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Abstract: In the United States alone, each tropical cyclone causes an average of $14.6 billion worth 

of damages. In addition to the destruction of physical infrastructure, natural disasters also 

negatively impact human capital formation. These losses are often more difficult to observe, and 

therefore, are over looked when quantifying the true costs of natural disasters. One particular effect 

is an increase in infant mortality rates, an important indicator of a country’s general socioeconomic 

level. This paper utilizes a model created by Anttila-Hughes and Hsiang, that takes advantage of 

annual variation in tropical cyclones using annual spatial average maximum wind speeds and 

Demographic and Health Surveys data, in order to find a causal relationship between infant 

mortality and tropical cyclones. The results show that there is a statistically significant increase in 

infant mortality with a lagged effect. This research topic is even more relevant given the evidence 

on climate change such as rising sea temperatures, which aggravates both the occurrence and 

severity of tropical cyclones.  
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1. Introduction 
The National Oceanic and Atmospheric Administration (NOAA) defines a tropical storm as 

a rotating low-pressure system that originates in tropical waters with winds of at least 

74mph. These natural disasters have approximately affected 466.1 million individuals in a 

30-year period between 1977 and 2009 (Doocy, Dick & Daniels, 2013). This number will 

only continue to rise as coastal populations increase and climate change unfolds. While 

quantifying the number of people impacted by tropical cyclones is very important, 

deciphering how and when individuals are impacted is crucial to developing policies that 

mitigate disaster damages. This study aims to find a causal link between infant mortality 

and lagged exposure to tropical cyclones, and quantify the magnitude of these time-lagged 

effects relative to immediate ones. 

The first part of studying natural disasters, such as tropical cyclones, is breaking 

down their impacts into direct and indirect effects. Direct damages are those that occur at 

the time the disaster hit and include destruction of physical assets like buildings, roads, 

equipment, and crops, as well as direct loss of life. These damages are the easiest to observe 

and therefore, are usually the ones studied and quantified when accounting for the cost of a 

disaster. Indirect damage refers to goods and services that will not be produced after the 

disaster has hit as a result of direct damages, as well as impacts to human capital such as 

health and education (ECLAC, 2003). The first problem when trying to quantify the true 

total costs of natural disasters is measuring the indirect impacts, because they are incurred 

after a disaster has hit and can endure long after. Consequently, these impacts are harder to 

observe and quantify, which often leads to miscalculations when reporting the costs and 

effects of a disaster.  

Developing countries located in the tropics face a higher risk from tropical cyclones 

due both to their geographical location (i.e., located at latitudes with warmer sea 

temperatures) and economic circumstances, and accordingly, it is worth noting the 

importance of advancing further research in these countries. Moreover, because these 

countries find themselves in hazard-prone areas, their economic development is constantly 

slowed due to increased public expenditure on disaster relief, lower revenues from reduced 

economic activity and any losses incurred by the tropical storm (Pelling, Özerdem & 

Barakat, 2005). The previously mentioned problems involving correctly quantifying the 

true costs of natural disasters only become more difficult in the context of developing 

countries due to the lack of resources, standardized processes and consistent data available. 

A further problem when trying to estimate the true costs and impacts of natural disasters is 
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measuring the long-term economic and social effects. In particular, consequences on human 

capital, including negative effects on health, nutrition and education, which have been found 

to be both large and long-standing, are difficult to accurately measure (Baez, de la Fuente, 

Santos & Vanessa, 2010).  

This paper addresses some of these issues by specifically focusing on indirect 

damages to human capital in developing countries by measuring the post-disaster infant 

mortality effects of tropical cyclones. Due to the random occurrence of tropical cyclones, I 

am able to apply quasi-experimental techniques to identify their effect on infant mortality 

using tropical cyclone data with the cross-sectional household-level Demographic and 

Health Survey (DHS). Through various analyses, I find that tropical cyclones have a 

significant and lagged impact on infant mortality. Furthermore, these lagged impacts are 

larger in magnitude than the initial effect of the disaster. The remainder of the paper first 

describes the literature of economic outcomes and natural disasters. Secondly, outlines the 

data sources and methodology I will be using to establish a causal effect between tropical 

cyclones and infant mortality. Then I present the data analysis of my results, and lastly, I 

offer a conclusion and some policy recommendations.  

 

2. Literature Review 
For some time now, researchers have studied and estimated the effects of natural events on 

humans. While we may not be able to change or control the environment, knowing the 

impacts they have on humans and economics is useful for designing and implementing 

policies. In particular, as climate change becomes a more pressing concern, investigating 

the effects of natural events is even more relevant. First, I will describe the literature 

discussing methodologies for studying the climate and its impacts. Second, I will review the 

theory and empirics behind natural disasters, human capital investment and consumption 

smoothing. Third, I will present studies specifically looking at the importance between 

infant mortality rates and natural disasters. Lastly, I will focus on the evidence revealing 

that shocks are particularly disruptive to the wellbeing of females, relative to males. 

A key advantage of climate and weather shocks is that they have a varying and 

exogenous effect over time within regions, allowing for a more clean identification strategy 

to measure a variety of different economic outcomes. Estimating outcomes using different 

climate variables can be done a number of ways. The classical approach to measuring 

weather shocks is using spatial variation for a fixed point in time; however, this simple 

model can suffer from omitted variable bias from the correlation between climate variables 
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and outcomes (Dell, Jones & Olken, 2014). Panel datasets only strengthen the identification 

strategy of the classical model, by including fixed effects for different regions. The model is 

then able to absorb any possible omitted variable bias that the simple classical approach 

suffers from, and the results are then able to illuminate the effects of the climatic event 

(Carleton & Hsiang, 2016). In this study, I will be using this more advanced model derived 

from panel datasets to observe the effects of weather shocks (tropical cyclones), focusing on 

the variation in time within a given region. By including fixed effects for different regions 

the model will absorb any possible omitted variable bias that the simple classical approach 

suffers from. Despite its advantages, panel data estimation techniques are still limited in 

their ability to predict long-run effects and adaptation to climate change. Reasons for the 

limitation in the model include lack of predictability for adaptation, intensification of 

climate effects, and general equilibrium effects, all of which highlight that panel models can 

identify a causal effect of climate shocks, but cannot accurately predict nonlinearities, 

displacement, uncertainty or adaptation of climate shocks (Hsiang, 2016) (Dell, Jones & 

Olken, 2014). One-way to improve the panel data set classical approach model is to 

incorporate a lag that is interacted with the weather effect. This distributed-lag model 

builds on the panel data model by allowing the effects of different independent factors on a 

dependent variable to occur over time, as well as describe the time structure of the effect 

(Gasparrini, Armstrong & Kenward, 2010). The model also assumes additive separability 

between delayed impacts, which resolves the problem that additional responses to weather 

shocks that are incurred later may not only be due to that specific event (Hsiang, 2016). 

This is particularly important in the case of this study because climate impacts are known 

to reveal their impacts over time, and consequently require a dynamic model that shows 

this relationship.  

Using these more developed econometric models, researchers are now able to better 

isolate the indirect and long-term impacts of natural disasters. The first and easiest 

observable impact of natural disasters on human capital is loss of life; evidently, death 

reduces the amount of human capital, which is typically well quantified. The second indirect 

impact is the decrease of household income, which results in reallocation of resources. 

These secondary effects, related to the economic conditions and fractured infrastructure left 

behind after the natural disaster, also include slow economic growth, increased debt and fall 

in production (Baez & Santos, 2007). This study primarily focuses on the indirect impacts of 

natural disasters, which affects human capital in the long run by destabilizing household 

consumption expenditures such as food, health or education when a shock occurs (Baez et 
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al., 2010). Consumption smoothing theory is built on evidence from numerous empirical 

studies, which revealed that natural disasters decrease household investment, specifically in 

children’s human capital, in order to smooth household consumption and mitigate risk 

(Udry, 1994) (Jensen, 2000). Non-equilibrium dynamic models have been developed to show 

how constraints to income in the short-run, as a result of shocks, can create poverty traps 

and slower long-term growth rates in the future (Van den Berg, 2010). Investing in 

education and health, while being good investments with high returns, are not the typical 

kinds of investments that households will make, according to consumption smoothing 

theory and non-equilibrium models. This might explain the lagged effects of tropical 

cyclones on infant mortality.  

