
	,𝐽-𝑑𝑤𝑒𝑡.=,𝑄-𝑝𝑟.,𝐶-𝑎.(1−ɸ)/,𝑉-𝐸./,𝐾-𝑎𝑤.,                                                                                    (9)
	where ,𝑄-𝑝𝑟. is precipitation flow rate into the lake. The dry particle deposition flux was calculated as
	,𝐽-𝑝𝑑𝑟𝑦.=,,𝐶-𝑎.ɸ,𝑣-𝑑.,𝑓-𝑑.,𝐴-𝑜.-,𝑉-𝐸..,                                                                                                          (10)
	where ,𝑣-𝑑. is the dry particle deposition velocity, and ,𝑓-𝑑. is the fraction of time it is not raining or snowing (0.9). The wet particle deposition flux was calculated as
	,𝐽-𝑝𝑤𝑒𝑡.=,,𝑊-𝑝.,𝑄-𝑝𝑟.,𝐶-𝑎.ɸ-,𝑉-𝐸...                                                                                                            (11)
	The rate constants in Eqs. (2-4) are defined as follows:
	Flushing rate of the epilimnion, ,𝑘-𝑤𝐸.=,𝑄-,𝑉-𝐸.., where 𝑄 is the total outflow rate from the lake.
	Air-water exchange rate, ,𝑘-𝑎,𝑤-𝑇𝐸..=,𝑓-𝑤𝐸.,,𝑣-𝑎/𝑤.-,ℎ-𝐸..,                                                                   (12)
	where ,ℎ-𝐸. is depth of the epilimnion, and ,𝑓-𝑤𝐸. is fraction dissolved in epilimnion, which was calculated as
	,𝑓-𝑤𝐸.=,1-1+,𝑟-𝑠𝑤.,𝐾-𝑑𝐸..,
	where ,𝑟-𝑠𝑤. is the solid-to-water phase ratio, and ,𝐾-𝑑𝐸. is the distribution coefficient of suspended solids in the epilimnion. Equation (13) was used to calculate ,𝐾-𝑑𝐸..
	,𝐾-𝑑𝐸.=,𝐾-𝑜𝑐𝐸.,𝑓-𝑜𝑐,.                                                                                                               (13)
	where ,𝑓-𝑜𝑐. is fraction of organic carbon content of suspended solids (in the epilimnion and hypolimnion), and the partition coefficient between organic carbon and water (in the epilimnion), ,𝐾-𝑜𝑐𝐸., was calculated as
	,𝐾-𝑜𝑐𝐸.=,10-(0.74,log-,,𝐾-𝑜,𝑤-𝑇𝐸....+0.15).,                                                                                       (14)
	where ,𝐾-𝑜,𝑤-𝑇𝐸.. is the temperature-corrected (in epilimnion) octanol-water partition coefficient for different PCB congeners. An expression similar to ,𝑓-𝑤𝐸. was used to calculate the fraction dissolved in hypolimnion (,𝑓-𝑤𝐻.), while ,𝐾-...
	The removal rate of particles from the epilimnion ,(𝑘-𝑠𝐸.) was calculated as
	,𝑘-𝑠𝐸.=,,𝑉-𝑠.-,ℎ-𝐸..,1−,𝑓-𝑤𝐸..,                                                                                                         (15)
	where ,𝑉-𝑠. is the particle settling velocity from water to sediment, and ,ℎ-𝐸. is the depth of epilimnion.
