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Abstract: Condorcet's classic jury theorem shows that when the members of a group 

have noisy but independent information about what is best for the group as a whole, 

majority decisions tend to outperform dictatorial ones. When voting is supplemented by 

communication, however, the resulting interdependencies between decision-makers can 

strengthen or undermine this effect: they can facilitate information pooling, but also 

amplify errors. We consider an intriguing non-human case of independent information 

pooling combined with communication: the case of nest-site choice by honey bee 

swarms. It is empirically well-documented that when there are different nest sites that 

vary in quality, the bees usually choose the best one. We develop a new agent-based 

model of the bees’ decision process and show that its remarkable reliability stems from a 

particular interplay of independence and interdependence between the bees. 

Keywords: Group decision making, honey bees, nest-site choice, Condorcet’s jury 

theorem, information pooling, independence, interdependence, agent-based model, 

computer simulation 

                                                 
1 This paper is based on an unpublished manuscript of January 2005. We are grateful to 

Larissa Conradt, Kai Spiekermann and two anonymous referees for helpful comments.  
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INTRODUCTION 

Since the Marquis de Condorcet’s work in the 18th century it is known that, when the 

members of a group have only noisy and partially reliable information about what is best 

for the group as a whole, democratic decisions tend to outperform dictatorial ones. 

Condorcet showed that, if each member of a jury has an equal and independent chance 

better than random, but worse than perfect, of making a correct judgment on whether a 

defendant is guilty, the majority of jurors is more likely to be correct than each individual 

juror. Moreover, the probability of a correct majority judgment approaches certainty as 

the jury size increases. This result is a consequence of the law of large numbers: From 

many independent but noisy signals, majority voting can extract the information while 

filtering out the noise.  

This insight, which has become known as “Condorcet’s jury theorem”, has sparked a 

large body of social-scientific work on the reliability of various decision procedures in 

juries, committees, legislatures, electorates and other settings (e.g., Grofman et al. 1983, 

Borland 1989, Austen-Smith and Banks 1996, List and Goodin 2001, List 2004). While 

the original theorem highlights the benefits of pooling independent information held by 

multiple individuals, a complexity arises in collective decisions when voting is 

supplemented by communication, as investigated by the theory of deliberative democracy 

(e.g., Elster 1986, Miller 1992, Knight and Johnson 1994, Dryzek and List 2003, Austen-

Smith and Feddersen forthcoming). Communication can create interdependencies 

between decision-makers. On the one hand, these may facilitate information pooling and 

filtering (e.g., Luskin et al. 2002, Farrar et al. forthcoming), but on the other, they may 

also lead to the amplification of certain errors, such as in fads and informational 

cascades, as briefly discussed at the end of this paper (e.g., Bikhchandani et al. 1992, 

Zuber et al. 1992, Sunstein 2002, 2006).  

In this paper, we consider an intriguing non-human case of information pooling 

combined with communication: the case of nest-site choice by honey bee swarms. We 

present a new theoretical model of the honey bees’ collective decision process and 

investigate the role played by both information pooling and communication in it. 

It is a long-standing empirical fact that, in late spring or early summer, a colony of honey 

bees that has reached a certain size tends to divide itself: the queen leaves with roughly 

two thirds of the worker bees, and a daughter queen stays behind in the parental nest with 
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the rest of the worker bees. How does the swarm that has left the colony find a new 

home? Empirical work by Lindauer (1955) and Seeley et al. (2006) has revealed a 

mechanism involving a “search committee” of several hundred bees – the scouts – who 

fly out to inspect potential nest sites and then come back and perform waggle dances to 

advertise any good sites they have discovered. Initially, the scouts visit and inspect sites 

randomly, but once the dancing activity has built up, they are more likely to visit and 

inspect the sites advertised by others. Back at the swarm, each bee dances for the site she 

has inspected, with the duration of the dance depending on her perception of the site’s 

quality: the better the site, the longer the dance. Thus high-quality sites receive more 

advertisement and are visited by more scout bees, which in turn generate even more 

dance activity for these sites. The process eventually leads to a “consensus”: The dancing 

and visiting concentrates on one popular site, and the swarm moves there. (The bees’ 

final decision to move appears to involve “quorum sensing”, as discussed by Seeley and 

Visscher 2003.) The striking empirical fact is that, when different possible nest sites vary 

in quality, the bees usually choose the best one (Seeley and Buhrman 2001).  