Studies have looked at how decreases in household income result in children 

weighing less and experiencing stunted growth, which can have adverse economic and 

health outcomes later on in life (Buser, Oosterbeek, Plug, Ponce & Rosero, 2016). Evidence 

shows that natural disasters may decrease household investment specifically in children’s 

human capital by reallocating their time previously devoted to school towards the labor 

market in order to smooth consumption (Skoufias, 2003). This result is consistent across 

various countries. A study conducted in the Philippines revealed that typhoons reduce 

household income by 6.6%, which led to a significant decline in human capital investments 

in education by 13.3% and in medical expenditures by 14.3% (Anttila-Hughes & Hsiang, 

2013). Another study performed in Indonesia found that women’s wellbeing is highly 

correlated to the environmental conditions they experienced in early life; finding that 

rainfall has a positive impact on agricultural output, which then increases household 

expenditure on girl’s health and schooling (Maccini & Yang, 2009). Another study done in 

Colombia investigated the effects on children’s nutrition and schooling following the 1999 

Armenia earthquake both in the short and medium term, and found negative effects 

(Bustelo, Arends-Kuenning & Lucchetti, 2012). Similarly, a study in Zimbabwe examined 

the effects of shocks such as droughts, showing that early life malnutrition is correlated 

with decreased stature as a young adult and fewer completed years of school (Alerman, 

Hoddinott & Kinsey, 2006). Natural disasters also have numerous public health 

implications. Epidemiologic evidence, the branch of medicine dealing with the incidence 

rates of diseases, points out that natural disasters, particularly floods can increase disease 

incidence rates through poor water and sanitation supplies, in turn affecting human health 

(Ahern, Kovats, Wilkinson, Few & Matthies, 2005). For example, one study found that 

heavy rainfall is associated with an increase in outbreaks of bacteria that infects intestines, 
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usually as a result of a contamination of water supplies. This can have lasting impacts on 

individuals, especially children. (Kovats, Bouma, Hajat, Worrall & Haines, 2003). While 

natural disasters impact human capital to individuals of all ages, those who are impacted in 

the early stages of life can have serious consequences such as poor health, causing lower 

school performance and slower cognitive development and ultimately impact future 

earnings and productivity (Baez et al., 2010).  

Infant mortality rates are considered to be an accurate indicator of the general 

socioeconomic level of a country, and as such, many researchers have looked specifically at 

how natural disasters affects infant mortality rates (Brenner, 1973). The fetal origin 

hypothesis, which originates from the epidemiologist David Baker, suggests that 

environmental conditions before and shortly after birth have significant impacts on 

wellbeing outcomes later on in life (Almond & Currie, 2011) (Baker, 1995) (Heckman, 

2007). Numerous studies have researched the impact of GDP shocks to early life mortality. 

A study conducted across 59 developing countries showed that there is a strong negative 

correlation in the short run between GDP per capita and infant mortality, particularly 

amongst female infants (Baird, Friedman, and Schady, 2011). Another cross-national study 

in developing countries found similar results, revealing that reductions in GDP per capita 

correlate with a significant rise in mortality for children under the age of 5 (Pérez-Moreno, 

Balnco-Arana & Bárcena-Martín, 2016). Similar results were found in the United States, a 

developed country, showing an inverse relationship between economic changes, such as 

unemployment rates and infant mortality (Brenner, 1973). This study also specifically 

looked at differential lags of infant mortality, which is pertinent to my project, and found 

approximately a one-year lag in the increase of infant mortality proceeding negative shocks 

to the economy (Brenner, 1973).  

These negative shocks, both economic and weather related, have been found to be 

notably damaging to girls. Assuming that economic development theory is true that better 

economic conditions improve women’s wellbeing and reduces poverty in communities, then 

the reverse must also be true. When economic conditions are worsened, whether that may 

be due to natural disasters or not, women’s outcomes are worse than men’s. Different 

theories have attributed this to biological and physical differences between women and men 

as well as to differing vulnerabilities influenced by social norms (Neumayer & Plümper, 

2007). Empirically, these theories seem to hold as well. In Sub-Saharan Africa, droughts 

were found to significantly affect female infant mortality more than male, with 12 more 

infant girl deaths per 1,000 births than infant boy deaths (Flato & Kotsadam, 2015). 
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Similarly, in the Philippines infant mortality amongst females was measured to be 15.1 

times larger than initially reported (Anttila-Hughes & Hsiang, 2013). Overall, the literature 

shows how sensitive early life mortality rates are to negative shocks, even if they do not 

occur immediately.  A limitation of the fetal origin theory, however, is whether or not the 

links between early life health investments or shocks have a causal link to economic 

outcomes later in life. This is mainly due to the econometric challenges of identifying long-

term effects.  

The body of literature in this field has made significant progress in the theory and 

empirics of modeling causal relationships between climatic events and economic outcomes 

and documenting the effect of children’s wellbeing as a result of income shocks, in particular 

amongst females. However, there is still progress to me made when measuring the long-

term and indirect effects of climate and analyzing these effects across countries. This 

research project adds to the literature by providing additional evidence on the effects and 

magnitude of tropical storms across multiple developing countries. Furthermore, this 

project highlights the indirect impact and costs of tropical storms on human capital by 

analyzing infant mortality rates not only in the year of the disaster but also in subsequent 

time-lagged periods.  

 

3. Sample and Data Sources 
3.1 Tropical Cyclone Data 

My data on tropical storms is taken from the International Best Track Archive for Climate 

Stewardship (IBTrACS) database, which was developed by The National Oceanic and 

Atmospheric Administration’s (NOAA) Climate Data Center. This is an extremely useful 

database because it contains the complete data on historical tropical storms by combining 

different datasets with information on storm positions, wind speeds, pressure and intensity. 

This historical dataset is then reconstructed with the Limited Information Cyclone 

Reconstruction and Integration for Climate and Economics (LICRICE) model using wind 

field measures (Hsiang, 2010). In order to match tropical cyclone exposure with the annual 

household data, the LICRICE model is summarized into a single observation (spatial 

average maximum wind speed) for each region each year. It’s important to note that this 

wind speed variable is different from the actual wind speed at the center of a storm, which is 

much larger but not directly comparable. Using this reconstructed dataset I am able to find 

the number of storms that occurred in each country, as well as the average intensity of each 

storm (see Table 1 for more details). Figure 1 displays the interquartile distribution of 
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tropical cyclone exposure by country, revealing that there is a large variation in exposure 

between countries. The annual spatial average maximum wind speed across all the 

countries in my sample is 11.80 meters per second.  

 

3.2 Infant Mortality Data 

I then merge the tropical cyclone data with cross-sectional data retrieved from The 

Demographic and Health Survey (DHS) Program. The DHS Program was founded in 1984 

and attempts to capture trends in health and population across 90 developing countries 

with over 300 surveys. I rely primarily on the health surveys because they are conducted at 

the household level and have proportionate samples from each country, providing data on a 

variety of indicators regarding population, health and nutrition. Furthermore, since the 

DHS surveys are highly standardized, it allows for a clear comparison of surveys across and 

within countries over time. Using these cross-sectional surveys, I create a panel data for 

each woman starting from the time she was 15 until the date she was surveyed with 

information on fertility and infant mortality events, as well as the household’s location in 

order to identify its administrative region. The sample excludes women who migrated, 

which minimizes endogeneity concerns of families relocating to regions with less tropical 

cyclone exposure. Since the DHS surveys stopped inquiring about migration in 2010, I am 

also excluding any surveys conducted after that year. From this women level panel data set; 

I am able to weave out information from each child, creating a new global child cross-

section dataset. While the DHS has data for 90 countries, I am only conducting analysis on 

the following 12 countries: Bangladesh, Cambodia, Comoros, Dominican Republic, 

Honduras, Haiti, India, Madagascar, Mozambique, Nicaragua, Philippines, and Vietnam. 