	The exchange rate (loss from epilimnion by mixing across thermocline), ,𝑘-𝑒𝑥𝐸., and loss from the hypolimnion by mixing across thermocline ,(𝑘-𝑒𝑥𝐻.) were calculated as
	,𝑘-𝑒𝑥𝐸.=,,𝑣-𝑒𝑥.-,ℎ-𝐸..,                                                                                                                       (16)
	,𝑘-𝑒𝑥𝐻.=,,𝑣-𝑒𝑥.-,ℎ-𝐻..,                                                                                                                      (17)
	where ,𝑣-𝑒𝑥. is exchange velocity across thermocline, which was calculated as
	,𝑣-𝑒𝑥.=,,𝐸-𝑡ℎ.-,ℎ-𝑡ℎ..,                                                                                                                         (18)
	where ,𝐸-𝑡ℎ. is vertical diffusion coefficient across thermocline, and ,ℎ-𝑡ℎ. is thermocline thickness. The rate of particle-bound PCB removal from hypolimnion (,𝑘-𝑠𝐻.) was calculated as
	,𝑘-𝑠𝐻.=,,𝑉-𝑠.-,ℎ-𝐻..(1−,𝑓-𝑤𝐻.),                                                                                                        (19)
	The sediment-water exchange rate, ,𝑘-𝑠𝑒𝑑𝑒𝑥. was calculated using
	,𝑘-𝑠𝑒𝑑𝑒𝑥.=,,𝑣-𝑠𝑒𝑑𝑒𝑥.-,ℎ-𝐻..                                                                                                                 (20)
	where ,𝑣-𝑠𝑒𝑑𝑒𝑥. is sediment exchange velocity. Equation (21) was used to calculate ,𝑣-𝑠𝑒𝑑𝑒𝑥..
	,𝑣-𝑠𝑒𝑑𝑒𝑥.=,𝑓-𝑤𝐻.(,𝑣-𝑠𝑒𝑑𝑑𝑖𝑓𝑓.+,𝐾-𝑑-𝑠𝑐.,𝜇-𝑟𝑒𝑠.)                                                                                 (21)
	In Eq. (21), the terms ,𝑣-𝑠𝑒𝑑𝑑𝑖𝑓𝑓., ,𝐾-𝑑-𝑠𝑐., and ,𝜇-𝑟𝑒𝑠. are the diffusive exchange velocity between the SMSL and the hypolimnion, the distribution coefficient in SMSL, and the sediment resuspension rate, respectively. The expressions...
	,𝑣-𝑠𝑒𝑑𝑑𝑖𝑓𝑓.=,,𝐷-𝑃𝐶𝐵𝑖-𝑤.-,𝛿-𝑏𝑙..,                                                                                                             (22)
	where ,𝐷-𝑃𝐶𝐵𝑖-𝑤. is the molecular diffusivity of congener in water (hypolimnion), and ,𝛿-𝑏𝑙. is the aqueous boundary layer thickness in SMSL.
	,𝐾-𝑑-𝑠𝑐.=,𝐾-𝑜𝑐𝐻.,𝑓-𝑜𝑐𝑠.,                                                                                                              (23)
	where ,𝑓-𝑜𝑐𝑠. is the mass fraction of organic carbon of SMSL.
	The sediment mixed layer mass per area (𝑚) was calculated as
	𝑚=,𝑧-𝑚𝑖𝑥.(1−,𝜑-𝑠𝑐.),𝜌-𝑠𝑐.,                                                                                                  (24)
	where ,𝑧-𝑚𝑖𝑥. is sediment mixed layer depth, ,𝜑-𝑠𝑐. is porosity of sediment, and ,𝜌-𝑠𝑐. is density of sediment. Eqs. (2-4) were solved numerically using MATLAB® solver ODE45, which yielded the concentrations (,𝐶-𝑤.𝐸, ,𝐶-𝑤.𝐻, and ,𝐶-𝑠...

	3.2.4 Model validation
	3.2.4.1 Data sets of measured PCB concentrations in water
	To compare the congener-specific modeled PCB concentrations in epilimnion water (i.e., ,𝐶-𝑤.𝐸) with measured concentrations, we used the following data sets: measurements from 1986 reported by Baker and Eisenreich (1990), measurements conducted in ...
	3.2.4.2 Data sets of measured PCB concentrations in sediment
	Reliable data of congener-specific measured PCB concentrations from surficial sediment in Lake Superior are very limited. Moreover, measurements from recent years (e.g., after 2002) are lacking. To evaluate the modeled sediment concentrations (,𝐶-𝑠....

	3.2.5 Uncertainty analysis
	Large uncertainties are associated with several input parameters relating to lake characteristics and thermodynamic properties of individual PCB congeners. To assess the influence of these uncertainties on the modeled concentrations, four parameters (...

	3.2.6 Modeling of PCB concentrations in fish
	To provide an estimate of the time response of PCB concentrations in fish as a function of declining water concentrations, we applied a simple first-order bioaccumulation model. This model is based on the assumption that the rate of change in PCB conc...