While the empirical details of this process are well understood, the mechanisms 

underlying its striking reliability still lack a full explanation. Our model of the bees’ 

decision making is innovative in combining two features: first, it is agent-based, in the 

sense that we explicitly model the individual behaviour of each scout as a simple 

stochastic process, and second and more importantly, it integrates insights from 

Condorcet’s jury theorem with insights from the theory of deliberative democracy. Using 

computer simulations based on this model, we are able to predict that, under a wide range 

of parameter conditions, a consensus among the bees emerges for the best nest site with a 

high probability, even when the quality differences between sites are relatively small. 

Furthermore, we show that the remarkable reliability of the bees’ decision process stems 

from a particular interplay of independence and interdependence between the bees, as 

defined formally below. 

Other mathematical models of nest-site choice by honey bees are a differential-equation 

model by Britton et al. (2002), a matrix model by Myerscough (2003), another agent-

based model by Passino and Seeley (2006), and a density-dependent Markov process 

model by Perdriau and Myerscough (2007). While shedding light on several important 

aspects of the bees’ decision process, none of these models exhibits both main 

characteristics of ours, i.e., being agent-based and explicitly modelling the interplay 
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between independence and interdependence. Moreover, our model is particularly 

parsimonious and makes very robust predictions. Since our computational results appear 

to be consistent with existing empirical findings about the bees, we suggest that our 

model adequately captures some key elements of the bees’ decision-making process. 

The paper is structured as follows. After a formal exposition of our model, we state our 

two main hypotheses about the bees’ decision process. The first is, roughly, that this 

process is robustly reliable for a large class of parameter conditions, and the second that 

the presence of both independence and interdependence between individual bees is 

necessary and sufficient for the overall reliability. Methodologically, both hypotheses are 

formulated as hypotheses about our model of the bees rather than as hypotheses about the 

real-world bees themselves; but to the extent that the model behaviour is consistent with 

the empirically observed behaviour of the bees, our hypotheses can be considered 

empirically adequate as well. To provide a computational test of our hypotheses, we 

finally report our computer simulations, followed by a brief concluding discussion. 

MODEL 

Basic ingredients of the model 

There are n scout bees, labelled 1, 2, …, n, who participate in the decision-making 

process, and there are k potential nest sites, labelled 1, 2, …, k, where each nest site j has 

an objective quality qj ≥ 0. We assume discrete time periods, labelled 1, 2, 3, …, and 

explicitly model the behaviour of all n individual scout bees in each period. 

At each time, a scout bee can be in one of two states: either she dances for one of the k 

potential nest sites, or she does not dance for any site, which can mean that she has not 

yet found a site, she has flown out to search for sites, she is observing other bees, or she 

is resting. Formally, the state of bee i at time t is represented by a two-component vector 

xi,t = (si,t,di,t), where 

• si,t∈{0,1,2,…,k} is the site for which bee i dances at time t, with si,t = 0 

meaning that she does not dance at time t, and  

• di,t ≥ 0 is the remaining duration of bee i’s dance at time t. 

We initialize the model by assuming there is no dancing activity at time 1, i.e., for all i, 

xi,1 = (0,0). 
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How each bee changes her state from one time period to the next 

As in any agent-based model, the state of bee i at time t+1 depends on her own state at 

time t and the state of other bees at time t. We need to distinguish between two cases: 

Either bee i does not dance for any site at time t, in which case she may or may not fly 

out and find a site to dance for at time t+1. Or she already dances for one of the sites at 

time t, in which case she continues her dance at time t+1 unless its duration is over. We 

now discuss each case in turn. 

Case 1: Bee i does not dance for any site at time t (i.e., si,t = 0).  

In this case, she has a certain probability of flying to one of the k sites and inspecting it. 

For each site j, we write pj,t+1 to denote the probability that the bee finds site j and dances 

for it at time t+1. Further, p0,t+1 denotes the probability that the bee remains at rest or 

finds no site, so that she does not dance at time t+1. Thus the first component of the bee’s 

state at time t+1, namely si,t+1, takes the values 1, 2, …, k (one of the sites) or 0 (no site) 

with probabilities p1,t+1, p2,t+1, …, pk,t+1 and p0,t+1, respectively. By definition, these 

probabilities add up to 1. 