These countries were chosen because they are a subsample of all the countries where both 

tropical cyclones occur and where the DHS has conducted health surveys; additionally, they 

have enough variation in tropical cyclone incidence to estimate results. In the global sample 

there are 578,384 non-migrant infants observations across nearly 11 years between 1979 

and 2008.  

 

4. Methodology 
In order to answer my research question, (do tropical cyclones affect infant mortality rates 

after exposure to a storm, and if so, how large are these time-lagged effects relative to 

immediate ones), I use the strongest storm in a given year in a given region, which is 

determined by annual spatial average maximum wind speed, to act as my treatment. This 
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approach was chosen because it allows the model to capture the intensity of storms while 

controlling for the differences in physical size of each administrative region. I argue that 

this treatment variable is in fact a random exogenous occurrence because the location, 

timing and trajectory of tropical cyclones are unpredictable and arbitrary, allowing for a 

clean identification strategy.  

In order to properly identify the impact of tropical cyclones on infant mortality 

rates, the model uses a difference-in-difference econometric approach taking advantage of 

the random variation to tropical cyclone exposure in different regions. I rely on random 

yearly variations in tropical cyclone exposure within each specific region to control for 

cross-sectional differences in exposure to tropical cyclone intensity. This is accomplished by 

including a region fixed effect in the model in order to absorb any of these average cross-

sectional differences in tropical cyclone exposure. I then include a country-by-year fixed 

effect in order to avoid spurious relationships in tropical cyclone incidence and infant 

mortality. This fixed effect compares each country each year to each other. Moreover, the 

time fixed effect takes into account any unobservable climatic trends, which might be 

correlated with tropical cyclone exposure and its impacts, such as El Niño years, which 

cause warmer water in the Pacific Ocean, aggregating tropical cyclone incidence. By using 

this two-way fixed effect model, I can observe what happens to infant mortality conditional 

on tropical cyclones exposure in a specific region in a specific year. Put differently, I am 

comparing within each county across regions each year from 1979-2008. 

In order to estimate the effect of tropical cyclones on infant mortality, I use the 

linear probability model developed by Anttila-Hughes and Hsiang in their study (2013). My 

regression specification is the following: 

𝑌𝑤𝑟𝑐𝑡 = 𝛼𝐿𝑊𝑟, 𝑡 − 𝐿

!"

!!!

+ 𝜏𝑡𝑐 + 𝜇𝑟+∈ 𝑟𝑡  

 

The dependent variable, Y, corresponds to the probability of a binary variable being either 

zero (probability the infant survives) or one (the probability the infant dies), which is 

determined by the explanatory variables. The parameter of interest 𝛼 indicates the number 

of additional women, out of one thousand, who report their infant has died as a result of an 

increase in wind speed of one meter per second. The various sub-indexes in the model are: r 

for region, w for woman, and t for year. W is the spatial average maximum wind speed of a 

tropical cyclone in the Lth year before the infant was born. The regression uses a 

distributed time lag in order to measure the effects of tropical cyclone exposure for years 
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after the storm has occurred, with lags indexed by L. I am including 10 lagged year 

variables in order to try and capture the long-run economic effects of tropical cyclones, 

which have been found to be both large and negative (Hsiang & Jina, 2014). The model also 

introduces a county-by-year fixed-effect, 𝜏𝑡𝑐 as well as a region level fixed-effect, 𝜇𝑟, which 

control for any time-invariant region and year characteristics. The variable ∈ 𝑟 represents 

the clustered standard errors at the region level because treatment (tropical cyclone 

exposure) happens at the region level. It also accounts for any serial correlation of the 

errors within a region. In short, the model looks at the likelihood an infant dies due to 

tropical cyclone exposure, which is measured by spatial average maximum wind speed (in 

meters per second), conditional on being non-migrant, and controlling for spatial and time 

fixed effects. 

 

5. Data Analysis & Results 
My analysis is divided into various sections. The first looks at the impact of tropical cyclone 

exposure on infant mortality, within individual countries. Then I conduct the same analysis 

looking at all the countries pooled together. To check the consistency of my results, I then 

analyze the results by various sub-regions: Latin America, Asia and Africa. Additionally, I 

run various robustness checks. The parameter of interest from my model, 𝛼, is interpreted 

as the number of additional women, out of one thousand, who report the death of an infant 

as a result of an increase in wind speed of one meter per second. The first column of the 

tables analyzes the result amongst female infants, the second column amongst male infants 

and the third column amongst both female and male infants together. Overall, these 

preliminary results indicate that there is consistent and causal relationship between infant 

mortality and tropical storms with a time-lagged effect. Table 1 is a summary statistics 

table of my treatment, tropical cyclone exposure. The table breaks down number of tropical 

cyclones in each country. Figure 1 graphically depicts the interquartile distribution in the 

variation of annual maximum wind speeds in each country. As both the table and figure 

reveal, the number of storms as well as the intensity of them varies drastically across 

countries. The spatial average maximum wind speed across all the countries in my sample is 

11.80 meters per second. 
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5.1 Infant Mortality Within Country  

The first step in my data analysis was replicating the results from Anttila-Hughes and 

Hsiang in the Philippines. While Anttila-Hughes and Hsiang only looked at a four-year lag, 

I extend my analysis to ten years after the storm to check if there is an enduring poverty 

effect. My within country analysis of the Philippines reinforces the results from Anttila-

Hughes and Hsiang; tropical cyclone exposure does increase infant mortality, however, it 

only does so statistically significantly amongst females. As shown in Table 12, conditional 

on being female, there is a statistically significant increase in female infant mortality 

starting one year after a cyclone has occurred, and it endures six years after the disaster 

(although not significant in the fourth and fifth year).  Given the spatial average wind speed 

of a cyclone in the Philippines, 18.69 m/s (see Table 1), for every 1,000 births, this effect 

corresponds to an increase of about 11 additional deaths in the first lagged year, 5 

additional deaths in the second lagged year, 9 additional deaths in the third lagged year and 

almost 8 additional deaths in the lagged sixth year. Again these results mirror those from 

Anttila-Hughes and Hsiang 2013. 

 Other countries in my sample are not exposed to the same consistent strong tropical 

cyclones every year; consequently, it’s difficult to find such a strong and consistent signal 

like in the Philippines. One country where I did find similar effects of tropical cyclone 

exposure was in Haiti, despite being struck with about ten times less storms and slightly 

lower spatial average wind speeds than the Philippines. The spatial average maximum wind 

speed of a tropical cyclone in Haiti is 15.99 meters per second. Table 6 shows the regression 

results from Haiti. Conditional on being female there is a statistically significant increase in 

infant mortality in the second through fourth year after a tropical cyclone has occurred. 

This effect corresponds to almost 11 additional deaths in the second lagged year, about 18.5 

additional deaths in the third lagged year and 21 additional deaths in the fourth lagged 

year; each effect is per 1,000 births for an average tropical cyclone in Haiti. Interestingly, 

there is also a significant increase in male infant mortality much later, in the sixth and eight 

lagged years. These effects correspond to an increase in almost 16 and 12 additional deaths 

per 1,000 births for an average storm in the sixth and eighth lagged years, respectively. 

