St. John's Law Review

Volume 74

Number 4 Volume 74, Fall 2000, Number 4 Article 2

March 2012

Better Living Through Software: Promoting Information
Processing Advances Through Patent Incentives

Richard S. Gruner

Follow this and additional works at: https://scholarship.law.stjohns.edu/lawreview

Recommended Citation

Gruner, Richard S. (2000) "Better Living Through Software: Promoting Information Processing Advances
Through Patent Incentives," St. John's Law Review. Vol. 74 : No. 4, Article 2.

Available at: https://scholarship.law.stjohns.edu/lawreview/vol74/iss4/2

This Article is brought to you for free and open access by the Journals at St. John's Law Scholarship Repository. It
has been accepted for inclusion in St. John's Law Review by an authorized editor of St. John's Law Scholarship
Repository. For more information, please contact selbyc@stjohns.edu.

https://scholarship.law.stjohns.edu/lawreview
https://scholarship.law.stjohns.edu/lawreview/vol74
https://scholarship.law.stjohns.edu/lawreview/vol74/iss4
https://scholarship.law.stjohns.edu/lawreview/vol74/iss4/2
https://scholarship.law.stjohns.edu/lawreview?utm_source=scholarship.law.stjohns.edu%2Flawreview%2Fvol74%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.law.stjohns.edu/lawreview/vol74/iss4/2?utm_source=scholarship.law.stjohns.edu%2Flawreview%2Fvol74%2Fiss4%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:selbyc@stjohns.edu

BETTER LIVING THROUGH SOFTWARE:
PROMOTING INFORMATION PROCESSING
ADVANCES THROUGH PATENT
INCENTIVES

RICHARD S. GRUNER"

Increasingly in our daily activities information is power,
computers control information, and software programs! govern

* Registered patent attorney and a former inside counsel for the IBM
Corporation. Professor of Law, Whittier Law School. Member of the New York and
California state bars. LL.M., Columbia University School of Law; J.D., USC Law
School; B.S., Caltech.

1 Computer programs are comprised of instructions to computers dictating the
sequence of information processing and storage steps the computers will take. These
instructions are both technological and intellectual products. They are capable of
achieving practical, technologically valuable results. Yet, software instructions are
also intangible, intellectual constructs. One perceptive programmer described this
dual character of software and some of its implications for software patents as
follows:

A computer program is [comprised of] the written instructions by a human

being to tell a computer how to perform a particular task. As such, there

are only two parameters—the input supply to the program and the

expected output. Everything else is literally a figment of someone’s

imagination.

This bears clarification. A computer program is the means of manipulating
the internal data passed through a computer system. There is no
requirement that the manipulations have any correspondence to the real
world. In this, the real world, doing anything requires the expensive
movement of people and goods from one point to another, the possible
refinement of materials into other materials and the expenditure of energy
and resources.

Doing anything in a computer is merely the essentially cost-free movement
of electron paths from one direction to another . . ., [and this creates] a
world in which anything is possible.

There are things that can be done within a computer program that cannot
be done in the real world or would have undesirable consequences. As
such, we should ask whether the patent rules which are designed to apply
to real world conditions where doing something requires the expenditure of

977

978 ST. JOHN’S LAW REVIEW [Vol.74:977

computers.? Direct and significant links exist between software
advances and lifestyle improvements.? Many of the benefits of

energy and resources should apply where the known rules of the universe

do not apply. Because the entire design [of software] starts from scratch,

the designer doesn’t just get to play God, he is God.

United States Patent and Trademark Office, Public Hearing on Use of the Patent
System to Protect Software-Related Inventions 4 (Feb. 10 & 11, 1994) (statement of
Paul Robinson, Chief Programmer, Tansin A. Darcos & Company); see also Michael
A. Dryja, Looking to the Changing Nature of Software for Clues to its Protection, 3
U. BALT. INTELL. PROP. L.J. 109, 111-12 (1995) (explaining the transformation in
computer software programming between 1980 and 1995); David R. Syrowik,
Position Paper: Software Patents—Just Make A Good Thing Better, 2 MICH.
TELECOMM. & TECH. L. REvV. 113 (1996) (visited Oct. 5, 2001)
<http://www.mttlr.org/voltwo/syrowik.pdf> (stating that computer programs are
included not only in software products, but also in most consumer and industrial
products amenable to electronic control).

2 Computer software has changed the fundamental economics of many business
and social activities. As summarized by one analyst:

The economic implications of the digital revolution extend far beyond the

software industry. Any information-based industry will be subject to the

same forces as it automates and moves on-line. Banking, for example, has
traditionally been a diminishing-returns business. But as banking moves
on-line, the work of processing customers’ business is done by cheap
computers, not expensive staff. The bank that has the greatest reach and

can spread its fixed costs over the largest number of customers will be able

to offer the best rates and deals, thereby attracting even more customers.

Enter increasing returns.

The same can be said for all sorts of service industries, from processing
insurance-claims forms to managing inventories. Whenever computers and
networks can greatly diminish variable costs, volume suddenly becomes
all-important: the more the better.... “Everything’s going software,”
says . . . [Stanford economist Brian] Arthur, with a gleam in his eye.

Survey: The Software Industry, THE ECONOMIST, May 25, 1996, at 13-14.

3 See United States Patent and Trademark Office, supra note 1 (statement of
Stephen L. Noe, Intellectual Property Counsel, Caterpillar, Inc.).

The practical impact of software and software-related products is felt in

diverse personal and business activities. For example, software-related

technology . . . include[s] discreet software products like word processors or
speaker timing computers, highly complex custom software that controls
manufacturing systems and imbedded software that controls engines, anti-

lock braking systems [and] perhaps your microwave oven.

Id.

In many settings, software-controlled computer systems have replaced earlier
mechanical designs without necessarily being perceived as fundamentally different
replacements by the users of the products involved. Where this substitution has
improved the performance or price of products, consumers have generally benefited.
The speed, effectiveness, and low cost of computer controls for physical devices and
processes has extended the significance of computer programming and innovation
into almost every engineering field.

The extension of computer applications into diverse fields makes the scope of
patent protections for software technology particularly important. The profusion of

2000] PATENT INCENTIVES FOR SOFTWARE 979

innovative software remain hidden and unappreciated.* Yet,
with the pervasive use of computers, modern society is
increasingly indebted to software innovators for the enjoyment of
“better living through software.”

software-based innovations means that patent incentives for these innovations may
produce benefits in an unusually wide range of fields. Additonally, parity between
patent protections for software and older physical device designs may be desirable
to balance software and physical device development incentives. For example,

[wlhether an automobile engine is controlled by a camshaft or a

microprocessor . . . makes little difference to the driver of that automobile

who only cares that the engine run well and reliably. Patent policy should

not be the factor that forces a manufacturer to choose which tool to use to

control that engine. [Sloftware-related technology [should be treated] like

any other technology within the scope of the patent system. Continued
patent protection of software-related technology is important to the United

State’s industrial competitiveness.

Id.; see also Robert Greene Sterne & Edward J. Kessler, An Overview of Software
Copying Policies in Corporate America, 1 J.L. & TECH. 157, 158-160 (1986)
(studying the increased use of microcomputers in a corporate environment); Jeffrey
S. Goodman, The Policy Implications of Granting Patent Protection to Computer
Software: An Economic Analysis, 37 VAND. L. REV. 147, 175-76 (1984) (arguing that
patent protection of software programs would encourage technological
advancement, leading to an improved standard of living for the average American).

4 This may stem, in part, from the difficulty of measuring the scope and effect
of software usage. As noted by one industry analyst:

Software is so abstract and ephemeral—just ones and zeros, recorded in

tiny magnetic fluctuations or microscopic pockmarks—that its true

economic significance is not always recognized. Computer hardware is
much easier to quantify by the usual measures of the industrial age: chips,
boxes, lorryloads. To use the language of Nicholas Negroponte, the MIT

Media Lab’s digital guru, computers are atoms. Software is bits. Atoms can

be weighed, seen and felt. Bits, like genetic code, are inanimate—until

they are placed into the right vessel. Then they use that vessel’s machinery

to create life.

Survey: The Software Industry, THE ECONOMIST, May 25, 1996, at 17; see also Jim
Salter, A Practical Approach to Claiming Software, 14 SANTA CLARA COMPUTER &
HicH TECH. L.J. 435 (1998).

5 This phrase is an updated version of the slogan “better living through
chemistry,” which the DuPont Corporation used for many years in its advertising.
The substitution of software for chemistry in this updated version of the slogan is
appropriate to reflect the nature of innovation and lifestyle improvements in our
present society. Today, the focus of innovation has shifted from making new
materials through better chemistry, to better managing existing materials and
environments through improved information processing. The enhanced information
processing, which has made this new type of innovation possible, is a product of
improvements in computer hardware capabilities and further advances in software
for applying computers to critical analyses and control tasks. See Samuel A.
Guiberson, The Challenge of Technology in the New Practice of Law, 25 OHIO N.U.
L. REV. 563, 582-83 (1999) (explaining the use of technology in courtrooms); Survey:
The New Economy, THE ECONOMIST, Sept. 23, 2000, at 6-7 (discussing examples of
computer technology’s impact on daily living).

980 ST. JOHN’S LAW REVIEW [Vol.74:977

As computer capabilities improve and computer-based
devices and processes proliferate,® our reliance on software and
improvements in software engineering is likely to increase as
well.7 Information processing by computers is the defining
technology of our age and software design is its guiding force.
Society’s stake in computer processing improvements implies a
corresponding stake in legal standards and constructs that
encourage software advances.

In older fields concerned with the design of physical items or
processes, the primary legal means for encouraging engineering
progress have been patent incentives.® Utility patents provide
inventors of new and wuseful devices and processes with
temporary control over the use, making and sale of their
inventions.? Patent laws provide this control to potential
inventors as an incentive to invest resources in discovering new
advances.10

6 “With revenues of than more $200 billion and a growth rate of some 13% a
year, software is one of the world’s largest and fastest-growing industries.” Survey:
The Software Industry, THE ECONOMIST, May 25, 1996, at 4. These figures focus on
companies that produce software products. Expenditures on software development
are also large within companies that use software to achieve operational
improvements rather than as the basis of marketable products. For example, AT&T,
not a major seller of software itself, spent approximately $1.8 billion on software
development in 1994. This represented 60% of the company’s total research and
development budget. See United States Patent and Trademark Office, Public
Hearing on Use of the Patent System to Protect Software-Related Inventions 7 (Jan.
26 & 27, 1994) (statement of Willam Ryan, AT&T attorney)
<http://www.uspto.gov/web/office/com/hearings/software/sanjose/sjhrng.pdf>.

7 See id. at 24 (statement of Jerry Baker, Senior Vice-President of the Oracle
Corp.).

8 See Jeffrey S. Goodman, The Policy Implications of Granting Patent Protection
to Computer Software: An Economics Analysis, 37 VAND. L. REV. 147, 147 (1984)
(analyzing the benefits and costs of granting patent protection to computer
software).

9 See Lawrence D. Graham & Richard O. Zerbe, Jr., Economically Efficient
Treatment of Computer Software: Reverse Engineering, Protection, and Disclosure,
22 RUTGERS COMPUTER & TECH. L.J. 61, 71-82 (1996) (analyzing the economic
benefits for investors with the existence of intellectual property protection).

10 Patents are not available for every technological advance, but only for new
technological discoveries which are a significant step or non-obvious “leap” beyond
prior technological knowledge. See 35 U.S.C. § 103 (2001). An invention is deemed to
reflect such a leap under current patent law standards only if persons working on
similar engineering projects, e.g., engineers with average knowledge and skills in
the field of the invention who are fully informed about publicly available technology
in that field, would probably have been unable to develop the same invention with a
minimal amount of analysis and experimentation. See Graham v. John Deere Co.,
383 U.S. 1 (1966); Goodman, supra note 8, at 175-76.

2000] PATENT INCENTIVES FOR SOFTWARE 981

In addition to promoting the discovery of new inventions,
patent controls over newly discovered but unperfected and
uncommercialized technologies can encourage inventors and
companies to invest substantial sums in designing products
based on new and untested technologies and in marketing those
products. Patent incentives favoring the creation and marketing
of new innovations are aimed at expanding consumer choices.
Patent incentives help to promote greater numbers and diversity
of technological discoveries and more complete disclosure and
commercialization of those discoveries.1!

Recently, substantial controversy has raged over whether
the patent system should govern software design.’? Three types
of arguments have been asserted against software patents.
First, all patents governing intellectual constructs like software
are undesirable because they restrict free access to
fundamentally important modes of analysis and information
processing tools.’®3 Second, software patents are particularly
undesirable because software development differs from earlier
forms of engineering in ways that cause patent restrictions to be
burdensome limitations rather than helpful incentives.’* Third,

11 See Goodman, supra note 8, at 175-76.

12 Patents on information processing innovations are hardly new. Rather,
patents have played an important role in encouraging information processing
advances for many years. Some early patents on information processing innovations
significantly predate the development of the computer. For example, Samuel
Morse’s patent on his design for the telegraph claimed, among other features, the
use of a system of dots and dashes as a means of transmitting and recording
information about letters and words. In essence, this was a patent on an
information processing method and storage system. Insofar as it covered a
specialized method for manipulating a physical device to achieve an information
processing result, the Morse patent has been described as an early software patent.
See United States Patent and Trademark Office, supra note 6, at 90 (statement of
Roger Schlafly); see also Steven L. Friedman, Don’t Mess with Good Patent Law,
THE NATL LJ., Mar. 27, 2000, at A26. (arguing that the invention of novel e-
commerce business methods or software applications should not be denied the
protections of the patent laws); Charles R. McManis, Patent Law and Policy
Symposium: Re-Engineering Patent law: The Challenge of New Technologies, 2
WasH. U. J.L. & POL'Y, 1 (2000).

13 See, e.g., Mark A. Haynes, Commentary: Black Holes of Innovation in the
Software Acts, 14 BERKELEY TECH. L.J. 567, 568 (1999) (discussing the need for
flexibility with patents so that patents do not block innovation within software
arts).

14 See, eg., John M. Griem, Jr., Note, Against a Sui Generis System of
Intellectual Property for Computer Software, 22 HOFSTRA L. REV. 145, 155 (1993)
(outlining the argument that “software should be treated differently than earlier
technologies because the nature of computer software allows its creators to write,

982 ST. JOHN’S LAW REVIEW [Vol.74:977

whatever the merits of software patents in general, many
recently issued software patents illegitimately limit public access
to the software involved because the United States Patent and
Trademark Office (PTO) lacks the resources to properly assess
software patents.!’> One commentator has summarized these
arguments in the following succinct terms: “patents are bad,
software patents are bad, and bad software patents are bad.”16

This article argues that these concerns are misplaced. It
describes the substantial policies favoring patent rewards and
controls for innovative software. To identify the potential
benefits of software patents, the analysis here first examines the
benefits of patent protections in other technological areas. The
availability of these same benefits from software patents is then
assessed. Based on the conclusion that traditional patent
benefits can be realized through software patents, this article
advocates substantial patent protections for new and innovative
software designs.

I. POTENTIAL IMPACTS OF PATENTS ON SOFTWARE
DEVELOPMENT

While there is no wuniversally accepted definition of
technological design processes, these processes generally involve
the creation of man-made materials, devices, or procedures that
are useful in solving practical problems faced by individuals and
businesses.!” Patents encourage individuals to develop, disclose,

market and sell software in less time but . . . if all these technologies were protected
by patents, programmers would be unable to work freely”); Randall M. Whitmeyer,
A Plea for Due Process: Defining the Proper Scope of Patent Protection for Computer
Software, 85 Nw. U. L. REV. 1103, 1127 (1991) (explaining that “patents would
unduly restrict the incremental, building-block approach common in the software
industry, and would probably accelerate a trend toward oligopoly in the software
industry”).

15 See Sandra Szczerbicki, The Shakedown on State Street, 79 OR. L. REV. 253,
274 (2000) (explaining in regard to business method patents that the PTO’s
software examiners, “many of whom are young engineers, simply do not have
sufficient expertise to evaluate patents which cover internet business models” and
that “[s]ince software was not considered patentable until recently, there is no
database covering the first thirty years or so of software development to help
agencies make novelty and obviousness judgments”). Szczerbicki concludes that
“[als a result of these inadequate searches, the PTO is issuing, and will continue to
issue, invalid patents.” Id.

16 United States Patent and Trademark Office, supra note 6, at 56 (statement of
Ronald S. Laurie of the law firm of Weil, Gotshal & Manges).

17 Technology involves “the new things you can do when you have found

2000] PATENT INCENTIVES FOR SOFTWARE 983

and popularize new technological inventions that represent
substantial departures from prior knowledge.’® An assessment
of the desirability of applying patent incentives to software
development must start with an understanding of the design
steps and decisions undertaken in software development. From
this understanding, we can assess whether there are features of
software design activities that can be influenced through patent
incentives.

For purposes of this analyses, computer software is
comprised of instructions given to a computer to cause the
computer to undertake a sequence of information processing
steps.’® Typically, computer processing is undertaken to

something out.” RICHARD P. FEINMAN, THE MEANING OF IT ALL 4-5 (1998).
Expansion of technological knowledge occurs through engineering, which is “the
practice of organizing the design and construction of any article which transforms
the physical world around us to meet some recognized need.” G.F.C. ROGERS, THE
NATURE OF ENGINEERING: A PHILOSOPHY OF TECHNOLOGY 51 (1983); see also
COMPUTER DICTIONARY 384 (2nd ed. 1994) (technology is the product of the
“application of science and engineering to the development of machines and
procedures in order to enhance or improve human conditions, or at least to improve
human efficiency in some respect”).

In some cases, new technological designs follow directly from scientific
discoveries as newly understood scientific ideas or principles are used to specify the
features of new types of useful inventions. New scientific understanding, however, is
not needed to produce new inventions. In some instances, new technological designs
involve the application of older scientific or engineering principles in new ways to
solve long-standing practical problems or to solve new practical problems stemming
from new social practices. See WALTER G. VINCENT, WHAT ENGINEERS KNOW AND
How THEY KNOwW IT 12-13 (1990).

In addition to having varying sources, new technology can have a variety of
functional impacts on users: “Technology makes it possible to do something never
done before (the airplane), to do mechanically something previously done manually
(the sewing machine), or to do more effectively something previously done
mechanically (the repeating rifle).” DAVID FREEMAN HAWKE, NUTS AND BOLTS OF
THE PAST: A HISTORY OF AMERICAN TECHNOLOGY, 17761860 8 (1988).

18 See, e.g., Graham v. John Deere Co., 383 U.S. 1, 5-19 (1966) (providing a
history of the patent system to meet the constitutional command of promoting
“useful” arts); Florida Prepaid Postsecondary Educ. Expense Bd. v. College Sav.
Bank, 527 U.S. 627, 650 (1999) (Stevens, J., dissenting) (explaining that patent
statutes should be interpreted so that they comport with “constitutional goals of
stimulating invention and rewarding the disclosure of novel and useful advances in
technology”).

19 One observer has given a more lyrical definition of computer software:

Computers are to computing as instruments are to music. Software is the

score, whose interpretation amplifies our reach and lifis our spirit.

Leonardo da Vince called music “the shaping of the invisible,” and his

phrase is even more apt as a description of software. As in the case of

music, the invisibility of software is no more mysterious than where your

984 ST. JOHN’S LAW REVIEW [Vol.74:977

transform one type of information, e.g., information about items
purchased with a credit card, into another type of information,
e.g., billing records specifying the amount due on a credit card
account. Computer software mediates between the functional
needs of a computer user and the characteristics of a particular
information processing problem.? Instructions embedded in the
software tell the computer how to apply its capabilities to solve
the problem. Software quality often turns on how well computer
capabilities are applied to address an information processing
problem thoroughly and efficiently.

A. Targets of Patent Incentives—Software Design Choices

Software advances are based on new information processing
ideas and insights that are embedded in corresponding computer
instructions. At least three different types of design choices and
corresponding opportunities for innovation are present in the
design and implementation of a software-based device or process.
These design choices involve the identification of information
concepts or relationships that are relevant to the practical
problem the device or process will solve (hereinafter
“conceptualization”), the specification of information processing
steps or data structures that will capitalize on these concepts or
relationships (hereinafter “coding”), and the connection of these
information processing steps to a broader physical context to
achieve a useful result (hereinafter “external linkage”). Patent
incentives may influence creative efforts and design activities
concerning each of these types of design choices.

1. Conceptualization

Innovation in the conceptualization stage of software design
involves seeing new ways that information can be organized and
processed by a computer. New designs can either improve
existing information processing methods or implement entirely
new modes of information processing.?! This type of innovation

lap goes when you stand up. The true mystery . . . is how so much can be

accomplished with the simplest of [software programming] materials given

the right architecture.

Alan Kay, Computer Software, SCI. AM., Sept. 1984, at 53.

20 See id. at 54 (describing the information processing instructions of computer
software as means to mediate between the needs and capabilities of a computer user
and the practical tasks to which a computer is applied).

21 See United States Patent and Trademark Office, supra note 1, at 31

2000] PATENT INCENTIVES FOR SOFTWARE 985

involves diagnosing problems and constructing solutions in light
of a computer’s information processing capabilities.22 A
developer focusing on this type of software innovation might
seek to create an improved definition of the information
processing features of a practical problem. Alternatively, a
developer may seek to create a method of bypassing past
information processing deficiencies. A developer might also seek
a new information processing technique for solving a practical
problem.

The conceptualization phase of a software design project
may involve a combination of insights into the characteristics of
a practical problem, the capabilities of computer-based
information processing and storage to solve all or part of the
problem, and the proper means to match a particular
information processing approach to the characteristics of the
problem. By analyzing these aspects of the problem, a software
developer can identify the necessary information processing
steps for addressing and solving a practical problem, and thereby
produce a new software design concept with practical utility.
There is no question that many new and important types of
software involve information-processing advances at these basic
conceptual levels.z

(statement of Leonard Charles Suchyta, Assistant Vice President, Bell
Communications Research, Inc. (Bellcore)) (noting that the software-related
inventions that Bellcore seeks to patent typically involve innovations in the
conceptualization and definition of information processing functions and
relationships, rather than new types of computer prograroming code).

22 Impatience with the functional limitations of current practices and attempts
to understand and solve problems with those practices are common precursors to
inventive efforts. As noted by leading technology analyst Henry Petroski:

Regardless of their background and motivation, all inventors appear to

share the quality of being driven by the real or perceived failure of existing

things or processes to work as well as they might. Fault-finding with the
made world around them and disappointment with the inefficiency with
which things are done appear to be common traits among inventors and
engineers generally.

HENRY PETROSKI, THE EVOLUTION OF USEFUL THINGS 38 (1992).

23 See, e.g., Kay, supra note 19, at 57 (describing how developers of the first
computer spreadsheet program recognized that past problems in correcting financial
reports could be overcome by a new conceptual approach to changing financial
reports in which a change in one financial figure is propagated by computer
information processing into updates of other related figures).

986 ST. JOHN’S LAW REVIEW [Vol.74:977

2. Software Coding

Even where a method of information processing is well
understood and simply reused in new software, software
innovations may result from new ideas about how to translate
the old method into computer processing steps and
corresponding programming instructions or “software code.”2*
Innovations of this sort are sometimes economically significant
because efficiency gains in repeated computer processing can be
very valuable. This value stems from the frequent reuse of
computer operations to accomplish useful tasks such that even a
modest gain in the efficiency or effectiveness of each iteration of
processing can result in a large improvement in the overall
operation of a program.

Gains in processing speed are not the only possible
innovations in computer programming. The speed of producing
and checking or “debugging” the code itself is an important
consideration because labor costs for software coding are often

24 By programming a computer to undertake a specific pattern of information
processing, a software developer is assembling the various information processing
capabilities of the computer into a sequence which accomplishes a desired task.
Even where the beginning and end points of this sequence are well known—because
the overall information processing task being performed is an old one—the
particular information processing sequence chosen by the computer programmer to
accomplish the task may be new.