How are the probabilities determined? The probability that a bee finds a given site 

depends on two factors: first, an a priori probability of how likely she is to find that site 

without any advertisement by other bees (this may depend on the site’s location, distance 

from the swarm etc.), and second, the proportion of bees dancing for it. Formally, for 

each j (including the case j = 0 of no site), we define 

,)1( ,1, tjjtj fp λπλ +−=+  

where π j is the a priori probability of the jth site, fj,t is the proportion of bees dancing for 

site j at time t, and λ is the relevant weight, ranging between 0 and 1. The weight 

λ captures the amount of interdependence between the bees. If λ = 0, each bee’s 

probabilities of finding the various sites remain the a priori probabilities, regardless of 

how many bees dance for them: this is the limiting case in which the bees do not 

influence each other at all through communication. If λ = 1, by contrast, each bee’s 

probabilities of finding the various sites are perfectly proportional to the numbers of bees 

dancing for them: this is the opposite limiting case in which the bees’ dancing completely 

determines all bees’ decisions to inspect the various sites.  
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It remains to define the second component of bee i’s state at time t+1, her dance duration 

di,t+1 if she has begun a dance for one of the k sites, say site j. (If she has found no site, 

di,t+1 is set to zero.) Initially, we assume that di,t+1 is always stochastically determined by 

the bee’s independent assessment of site j’s true quality qj. Later, we allow that there is a 

probability µ ≥ 0 that di,t+1 is unrelated to qj, so as to capture the possibility that the bee’s 

dance is prompted by mimicking other bees rather than by an inspection of site j. A value 

of µ = 0 represents the original case in which bees always independently assess a site’s 

quality before dancing for it, while a value of µ = 1 represents the opposite case in which 

bees join dances solely based on the probability distribution (p1,t+1,p2,t+1,…, pk,t+1) over 

the k sites and thus – given a sufficiently large value of λ – based on mimicking the 

dances of others, without paying attention to any site’s quality. Generally, 

�
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� −
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where Tσ is a normally distributed random variable with mean 0 and standard deviation 

σ ≥ 0, and K (relevant only in the case of mimicking) is some strictly positive constant. 

The parameter σ specifies the bee’s reliability; a small value of σ corresponds to a high 

reliability, a large value to a low one. Under our definition, the bee’s dance duration for 

any given site fluctuates around the numerical value of the site’s true quality (setting 

aside the case of mimicking, where the dance duration fluctuates around the quality-

independent constant K). The bee’s error is multiplicative, i.e., an overestimation of the 

site’s quality by a factor of c > 0 – i.e., the bee erroneously takes the site’s quality to be c 

times its true quality – is as likely as an underestimation by the same factor – i.e., she 

takes the site’s quality to be 1/c times its true quality. Our results are robust to changes in 

the functional form of the error; e.g., we obtain similar results when the error takes an 

additive rather than multiplicative form. 

Case 2: Bee i dances for one of the sites – say site j – at time t (i.e., si,t > 0).  

In this case, she continues to dance for the same site at time t+1 with the remaining dance 

time reduced by one period, unless that dance time is over; in the latter case, her state is 

re-set to the state of no dancing. Formally, 
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When is a consensus reached? 

So far we have only modelled the behaviour of individual scout bees and have not yet 

explained what it means for a “consensus” to emerge among them. From the states of the 

n bees at each time, we can determine the total number of bees dancing for each site at 

that time. Specifically, for each j (including the case j = 0 of no site), the number of bees 

dancing for site j at time t is  

.}:{ ,, jsin titj ==  

Now different criteria of “consensus” are conceivable. Generally, a consensus criterion 

can be understood as a mapping from the individual-level pattern of dance activity to a 

chosen nest site. According to one such criterion, a consensus for a site j at a given time t 

would require that all the bees engaged in dance activity at time t support site j, i.e., nj,t > 

0 while nh,t = 0 for all h ≠ j with h ≠ 0. However, as shown by Seeley and Visscher 

(2003), a consensus in this unanimitarian sense is not necessary, nor even generally 

sufficient, for the bees’ selection of a nest site. Instead, the bees appear to make decisions 

by “quorum”, requiring merely “sufficient” support for a site to be chosen.  

This can be modelled in a number of different ways. For the present purposes, we focus 

on two illustrative criteria. According to the first and less demanding criterion – which is 

arguably too weak to capture the “quorum” requirement fully – site j is the winner at time 

t if it receives more support than any other site at t, i.e., nj,t > nh,t for any h ≠ j with h ≠ 0. 