According to the World Bank, Haiti is the poorest country in the Western Hemisphere, and 

one of the poorest developing countries, which might explain why the country is so 

sensitive to natural disasters and more prone to lasting poverty effects.  
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5.2 Infant Mortality Global Trend  

From the 12 individual country data sets, Bangladesh, Cambodia, Comoros, Dominican 

Republic, Haiti, Honduras, India, Madagascar, Mozambique, Nicaragua, The Philippines 

and Vietnam, I create a new global sample dataset that is reweighted by number of 

observation in each country. Using this global dataset I am able to analyze if there is an 

overarching general effect that tropical cyclones have on infant mortality (see Table 14). 

Conditional on being born female, there is a positive and statistically significant effect on 

infant mortality on the third year lag and a negative effect in the ninth year; this might be a 

coincidence. The coefficient on the third lagged can be interpreted as an increase in about 2 

additional deaths for every 1,000 births for an average storm in my sample. Conditional on 

being born male, there is a statistically significant increase in infant mortality in the fourth 

and sixth lagged year. This corresponds to an increase in about 3 additional deaths in the 

fourth lagged year; and about 4.5 additional deaths in the sixth lagged year deaths for every 

1,000 births for an average storm. Similarly, when analyzing both genders together, there is 

a significant increase in infant mortality as a result of a one meter per second increase in 

wind speed in the third, fourth and sixth year. These coefficients indicate an increase of 

about 1.65, 2.5 and 3 additional deaths for every 1,000 births for an average tropical cyclone 

in the third, and fourth and sixth lagged yeas respectively. For a graphical representation of 

these coefficients see Figures 2, 3, and 4. The conclusion from this table is that there seems 

to be a lagged poverty effect that is significant starting from the third year moving forward 

that causes an increase in infant mortality and is statistically significant. This unfortunately 

means that the effect of tropical cyclone exposure even prior to an infant being is conceived, 

statistically impacts whether he or she will live past their first birthday. One explanation 

why there are no significant results until the 3rd lagged year, could be that in general, 

governments and international organizations provide a lot of aid after a storm occurs. 

However, after a year or two the aid decreases, despite still being necessary, so families are 

more susceptible to fall into poverty traps.  

I continue my analysis by generating an average eight-year lagged exposure 

variable. I limit the average exposure to eight years as opposed to ten, because it is during 

those eight years that I find that tropical cyclones have a statistically significant lagged 

effect on infant mortality. This is used as a robustness check to test if the average lagged 

exposure is greater than the effect of immediate exposure. Table 15 reveals that the indirect 

impact of tropical cyclone exposure is in fact larger than the effect of immediate exposure. 
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Only in the column that looks at male infants alone is the result not statistically significant, 

which makes sense according to the literature that female infants are more vulnerable to 

shocks. Amongst female infants we see that an eight-year average exposure causes about 15 

additional deaths per 1,000 births for an average storm. Looking at both female and male 

together there is a slightly lower effect of about 13.5 additional deaths per 1,000 births for 

an average storm. Amongst females the indirect effect of tropical cyclone exposure is about 

17% larger than the direct effects; this is around the same magnitude difference that Antilla-

Hughes and Hsiang found in the Philippines. These results are not only consistent with 

previous studies, but they provide further evidence supporting my argument that tropical 

cyclone exposure does increase infant mortality with a lagged effect that are larger than 

immediate ones due to the enduring poverty effects created by natural disasters.  

In order to further ensure the robustness of my results I ran my regressions with 

both two leads and eight lags. I chose this to keep the same amount of coefficients, highlight 

the eight-year lagged exposure where I find most of my results, and still check that there is 

no effect before the storm occurs. Table 16 displays the results from the pooled global 

sample. In all three columns none of the leads are statistically significant, like they should 

be. Furthermore, we see that female infant mortality is consistently significant in the lagged 

coefficients starting with the second lagged year, then the third and finally the sixth. 

Amongst males the effect is not significant until the fourth lagged year but it is again also 

significant in the sixth lagged year. The pooled results from both genders in column three 

are very similar to the initial regression results showing a consistent effect beginning in the 

third lagged year, and popping up in the fourth and sixth lagged year as well. Additionally, 

also mirrors the results from Antilla-Hughes and Hsiang 2013, thus providing further 

evidence on the stability and robustness of my results. These results are also graphically 

represented in Figures 6, 7, and 8. 

 

5.3 Infant Mortality Sub-Regions 

In addition to looking at the global sample I checked the results by sub-regions, Latin 

America, Asia and Africa, to see if there was a consistent effect. The Latin American sub-

region incorporates Dominican Republic, Haiti, Honduras and Nicaragua. The Asian sub-

region contains Bangladesh, Cambodia, India, The Philippines and Vietnam. Lastly, the 

African sub-region includes Comoros, Madagascar and Mozambique.  

 Table 17 displays the results of an increase in wind speed in meters per second on 

infant mortality in Latin America. An average storm in this region has a spatial average 
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maximum wind speed of 12.49 meters per second. Conditional on being female, I found a 

similar result as the global regression with a positive and significant impact in the third and 

fourth lagged year. These coefficients correspond to an increase in about 7.5 additional 

deaths three years after the storm and about 7 additional deaths four years after the storm 

for every 1,000 births for an average storm. Conditional on being male, there are a couple of 

negative coefficients, although not significant, which could indicate the gender preferential 

of males and households reallocating resources from females to males when a shock occurs. 

There is a statistically significant increase in male infant mortality of almost 7 additional 

deaths for every 1,000 births for an average storm in the sixth year after a cyclone has 

struck. When looking at both genders pooled together, the third and sixth year lagged have 

a statistically significant coefficient. The ninth year lag is also significant, but negative, 

which could potentially mean that the region is recovering from the poverty effect caused 

by the tropical cyclone.  

 The results from the sub-region of Asia are quite interesting, as noted by Table 18. 

Most of the coefficients are in fact negative and not significant. I hypothesize this could be 

due to the fact that both India and Bangladesh are such large countries, in terms of 

populations, and have quite low tropical cyclone exposure; therefore, it’s swaying the 

results. I ran the same analysis excluding both these countries and limiting it to Cambodia, 

the Philippines and Vietnam, essentially South-East Asia, and found results that were 

similar to both the global analysis and to the Latin-American sub-region (see Table 19). 

Amongst these countries, the spatial average maximum wind speed of a typical tropical 

cyclone was 12.05 meters per second. Conditional on being female, infant mortality 

increases significantly one year after the storm, which can be interpreted to about an 

additional 5 deaths per 1,000 births for an average storm. This is a similar effect to the one 

found by Anttila-Hughes and Hsiang. Conditional on being male, the coefficients are mainly 

negative; two years after a storm there is a significant increase in about 3.5 births per 1,000 

births. Again, this could be due to a strong son preference in Asia.  

 Lastly, Table 20 presents the impacts of tropical cyclone in the sub-region of Africa. 

The spatial average tropical cyclone wind speed in Africa is 10.64 meters per second, the 

lowest of any of my sub-region and global analysis. In contrast to Latin America and Asia, I 

find that there is a consistent increase in male infant mortality that is statistically 

significant in the fourth, fifth and seventh lagged years. These coefficients correspond to 

approximately an additional 6, 5.5 and 5.5 deaths per 1,000 births for an average storm. 

Amongst females, there is only a statistically significant increase in infant mortality in the 
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seventh lagged year, and this is also true for when I look at the results of both genders 

together.  

 Overall, the sub-regions parallel the global results, revealing that tropical cyclones 

have a lagged impact on infant mortality. The mechanism, by which this happens, I believe, 

is through a poverty effect that is incurred after a storm occurs and endures long after. 

Given the evidence from Hsiang and Jina 2014, that tropical cyclones have significant 

negative economic impacts that longstanding, my results and poverty effect explanation 

seem to be accurate.   