Innovation in the selection of computer processing paths—through the selection
of statements in a particular computer programming language defining the paths—
may have a large impact on system performance. Greater efficiency and
effectiveness in information processing can result if software coding choices are
made so as to invoke only so many of the computer processing steps as are
necessary to produce some information processing result. The goal of this coding
effort is to select and sequence portions of the capabilities of a general purpose
computer to create the equivalent—in the resulting computer hardware-software
combination—of a new, specialized information processing machine with
capabilities and actions that are tailored to the information processing task at hand.
This capability of software designers to define new machines by careful
programming has been described by one observer as follows:

A [programming] language and the software that “understands” it can

totally remake the computer, transforming it into a machine with an

entirely different character. The hardware components of a typical

computer are registers, memory cells, adders and so on, and when a

programmer writes in the computer’s native language those are the

facilities he must keep in mind. A new language brings with it a new
model of the machine. Although the hardware is unchanged, the
programmer can think in terms of variables rather than memory cells, of
files of data rather than input and output channels and of algebraic
formulas rather than registers and adders.

Lawrence G. Tesler, Programming Languages, SCI. AM., Sept., 1984, at 70.

2000] . PATENT INCENTIVES FOR SOFTWARE 987

high. A new means of reusing existing codes or otherwise
reducing the scope or complexity of coding efforts can be a
valuable advance in the context of computer software
development. These types of innovations concerning
programming techniques and tools are also important targets of
software design innovations.

Finally, programming method changes that improve the
reliability of coding processes are another important type of
software design innovation. Large software projects frequently
suffer from reliability problems because the computer code
involved is so complex that it is hard to test all of the operations
and combinations of operations that a computer will perform
while running under the control of the code. Hence,
programming design advances may have value because they
assist programmers in ensuring that computer operations are
complete, compatible with each other, and effective in their
intended functional roles.

3. External Links to Inputs and Outputs

Even if a series of information processing steps has been
implemented in computer code, these steps must still be linked
to an external context in order to produce a practical result.?s
This external linkage typically involves specifying means to
input information for computer processing and further specifying
means to output the results of that processing. External linkage
of computer processing may also involve using the outputs of
computer processing to archive further physical results such as
the control of a machine or manufacturing process.

The development of data input means for a computer system

25 This process entails the specification of design elements that apply the
information processing power of a computer programmed in a particular way to
achieve a practical end. Typically, this will be accomplished through testing
tentative designs of computer-based devices to determine their practical
effectiveness and efficiency. In the engineering of computer-based devices, as in
other engineering contexts:

[A design process] typically involves tentative layout (or layouts) of the

arrangement and dimensions of the artifice, checking of the candidate

device by mathematical analysis or experimental test to see if it does the
required job, and modification when (as commonly happens at first) it does

not. Such procedure usually requires several iterations... Numerous

difficult trade-offs may be required, calling for decisions on the basis of

incomplete or uncertain knowledge.
VINCENT, supra note 17, at 7.

988 ST. JOHN'S LAW REVIEW [Vol.74:977

may be as simple as deciding to use standard data entry devices
such as a keyboard or computer mouse. In some computer
systems, elaborate devices or processes for gathering information
about particular physical phenomena or environments will be
necessary. Significant design efforts may be devoted to the
definition of these data gathering components of computer
systems. These design efforts typically are aimed at creating
measurement devices or processes that can provide data about a
physical setting in quantities and forms that can be analyzed by
a computer to produce new information concerning the physical
setting.

For example, a computer-based light meter might include a
data gathering component in the form of a silicon cell that
measures light intensity, a further component that translates
the intensity measurements into digital data suitable for
computer analysis, then a specially programmed computer that
analyzes this data to evaluate the best camera exposure for a
scene. Beyond the development of the programming
incorporated in this device, considerable time may be spent on
designing the light measurement and analog to digital data
conversion components of this device and in making these three
components work together in the desired application.

Similarly, the development of means for outputting
computer-processing results may also involve substantial output
design problems and corresponding difficulties in producing
practical designs. Usually, computer output linkages to an
external environment will involve one of two types of design
elements. First, information processing results can be used to
manipulate an external activity or device. For example, a
computer might be used to control a rubber molding process.
This might be accomplished by having the computer analyze
mold temperature data to estimate the proper time for
completion of a molding procedure and to send signals from the
computer to terminate the molding process at the proper time.26
Second, output designs may be developed to display computer-
processing results in ways that are easy for humans to

26 This type of software output was present in the invention found to be
patentable subject matter by the Supreme Court in Diamond v. Diehr, 450 U.S. 175
(1981). In Diehr, the Supreme Court held that a physical and chemical process for
molding precision synthetic rubber products was patentable subject matter, rather
than an attempt to patent a mathematical formula. See id. at 192.

2000] PATENT INCENTIVES FOR SOFTWARE 989

understand.?’” These types of “user interface” features of
software designs have an important impact on the functionality
and usefulness of software. User interface designs are therefore
important targets of software development efforts.28

New input and output components are present in many
computer-based inventions. A particular invention may include
both these types of design elements. For example, a new knife
design might use an array of light sensors to detect the edge of
an item being cut, a computer to analyze the sensor data to
identify the probable location of the edge and to predict the path
of cutting that will remove a narrow additional slice from that
edge, and further electronic linkages to allow the output of the
computer processing to control the physical movement of a knife
blade along the selected cutting path. The development of this
invention would entail specification of both the edge-measuring
input components and the knife-controlling output linkages
needed to apply the new computer information processing
involved in the invention to an external cutting context.

B. The Patentability of Software as a Separate Invention

Many software innovations have been marketed to
consumers as part of broader inventions in which the new
software was merely a component of a broader device or
process.?? In these broader inventions, the new software
typically controlled a physical device feature or process step to

27 Functional and visually attractive user interfaces—often referred to as
Graphical User Interfaces (GUIs)—are frequently difficult to design and implement
in an effective manner. Software developers who specialize in the design of these
useful components of software products argue that patent restrictions on innovative
GUls are justified to spur and protect the significant development efforts required
in this area. See United States Patent and Trademark Office, supra note 1, at 42-44
(statement of Timothy Scanlon, Human Interface Specialist, Allen-Bradley
Company).

28 See Kay, supra note 19, at 54 (recognizing the emphasis placed on interface
designs because they are the most recognizable aspects of the computer from a
user’s perspective).

29 See, e.g., Diamond, 450 U.S. at 175 (discussing software included in a rubber
molding process); Parker v. Flook, 437 U.S. 584, 586 (1978) (discussing software
included in a fire alarm triggering system); State St. Bank & Trust Co. v. Signature
Fin. Group, Inc., 149 F.3d 1368, 1371 (Fed. Cir. 1998) (examining computerized
accounting system used to manage mutual fund investment structures); Arrhythmia
Research Tech., Inc. v. Corazonix Corp., 958 F.2d 1053 (Fed. Cir. 1992) (describing
method of analyzing electrocardiographic signals in order to determine certain
characteristics of heart functions).

990 ST. JOHN’S LAW REVIEW [Vol.74:977

produce a useful result. In some instances, these broader
inventions were updated versions of earlier purely physical
designs in which software and computer controls were added to
improve the earlier versions of the same devices or processes.3
In other settings, the new inventions were complete redesigns
and substitutes for earlier devices or processes that produced
similar results. In this type of invention, the new software-based
version of the device or process might have few features in
common with its earlier mechanical counterpart, yet the overall
new invention would still be analogized to and analyzed in terms
of its earlier counterpart.3!

Many legal controversies involving software innovations
have focused on these sorts of hardware/software combinations.
Frequently, courts assessed the patentability of these inventions
based on the overall features of the inventions rather than the
features of the software alone. Where inventions included
physical components and results that were similar to those of
non-computer based designs and processes, courts had little
difficulty in finding the software-controlled devices or processes
to be updated versions of their earlier, purely mechanical
counterparts.?2 Since the purely mechanical versions of the
devices or processes had sufficient physical components and
results to be patentable subject matter, and since the new
software-controlled designs possessed similar components and
results, many physical devices and processes involving software
controls were found to be patentable subject matter.33

30 See, e.g., Diehr, 450 U.S. at 179 n.5 (involving the addition of computer
analyses to an existing rubber molding process to better assess the progress of the
molding and to assess the optimal time to open a mold).

31 For example, an invention might entail the creation of a digital speedometer
that operates internally through a variety of computer processing steps, which are
nothing like the physical operations of earlier mechanical speedometer designs, but
perform the same overall function as those earlier designs. In the eyes of car
designers and consumers, the digital and mechanical versions of the speedometer
may be considered substitutes without much thought as to how their respective
internal activities are carried out. These two types of devices may also be analogized
and treated similarly in patent analyses even though the creation of one—the
digital speedometer—turns primarily on the designing of intangible information
processing relationships and the other turns on the designing of physical
components and operational relationships between those physical components.

32 See, e.g., In re Alappat, 33 F.3d 1526, 1543-54 (Fed. Cir. 1994) (stating that
patent claim subject matter must be viewed in terms of the totality of its
components).

33 See, e.g., Schlafly v. Public Key Ptrs., No. 94-20512 SW, 1997 U.S. Dist.

2000] PATENT INCENTIVES FOR SOFTWARE 991

The Supreme Court used this type of reasoning to assess the
patentability of a software-controlled invention in Diamond v.
Diehr3t In Diehr, the Court considered the patentability of a
rubber molding system in which computer controls were added
to a rubber molding process.? The Court concluded that, even
though the only innovation in this new design was the addition
of computer information processing to interpret mold
temperature data and trigger the ending of a molding activity by
opening a mold, the resulting process was patentable subject
matter because the invention taken as a whole possessed the
sorts of physical structures, e.g., the structures of the rubber
mold, and results, e.g., the features of the molded item, required
of a patentable invention.36

This sort of patentability analysis—emphasizing the
features of a claimed invention beyond the software-
implemented controls included in the invention—provides little
guidance concerning the patentability of true software
inventions. For example, this approach is not useful in assessing
advances in which software implements information processing
that is valuable without being translated, at least immediately,
into a useful physical activity or result. Such pure software
advances can usually not be assessed in terms of analogies to
earlier mechanical counterparts. Judicial standards or analytic
approaches that depend on these analogies or on examination of
other physical features of inventions have no applicability in
determining the patentability of pure software inventions.

Newer standards governing the patentability of pure
software inventions are needed because such inventions are
increasingly common and useful. Many software innovations
entail advances that are valuable as information processing
tools. The valuable features of these software innovations may
have little to do with the physical way they are implemented or
the physical contexts in which they are used. Rather, modern
software innovations can create information processing systems

LEXIS 15251, at *12-15 (N.D. Ca. Aug. 22, 1997) (concluding that claims of a
patent related to cryptography made use of known physical structures; thus,
holding that the patent did not merely monopolize a mathematical concept, but
rather applied a mathematical calculation to existing hardware to produce a useful
and tangible results).

31 450 U.S. 175 (1981).

35 Id. at 177.

36 Id. at 188-89.

992 ST. JOHN’S LAW REVIEW [Vo0l.74:977

that are, in essence, computer-implemented information analysis
tools that can be applied in diverse physical contexts and roles.37

Diehr provides little guidance regarding the patentability of
these software-based information analysis tools because the
Court’s analysis did not describe the minimum features of
patentable software. While the Court confirmed in Diehr that
the overall invention at issue in that case possessed sufficient
tangible features and results to qualify as patentable subject
matter, it did not address the more interesting question of
whether some of the software sub-components of the rubber
molding process at issue might have been separately
patentable.?® Indeed, a question remains as to whether the
software controlling this process or a computer programmed to
undertake the sequence of computer processing involved in the
process are separately patentable.

The advantage to an inventor in obtaining patents on these
separate invention components is that the patents would control
the use of the same software or computer-processing sequences
in other application contexts. If available, these types of patents
on basic computer-processing components will often be
particularly significant sources of control over later computer
applications.

C. The Need for Software Patents Over and Above Other
Intellectual Property Protections for Innovative Software

Computer software is an unusual type of intellectual
property in that software has both descriptive and functional

31 See, e.g., Alan L. Durham, “Useful Arts” in the Information Age, 1999 B.Y.U.
L. REV. 1419, 1513-14 (differentiating between hardware, which has physical
manifestations and algorithms, which are not visually discernible yet perform
important tasks in electronic media like virus scans and web searches).

38 See generally Maximilian R. Peterson, Note, Now You See It, Now You Don’t:
Was it a Patentable Machine or an Unpatentable “Algorithm”? On Principle and
Expediency in Current Patent Law Doctrines Relating to Computer Implemented
Inventions, 64 GEO. WASH. L. REV., 90, 132 (1995) (stating that there are no “clear
guiding principles of public policy” to determine the patentability of computer
implemented devices, and recognizing that prevailing law denies effective protection
for such developments); Robert C. Laurenson, Computer Software “Article of
Manufacture” Patents, 77 J. PAT. & TRADEMARK OFF. Socy 811, 812 (1995)
(characterizing the Diehr decision as limited to a narrow class of software); Aryeh S.
Friedman, Law and the Innovative Process: Preliminary Reflections, 1986 COLUM.
BUS. L. REV. 1, 9 (stating that the majority’s decision was very narrow, and “simply
held that an otherwise patentable industrial process which employed a computer
system to perform essential calculations was not thereby rendered unpatentable”).

2000] PATENT INCENTIVES FOR SOFTWARE 993

features. As a descriptive/functional hybrid, computer software
has proven to be a difficult target of intellectual property
protections.?? Software that is capable of directing a computer to
complete a useful task may qualify for several varieties of
intellectual property protections.

As a means of describing a set of computer operations,
computer software is a specialized form of human expression
that qualifies, like other types of human expression, for
extensive protections under copyright laws.*® These laws
generally protect against the copying of original software
statements, such as the copying of programming code.*!

3% For an overview of the full range of issues surrounding intellectual property
protections for computer software, see RAYMOND J. NIMMER, THE LAW OF
COMPUTER TECHNOLOGY { 1.01-5.13 (2d ed. 1996); see also Jane Rolling, No
Protection, No Progress for Graphical User Interfaces, 2 MARQ. INTELL. PROP. L.
REV. 157, 174-81 (1998) (noting the unique nature of software and its legal impact);
BERNARD A. GALLER, SOFTWARE AND INTELLECTUAL PROPERTY PROTECTION:
COPYRIGHT AND PATENT ISSUES FOR COMPUTER AND LEGAL PROFESSIONALS 67
(1995); Melissa Hamilton, Note, Software Tying Arrangements Under the Antitrust
Laws: A More Flexible Approach, 71 DENV. U. L. REV. 607, 612 (1994) (stating that
the degree of copyright protection for software developers “is still open for
interpretation”).

40 Software can qualify for copyright protections because a programming code is
a type of human expression that serves several communicative functions. For
example, computer software can serve as a vehicle for human-to-human
communication. This occurs where software is used as a means for one programmer
to record a sequence of computer processing steps for understanding by later
programmers. This is a specialized, but traditional form of human-to-human
communication.

Even if we ignore this human-to-human usage of computer software code and
focus exclusively on its more important function of dictating computer processing
steps, a type of human-originated communication is present. In this role, software
serves to communicate information from a programmer to one or more computers.
Under United States copyright law, this type of machine-oriented communication is
treated as protectable expression on par with more common human-to-human
writings. The role of a human as the author of such communications is sufficient to
qualify programming code for copyright protection. This protection is granted in
order to reward and encourage the efforts of programmers, notwithstanding the lack
of numerous human readers for the programmers’ software. See, e.g., Cable/Home
Communication Corp. v. Network Productions, Inc., 902 F.2d 829, 843 (11th Cir.
1990); Apple Computer, Inc. v. Formula Intl, Inc., 725 F.2d 521, 525 (9th Cir. 1984);
Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1254 (3d Cir.
1983); see generally PAUL GOLDSTEIN, COPYRIGHT § 2.15.2 (1989).

41 Some cases have also extended copyright protections to prevent the copying
of a program’s functional “look and feel.” See DONALD S. CHISUM & MICHAEL A.
JACOBS, UNDERSTANDING INTELLECTUAL PROPERTY LAW § 4C[2}{d] (1992). Recent
cases, however, have severely limited this type of copyright protection for the
functional attributes of programs. These cases have restricted copyright protections
to the prevention of copying of aspects of program expression such as programming

994 ST. JOHN’S LAW REVIEW [Vol.74:977

Copyright protections, however, will generally not bar a party
from replicating the functional characteristics of another party’s
software code through reprogramming. This makes copyright
laws of limited value in protecting a software developer against
the reuse of new methods of information processing embedded in
computer software.*?

Computer software also has functional characteristics that
may be protectable under patent laws because it is capable of
directing computers to undertake useful tasks. This protection
may be extended on the basis that software is, in essence, a
functionally significant component of a specially designed
information processing machine. The overall machine can be
realized by combining the software with a general purpose
computer to undertake a useful function. ¥ Just as an improved
design for a physical cam which controls the motion of a machine
in a beneficial way can be patented separately as a useful
component of the machine, so too may new software with
functional implications in controlling computer processing be
patentable separately from the computers that the software
controls.#

commands or details of internal program organization and structure. See Lotus Dev.
Corp. v. Borland Int’l, Inc., 49 F.3d 807, 815-16 (1st Cir. 1995) (holding that Lotus
1-2-3 menu command hierarchy was uncopyrightable subject matter because it was
a method of operation and foreclosed from copyright protection by 17 U.S.C. §
102(b)).

42 “In no case does copyright protection for an original work of authorship
extend to any idea, procedure, process, system, method of operation, concept,
principle, or discovery, regardless of the form in which it is described, explained,
illustrated, or embodied in such work.” 17 U.S.C. § 102(b) (1994). See also Autoskill
Inc. v. National Educ. Support Sys., Inc., 994 F.2d 1476, 1491 (10th Cir. 1993)
(stating that it is a basic premise of copyright law that a copyright only protects the
expression of an idea not the idea itself); Rubin v. Boston Magazine Co., 645 F.2d
80, 82 (1st Cir. 1981) (noting that merely an idea does not garner copyright
protection).

43 See, e.g., Tesler, supra note 24 (describing how a computer program can
“remake [a] computer, transforming it into a machine with an entirely different
character”); Anthony J. Mahajan, Intellectual Property, Contracts, and Reverse
Engineering After PROCD: A Proposed Compromise for Computer Software, 67
ForDHAM L. REV. 3297, 3297 (1999) (indicating that when software is run on a
computer the computer becomes a different apparatus because it is lead by the
directions of the program); Rinaldo Del Gallo, IIl, Are “Methods of Doing Business”
Finally Qut of Business as a Statutory Rejection?, 38 J.L. & TECH., 403, 434435
(1997) (stating that “[s]oftware simply transforms the general purpose computer
into a specific purpose computer”).

4 Software may be the most important design component in transforming a
general purpose computer into a useful device in a particular application context.

2000] PATENT INCENTIVES FOR SOFTWARE 995

The extension of patent protections to computer software
standing alone has several important implications for software
developers. First, unlike copyright protections that may attach
to the same software, a patent covering a particular software
product will prevent another party from independently
developing and using functionally similar software during the
life of the patent.”* Second, another software developer will not
be able to reuse the first developer’s patented innovation by
simply analyzing the first developer’s software and replicating
the innovative information processing sequences in new software
code.#¢ If the second developer wishes to replicate patented
functional features of the software, the second developer will
need to gain a license from the patent holder with appropriate
compensation for the use of the first party’s invention. Finally,
patent protections for innovative software may promote

One software industry analyst has described the importance of software’s computer-
transforming role as follows:

The beauty of the computer—indeed, the basis of its world-changing

success—is that it is totally unspeciali[z]ed. A foaster has just one job: it

toasts. A PC, on the other hand, is more like a blank sheet of paper: it is a

generic device that serves as a carrier and a repository for ideas of any

sort, from “Rebel Assault II” to “Richard II1.” Partly for this reason, the

hardware and software worlds have grown up very differently. Hardware

exists to do the bidding of software, not the other way around. Both can be

good businesses to be in, but on balance software has the economic edge.
The Software Industry Survey, THE ECONOMIST, May 25, 1996, at 17.

45 A second developer will not be free to independently develop and adopt a
program that is similar to patented software since independent development is not
a defense to patent infringement. See 35 U.S.C. § 154 (1994); see also NIMMER,
supra note 39, { 2.01 (noting that in comparison with copyright law, patent
protections for software establish “a relatively stronger property right regime that
gives exclusive rights against entirely independent development”).

46 This reuse of the functional details of the first developer’s work would not be
restricted by copyright protections on the first developer’s work since it does not
involve the copying of the first developer’s protected expression. However, patent
protections concerning the functional features of the first work would prevent
unauthorized reuse of those functional features in additional software created
during the life of the patent. See Note, Computer Intellectual Property and
Conceptual Severance, 103 HARV. L. REV. 1046, 1057-58 (1990) (noting the lack of
copyright protections for the functional features of UNIX program code); Pamela
Samuelson, Brief Amicus Curiae of Copyright Law Professors in Lotus Development
Corp. v. Borland International, Inc., 3 J. INTELL. PROP. L. 103, 132 (1995)
(indicating that Congress intended to exclude the functional results of a program
from copyright protection); David G. Luettgen, Functional Usefulness vs.
Communicative Usefulness: Thin Copyright Protection for the Nonliteral Elements of
Computer Programs, 4 TEX. INTELL. PROP. L.J. 233, 237 (1996) (noting that the goal
of copyright law is to protect communicative subject matter while the purpose of
patent law is to protect functional subject matter).

996 ST. JOHN’S LAW REVIEW [Vol.74:977

applications of software that are broader than if the software
was freely usable. Since a developer of a new, patented
information processing method imbedded in software will have
control over all applications of the same software for the life of
the patent, the patent holder has an economic interest in seeing
that the patented software is used in all of its possible
applications, even in fields beyond the setting where the
software was first developed. Since the patent holder can count
on collecting a portion of the resulting profits or licensing fees,
the patentee will be encouraged to spread the use of the patented
software to new fields by either developing applications in those
fields or encouraging and licensing others to do so.

In sum, the dual expressive and functional characteristics of
computer software should cause innovative software to qualify
for both copyright and patent protections. Patent protections
should apply because software dictates computer functions.
Copyright protections should apply because software contains
detailed expression by human authors that describes and
communicates computer instructions.

The availability of both copyright and patent protections for
a particular software program is desirable because it encourages
two levels of software innovation. As new information
processing ideas and applications are studied or discovered, the
promise of patent rights will encourage research into related
computer implementations and will promote public disclosures
and popularization of functionally significant computer
processing methods. In these ways, patent protections for new
software will promote the sort of increased public access to new
and useful tools—in the form of software-based products and
services—which the patent laws were designed to achieve.

At the same time, the opportunity to gain copyright
protections and rewards may create incentives for programmers
to produce more efficient or effective software implementations
of a particular method of information processing.4” Where a
method is unpatented, software developers can compete freely to
produce the best copyrighted code for achieving a software
implementation of that method. Similar competition may
prevail even if an innovative computer-processing method is

47 See United States Patent and Trademark Office, supra note 1, at (statement
of Joseph Hofstader, League for Programming Freedom).

2000] PATENT INCENTIVES FOR SOFTWARE 997

patented. When the holder of a patent on a computer-processing
method is willing to issue several nonexclusive licenses to
software developers allowing the developers to implement the
patented method in their software, the resulting software
products will each be separately copyrightable because they will
each utilize original code to implement the patented method.
Where one of these copyrighted products is significantly more
effective or efficient than others in carrying out or applying the
patented method, the author of this superior version of the
software will be able to use his or her rights under copyright
laws to control the marketing of the superior software product
and gain associated rewards for the value of the software
involved. Permitting copyright protections for programming
code that implements patented software designs may therefore
encourage a dimension of competition in programming
implementations that is separate from competition to develop
more fundamental information processing desiguns.

A similar type of two-level competition already applies to
other types of inventions. When a practical problem arises in a
given field, various engineers may seek to develop product or
process designs to solve the problem. If one of them reaches a
solution and gains a patent for it, this patented invention may be
the subject of efforts by others to describe the patented invention
in texts or other expressive works. Descriptive works of this sort
are copyrightable. To the extent that several authors attempt to
describe the new invention, their various writings compete with
each other in a way that is independent of the prior competition
that led to the development of the invention. While the efforts of
both the engineers who compete to design the original invention
and the authors who compete to describe it revolve around the
invention itself, no particular legal problem is raised by letting
these two types of related competition go forward. Indeed, the
separate incentives of the patent and copyright laws encourage
two distinct and independently desirable dimensions of
competition.

