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Abstract:  

This thesis investigates the combustion potential of 2-phenylethanol and the superalkali 

properties of small lithium substituted silicon compounds. All combustion experiments were 

performed at the Advanced Light Source of Lawrence Berkeley National Laboratory at the 

Chemical Dynamics Beamline 9.0.2. The chlorine initiated oxidation of 2PE was investigated at 

298 and 550 K using a multiplex photoionization mass spectrometer, coupled with the tunable 

vacuum ultraviolet radiation. Reaction products were identified using kinetic time traces and 

photoionization spectra.  

Additionally, the stability of small superalkali silicon-lithium compounds has also been 

investigated. All structures and energetics were calculated using the CBS-QB3 composite 

method.  

The first chapter of this thesis discusses atmospheric pollution, engine technology, 

biofuels and other alternative energy sources. The ALS, the experimental apparatus and their 

components are explained throughout Chapter 2. Chapter 3 explains the theory behind the 

computational methodology, as well as how to analyze the results obtained from the 

experimental apparatus. Chapter 4 evaluates the chlorine initiated oxidation of 2-phenylethanol. 

Chapter 5 investigates the superalkali properties of small silicon-lithium compounds. 
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Chapter 1 - Introduction: 

 

1.1 Atmospheric Pollution and the Need for Alternative Energy: 

 Over the last century, fossil fuels have dominated as the worlds energy market as our 

leading source of power. Every year, several billion tons of pollutants are emitted into the 

atmosphere through agriculture, fossil fuel combustion for power and transportation and the 

burning of forests.1 The air pollution emitted from these anthropogenic sources are found to 

contribute to past climate change, and weather modification.2 The major components of air 

pollution generated from these sources are: NO2, SO2, ozone, and particulate matter(PM).3 Many 

studies have linked the products from fossil fuel combustion and pollutants from other 

anthropogenic sources to numerous respiratory and cardiovascular conditions, as well as an 

increased susceptibility to respiratory infections and cancers.4-6 These adverse health effects are a 

major problem in China, Taiwan, and many other Asian countries where they have an excess of 

air pollution generated from industrial sources. Countries like Taiwan are working in conjunction 

with the EPA and other government agencies to help combat the severe atmospheric damage, but 

many are falling short due to lack of funding.  

 In the 21st century, the US is in a major energy crisis due to depletion of petroleum 

sources, which is driving up the cost of oil.7 In the past decade, we have seen this world shift 

from fossil fuels to more renewable and sustainable sources. The company Tesla8 has 

revolutionized the sustainable energy option for power and transportation with their affordable 

ion exchange batteries and solar panels. The company Bloom Energy has created a sustainable 

solid oxide fuel cell that runs on natural gas producing only CO2 and water8. Biofuels offer a 

promising long-term option because of their fuel-source regenerability and reduced carbon 
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emissions.9 While these biofuels appear to be a viable alternative over fossil fuel, their 

combustion properties are still unknown. The Meloni group is investigating the oxidation 

reactions of potential biofuels to test their reactivity and possible pollutants. The Meloni group is 

also researching “super-atoms,” clusters with unique charge transfer abilities, that could have 

potentials on ion exchange batteries and solar cells. This work evaluates the combustion potential 

of 2-phenylethanol and investigates the superalkali properties of small lithium substituted silicon 

compounds.  

 

1.2 Combustion and Engine Technology: 

 

 Fossil fuel combustion accounts for over 80 % of the worlds primary energy 

consumption.7 Combustion is defined as the exothermic chemical reaction between fuel and an 

oxidant that produces energy in the form of light and heat.10 A simple reaction for combustion 

can be seen in the equation: Fuel + O2    H2O + CO2 + heat. Since this process is not 100 % 

complete, byproducts such as polycyclic aromatic hydrocarbons and other pollutants are formed 

and released into the atmosphere.11 This investigation focuses on low temperature (<14000 K) 

combustion characteristic of auto ignition chemistry. The oxidation of potential biofuels is 

examined, where the fuel is ignited similarly to how the reaction would occur in a homogeneous 

charged compression ignition (HCCI) engine. The ignition of these fuels in an HCCI engine is 

initiated by hydroxyl radicals generated from the decomposition of H2O2,
12 which can be seen in 

Figure 1. 
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Figure 1. Mechanism for low temperature hydrocarbon oxidation and autoignition chemistry.13 

 

This initiation produces the reactive alkyl radical, which is then oxidized to produce the peroxy 

radical ROO.14 This radical can either then isomerize to QOOH or react through several different 

pathways such as chain propagation, chain branching and direct elimination.   

 The homogeneous charged compression ignition (HCCI) engine is a combination 

between the compressed ignition and spark ignition engines, and can be run on a wide variety of 

fuels.15 The combustion process in an HCCI engine occurs at much lower temperature than that 

of an SI or CI engine, which greatly reduces particulate matter and NOx emissions.16 The main 

differences between these three engines are the ignition regions in the combustion chamber 

where the fuel mixes with air, which can be seen in Figure 2.  
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Figure 2. Illustration of the differences between SI, CI, and HCCI engines.15 

 

Combustion in the HCCI engine does not rely on the use of a spark plug or direct injection for 

ignition to occur, and relies on the auto-ignition properties of the fuel-air mixture.17 High fuel 

economy can be achieved with the use of lean fuel mixtures, but incomplete combustion can 

occur if the mixture is too lean, resulting in high CO and hydrocarbon emissions.15 Consequently, 

if the fuel is too rich, the increase in pressure will lead to engine damage or high NOx emissions 

from high temperature combustion.    

 

1.3 Biofuels and Alternative Energy Sources: 

Limited resources of fossil fuels and the growing global demand for energy have 

increased the world’s investment in finding alternative fuels, which would be both efficient and 

environmentally friendly.18-19 One of such alternatives are biofuels, which are defined as liquid 

or gas fuels that are predominately produced by biomass.9 Biofuels are an attractive alternative 

over fossil fuels since they are renewable and easily produced from common biomass sources, 
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and are biodegradable. Biofuels are also an environmentally friendly solution, since their 

combustion can recycle carbon dioxide through photosynthetic pathways.7 A variety of liquid 

and gaseous fuels such as ethanol, methanol, biodiesel, hydrogen and methane can be produced 

from biomass resources.20 Liquid biofuels such as bioethanol can be produced from any organic 

matter containing sugars or starches like wheat, barley, corn, and sugar.21 Biodiesel can be 

produced from any plant based oils such as rapeseed, palm, soybean, sunflower, and also used 

vegetable oils discarded from restaurants. Biofuel production poses a challenge since generation 

of these fuels is very costly due to the high energy requirements for growing crops and their 

conversion to biofuels. Corn based biofuels would also increase the prices of meat and dairy, 

since over 50% of the corn produced in the US is used for livestock feed.19   

 A renewable and cost-effective option over biodiesel or bioethanol for biofuel production 

is using lignocellulosic biomass in the form of plant material like grass, wood, or crop residue.22 

The production of lignocellulosic biofuels involves the deconstruction of cell wall polymers 

cellulose, hemicellulose, and lignin into sugars, then conversion of those sugars into biofuels.23 

Lignocellulosic biomass offers a viable solution for the production of costly biofuels such as 

ethanol, and could be used in the generation of new biofuels.24 

 Since the combustion of fossil fuels and biofuels are known to produce harmful 

byproducts that contribute to atmospheric pollution, other alternative energy sources are 

currently under investigation. With the population increasing and a growing need for alternative 

fuel sources, hydrogen energy has become a possible solution because of its planetary abundance, 

its ability to burn clean, and its high energy density per unit mass25. Recent studies have focused 

on metal hydrides as hydrogen storage carriers since they rely on stronger chemical interactions, 

resulting in materials that store hydrogen at higher temperatures26. Superalkali metal hydrides 
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and electrolytes have also gained much attention as potential hydrogen storage compounds due 

to their light weight and high energy density27. Due to their low ionization energies, these species 

could have potential applications for electrochemical storage as in lithium ion batteries28.  
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Chapter 2 - Experimental 

 

2.1 The Advanced Light Sources(ALS): 

 

The ALS is a third generation synchrotron facility, a particle accelerator that generates 

bright beams of light used for scientific research. Synchrotron radiation is the electromagnetic 

radiation emitted by electrons moving at relativistic velocities along a curved trajectory1. ALS is 

one of the brightest photoionization sources in the US, generating light that is 105 times brighter 

than the sun. The light at the ALS is produced by accelerating a beam of electrons, which 

generates synchrotron radiation when the beam reaches the speed of light2. 