 

6. Conclusions and Implications 
Using historical tropical cyclone data and household surveys from the DHS I show that 

tropical cyclones do have a significant lagged impact on infant mortality, and that this effect 

is larger in magnitude relative to the immediate impact of tropical cyclone exposure. Across 

all my analysis, the lagged impacts become significant usually as of the third lagged year; 

this could possibly be explained by the fact that both governments and NGO’s provide a lot 

of relief aid recently after the occurrence of a natural disaster, and as more time passes aid 

decreases, allowing the emergence of the poverty effect. This poverty effect is the 

mechanism through which infant mortality increases. The results from this project also 

imply that tropical cyclones have significant negative indirect consequences, which are not 

currently being taken into consideration when quantifying and reporting the costs of a 

tropical cyclone. Given the extensive literature on the importance of early life human 

capital formation, these results have serious implications for economic development.  

 Infant mortality rates are an important indicator of socioeconomic wellbeing. The 

repeated exposure to tropical cyclones implies infants are affected by these conditions that 

lowers their probability of survival, and even if they do survive they will be worse off. As a 

result of the high infant mortality rates, developing countries will have slower human 

capital growth rates, which from both theoretical and empirical models, we know is crucial 

for sustained economic growth. If the cause of these lagged deaths is a poverty effect as a 

result of the tropical cyclone, then governments need to design better disaster aid policies. 

These policies must not only provide relief at the time of disaster to mitigate direct costs 

and loss of life, but also long-run relief to alleviate any indirect burden households might 

have as a result of tropical cyclone exposure, such as reduced household income and 

resources. These indirect burdens that can endure long after a disaster occurs can increase 
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the probability that an infant dies before her or his first birthday, and therefore should be a 

primary focus for policies.  

The results I presented were interpreted for the spatial average tropical cyclone 

wind speed. Given the evidence of climate change, the spatial average wind speed of tropical 

cyclone is only likely to keep increasing, magnifying the presented results exponentially. 

Based on this study, it would be my policy recommendation that governments not only 

enact policies to mitigate the effects of climate change, but also take measures to adapt 

society to these new changes in order to limit the damages of tropical cyclones and other 

disasters. I also would recommend that further research be done to find out the specific 

mechanisms that cause infant mortality to increase, as well as other research on the indirect 

impacts of tropical cyclones in order to raise more awareness of the costs of disasters and 

climate change.  
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Appendices 

Table 1: Tropical Cyclone Exposure (Maximum Wind Speed) Summary Statistics. 

Country Years N Mean Std. Dev. Min Max 

Bangladesh 1979-2008 58 12.67 9.04 0.13 40.59 

Cambodia 1979-2007 93 7.33 5.92 0.03 22.56 

Comoros 1979-1997 15 13.52 7.58 0.92 27.59 

Dominican Republic 1979-2008 51 16.96 12.31 0.09 61.01 

Haiti 1979-2007 40 15.99 12.03 0.31 53.58 

Honduras 1979-2007 54 9.14 9.33 0 42.16 

India 1979-2007 123 10.97 6.91 0.07 35.05 

Madagascar 1979-2008 137 9.78 7.82 0.02 28.73 

Mozambique 1979-2005 54 8.64 6.98 0.03 26.79 

Nicaragua 1979-2002 29 7.88 8.51 0.21 40.28 

Philippines 1979-2008 411 18.69 11.62 0.02 53.47 

Vietnam 1950-2003 212 10.13 6.41 0 26.56 

Notes: Maximum wind speed measured in meters per second 
   

                        

Figure 1: Tropical Cyclones Exposure Across the World 

          

        Figure 1: Box-whisker plot of the distribution in national annual maximum wind speed measure. 
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Table 2: Impact of Tropical Cyclone Exposure in 
Bangladesh 

  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed 0.400 -0.340 0.0315 
 (0.415) (0.870) (0.468) 
L1_max wind speed -0.825** -0.0485 -0.428 
 (0.316) (0.701) (0.383) 
L2_max wind speed 0.878* 0.173 0.553** 
 (0.431) (0.124) (0.192) 
L3_max wind speed -0.639 -0.247 -0.409 
 (0.487) (0.790) (0.590) 
L4_max wind speed -0.0710 0.686 0.332 
 (0.534) (0.429) (0.417) 
L5_max wind speed -0.208 0.984** 0.376* 
 (0.474) (0.290) (0.182) 
L6_max wind speed -0.345 -0.605 -0.457 
 (0.291) (0.325) (0.262) 
L7_max wind speed -0.0952 0.743 0.341 
 (0.233) (0.427) (0.184) 
L8_max wind speed -0.742 0.211 -0.240 
 (0.449) (0.345) (0.172) 
L9_max wind speed -0.477 0.958 0.247 
 (0.506) (0.504) (0.446) 
L10_max wind speed -0.634 -0.873 -0.776* 
 (0.705) (0.541) (0.381) 
Constant 80.08*** 58.30*** 68.27*** 
 (9.932) (10.17) (7.026) 
    
Observations 12,459 12,931 25,390 
R-squared 0.034 0.038 0.034 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 3: Impact of Tropical Cyclone Exposure in 
Cambodia 

  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed -0.137 -0.249 -0.168 
 (0.450) (0.673) (0.455) 
L1_max wind speed 1.087* -0.211 0.436 
 (0.548) (0.622) (0.388) 
L2_max wind speed 0.0129 0.558 0.287 
 (0.893) (0.693) (0.558) 
L3_max wind speed 0.00679 0.0816 0.0585 
 (0.550) (0.408) (0.354) 
L4_max wind speed -0.344 -0.00645 -0.155 
 (0.714) (0.746) (0.505) 
L5_max wind speed -0.201 -0.648 -0.410 
 (0.977) (1.094) (0.795) 
L6_max wind speed 1.122 0.275 0.713 
 (0.953) (0.979) (0.707) 
L7_max wind speed -0.667 0.383 -0.0957 
 (0.858) (0.519) (0.568) 
L8_max wind speed 0.941 0.177 0.595 
 (0.704) (0.767) (0.507) 
L9_max wind speed 0.734 1.632* 1.215** 
 (0.515) (0.846) (0.553) 
L10_max wind speed 1.271* 1.351 1.318 
 (0.708) (1.060) (0.833) 
Constant 57.09** 74.22*** 64.75*** 
 (23.81) (20.96) (19.49) 
 

   Observations 21,075 21,917 42,995 
R-squared 0.029 0.028 0.027 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 4: Impact of Tropical Cyclone Exposure in 

Comoros 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed 2.334*** 0.832 1.596* 
 (0.102) (0.892) (0.434) 
L1_max wind speed -0.873 -0.130 -0.523 
 (0.345) (0.104) (0.191) 
L2_max wind speed 3.766*** 0.837 2.151** 
 (0.367) (0.601) (0.357) 
L3_max wind speed -1.285 1.043 -0.0547 
 (0.469) (1.304) (0.851) 
L4_max wind speed 1.110 0.207 0.706 
 (0.706) (1.274) (0.968) 
L5_max wind speed 0.706** 0.981 0.729 
 (0.0939) (0.404) (0.293) 
L6_max wind speed 0.536 3.900* 2.116* 
 (0.348) (1.055) (0.664) 
L7_max wind speed 0.198 -0.904* -0.517** 
 (0.115) (0.213) (0.0942) 
L8_max wind speed 3.966*** -0.268 1.718*** 
 (0.212) (0.633) (0.125) 
L9_max wind speed -3.780** 3.428 -0.144 
 (0.513) (2.082) (1.203) 
L10_max wind speed 0.561 -0.298 0.00909 
 (0.371) (2.714) (1.169) 
Constant 11.18* 10.29 14.15 
 (3.421) (10.31) (5.111) 
 

   Observations 3,065 3,023 6,088 
R-squared 0.042 0.039 0.036 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 5: Impact of Tropical Cyclone Exposure in the 