According to the second and more demanding criterion, site j is the winner at time t if it 

meets a two-part condition: (i) it receives more than twice the amount of support received 

by the second most popular site (i.e., nj,t > 2nh,t for any h ≠ j with h ≠ 0), and (ii) more 

than 20% of the scout bees are engaged in dance activity at t (i.e., n0,t < 0.8n). 

Our model would also allow the use of other consensus criteria, but these would yield 

broadly similar results about the bees’ overall reliability. Differences between such 

criteria would become more significant in relation to speed-accuracy trade-offs, which 

are not the focus of this paper.  

HYPOTHESES 

Since our model is designed to represent the bees’ empirically observed decision-making 

behaviour, the model should predict the reliability of the bees’ decision-process under 
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empirically realistic assumptions. What do we mean by “realistic”? It is reasonable to 

assume, first, that individual bees are neither very reliable nor completely unreliable, and 

second, that the bees’ waggle dances have a significant but not exclusive influence on 

other bees’ decisions to investigate potential nest sites. The first assumption corresponds 

to a non-extremal value of the bees’ reliability parameter σ, and the second to a non-

extremal value of the interdependence parameter λ. Initially, we assume no mimicking 

between the bees (i.e., µ = 0).�We expect the following: 

Hypothesis 1: Under a wide range of non-extremal parameter values of σ and 

λ (and µ = 0), the bees choose the best nest site. 

Assuming this hypothesis turns out to be true – which is consistent with Seeley’s 

empirical observations – we are also interested in explaining why this is the case. As 

already indicated in the introduction, we suggest that two characteristics of the bees’ 

decision process stand out. First, the bees are independent in that they individually 

inspect potential nest sites and dance to advertise them as a function of their individual 

quality assessments of these sites; they do not blindly join a dance for a nest site without 

having inspected the site themselves (i.e., µ is zero or low). We can express this in the 

language of probability theory by saying that, conditional on having identified a 

particular site, each bee’s dance duration for that site is independent of other bees’ dance 

durations for it. Second, the bees are interdependent in that they are more likely to 

inspect nest sites advertised by others (i.e., λ is high). Expressed in probability-theoretic 

terms, the identification of a particular site by one bee is correlated with the identification 

of that site by others. We hypothesize that the reliability of the bees’ decision process is 

driven by the interplay of these two characteristics: 

Hypothesis 2: The bees’ independence in assessing the various sites’ quality and 

their interdependence through communication are both necessary and sufficient for 

the reliability of the bees’ decision process. 

Both hypotheses are deliberately stated informally here, but their operationalization will 

become clearer in the context of our computer simulations. 
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COMPUTER SIMULATIONS 

Basic description 

Implementing the model above as a Mathematica programme, we ran a number of 

computer simulations of the bees’ nest-site choice under various parameter conditions. 

To ensure comparability across simulations, we fixed the number of scout bees at n = 200 

and the number of potential nest sites at k = 5. These assumptions are empirically 

motivated: there are usually several hundred scouts in a swarm, and there were typically 

five candidate nest sites in the experiments conducted by Seeley and others on Appledore 

Island, off the coast of Maine.  

We also fixed the objective quality levels q1, …, q5 of the five nest sites at 3, 5, 7, 9, 10, 

respectively, thus making it intuitively difficult for the bees to distinguish the two or 

three best nest sites. (Even when individual reliability is high, e.g., σ = 0.2, the intervals 

in which individual quality assessments of the two best sites are likely to fall, namely  

[9exp(-0.2), 9exp(0.2)] = [7.37, 10.99] and [10exp(-0.2), 10exp(0.2)] = [8.19, 12.21], 

overlap significantly. When individual reliability is lower, e.g., σ = 1, the overlap 

between these intervals, now [3.31, 24.46] and [3.68, 27.18], grows further.)  

We further assumed that when a bee flies out randomly without following any other bees’ 

advertisement for a site, she has a 25% percent probability of finding some site, where 

the probability is equally distributed over the five sites (i.e., π1 =  … = π5 = 5%, and π0 = 

75%). In all simulations, we calculated the bees’ behaviour for 300 time periods, though 

a consensus, under both criteria introduced above, often emerged in less time. We 

verified that our findings are robust to changes in the choice of these fixed parameters. 