In comparison with these sorts of separate creative efforts
by invention developers and invention describers, a programmer
who seeks to incorporate a patented software invention in a new
set of software is attempting to both describe and implement the
invention. The programmer is both an invention user and an
invention describer. As a user of the patented invention, the

998 ST. JOHN’S LAW REVIEW [Vol.74:977

party writing the new software must obtain a license to do so
from the patent holder before that party can go on to compete in
describing that invention in the new software as effectively and
efficiently as possible.48

This sort of linkage between describing and implementing
an invention may be peculiar to functional/descriptive hybrids
such as computer software. The rarity of this linkage, however,
does not undercut the desirability of interpreting patent and
copyright laws so as to encourage separate competition over the
development of innovative computer software designs and the
creation of specific software expressions for implementing those
designs.

II. SHOULD SOFTWARE BE PATENTABLE?

Whether or not software innovations should be patentable
depends on the net public benefits to be realized from software
patents. Where granting software developers patent controls
over particular new software designs will encourage increases in
innovative efforts and broader public disclosures of new software
designs, these controls will further the constitutional goal of
patents to “promote the [plrogress of... useful arts.”® The
desirability of software patents therefore turns on whether
patent protections for useful software designs will encourage
software developers to expend more time and effort on
developing, perfecting, and publicizing those designs.5® If the
promise of patent protections seems likely to encourage these
types of incremental efforts, software patent rights should be
recognized because these rights will increase the number and
diversity of useful software advances that are developed and
made available to the public.

48 Absent a license from the patent holder, a party who uses a patented
software innovation in new software code will be liable for patent infringement. See
35 U.S.C. § 271(a) (1994) (“[Wlhoever without authority makes, uses, offers to sell,
or sells any patented invention, within the United States or imports into the United
States any patented invention during the term of the patent therefor, infringes the
patent.”).

49 U.S. CONST. art. 1, § 8,cl. 8.

50 See Randall M. Whitmeyer, A Plea for Due Processes: Defining the Proper
Scope of Patent Protection for Computer Software, 85 NW. U. L. REV. 1103, 1123-24
(1991) (noting the desirability of extending patent protections to software turns on
whether those protections will “encourage socially beneficial innovations” and
“increase the innovative use of computers”).

2000] PATENT INCENTIVES FOR SOFTWARE 999

Whether or not the promise of patent protections will
produce new levels of software development and disclosure
cannot be assessed with certainty. Past studies, however, have
identified a number of ways that patent protections tend to
increase the number and value of publicly available inventions.5!
We can begin to assess the merit of patent protections for
software advances by determining whether these previously
recognized benefits of patent protections are likely to be realized
by enforcing software patents. This section will assess whether
software patents are likely to produce the same sorts of public
benefits that are produced by patents on other types of
technological advances. The next section of this article will
analyze whether differences between software advances and
other technological advances justify patentability standards for
software that are more restrictive than for other types of useful
inventions.

Software patents and related incentives to software
developers may produce at least five types of public benefits: (1)
encouraging inventive efforts through the promise of economic
rewards to successful inventors; (2) promoting public disclosures
of useful inventions through issued patents and broad scale
invention marketing; (3) furthering the investment of resources
in the refinement and popularization of inventions to achieve the
commercialization and widespread availability of patented
products and services; (4) ensuring prospective studies to
identify additional or improved applications of inventions; and
(5) limiting duplicative efforts to discover, perfect and improve
patented inventions, thereby maximizing society’s net gain from
each patented invention.

A. Encouraging Inventive Efforts

Patents on useful inventions can further public interests by
establishing incentives for the creation of increased numbers and
types of inventions. Under this view, patent laws establish a

51 See Seth A. Cohen, To Innovate or Not to Innovate, That is the Question: The
Functions, Failures, and Foibles of the Reward Function Theory of Patent Law in
Relation to Computer Software Platforms, 5 MICH. TELECOMM. TECH. L. REV. 1
(1999) (Nov. 23, 1998) <http://www.mnttlr.org/volfive/cohen. html> (pointing out that
rewards of patents, such as exclusive ownership of rights, also function as a benefit
to the public in terms of increased technology); Whitmeyer, supra note 50, at 1129
(noting that the potential for a patent may entice programmers to create new
software).

1000 ST. JOHN’S LAW REVIEW [Vo0l.74:977

reward system that is aimed at encouraging inventors to invest
sufficient resources in research efforts.’2 This approach to
patents is based on two assumptions. As summarized by
Professor Donald F. Turner:

The basic rationale of the patent system can be simply put.

The economic case rests upon two propositions: first, that we

should have more invention and innovation than our economic

system would provide in the absence of special inducement; and

second, that the granting of a statutory monopoly to inventors

for a period of years is the best method of providing such special

inducement.53

The use of patent restrictions to constrain the use of
inventions might at first seem inconsistent with the general
opposition of our antitrust laws to monopolies.’* In a strict
sense, however, patents do not confer monopolies, but rather,
grant exclusive and temporary control over the production and
marketing of particular patented products and services.5®* These
patented products and services are typically offered to
consumers in competition with non-patented substitutes,
meaning that a patent holder will seldom have complete
monopoly control over a market.56

The exclusive control that a patent confers over a new
invention may restrict public access to that invention. A
temporary period of exclusive control over a particular invention,
however, will often be a desirable price to pay for an invention
that an innovator would not have pursued without the promise

52 See Cohen, supra note 51, at 5-7 (stating that patents create exclusive
ownership rights that enable the creator to recover the cost of invention, as well as
receive accolades for their creation); Whitmeyer, supra note 50, at 1123-1124
(advocating that patents encourage the creation of software by rewarding inventors
with exclusive rights to the programs).

53 Donald A. Turner, The Patent System and Competitive Policy, 44 N.Y.U. L.
REV. 450, 450-51 (1969).

5¢ See Marina Lao, Unilateral Refusals to Sell or License Intellectual Property
and the Antitrust Duty to Deal, 9 CORNELL J.L. & PUB. PoL’Y 193, 193 (1999)
(noting that intellectual property and antitrust law complement each other because
they further the mutual goal of increasing innovation).

55 See Scapa Dryers, Inc. v. Abney Mills, 269 F.2d 6, 13 (5th Cir. 1959) (noting
that a patent would be invalid if it gave the holder an exclusive right in perpetuity).

56 See generally Edmund W. Kitch, Elementary and Persistent Errors in the
Economic Analysis of Intellectual Property, 53 VAND. L. REvV. 1727, 1730-1731
(2000) (explaining that patents never provide a monopoly over the market because
the patent is either very narrow in a well-developed field or broad when there is
little demand for such a patent).

2000] PATENT INCENTIVES FOR SOFTWARE 1001

of some control over the invention and the resultant
opportunities for economic gain which stem from such control.57

Without the promise of patent protections and controls over
the use of their inventions, innovators might fear appropriation
of their efforts by “free riders.”® That is, innovators might fear
that, once their innovations were made public, other parties
might simply adopt the innovations without compensating the
innovators. Allowing innovators to bear the costs of innovation
while “free riders” reap the benefits may cause potential
innovators to forgo product and service innovation and focus
their efforts on other activities with a greater possibility of a
positive personal reward.5

The potential threat of “free riders” may deter innovative
efforts for a number of reasons. First, innovators might not want
to incur large research expenses where there is no guarantee
that they will have a chance to recover those expenses out of
profits from exclusive opportunities to market the resulting
products. Inventors will have guarantees of exclusive marketing
opportunities for inventions covered by patent rights, but will
have no such assurances regarding other publicly disclosed
inventions. Second, innovators might not wish to risk
subsidizing competitors’ profits by making discoveries that the
competitors could then use to improve their own products and
market positions without providing appropriate compensation to
the innovators. This process would simultaneously weaken the
innovators while strengthening their competitors.5°

Patent controls prevent “free rider” problems and associated
deterrents to innovation by allowing innovators to either exclude

57 See A. Samuel Oddi, Beyond Obviousness: Invention Protection in the Twenty-
First Century, 38 AM. U. L. REV. 1097, 1102-07 (1989) (concluding that the history
of the patent indicates that inventions should be encouraged by providing patents).

58 Rebecca S. Eisenberg, Patents and the Progress of Science: Exclusive Rights
and Experimental Use, 56 U. CHL L. REV. 1017, 1025 (1989). Fear of this scenario—
in which the non-innovators are “free riders” because they gain the benefit of the
innovation or a “free ride” without compensation to the innovators—will cause many
innovators to forego the risk of innovation. See id.

59]Id.; see also JOHN B. CLARK, ESSENTIALS OF ECONOMIC THEORY 360 (1927);
EDITH TILTON PENROSE, THE ECONOMICS OF THE INTERNATIONAL PATENT SYSTEM
26-31 (1951); SENATE SUBCOMM. ON PATENTS, TRADEMARKS, AND COPYRIGHTS,
85TH CONG., AN ECONOMIC REVIEW OF THE PATENT SYSTEM 21, 25 (Comm. Print
1958).

60 See Eisenberg, supra note 58, at 1028 (noting that if protection of a software
innovation was not offered by means of a patent, inventors would not disclose their
invention for fear that a rival would copy it).

1002 ST. JOHN’S LAW REVIEW [Vol.74:977

all others from the commercialization of patented discoveries or
to license others to undertake this commercialization in
conjunction with compensation to the innovator. By lowering
concerns about “free rider” problems, patent rights should
encourage innovators to pursue heightened levels of research,
leading to additional inventions that would otherwise have
remained undeveloped.

In addition to providing incentives for innovation, patent
controls over new inventions have the added advantage of being
easily administered and tailored in economic value to the
importance and cost of an invention. As noted by John Stuart
Mill, the temporary grant of an “exclusive privilege” under a
patent is preferable to the grant of a governmental bonus to a
successful innovator because the patent system avoids
“discretion” of public officials regarding the allocation of such
bonuses and provides a reward proportionate to the “usefulness”
of a patented invention that is paid by users of the invention.5!
Potential users of an invention with little practical utility will
not pay much, if anything, to the patent holder to buy or use a
patented invention since the most the users will be willing to pay
is the incremental value of the results achieved by the invention
over and above the value of the results achieved by unpatented
substitutes. By contrast, consumers will pay larger amounts for
access to a patented invention that is highly useful, resulting in
large sales or royalty payments to the patent holder. Scaling of
rewards to inventors in relation to the utility of their inventions
occurs naturally through market transactions regarding sales or
licenses of patented inventions.®2 No administrator need
evaluate or “price” the proper reward for a given innovation.

While a patent holder’s charges for use of a patented
invention may be considerable, these charges will seldom, if ever,
be so large as to preclude users of the patented invention from
achieving a net benefit. The charges will usually not exceed the
invention’s benefits to users because potential users must see a
positive reason to adopt the patented invention before they will
begin to use it. If the perceived benefits of using the invention

61 See JOHN STUART MILL, Principles of Political Economy, in COLLECTED
WORKS OF JOHN STUART MILL 1, 928 (J.M. Robson ed., Univ. of Toronto Press 1965).

62 See Dan L. Burk, Patenting Transgenic Human Embryos: A Nonuse Cost
Perspective, 30 HOUS. L. REV. 1597, 1618 (1993) (stating that market conditions
may well force patent holders to price their products competitively).

2000] PATENT INCENTIVES FOR SOFTWARE 1003

are not greater than the access charges demanded by patent
holders, then potential buyers or licensors will forego the
invention and continue to rely on substitutes.

If the benefits of use of a new invention are greater than the
charges by a patent holder for access to the invention, users of
the invention, and society in general, will achieve a net benefit
from use of the invention. Elevated purchase prices or royalty
fees that invention users pay to a patent holder will simply shift
some of the new wealth generated by use of the invention from
the users to the innovator who made the new wealth possible.
As noted by Jeremy Bentham, rewards stemming from the
granting of “exclusive privileges” under patents are like bonuses
given to innovators upon successful discoveries.®3 These bonuses
are paid, in effect, out of the increased public gains and benefits
achieved by the discoveries. According to Bentham, it follows
that the grant of exclusive patent privileges for the purpose of
improving public life is “the best proportioned, the most natural,
and the least burdensome [means of] producling] an infinite
effect and cost[ing] nothing.”s¢

As they do for other technological advances, patent rewards
for innovative software are likely to encourage increased
investigation and discovery of new types of useful software.65
This is the case because the development of new software raises
the types of “free rider” problems that patent laws and rewards
can overcome.

Absent patent protections, the risk of appropriation of
software innovations by competitors may cause potential
innovators, and potential investors who might back the
innovators, to divert their resources to more promising ventures.
As put simply by one computer industry attorney:

63 See Mark F. Grady & Jay I. Alexander, Patent Law and Rent Dissipation, VA.
L. REV. 305, 310311 (1992) (discussing temporary monopolies as a good reward for
inventors).

6¢ JEREMY BENTHAM, Manual of Political Economy, in THE WORKS OF JEREMY
BENTHAM 31, 71 (1962); see also Grady & Alexander, supra note 63, at 310-314
(discussing the debate between the “reward theory” and the “prospect theory” of
patents).

65 In addition to encouraging the development of new software, broadly
inclusive standards for software patents can have a positive impact on the
development of new products in fields that use computer-controlled industrial
processing or microprocessor-based product designs. See United States Patent and
Trademark Office, supra note 6, at 78 (statement of Victor Siber, Senior Corporate
Counsel, IBM Corporation).

1004 ST. JOHN’S LAW REVIEW [Vol.74:977

Going into the next century, the key inventions will be in
information processing. . . . [Restricting patents] for software-
related inventions will shift investment away from this area.

The purpose of research and development in any technology is
to gain an advantage over your competitor. But if your
competitor can legitimately copy the fruits from your [research
and development] and can create a product that can compete
head-on with your product while you are still trying to build a
market for the product, then you've lost.

The long-term value of [research and development] in the
marketplace is in the new functions implemented by software.
If such new functions are protected, investment flows to the
industry. If not, investment will dry up.58

Risks of misappropriation of new software are added to a
variety of other early-stage risks that may impede the
development of new software. Software patents can play a
critical role in overcoming these risks and producing the
investment that is needed to back new software development:

The software industry is different than some other industries.
It has a very front-end loaded investment. You have to invest
all of your risk capital before you know whether or not your
product is going to be competitive, before you know whether or
not anyone will buy your product. So you have a lot of risk and
you have a lot of uncertainty.

If you add on that additional risk and uncertainty associated
with not knowing whether or not you’ll be able to protect your
new and innovative product from a major competitor, you may
not have any investment at all. The market risks are very
high, and if competitors can take a utilitarian function which
you spent a lot of time and effort designing ... and use [that
function] against you without having the same [research and
development] expenses, you would not be able to support these
investments.57
“Free rider” problems can impair the development of new
software because efforts to develop complex software can involve
significant outlays for design studies which may not produce
accompanying returns for the developer if others can freely use

66 Id.
§7 United States Patent end Trademark Office, supra note 6, at 65 (statement of
Tom Cronan, General Counsel and Secretary of Taligent).

2000] PATENT INCENTIVES FOR SOFTWARE 1005

the design study results.®® Several types of studies related to
software development may entail significant costs. Studies of
information processing bottlenecks and inefficiencies are
typically important in defining the necessary parameters of a
software advance. Trials of several new information processing
approaches may be necessary before an advantageous advance is
identified. Substantial program coding efforts may be necessary
before a software product developer can identify successful
means to achieve desirable performance in a software product.
Additional studies may be needed to supplement an operative
software product with an attractive and effective user
interface.6® All of these features of software development
heighten the costs of producing successful products and increase
the risks of “free rider” misappropriation of research products
absent patent controls.

“Free rider” problems concerning software development may
be particularly serious because of the ease with which software
advances can be copied and utilized by parties other than the
original developers.”” Once software incorporating a new
information processing advance is made public, the software will
often reveal enough about the advance to make it possible to
replicate the advance in software created by other parties. Even

63 The high costs of design studies and tests that are often necessary to produce
a workable software product stem in part from the complex nature of the
interactions between functional elements in large software products. While
conceptualization of the desired functioning of a software product or product module
may be relatively simple, the implementation of the concept in functioning
programming code that works accurately and reliably in conjunction with the rest of
a software product may be very difficult:

Despite the ease under which someone can... [describe information

processing steps to be undertaken by a computer}, we still live under real

world constraints. Once a design choice is made, it is very expensive in
time and effort to change it. Worst, because most programs have
interactions that cover every part, a change to one part can cause
unexpected and even undesirable side effects in unknown and unexpected
places.
United States Patent and Trademark Office, supra note 1, at 4 (statement of Paul
Robinson, Chief Programmer, Tansin A. Darcos & Company).

69 See Jane M. Rolling, No Protection, No Progress for Graphical User
Interfaces, 2 MARQ. INTELL. PrOP. L. REV. 157, 160 (1998) (discussing the
importance of user interface).

70 See Pamela Samuelson et al., A Manifesto Concerning the Legal Protections of
Computer Programs, 94 COLUM. L. REV. 2308, 2332 (1994) (stating that the know-
how in software products is easily copied, undermining the developers opportunity
to profit and creating disincentives for investing in software development).

1006 ST. JOHN’S LAW REVIEW [Vol.74:977

if the production of these functionally similar follow-on products
involves writing some new programming code to implement the
new advance, this type of reprogramming based on the model
provided by the innovator’s software will often be far easier to
accomplish than the original development and coding of the
innovator’s product.”? The relative ease with which this can be
accomplished—coupled with the lack of any obligation of the
second and subsequent users of the advance to pay a licensing or
use fee to the innovator that developed the advance—would give
these later users a substantial economic advantage over the
original developer. Fear that these later “free riders” will adopt
and benefit from costly software advances will be a real concern
resulting in corresponding deterrents to software development.

This sort of “free rider” misappropriation is precisely the
type of problem that patent protections and rewards are
designed to prevent. The importance of patent protections in
overcoming similar “free rider” problems in other fields suggests
that patent protections for new software designs are justified to
diminish “free rider” concerns on the part of software innovators
and to encourage heightened levels of complex software
development.

Of course, software innovators may gain some assurances of
exclusive opportunities to commercialize new products through
intellectual property protections other than patent rights.
Copyrights, in particular, will prevent a party from merely
copying an initial innovator’s programming code and thereby
appropriating product improvements resulting from the
innovator’s efforts.

While copyright laws provide partial protections for software
innovators, these protections are less comprehensive than patent
controls in several important respects. First, copyrights may not
protect the full value of an innovator’s efforts. Many useful
features of a new software product may be discoverable and
reusable by programmers without copying the software code
involved. Absent such copying, the reuse would probably not
support a copyright infringement claim.”? The functional

71 See Rolling, supra note 69, at 178-79 (stating that the cost of duplicating a
program is far cheaper than developing a computer program).

72 Functional features of an innovative software product may be discoverable
through mere inspection of the operation of the product. Alternatively, these
features may be discoverable through reverse engineering of innovative software.

2000] PATENT INCENTIVES FOR SOFTWARE 1007

attributes of innovative software can, however, be protected by
patents against reuse in additional software products with
similar functionality. Second, copyright claims may entail
insurmountable evidentiary barriers. In order to pursue a claim
of copyright infringement, a software innovator will need to
establish that an asserted infringer has copied protected portions
of the innovator’s product.”® Usually, this will require a showing
that the asserted infringer copied part or all of the innovator’s
programming code.’* Tracing this copying may be difficult. By
contrast, a patent holder merely needs to show that a second
party has incorporated information processing steps in the
second party’s software product which are the same as or
equivalent to the ones protected by the first party’s patent.?
The fact that the second party may have independently
developed these steps without copying the first party’s software
code, or without even having access to that code, will be
irrelevant since independent development and use of a patented
invention is not a defense to patent infringement. In light of
these weaknesses, copyright protections are not a full substitute
for the protections against “free rider” problems provided by
software patents.

B. Promoting Invention Disclosures

Whatever impact patents have in diminishing “free rider”
concerns and increasing the scope of inventive efforts and
discoveries, patent protections can also provide additional public
benefits by encouraging parties who have made valuable
discoveries to disclose those discoveries, thereby making them
broadly available to the public.® In exchange for the public

Reuse of these functional features will not constitute infringement of the copyright
on the programming code contained in the innovative software product.

78 See Daniel N. Christus et al., Practicing Law in the Americas: The New
Hemispheric Reality: Intellectual Property in the Americas, 18 AM. U. INT'L L. REV.
1095, 1125 (1998) (contrasting copyrights, which prevent exact copying of an
original work, with patents, which provide more protection for an inventor).

74 See id.

75 See id.

76 As noted by one leading commentator:

[TThe property rights (and thereby the incentives) made available under
patent laws are tied to compliance with a clear public policy promoting
disclosure and public availability of innovative techniques and
inventions The public record [created by an issued patent] provides an
information base for use in further innovation by other parties. Thus,

1008 ST. JOHN’S LAW REVIEW [Vol.74:977

disclosure of an invention in a published patent, an inventor is
given the reward of monopoly control over the invention for the
life of the patent. This type of disclosure and the rewards
necessary to encourage it serve the public interest in at least
four ways: (1) disclosure will help to make the availability of the
invention, under sale or license from the patent holder, known to
those who may have an immediate use for it; (2) disclosure will
permit persons other than the original inventor to extend the
invention through further inventive efforts. Resulting
improvements may produce useful products or processes in the
original field of the invention or in other settings; (3) disclosure
facilitates understanding and free use of the invention when the
patent expires; and (4) descriptions of an invention in a
published patent may reveal new design techniques or
technological information that are not protected by the patent.
Patent developers and others can use these techniques or
information immediately upon issuance of the patent.

Patent controls over the use of inventions can overcome
several barriers to disclosures that will arise in the absence of
these controls. In settings where innovative software can be
used effectively in secret—as would be the case, e.g., with
computer-aided manufacturing software that was used to make
products without disclosing the manufacturing software—a
party may seek to commercialize the software without making
any disclosures in order to withhold knowledge of the software
from the party’s competitors.”” Using physical security measures
and trade secret protections, a software developer may be able to
pursue this secret commercialization and gain a significant
return on his or her software without public disclosure.”®

while the system establishes restrictive rights for the inventor, it also

promotes the flow of scientific and technological data and development,

thereby perpetuating a process of innovation among a community of

scholars using shared information.
RAYMOND T. NIMMER, THE LAW OF COMPUTER TECHNOLOGY § 2.02[1] (2d ed. 1996);
see also Wood v. Underhill, 46 U.S. 1, 5 (1847) (holding that where an inventor has
not described and disclosed an invention with sufficient particularity, the inventor
is not entitled to a patent); Donald S. Chisum, Comment: Anticipation, Obviousness,
Enablement: An Eternal Golden Braid, 15 AM. INTEL. PROP. L. ASS'N Q.J. 57 (1987);
ROBERT PATRICK MERGES, PATENT LAW AND POLICY 657-58 (2d ed. 1997).

77 See Robert G. Bone, A New Look at Trade Secret Law: Doctrine in Search of
Justification, 86 CAL. L. REV. 241, 262-63 (1998) (discussing the possible chilling
effects of public disclosure and reasons for commercializing in secret).

78 See id.

2000] PATENT INCENTIVES FOR SOFTWARE 1009

Such secret commercialization will come at the price of lost
public access to the software involved. This may, in turn, lead to
inefficient use of the software under the constraints of
confidentiality controls.” It may also produce duplicative efforts
by others to develop the same software.

Patent rights for innovative software should be valuable
means to overcome disclosure barriers. Patent protections will
provide software developers and companies with means to
maintain exclusive control over innovative features of new
software while still disclosing the software and related business
practices. The control provided by patent rights can overcome
the incentives for secret commercialization of useful software by
giving software developers a means to realize the commercial
value of their discoveries through public disclosures without fear
of appropriation of the discoveries by competitors.8® Patent
protections will also assist firms in gaining the full use of
software advances without the awkwardness and often wasteful
expense of secrecy measures or use restrictions aimed at
avoiding software disclosures.8!

The reassurances provided by software patents may also
encourage additional types of software disclosures beyond those
in patent applications. Voluntary disclosures of new software
advances will be encouraged because individuals and companies
know that they can make these disclosures without losing
control over the disclosed advances. Provided that they file a
timely patent application covering the advances, disclosure in
public presentations or distributed writings will not undercut
the innovators’ patent rights.82 Voluntary disclosures of new

7 See id.

8 See United States Patent and Trademark Office, supra note 1, at 29
(statement of A. Jason Mirabito, Boston Patent Law Association) (attributing the
more frequent publication of biotechnology innovations than software innovations to
the greater reliance on patent protections in the biotechnology industry and the
tendency of software innovators to rely on commercialization of their software in
confidential settings through trade secret licenses).