Dominican Republic 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed 0.388** 0.182 0.286*** 
 (0.155) (0.222) (0.0773) 
L1_max wind speed 0.206 0.0524 0.130 
 (0.303) (0.232) (0.236) 
L2_max wind speed 0.0740 0.273* 0.175* 
 (0.146) (0.124) (0.0792) 
L3_max wind speed 0.0951 0.332 0.218 
 (0.0923) (0.238) (0.157) 
L4_max wind speed -0.00681 0.252 0.118 
 (0.146) (0.146) (0.0917) 
L5_max wind speed 0.111 0.284 0.200 
 (0.225) (0.187) (0.176) 
L6_max wind speed 0.154 0.158 0.154 
 (0.268) (0.192) (0.199) 
L7_max wind speed 0.189 -0.0100 0.0877 
 (0.127) (0.164) (0.0858) 
L8_max wind speed -0.104 -0.296 -0.201 
 (0.116) (0.166) (0.126) 
L9_max wind speed -0.149 -0.337 -0.238 
 (0.172) (0.188) (0.157) 
L10_max wind speed -0.394** 0.0597 -0.160* 
 (0.167) (0.123) (0.0832) 
Constant 21.23* 21.17** 21.12** 
 (10.01) (6.482) (6.344) 
 

   Observations 38,280 40,003 78,283 
R-squared 0.011 0.012 0.011 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 6: Impact of Tropical Cyclone Exposure in 

Haiti 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed -0.00144 -0.227 -0.138 
 (0.238) (0.312) (0.199) 
L1_max wind speed 0.400 -0.239 0.0692 
 (0.471) (0.441) (0.446) 
L2_max wind speed 0.687** 0.175 0.436 
 (0.282) (0.345) (0.257) 
L3_max wind speed 1.159*** 0.536 0.838*** 
 (0.239) (0.318) (0.240) 
L4_max wind speed 1.318** 0.274 0.777 
 (0.451) (0.606) (0.426) 
L5_max wind speed 0.198 -0.312 -0.0446 
 (0.251) (0.487) (0.324) 
L6_max wind speed 0.559 0.999** 0.788** 
 (0.326) (0.400) (0.281) 
L7_max wind speed -0.0639 0.396 0.154 
 (0.225) (0.314) (0.177) 
L8_max wind speed 0.199 0.738* 0.472** 
 (0.248) (0.380) (0.203) 
L9_max wind speed 0.238 -0.384 -0.0826 
 (0.266) (0.397) (0.268) 
L10_max wind speed 0.376 -0.217 0.0744 
 (0.254) (0.759) (0.465) 
Constant 23.54** 62.13* 43.39** 
 (10.15) (28.24) (18.44) 
 

   Observations 17,285 17,830 35,115 
R-squared 0.022 0.026 0.023 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 7: Impact of Tropical Cyclone Exposure in 

Honduras 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed -0.297 0.409 0.0837 
 (0.617) (0.567) (0.429) 
L1_max wind speed -0.377 -0.411 -0.398 
 (0.592) (0.603) (0.464) 
L2_max wind speed -0.707 0.336 -0.187 
 (0.474) (0.305) (0.179) 
L3_max wind speed 0.708 -0.245 0.228 
 (0.583) (0.186) (0.307) 
L4_max wind speed -0.420 -0.537 -0.490* 
 (0.488) (0.362) (0.261) 
L5_max wind speed 0.416 0.871 0.659 
 (0.513) (0.692) (0.427) 
L6_max wind speed -0.629 0.304 -0.145 
 (0.741) (0.626) (0.282) 
L7_max wind speed 1.455** -1.012* 0.216 
 (0.554) (0.476) (0.265) 
L8_max wind speed -0.179 -0.0467 -0.101 
 (0.581) (0.470) (0.220) 
L9_max wind speed -1.461*** 0.897** -0.244 
 (0.471) (0.353) (0.326) 
L10_max wind speed 0.396 0.405 0.406 
 (0.393) (0.686) (0.367) 
Constant 36.02*** 32.19*** 33.81*** 
 (10.03) (5.119) (4.396) 
 

   Observations 8,837 9,267 18,105 
R-squared 0.011 0.014 0.009 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 8: Impact of Tropical Cyclone Exposure in 

India 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed -0.247 -0.118 -0.183 
 (0.164) (0.229) (0.146) 
L1_max wind speed -0.292 -0.249 -0.264 
 (0.191) (0.289) (0.221) 
L2_max wind speed 0.0177 -0.000197 0.0113 
 (0.183) (0.239) (0.156) 
L3_max wind speed 0.0655 0.00236 0.0279 
 (0.236) (0.173) (0.124) 
L4_max wind speed -0.155 -0.107 -0.136 
 (0.201) (0.196) (0.154) 
L5_max wind speed -0.0420 -0.146 -0.0992 
 (0.149) (0.199) (0.147) 
L6_max wind speed -0.172 0.0171 -0.0812 
 (0.210) (0.199) (0.137) 
L7_max wind speed 0.199 -0.0819 0.0601 
 (0.216) (0.262) (0.202) 
L8_max wind speed -0.328 -0.122 -0.224 
 (0.245) (0.232) (0.181) 
L9_max wind speed 0.242 -0.109 0.0593 
 (0.240) (0.158) (0.162) 
L10_max wind speed -0.362* -0.264 -0.318 
 (0.184) (0.308) (0.198) 
Constant 41.22*** 49.06*** 45.31*** 
 (3.164) (3.544) (2.786) 
 

   Observations 60,680 64,372 125,052 
R-squared 0.021 0.024 0.022 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 9: Impact of Tropical Cyclone Exposure in 

Madagascar 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed -0.334 -0.540 -0.444 
 (0.267) (0.384) (0.291) 
L1_max wind speed -0.779 -0.446 -0.600 
 (0.397) (0.313) (0.308) 
L2_max wind speed -0.561 -0.643 -0.607 
 (0.370) (0.421) (0.337) 
L3_max wind speed -0.567 -0.184 -0.369 
 (0.410) (0.282) (0.305) 
L4_max wind speed -0.613* 0.0859 -0.254 
 (0.265) (0.280) (0.192) 
L5_max wind speed -0.471* 0.273 -0.0910 
 (0.202) (0.325) (0.124) 
L6_max wind speed -0.259 -0.0552 -0.166 
 (0.314) (0.226) (0.255) 
L7_max wind speed -0.271 0.285 0.00148 
 (0.245) (0.299) (0.0983) 
L8_max wind speed 0.403 -0.178 0.110 
 (0.371) (0.340) (0.254) 
L9_max wind speed 0.0686 -0.500*** -0.236** 
 (0.0786) (0.112) (0.0781) 
L10_max wind speed -0.0676 0.318 0.135 
 (0.283) (0.176) (0.142) 
Constant 92.21*** 81.31** 86.87*** 
 (15.39) (23.44) (16.76) 
 

   Observations 27,262 28,510 55,772 
R-squared 0.019 0.021 0.019 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 10: Impact of Tropical Cyclone Exposure in 

Mozambique 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed 0.498 0.818 0.638 
 (0.503) (0.507) (0.417) 
L1_max wind speed 0.537 0.205 0.352 
 (0.498) (0.637) (0.411) 
L2_max wind speed 0.487 -0.215 0.155 
 (0.407) (0.772) (0.441) 
L3_max wind speed -0.211 0.320 0.0651 
 (0.314) (0.585) (0.344) 
L4_max wind speed -0.195 0.128 -0.0282 
 (0.455) (0.458) (0.371) 
L5_max wind speed -0.0399 0.133 0.0437 
 (0.381) (0.661) (0.422) 
L6_max wind speed -0.0117 -1.223* -0.631 
 (0.300) (0.601) (0.358) 
L7_max wind speed 0.215 0.532 0.374 
 (0.286) (0.537) (0.332) 
L8_max wind speed 0.0911 -0.726 -0.355 
 (0.607) (0.589) (0.508) 
L9_max wind speed -0.573 0.514 -0.0229 
 (0.492) (0.530) (0.315) 
L10_max wind speed 1.223** 0.711 0.968* 
 (0.533) (0.626) (0.449) 
Constant 96.13*** 110.8*** 103.6*** 
 (7.747) (7.767) (6.809) 
 