 

2.2 Components of the ALS: 

 

The synchrotron at the ALS is comprised of 5 major components: the electron gun, linear 

accelerator, booster ring, storage ring, undulators (insertion devices) and beamlines, which can 

be seen in Figure 2.1.  
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Figure 2.1: Schematic of the ALS components at Lawrence Berkeley National Labortory3 

 

2.2.1 The linear accelerator (linac): 

 

The linear accelerator is an electromagnetic catapult that accelerates electrons to a relativistic 

velocity. The linac is 4 meters long and consists of 3 components, the electron gun, the buncher, 

and the linac itself. Acceleration begins in the cathode of the electron gun, where electrons are 

generated from the heating of the thermionic material barium aluminate4. The electrons are then 

drawn to the gate by a strong positive pulse at a frequency of 500 MHz. Once through the gate, 

the electrons are guided to the anode then led into the buncher. The buncher accelerates the 
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electrons and packs them into bunches with help of microwave radiation generated by a klystron. 

As the electron beam enters the linac, it gains 60% of the speed of light3. The linac then further 

accelerates the electron beam to almost the speed of light by applying radio-frequency (RF) 

waves. 

 

2.2.2 Booster Synchrotron: 

 

The booster synchrotron speeds the electron beam up to 99.999994% of the speed of light with 

help from the RF waves. The electrons are hit with 500 MHz RF pulse with each revolution 

around the booster, which bunches the electron beam and replaces the energy that was lost in 

rotation1. Once the electrons reach an energy of 1.5 GeV, they are injected into the storage ring. 

 

2.2.3 The Storage Ring, and Undulators: 

 

The electrons then enter the storage ring, where they circulate for hours. The storage ring 

consists of hundreds of electromagnets placed in 12 arc-shaped sections joined by 12 straight 

sections (undulators/wigglers)3. These electromagnets focus and bend the electrons as they circle 

the ring at more than one million times a second. When the electrons enter the straight section, 

the undulators wiggle the electrons back and forth illustrated in figure 2.2, which produces 

synchrotron light5.  Synchrotron radiation is emitted by these electrons, and is directed to 

beamlines to be used in experiments.  
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Figure 2.2: Illustration of Synchrotron radiation generated from the bending of magnets and 

undulators5. 

 

2.2.4 The ALS beamline:  

 

The beamline used to conduct our experiments is beamline 9.0.2.3, a multiplexed 

photoionization mass spectrometer (figure 2.3) coupled to tunable synchrotron radiation. The 

instrument consists of a chemical reactor, a time of flight mass spectrometer, and an ion 

detector6. After the synchrotron radiation leaves the storage ring it then passes through a gas 
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filter, which is an absorption cell filled with 30 torr of either Kr or Ar gas. The radiation is then 

focused by a 3 mm Eagle monochromator, and tuned to an energy range of 7-25 eV to be used at 

various beamlines.  

 All samples are prepared in gas cylinders, and are prepared and vaporized into the gas 

phase using a glass bubbler and thermostat bath. Sampled are kept under a vacuum, and are 

frozen and thawed using the freeze-pump-thaw technique to remove unwanted impurities. The 

sample is prepared using helium as a carrier gas  

 

 

Figure 2.3: Schematic of the TOF-MS at beamline 9.0.2.36. 
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2.3 The Experimental Apparatus 

2.3.1 Excimer Laser: 

 

The oxidation reactions in this investigation are initiated by chlorine radicals, generated from the 

photolysis of Cl2 using an excimer laser. An excimer laser generates ultra-violet light by running 

an electrical current through a mixture of noble and halogen gases7, specifically Xe and F for this 

investigation. The general schematic for an excimer laser can been seen in Figure 2.4. When the 

current is passed through these gases, they are stimulated to an excited electronic state, and form 

an excited dimer or “excimer”. These excited dimers quickly decay to the ground state, which 

releases a photon in the form of UV light8. This investigation uses the excitation and relaxation 

of xenon and fluorine molecules, which produces a photon at a wavelength of 351 nm.  

  

Figure 2.4: Schematic of an excimer laser8. 
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2.3.2 Vacuum System: 

 

Vacuum pumps are used during experiments to prevent potential photon absorption from 

extraneous sources. The vacuum system for the beamline consists of three types of vacuum 

pumps, that are used to ensure the instrument remains free of contaminants: turbomolecular 

pumps, root pumps, and backing scroll pumps9. The largest of these pumps is the turbomolecular 

pump, which is a system of moving and stationary blades arranged in levels seen in Figure 2.5. 

The turbomolecular pump is involved in the evacuation of the source chamber, where the gas 

mixture is compressed and forms a molecular beam. Two turbomolecular pumps are used in the 

apparatus, one for the ionization region operating at 1600 L/s, and one used in the detector region 

at 600 L/s10. These pumps work by using the collision between the gas molecules and the solid 

surface of the rotors, where the rotors and stator blades push the gas molecules from inlet to oulet 

before flowing to the exhaust, and maintains a vacuum of 10-8 torr11. 

 

Figure 2.5: Cross section of a turbo molecular pump11  
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 The turbomolecular pumps are assisted by backing scroll pumps, which consist of two 

scrolls, one stationary and one moving illustrated by figure 2.6. These pumps have a pumping 

speed of 20 – 50 m3/h and operate at a pressure range of 1000 to 10-2 mbar12. These pumps work 

by oscillating one of the scrolls in a circular motion, which compresses the gas until it reaches a 

high pressure13. The backing scroll pump provides a contamination free environment since the 

system is oil free.  

  

Figure 2.6: Schematic of the backing scroll pump mechanism12. 

 

 The evacuation of the apparatus is controlled by root pumps, which are used in a series 

with both the turbomolecular and backing scroll pumps. The root pumps also control the pressure 

of the reactor using two symmetrically shaped rotors that rotate in opposite directions which can 

been seen in Figure 2.79. These rotors can expel large volumes of gas when rotating at high 

velocities, but lower rotation speeds are required for higher pressures to prevent overheating. The 
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root pump system has an operational capacity of 75 – 30,000 m3/h, and an operational range of 

10 – 10-3 mbar total pressure13. 

  

Figure 2.7: Schematic of root pump mechanism13. 
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2.3.3 Time of Flight Mass Spectrometer(TOF-MS): 

 

The apparatus uses a McLaren time of flight mass spectrometer, which consists of an 

orthogonal acceleration TOF. This spectrometer is able to continuously detect both products and 

reactants over a specific range of masses. After the reaction occurs in the quartz slow flow 

reactor tube, products and reactants effuse through a pinhole and form a molecular beam, which 

is then ionized by VUV radiation14. Once the species enter the ionization region, the ions are 

extracted at a rate of 50 kHz and are accelerated to the detector. All ions acquire the same kinetic 

energy (KE), so smaller masses (m) will reach detector first since they will have a greater 

velocity(v)15. The kinetic energy of each ion can be found using Equation 2.1, 

 

 KE = ½ mv2 = zV      (2.1) 

 

Where v is the velocity of an ion, m is the mass of the ion, z is the charge of the ion, and V is the 

voltage applied for the electric field.  The time of flight (Tf) needed for an ion to travel the length 

of the flight tube (L) is expressed in Equation 2.2 : 

 

Tf = L/v       (2.2) 

 

The relationship between the time of flight and mass-to-charge ratio can be determined 

experimentally using a calibration equation to solve for the slope and intercept, by measuring the 

time of flight(TOF) of a specific product and plotting the spectra vs a measure TOF of a known 

m/z. The calibration equation in generated by combining Equations 2.1 and 2.2 together: 
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Tf =  + √𝑚/𝑧      (2.3) 

 

In the equation above  represents the y intercept and  represents the slope.  After the 

calibration equation is generated, it becomes possible to determine m/z of these unknown ions. 