81 See Syrowik, supra mote 1, at 117 (stating that patents are typically
preferable to trade secrets because businesses find it increasingly difficult to
maintain secrecy).

82 In general, under United States law, a timely patent application will need to
be filed within one year after the first disclosure of an advance. See 35 U.S.C. §
102(b) (1994). Under the laws of many foreign countries, a patent application must
be filed before any public disclosure of an advance. See, e.g., Donald R. Palladino,
The Publication Bar: How Disclosing en Invention to Others can Jeopardize
Potential Patent Rights, 37 DUQ. L. REV. 353, 354 (1999). Even in countries that

1010 ST. JOHN’S LAW REVIEW [Vol.74:977

software advances in technical publications or published product
descriptions may be both more extensive (for marketing or public
relations reasons) and more rapid than the disclosures which
eventually result from the issuance of a patent. The impact of
software patents on voluntary disclosure practices at the AT&T
Corporation was described by one of its attorneys as follows:
One of the functions... patents [serve] is to disclose [new
technological advances] to the public. . .. Patents themselves of
course contain disclosure, but also in an organization like
mine ... we encourage publication of technical ideas, in fact
last year we published some forty-four hundred technical
articles. Many of these would not have been published if we
could not also have concurrently filed patent applications so
that the publication of the technical papers would not
compromise the value of our inventions included in the
disclosures.83
Patent rights may also expand the range of persons who are
informed about innovative software. These rights will encourage
broad dissemination of information about a new software
advance by giving the holder of the patent a direct financial
interest in the full range of potential uses of the new software. 8
Patent rights give innovators the ability to restrict and license
the use of new software in fields and applications outside of the
setting where the software was originally developed. The
potential economic rewards associated with this licensing
opportunity will encourage innovators to publicize the functional
characteristics and benefits of new software in all of the fields
and applications where that software appears likely to be
useful.8 By pursuing this type of publicity at a reasonable level,

apply this stricter rule, the reassurances provided by patent rights encourage public
discussions and disclosures of new discoveries at the time a patent application is
filed. See 35 U.S.C. § 154(a) (1994). This achieves disclosure of the inventions
involved without the delay entailed in processing the patent application.

88 United States Patent and Trademark Office, supra note 6, at 7 (statement of
William Ryan, AT&T attorney); see also United States Patent and Trademark Office,
supra note 1, at 23 (statement of Richard Jordan, Patent Counsel, Thinking
Machines Corporation) (describing the impact of software patents in promoting the
publication by company employees of descriptions of software advance; the company
did not restrict these publications because the concern was able to protect its
advances adequately through software patents).

84 See Cohen, supra note 51, at 3 (stating that the reward function of the patent
system creates incentives for innovation and disclosure).

85 See Richard D. Nelson & Roberto Mazzoleni, Economic Theories About the
Costs and Benefits of Patents, 32 J. ECON. ISSUES 1031 (1998) (last visited Oct. 29,

2000] PATENT INCENTIVES FOR SOFTWARE 1011

a patent holder will be advancing his or her self-interest since
the publicity will be likely to result in incremental product sales
or licensing revenues. Absent patent rights, however, there
would be little incentive to disseminate information about a new
software advance to parties in other fields since the party
making the advance would have little, if any, means to benefit
from this publicity.3¢

The benefits achieved through broader disclosures of
software inventions relate not only to the public’s use of the
software being disclosed, but also to the avoidance of duplicate
research to develop equivalent software.8?” Such duplicative
software development is, in part, a detrimental offshoot of past
uncertainty in software patent standards. Until recently,
restrictive views on software patents held by the PTO and
certain courts caused relatively few software patents to issue
and corresponding gaps to develop in the record of software
development reflected in issued patents.®® The result, according
to one computer science professor, was an unnecessary
duplication of programming effort due to the lack of accumulated
software innovation disclosures:

Much of computer science I see... consists of reinventing
wheels. A large amount of that is because people don’t check
prior art and a large amount of that is because there’s no good
prior art collections tfo] [chleck, and I think. .. that this is one
of the problems that has been caused by the two decades of the

2001) <http://www.nap.edwreadingroom/books/property/3.html#chap3> (suggesting
that patents facilitate further development and use of the patented product).

8 See id. For example, consider a software developer who creates a new
information processing system for storing insurance company records based on the
risk characteristics of various insurance policy holders. Information-storage systems
indexed by customer risk characteristics may also be useful outside of the insurance
field. For example, in programs used by retailers to identify consumer needs and
likely product or service preferences. Once a software innovator, who develops an
effective means to correlate record storage with consumer risk, is granted a patent
on this innovation, the innovator will have a stake in all of the potentially
productive applications of this invention. He or she will therefore see that it is
publicized and incorporated in software products in all of the fields where the
software has foreseeable applications. With these incentives for broad disclosure
and advocacy of additional applications, there will be an increased chance that an
advance which was initially developed for a narrow field like insurance records
storage will be disclosed to and used by a broader range of persons who might gain
from the advance.

87 See id.

88 See United States Patent and Trademark Office, supra note 6, at 30
(statement of Lee Hollaar, Professor of Computer Science, University of Utah).

1012 ST. JOHN’S LAW REVIEW [Vol.74:977

Patent Office having at best ambivalent attitudes toward the

patentability of computer software and not using the patent

system to draw the trade secrets and the other art into the

printed publications of U.S. patents.8®

This type of duplication—and the corresponding waste of
some of the net value of the software innovations involved—can
be avoided through greater use of software patents and greater
reliance on the records of software development that an
expanded number of patents will produce.

C. Prouviding Incentives for Product Refinement and
Popularization

Many inventions involve workable but rudimentary designs
of new devices or processes that require considerable further
refinement to transform them into useful and marketable
products.®® Extensive engineering adjustments may be needed
to make an invention work well enough to form the basis for
marketable products. Substantial post-invention industrial
engineering may also be needed to initiate mass production and
distribution of products based on a new invention. For example,
mass production of a product may only be possible following
costly production engineering studies to set up manufacturing
operations. Extensive product introduction advertising may also
be needed to familiarize consumers with the new features of the
product. These product perfection and popularization efforts—
distinct from the research activities necessary to produce an
invention—will be referred to here as product introduction
activities.

Patent protections can serve a valuable societal function by
encouraging patent holders to invest resources in product
introduction activities.? Absent the guarantees of exclusive

8 Id.

9 See Nelson & Mazzoleni, supra note 85 (discussing how patenting of
inventions occurs early in the process, and therefore much work is often needed to
make the invention viable).

91 This impact of patent protections was first analyzed in depth by Joseph A.
Schumpeter. See JOSEPH A. SCHUMPETER, THE THEORY OF ECONOMIC
DEVELOPMENT 67-74 (Redvers Opie tramns., 1983); JOSEPH A. SCHUMPETER,
CAPITALISM, SOCIALISM, AND DEMOCRACY 81-110 (3d ed. 1950); JOSEPH A.
SCHUMPETER, BUSINESS CYCLES 84-192 (2d ed. 1964) (1939). Schumpeter
emphasizes the importance of post-invention product innovation as a means to bring
about revolutionary changes in an economic system. Patents, in Schumpeter’s view,
are means to attract investment and competition in the development and marketing

2000] PATENT INCENTIVES FOR SOFTWARE 1013

product marketing that flow from patent ownership, parties who
are considering the commercialization of new products will
hesitate to invest substantial engineering and marketing
resources in producing and promoting products that other
providers might then produce and market with lower costs.%?
The production costs of second and subsequent producers will be
lower if they can gain some of the benefit of the first
manufacturer’s product introduction activities. This will be the
case if later product introducers can gain from and avoid
repeating some of the first manufacturer’s product perfection
efforts or manufacturing start-up activities. These kinds of
benefits can sometimes be realized by studying the first
manufacturer’s products and methods of manufacturing (to the
extent that these methods are publicly known). Similar benefits
can also be obtained by introducing new products as substitutes
for the first manufacturer’s products in ways that capitalize on
consumers’ familiarity with the products based on the first
manufacturer’s product introduction advertising.

Where these practices can be freely undertaken by second
and subsequent product introducers, they can create “free rider”
problems. Absent patent controls, a potential producer and
marketer of a given type of product may be hesitant to be the
first to work out the manufacturing problems for a new type of
product and to expend the advertising and other marketing
resources necessary to inform the public about the nature and
merit of the new product.93

of new products following the discovery of a new techmology. See JOSEPH A.
SCHUMPETER, THE THEORY OF ECONOMIC DEVELOPMENT 67-74 (1983). He argued
that radical market changes often resulted where new firms arise to exploit new
innovations, driving out old firms that provide obsolete goods and services. See
JOSEPH A. SCHUMPETER, CAPITALISM, SOCIALISM, AND DEMOCRACY 82 (3rd ed.
1950). The prospect of extraordinary returns, however, from the production and
marketing of products based on a new technology was necessary in order to induce
investment and to lure productive resources away from other uses. Hence, control
granted through a patent covering the implementation of a new technology could
increase rather than restrict the availability of that technology and related
products, by facilitating the introduction of the products by innovating firms. See id.

92 Sge Syrowik, supra note 81, at 117 (discussing how investors who sponsor
start up companies seek some certainty as to protecting their investment).

93 See Paul E. Schaafsma, An Economic Overview of Patents, 79 J. Pat. &
Trademark Off. Soc’y 241, 243 (1997) (noting the ability of competitors to avoid the
high risks of introducing new products by only producing and selling substitutes for
other businesses’ already popular products, for which patent protection is not
available); see also Marsha J. Ferziger, Monopolies on Addiction: Should

1014 ST. JOHN’S LAW REVIEW [Vol.74:977

Once an initial product introducer has designed a workable
product and created an associated market demand, later
suppliers of the same product will be able to produce the product
in competition with the first firm,% but will not have to bear all
of the engineering costs and product introduction outlays
incurred by the original inventor. The later producers would
therefore be able to profitably market their products at lower
prices and win a substantial portion of the market for their
products at the expense of product sales by the product
innovator. The second and subsequent producers are free riders
with respect to product engineering, manufacturing start-up,
and product introduction expenditures of the first manufacturer
that also benefit the subsequent producers. Absent patent
restrictions on their manufacturing and marketing of substitute
products, second and subsequent introducers of versions of an
innovative product will not need to pay any share of the expense
of the product introduction activities from which they benefit.

The foreseeability of these sorts of “free rider” effects, and
fears that these effects will subsidize competitors, may cause
firms that are capable of incorporating new inventions into
products to forgo such changes and to invest their resources
elsewhere. The result will be that useful inventions may be
discovered, but not carried forward into generally available
products.

“Free rider” effects related to product perfection and
popularization are likely to cause serious problems concerning
software innovations. Once an individual or a company

Recreational Drugs be Patentable, 1994 U. CHI. LEGAL F. 471, 475 (1994) (stating
that without patent protection there would be little economic incentive to create and
research).

% Of course, the design and production of products that are “clones” of an
innovative product takes some time. During the delay between introduction of the
first version of an innovative product and the introduction of its clones, the original
market entrant will have a temporary monopoly over sales of the product. The value
of this temporary monopoly will depend on the functional superiority of the new
product over substitutes, the time necessary to bring duplicate products to market
and the willingness of consumers to wait for similar, and less costly, products from
other producers. In some settings—for example, operating system software for
personal computers—the difficulties and delays in producing work-alike products
give initial producers large, and sometimes insurmountable, marketing advantages.
See Dan L. Burk, Muddy Rules for Cyberspace, 21 CARDOZO L. REV. 121, 166 (1999)
(explaining that the most profitable time for an invention may be the period
between when the invention actually reaches the market and the time when clones
of the invention reach the market).

2000] PATENT INCENTIVES FOR SOFTWARE 1015

identifies a potentially useful software advance, significant
product development and popularization expenditures may be
needed before related products can be widely used by the
public.95 Resources are unlikely to be expended on these tasks if
the parties involved think that their efforts may benefit not only
their own companies, but also benefit competitors who can wait
for the initial party’s product designs and product introduction
efforts to succeed and then market knock off products without
bearing all of the associated product design and popularization
costs.

Significant product development costs can be incurred in the
perfection of software products due to the complexity of large-
scale programming projects. The development of a wuseful
software product that incorporates a new software design feature
may involve large expenditures of resources to integrate the new
advance with the other aspects of the software product and
produce reliable program functionality and results.® Software
development projects—even those involving modifications to a
previously stable, working product—are notorious for involving
large and unpredictable programming, testing, and debugging
costs.97 The size of these costs suggests that software vendors
may be deterred from initiating software improvement efforts if
they cannot be sure of gaining most of the increased product
sales and profits resulting from those efforts.

Public education concerning a new software product may
also add substantial costs to the product introduction expenses
that must be borne by the first innovator to market such a
product. Public education about a new product will include
advertising and product demonstrations to illustrate and explain

95 See Simone A. Rose, Patent “Monopolyphobia”™ A Means of Extinguishing the
Fountainhead?, 49 CASE W. RES. L. REV. 509, 520-521 (1998) (explaining how an
invention, which may be superior to other products on the market, will not be
purchased by consumers unless the inventor is able to spend money to promote and
educate consumers about the product).

% New software development is often an extremely expensive activity. Among
the developers of widely marketed packaged software, an average of 17 percent of
company revenues flows into continuous research and development efforts. United
States Patent and Trademark Office, supra note 6, at 6—7 (statement of William
Ryan, AT&T attorney).

97 See A. Samuel Oddi, An Uneasier Case for Copyright Than for Patent
Protection of Computer Programs, 72 NEB. L. REV. 351, 425 1n.304 (1993) (explaining
that debugging costs associated with software programs are difficult to estimate
because of the number of variables involved with software programs).

1016 ST. JOHN’S LAW REVIEW [Vol.74:977

the benefits of the new product. The costs of these sorts of
efforts are transaction costs that must be incurred to inform
potential software users about the merit of the new product and
its innovative features. Parties marketing similar products after
the initial product introduction by the software innovator need
not expend these same sorts of resources since the public will
already be somewhat familiar with the relevant product advance
and its practical advantages. Absent some exclusivity in
marketing a new type of software product (at least for some
time), an innovator will be hesitant to invest significant
resources in public education to promote the initial marketing of
that product.

Given the scope of these costs, patent reassurances to
companies developing new software products may be critical in
convincing those companies to commit resources to new product
development projects. The same reassurances may be needed to
convince venture capitalists and other investors to make similar
decisions to back start-up companies in their development and
marketing of new software products.?® Software patents can
influence investment decisions because “investors seeking to
sponsor a start-up organization or a new enterprise within a
larger company would like to have some certitude about what it
is that they can hope to have some protection for and ... how
their investments can be protected.”?

A patent attorney described this type of impact of software
patents on one of his clients:

I have a client that’s a small software company on the West

Coast, initially financed through the founder’s own resources.

This [company’s product] is a utility type of software, improving

hardware performance and reliability. They filed a patent
application. A hardware company that they were working with

98 See Jonathan M. Barnett, Cultivating the Genetic Commons: Imperfect Patent
Protection and the Network Model of Innovation, 37 SAN DIEGO L. REv. 987, 1001~
02 (2000) (explaining how patent protection fosters investment by assuring that a
“free rider” will not be able to capitalize on the invention and prevent the original
inventor and investors from recovering their investment capital).

99 United States Patent and Trademark Office, supra note 6, at 7 (statement of
William Ryan, AT&T attorney) See also id. at 9-10 (statement of Richard LeFaivre,
attorney for Apple Computer) (noting that Apple Computer and other large software
producers regularly consider the patent potential of alternative development
projects before embarking on those projects; projects lacking potential patent
protection are disfavored because of the risks that innovative products resulting
from the projects will be appropriated by competitors).

20001] PATENT INCENTIVES FOR SOFTWARE 1017

decided to flex its muscles a bit and threatened to design their
own product, mnotwithstanding the patent application.
However, once we had an indication of reasonable allowable
claims we were able to negotiate them back into the fold.

‘A few months later, despite the success of the product.. .,
marketing expenses were just eating up the company’s cash.

The company went to look for investors. Every single investor
refused to get actively involved until knowing that there would
be strong patent protection, because the one thing that makes
software unique is how easy it is to copy. And I'm not using
copy necessarily in the copyright sense, but analyzing it and
taking what’s there.

[After obtaining a patent], our client is at this point closing the

financing which was the difference between life and death for

the company.100

Patent rights held by an innovator can also provide the basis
for technology transfers to other parties who will develop or
apply a new technology. This use of software patents is
particularly important in wuniversity environments where
institutions seek to license outsiders to use software developed
by university personnel. One attorney described the key role
played by the licensing of university-held patents as follows:

Universities will generally not be able to license their
technology unless they have a chance of protecting it. They are
not known to be litigious: it is out of respect for the patent
system and access to future technology generally that a licensee
signs up. [My law firm has] seen a number of instances where
software developed at universities was licensed by the very

100 United States Patent and Trademark Office, supra note 6, at 35-36
(statement of Steven Henry, Attorney, Wolf, Greenfield & Sacks, P.C.). While trade
secret rights may protect software advances that can be commercialized in secret,
these sorts of protections may not be adequate to attract investor support for
company expansion. There are several reasons why potential investors in a
company developing a software advance may believe software patent protections are
superior to similar trade secret protections:

[Tihere’s often a choice between whether to keep processes secret or obtain

a patent on it. I find investors like patents much better, for two reasons.

One is, they don’t like dealing with trade secrets because they have to sign

a confidentiality agreement and a lot of investors won’t do that. The second

reason is, and I think even more compelling, is that the investors are

afraid that the trade secrets will have a short lifetime. They can easily be
lost. They can be lost in an instant by an inadvertent publication.
United States Patent and Trademark Office, supra note 6, at 41-42 (statement of
Robeert Yoches, Attorney, Finnegan, Henderson, Farabow, Garrett & Dunner).

1018 ST. JOHN’S LAW REVIEW [Vol.74:977

developers who knew the potential, went out, formed their own

companies, and that was a revenue stream that was formed

back to the universities and that revenue stream is very
important.10!

Patents can form the basis for bringing together partners
who will contribute differing expertise or resources to the
development and marketing of a new software product. An
innovator can contribute patent rights to a new partnership
formed with other specialists and the partnership can then use
these rights to ensure exclusive marketing of the products or
services it offers. Such partnerships are particularly common in
the software field since the production of a successful product
often requires a mix of programming and application domain
expertise that is uncommon in one company or organization.102
One computer industry attorney described the impact of patents
as the linchpins in forming productive partnerships in the
following terms:

[Patents] provide a vehicle for developing of the ubiquitous
alliances that are present in the [computer] software and
hardware industries. They provide a medium, in fact, for
people to come together and exchange value so that they can
work together to get a cooperative result. Often this helps
people and companies get into new markets and establish
businesses that would not otherwise exist.103

Among the partners in a venture to commercialize a new
software-based product, software patents may be a means to
strengthen the hand of software developers and provide them
with a greater fraction of the overall profits from the product.
The impact of software patents in clarifying the value of software
assets and, by extension, the value of programmers’
contributions to innovative software may significantly change
our notions of power and commerce concerning software
products:

101 See id. at 36 (statement of Steven Henry, Attorney, Wolf, Greenfield &
Sacks, P.C.).

102 Partnering for Competitive Advantage; Strategic Software Relationships;
Special PDA Engineering Advertising Supplement, 11 COMPUTER AIDED ENG'G 10,
S9 (1992) (stating that establishing partnerships has become an effective way to
accelerate technological development, enhance productivity, promote teamwork,
increase the flow of innovation and promote the sharing of information).

103 United States Patent and Trademark Office, supra note 6, at 7 (statement of
William Ryan, AT&T attorney).

2000} PATENT INCENTIVES FOR SOFTWARE 1019

In today’s global highly competitive marketplace, some believe
that we are witnessing a fundamental shift in business history.
They are, we say, progressing from managerial capitalism to
intellectual capitalism. They believe that the importance of
intellectual capital will ultimately cause a dramatic shift in the
wealth of the world from material resources to those who
control ideas and information that is intellectual property.

A fundamental feature of the patent system is that it
establishes a basis for this intellectual effort to be regarded as
an asset and to be traded in the marketplace. Thus, an
effective patent system that promotes creativity by providing a
beneficial and stimulating environment for inventors is
essential for the information age.104

D. Encouraging Efficient “Prospecting” for Applications and
Improvements

Patent controls over the use of an invention can have further
beneficial impacts on searching or “prospecting” for additional
applications of the invention and improvements to the invention.
Once an innovator gains a patent covering an advance, the
innovator (or a successor who holds the patent) will generally
seek to maximize the value of the patent by increasing use of the
patented invention. The use of a patented invention can be
increased in at least two ways: by finding new applications for
the patented invention and by seeking improvements on the
existing invention that will make it more useful or effective in its
present applications and thereby increase the frequency with
which it is used. Because patent holders will generally realize
greater product sales profits or licensing royalties as patented
inventions are used more often, patentees are encouraged to
invest reasonable amounts of resources in “prospecting” for new
types of applications and improvements of their patented
inventions.105

This interpretation of patent incentives is premised on the
view that inventive processes are comprised of two distinet
stages: an initial discovery phase in which a new invention is

104 [nited States Patent and Trademark Office, supra note 1, at 26 (statement
of Ron Reiling, Digital Equipment Corporation).

105 See Cohen, supra note 51, at 19 (“When patent rights are claimed in a
particular technology, and that technology is adopted by consumers, there is
increased prospecting activity in that technological field.”) (citation omitted).

1020 ST. JOHN’S LAW REVIEW [Vol.74:977

identified and a second application development and
improvement phase in which wuseful applications and
improvements of the invention are sought.106

Patent standards can be used to influence and regulate the
efforts of multiple competing inventors in these two stages of
invention development. By withholding patent rights and
associated product controls until a clearly useful device or
process design is in hand, patent standards ensure that the first
of these inventive stages is an unconstrained, competitive free
for all, with potential innovators encouraged to race diligently to
be the first to make a discovery and thereby gain the associated
patent rewards.

Once an invention is made and a patent is obtained, the
second stage of searching for applications and improvements of
the invention may be best conducted or coordinated by one party
who has a clear economic interest in maximizing the value of the
original invention and who will devote reasonable resources to
the search for practical applications and improvements of the
invention. This is accomplished under present patent standards
by recognizing the exclusive rights of a patent holder at an early
point of invention development when at least one version of an
invention (not necessarily the best) has been conceived and
shown to have at least one useful application (not necessarily the
most important).107

By attaching patent rights at this early point, later efforts to
apply and improve the invention can be managed by the patent
holder, who has a clear economic interest in pursuing additional
applications and improvements which will expand the
commercialization and licensing opportunities associated with
the patent. At the same time, the patent holder will be
concerned that expenditures on searches for invention
applications and improvements be limited to reasonable amounts
such that the cost of these search efforts does not exceed the new

106 See Marc B. Hershovitz, Unhitching the Trailer Clause: The Rights of
Inventive Employees and Their Employers, 3 J. INTELL. PROP. L. 187, 189 (1995)
(“There are two distinct parts to the inventive process: (1) conceptualization and (2)
reduction to practice.”) (citation omitted); see also Edward W. Kitch, The Nature and
Future of the Patent System, 20 J.L. & Econ. 265, 272-73 (1977) (describing the
development of inventions in two phases, one leading up to the application for a
patent and another involving subsequent efforts to transform the invention into
commercially successful products).

107 See supra note 105 and accompanying text.

2000] PATENT INCENTIVES FOR SOFTWARE 1021

utility and commercialization value which the expanded
applications and improvements are likely to achieve. Finally,
because the patent holder can be confident that
commercialization of new applications and improvements of the
patented invention will require the patent holder’s consent and
compensation, the patent holder’s efforts will not be deterred by
fears of “free rider” appropriation of newly discovered
applications and improvements.

Seen this way, the patent system serves parallel functions to
those served by prospecting laws governing mining claims.108
Both mineral prospecting laws and patent laws “avoid
duplication of effort, create an incentive to invest in
development, lower the cost of contracting for complementary
resources by reducing the need for secrecy, and lower the
claimant’s cost of maintaining control over the valuable
discovered resource.”® The proper scope of patent protections
under this approach is the range of further innovations a patent
holder can reasonably be expected to prospect, e.g., pursue
effectively, given the nature of the patentee’s original discovery.
Rather than defining rights concerning a claim with physical
boundaries, as mining law does, a patent defines a conceptual
domain of ideas about useful methods or devices and gives the
patent holder exclusive control of further application
development and improvement activity within that domain.