	,𝑑,𝐶-𝑓𝑖𝑠ℎ.-𝑑𝑡.=,𝑘-𝐷.,𝐶-𝐷.−,𝑘-𝐸.,𝐶-𝑓𝑖𝑠ℎ.,                                                                                                (25)
	where ,𝐶-𝑓𝑖𝑠ℎ. and ,𝐶-𝐷. are the PCB concentrations in the target predatory fish (e.g., lake trout) and in the prey (diet) item in the food web, respectively. The dietary uptake clearance rate constant ,𝑘-𝐷. is a linear function of the dietary...
	,𝑘-𝐷.=,,𝐸-𝐷.,𝐺-𝐷.-,𝑊-𝐵...                                                                                                                       (26)
	To provide an estimate of congener specific dietary PCB transfer efficiency, ,𝐸-𝐷. was calculated as a function of ,𝐾-𝑜𝑤. using Eq. (27).
	,𝐸-𝐷.,=(3.0×,10-−7.,𝐾-𝑜𝑤.+2.0)-−1..                                                                                    (27)
	To estimate the feeding rates in cold-water fish species, Arnot and Gobas (2004) suggested the following bioenergetic relationship based on studies of lake trout.
	,𝐺-𝐷.=0.022,𝑊-𝐵-0.85.,exp-,0.06𝑇..,                                                                                       (28)
	where 𝑇 is the water temperature in  C.
	Assuming a first-order rate of decline in the modeled concentrations in hypolimnion water, ,𝐶-𝑤.𝐻 was expressed as
	,𝑑,𝐶-𝑤.𝐻-𝑑𝑡.=,−𝑘-𝑤𝐻.,𝐶-𝑤.𝐻.                                                                                                         (29)
	The concentration of any given PCB congener can be determined by integrating Eq. (29) as
	,𝐶-𝑤.𝐻=,,𝐶-𝑤.𝐻-(𝑡=0).,𝑒-−,𝑘-𝑤𝐻.𝑡.,                                                                                                 (30)
	where ,𝑘-𝑤𝐻. is the first-order rate of constant (yr-1) at which the PCB concentrations in the hypolimnion decrease, and ,,𝐶-𝑤.𝐻-(𝑡=0). is the concentration at time, t = 0. We used a congener-specific bioaccumulation factors (𝐵𝐴𝐹; ratio of c...
	,𝑑,𝐶-𝑓𝑖𝑠ℎ.-𝑑𝑡.=,𝑘-𝐷.,,𝐵𝐴𝐹-𝑖.-𝛼.,𝐶-𝑤.𝐻−,𝑘-𝐸.,𝐶-𝑓𝑖𝑠ℎ..                                                                                     (31)
	Substituting Eq. (30) into Eq. (31) yields
	,𝑑,𝐶-𝑓𝑖𝑠ℎ.-𝑑𝑡.+,𝑘-𝐸.,𝐶-𝑓𝑖𝑠ℎ.=,𝑘-𝐷.,,𝐵𝐴𝐹-𝑖.-𝛼.,,𝐶-𝑤.𝐻-(𝑡=0).,𝑒-−,𝑘-𝑤𝐻.𝑡..                                                                  (32)
	The solution to Eq. (32) is
	,𝐶-𝑓𝑖𝑠ℎ.=,,,𝐵𝐴𝐹-𝑖.-𝛼.,𝑘-𝐷.,𝑘-𝑤𝐻.,,𝐶-𝑤.𝐻-,𝑡=0..-,𝑘-𝐸.−,𝑘-𝑤𝐻..(,𝑒-−,𝑘-𝑤𝐻.𝑡.−,𝑒-−,𝑘-𝐸.𝑡.)                                                                  (33)
	where 𝛼=,,10-(𝑙𝑜𝑔,𝑇𝑀𝐹-𝑖.×,𝑇𝐿-2.).-,10-(𝑙𝑜𝑔,𝑇𝑀𝐹-𝑖.×,𝑇𝐿-4.)..