 

2.3.4 MCP Detector: 

 

Ions are detected by a time and position sensitive microchannel plate detector (MCP), 

which consists of a plate that amplifies the signal of the detected particles. MCPs work by 

transferring and intensifying the ion signal, and are composed of several channel electron 

multipliers (CEM). CEM tubes are about a micrometer in diameter and are packed within close 

proximity to one another. These tubes are oriented at an angle with respect to the incoming ion 

beam, which creates a high probability that the incoming ions will hit one of the surfaces of the 

CEM. The surfaces of the CEM are comprised of a semiconductor material, which generates 

secondary electrons when ions collide with the CEM16. These electrons are accelerated by an 

electric field which can been seen in Figure 2.8.  
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Figure 2.8: Schematic of a single linear channel electron multiplier(CEM)15. 

 

Our apparatus contains a Chevron configuration which consists of two MCP’s stacked on top of 

each other at opposing angles in order to amplify the signal (figure 2.9). Stacking 2 MCP like the 

Chevron configuration can allow for a gain of 106 – 107, while stacking 3 plates like the z-stack 

will yield a gain up to 10817.  

 

 

Figure 2.9: Schematic of multichannel plate displaying single, Chevron, and z-stack 

configurations15. 
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2.3.5 Data Analysis: 

 

After the raw data is collected by the time-digital converter from the MCP output, a three- 

dimensional data set of time (ms), photon energy, and mass (m/z) is obtained, which is illustrated 

by Figure 2.10. Since the three dimensional data is difficult to interpret, the data is then further 

broken down into two dimensional slices of photon energy vs m/z and time vs m/z using the 

software IGOR Pro by Wavemetrics18. The 2D data can be broken down further by taking 1D 

vertical slices of the individual masses. The vertical slices of the energy vs m/z are defined as 

photoionization (PI) curves, and the slices of the time vs m/z are defined as time traces. 

PI curves are plotted as a function of ion signal versus photon energy and might represent the 

isomeric species at a specific m/z. These curves are used to identify the product species at each 

m/z using the adiabatic ionization energy obtained from the spectra onset. Reaction products are 

also identified by matching the experimental PI curves with known photoionization cross 

sections from the literature, or using FC simulations if the literature spectra are unknown. Kinetic 

time traces are used to monitor to formation or depletion of reaction species over time. Time 

traces are also used to determine the formation primary and secondary products by matching the 

slope of the product species to the reverse depletion of the reactant (the signal is multiplied by     

-1).  
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Figure 2.10: Diagram of the three dimensional dataset with 2D and 1D slices. PIE curve (top 

left), Time trace (top right)6. 
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Chapter 3: Theory 

 

3.1 Photoionization: 

 The process of photoionization involves the removal of an electron by the absorption of 

electromagnetic radiation. Most conventional mass spectroscopic instruments employ the 

technique of electron bombardment with 70 eV of energy1. Electron bombardment ionization 

(EI) uses high energy electrons to bombard a gaseous neutral species. This transfers energy from 

the electron to the neutral molecule and this energy transfer is what ionizes the neutral 

compound. EI is not an ideal method for our combustion experiments since EI is obtained at an 

energy range between 60-80 eV, and would provide too much energy for our reactions. In 

addition, the energy resolution provided by EI is poor.  Most molecules have ionization energies 

between 7.5 – 15 eV, so synchrotron radiation is utilized as the ionization source since the 

energy range can be tuned from 7.4 to 24.6 eV. The photoionization process can be represented 

by the equation below, where M is the neutral gaseous species, M+ is cationic radical, h is 

Planck’s constant,  is the frequency of light, and e- is the electron produced: 

M + h  M+ + e-         Hrxn = IE      (3.1) 

Ionization energy is defined as the minimum energy required to remove the first electron from an 

atom or molecule. The Planck equation relates the energy (E) used in ionization to the frequency 

of light, shown in the equation below: 

E = h          (3.2) 

Ionization will occur if the energy of the photon is greater than the ionization threshold of the 

molecule. At energies close to or less than the ionization threshold of the molecule, the 

probability of ionization is very low. 
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3.2 Franck-Condon Principle: 

Three types of electron transitions can occur during photoionization, and are discussed in this 

section, i.e., vertical, adiabatic, and dissociative, which are illustrated by Figure 3-1. These 

transitions occur when the molecule is excited by a photon. The molecule undergoes a vertical 

transition to its cationic state based on the Born-Oppenheimer approximation and Franck-

Condon principle. An adiabatic transition is defined as the electronic transition from the neutral 

vibronic ground state to the cation vibronic ground state, with the energy difference of these two 

states being the adiabatic ionization energy (AIE). The AIE of the species of interest can be 

calculated and compared with its observed experimental value to help with the identification of 

the species. A molecule will undergo dissociative ionization when receiving energy equivalent to 

the AIE plus the dissociation/fragmentation energy for the specific cation (in case there is no 

barrier for dissociation).  

The Born-Oppenheimer approximation states that electronic and nuclear motions can be treated 

separately, and the bond lengths and position of the atoms of the ionized molecule do not change 

upon ionization2. This approximation is due to the fact that the thermal velocity of a molecule is 

insignificant compared to the velocity of an electron. These wavefunctions can be factored 

individually based on their electronic and nuclear components, which is shown by equations 3.3. 

Ψ𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 =  Ψ𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑥 Ψ𝑛𝑢𝑐𝑙𝑒𝑖      (3.3)   

 Electronic transitions are also explained by the Franck-Condon principle, which states that the 

highest probability of an electron transition occurs when the electronic wave functions of the 

initial and final states are at their maxima3.  This principle makes the assumption that nucleus 

remains stationary, so electronic transitions occur faster than nuclear movement4. The probability 
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that this transition will occur is based on the overlap of the wave functions of the cation and 

neutral species. The probability of a specific vertical transition from the vibrational ground state 

to the vibrational cationic state is proportional to its Franck-Condon factor (fFC). A greater 

overlap of the wavefunctions (M in Equation 3.4) will yield a larger Franck-Condon factor, 

which makes the transition very likely to occur, which is expressed in Equation 3.4.  

    𝑀 =  ∫ Ψ𝑔𝑚
∗ (𝑟) Ψ𝑥𝑛

∗ (𝑟)𝑑𝑟      (3.4) 

In Equation 3.4, gm represents the mtb vibrational wavefunction of the neutral molecule, while 

xn represents the cation, and r is the coordinate motion of the potential energy surface. The 

Franck-Condon factor is equal to the square of the matrix (M) of the overlap integrals between 

the vibrational wavefunctions of the neutral and cationic state5. When the overlap of the two 

integrals is large, molecular rearrangement is minimal upon photoionization meaning that bond 

distances and angles remain unchanged. 
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Figure 1: Diagram of the three types of electronic transitions for the neutral and cationic states, 

where the vertical lines represents 0  n vibronic transitions. The letter D, the dissociation 

energy of the cation, represents where fragmentation occurs. An illustration of the Franck-

Condon factor (fFC) is shown below the potential energy curves6. 
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3.3 Photoionization Spectra, Photoionization Cross Sections: 

 

The photoionization spectrum is a graphical representation of the ion intensity versus photon 

energy of a given species. The shape of the overall spectra is determined by the Franck Condon 

principle. A larger Franck-Condon factor will have better overlap between the wavefunctions, 

which will cause a steep onset slope of the PI spectrum due to a higher intensity of the first 

electronic transition. Photoionization spectra have a unique shape for each molecule, which 

depends on the species ionization energy and wavefunction overlap. The identity of a particular 

ion signal of a specific mass can be identified by spectra shape agreement with a literature 

spectrum and mass-to-charge ratio.  