Incentives for application prospecting may be particularly
important in connection with innovative software. Information
processing advances implemented in software can have many
applications that are unclear when first developed in a narrow
application context. Expanding from its first narrow application
to its full range of useful applications may require considerable
studies and reprogramming. 110

108 See generally Kitch, supra note 106, at 271-75 (arguing that the patent
system serves “to increase the output from resources used for technological
innovation” and comparing the patent system to the mineral claim system in the the
19th Century); see also Cohen, supra note 51 (analyzing Edmund Kitch’s analogy
between the patent system and the prospecting laws governing mining claims).

109 Grady & Alexander, supra note 63, at 314; see also Cohen, supra note 51
(“To borrow Kitch’s mineral analogy, when a prospector located mineralizations in a
certain area, the usual result was increased prospect activity in that particular
area.”).

110 See Julie E. Cohen & Mark A. Lemley, Patent Scope and Innovation in the
Sofware Industry, 89 CALIF. L. REV. 1, 23 (2001) (“[P]atent law anticipates and even
depends on one party improving another party’s invention”).

1022 ST. JOHN’S LAW REVIEW [Vol.74:977

Patent incentives encouraging software developers to search
for further applications of the developer’s patented software can
promote two types of application prospecting. First, additional
applications or improvements of patented software might be
sought in the same field in which the software was originally
developed. 111 A software innovator (or the assignee of the
innovator’s patent) will often have substantial expertise about
the field of the innovation and therefore be in a good position to
identify additional software applications in that field. Patent
rights assuring a software innovator of exclusive control over
new uses and applications of patented software will encourage
patent holders or assignees to conduct these studies. A patent
holder will be encouraged—in a way that non-patent holding
innovator concerned with free riders would not be encouraged—
to complete these studies in order to identify product
applications and related business prospects that will increase
the use of the underlying invention and maximize the value of
the corresponding patent.

Second, in identifying the full range of useful applications of
innovative software, cross-domain searching for new applications
may also be important. A given type of software that is first
implemented in one field may have further applications in
several other fields. Persons with computer programming
expertise or substantive expertise in the first field may have
little reason to know of the potential importance of the software
in additional fields. For example, an individual who develops a
highly specialized software application such as software for
controlling blood analysis devices, may lack the technical
expertise to recognize that the new information processing
method that the individual has recognized as a means for
conducting blood analyses is also useful in monitoring steel
welding processes.

It is unlikely that software developed and applied in one
field will be further applied in a second field unless publicity
about the advance in the first field reaches experts in the second
field. Those experts must then conduct studies that confirm the
usefulness in the new field of the software advances developed in

1t See Peter S. Menell, The Challenges of Reforming Intellectual Property
Protection for Computer Software, 94 COLUM. L. REV. 2644, 2650 (1994) (stating
that the next generation of technological innovation within software will improve
upon usability of existing applications).

2000] PATENT INCENTIVES FOR SOFTWARE 1023

the first setting. These publicity and additional research efforts
may be particularly complex and costly for software innovators
because these efforts may extend to a wide variety of fields and
contexts beyond the setting where a software advance is made.
Patent rights will be a useful means to encourage reasonably
scaled efforts to extend software innovations outside their initial
fields of use and thereby ensure that more of the functional
benefits of those innovations are brought to the public.

E. Avoiding Duplication of Inventive Efforts

Patent rights may achieve additional public benefits by
discouraging the wasteful duplication of efforts to perfect or
improve patented inventions.!2 Because parties seeking to
make, use, or sell a patented invention (in either its original
state or an improved form) need the patent holder’s permission
to do s0,113 a patent holder can control and regulate subsequent
efforts to implement and improve the patented invention. The
patent holder can ensure that a given line of product research or
development is undertaken only once by parties who are
authorized to do so by the patent holder, rather than being
duplicated in a wasteful manner by researchers working
in parallel.

By limiting duplicative efforts to improve and implement a
patented invention, a patent holder can maximize the total
societal gain or “monopoly rent” associated with the invention.
The monopoly rent for a patented invention is the value of the
increased utility associated with the innovation, less the cost of
developing the invention.1#* Put another way, the monopoly rent
is society’s net gain from the invention. Societal gain from an
invention will be maximized if the monopoly rent associated with
that invention is not “dissipated” through wasteful efforts that
involve greater than necessary expenditures to develop or
improve the invention.115

12 See generally Grady & Alexander, supra note 63, at 308; Kitch, supra note
106, at 278 (stating that once a patent is filed people will not waste effort in
reproducing something already patented).

113 See Grady & Alexander, supra note 63, at 307 (stating generally that broad
protection of patent rights would allow all development opportunities to be
controlled by the patent holder).

N4 See id. at 308 (explaining both the theory and societal benefits behind rent
dissipation and how an inventor receives monopoly rights).

15 See id.

1024 ST. JOHN’S LAW REVIEW [Vol.74:977

The monopoly rent from a patented invention can be
dissipated (and the net value of the invention to society reduced)
several ways. Duplicate efforts by multiple innovators may be
undertaken in races to discover inventions. That is, two or more
parties may undertake parallel research leading to a single
invention. The efforts of the second and subsequent inventors in
such races are wasted insofar as the efforts of the first innovator
alone would have been sufficient.

Patent rights tend to limit this type of monopoly rent
dissipation. For example, present patent standards permit
inventors to obtain patents and thereby disclose their inventions
at early stages of development, e.g., when one useful application
has been realized, even if efforts to refine the invention or
related products are still ongoing.1® These early stage
disclosures tend to discourage the continuation of duplicative
efforts by other researchers who may be undertaking parallel
development efforts.!l” Researchers will tend to discontinue
parallel efforts at this point because they realize that the patent
will preclude them from freely using the products of their
research. The researchers will be encouraged to shift from
duplication of the already completed product development to
instead study how to use the patented invention under a license
from the patentee or how to produce non-infringing substitutes
for the patented invention.

A different form of post-invention rent dissipation may occur
where parties undertake duplicate efforts to improve an
invention or find new applications for the invention.}1®8 Multiple
parties will tend to enter races to develop follow-on
improvements or new applications of an innovation if the
innovation signals the possibility of other related advances.
Monopoly rent dissipation losses will be minimized if a patent

116 See id at 31617 (stating one theorist’s view that patent laws may have the
positive effect of preventing or reducing duplicative improvement efforts thereby
avoiding rent dissipation).

117 See United States Patent and Trademark Office, supra note 6, at 30
(statement of Lee Hollaar, Professor of Computer Science, University of Utah)
(describing the duplication of computer programming research resulting from the
Patent Office’s formerly restrictive views of software patents and the corresponding
failure of the patent system to build up a body of published patents describing the
developing engineering art in this field).

18 See Grady & Alexander, supra note 63, at 308 (pointing out a type of rent
dissipation that takes place following the creation of an invention).

2000] PATENT INCENTIVES FOR SOFTWARE 1025

holder controlling the invention can bar duplicate improvement
and application searching; thereby ensuring that searches that
do occur produce the greatest functional gains with the least
possible expense.l’® Under this view, patent protections are
particularly important for inventions that signal a large
possibility of subsequent improvement or application expansion
and therefore raise a large risk of duplicative post-invention
improvement or application expansion efforts.

Monopoly rent dissipation may also occur where innovators
invest too much in keeping their inventions secret.120 The public
can suffer from expensive secrecy measures either because the
full benefits of an invention are not made available to the public
due to secrecy limitations or because secrecy measures add to the
cost of a product or service. Patent protections can eliminate
these costs by creating protections against misappropriation of a
patented invention that substitute for physical secrecy
arrangements.

Software patent protections may prevent several types of
monopoly rent dissipation. Following a software developer’s
patenting of a particular software advance, other individuals
working on efforts to develop similar software advances (or
working on different software that they recognize will be far less
effective than the patented software) will be deterred from
further, wasteful efforts. As even one duplicative software
development and coding project may entail significant
expenditures, the prevention of even a few wasteful coding
efforts may achieve substantial societal gains.121

The potential benefits of patents in deterring duplicative
software development efforts are undercut somewhat by the
delays which may occur in the issuance of software patents.
When a software developer produces a new type of innovative
software and seeks a patent on this advance, the developer’s
patent application generally will not be disclosed publicly at the
time the application is filed. Rather, the application and the
advance that it reflects will remain secret until a patent issues
or the contents of the application are otherwise disclosed. This
may be several years after the patent application is filed. In the

119 See id. at 315.

120 See id. at 318.

121 See id. at 319-20 (arguing that the case for patent protection is strong
where the protection is likely to discourage costly forms of duplicate innovation).

1026 ST. JOHN’S LAW REVIEW [Vol.74:977

period while the patent application is pending and secret,
duplicative software development by parties other than the
patent applicant may continue. This may be mitigated
somewhat if a patent applicant is sufficiently confident of her
ultimate receipt of a patent to disclose her invention and her
related patent application as of the filing of the application,
thereby signaling to other developers that further efforts to
develop similar software will probably be restricted by the first
innovator’s patent.

Software patents may also prevent duplicative efforts and
monopoly rent dissipation in connection with software
application search and improvement efforts. Subsequent to the
issuance of a patent on a new software advance, software
developers other than those working in concert with the patent
holder will be discouraged from undertaking duplicative efforts
to implement the new software advance in new products and to
develop improvements to the advance. These duplicative efforts
will be discouraged because the results of such efforts will be
restricted and unusable without the patent holder’s consent.122
By designating and working closely with a chosen set of
application developers and invention improvement developers
(or by undertaking application development and invention
improvement efforts itself), a company that holds a patent on a
software advance can ensure that reasonable efforts are made to
improve and apply the patented advance while preventing—or at
least discouraging—duplicative efforts along these lines by
other parties.

Since much of the development expense of a software
product lies in efforts after the point of conception to produce
workable programming code and to improve overall program
operation,?3 the prevention of duplicative software improvement
or application efforts concerning a particular software advance
may avoid significant waste and lost invention value. The
avoidance of this type of waste may therefore provide an
important rationale for software patent protections.

122 See id. at 307 (stating that the original inventor would have rights and
benefits to any subsequent developments or improvements unless that right was
sold to those persons who improved the invention).

123 See generally Joseph G. Arsenault, Software Without Source Code: Can
Software Produced by a Computer Aided Software Engineering Tool Be Protected?, 5
ALB. L.J. SCI. & TECH. 131 (1994) (discussing in detail computer programming code
program operation, and software development protection).

2000] PATENT INCENTIVES FOR SOFTWARE 1027

Whether or not the public gains net benefits from giving a
software patentee control over subsequent efforts to apply or
improve a patented software advance will depend in part on the
predictability of useful directions of product improvement and
application expansion. If a patent holder cannot predict the
types of research into new improvements and applications of an
innovation that are likely to lead to further advances, then
patent controls over subsequent software improvements and
applications will have negative consequences beyond the
prevention of duplicative efforts. These controls will improperly
cut off entire types of useful improvements and applications that
are not predictable by the patent holder.12¢

Where potential improvements or applications of an initial
software innovation are not clearly apparent from the nature of
the innovation, the public may be best served by a competitive
“free for all” among software innovators to identify new
improvements and applications.’? This competition and the
involvement of more developers may produce a broader range of
follow on innovations and applications than the original
innovator could have foreseen and caused authorized researchers
to pursue. In areas where the full scope of improvements or
applications of a software innovation are unlikely to be
appreciated by the original innovator, concerns over the
undesirable curtailment of subsequent improvement and
application efforts, rather than countervailing concerns over
maximizing monopoly rents by preventing the duplication of
such efforts, suggest that software patents should be interpreted
to minimize a patent holder’s control over subsequent product
improvements and applications.’?6 This may be achieved by

124 See Samuelson, supra note 70, at 2330-31 (indicating that innovation in
software development is typically incremental in that programmers often adopt
ideas from other programs in a new context); see also Cohen supra note 51, at 17-18
(noting the likelihood that holders of patent rights will not optimally develop
potential improvements to patented inventions).

125 See Sumuelson, supra note 70, at 2366-67 (“The public benefits from
competitive imitation because it results in the production of more goods at lower
prices as more efficient producers enter the market.”); see also Cohen, supra note 51,
at 17 (recognizing that competing innovators often develop product improvements
more actively and efficiently than holders of patent rights who are without rivals).

126 See Samuelson, supra note 70, at 2409 (describing why a rational legal
regime for protecting software producers should include a means to avoid wasteful
reduplications of efforts); see also Cohen, supra note 51, at 8-9 (arguing that broad
interpretations of patent’s scope can severely discourage innovation).

1028 ST. JOHN’S LAW REVIEW [Vol.74:977

interpreting patents narrowly so that they do not cover a broad
range of new improvements and applications, or by creating a
scheme of compelled, nonexclusive licensing that will ensure that
multiple developers are entitled to use patented software in
further applications and improvements.

Finally, software patents should produce further societal
gains by reducing the need for patent holders to maintain
secrecy measures to control access to innovative software.
Absent patent protections, a software innovator might
implement costly physical security measures limiting access to a
software advance or pursue expensive efforts to enforce
confidentiality agreements or trade secret rights which obligate
others to maintain the secrecy of an advance. These measures
may involve both direct costs of administration!?” and further
costs in impaired effectiveness of the affected software as it is
used imperfectly under physical or confidentiality constraints.
These types of costs would be avoided under a system of patent
rights that permits software innovators to impose legal limits on
the use of software advances without the need to constrain
access to those advances with physical or contractual secrecy
measures.

ITI. SPECIAL GROUNDS FOR RESTRICTING SOFTWARE PATENTS

The policy considerations addressed in the preceding section
suggest that software patents are likely to realize many of the
same public benefits that patents produce in other technological
fields. These considerations tend to support broadly inclusive
patentability standards for innovative software. There may be
countervailing considerations peculiar to software patents, which
justify a more restrictive approach.1?8 This section will examine

127 See Christopher S. Cantzler, State Street: Leading the Way to Consistency for
Patentability of Computer Software, 71 U. COLO. L. REV. 423, 436 (2000)
(commenting on administrative difficulties in using software licensing agreements
to protect against eventual copying or re-use of particular parts of programs).

128 See Samuelson, supra note 70, at 2367-68 (“[Ilnformation products, such as
computer software, bear so much of the technical know-how required to make them
on or near the surface of the product that natural lead time for this kind of
industrial product may not suffice.”); see also Pamela Samuelson, Benson Revisited:
The Case Against Patent Protection for Algorithms and Other Computer Program~
Related Inventions, 39 EMORY L.J. 1025, 1113-33 (1990) (describing the need for
special patent laws governing software in light of the dual expressive and functional
nature of software code).

2000] PATENT INCENTIVES FOR SOFTWARE 1029

some special concerns that have been raised about software
patents, with an emphasis on how those concerns may be
reduced by narrowly targeted limitations on software
patentability.

Previously articulated concerns about software patents have
focused on three types of problems: 1) the possibility that patents
on intangible software innovations, which lack physical features
and tangible structural elements, may restrict information
processing sequences and related intellectual processes,'?® 2) the
chance that software patents may issue for innovations lacking
identifiable utility and corresponding societal gains,’% and 3) the
potential impact of patent enforcement in discouraging or
limiting desirable software development.23?

A. The Absence of Tangible Structural Features

Some software innovations reflect little more than computer
implementations of new intellectual concepts or relationships.13?
These innovations differ from many prior technological advances
in that these software advances lack physical features or
tangible structural elements. The value of these software
advances derives not from their physical characteristics or
physical operations, but rather from the increase in information
value that is achieved by computer processing controlled through
the innovative software.133

129 See infra motes 132-158 and accompanying text; see also United States
Patent and Trademark Office, supra note 6, at 24 (statement of Jerry Baker, Senior
Vice-President of the Oracle Corp).

A complex program may contain numerous established concepts and

algorithms as well as a multitude of innovative ideas. Whether a software

program is a good one does not generally depend as much on the newness

of each specific technique, but instead depends on how well these are

incorporated into the unique combination of known algorithms and

methods. Patents simply should not protect such a technology.
United States Patent and Trademark Office, supra note 6, at 24.

130 See infra notes 159-182 and accompanying text; see also U.S. CONST. art. I,
§ 1 cl. 8 (“To promote the Progress of Science and useful Arts, by securing for limited
Times to Authors and Inventors the exclusive Right to their respective Writings and
Discoveries.”).

11 See infra notes 183-220 and accompanying text; see also United States
Patent and Trademark Office, supra note 6, at 7 (statement of Douglas Brotz, Adobe
Systems) (“The software industry has thrived without patents.”).

132 See Samuelson, supra note 70, at 2330 (pointing out that innovation in
software development is typically incremental).

133 See id.

1030 ST. JOHN’S LAW REVIEW [Vol.74:977

The capability of general purpose computers to be specially
programmed to undertake new information processing steps
means that a new information processing idea can often be
translated into an equivalent computer-based system for
processing information in accordance with the new idea.’3¢ The

13¢ While computer implementations of software advances all involve some
physical features beyond the programming instructions comprising the software,
the nature of these further physical features can vary widely. The information
processing steps described in a software program can be implemented through
several types of hardware components. One type of implementation involves a
general purpose computer that is directed to process information by the software. A
second, different type of hardware implementation involves a highly specialized
circuit designed to implement in wiring the samé sequence of information
processing steps that are defined in the software. These two types of design
approaches—one relying on a general purpose electronic device with specific
instructions for dealing with a given information processing task and the other with
a task-specific electronic design—represent the end points of a spectrum of possible
designs for implementing a single information processing sequence. One leading
intellectual property attorney has given the following description of the continuum
of potential information processing devices between these two extremes:
Computer-implemented solutions to technological problems in the form of
processes and/or machines typically exist along a design spectrum, ranging
from pure hardware, that is random logic, to pure software, that is an
externally-loaded computer program running on a general purpose digital
computer.

Intermediate points along the spectrum involve designs which may be
described as special purpose computers and which combine elements of
hardware and software in varying proportions, using random logic, array
logic, such as PLAs and PALs, microcode and firmware, firmware being
fixed programs stored in internal read-only memory.

The particular point along the design spectrum that represents the
optimum solution to a given problem is determined by a variety of factors,
such as cost, speed, size, flexibility and so on. Moreover, the optimum
design point moves over time as competing implementation technologies
evolve at different rates. For example, in the mid ‘70s, complex video game
functionality was implemented entirely in random logic. After the arrival
of the microprocessor, the very same functionality was realized using
firmware.

Finally, technologies such as logic synthesis are becoming available, by
which a software solution can be “translated” into an equivalent hardware
solution, and vice versa. It should be self evident that as a matter of legal
policy, [the patentability of a computer-based innovation should not
depend on which of these implementation approaches is used since] the
law should not promote artificial distinctions that the technology does not
recognize.
United States Patent and Trademark Office, supra note 6, at 57 (statement of
Ronald S. Laurie, Attorney, Weil, Gotshal & Manges); see also id. at 63 (statement
of Gideon Gimlan, Attorney, Fliesler, Dubb, Meyer & Lovejoy) (noting that, for

2000] PATENT INCENTIVES FOR SOFTWARE 1031

resulting system will obtain its utility largely from the new
information processing idea which underlies the system and the
gain in functionality that is achieved by implementing the new
idea.135

In these circumstances, where the primary inventive effort
and practical utility associated with a new computer program
are related primarily to the development of new information
processing ideas, the program may not warrant patent
protections because it does not reflect the type of technological
advance that patents were intended to encourage and reward.136
A patent may not be appropriate in these circumstances because
the software involved does not involve a substantial advance in
the design of physical structures and elements that are combined
in some new way to achieve a practical result. Instead, this type
of software, as it is based on new conceptions of information
processing tasks, primarily reflects a breakthrough in
underlying abstract knowledge.137 Such software should
arguably be unpatentable because, like the abstract knowledge
on which the software is based, the new program makes no new
contribution to public knowledge about the construction or
operation of useful devices or physical processes.’3® In short, a

purposes of assessing patentability, “it should make little difference that an
invention is implemented in hardware, software, or in-between-ware. In the eyes of
the electronic circuits that carry out a given invention, there really isn’t any
functional difference”).

135 Functionality is the hallmark of a patentable invention. See Diamond v.
Diehr, 450 U.S. 175, 185 (1981) (“Excluded from such Patent Protection are laws of
nature, natural phenomenon, and abstract ideas.”). The functionality of information
processing advances should generally determine their patentability, and not the
degree of hardware or software used to implement that functionality. Indeed, the
functionality of an information processing system may be its only distinctive,
invariant feature since the system’s hardware and software details will frequently
be varied to adjust the system to particular tasks. As described by one experienced
patent attorney:

I often say that electronics is applied functionality in the electronic

domain. Implementation of this functionality is merely a design choice in

most cases in terms of hardware or software. The choice of how to
implement this inventive functionality depends on many factors, but it is

the functionality that is the invention, and one should never forget that.

United States Patent and Trademark Office, supra note 6, at 77 (statement of
Robert Green Sterne, Attorney, Sterne, Kessler, Goldstein, and Fox).

136 See Diehr, 450 U.S. at 185 (quoting Rubber-Tip Pencil Co. v. Howard, 20
Wall 498, 507 (1874)) (“An idea is not patentable.”).

137 See Diamond v. Chakrabarty, 447 U.S. 303, 309 (1980) (indicating that
abstract ideas, such as Newton’s law of gravity, are not patentable).

138 See Parker v. Flook, 437 U.S. 584 (1978) (“A principle in the abstract, is a

1032 ST. JOHN’S LAW REVIEW [Vol.74:977

developer of software which is new and innovative only in that
the software incorporates a new information processing idea may
not have made a patentable contribution to public knowledge
about physical technology and engineering. Without such a
contribution, the developer may not have satisfied his or her part
of the quid pro quo bargain underlying patent rights.

Patent rights are enforced to encourage technological design
efforts—that is, studies of the nature of practical problems, the
functional characteristics of various devices and processes that
can address practical problems, and the specification and public
disclosure of new combinations or “structures” of device
components or procedural steps which will solve practical
problems.?3® The ultimate goal of these incentives is to give the
public new, artificially-created tools, that aid individuals and
other parties in solving problems and undertaking useful tasks.

fundamental truth; an original cause; a motive; these cannot be patented, as no one
can claim in either of them an exclusive right.”).

139 While special types of patents may be obtained for new decorative designs of
industrial products and new plant varieties, see 35 U.S.C. §§ 161, 171 (1994), most
patents are “utility patents,” which are granted for useful items and processes.
Utility patents are only available for new or improved designs of processes,
machines, items of manufacture, or compositions of matter. 35 U.S.C. § 101 (1994).
New designs for machines, items of manufacture, and compositions of matter clearly
involve new specifications of physical details of the invented items. As to new
processes, some courts have looked for a physical transformation in either the
means or ends of process steps before deeming a process to be patentable subject
matter. See, e.g., Cochrane v. Deemer, 94 U.S. 780, 788 (1877) (“[A] process is a
mode of treatment of certain materials to produce a given result. It is an act, or a
series of acts, performed upon the subject-matter to be transformed and reduced to a
different state or thing.”); In re Durden, 763 F.2d 1406, 1410-1411 (Fed. Cir. 1985)
(“A process. .. is a manipulation according to an algorithm . .. doing something to
or with something according to a schema.”). Recent judicial analyses of software
innovations, however, have suggested that a physical transformation is not a
required feature of patentable subject matter. Patentable subject matter is present,
according to these analyses, if an invention produces useful results in a regularly
operative, distinctly described way. For example, in State St. Bank & Trust Co. v.
Signature Fin. Group Inc., 149 F.3d 1368 (Fed. Cir. 1998), cert. denied, 119 S. Ct.
851 (1999), the Court of Appeals for the Federal Circuit summarized its approach to
software patentability as follows:

Today, we hold that the transformation of data, representing discrete

dollar amounts, by a machine through a series of mathematical

calculations into a final share price, constitutes a practical application of a

mathematical algorithm, formula, or calculation, because it produces ‘a

useful, concrete and tangible result’—a final share price momentarily fixed

for recording and reporting purposes and even accepted and relied upon by

regulatory authorities and in subsequent trades.
Id. at 1373.