Our first set of simulations was run to test hypothesis 1 by investigating the reliability of 

the bees’ decision process under a range of empirically motivated, non-extremal 

assumptions about individual bees’ reliability (σ) and their interdependence through 

signalling (λ), in each case assuming no mimicking (µ = 0). As reported below, our 

simulations broadly confirm hypothesis 1.  

Our second set of simulations was designed to test hypothesis 2, focusing on the 

mechanisms underlying the reliability of the bees’ decision process. To isolate the effects 

of independent assessments of the various sites’ quality by the bees and communicative 
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interdependence between them, we varied the parameters µ and σ such that one of these 

two characteristics was completely or partially absent from the bees’ decision making.  

To model the full or partial absence of independence, we considered non-zero values of 

µ, thereby allowing that a bee may join a dance for a site not on the basis of her 

independent assessment of its quality but merely as a result of mimicking other bees 

dancing for it (we set the relevant constant K equal to the maximal nest-site quality, but 

other values of K would yield similar results). Recall that our original case µ = 0 meant 

that bees always independently assess a site’s quality before dancing for it. By contrast, 

the higher the value of µ, the less likely it is that a bee independently assesses a site’s 

quality before dancing for it. In the limiting case µ = 1, bees join dances randomly, based 

only on the probability distribution over sites, without paying attention to any site’s 

quality (i.e., the dance duration is determined by the site-quality-independent random 

variable Kexp(Tσ), as defined above). Our simulation results reported below are 

consistent with hypothesis 2, showing that high values of µ undermine the reliability of 

the bees’ decision process, while low values support it. 

To model the full or partial absence of interdependence between the bees, we varied the 

parameter λ. As already noted, a value of zero implies that each bee’s probabilities of 

finding the various nest sites remain the a priori probabilities, regardless of other bees’ 

dancing activity; a value of one implies that each bee’s probabilities of finding those sites 

are perfectly proportional to the numbers of bees dancing for them; no other factors lead 

a bee to inspect any site. Here, too, our simulation results are consistent with hypothesis 

2; low values of λ undermine the reliability of the bees’ decision process while high 

values reinforce it. An exception arises for the limiting case λ = 1, where the bees’ 

probabilities of finding the different sites are given by the existing dance proportions for 

those sites. Here there is not enough noise in the system for bees to discover any new 

sites not advertised by others. Small noisy deviations from perfect proportionality (i.e., λ 

< 1) are necessary to permit the discovery of new sites. 

Results on hypothesis 1 

Our first simulations capture what may be described as a best-case scenario: the 

reliability of bees in assessing sites is good (σ = 0.2), and their interdependence through 

communication is high (λ = 0.8). Figure 1 shows an illustrative simulation for these 
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parameter values. The figure shows the number of bees engaged in dance activity for 

each of the five nest sites at each of the 300 time periods calculated. It is easy to see that 

after some initial amount of dance activity for other sites, the dance activity concentrates 

on the best site (site 5). To confirm that this pattern is not accidental, we repeated the 

simulation with the same parameter values 250 times. In each case, we determined the 

consensus winner using the two illustrative criteria introduced above, applied to the last 

time period of the simulation. Recall that according to the first and weaker criterion, a 

site wins if it receives more support than any other site; according to the second and 

stronger criterion, a site wins if it receives more than twice the amount of support 

received by the second most popular site and at least 20% of the scout bees are engaged 

in dance activity. For the present parameter values (λ = 0.8 and σ = 0.2), the best nest site 

emerged as the winner in nearly all cases, regardless of which criterion for a consensus 

was employed: Under the first criterion, the best site was chosen every time; under the 

second, it was chosen 246 times, while no site met the winner criterion in the remaining 

four cases. 

In our next simulations, the interdependence between bees is reduced to a lower level 

(λ = 0.5), while the other parameter values remain as before. Figure 2 shows a 

representative simulation. While the best site (site 5) continues to receive the most 

support, there is also considerable dance activity for other sites, particularly the second 

best (site 4), throughout all time periods. The consensus is less strong here. Again we 

repeated the simulation for the same parameter values 250 times. Under the less 

demanding criterion of consensus, the best nest site emerged as the winner 226 times and 

the second best 22 times, with no winner in the remaining two cases; under the more 

demanding criterion, the best site won 104 times, with no winner in all other cases. 