 Photoionization cross sections are defined as the effective area over which a gaseous 

atom or molecule is ionized by radiation7. If the incident photon has more energy than the AIE, 

the absorption of light by the bound quantum state causes the ejection of the outermost electron 

into a free state of positive energy in the continuum. The relationship between kinetic energy (k2) 

and the energy of the photon absorbed is expressed in the relationship below: 

 

   ℎ𝜐 = (𝑒𝑉𝑖 + 𝑘2)    (3.5) 

 

where e is the charge on the electron and Vi is the ionization threshold.  

The newest approach for an approximation of the absolute photoionization cross section uses the 

initial and finals states of a system, and condenses this information into a Dyson orbital8. The 

photoelectron matrix element Dk
IF is encoded with information about the initial and final 

electronic states, which is seen in the equation below: 
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   𝐷𝑘
𝐼𝐹 =  𝑢(𝜙𝐼𝐹

𝑑 |𝑟|Ψ𝑘
𝑒𝑙)      (3.6) 

 

where r is the dipole, u is the unit vector in the direction of the polarization of light, IF
d 

 is the Dyson orbital connecting the initial and final electron states, and k
el is the wavefunction 

of the ejected electron. The Dyson orbital connecting the initial N-electron and final N-1 

electrons states is expressed below: 

 

𝜙𝐼𝐹
𝑑 (1) =  √𝑁 ∫ Ψ𝑙

𝑁 (1, … , 𝑛)Ψ𝐹
𝑁−1(2, … , 𝑛)𝑑2 … 𝑑𝑛.      (3.7) 

 

A strong orthogonality between IF
d, k

el, and the N-initial and N-1-final electron states is 

assumed based on Koopmans’ theorem,  which states that for closed-shell Hartree-Fock theory, 

the first ionization energy of a molecular system is equal to the negative of the orbital energy of 

the highest occupied molecular orbital (HOMO) of the ground state9. This assumption from 

Koopmans’ theorem allows for the correlation between the total cross section and Dk
IF, 

expressed below: 

 

𝜎𝑘 =  
4𝜋𝑘𝐸

𝑐
|𝐷𝑘

𝐼𝐹|2   (3.8) 

Where c is the speed of light in a vacuum, E is the energy of the ionizing radiation, k is the 

magnitude of the photoelectron wave vector in relevance to its kinetic energy, Ek, by 𝑘 =  √2𝐸𝑘.  

 The relationship between photoionization cross section and ion signal can been seen in equation 

3.9:  

 

𝑆(𝐸) = 𝑘𝜎(𝐸)𝛿𝐶     (3.9) 
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where (C) is the concentration of the molecule, k is the instrument constant, and 𝛿 is the mass 

discrimination factor, which is equal to the mass (m) to the power of 0.6710. The mass 

discrimination factor represents the detector’s efficiency in detecting the reaction species. The 

photoionization cross sections are measured in Megabarn (Mb) that is a unit equal to 10-18 cm2. 

The ion signal in the photoionization spectrum is calibrated against a known concentration and 

cross section, specifically propene in our experiments11. Photoionization cross sections of 

products can be calculated using a known calibrant as a reference. The following equation was 

taken from Cool et al12 and Welz et al13, and shows the relationship between these two 

quantities: 

 

 𝜎𝑇(𝐸) =  
𝜎𝑅(𝐸) 𝑆𝑃(𝐸)𝑚𝑟

0.67𝐶𝑅

𝑆𝑅(𝐸)𝑚𝑝
0.67𝐶𝑃

    (3.10) 

 

where R(E) is the photoionization cross section of the calibrant (reference), CP and CR are the 

concentrations of the product and reference, SR(E) is the signal of the calibrant reference, and mr 

and mp are the masses of the reference and product. The ion signals and photoionization cross 

sections are all taken at the same energy (E). Branching fractions are obtained by taking the ratio 

of CP/CR , when using CR as the concentration of the reactant. Branching fractions are used for 

the quantification of products and can only be obtained if the photoionization cross section is 

known, which will be explained further in Chapter 4.  
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3.4 Electronic Structure Calculations: 

 

The investigations in this thesis employ computational software in the identification of 

photoionization products and reaction intermediates. This software is also utilized in calculating 

the energetics of superatom clusters. All structures and molecular parameters were optimized 

using the CBS-QB314-15 composite method and Gaussian 0916 software coupled to GaussView 

5.017 for visualization. The CBS-QB3 method is the only method used throughout this entire 

work because it is the most accurate in predicting adiabatic ionization energies of superalkali 

clusters and reaction species. 

The CBS-QB3 method or complete basis set method (QB3 model) is a composite model 

that uses uses both ab initio and density function theory to deliver a highly accurate calculation, 

with an estimated energy error of only 1-1.5 kcal/mol18. CBS methods use different levels of 

theory, a wide variety of basis sets, and a linear combinations of atomic orbitals approximation 

to obtain the most accurate energies and molecular geometries. Computational basis sets are 

mathematical representations of molecular orbitals used to calculate the geometry of a molecule. 

Each basis set confines a particular electron to a specific region of the molecule. Larger basis 

sets have fewer constrains, which allows for a more accurate approximation of the electron’s 

location. Molecular geometry optimizations and zero-point energy calculations in the CBS-QB3 

method are performed at the B3LYP level of theory, which includes the CBSB7 basis set. The 

CBSB7 basis set also includes the basis set 6-311G(2d,d,p), which is the smallest basis set to 

obtain accurate B3LYP frequencies14, 19.   

 Vibrational frequencies, bond distances, and PES scans are optimized using the Becke 

three parameter exchange functional with the Lee, Yang, and Parr (B3LYP)20-21 correlation 
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functional level of theory. The basis set used during the B3LYP calculations is 6-311+G**, 

which is an all electron triple zeta valance basis set. The method of density functional theory 

uses the Hohenberg-Kohn and Kohn-Sham22 theorems to calculate properties of molecules, and 

is based on electron probability density23. Transition states and intrinsic reaction coordinate 

(IRC)24 calculations are also optimized at the B3LYP level of theory, which will be further 

explained in Chapter 4.  

 Calculations performed at the CBS-QB3 level of theory are helpful in the analysis of our 

experimental products when literature values such as ionization energies, and photoionization 

cross sections are unknown. Equation 3.11 shows how the enthalpy of reaction is related to the 

ionization energy, and the adiabatic ionization energy can be calculated by taking the difference 

of the CBS-QB3 zero point corrected (ZPE) total electronic energies between the neutral species 

and its corresponding cation. Reaction enthalpies are also calculated using the ZPE of the 

products and reactants, and is expressed in the relationship below: 

 

∆𝐻𝑟𝑥𝑛 =  ∑ 𝑍𝑃𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝐶𝐵𝑆−𝑄𝐵3 − ∑ 𝑍𝑃𝐸𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠

𝐶𝐵𝑆−𝑄𝐵3
     (3.11) 

 

Properties of superatom clusters such as atomization enthalpies, enthalpies of formation, 

fragmentation energies, and binding energies, are all calculated using ZPE at the CBS-QB3 level 

of theory. These quantities are all explained more extensively in the experimental sections of 

Chapters 4 and 5.  
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Chapter 4 - Investigation of Oxidation Reaction Products of 2-Phenylethanol Using 

Synchrotron Photoionization 

[This chapter was adopted from an article with the same title published in the Journal of Physical 