2000} PATENT INCENTIVES FOR SOFTWARE 1033

Patent incentives encourage engineers to go beyond
intellectual ideas such as scientific or mathematical principles to
create artificial tools that operate in accordance with those
principles. The scientific and mathematical principles embodied
in a new invention—even if the principles themselves are newly
discovered—are not protected by a patent on the invention.
Rather, the patent applies to and rewards the specification of the
additional elements of the invention which allow the abstract
ideas or knowledge about a physical phenomena or context to be
applied to produce practical results.

For example, Newton’s famous theorem stating that F=ma
(force equals mass times acceleration) would not be patentable
even if discovered today. A new design for a scale that specified
a set of physical elements for measuring the downward force
achieved by an object reacting to the pull of gravity and that
relied upon the relationship stated in Newton’s theorem to
translate this type of force measurement into a measurement of
the mass of an object would be patentable if the scale design was
novel and a non-obvious extension of prior scale designs. The
specification of the physical means to gather the information
needed to apply Newton’s theorem and the specification of the
further physical means for recording or displaying the mass size
results are the sorts of engineering efforts beyond scientific
understanding that patent incentives and rewards were
intended to encourage. Without the addition of these physical
elements, society has only an abstract theory relating force (F)
conceptually and descriptively to mass (m) and acceleration (a).
With the addition of these further elements, society has a new
and useful tool and the technological arts are advanced. In
short, engineering discoveries constituting patentable subject
matter are present where abstract ideas are related to the
physical world through technological design efforts which
describe how physical actions or materials will achieve useful
results or how intangible actions can measure or manipulate
external physical contexts in useful ways.140

A software advance that involves no more than a new
sequence of information processing steps may lack patentable

140 See 35 U.S.C. § 101 (1994) (“[Wlhoever invents or discovers any new and
useful process, machine, manufacture, or composition of matter, or any new and
useful improvement thereof, may obtain a patent therefore, subject to the conditions
and requirements of this title.”).

1034 ST. JOHN’S LAW REVIEW [Vol.74:977

subject matter because the advance is merely a new mode of
analysis without a specification of how that type of analysis
relates to a practical or useful result. Software patents for such
advances may be unwise for two reasons. First, patents on such
incomplete designs may reward innovators for creating and
disclosing basic analytic constructs—the equivalent of new
scientific theories or mathematical algorithms—rather than
practically useful tools. Second, patents on intangible software
advances may be interpreted broadly so as to impose undesirable
restrictions on equivalent mental processes.14!

The potentially adverse impact of software patents on
intellectual activities and mental processes raises questions
about these patents that do not arise for patents in other
technological areas:

We all know that software is somehow different from all

traditional inventions. But how does it differ from the devices

that are surely what the framers of the Constitution envisioned
when they mandated patent protection? The difference is that

all traditional inventions enhance our physical capabilities,

whereas software mimics the mind and enhances our

intellectual capabilities. This is what makes software different
from all patentable devices and this is what justifies sui generis
treatment of software under intellectual property laws.

Let me define what software is for the purpose of our
discussion, based on its functionality, its utility and the useful
character of its art: Software is what occurs between stimulus
and response, with no physical incarnation other than as
representations of binary logic.

The fundamental question is: Do we want fto permit the
monopoly possession of everything that works like logical
intellectual processes? I hope not.

The mind has always been sacrosanct. The claim that
intellectual processes of logical procedures that do not
primarily manipulate devices, as in Diamond v. Diehr, can be

141 See In re Warmerdam, 33 F.3d 1354, 1360 (Fed. Cir. 1994) (rejecting the
patentability of an idea which is “nothing more than the manipulation of basic
mathematical constructs, the paradigmatic ‘abstract idea’ ”); see also Steven M.
Santisi, In re Qarmerdam: When is a Software Process Too Abstract to Merit Patent
Protection? 13 J. MARSHALL J. COMPUTER & INFO. L. 667 (2000) (contending that by
equating “abstract ideas” with “the manipulation of abstract ideas,” the court
“improperly focused on ‘how’ the process works rather than on ‘what’ the process
does™).

2000] PATENT INCENTIVES FOR SOFTWARE 1035

possessed and monopolized, simply extends greed and avarice
much too far.

What frightens and infuriates so many of us about software

patents is that they seek to monopolize our intellectual

processes when their representation and performance is aided

by machine.142

Concerns about the possible impact of patents on mental
and intellectual processes are not new. For some years, courts
have applied the “mental steps doctrine” to prevent the
patenting of certain information processing advances lacking
physical features.!43 This doctrine provides that processes are
unpatentable if the processes involve only mental activities or
equivalent information processing steps.!* The mental steps
doctrine has been invoked primarily to deny patents to
inventions consisting of new mathematical formulae or methods
of computation.145

At one point, patents on software-based advances were
evaluated under the mental steps doctrine by determining if the
innovations described in the patent claims included physical
details or elements that distinguished the claimed inventions
from pure mental processes.#6 As applied to software, the

42 United States Patent and Trademark Office, supre note 6, at 48 (statement
of Jim Warren, Autodesk, Inc.).

143 See, e.g., Diamond v. Diehr, 450 U.S. 175 (1981) (explaining that having one
or more steps that are not novel is irrelevant to the issue of patent protection of the
whole); In re Abrams, 188 F.2d 165, 169 (C.C.P.A. 1951) (“[Plurely mental acts are
not proper subject matter for protection under the patent statutes. . . .”); In re Shao
Wen Yuan, 188 F.2d 377, 380 (C.C.P.A. 1951) (asserting that it is thoroughly
established that mental steps do not form a patentable process. See generally
DONALD S. CHISUM, PATENTS § 1.039(6) (1996).

144 See, e.g., Diehr, 450 U.S. at 185 (“Excluded from such patent protection are
laws of nature, natural phenomena, and abstract ideas.”); In re Heritage, 150 F.2d
554, 556 (C.C.P.A. 1945) (“[Plurely mental acts are not proper subject matter for
protection under the patent statutes”); In re Shao Wen Yuan, 188 F.2d at 380
(“[Plurely mental steps do not form a process which falls within the scope of
patentability as defined by statute”).

145 See, e.g., Musco Corp. v. Qualite, Inc., 1997 U.S. App. LEXIS 790, at *6-8
(Fed. Cir. 1997) (discussing mental steps process); Lyman v. Ladd, 347 F.2d 482,
483 (D.C. Cir. 1965); Don Lee, Inc. v. Walker, 61 F.2d 58, 66-67 (9th Cir. 1932); In
re Bolongaro, 62 F.2d 1059, 1060 (C.C.P.A. 1933); In re Shao Wen Yuan, 188 F.2d at
379-380.

146 See Robert Hulse, Patentability of Computer Software After State Street
Bank & Trust Co. v. Signature Financial Group, Inc.: Evisceration of the Subject
Matter Requirement, 33 U.C. DAVIS L. REV. 491, 504 n.86 (2000) (discussing the
Freeman-Walter-Abele test, where courts have held that a “[c]laim is patentable
only if it applies [an] algorithm to physical elements or steps of a process”).

1036 ST. JOHN’S LAW REVIEW [Vol.74:977

mental steps doctrine was used to restrict software patent rights
and incentives to innovations with at least some physical
structures that were critical to the operation of the
innovations.47

The types of physical elements or interactions with a
physical environment that are sufficient to overcome the
restrictions of the mental steps doctrine were clarified in In re
Prater.48 In that case, the Court of Customs and Patent Appeals
interpreted the mental steps doctrine narrowly to preclude only
patents that would directly interfere with the free use of mental
processes.1¥® The court concluded that the mental steps doctrine
should only restrict the patentability of information processing
sequences standing alone—that is, the mental steps doctrine
should apply only if patent protection is sought for an
information processing sequence per se, such that a mental
process incorporating that sequence would fall within the patent
and apparently be restricted.50

Patent claims that are expressly limited to computer-related
or computer-implemented versions of an information processing
sequence do not run afoul of this narrow version of the mental
steps doctrine. These computer-based processes constitute
patentable subject matter because they do not involve mere
mental steps, but rather combinations of information
processing steps and computer activities. Mental steps, even
those accomplishing equivalent information processing, will be
restricted by this type of patent since only persons
implementing the specified information processing with a
computer will infringe these patents. In short, recognizing valid
patents on computer-based information processing systems and
procedures creates patent rights and restrictions only in
computer-based versions of the information processes

147 See PETER D. ROSENBERG, PATENT LAW FUNDAMENTALS § 6-01 (2d ed. 2001)
(noting that the mental steps doctrine was applied to preclude the patenting of
mental acts or steps, “which may be performed by the human mind without the
need or intervention of physical instrumentality”; examples of unpatentable mental
steps include processes for computing, measuring and determining information); see
also Arrhythmia Research Tech., Inc. v. Corazonix Corp., 958 F.2d 1053, 1059 (Fed.
Cir. 1992) (stating that transforming one electrical signal into another is a physical
process).

148 415 F.2d 1378 (C.C.P.A. 1968), modified on reh’g, 415 F.2d 1393 (C.C.P.A.
1969).

149 See In re Prater, 415 F.2d at 1389.

150 See id.

2000] PATENT INCENTIVES FOR SOFTWARE 1037

involved, leaving persons free to use purely mental versions of
the same processes.

This narrow interpretation of the mental steps doctrine!5!
ensures that patent incentives remain in place for two types of
information processing advances that are implemented through
new software. First, innovation in applying old information
processing ideas in new software contexts or uses is encouraged.
Even where a particular mode of information processing or
mental analysis is already known, patent protections and
incentives will reward software developers for producing new,
non-obvious implementations in innovative software of these
older information processing ideas and mental steps.

Second, innovation in identifying and applying new
information processing ideas that are suitable for software
implementation is also encouraged. Patent incentives for the
creation of new, non-obvious software will indirectly encourage
the development of new information processing ideas which can
form the basis for such software. Of course, a patent covering
software that is based on a new information processing idea may
restrict the use of the same idea in further software. Such a
patent will not, however, limit the use of the same idea in mental
processes or in engineering designs not involving software.152
Through public disclosures of the new information processing
idea in a patent on related software, society gains two types of
benefits: access to the patented software (albeit under patent
restrictions during the term of the patent) and free use of mental
applications of the new idea in other contexts.

The difficult remaining question is what sorts of physical or

151 See In re Prater, 415 F.2d at 1393; see also Gottschalk v. Benson, 409 U.S.
63, 63 (1972) (holding that claims are not patentable if they are merely a series of
mental steps); In re Meyer, 688 F.2d 789, 789 (C.C.P.A. 1982) (holding claims not
patentable as they represented a mental process); In re Chatfield, 545 F.2d 152, 152
(C.C.P.A. 1976) (holding the claims patentable, as they were not drawn to purely
mental steps); In re Bernhart, 417 F.2d 1395, 1395 (C.C.P.A. 1969) (holding claims
patentable, because no “mental steps” issue was involved and the claims did not
encompass mere mental activity).

152 The patent may limit the use of the same idea in electronic circuit designs
that may implement information processing that is equivalent to the processing
performed by a computer programmed with the patented software. The particular
electronic means used to achieve the information processing will not be material. All
of these means of implementing the same information processing will probably be
seen as equivalents of the software-controlled computer processing and will be
found to infringe a patent on the software.

1038 ST. JOHN’S LAW REVIEW [Vol.74:977

other features in a software-based advance should distinguish a
patentable application from an unpatentable restatement in
programming code of information processing sequences that can
also be implemented in mental steps. The latter remains
unpatentable under even the narrowest interpretation of the
mental steps doctrine.153

Sequences of information processing can be part of both
patentable software applications and unpatentable software
implementations of mental step equivalents. Consequently, the
presence of substantial information processing features in a
software design generally will not provide a basis for
determining if an unpatentable mental step equivalent is
present.

There is, however, one important exception to this rule.
Information processing steps that are particularly unsuitable for
human mental activity should be deemed proper bases for
patentable software regardless of whether a practical application
of the steps beyond the operation of a computer is shown. Where
information processing steps in a software product are so
extensive or quickly performed that they are impossible or highly
unlikely to be undertaken through human mental activities,
then these information processing steps should be considered to
be solely suited to computer processing. A software product that
includes such computer-specific information processing steps
should be viewed as patentable subject matter without limitation
under the mental steps doctrine. Such a program implements
information processing techniques that go beyond mere mental
steps. The enforcement of a patent on a software product
incorporating these types of computer-specific information
processing procedures will have no negative impact on mental
activities since the information processing steps that will be
limited by the patent are ones that would probably not be used
in mental activities anyway.

If, however, the information processing steps embedded in a
new software product are ones that could realistically be

153 See In re Abrams, 188 F.2d 165, 169 (C.C.P.A. 1951) (holding that purely
mental steps are not patentable). But c¢f. In re Musgrave, 431 F.2d 882, 890
(C.C.P.A. 1970) (stating that if “pure mental steps” is construed as encompassing
only steps incapable of being performed by a machine, then deeming them not
patentable is the correct result, but if “pure mental steps” is construed as to
encompass steps performable by machine, as well as mentally, then deeming the
claims not patentable is unsound).

2000] PATENT INCENTIVES FOR SOFTWARE 1039

undertaken by both humans and computers, the software
product will need to include other functionally significant
elements in order to be patentable subject matter. These
additional functional elements will serve two important purposes
related to assessments of patentable subject matter in software
innovations.

First, the functional elements that are added to the
software’s information processing sequences will distinguish
patentable software from mere restatements in programming
code of information processing steps. Patent claims will need to
draw on this distinction by including in descriptions of software
sought to be patented specifications of both the software’s
information processing steps and the functional features linking
the software to the solution of a practical problem. A patent
containing claims to a software invention described in this way
will only be infringed if a product or process includes a similar
combination of information processing and functional elements.
Patents drafted in this manner will prevent others from
replicating or reusing the protected software in a functionally
similar manner, but will not prevent others from using the same
information processing steps in mental processes.’® The latter
will remain unaffected and freely available because these mental
steps will not involve the functional features of the patented
invention. Because mental steps remain unaffected, this
approach to protecting software innovations satisfies the
concerns underlying the mental steps doctrine.55

Second, the functional elements of a software-based
innovation provide evidence that the innovation is a practical,
technological advance rather than just an improvement in
methods for abstract information handling or analysis. The
functional elements of a software-based innovation will typically
relate the information processing undertaken through the
innovation to physical results or other practical consequences.
These functional elements often account for the practical value of

154 See Diamond v. Diehr, 450 U.S. 175, 191-193 (1981) (explaining that a
practical process including a mathematical equation is patentable, because even if a
patent holder restricts the use of the process, others are free to use the equation).

155 See Jur Strobos, Stalking the Elusive Patentable Software: Are There Still
Diehr or Was it Just a Flook?, 6 HARV. J.L. & TECH.. 363, 369-370 (1993)
(describing a paradigm where computers add value in automating previously used
calculations, the added value is the subject of the patent and there is no preemption
of human processes).

1040 ST. JOHN'S LAW REVIEW [Vol.74:977

an innovation. As the source of this practical value, these
functional elements are critical features of patentable subject
matter in software-based innovations.

Several types of functional elements should be sufficient to
create patentable subject matter when added to sequences of
software-controlled information processing. One type of
functional element that should generally be sufficient is a
functionally significant interaction between software-controlled
information processing steps and physical features of the
computer or computers carrying out those steps. To protect this
type of combination, patent claims will need to describe a
claimed invention in terms of a series of information processing
steps which manipulate computer operations in a specified
manner and the specified sequence of computer operations must
have practical utility. Examples of sufficient utility include
increases in the speed or accuracy of computer processing. The
enforcement of this type of patent will have no impact on the use
of similar information processing in mental steps or other
activities since these other uses will not involve the required
manipulation of computer processing and will not infringe on
this type of patent.

Software-controlled information processing can also be
combined with physical elements of an innovation in a second
way that will create patentable subject matter and distinguish
the innovation from a mere information processing sequence. If
a software-based advance is used as a means to measure or
control a physical item or phenomena, a patent can be sought for
the combination of the software-dictated information processing
steps and the functional elements that obtain measurement
inputs about physical surroundings or apply control outputs to
physical tasks. This sort of combination of software processing
and related computer input or output elements will be
distinguishable from mental steps involving the same patterns of
information processing since these mental steps will lack the
physical input or output features of the patented invention.
Furthermore, these physical input or output elements will
provide a means to apply software—controlled information
processing to a practical task, thereby achieving the practical
utility which is necessary for a patentable advance.156

156 See id. (describing a paradigm that recognizes that although computers

2000] PATENT INCENTIVES FOR SOFTWARE 1041

Of course, information processing patterns used in a
computer program and the means used to gain inputs for the
program or to apply the program’s outputs to a practical task
may sometimes be used by humans through manual processing
that does not involve a computer. For example, a new method
for measuring the intensity of light might initially be developed
with the use of a computer to interpret electronic measurements
of light, but later be performed manually by individuals who
complete the calculations and information processing formerly
handled by the computer. A patent on the initial computer-
implemented version of such an information-handling process for
measuring a physical phenomena might also be deemed to cover
and limit the human-performed version of the same process.
That is, the human-performed version might be seen as
infringing the paitent on the computer-implemented version of
the process because the human-conducted version is equivalent
in every key respect to its computer-based predecessor.157

In these circumstances, a patent originating from a
computer-based process might limit mental processes used to
complete the same process. This narrow impact on practically
applied mental processes only arises because the mental
processes involved are used in the context of a practical task and
application controlled by the patent. The limitation of applied
mental processes in this way is no different than would occur
were the human-performed version of the process patented at
the outset. Since the human-performed version of the process is
more than a mere mental process in that it has further practical
elements applied to accomplish a useful task, a patent on this
human-performed process would not be barred by the mental
steps doctrine. The same should be true regarding patents on

duplicate existing inventions, they add value in the way of speed, volume, accuracy,
convenience and automaticity, and this added value is the subject of the patent); see
also Diamond v. Diehr, 450 U.S. 175, 191-193 (1981) (finding calculations that
could not be patented by themselves were nonetheless patentable when they were
used to control the physical features of a rubber molding process).

157 See, e.g., Scott Lund, Patent Infringement and the Role of Judge and Jury in
Light of Markman and Hilton Davis, 21 IOWA J. CORP. L. 627, 633 (1996) (stating
that although a patent is not literally infringed, courts will find a patent
infringement where two patents are nearly equivalent); Allen Newell, Symposium:
The Future of Software Protection: Response: The Models are Broken, The Models are
Broken!, 47 U. PITT. L. REV. 1023, 1026-28 (1986) (expressing concern that broad
patent protection for software-implemented algorithms could prevent individuals
from undertaking similar information analyses).

1042 ST. JOHN’S LAW REVIEW [Vol.74:977

computer-based processes even where the patents may have
some later impact in limiting human-conducted processes and
related mental steps.

In sum, the above analysis suggests that there are at least
three types of software-based inventions that have features that
clearly distinguish them from mental processes; thus, should be
patentable without limitation under the mental steps doctrine.
These patentable software advances include the following:

(1) Inventions based on information processing steps that are
not suitable for human mental activity. An example of this type
of invention is information analyses undertaken at computer
processing speeds to determine where in a sequence of computer
operations a computer presently stands and to predict what next
step will be the most efficient for the computer to take. The need
for processing speeds far higher than humans are capable of
makes it highly unlikely that the information processing
sequence involved here would be employed in mental activities.
A patent on these computer-implemented processing sequences
is unlikely to have any restrictive effect on mental processes.

(2) Inventions involving information processing achieved
through specified changes in computer-processing hardware. An
example of this type of invention is a computer operating
methodology in which the sequence of information processing
involved was specified not in terms of information
transformations but rather in terms of corresponding state
changes in individual computer components. Defined this way,
only another implementation of the same information processing
through similar state changes could infringe a patent on this
invention. Mental activities outside of this application context
would therefore be unaffected.

(8) Inventions involving information processing to control or
measure another item: An example of this type of invention is a
new scheme of information processing for use in analyzing
temperatures in a rubber mold to determine the optimal time for
opening the mold. Here, mental activities using the same
information processing steps for other purposes will fall outside
a patent on this invention. Mental steps will therefore be
unaffected by such a patent.158

158 Mental steps used to analyze a rubber molding process would be restricted
by this patent if the steps were used to produce mold opening instructions. This type
of incidental burden on mental processes, however, is always present when a patent

2000] PATENT INCENTIVES FOR SOFTWARE 1043

B. The Lack of Physical Results

A further possible ground for limiting software patents may
be that many software advances do not, of themselves, produce
physical results and, arguably, lack the sort of immediate
physical utility that the patent laws were designed to further.
The lack of physical results from a computer system may raise
questions about whether the system is sufficiently applied to
practical tasks to qualify for a patent.’®® Absent a clear link to
an external physical result, a software-controlled computer
system may be little more than an active information processing
counterpart to an abstract idea or scientific relationship. The
system simply records the idea or relationship in the dynamic
form of a pattern of information processing. The system will
reorganize or analyze information in accordance with the idea or
relationship reflected in the system’s programming, but the
output of the system, of itself, will have no more practical
implications than the idea or relationship on which it is based.
Where a device or process design is not tied to a specific physical
result, it may be desirable to treat the new design as an
unapplied and unpatentable recording or demonstration of the
information processing ideas or relationships on which the
design is based.160

The law withholds patents for discoveries of potentially
useful abstract ideas or scientific relationships in part because
such discoveries still need to be translated into practical
applications. It is desirable to withhold patent rewards in cases
where an innovator has discovered no more than a new design

covers a physical process. For example, a patent on a particular method for
manufacturing a fender will tend to discourage and limit the mental steps
associated with the manufacturing method if those mental activities are desired to
be undertaken by parties not licensed to complete the patented process. The law
permits this incidental burden on mental steps in order to grant patent controls and
rewards for the related manufacturing process. A small limitation of this sort on
narrow forms of mental activity is probably a necessary price to pay for patent
rights and incentives concerning human-controlled processes and practices.

159 See Zoe Milak, The Copyrightability of Encryption Methods and Encryption
Algorithms on Computers, 1996 U. CHI. LEGAL F. 589, 598-99 (1996) (“[Section] 101
of the Patent Act describes patentable statutory subject matter. ... The statute
contains two categories of inventions: process and products.... These two
categories mandate a physical action and a physical result.”).

160 See Strobos, supra note 155, at 383 (“[TJhe determination of patentable
subject matter in software depends on whether the claim is limited in scope to a
novel and unique aspect of processing other than that which can be found in the
human mind or in the laws describing other natural processes.”).

1044 ST. JOHN’S LAW REVIEW [Vol.74:977

idea, until sufficient additional design steps are undertaken to
produce an invention with practical utility to society.’6? To
ensure that patents are only granted for software advances
having clear and immediate utility, it may be desirable to
withhold patents for software advances until an inventor
specifies how these advances can cause a computer to control a
physical result or otherwise modify or interpret a physical
context.

Awarding a patent for a computer system that undertakes a
new mode of information processing, but achieves no useful
result as a consequence, would effectively reward an inventor for
an incomplete invention that does not deliver to the public the
type of technological design information which warrants a
patent. This type of unapplied information processing advance
is incomplete in two senses. First, the invention lacks design
elements that would need to be added to the new mode of
information processing to achieve a practical result. The
development of these further design features may still require
substantial inventive efforts. Patent rewards should be withheld
to encourage the completion of these efforts. Second, public
disclosure in a patent of a software design that produces no more
than an information processing result adds no immediately
useful devices or processes to public knowledge. Since the public
does not gain any increased utility and incremental benefit from
the disclosure of this incomplete design, the costs and
inefficiencies of patent restrictions on the software design should
not be tolerated.162

In Gottschalk v. Benson,%3 the Supreme Court voiced its
concerns about granting patent rewards for the discovery and
disclosure of mathematical algorithms that are implemented in

161 See Landscape Forms, Inc. v. Columbia Cascade Co., 113 F.3d 373 (2d Cir.
1997) (holding that a furniture manufacturer’s line of furniture could not be
protected with a patent because it was nothing more than an idea).