A further reduction in the interdependence between bees (to λ = 0.2) weakens the 

emergence of a consensus even more significantly, as shown in Figure 3. In 250 

repetitions, this effect is particularly evident when we employ the more demanding one 

of our two criteria for consensus. While under the weaker criterion the best site (site 5) 

still won 176 times (and the second best 63 times, the third best once, and no winner ten 

times), under the stronger criterion the best site won only 11 times and the second best 

once, with no consensus in the other 238 cases. 
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Figure 1: High reliability, high interdependence 

 
 

Figure 4: Low reliability, high interdependence 

 

Figure 2: High reliability, medium interdependence 

 
 

Figure 5: Low reliability, medium interdependence 

 

Figure 3: High reliability, low interdependence 

 
 

Figure 6: Low reliability, low interdependence 

 
Figures 1-6: Illustrative simulations to test hypothesis 1 

Having focused so far on the case in which bees are highly reliable in assessing nest sites, 

let us now introduce more noise into the bees’ individual assessment of sites (setting 

σ=1). Strikingly, if interdependence between bees is high (i.e., λ = 0.8), the overall 

pattern remains broadly the same as in the best-case scenario reported earlier. Figure 4 

shows a sample calculation. In 250 repetitions of the simulation, the best site (site 5) 
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emerged as the consensus choice, even under the stronger criterion, 199 times and the 

second best site five times (site 4), with no consensus in the remaining 46 cases. Under 

the weaker criterion, the best site won 237 times, the second best 12 times, with no 

winner once.  

Figures 5 and 6 show similar calculations for medium and low levels of interdependence 

(i.e., λ = 0.5 and λ = 0.2, respectively) and essentially confirm the earlier results for 

higher individual reliability. In 250 repetitions of the simulations for a medium level of 

interdependence, the best site emerged as the winner under the strong criterion 94 times 

and the second best once, with no consensus in all other cases. (Under the weaker 

criterion, the effect is less pronounced: the best site won 220 times and the second best 28 

times, with no winner twice.) When the level of interdependence was low, the best site 

won only 7 times under the strong criterion, with no consensus in the other 243 cases. 

(Under the weaker criterion, the best site won 190 times, the second best 58 times, and in 

the remaining two cases, no consensus emerged.) 

Table 1 summarizes the frequencies of various consensus choices in 250 repetitions of 

the simulations. 

High individual reliability 

(σ = 0.2) 

Low individual reliability 

(σ = 1) 

 

 

 Strong 

consensus 

criterion 

Weak 

consensus 

criterion 

Strong 

consensus 

criterion 

Weak 

consensus 

criterion 

High 

interdependence 

(λ = 0.8) 

1st best site 

2nd best site 

3rd best site 

None 

246  (98.4%) 

0  (0%) 

0  (0%) 

4  (1.6%) 

250  (100%) 

0  (0%) 

0  (0%) 

0  (0%) 

199  (79.6%) 

5  (2%) 

0  (0%) 

46  (18.4%) 

237  (94.8%) 

12  (4.8%) 

0  (0%) 

1  (0.4%) 

Medium 

interdependence 

(λ = 0.5) 

 

1st best site 

2nd best site 

3rd best site 

None 

104  (41.6%) 

0  (0%) 

0  (0%) 

146  (58.4%) 

226  (90.4%) 

22  (8.8%) 

0  (0%) 

2  (0.8%) 

94  (37.6%) 

1  (0.4%) 

0  (0%) 

155  (62%) 

220  (88%) 

28  (11.2%) 

0  (0%) 

2  (0.8%) 

Low 

interdependence 

(λ = 0.2) 

1st best site 

2nd best site 

3rd best site 

None 

11  (4.4%) 

1 (0.4%) 

0  (0%) 

238  (95.2%) 

176  (70.4%) 

63  (25.2%) 

1  (0.4%) 

10  (4%) 

7  (2.8%) 

0  (0%) 

0  (0%) 

243  (97.2%) 

190  (76%) 

58  (23.2%) 

0  (0%) 

2  (0.8%) 

Table 1 
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Results on hypothesis 2 

As indicated, we isolated the effects of independence and interdependence by running 

simulations for the special cases in which one or the other of these two characteristics 

was absent. Figure 7 shows the case in which bees independently assess sites and they are 

also relatively reliable (σ = 0.2), but there is no longer any interdependence between bees 

through communication (λ = 0). No clear consensus winner emerges. Figure 8 shows an 

illustrative case in which interdependence between bees is high (λ = 0.8), but they are no 

longer independent (µ = 1); they all mimic the dances of other bees without 

independently verifying the sites’ quality. In this example, after relatively little initial 

dance activity, a sudden cascade of support for site 2 emerges (the second worst site), 

which is reinforced by the bees’ mimicking of others’ dances. Equally, a cascade of 

support for another site could have randomly emerged. 