Chemistry A(J.Phys.Chem.A. 2018, 122(33), 6789-6798). Authors include Adam Otten, Magaly 

Wooten, Anthony Medrano, Yasmin Fathi, and Giovanni Meloni] 

 

Abstract          

Photolytically Cl-initiated oxidation reaction of 2-phenylethanol (2PE) was carried out at 

the Advanced Light Source (ALS) in the Lawrence Berkeley National Laboratory. Using the 

multiplex photoionization mass spectrometer, coupled with the tunable vacuum ultraviolet 

radiation of the ALS, data were collected at low pressure (4 - 6 Torr) and temperature (298 – 550 

K) regimes. Data analysis was performed via characterization of the reaction species 

photoionization spectra and kinetic traces. Products and reaction pathways are also computed 

using the CBS-QB3 composite method. The present results suggest as the primary products m/z 

= 30 (formaldehyde), 106 (benzaldehyde), and 120 (phenylacetaldehyde) at 298 K, and m/z = 

120 (phenylacetaldehyde) at 550 K. Branching fractions at room temperature are 27  6.5 % for 

formaldehyde, 24  4.5 % for benzaldehyde, 25  5.8 % for phenylacetaldehyde, and for 

phenylacetaldehyde at 550 K are 60  14 %.   
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4.1 Introduction: 

Limited resource of fossil fuels and the growing global demand for energy has increased 

the world’s investment in finding alternative fuels, which would be both efficient and 

environmentally friendly.1-4 One of such alternatives is biofuels. The implementation of biofuels 

could significantly decrease carbon emissions and offer a long-term renewable solution to 

petroleum based fuels.3, 5 The United States plans to increase the amount of biofuel used from 9 

billion gallons in 2008 to 36 billion gallons in 2022.6-7 Even though the biofuels currently used 

have proven to provide visible benefits over fossil fuels, new technology and further research are 

required to perfect, advance, and increase their impact in the world.1, 8-9 Furthermore, there is a 

need for multiple alternative fuels to supplant both gasoline and petroleum diesel, as they have 

chemically different requirements, such as branching and saturation that must be considered.  

Ethanol currently dominates the biofuel market. However, ethanol tends to absorb water, 

is corrosive, and has a low conversion efficiency from feedstock to fuel.2 Because of its 

predisposition to absorb water, ethanol cannot be distributed using the existing fuel system and 

would require its retrofitting. Moreover, controversy surrounds ethanol’s energy per liter 

capability; there is some reservation on whether the energy contained in ethanol itself is 

significantly greater than the energy used to grow and process it from crops.10-11 Although much 

improvement to ethanol production has been made over the past few years, other potential 

biofuels are now stealing the focus. One such alternative is 2-phenylethanol (2PE). As a higher 

alcohol than ethanol, 8 carbon atoms versus 2 carbon atoms, 2-phenylethanol has a higher energy 

density, and lower hygroscopicity and volatility. Further studies of 2PE combustion products will 

determine if indeed this alcohol could be used as biofuel. 
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The oxidation of aromatic compounds has been investigated extensively through a wide 

variety of techniques and holds relevance in both fossil fuel combustion and atmospheric 

pollution formation.12-14 This investigation differs from other aromatic oxidation studies since we 

are observing reactions only with the ethanol side chain of 2PE and not the aromatic ring, so the 

oxidation of ethanol must be considered. Ethanol oxidation has been studied through various 

methods because of its role in fuel combustion.15-17 While the chlorine initiated oxidation of 

ethanol has not been investigated, its OH initiated oxidation has been examined.18-20 These 

studies have found acetaldehyde and formaldehyde as products,15-17 which are seen in this 

investigation of 2PE at room temperature. An example of a higher alcohol OH initiated oxidation 

is isobutanol investigated by Welz and coworkers21 at 550 and 700 K using multiplexed 

synchrotron photoionization mass spectrometry and again it was found that both formaldehyde 

and acetaldehyde are reaction products.  

2-Phenylethanol is an organic compound with the formula C6H5CH2CH2OH. Its 

increased stability and higher energy density than ethanol places 2PE closer to the properties of 

gasoline, consequently making it an attractive alternative. Ethanol’s high vapor pressure (44.6 

mmHg at 20 °C) is also detrimental to air quality; while 2-PE has a very low vapor pressure 

(0.126 mmHg at 20 °C).22 Another desirable quality of 2PE is its branched chain. Branched-

chain alcohols have higher octane numbers than those with straight-chains.2 Octane numbers are 

a standard measure of fuel performance; the higher the octane number, the more compression the 

fuel can withstand. Fuels with higher octane number make a good fit for high-compression 

engines, which in turn generally provide higher performance.  

Higher alcohols such as 2PE, however, tend to face the complication of not being 

economically produced in large enough quantities for fuel application. One exception to this is n-
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butanol.23-24 The newly found ability to efficiently produce 2PE in large quantities from 

glucose,25 which is widely available in nature, adds to its attraction as a possible biofuel. In 

addition, 2PE occurs naturally in the essential oils of various plants and flowers.26 It is 

traditionally synthesized from benzene and ethylene oxide through Friedel–Crafts alkylation 

reaction.27  

The study of the elementary reactions of 2PE provides valuable insight on its combustion 

potential as a biofuel and allows for the investigation of its products and potential pollutants. 

This work investigates the products characterization from the reaction of 2PE + Cl + O2 at 298 

and 550 K. Reaction mechanisms are postulated using electronic structure calculations of the 

potential energy surface from the initial H abstraction radical plus O2.  

 

4.2 Experimental: 

Apparatus 

Reactions are carried out using a multiplexed time-resolved mass spectrometer at the 

Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. The apparatus is 

described in further detail elsewhere.28-30 The instrument consists of a chemical reactor with a 

vacuum system, a photoionization source, a mass spectrometer, and an ion detector. The reaction 

species are ionized by continuously tunable vacuum ultraviolet synchrotron radiation with 

energies ranging from 8.0 to 11.0 eV with 0.025 eV increments. 2PE ( 98% Sigma Aldrich) is 

transported into the gas phase by bubbling helium through the liquid placed in a glass bubbler 

inside a thermostated glycol bath.28 The sample, radical precursor (Cl2), and inert gas (He), flow 

through individual calibrated mass flow controllers into a 62 cm quartz slow flow reactor tube 
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held at a constant pressure (4 or 6 torr) and temperature (298 or 550 K). The chlorine radical 

required here is formed from the radical precursor Cl2 through photolysis in situ using 351 nm 

excimer laser pulses at a rate of 4 Hz. The number densities (at 298 and 550 K, respectively) are 

9.7 x 1012 and 8.8 x 1012 molecules cm-3 for 2PE, 2.3 x 1013 and 1.5 x 1013 molecules cm-3 for 

Cl2, and 5.4 x 1016 and 2.5 x 1016 molecules cm-3 for O2.  

The IUPAC Subcommittee for Gas Kinetic Data Evaluation recommended 1.00 to be 

used as the quantum yield of the Cl2 photolysis,31 with the absorption cross section of its 

photolysis at 351 nm reported as 1.82 × 10−19 cm2 according to Maric et al.32 Based on these 

values, the number density of Cl in our experiments are 1.1 × 1012 to 2.4 × 1012 molecules cm-3 

at 298 and 550 K, respectively, which makes the concentration of 2PE about 4 - 10 times the 

concentration of Cl used to initiate H abstraction in the oxidation reactions. The absolute 

photoionization spectra of possible products styrene ( 99.9% Sigma Aldrich), benzaldehyde ( 

99% Sigma Aldrich), and phenylacetaldehyde ( 90% Sigma Aldrich) are taken for data analysis 

purposes. 