	Here, ,𝑇𝐿-𝑖. values were taken as ,𝑇𝐿-2.=2 and ,𝑇𝐿-4.=4. ,𝑇𝑀𝐹-𝑖. values of various PCB congeners were taken from the paper by Houde et al. (2008). ,𝐵𝐴𝐹-𝑖. values of individual PCB congeners related to ,𝐾-𝑜𝑤. values were based on wate...


	3.3 Results and discussion
	To enable an understanding of the role of sediment recycling in modifying PCB concentrations in water layers, the simulations were performed by i) allowing sediment resuspension and ii) turning-off sediment resuspension into the hypolimnion. Using the...
	3.3.1 PCB concentrations in water
	The modeled ,𝐶-𝑤.𝐸, both with and without particle resuspension fluxes from the sediment layer (i.e., SMSL) to epilimnion waters is shown by the solid black and dashed red lines, respectively, in Figs. 4 (A-F). These results suggest that particle r...
	The measured and modeled concentrations (annual or seasonal mean) for six PCB congeners are contrasted in Figs. 4 (A-F). Since differences between modeled ,𝐶-𝑤.𝐸 and ,𝐶-𝑤.𝐻 were small, the following results and discussion focus on the epilimnion...
	Table 3. Comparison between modeled and measured PCB concentrations in water.
	In general, the long-term trends in the modeled PCB concentrations (,𝐶-𝑤.𝐸) were in accord with the trends of historic production and atmospheric emissions of the six PCB congeners (Fig. 2) with few exceptions. Firstly, even though the U.S. product...
	Figure 4. Simulated historical congener-specific PCB concentrations in water (epilimnion), ,𝐶-𝑤.𝐸 and comparison with measurements. The vertical lines indicate the uncertainty (in terms of standard deviation) in measured concentrations.

	3.3.2 PCB concentrations in surficial sediment
	It is evident from Figs. 5 (A-G) that sediment resuspension exhibited a noticeable effect on the modeled ,𝐶-𝑠. as chlorination increases (e.g., PCB 18 in Fig. 5A vs. PCB 194 in Fig. 5G). This finding suggests that the high MW congeners are more sens...
	The rates of decline in PCB concentrations in the SMSL were controlled partially by the physicochemical properties of the congeners. Figure 5(A-G) shows that after the U.S. production ban in 1979, the modeled ,𝐶-𝑠. of the low MW congeners declined r...
	Because the sediment concentration data sets (i.e., Baker and Eisenreich, 1989 and Li et al., 2009) consisted of sediment core measurements collected across various locations in Lake Superior, these measurements were grouped based on proximity of the ...
	Table 4. Comparison between modeled and measured PCB concentrations in SMSL.
	Figure 5. Simulated historical congener-specific PCB concentrations in SMSL, ,𝐶-𝑠., and comparison with measurement (denoted by the symbols).
	The results indicate that simulated PCB concentrations increased by seven to nine orders of magnitude as compared to early-1930s levels. The time lag between the highest modeled concentrations and the peak U.S. production year (1970) was from three to...
	We invoke a few possible explanations for the disagreement between the modeled and measured water and sediment concentrations. First, the model applied herein was intended to provide lake-wide average concentrations; thus, it is challenging to capture...

	3.3.3 Comparison of temporal trends of PCB concentrations in air, water, sediment, and fish
	To provide a relative comparison of how fast concentrations in the water layers (epilimnion and hypolimnion), sediment layer (SMSL), and fish are changing compared to atmospheric concentrations of PCBs, we fitted the annual mean modeled concentration ...
	,ln-,𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛..=,𝑎-0.+𝑎𝑡,                                                                                      (34)
	where concentration is the total (n = 6) PCB concentrations in air, water layers, SMSL, and fish, 𝑎 is the first-order rate constant with units of years-1 and ,𝑎-0. is the intercept. We used PCB concentrations in air and modeled concentrations in wa...
	,𝑡-1/2.=,−ln(2)-𝑎..                                                                                               (35)
	The PCB concentration decline in all four environmental compartments and fish and the estimated half-lives are shown in Figure 6. For all cases, the regressions are statistically significant at p < 0.05. As illustrated in Fig. 6A, the concentration of...