   Observations 17,019 16,973 33,992 
R-squared 0.041 0.043 0.041 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 11: Impact of Tropical Cyclone Exposure in 

Nicaragua 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed 0.473 -0.638 -0.108 
 (0.604) (0.676) (0.431) 
L1_max wind speed -0.0137 0.580 0.272 
 (0.516) (0.470) (0.373) 
L2_max wind speed 0.511 -0.350 0.0534 
 (0.810) (0.644) (0.559) 
L3_max wind speed 1.050* -0.0394 0.487* 
 (0.520) (0.484) (0.233) 
L4_max wind speed 0.127 -1.179*** -0.533 
 (0.594) (0.395) (0.356) 
L5_max wind speed 0.211 0.459 0.333 
 (0.475) (0.574) (0.414) 
L6_max wind speed -0.0512 -0.405 -0.257 
 (0.509) (0.501) (0.401) 
L7_max wind speed 1.743** -0.595 0.547 
 (0.672) (0.428) (0.451) 
L8_max wind speed -0.340 -0.0815 -0.184 
 (0.606) (0.582) (0.398) 
L9_max wind speed 0.124 -0.0963 0.00188 
 (0.708) (0.636) (0.588) 
L10_max wind speed -0.644 0.0178 -0.335 
 (1.075) (0.936) (0.959) 
Constant 18.54*** 43.81*** 31.70*** 
 (5.411) (6.443) (4.681) 
 

   Observations 19,317 19,873 39,190 
R-squared 0.016 0.018 0.015 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 12: Impact of Tropical Cyclone Exposure in the 
Philippines 

       (1) (2) (3) 
VARIABLES Female  Male Both 

    Max wind speed 0.314 -0.0287 0.124 
 (0.209) (0.258) (0.103) 
L1_max wind speed 0.599** -0.172 0.191 
 (0.230) (0.202) (0.159) 
L2_max wind speed 0.284* -0.229 0.0146 
 (0.135) (0.217) (0.116) 
L3_max wind speed 0.496* -0.235 0.121 
 (0.252) (0.177) (0.139) 
L4_max wind speed 0.180 0.221 0.206 
 (0.229) (0.233) (0.182) 
L5_max wind speed 0.232 0.000938 0.111 
 (0.174) (0.204) (0.123) 
L6_max wind speed 0.407* -0.0156 0.191 
 (0.195) (0.155) (0.147) 
L7_max wind speed -0.236 0.244 0.0175 
 (0.325) (0.165) (0.196) 
L8_max wind speed -0.113 0.327 0.119 
 (0.183) (0.221) (0.148) 
L9_max wind speed -0.178* 0.398** 0.110 
 (0.0850) (0.155) (0.0847) 
L10_max wind speed -0.0196 -0.319* -0.179** 

 
(0.120) (0.155) (0.0806) 

Constant -8.675 27.29** 10.22 

 
(17.24) (9.602) (10.60) 

    Observations 23,670 25,222 48,892 
R-squared 0.015 0.017 0.014 
Robust standard errors in parentheses 

 *** p<0.01, ** p<0.05, * p<0.1 
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Table 13: Impact of Tropical Cyclone Exposure in  
Vietnam 

       (1)        (2)      (3) 
VARIABLES Female Male Both 

    Max wind speed -0.436 -0.247 -0.338 
 (0.326) (0.314) (0.230) 
L1_max wind speed 0.158 0.384 0.312 
 (0.446) (0.336) (0.216) 
L2_max wind speed -0.268* -0.187 -0.226 
 (0.127) (0.565) (0.287) 
L3_max wind speed -0.0154 -0.469 -0.238 
 (0.263) (0.382) (0.247) 
L4_max wind speed -0.280 0.0194 -0.135 
 (0.171) (0.226) (0.169) 
L5_max wind speed -0.583 -0.489 -0.500 
 (0.404) (0.273) (0.275) 
L6_max wind speed -0.219 -0.00658 -0.120 
 (0.191) (0.306) (0.110) 
L7_max wind speed 0.360* 0.104 0.210 
 (0.175) (0.613) (0.285) 
L8_max wind speed 0.244 0.800 0.531 
 (0.412) (0.632) (0.274) 
L9_max wind speed -0.685 -0.0317 -0.368** 
 (0.392) (0.372) (0.114) 
L10_max wind speed -0.301 0.900** 0.294 

 
(0.329) (0.362) (0.286) 

Constant 43.69** 19.25 30.92** 

 
(14.58) (26.43) (9.698) 

    Observations 7,545 8,085 15,630 
R-squared 0.017 0.015 0.013 
Robust standard errors in parentheses 

 *** p<0.01, ** p<0.05, * p<0.1 
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Table 14: Global Impact of Tropical Cyclone  

Exposure  
       (1)        (2)      (3) 
VARIABLES Female Male Both 

    Max wind speed 0.169 -0.124 0.0196 
 (0.152) (0.122) (0.107) 
L1_max wind speed 0.196 -0.0673 0.0663 
 (0.144) (0.129) (0.114) 
L2_max wind speed 0.235 -0.0171 0.112 
 (0.147) (0.161) (0.136) 
L3_max wind speed 0.180* 0.0826 0.140* 
 (0.102) (0.110) (0.0779) 
L4_max wind speed 0.149 0.284** 0.217* 
 (0.142) (0.133) (0.113) 
L5_max wind speed -0.114 0.139 0.0169 
 (0.110) (0.157) (0.106) 
L6_max wind speed 0.167 0.389* 0.271** 
 (0.108) (0.223) (0.130) 
L7_max wind speed 0.175 0.176 0.155 
 (0.143) (0.152) (0.110) 
L8_max wind speed 0.137 0.170 0.146 
 (0.155) (0.171) (0.117) 
L9_max wind speed -0.327*** 0.0967 -0.117 
 (0.116) (0.177) (0.0939) 
L10_max wind speed 0.00557 0.164 0.0917 

 
(0.130) (0.202) (0.128) 

Constant 42.15*** 49.22*** 45.87*** 

 
(5.816) (6.853) (5.403) 

    Observations 256,494 268,006 524,504 
R-squared 0.039 0.041 0.039 
Robust standard errors in parentheses 

 *** p<0.01, ** p<0.05, * p<0.1 
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                  Figure 2: Coefficient Plot of Tropical Cyclone  
                         Exposure and Female Infant Mortality 

	
 
                   Figure 3: Coefficient Plot of Tropical Cyclone  
                           Exposure and Male Infant Mortality 

	
	

                 Figure 4: Coefficient Plot of Tropical Cyclone  
                               Exposure and Infant Mortality 
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Table 15: Global Impact of Average 8-year Lagged 
Exposure 

  1 2 3 
VARIABLES Female Male Both 
        
Max wind speed 0.222 -0.122 0.0455 

 
(0.158) (0.129) (0.103) 

AvgExposure 1.303* 1.008 1.141* 

 
(0.663) (0.687) (0.598) 

Constant 38.14*** 52.16*** 45.35*** 

 
(5.730) (5.338) (4.912) 

    Observations 256,530 268,052 524,592 
R-squared 0.039 0.041 0.039 
Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 	
	

Figure 5: Coefficients of Global Impact of Average 8-year Lagged Exposure 
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Table 16: Robustness Check Lead and Lagged 
Exposure 

  (1) (2) (3) 
VARIABLES Female Male Both 
        
F1_max wind speed 0.0871 0.0349 0.0574 

 
(0.108) (0.115) (0.0909) 

F2_max wind speed 0.125 0.135 0.134 

 
(0.118) (0.157) (0.109) 