Reaction products effuse from the reactor tube through a 650 m pinhole into the source 

chamber that has been evacuated by a 3200 L s-1 turbomolecular pump. The molecular beam then 

enters the ionizing chamber through a 0.15 cm diameter skimmer, where it is perpendicularly 

intersected by the tunable vacuum ultraviolet synchrotron radiation from the Chemical Dynamics 

Beamline of the ALS, using a 10 cm period undulator and selected by a 3-m monochromator. 

Higher undulator harmonic frequencies generated by the undulator are removed through a 

windowless absorption gas cell filled with 30 Torr of Ar or Kr. The resulting ions are accelerated 

according to their mass-to-charge ratio (m/z) by an orthogonal-acceleration time-of-flight mass 

spectrometer pulsed at 50 kHz33 and detected with a microchannel plate (MCP) detector.  
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The raw data consists of a three-dimensional data block (mass to charge (m/z), reaction 

time (t), and photon energy (E) vs. the ion intensity (I)). Photon energy in this experiment is 

varied between 8.0 and 11.0 eV in increments of 0.025 eV. The ion signal at each photon energy 

is background-subtracted and normalized for the photon current, which is measured by a 

calibrated VUV-sensitive photodiode present in the ionization region. Data obtained can be 

further integrated over a photon energy or temporal range, to obtain time-resolved mass or 

photoionization spectra, respectively. This is achieved by fixing one observable, t or E, and 

integrating over the other one. The reaction begins at 0 ms when the photolysis laser is fired and 

it is followed up to 60 ms for 298 K and up to 40 ms for 550 K in order to minimize the 

integration of signal containing possible secondary chemistry. The photoionization spectrum of 

each m/z is corrected for possible dissociative fragmentation and isotopic contribution. Spectra at 

each m/z differ because of different Franck-Condon factors, thus allowing for identification of 

the species responsible for the signal. Isomers are distinguished based on their differing onset 

ionization energies and spectrum shape. Species are identified, by comparing the measured 

spectra with computed Franck-Condon envelopes, or literature spectra and absolute 

photoionization cross sections when available.  

Computation 

Structural parameters of the reaction species are computed using the CBS-QB3 

(Complete Basis Set) composite method.34-35 Optimized geometries and energetics are completed 

for neutral and cationic species utilizing the Gaussian 0936 program suite coupled with 

Gaussview 5.037 for visualization.  

Adiabatic ionization energies (AIE) are obtained by performing CBS-QB3 calculations 

on the ground state neutral and cation (+1 charge) state of each species. The AIE is defined as 
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the difference of the zero point corrected (ZPE) total electronic energies (E0) between the neutral 

species and its corresponding cation. Uncertainties for such calculations are within 0.05 eV.34 

Enthalpies of reactions (rH) are calculated using the ZPE total corrected electronic energies, 

and are used to determine if our mechanisms are thermodynamically possible. Potential energy 

surface scans are used to locate transition states and products from hydrogen abstraction, oxygen 

addition, and hydrogen transfers. Transitions states are optimized using the CBS-QB3 composite 

model, followed by an intrinsic reaction coordinate (IRC)38 calculation to confirm both the 

forward and reverse reaction mechanisms of these species. 

Photoionization spectra are also used to determine product concentration by the 

relationship between spectral intensity at a specific photon energy (SE), and concentration (C), 

expressed in equation 1 below. 

𝑆𝐸 = 𝑘𝜎𝐸𝛿C      (1) 

where E is the photoionization cross section at a specific photon energy, k is the instrumental 

constant, and  is the mass discrimination factor, which is equal to the mass (m) of the observed 

species to the power of 0.67.21 Absolute PI spectra or curves are generated by plotting photon 

energy versus photoionization cross section, which if unknown, can be obtained by comparing 

the authentic PI spectrum of a sample of the pure species with the absolute photoionization cross 

section of a reference species. The reference absolute photoionization cross section used in this 

work is propene.39 

 Branching fractions, i.e., the ratio of product over reactant concentration (CP and CR) in 

equation 2, are calculated using the absolute cross section values of the reactant species from the 

method above, the measured signals, and the mass discrimination factors (MDF): 



 41 

    (2) 

 

4.3 Results and Discussion: 

In the present work, the oxidation of 2PE is initiated by hydrogen abstraction from 

chlorine radicals. 2PE is a cyclic alcohol containing an unsaturated phenyl ring attached to an 

ethanol group. Chlorinated products are formed during secondary reactions with primary 

products, and from chlorine addition to our parent compound (addition to the ring). These 

chlorinated species are identified by the isotopic ratio 35Cl/37Cl from the signal intensity of the 

photoionization spectra, which is about 1:3. Species m/z = 112/114, 126/128, 140/142, and 

156/158 are identified as chlorinated products from their isotopic ratio. For example, m/z = 

140/142 has an ionization onset of 9.60 eV matching with the photoionization value of 9.69 eV40 

of benzoyl chloride generated from the secondary reaction of m/z = 106 (benzaldehyde) with Cl. 

These products are not fully identified or characterized during this investigation since they are 

generated through secondary chemistry and is, therefore, beyond our scope. 

The analysis of the reaction 2PE + Cl + O2, is divided into two sections based on 

experimental temperature. Activation enthalpies and enthalpies of reactions of products are 

calculated using the zero point corrected total electronic energies using the CBS-QB3 model, and 

are used to verify product identification and to postulate pathways. Figure 1 presents the mass 

spectra of the room temperature and 550 K data taken for a photon energy of 10.7 eV. 
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Figure 1. Mass spectra taken at 10.7 eV for the 298 and 550 K data. 

 

Product Identification 2PE + Cl + O2 at 298 K: 

Upon the addition of oxygen, the following masses are observed and characterized as 

primary products: m/z = 30, 106, and 120. m/z = 44, which has a fast formation comparable with 

the reactant depletion (see below), based on the computation of the potential energy surface is a 

secondary product (see Proposed Mechanism section). The experimental photoionization spectra 

for m/z = 30 matches well with the literature photoionization spectra of formaldehyde,41 shown 

in Figure 2 a). The experimental PI spectrum of m/z = 44 with an onset of 10.18  0.05 eV is 

compared to the literature spectrum of acetaldehyde (Figure 2 b) by Cool et al.39 and is in good 

agreement with the literature value of 10.20  0.05 eV.42  
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Figure 2. a) Authentic PI spectrum of formaldehyde (blue line) recorded by Cooper et al.41 

compared to the experimental m/z = 30 spectrum (red open circles) at room temperature. b) 

Authentic PI spectrum of acetaldehyde (blue line) recorded by Welz et al.21 compared to the 

experimental m/z = 44 spectrum (red open circles) at room temperature. 

 

Figure 3 a) shows the experimental m/z = 106 spectrum compared to an absolute PI curve 

of benzaldehyde, with an experimental onset of 9.48  0.05 eV that is consistent with the 

literature value of 9.49  0.01 eV.40 The experimental m/z = 120 spectrum shown in Figure 3 b) 

is compared with the absolute PI curve of phenylacetaldehyde. The experimental onset for m/z = 

120 is found at 8.82  0.05 eV, which agrees very well with the literature ionization energy value 

of 8.80  0.01 eV43 for phenylacetaldehyde.  
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Figure 3. a) Absolute PI spectrum of benzaldehyde (blue line) taken in this experiment 

compared to the experimental m/z = 106 spectrum (red open circles) at room temperature. b) 

Absolute PI spectrum of phenylacetaldehyde (blue line) taken in this experiment compared to the 

experimental m/z = 120 spectrum (red open circles) at room temperature. 

 

Products m/z = 30, 44, 106, and 120 are all forming at similar rates with an estimated 

pseudo first order rate constant of 380-410 s-1 from the kinetic fitting presented in Figure 4 a). 