Figure 7: Independence without interdependence 

 

Figure 8: Interdependence without independence 

 
Figures 7, 8: Illustrative simulations to test hypothesis 2 

More generally, we ran a large number of simulations with the level of interdependence 

ranging from low (λ = 0) to high (λ = 1), keeping a high individual reliability and 

independence of bees (σ = 0.2 and µ = 0). Figure 9 shows the proportion of wins for each 

of the five sites (in 250 simulations for each set of parameter values), for different levels 

of interdependence, where the winner is calculated using the more demanding criterion. 

The results are qualitatively similar under the less demanding criterion. The best site (site 

5) consistently emerges as the winner only when the level of interdependence is above a 

certain threshold. (Recall our earlier remarks, in the basic description of the computer 

simulations, about the exceptional limiting case λ=1.)  
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Figure 9: Interdependence ranging from low to high 

 

Figure 10: Independence ranging from low to high 

 

Figures 9, 10: Sequences of simulations to test hypothesis 2 

Similarly, we ran a large number of simulations with the level of independence ranging 

from low (µ = 1) to high (µ = 0), keeping a high interdependence of bees and a high 

reliability in the event they do verify a site’s quality (λ = 0.8 and σ = 0.2). Figure 10 

shows the proportion of wins for each site (again in 250 simulations for each set of 

parameter values), for different levels of independence (displayed as 1-µ). Again, we use 

the more demanding criterion of consensus; the results are qualitatively similar under the 

less demanding criterion. The best site (site 5) consistently emerges as the winner only 

when the level of independence is not too low. 

DISCUSSION 

We have developed an agent-based model of nest-site choice among honey bees. The 

model not only explicitly represents the behaviour of each individual bee as a simple 

stochastic process, but it also allows us to simulate the bees’ decision-making behaviour 

under a wide variety of empirically motivated as well as hypothetical assumptions. The 

model predicts that, consistently with empirical observations by Seeley and Buhrman 

(2001), the bees manage to reach a consensus on the best nest site for a large range of 

parameter conditions, under both more and less demanding criteria of “consensus”. 

Moreover, the model shows that the remarkable reliability of the bees’ decision-making 

process stems from the particular interplay of independence and interdependence 

between them. The bees are independent in assessing the quality of different nest sites on 

their own, but interdependent in giving more attention to nest sites that are more strongly 

advertised by others.  

Without interdependence, the rapid convergence of the bees’ dances to a consensus 

would be undermined; there would not be a “snowballing” of attention on the best nest 
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site. Without independence, a consensus would still emerge, but it would no longer 

robustly be on the best nest site; instead, many bees would end up dancing for nest sites 

that accidentally receive some initial support through random fluctuations. It is only 

when independence and interdependence are combined in the right way that the bees 

achieve their remarkable collective reliability. 

To illustrate the importance of both independence and interdependence in collective 

decision making more generally, consider the human example of restaurant choice. If we 

walk into a street with many restaurants, knowing nothing about their quality, we may 

well pick whichever restaurant has the most diners, assuming that these people have 

chosen it for its quality. But if their reasoning was the same, we may all end up in the 

worst restaurant; if we don’t, this is entirely accidental. This phenomenon is called an 

informational cascade (Bikhchandani et al. 1992). It is only if enough people choose a 

restaurant based on independently gathered information that such cascades can be 

avoided. Interdependence without independence can lead everyone to a bad decision. (Of 

course, in the restaurant case, additional complexities arise because differences in 

individual choices are not only due to different information but also due to different 

preferences; in the case of the bees, we have made the simplifying assumption that 

differences in individual choices are solely due to informational differences, 

presupposing that there is an objective quality standard for nest sites.)  

Likewise, independence without interdependence can be suboptimal too. Imagine a world 

without any restaurant reviews or recommendations, where people only ever gather 

information about restaurants by wandering around the streets alone and checking out the 

restaurants they see. It can easily happen, then, that an outstanding but badly located 

restaurant may fail to get many customers because too few people stumble across it. 

The bees’ ingenuity lies in their avoidance of both of these problems. Nature has given 

them the right mix of independence and interdependence. 
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