	Unlike lake water, lake sediments have been responding at a slower rate, ca. 4 % decline in ,𝑛=6-𝑃𝐶𝐵. concentrations per year (first-order rate constant of -0.04 yr-1) with a ,𝑡-1/2. = 17.6 years. This rate of decline is consistent with rates der...
	Figure 6. (A). Half-lives of total (n = 6) PCBs in various media in Lake Superior and (B). Comparison between half-lives in fish using modeled (in blue) and measured PCB concentrations at two sites: Keweenaw Point, MI (in red), and Wisconsin sites (in...
	The PCB concentrations in top predator fish (e.g., lake trout) data have been regarded as a useful indicator of contamination and long-term trends in the aquatic system (Hites and Forti, 2005; Chang et al., 2012). Several monitoring agencies (U.S. Env...
	Table 5. Summary of temporal trends in fish PCB concentrations in Lake Superior.
	Collectively, the trend analysis results in Fig. 6 suggest that fish PCB concentrations in Lake Superior are declining at a much slower rate than that of air, water, and sediment. The coupled water-sediment model cannot explain this slow recovery in l...

	3.3.4 Uncertainty analysis
	A major objective of performing the uncertainty analysis was to examine how uncertainties in four selected parameter values affect the resulting half-lives of total PCBs estimated for water and sediment. Following this approach, one could compare the ...
	3.3.4.1 Uncertainties in modeled water (epilimnion) concentrations
	The resulting changes in the modeled PCB concentrations in the epilimnion in regard to uncertainties in ,𝑉-𝑠. are shown Fig. S1(A-F). These results indicated that the low to medium MW congeners (PCBs 18, 52, 118, and 153) were less sensitive to the ...
	For each sensitivity simulation, the half-lives of total (n = 6) PCB concentrations were calculated. The ,𝑡-1/2. in the epilimnion varied from 9.8 to 13.5 years, while the ,𝑡-1/2. for the base case was 12.2 years. In the hypolimnion, ,𝑡-1/2. varied...
	3.3.4.2 Uncertainties in the modeled SMSL concentrations
	For low to medium MW congeners (PCBs 18, 52, 118, and 153), the uncertainties in ,𝑉-𝑠. exhibited a small effect on the modeled ,𝐶-𝑠. (Fig. S5(A-D)). ,𝐶-𝑠. for PCBs 180 and 194 were the most sensitive to changes in ,𝑉-𝑠. (Fig. S5(E-F)). For the...
	Following model uncertainty analysis, the simulated aqueous and sediment concentrations were interpreted to provide further insight into the relative (dis)agreement between the model and measurements. One can see from the model runs if these parameter...
	From the uncertainty analysis, we determined the ranges in ,𝑡-1/2  .for water (11.3 to 13.8 years) and for sediment (11.1 to 20.9 years). These half-lives were well below the ,𝑡-1/2  .(measured) for fish as illustrated in Fig. 6B. This finding indic...
	Table 6. Half-lives of total PCBs in Lake Superior water and sediment.
	Together, the range in half-lives obtained through uncertainty analysis were lower than the half-life of fish PCB concentrations at the Keweenaw Point and sites. This finding strengthens the hypothesis that sediment resuspension does not control the o...


	3.4 Conclusions
	We applied a coupled atmosphere-water-sediment model to investigate the long-term (1930-2013) behavior of PCBs in Lake Superior. The findings point out that the U.S. ban on PCB production in 1979 has been effective in reducing atmospheric concentratio...
	There are several limitations to our modeling approach. First, we did not include secondary emissions while estimating the congener-specific concentrations of the six congeners. Second, recycling of PCBs associated with carbon cycling was not included...
	The temporal trend analyses from 1990 to 2013 indicated that the PCB concentrations in the atmosphere and the water are declining at about the same rate (,𝑡-1/2.≈12 years). However, the estimated ,𝑡-1/2. in the sediment lags that in the water by ca....
	A supplemental information (S.I.) (section 3.6) is provided after the references. The S.I. section includes the table of PCB physiochemical properties and the figures from uncertainty analysis presented in section 3.3.4.
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	Figure S7. Sensitivity of modeled sediment layer PCB concentrations (,𝐶-𝑠.) to octonal-water partition coefficient (,𝐾-𝑜𝑤.).
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