These species form fast and can be compared with the fitted rate constant for the parent m/z = 

122 depletion of 970 s-1 and are characterized as primary chemistry with the exception of m/z = 

44 (see Proposed Mechanism section). Other secondary products identified in the oxidation 

reaction with 2PE based on their kinetic traces, Figure 4 b), are m/z = 78 as benzene, and m/z = 

92 as a combination of toluene and 1,6 heptidyne. m/z = 78 time trace is fitted with a rate 
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constant of 260 s-1 and m/z = 92 with a rate constant of 160 s-1. Secondary products are not 

further investigated in this work since our focus is the characterization of primary chemistry 

species.  

 

Figure 4. a) Comparison of experimental time traces m/z = 30, 44, 106, 120, and 122 during H 

abstraction by Cl and oxygen addition at room temperature. b) Comparison of experimental time 

traces m/z = 78, 92, and 122 during H abstraction by Cl and oxygen addition at room 

temperature. Signal for the reactant m/z = 122 is inverted (multiplied by -1) for comparison 

against products. 
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Product Identification 2PE + Cl + O2 at 550 K 

Several species seen in the room temperature reactions were not observed at a higher 

temperature. The following masses are observed and characterized during the oxidation reaction 

of 2PE at 550 K: m/z = 104 and 120. Chlorinated species m/z = 140/142 and 156/158 are 

generated at 550 K from chlorine addition to primary products, but are not characterized since 

they are formed through secondary chemistry. Figure 5 a) shows the experimental m/z = 104 

spectrum compared to the absolute PI curve of styrene with an observed photoionization onset of 

8.45  0.05 eV, which matches well with the value of 8.43  0.01 eV44 reported in the literature.  

 

Figure 5. a) Absolute PI spectrum of styrene (blue line) taken in this experiment compared to 

the experimental m/z = 104 spectrum (red open circles) at 550 K. b) Absolute PI spectrum of 

phenylacetaldehyde (blue line) taken in this experiment compared to the experimental m/z = 120 

spectrum (red open circles) at 550 K.   
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Figure 5 b) shows the experimental m/z = 120 spectrum with an onset of 8.83  0.05 eV, 

which matches well with the literature onset of phenylacetaldehyde at 8.80  0.01 eV.43 m/z = 

120 is characterized as primary chemistry product since its rate of formation with an estimated 

rate constant of 670 s-1 is the same as the depletion of the parent m/z = 122 seen in Figure 6. m/z 

= 104 time trace is fitted with a rate constant of 290 s-1 slower than the other product and the PES 

computation calculations show that the product cannot be formed via primary reactions (see 

Proposed Mechanism section).  

 

Figure 6. Comparison of experimental time traces m/z = 104, 120, 122 during H abstraction by 

Cl and oxygen addition at 550 K. Signal for the reactant m/z = 122 is inverted (multiplied by -1) 

for comparison against products. 
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4.4 Proposed Mechanism:  

On the ethanol group in 2PE, there are three potential sites for Cl to abstract a hydrogen 

and form three different radicals. These radicals -2-phenylethanyl (-2PE), -2-phenylethanyl 

(-2PE), and 2-phenylethanoxy (2PEO) have calculated reaction enthalpies of -60.7, -37.4, and 

1.4 kJ/mol, respectively, which are listed in Figure 7.  

 

Figure 7. Reaction scheme for the initial steps of 2PE oxidation. Numbers in parentheses 

correspond to reaction enthalpies in kJ/mol. 

 

After the addition of oxygen, only the  and  radicals react to form the 2-

phenylethanylperoxy species -ROO and -ROO seen in Figure 10. The CBS-QB3 calculated 

reaction enthalpies of the  and  peroxy species are -109 and -163 kJ/mol, respectively. Both 

phenylethanylperoxy radicals undergo intramolecular hydrogen abstraction, but the 

phenylethanylhydroperoxy radical (QOOH) is only formed during the -ROO pathway.  



 49 

-2PE reaction pathway: When Cl abstracts a beta hydrogen from the ethanol group in 2PE, -

2PE is formed along with HCl. -2PE then undergoes unimolecular decomposition seen in 

Figure 8, to form ethenol, a phenyl radical, and HCl with a calculated activation enthalpy of 77 

kJ/mol and reaction enthalpy of 72 kJ/mol.  

 

Figure 8. Diagram of potential energy surface scan of the 2PE reaction pathway for species -

2PE calculated using the CBS-QB3 composite model. 

 

Ethenol then undergoes an intramolecular hydrogen transfer, and isomerizes to acetaldehyde 

with a calculated activation enthalpy of 11 kJ/mol and reaction enthalpy of -23 kJ/mol. This 

reaction pathway shows that acetaldehyde cannot be considered a primary chemistry product 

because its formation is thermodynamically and kinetically hindered by its endothermicity and 

high activation barrier above the zero-reference energy red line for energetics calculations 

(calculated from the optimized structures of our initial reactants -2PE + O2). -2PE then reacts 
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with O2 to generate peroxy species B, which is formed exothermically with a calculated enthalpy 

of -163 kJ/mol. The reaction pathway for the -ROO radical is illustrated by Figure 9.  

 

Figure 9. Diagram of potential energy surface scan of the 2PE oxidation pathway for species B 

calculated using the CBS-QB3 composite model. 

 

This peroxy radical (B) then undergoes an intramolecular hydrogen abstraction, and isomerizes 

to 2-phenylethenol and OOH with a calculated activation enthalpy of 122 kJ/mol and reaction 

enthalpy of 91 kJ/mol. Phenylacetaldehyde is then formed through a hydrogen transfer to the 

beta carbon, which forms the C=O bond, and has a calculated activation enthalpy and reaction 

enthalpy of 19 and -31 kJ/mol, respectively. The species B also undergoes a unimolecular 

decomposition through the removal of a hydroxyl group to from the B1 and OH (Figure 9), and 

has a calculated activation enthalpy of 204 kJ/mol and reaction enthalpy of 179 kJ/mol, 

respectively. B1 is a Criegee intermediate, phenylacetaldehyde oxide, which undergoes a 
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decomposition to form styrene and O2 with a calculated activation enthalpy of 22 kJ/mol and 

reaction enthalpy of -27 kJ/mol. According to the presented calculations, the products styrene 

and acetaldehyde are most likely generated through secondary chemistry since they have 

transition states and reaction products forming above the zero-reference energy level, making 

their pathways kinetically unfavorable. Of course, solely based on our computations we cannot 

rule out the possibility of lower energy pathways yielding the formation of these species. 

-2PE reaction pathway: -2PE is formed when Cl abstracts an alpha hydrogen from 2PE. 

After oxygen is added, peroxy species A is formed exothermically with a calculated enthalpy of -

109 kJ/mol. The reaction pathway for species A is seen in Figure 10, where again the red line 

indicates the zero point reference energy for energetics calculations of the primary products, 

calculated from the optimized structures of our initial reactants -2PE + O2.  

  

Figure 10. Diagram of potential energy surface scan of the 2PE oxidation pathway for species A 

calculated at the CBS-QB3 level of theory.   
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This -ROO radical undergoes an intramolecular hydrogen abstraction with the hydrogen on the 

hydroxyl group to form the -QOOH radical, and have a calculated activation enthalpy of 90 

kJ/mol and reaction enthalpy of 79 kJ/mol. The -QOOH radical then undergoes unimolecular 

decomposition through the removal of a hydroxyl group, forming the products benzaldehyde, 

formaldehyde, and OH. This reaction has a calculated activation enthalpy of 25 kJ/mol and 

reaction enthalpy of -58 kJ/mol. The -QOOH radical also decomposes to phenylacetaldehyde 

and OOH through unimolecular decomposition via hydrogen transfer, which has a calculated 

activation enthalpy of 19 kJ/mol and reaction enthalpy of -36 kJ/mol. 

 

4.5 Branching fractions: 

Branching fractions at 298 and 550 K are listed in Table 1.  

 

Table 1. Branching fractions for products observed in the 2PE + Cl + O2 reaction at 298 and 550 

K. 