Max wind speed 0.184 -0.131 0.0243 

 
(0.162) (0.124) (0.110) 

L1_max wind speed 0.201 -0.0563 0.0745 

 
(0.143) (0.132) (0.116) 

L2_max wind speed 0.307** 0.0358 0.175 

 
(0.135) (0.158) (0.127) 

L3_max wind speed 0.222** 0.0989 0.168** 

 
(0.0991) (0.120) (0.0837) 

L4_max wind speed 0.205 0.286** 0.247** 

 
(0.151) (0.131) (0.116) 

L5_max wind speed -0.0812 0.121 0.0230 

 
(0.115) (0.154) (0.108) 

L6_max wind speed 0.209* 0.396* 0.295** 

 
(0.113) (0.222) (0.134) 

L7_max wind speed 0.176 0.151 0.144 

 
(0.144) (0.151) (0.110) 

L8_max wind speed 0.175 0.170 0.163 

 
(0.152) (0.170) (0.116) 

Constant 36.20*** 49.64*** 43.13*** 

 
(6.262) (6.410) (5.613) 

    Observations 254,397 265,765 520,172 
R-squared 0.039 0.041 0.039 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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              Figure 6: Lead and Lag Coefficient Plot of Tropical  
                Cyclone Exposure and Female Infant Mortality 

	
                 
              Figure 7: Lead and Lag Coefficient Plot of Tropical  
                   Cyclone Exposure and Male Infant Mortality 

	
 
          Figure 8: Lead and Lag Coefficient Plot of Tropical  
                      Cyclone Exposure and Infant Mortality 

	

-.4
-.2

0
.2

.4
.6

Fe
m

al
e 

In
fa

nt
 M

or
ta

lity

-2 -1 0 1 2 3 4 5 6 7 8
Years Since Storm Occured

-.5
0

.5
1

M
al

e 
In

fa
nt

 M
or

ta
lity

-2 -1 0 1 2 3 4 5 6 7 8
Years Since Storm Occured

-.2
0

.2
.4

.6
In

fa
nt

 M
or

ta
lity

-2 -1 0 1 2 3 4 5 6 7 8
Years Since Storm Occured



	

	 38	

 
Table 17: Impact of Tropical Cyclone Exposure in 

Latin America 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed 0.116 -0.0440 0.0256 
 (0.170) (0.189) (0.135) 
L1_max wind speed 0.0626 -0.165 -0.0533 
 (0.248) (0.213) (0.210) 
L2_max wind speed 0.253 0.117 0.189 
 (0.194) (0.162) (0.132) 
L3_max wind speed 0.598*** 0.240 0.418*** 
 (0.181) (0.166) (0.119) 
L4_max wind speed 0.536* 0.0703 0.292 
 (0.294) (0.266) (0.212) 
L5_max wind speed -0.0862 -0.0764 -0.0671 
 (0.161) (0.238) (0.138) 
L6_max wind speed 0.219 0.555** 0.399** 
 (0.255) (0.233) (0.179) 
L7_max wind speed 0.110 -0.0687 0.0140 
 (0.202) (0.191) (0.135) 
L8_max wind speed -0.0952 0.239 0.0794 
 (0.174) (0.258) (0.130) 
L9_max wind speed -0.195 -0.279 -0.241* 
 (0.196) (0.188) (0.133) 
L10_max wind speed 0.00837 -0.0418 -0.0109 
 (0.219) (0.391) (0.246) 
Constant 28.48*** 42.02*** 35.30*** 
 (6.965) (7.243) (4.995) 
 

   Observations 83,719 86,973 170,693 
R-squared 0.022 0.027 0.024 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 18: Impact of Tropical Cyclone Exposure in 

Asia 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed -0.147 -0.0440 0.0256 
 (0.154) (0.189) (0.135) 
L1_max wind speed 0.287 -0.165 -0.0533 
 (0.175) (0.213) (0.210) 
L2_max wind speed 0.0484 0.117 0.189 
 (0.147) (0.162) (0.132) 
L3_max wind speed 0.129 0.240 0.418*** 
 (0.151) (0.166) (0.119) 
L4_max wind speed -0.146 0.0703 0.292 
 (0.131) (0.266) (0.212) 
L5_max wind speed -0.242 -0.0764 -0.0671 
 (0.201) (0.238) (0.138) 
L6_max wind speed 0.175 0.555** 0.399** 
 (0.155) (0.233) (0.179) 
L7_max wind speed -0.145 -0.0687 0.0140 
 (0.184) (0.191) (0.135) 
L8_max wind speed -0.00960 0.239 0.0794 
 (0.180) (0.258) (0.130) 
L9_max wind speed -0.288* -0.279 -0.241* 
 (0.151) (0.188) (0.133) 
L10_max wind speed -0.0496 -0.0418 -0.0109 
 (0.141) (0.391) (0.246) 
Constant 46.55*** 42.02*** 35.30*** 
 (8.288) (7.243) (4.995) 
 

   Observations 125,429 86,973 170,693 
R-squared 0.039 0.027 0.024 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 19: Impact of Tropical Cyclone Exposure in 

South-East Asia 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed -0.150 -0.211 -0.177 
 (0.182) (0.176) (0.121) 
L1_max wind speed 0.450** 0.0823 0.266** 
 (0.210) (0.194) (0.115) 
L2_max wind speed -0.0171 -0.145 -0.0858 
 (0.172) (0.257) (0.155) 
L3_max wind speed 0.203 -0.298* -0.0485 
 (0.175) (0.163) (0.128) 
L4_max wind speed -0.124 0.0819 -0.0143 
 (0.160) (0.156) (0.118) 
L5_max wind speed -0.247 -0.229 -0.222 
 (0.246) (0.203) (0.165) 
L6_max wind speed 0.229 0.0278 0.129 
 (0.191) (0.225) (0.128) 
L7_max wind speed -0.141 0.222 0.0435 
 (0.218) (0.216) (0.143) 
L8_max wind speed 0.0848 0.429 0.268* 
 (0.216) (0.282) (0.138) 
L9_max wind speed -0.305* 0.381* 0.0380 
 (0.172) (0.196) (0.111) 
L10_max wind speed 0.00596 0.291 0.145 
 (0.156) (0.257) (0.154) 
Constant 41.56*** 44.93*** 43.04*** 
 (11.72) (12.56) (7.399) 
 

   Observations 52,290 55,224 107,517 
R-squared 0.041 0.041 0.039 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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Table 20: Impact of Tropical Cyclone Exposure in 

Africa 
  (1) (2) (3) 
VARIABLES Female Male Both 
        
Max wind speed 0.494 -0.0436 0.220 
 (0.340) (0.269) (0.264) 
L1_max wind speed 0.168 0.0441 0.110 
 (0.281) (0.251) (0.225) 
L2_max wind speed 0.581 -0.128 0.219 
 (0.405) (0.355) (0.342) 
L3_max wind speed -0.194 0.224 0.0292 
 (0.183) (0.201) (0.132) 
L4_max wind speed 0.122 0.567** 0.353 
 (0.260) (0.251) (0.220) 
L5_max wind speed 0.123 0.529* 0.314 
 (0.211) (0.302) (0.209) 
L6_max wind speed 0.0757 0.485 0.248 
 (0.176) (0.552) (0.315) 
L7_max wind speed 0.491* 0.525* 0.459** 
 (0.269) (0.268) (0.194) 
L8_max wind speed 0.607 -0.240 0.136 
 (0.388) (0.331) (0.304) 
L9_max wind speed -0.566* 0.447 -0.0608 
 (0.277) (0.533) (0.208) 
L10_max wind speed 0.196 0.365 0.280 
 (0.314) (0.400) (0.252) 
Constant 54.36*** 61.89*** 58.89*** 
 (11.02) (13.19) (10.97) 
 

   Observations 47,346 48,506 95,852 
R-squared 0.043 0.043 0.041 
Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1  
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