162 A design may be considered complete if its disclosed features imply but do
not state practical applications. It is sufficient that the invention details disclosed in
a patent would suggest practical applications to the average practitioner in the field
of the invention. See Brenner v. Manson, 383 U.S. 519, 531-32 (1966) (holding that
a patentable invention must include the discovery of the practical utility of a new
item, or its utility must be obvious to persons of ordinary skill in the field). Put
another way, a design disclosure should be deemed to disclose and add to public
knowledge all the practical applications that it communicates both explicitly and
implicitly.

163 409 U.S. 63 (1972).

2000] PATENT INCENTIVES FOR SOFTWARE 1045

computer software, but not applied to particular useful tasks.
The Court unanimously rejected the patentability of a computer
program that implemented a particular information processing
algorithm on a computer.¥¢ The Court’s analysis suggested to
some observers that the Court considered many, if not most,
software innovations to be unpatentable in and of themselves.165
The Court’s approach implied that software programs should be
viewed as new mathematical or information processing
algorithms restated in computer commands and the resulting
computer systems, like the algorithms themselves, should be
seen as lacking the practical utility necessary for patenting.166
The difficulty with the Court’s analysis in Benson was it
failed to distinguish between patentable technological designs,
where information is processed in accordance with mathematical
or information processing algorithms to produce useful results,
and unapplied descriptions of information relationships and
information processing algorithms that can be used to construct
useful applications. Just because portions of software operations
can be described in terms of mathematical algorithms does not
mean the software involved cannot achieve a practical,
technological result. This suggesting that the inclusion of
information processing based on a mathematical relationship or
algorithm rendered computer software designs unpatentable
created great confusion among lower courts and practitioners.
As one leading observer noted:
The result of this formulation has been over two decades of
confusion and inconsistency in the case law involving the
patentability of software-implemented processes. The fact is
that mathematics is a language, albeit a very precise one, and
like other languages can be used to describe concepts and

relationships that are technologically applied as well as those of
a more abstract nature that are not so applied.257

161 See id. at 67 (noting the invention involved a method to convert numbers
from one internal computer to another).

165 See Allen Newell, supra note 157, at 1026-28 (1986) (hypothesizing that
allowing patents on algorithms could prevent people from doing calculations);
Samuelson, supra note 128, at 1059 (noting that the Court’s analysis in Benson
called into question the patentability of computer programs).

166 See, e.g., Cathy E. Cretsinger, Annual Review of Law and Technology, I
Intellectual Property; B. Patent AT&T Corp. v. Excel, 15 BERKELEY TECH. L.J. 165
(2000) (“A claim not limited by any physical element or structure could become, in
effect, a patent on an abstract idea or a process thought.”).

167 United States Patent and Trademark Office, supra note 6, at 57.

1046 ST. JOHN’S LAW REVIEW [Vol.74:977

The Court’s essential objection to the patent at issue in
Benson may have been that the patent described an invention
which was incomplete.’%® Absent a clear indication of how, in a
particular physical context, the new information processing steps
described in the patent were to be applied, the patent application
in Benson arguably lacked a complete description of a key
feature of the claimed invention. The patent involved in that
case might therefore have been ruled invalid on the ground that
the physical features of the invention and its utility in a
practical context were ambiguously or incompletely described.16?

The Supreme Court again considered the problem of the
necessary physical features of a software-based invention in
Parker v. Flook.1™ 1In Flook, the Court concluded that a
computer system for monitoring temperature data, analyzing the
data, and triggering an alarm signal under certain conditions
was unpatentable.’? One basis for this result was the Court’s
conclusion that the sole physical steps involved in the invention
were mere data recording and analysis steps, making the
claimed invention largely indistinguishable from a new
computational method for use in a narrow temperature
measurement context, coupled with a means to record results of
the computation.l’? Since a pure computational method would
be unpatentable as an abstract idea or discovery, the mere
addition of a physical device for recording the results of the
calculation did not produce a patentable invention.'” Therefore,
the Court held it to be unpatentable, in part because the
invention carried out calculations and had no further utility than
to solve a specialized mathematical problem.!7¢

Again, the Court seems to have overlooked the distinction
between an unapplied mathematical algorithm describing a
sequence of data processing and an application of such an

168 See Benson, 409 U.S. at 64.

169 See United States Patent and Trademark Office, supra note 6, at 57 (noting
that the real issue raised by the patent in Benson was “probably not one of subject
matter under Section 101 [of the Patent Act], but rather one of indefinite claiming of
the invention under Section 112”).

170 437 U.S. 584 (1978).

171 See id. at 594-95.

172 See id. at 595.

173 See id. at 590 (stating that a computational method leading to obvious and
conventional post-solution activity is not patentable per se).

174 See id. at 594-95.

2000] PATENT INCENTIVES FOR SOFTWARE 1047

algorithm in a narrow domain such as operating a fire alarm.
The particular invention at issue in Flook involved two types of
physical relationships to practical activities which distinguished
the invention from an unapplied, unpatentable algorithm. First,
the invention interpreted a specific physical environment,
producing useful signals when that environment reached a
condition which indicated a fire. Second, the invention
controlled an external result—the activation of a fire alarm—
which had practical significance since it indicated the probable
presence of a fire. Either of these physical features standing
alone should have constituted a sufficient physical element to
cause the software-based invention in Flook to be viewed as a
practical design involving patentable subject matter.

In contrast to its rejection of software patents in Benson and
Flook, the Supreme Court upheld the patentability of a software-
controlled invention in Dieamond v. Diehr}™ The invention at
issue in Diehr involved computer calculations based on
temperature readings somewhat like the fire monitoring system
in Flook. The calculations considered in Diehr, however, were
used to control a more extensive physical result. The process at
issue in Diehr involved the use of temperature measurements
and related computer calculations to determine the proper time
for completing a rubber molding procedure and initiating the
opening of a rubber mold. This process was held to be patentable
subject matter largely because the computational portion of the
invention was tied to a clear physical result and context.17
Indeed, in Diehr the invention at issue involved two physical
results: the physical act of opening of the rubber mold and the
physical object produced by the mold. Each of these physical
outputs of the claimed invention—one a physical means of
operation and the other a physical result—was probably
sufficient to establish that the software-based molding process
involved patentable subject matter.

While the Diehr case involved the manipulation of a physical
result through software, it is unclear whether such a physically
transformative result is necessary in order for a software-based
invention to be patentable subject matter. Some courts have
required this sort of physical effect or impact as a threshold test

175 450 U.S. 175 (1981).
176 See id. at 184.

1048 ST. JOHN’S LAW REVIEW [Vol.74:977

for patentability.l’”? The Supreme Court implied in Cochrane v.
Deemer that a patentable process must cause a physical
transformation in the materials to which the process is
applied.’”® In Cochrane, the Court used this test as a means to
distinguish technological processes that are proper subjects of
patent protection from other socially valuable activities that lack
the type of physical utility or result that the patent laws are
designed to further. Unfortunately, in 1877 when Cochrane was
decided, the Court did not recognize that a wide variety of
transformations in information and other intangible items might
be employed to achieve predictable, useful results and, therefore,
regularly useful information-handling processes of this sort
might be proper targets for patent incentives in addition to
physical advances having similar utility.

Recent court decisions have rejected the view that a physical
transformation is required as part of patentable subject
matter.l” Instead, patentable subject matter has been found if a
device or process either transforms a physical object to produce a
physical result or transforms data reflecting a physical object to
produce physically significant measurements or analyses.18® In
the latter type of information processing invention where no
physical result 1is achieved, the required information
transformation must change the data into a different state or
form that reflects increased utility over the untransformed
information.18! In short, if a software advance solves a practical
problem through either the physical entities the software
controls through computer operations or through the valuable
analyses of physical conditions the software produces when

177 See In re Schrader, 22 F.3d 290, 294 n.9 (Fed. Cir. 1994) (stating that the
“dispositive issue is whether the claim . . . recites sufficient physical activity”).

178 94 U.S. 780, 787-88 (1877).

179 See In re Prater, 415 F.2d 1393, 1403 (C.C.P.A. 1969) (stating that the
Cochrane dicta has been misconstrued as “requiring that all processes... must
operate physically upon substances.”).

180 See In re Abele, 684 F.2d 902, 908-09 (C.C.P.A. 1982) (holding that an
algorithm applied to attenuation data that represents CAT scan images of physical
objects is patentable); In re Taner, 681 F.2d 787, 790 (C.C.P.A. 1982) (holding that
mathematical applications to seismic data are properly patentable).

181 See, e.g., AT&T Corp. v. Excel Communications, Inc., 172 F.3d 1352, 1360
(Fed. Cir. 1999) (indicating how patentability here turns on “whether the algorithm
is applied in a practical manner to produce a useful result”); Arrythmia Research
Tech., Inc. v. Corazonix Corp., 958 F.2d 1053, 1056 (Fed. Cir. 1992) (stating that an
essential criterion for the patentability of inventions involving mathematical
algorithms is whether such invention “is directed to a new and useful process”).

2000} PATENT INCENTIVES FOR SOFTWARE 1049

combined with computer operations, the advance should be
treated as patentable subject matter.182 This sort of software
advance should qualify for a patent if the software is both a
novel and non-obvious improvement over previous software
designs and the software is the subject of a timely patent
application.

These judicial standards appear to shift the focus of
patentable subject matter tests from physical results to practical
results. The latter can be either physical or informational. Not
all information processing results will be sufficiently practical.
New, useful information about physical surroundings or
phenomena will be sufficiently practical to make a device or
process for producing that information patentable subject
matter. Information-handling processes that solve mathematical
problems and do nothing more remain unpatentable because
these involve neither physical components nor practical results.

With this clarification of patentable subject matter
standards to include inventions producing useful information, a
wide range of software advances developed to accomplish useful
business or personal analyses will be considered to be patentable
subject matter. Software for controlling computers to produce
information processing results which are useful outside of the
computers that produce them will clearly have the practical
quality which will qualify the software as patentable subject
matter despite the lack of any physical manipulation of external
items or activities as the result of using the software.

A further category of software should also be deemed to have
sufficient practical results to qualify as patentable subject
matter despite the lack of identifiable physical results. This type

182 One commentator on software patent issues has articulated a simpler, but
essentially identical test for patentable subject matter in software advances:
[If a patent] is drawn to the solution of a real-world commercial problem,
and the claim functional steps or elements as a whole meet the strict legal
requirement to be new, nonobvious and useful, then a patent should issue.
The function claimed, not the format, is what is important. It shouldn’t
matter whether new, nonobvious and useful process steps are claimed in
the context of a program or a disk or claimed in a hardware or method
format, or in the context of a semiconductor chip. Software-related
inventions are valuable to the purchaser not for what they communicate,
but for the functions they perform. The functions are what are important
and what should be assessed for novelty and nonobviousness.
United States Patent and Trademark Office, supra note 6, at 8 (statement of
Richard LeFaivre, Apple Computer attorney).

1050 ST. JOHN’S LAW REVIEW [Vol.74:977

of software includes software controlling computer operations in
ways that make those operations more efficient or accurate.
This type of software will produce its useful results within the
computers that run the software. To the extent that the
information processing capacity of a computer is itself a useful
resource and this type of software is able to increase that
capacity, software for managing or controlling computer
activities would appear to be patentable subject matter based on
its beneficial and useful impacts on computer operations.

C. Excessive Restrictions on Software Development

A variety of commentators have argued that, whatever
merits patents have had in promoting the development of other
technologies, patent rewards and restrictions are inappropriate
means to promote software advances because software
innovation differs materially from other types of technological
innovation.’88 These arguments against software patent
protections have focused on three concerns: first, software
patents restricting the use of fundamentally important
information processing advances may prevent programmers from
incorporating those advances in new software products;8¢
second, software patents may protect narrow, poorly publicized
advances in software designs that will be difficult to detect and
avoid in subsequent software development efforts;185 and third,
improperly issued software patents may significantly impede
software development and consumer access for extended periods
until these flawed patents are invalidated.8¢ Each of these
concerns is examined in this section.

1. Restrictions on Fundamental Information Processing
Techniques

Many programmers have expressed concern that software

183 See John Swinson, Copyright or Patent or Both: An Algorithim Approach to
Computer Software Protection, 5 HARvV. J.L. & TECH. 145, 151-53 (1991);
Samuelson, supra note 128, at 1113-1133.

184 See Swinson, supra note 183, at 151-53.

185 See Samuelson, supra note 128, at 1136.

186 See generally Envirotech Corp. v. Westech Eng’g, Inc., 904 F.2d 1571, 1574
(Fed. Cir. 1990) (describing one type of invalid software patent which removes
“inventions from the public domain that the public reasonably has come to believe
are freely available”); Mohasco Indus. v. E.T. Barwick Mills, Inc., 221 F. Supp. 191,
195 (N.D. Ga. 1963).

2000] PATENT INCENTIVES FOR SOFTWARE 1051

patents will restrict software implementations of highly effective
information processing methods that should be freely available
for inclusion in new software.’8” This concern is based on the
view that there are some information processing methods that
are so advantageous and important as the basis for practical
computer applications that both these methods, and the software
necessary to implement them, should remain freely available to
software developers and users.188

In essence, advocates of this view are arguing that broadly
significant and reusable software components deserve the same
sort of immunity from patentability that currently applies to
abstract knowledge.’®® Just as new abstract knowledge is kept
unpatentable in part because we wish to ensure that engineers
and other analysts are able to use the knowledge as a design tool
in creating practical devices and processes, so too may certain
software be so broadly useful and important in the construction
of further software that patents should be withheld to permit
developers to use this software as a component of subsequent
designs without any fear of patent restraints.

The desirability of making abstract information processing
ideas and related computer processing methods available to all
persons was recognized by the Supreme Court in Gottschalk v.

187 See David A. Burton, Software Developers want Changes in Patent and
Copyright Law, 2 MICH. TELECOMM. & TECH. L. REV. 87, 87 (1996) (May 18, 1999)
<http//www.mttlr.org/voltwo/burton.pdf> (reporting on the results of a poll of
computer programmers that found that programmers feel that software patents
impede development); Whitmeyer, supra note 50, at 1127 (“[Platents would unduly
restrict the incremental, building-block approach common in the software
industry....”).

188 See, e.g., United States Patent and Trademark Office, supra note 1, at 8-9
(statement of Rob Lippincott, Executive Vice President, Interactive Multimedia
Association) (describing the potential adverse impact on the development of new
multimedia products of software patents restricting the use of new multimedia
presentation techniques; such patents may severely constrain both the developers of
multimedia products and the users of those products whose expression may be
limited by the lack of freely available multimedia tools); S. Carran Daughtrey,
Reverse Engineering of Software for Interoperability and Analysis, 47 VAND. L. REV.
145, 178 (1994) (explaining that patent and patent-like protection for software
discourages public access to information and provides too much protection).

189 See Gottschalk v. Benson, 409 U.S. 63, 67 (1972) (explaining that an
abstract principle cannot be patented); Robert M. Hunt, You Can Patent That? Are
Patents on Computer Programs and Business Methods Good for the Economy?,
BUSINESS REVIEW First Quarter 2001, at 14 (concluding that extending patent
protection to computer programs and business methods implemented through
computers may or may not spur innovation).

1052 ST. JOHN’S LAW REVIEW [Vol.74:977

Benson.190 There, the Court unanimously rejected the
patentability of a computer program involving no more than a
particular mathematical procedure or information processing
algorithm implemented on a computer.19l1 The Court indicated
that the information processing advance at issue in Benson was
unpatentable because to issue a patent for this invention would
be to “preempt” all use of the information processing algorithm
involved.1¥2 What the Court seemed to be saying, however, was
not that the underlying algorithm would be preempted from
use—the algorithm could still have been used in non-computer
analyses even if the disputed patent was enforced—but rather
that the patent would improperly restrict the use of a highly
useful mode of computer-processing based on the algorithm.

In short, the Court seemed to say that, just as a scientific
principle like the law of gravity or a mathematical relationship
such as the Pythagorean Theorem is so basic a tool for the design
of useful products and processes that it should be freely available
for use by all innovators without patent restrictions, a widely
applicable computer processing method or sequence should be
freely available for use in later device and process designs. In
this analysis, the Court may have perceived that computer
processing based on a scientific principle or mathematical
relationship will tend to be useful in solving practical problems
over the same broad range of settings where the scientific
principle or mathematical relationship is useful as an analytic
construct.

While a patent on broadly applicable new software may
indeed cause the patent to be functionally restrictive and
economically significant in a variety of programming contexts,
this correlation between application scope and patent
importance is a desirable rather than abusive feature of software
patents. New software designs with numerous applications tend
to be ones that most benefit society. It is desirable that patents
attach special rewards to the development of broadly applicable
information processing methods and related software.

190 409 U.S. 63 (1972).

191 Jd. at 66-67 (stating that the patent sought was for a patent for the process
of converting binary coded decimals to the pure binary numerals used in all modern
computers).

192 See id. at 71-72 (explaining that the information processing algorithm
covered by the contested patent had no significant application outside of its
connection with computer processing).

2000] PATENT INCENTIVES FOR SOFTWARE 1053

Holders of patents on broadly applicable new types of
software may be able to realize considerable income from
exclusive sales of the patented software or from licenses to
produce or use the patented software in various contexts. This is
as it should be. Important, broadly useful inventions should
produce big rewards. The promise of such rewards will
encourage particularly diligent efforts by software innovators to
develop and improve software with numerous applications.

Restrictions on product development and use following the
patenting of a fundamentally important product feature are not
limited to the software field.’®® Patents on breakthrough
discoveries such as telephone designs or xerographic processes
used in copiers have permitted trailblazing inventors and their
companies to exercise a period of dominance and control in their
fields or, as an alternative, to obtain substantial financial
rewards for allowing other parties to use their inventions.19
Society tolerates limits on developing and utilizing new
technological designs because patent rewards imposing these
limits encourage discoveries and disclosures of socially important
products and services that would not otherwise exist.19

193 Complaints about patent restrictions on important technologies have arisen
in diverse technological areas for many years. For example, during the early
development of the aircraft industry there were substantial questions raised as to
whether the future development of aviation would be seriously impeded if Wilbur
and Orville Wright were allowed to enforce patents on their invention. Wilbur
Wright defended the enforcement of the Wright brothers’ aviation patents as
follows:

When a couple of flying machine inventors fish, metaphorically speaking,

in waters where hundreds had previously fished, and spending years of

time and thousands of dollars finally succeed in making a catch, there are

people who think it a pity that the courts should give orders that the rights

of the inventors shall be respected and that those who wish to enjoy the

feast shall contribute something to pay the fishers.

MICHAEL A. GLENN, An Historical Perspective on Patent Protection for Software—
Everything Old Is New Again, in PRACTISING LAW INSTITUTE, COMPUTER SOFTWARE
PROTECTION 131, 137 (1997).

194 As the Supreme Court noted:

It may be that electricity cannot be used at all for the transmission of

speech except in the way Bell has discovered, and that therefore,

practically, his patent gives him its exclusive use for that purpose, but that
does not make his claim one for the use of electricity distinct from the
particular process with which it is connected in his patent. It will, if true,
show more clearly the great importance of his discovery, but it will not
invalidate his patent.

Dolbear v. American Bell Tel. Co., 126 U.S. 1, 535 (1888).
155 See Russell Moy, A Case Against Software Patents, 17 SANTA CLARA

1054 ST. JOHN’S LAW REVIEW [Vol.74:977

In short, the choice in the software field, as in other
technological domains, is not between free and fettered use of
new technological designs. Rather it is between having
immediate, free access to some new designs that would be
developed with or without patent rewards and access to a
greater number of new designs that patent incentives are likely
to produce, accepting that some of these designs will be
temporarily restricted and encumbered by patent rights during
the life of the applicable patents. So long as, generally, the new
designs that are encumbered with patent rights are those which
would not have been developed and disclosed absent the promise
of patent rewards, society does not lose access to many, if any,
new inventions through patent restrictions. Rather, society
simply adds to its pool of useful inventions a few new and often
important inventions that are temporarily restricted by patent
rights. Those restricted inventions would not have been
immediately available to society absent patent rights since these
inventions would not have even been developed and disclosed
absent the rewards associated with those rights.

Patent law reflects the choice that temporarily encumbered
access to a greater number of new technological designs is better
than free access to a lesser number.1% There seems to be no
reason to make a different choice about the use of patent
incentives to encourage the development and disclosure of new
software designs. To decide otherwise based on the short-term
advantages of immediate, free access to innovative software is to
sacrifice the long-term incentives for software innovation that
the promise of patent rights can achieve. As with innovation in
other technological fields, society and the patent system should
take the long view and accept temporary patent controls over

COMPUTER AND HIGH TECH. L.J. 67, 92-93 (2000) (commenting that properly
focused patent rights confer a “benefit upon the public that outweighs the evils of [a]
temporary monopoly”).
19 QOne scholar describes the U.S. patent system as follows:
Thus United States patent law makes a bargain with inventors: it provides
nearly absolute protection for a limited term, in exchange for the inventor
disclosing the invention completely at the outset of that term and
dedicating it to the public when the patent expires. The underlying policy
is not to take something pre-existing away from the public, but to
encourage inventors to disclose, for eventual public use, things that never
before existed.
1 JAY DRATLER, JR., INTELLECTUAL PROPERTY LAW: COMMERCIAL, CREATIVE AND
INDUSTRIAL PROPERTY § 2.01 (Law Journal Press 2000).

2000] PATENT INCENTIVES FOR SOFTWARE 1055

new and sometimes broadly applicable software in order to
realize greater numbers and diversity of such software
innovations in the long run.

2. Problems in Detecting and Avoiding Unauthorized Reuse of
Patented Software

Some critics of software patents have been concerned that
programmers may have problems in identifying and avoiding (or
properly licensing) patented software features.’®” Two types of
problems related to the documentation and searching of software
patents underlie these concerns.’¥ The first one concerns the
timing of software patent disclosures. A software patent on an
advance may issue long after a party other than the patent
recipient has incorporated the same advance in new software
products.’®® The result may be unexpected patent infringement
liability and restricted use of the nonpatent holder’s software.

The second problem concerns the difficulty of discovering the
full range of patents that may be infringed by a new software
product.200 If a software programmer can not discover the
preexisting patent restrictions on design features that are being
considered by the programmer for use in a new software product,
then those restrictions can not be taken into account in the
software design process. If infringement of an unexpected
software patent is encountered once software is already in use in

197 See Samuelson, supra note 128, at 1136 (“No matter how thoroughly or how
often one searches the records of issued patents, one can never know when a patent
affecting a software product might issue.”); see also Swinson, supra note 183, at 168
(“[Platents of computer programs are hard to find, and if found, are impossible to
understand.”).

198 See United States Patent and Trademark Office, supra mote 1, at 4
(statement of Paul Robinson, Chief Programmer, Tansin A. Darcos & Company)
(arguing that the secrecy and delays surrounding software patent applications until
they issue as patents or are otherwise published, and the frequent need for
programmers to use multiple potentially patented design elements in a single
complex software product, create greater problems for programmers in
accommodating software patent restrictions than face product designers in other
technological fields).

199 See Samuelson, supra note 128, at 1136 (“Developers worry that on the day
they introduce their newest and most innovative product to the market, a patent
might have issued to another firm that would cover some aspect of the just-
introduced product.”).

200 “[Platents can issue on so many subcomponents of computer programs, a
future software developer would have to obtain so many licenses from so many
different firms for so many different companies” Id. at 1137.

1056 ST. JOHN’S LAW REVIEW [Vol.74:977

ongoing activities, the results may include: 1) unanticipated
financial liability for patent infringement, 2) lost chances to
adopt different business activities that do not require the
infringing software, 3) lost opportunities “design around” the
patented features of the software to produce non-infringing
substitutes, and 4) lost chances to negotiate licenses for the
patented software free from the threat of patent enforcement
litigation.

Software patents that take a considerable period to emerge
from the Patent Office are sometimes described as “submarine
patents” because they rise up unexpectedly like a submarine
from the ocean.?01 A patent application may linger in the Patent
Office for a considerable period—typically two to three years—
before a patent issues.?02 During this time, the existence and
contents of the patent application are not publicly disclosed by
the Patent Office, meaning that software developers other than
the patent applicant may independently rediscover or copy the
patented design without knowledge that a patent application on
that design is pending.2?3 Once the applicant’s patent issues—as
a “submarine patent” which emerges unexpectedly out of the
Patent Office—other developers and their customers will be
required to stop using software that incorporates the patented
design or to obtain a license from the patent holder.204

201 “A gubmarine patent is a patent that is granted, or ‘emerges,” after a long
pendency period in the U.S. Patent Office, during which time others may have
unknowingly infringed on the patent.” Christopher R. Batztan, Mandatory
Publication of Patent Applications Prior to Issuance of Patents: A Desirable Change
in U.S. Policy?, 18 LOY. L.A. INT'L & COMP. L. REV., 143, 156 (1995).

202 See United States Patent and Trademark Office, supra note 6, at 78
(statement of Robert Green Sterne of the law firm of Sterne, Kessler, Goldstein, &
Fox). In one study where a sample comprised of 2081 patents was examined in
detail, the average patent prosecution period, e.g., from application date to issue
date, was found to be 864 days and the median period was found to be 701 days. See
Mark A. Lemley, An Empirical Study of the Twenty-Year Patent Term, 22 AIPLA
Q.J. 369, 385 (1994).

203 One estimate places the typical development time, from formulation to
release, for electronic products such as new computer-based products at 6 to 9
months. See United States Patent and Trademark Office, supra note 1, at 78. Since
this is a far shorter period than the pendency of most software patent applications,
a party might easily learn of another party’s software innovation or independently
rediscover that innovation, incorporate the innovation in a product, and initiate
marketing or use of the product before becoming aware that the innovation may be
restricted by patent rights stemming from a patent application filed by the first
software innovator.

204 One observer has described the “surprise problem” as follows:

2000] PATENT INCENTIVES FOR SOFTWARE 1057

The development and adoption of a new product design prior
to the discovery of conflicting patent rights may be a particularly
important problem in the software field. New software designs
having popular features can sometimes be replicated quickly by
software developers in products that are produced and
distributed in great numbers shortly after the emergence of the
first product reflecting the design. Hence, new products based
on a software innovation may be widely marketed and begun to
be used in large numbers while a patent application concerning
the innovation is still pending. If a patent issues covering this
design, persons other than the innovator may be forced to stop
selling or using products which incorporate the patented design.

One solution to the problem of submarine software patents
is to alter the timing of patent application disclosures. This is
probably preferable to the broader, more drastic remedy of
restricting software patentability. Without undercutting the
beneficial development and disclosure incentives raised by the
availability of software patents, a rule requiring publication of
pending software patent applications relatively soon after their
submission to the Patent Office would give software developers
more prompt and useful warning about the scope of potential
patent rights. With this warning, developers can decide how to
proceed so as to avoid conflicts with patent restrictions.

Recently enacted legislation will implement this type of
solution not just for software patents, but for all types of patents.
This legislation requires the publication of most pending patent
applications 18 months after their submission to the Patent
Office.205 Such an early publication requirement will narrow the
total period of delay between a software discovery and potential

The industry feels as though it’s being kept in the dark for long periods of
time, and then surprised by some unanticipated patent jeopardies. This is
clearly the result of delayed publication [of patent applications] on the one
hand, coupled with the ability in the Patent Office for an applicant to
prolong the prosecution for an inordinate period of time This creates
an environment where surprises become the rule rather than the exception
to the industry.
United States Patent and Trademark Office, supra note 6, at 59 (statement of Lee
Patch, Deputy General Counsel and Chief Intellectual Property Counsel, Sun
Microsystems).

205 See 35 U.S.C. § 122(b)(1) (Supp. V 2000). This legislation will not require the
disclosure of patent applications that the applicant certifies will not be the subject of
a patent application filed in a foreign country. See 35 U.S.C. §122 (b)(2)(3) (Supp. V
2000).

1058 ST. JOHN'S LAW REVIEW [Vol.74:977

patent rights. By reducing this period of secrecy of a new
software invention, the chances of unknowing reuse of that
invention before any notice of probable patent rights is given will
be reduced as well.

A second and arguably more serious problem may also limit
the ability of software developers to create new software
products without accidentally incorporating infringing features.
Software developers who are creating new software products
may find it difficult to identify all of the outstanding patents that
apply to planned features of the software under development.
The ability of developers to take software patents into account
will turn on the successful matching of features in the products
under development with the features covered by software
patents. If developers can not assess the full range of patents
that will be infringed by the developers’ planned software
designs, the developers may inadvertently create infringing
software without a fair chance to realize that they are doing so.
In addition to creating unexpected liability for the developers,
this type of built in infringement problem may leave users of the
resulting software with products or business procedures that
they can not use or that they must license from the patent holder
under substantial economic duress.

Two types of limitations on patent searches?%® may lead to
mistakes in identifying outstanding software patents that are
applicable to a proposed software design. First, a developer may
find that his or her new software has so many new design
elements that the developer can not check all of the new
elements against outstanding patents.207 Without such a check,

206 One commentator has stated as follows:
While not required to do so, the inventor and his or her lawyer will often
have conducted a patent search, either by themselves or through the
services on one of many search companies, in order to study the claims of
prior patents. In many situations, the search will disclose prior patents
which include elements (or similar aspects) of the invention claimed by
[the} inventor.
G. GERVAISE DAVIS, III, SOFTWARE PROTECTION: PRACTICAL AND LEGAL STEPS TO
PROTECT AND MARKET COMPUTER PROGRAMS 150 (Van Nostrand Reinhold Co.
1985).
207 This problem was described by an official of the Oracle Corporation as
follows:
The engineering and mechanical inventions for which patent protection
were devised are often characterized by large building-block inventions
that can revolutionize a given mechanical process. Software seldom
includes substantial leaps in technology, but rather consists of adept

2000] PATENT INCENTIVES FOR SOFTWARE 1059

the developer will be unable to thoroughly detect and avoid
infringing designs. Second, software patents may describe and
index protected software features in ways which impair effective
searching for relevant software patents when a particular
software feature is incorporated in a software product. If
software features are not consistently and unambiguously
described in software patents, then patent searchers will have a
difficult time in comparing the features of a proposed software
product with the software features protected by prior patents.
These problems are not, however, unmanageable. The
number of outstanding patents that should be checked against a
new software product will be limited by the small range of valid
patents that are likely to be relevant to the product. As
developers create new or modified software designs, only
significantly new design elements will generally need to be

combinations of several ideas. A complex program may contain numerous
established concepts and algorithms as well as a multitude of innovative
ideas. Whether a software program is a good one does not generally depend
as much on the newness of each specific technique, but instead depends on
how well these are incorporated into the unique combination of known
algorithms and methods. Patents simply should not protect such a
technology.
United States Patent and Trademark Office, supra note 6, at 24 (statement of Jerry
Baker, Senior Vice-President, Oracle Corporation). Another software company
executive described the potential impacts of software patents in similar terms:
Creation of software will... be impeded by the difficulty of writing
software that doesn’t inadvertently trip across a patent somewhere. That
is true in other fields where patenting is less controversial, but it’s far
worse in software. It’s not unusual for a program to be a million lines long
and consist of many thousands of subroutines and functions. Algorithms
and ideas are embodied in each of those components and in combinations
of them. Some of these algorithms may be studied in school or found in
books, but many are developed “on the fly” as the program is created.
Many of these subroutines and functions might be far afield from the
purpose of the program as a whole.

An operating system, for instance, might contain routines for sorting and
searching, handling queues, parsing text, controlling hardware, testing
memory, et cetera. It will be impossible to know which of these routines,
algorithms and ideas violate a patent, because every programmer would
need to understand every software patent—every software patent that is
active. Software is simply too complex, composed of too many pieces which
are too easy to create, to lend itself to being broken down into patent-sized
chunks.
Id. at 46 (statement of Jerry Fiddler, Chairman of Wind River Systems, whose
company creates software for embedded systems such as the microprocessor
systems found in cars or phones).

1060 ST. JOHN’S LAW REVIEW [Vol.74:977

compared against outstanding patents. Programming elements
that are either copies of long used programming techniques or
slight variations from long used programming techniques are
unlikely to be covered by valid patents.?2°8 Even if patents have
been obtained for these types of programming techniques, the
patents are probably invalid.2®® In light of the long usage of the
same or similar techniques, the techniques in question were
either not new when the patents were sought or were merely
obvious, unpatentable variations on the prior techniques in the
field. In either case, patents on these sorts of techniques are
void and unenforceable.

Two sorts of software innovations may be the subject of valid
patents and should therefore be the targets of reasonable patent
searches if these innovations are planned to be used in a new
product. New software features that appear to be major
departures from current programming techniques should be
scrutinized to see if someone other than the party intending to
use the features has independently developed and patented
those techniques. If so, the patents involved may be valid since
it appears that the programming techniques are new and non-
obvious in comparison with other present programming
techniques.210

In addition to presently non-obvious software advances,
programming techniques that were non-obvious when they were
originated may have been patented at that time. The resulting
patent may be valid even though the techniques involved are

208 See 35 U.S.C. §§ 102(a), 103 (1994) (stating that patents are not available
for product or process designs that are either duplicates of, or obvious extensions of
prior designs).

209 See Amazon.com, Inc. v. BarnesandNoble.com, Inc., 239 F.3d 1343, 1351-66
(Fed. Cir. 2001) (questioning the validity and enforceability of a patent covering an
on-line purchasing method where prior knowledge in the field suggested that the
patented method was merely an obvious combination of known design features);
Richards v. Chase Elevator Co., 158 U.S. 299, 301 (1895) (stating that patents may
be declared invalid for lack of novelty).

210 Jfno other patent is found that covers the new programming techniques and
these techniques appear to be significant departures from earlier methods, then the
developer planning to use the techniques may wish to consider filing for his or her
own patents on those techniques. Assuming that the developer is the first to
discover and disclose the new techniques and that the techniques are found to be
non-obvious advances over prior practices, these new techniques will probably
constitute patentable subject matter and warrant a patent for the developer. See 35
U.S.C. § 103(a) (Supp. V 2000); see also Graham v. John Deere Co. 383 U.S. 1, 13-19
(1966) (setting out the basic test for non-obviousness).

2000] PATENT INCENTIVES FOR SOFTWARE 1061

now commonly used. These sorts of formerly non-obvious
departures from prior programming should therefore be targets
of patent searches if the techniques are planned to be used in a
new software product. Patents obtained when these techniques
were new may still be in force, creating restrictions on the
present use of the techniques. These restrictions may last for
the life of a patent, which under current standards is 20 years
from the patent application date and which, until recently, was
17 years from the date of patent issuance.2l! Patents obtained
recently enough to be still enforceable under these standards
and that cover innovations that were non-obvious when made
should be targeted in software patent searches.

Two features of software development may make most of
these older, still valid patents easy to detect. First, since most
software development—in earlier periods as now—was
incremental not revolutionary, few advances will have entailed
the significant innovation over prior practices that would
support an enforceable patent. Second, for those few advances
that were non-obvious when made, patents obtained for these
advances, the patents have probably figured in litigation that
has gained some news coverage and notoriety, at least within the
relevant software design field. These relatively notorious
patents should be either known to software innovators working
on products like the patented software or easy to find from
published accounts of the corresponding litigation. The absence
of enforcement actions concerning a particular type of technique
that is now widely used will suggest, although not conclusively
confirm, that there are no outstanding, valid patents from an
earlier era covering that technique. With strategies based on
these methods for limiting the types of patents that should be of
concern to developers of new software, reasonably complete
searches for software patents should be possible.

Problems stemming from unclear descriptions of software
innovations in patent documents and corresponding weaknesses
in patent indexing and searching may produce some errors in
screening proposed software against existing patents, but it is
unclear that these problems are any more significant for
software advances than for other types of complex technological
innovations. Even assuming, however, some difficulty or

211 See 35 U.S.C. § 154(c)(1) (1994).

1062 ST. JOHN’S LAW REVIEW [Vol.74:977

variation in how software advances are described, other contents
of software patents may be sufficient to lead searchers to patents
that will constrain a particular software design.

A patent covering a software feature must include
descriptions of functional characteristics and applications of the
feature.2l2 These functional and application descriptions will
give searchers workable targets for later detection of the patents
involved. As they develop software with particular functional
characteristics, developers should be able to search for patents
covering prior innovations that produced the same functionality.
If patents covering innovations with similar functionality are
found, these patents can be given further scrutiny to determine
if the functionality was implemented in the same way as in the
proposed software. If so, the proposed software may infringe the
patent. If a different implementation was used to achieve the
same functionality, then it is unlikely that the new software will
infringe the patent.

In any case, a search focusing on functional results of
software designs should surface patents on the various designs
that have been used to solve particular functional problems or to
achieve particular functionality. Provided that software
developers are at least clear and consistent in describing the
functional results and advantages of their innovations—even if
they vary in how they describe the inner details of the
innovations—reasonably complete software patent searches
should be possible. Searchers for patents governing a new
software product or feature will have a reasonable chance of
success if they take a functional approach to targeting their
searches. By conducting initial searches for patents related to
the particular functionality of the proposed new software or
feature and then shifting to detailed scrutiny of the group of
patents found in the initial search, developers should have a
reasonable opportunity to detect and avoid patents potentially
restricting their new software.

212 See 35 U.S.C. § 112 (1994). The code states that the specification portion of a
patent:
shall contain a written description of the invention, and the manner and
process of making and using it, in such full, clear, concise, and exact
terms as to enable any person skilled in the art to which it pertains, or
with which it is most nearly connected, to make and use the same.
Id.

2000] PATENT INCENTIVES FOR SOFTWARE 1063

3. Problems Stemming from Improperly Issued Patents

Software patents may also be undesirable if large numbers
of invalid software patents are mistakenly issued by the Patent
and Trademark Office (PTO). Due to weaknesses in the
software-related prior art?!3 information available to the PTO’s
patent examiners or weaknesses in the examiners’ analyses of
patent applications in relation to that prior art information,2!4
invalid software patents may mistakenly be issued for either old
software designs that have been in use for some time or for
designs that are obvious, unpatentable variations on past
designs. The threat of enforcement of such improperly issued
patents would restrict the development of related software, at
least until the validity of the patents could be challenged
effectively.215

Concern over improperly issued software patents which do
not meet patent law standards for novelty and non-obviousness
stems from doubts about the ability of the PTO’s patent
examiners to recognize and reject patent applications for old or
obvious software designs. There are two problems underlying
this concern. The first relates to limitations on patent
examiners’ expertise concerning computer programming
techniques and sources of prior art information.2’6 While at one
time the PTO did not recruit examiners with special expertise in
computer science and related disciplines, this policy has been
reversed and there is no reason to believe that the PTO will be
any less able to establish a technically able body of examiners
concerning computer software advances than in any other area.

213 See Mohasco Indus., Inc. v. E.T. Barwick Mills, Inc., 221 F. Supp. 191, 195
(N.D. Ga. 1963) (defining prior art as “all patents, publications and public uses
which have been in existence prior to a patentee’s date of invention or more than
one year prior to his filing date).

214 See Cantzler, supra note 127, at 456 (stating that examiners need to have
backgrounds in computer science, a requirement that was, until recently, overlooked
by the PTO as a patent attorney qualification).

215 Obtaining a patent is a costly and time consuming process. Even if there are
no problems, it can take 18 months to three years from patent application to the
patent grant. If problems develop, the process can extend to over five years.
Prosecuting a patent that is not complex costs approximately $5,000 to $20,000, but
the costs can increase if problems develop. See Thomas B. Burke, Software Patent
Protections: Debugging the Current System, 69 NOTRE DAME L. REv. 1115, 1117
n.12 (1994).

216 See, e.g., United States Patent and Trademark Office, supra note 6, at 27
(statement of Kaye Caldwell, President, Software Entrepreneurs Forum) (describing
the need for patent examiners who have computer programming expertise).

1064 ST. JOHN’S LAW REVIEW [Vol.74:977

A second reason why patent examiners may be less effective
in reviewing software patent applications than in other
technological areas may be harder to overcome. Reviews of
software patent applications are hindered by large gaps in prior
art records that are peculiar to records of software
development.?!” This problem is due, in part, to earlier confusion
about the patentability of software which caused a great deal of
innovative software not to be patented and therefore not to be
recorded in patent records.?® Unlike the case in other
technological fields where strings of patents tend to record the
major innovations and trends in the fields, many aspects of
advancing software technology are not disclosed in published
patents.

This would appear to be a temporary problem, however.
This gap in software technology records will be resolved as
software patents and associated invention disclosures become
more common. To the extent that sources of information
available to examiners about past software designs are more
limited than comparable prior art information in other
technological areas, it may be useful to provide expedited means
to challenge the validity of software patents soon after those
patents are issued. These expedited procedures should include
opportunities for interested parties to submit prior art
information to fill gaps in the software patent record.

For example, at least until the overall body of software
patent records improves, a procedure providing for the regular
reexamination of software patent validity early in the life of an
issued software patent may be desirable. Such a procedure
would ensure that parties threatened with infringement Lability
under the patent—and possessing a corresponding motivation to
identify and disclose invalidating prior art information—would
have an opportunity to have the validity of a suspect patent
tested in a less expensive manner than through litigation
challenging the patent. Invalidation of patents under this type
of procedure would remove improperly issued software patents

217 See id.; see also id. at 73 (statement of Richard Stallman, Free Software
Foundation) (describing problems with PTO examiner’s evaluations of the
obviousness of software advances); Cantzler, supra note 127, at 456-57 (describing
the problems arising from gaps in prior art records concerning software).

218 See generally Alan P. Klein, Software Patenting: A New Approach, 6 U.
BALT. INTELL. PROP. L.J. 135 (1998) (discussing cases that have examined the
PTO’s treatment of patent applications and what constitutes prior art).

2000] PATENT INCENTIVES FOR SOFTWARE 1065

before the threat of enforcement of those patents had a
substantial opportunity to deter and diminish subsequent
software development. Presently, the initiation of a
reexamination depends on a discretionary decision of the
Commissioner of Patents to begin such a proceeding. The
Commissioner has indicated a willingness to entertain this type
of patent challenge through petitions seeking the reexamination
and potential invalidation of issued software patents.?’® Few
parties have sought such examinations of software patents to
date,?20 in part because there is no guarantee that the PTO will
even conduct a reexamination review of an issued patent based
on submissions of previously unaddressed prior art information.
A Dbetter practice would be to schedule an automatic
reexamination of software patents at a reasonable time (for
example, six months) after the patents issue.

CONCLUSION

Until recently, uncertainty about the scope of software
patent protections caused the computer industry to develop
without either the incentives or the restrictions of software
patents. Changes in the industry suggest that there is an
increasing need for software patent incentives to promote future
software development. In particular, the increased
concentration of economic and marketing power in a few large
computer industry firms has placed a new premium on obtaining
software patents. Software patents promise to serve important
roles in protecting future software innovations by both large and
small-scale software developers.

For small-scale developers, a software patent may be the
only effective way to develop and market an innovative new form
of software without having key features of the software scooped
up by large competitors with no compensation to the small

219 See, e.g., Q. Todd Dickinson, Reconciling Research and the Patent System,
ISSUES IN SCIENCE & TECHNOLOGY, July 1, 2000, 2000 WL 20687129 (comments by
Commissioner of Patents) (noting a willingness to initiate discretionary
reexaminations of patents “when the prior art and broad public concern warrant
it™).

220 Jd. (comments by Commissioner of Patents) (noting that “surprisingly few”
parties initiate reexaminations of patents); United States Patent and Trademark
Office, supra note 6, at 59 (statement of Lee Patch) (describing the general
apprehension toward the reexamination process among members of the software
industry).

1066 ST. JOHN’S LAW REVIEW [Vol.74:977

innovator. The superior marketing abilities and product
integration advantages that large concerns possess relative to
small innovators will tend to cause larger concerns to win out
over smaller ones in head to head marketing of products
incorporating the same sorts of innovative features. Absent
patent protections, small concerns can hardly hope to win such a
battle. Furthermore, absent some hope of winning such a
contest, a small innovator may see little chance to profit from a
complex software innovation and therefore forgo the
development or marketing of innovative software entirely.

Venture capitalists or business partners who might give
financial backing to the efforts of these small innovators may
withhold necessary investments on similar grounds. The
potential impact of software patents in securing financial
backing for small software developers is reflected in the
experience of MacinTax, a small startup company founded by
Mike and Susan Morgan. Because the Morgans obtained patents
on their software products, they were able to protect themselves
and their investors from the appropriation of their innovations
by other firms. The reassurance that patent protections
provided was critical in attracting investment in the company by
venture capitalists. As described by Susan Morgan,

[Wihen venture capitalists asked us how we could protect

ourselves against say Microsoft coming out with a competitive

product and stealing our market, the fact that we had applied

for patents put the problem to bed. It made the [venture

capitalists] feel much more comfortable, and that’s a big

difference.221

For large concerns, software patents may serve a more
defensive purpose. As innovators within such firms develop new
software designs, these firms may seek related patents on the
innovations to ensure that they retain control over the new
designs. If they do not, they may find that they are restricted by
another company or party that independently develops a similar
software innovation and is the first to obtain a related patent. A
software patent obtained by a large, innovative concern may be
the best way to establish that company’s early development of a
given technology and to prevent other parties from imposing

221 United States Patent and Trademark Office, supra note 6, at 12 (quoted in
statement of Paul Heckel).

20001 PATENT INCENTIVES FOR SOFTWARE 1067

patent restrictions on the same technology. This sort of race by
large companies to obtain patents on software advances is likely
to produce earlier disclosures of innovative software in publicly
available patents than would be the case without patent
incentives for disclosure.

Of course, these disclosures are made in exchange for a
period of patent restrictions on the inventions disclosed. Some of
the technology disclosed may not be claimed in the related
patents and therefore enter the public domain immediately. In
addition, the software designs that are claimed will often be
available for licensing from the patent holder, resulting in
immediate access by companies and consumers to software
designs that might otherwise have remained undiscovered or
undisclosed for some time.

Software patents may also serve a different defensive
function for large concerns by giving those concerns additional
bargaining power in the face of patent infringement claims by
other software producers. Where large software producers
develop software design expertise in different areas, each may
obtain patents in their respective areas of specialization. In
order to adopt the best design features developed by multiple
large companies, a large software producer may need to gain
permission under patent licenses from several large companies.
Software patent cross-licenses can provide a means to obtain this
permission at little or no cost to the licensee. Under these
agreements, each patent holder licenses the other party to use
the invention features covered by their respective patents.

In some cases, this cross licensing will occur as new products
are designed and competitors learn that they and their
competitors each have produced different specialized discoveries
and patents. These parties may voluntarily cross license their
patents because each realizes that they will benefit from the
resulting access to the full range of advances in the field.

Alternatively, cross licensing may occur through litigation in
which the patent rights of one competitor are used to compel
access to the technology controlled by another. By raising the
threat of an infringement action, but offering to settle or avoid
the litigation through entry into a cross licensing agreement, a
firm can use its patent portfolio to force other concerns to provide
access to valuable technologies. This access may be gained with
little or no revenue outlay other than the cross licensing of the

1068 ST. JOHN’S LAW REVIEW [Vol.74:977

benefited firm’s patents. An official for Oracle Corporation
described this type of use of a patent portfolio as follows:

Oracle has expended substantial money and effort to protect
itself by selectively applying for patents which will present the
best opportunities for cross-licensing between Oracle and other
companies who may allege patent infringement. If such a
claimant is also a software developer and marketer, we would
hope to be able to use our pending patent applications to cross-
license and continue our business unchanged.??2

For both small and large-scale software developers, clearer
standards for granting software patents should provide stronger
incentives for creating innovative software. Beyond their impact
in producing particular software products, software patent
rewards should produce useful distinctions between innovators
and non-innovators in times of intense industry competition.
Software patents will promote these distinctions by enhancing
the economic strength and financing opportunities of software
innovators relative to their less innovative competitors. In
highly competitive markets, this will help the innovators to
survive and the less innovative companies to be displaced by
more innovative ones.

Finally, patent controls that encourage companies to develop
and market new software with highly original designs should
expand the number and diversity of innovative software
products. As more numerous and varied software products are
made available, the functional benefits of these software
products should flow to the public. Patents encourage the
diversification of technological development in many fields.
Patent incentives for software development can play a similar
role. These important incentives and the public benefits
resulting from the diversification of software development should
be embraced through strong support for software patents and
the better living innovative software promises to produce.

222 [Jnited States Patent and Trademark Office, supra note 6, at 24 (statement
of Jerry Baker, Senior Vice-President, Oracle Corporation).

	Better Living Through Software: Promoting Information Processing Advances Through Patent Incentives
	Recommended Citation

	Better Living through Software: Promoting Information Processing Advances through Patent Incentives