Compound m/z 298 K 550 K 

Formaldehyde 30 27  7.2 - 

Benzaldehyde 106 24  7.0 - 

Phenylacetaldehyde 120 25  6.4 60  19 

 

Absolute photoionization cross sections for formaldehyde (m/z = 30)41 of 9.2  1.4 Mb 

and benzaldehyde (m/z = 106)45 of 45.6  6.84 Mb are obtained from the literature. The absolute 

photoionization cross section for phenylacetaldehyde is obtained from this experiment and 
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calculated using the cross section of the calibrant propene39 as a reference. Branching fraction 

uncertainties are calculated using the propagation of errors of the quantities from equation 2. 

Uncertainties for ion signal intensities are estimated by taking the difference between the 

measured upper signal value at 11 eV of that observed species and its literature reference. This 

method is also applied to the lower ion signal at 11 eV, then the average of these two values is 

used. Uncertainties of the mass discrimination factors are 13% as described in Savee et al46. The 

formation of benzaldehyde and formaldehyde are observed through unimolecular decomposition 

of the -QOOH radical, and have branching fractions of 24  4.5 % and 27  6.5 %, 

respectively. The main product phenylacetaldehyde (m/z = 120) comes from the decomposition 

of the -ROO radical and has a branching fraction of 25  5.8 % at room temperature and 60  

14 % at 550 K. Branching fractions in this investigation only total to about 60 – 75 % due to 

chlorination of products from secondary reactions. Chlorinated products at m/z = 126/128, 

140/142, and 156/158 have reaction rates similar to that of primary products since their time 

traces match well with the depletion of the reactant, and are being formed from Cl addition to 

product species m/z = 104, 106, 120, and parent m/z = 122. 

 

4.6 Conclusions 

   In this study, the chlorine initiated oxidation of 2PE is investigated at 298 and 550 K. 

The 2PE + Cl + O2 reaction was carried out at Lawrence Berkeley National Laboratory using 

synchrotron radiation coupled with a multiplexed photoionization mass spectrometer. Reaction 

products are identified based on photoionization spectra, kinetic time traces, ionization energies, 

and mass-to-charge ratios. Reaction mechanisms are calculated from potential energy surface 
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scans, using the CBS-QB3 composite method. Relative quantification of products was performed 

using absolute photoionization spectra via the determination of their branching fractions for both 

temperatures (298 and 550 K). Total branching fractions as the fraction of the total of what is 

detected for 2PE + Cl + O2 at room temperature are 76  21  % and 60  19 % at 550 K. At both 

temperatures, the most abundant product is phenylacetaldehyde. We are not seeing total 

branching fractions reach 100 % due to chlorination from secondary reactions with primary 

products. 
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4.8 Supporting Information for Publication: 

Contents of the supporting information includes the Cartesian coordinates of all structures 

calculated in the potential energy surface. 

 

PES optimized structures (Cartesian coordinates) using the CBS-QB3 composite model: 

 

1) beta 2PE 

 

 C                  2.77865100   -0.22684100   -0.25784900 

 C                  1.94348700   -1.31538800   -0.00788700 

 C                  0.59566900   -1.11268200    0.27359900 

 C                  0.05733000    0.17887600    0.31377000 

 C                  0.90364300    1.26048600    0.05989900 

 C                  2.25470200    1.06225100   -0.22356700 

 H                  3.82906700   -0.38392900   -0.47602700 

 H                  2.34404600   -2.32305200   -0.03005100 

 H                 -0.05162900   -1.96234700    0.46444000 

 H                  0.50192000    2.26847900    0.08695900 

 H                  2.89582000    1.91547800   -0.41630700 

 C                 -1.41267900    0.38786400    0.61269900 

 H                 -1.68531700   -0.11700900    1.54861200 

 H                 -1.60301100    1.45938800    0.78806900 

 C                 -2.29262600   -0.13261600   -0.47367500 

 H                 -2.02255100    0.01588100   -1.51728600 

 O                 -3.63068900   -0.13385100   -0.16206400 
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 H                 -4.13189600   -0.41378400   -0.93382400 

 

2) 2PE 

 

 C                 -2.82123900   -0.00028700   -0.30238500 

 C                 -2.14046100    1.20346200   -0.13336900 

 C                 -0.78816300    1.20092200    0.20077200 

 C                 -0.09070800    0.00029200    0.37321600 

 C                 -0.78779400   -1.20067700    0.20112600 

 C                 -2.14004500   -1.20379800   -0.13300100 

 H                 -3.87464100   -0.00049700   -0.55895800 

 H                 -2.66353500    2.14547000   -0.25676900 

 H                 -0.26690500    2.14331700    0.33799100 

 H                 -0.26612900   -2.14280500    0.33862800 

 H                 -2.66283100   -2.14600400   -0.25610500 

 C                  1.38515800    0.00050600    0.69816600 

 H                  1.64650600    0.88061300    1.29263000 

 H                  1.64654900   -0.87891000    1.29362300 

 C                  2.25868500   -0.00029100   -0.55588700 

 H                  2.03007100    0.88697800   -1.16322600 

 H                  2.03004200   -0.88837900   -1.16204800 

 O                  3.61888000    0.00002600   -0.13055600 

 H                  4.17722900   -0.00077100   -0.91314900 

 

3) HCl 
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 Cl                 0.00000000    0.00000000    0.07125900 

 H                  0.00000000    0.00000000   -1.21139900 

 

4) TS1 

 

 C                 -2.82344400    0.55710000   -0.09566800 

 C                 -1.75013600    1.43547600    0.05550800 

 C                 -0.44581800    0.93808300    0.16414800 

 C                 -0.27126100   -0.42982300    0.12181600 

 C                 -1.30631200   -1.33005000   -0.02804600 

 C                 -2.60642500   -0.81997000   -0.13793000 

 H                 -3.83183700    0.94667000   -0.18055300 

 H                 -1.92497500    2.50638300    0.08920300 

 H                  0.39923900    1.60919200    0.27991900 

 H                 -1.13432100   -2.40169300   -0.05798900 

 H                 -3.44498600   -1.49930100   -0.25586000 

 C                  2.07508100   -1.14075100    0.34831600 

 H                  1.94170000   -0.95912500    1.40601600 

 H                  1.83522200   -2.12031200   -0.03838700 

 C                  2.77867300   -0.28466500   -0.41148500 

 H                  2.99838700   -0.48372100   -1.45632900 

 O                  3.18137100    0.92854000    0.07241700 

 H                  3.62547300    1.41846500   -0.62464700 

 

5) ethenol 
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 C                 -1.22575200   -0.17904900    0.00018000 

 H                 -1.31623300   -1.25799100    0.00011200 

 H                 -2.12643600    0.41850700    0.00037100 

 C                 -0.03606200    0.41128500    0.00003900 

 H                  0.06410900    1.49437200    0.00010600 

 O                  1.13440600   -0.29559300   -0.00020100 

 H                  1.87419900    0.31643800   -0.00029500 

 

 

 

 

 

 

6) phenyl radical 

 

 C                 -0.00012000    1.32192900    0.00014000 

 C                 -1.21196200    0.63129000    0.00011800 

 C                 -1.22366000   -0.77070700   -0.00003000 

 C                  0.00018500   -1.39606100   -0.00014800 

 C                  1.22379800   -0.77057100   -0.00013300 

 C                  1.21178100    0.63159700    0.00001500 

 H                 -0.00031800    2.40595900    0.00025400 

 H                 -2.15039800    1.17599000    0.00021500 

 H                 -2.15741700   -1.32190800   -0.00004900 

 H                  2.15783900   -1.32129100   -0.00023100 

 H                  2.15016200    1.17639000    0.00003300 
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7) TS2 

 

 C                 -1.03636900   -0.18623000   -0.00004200 

 H                 -1.02069100   -1.28226000    0.00037100 

 H                 -2.05556800    0.18996200   -0.00019500 

 C                  0.04642800    0.58930600    0.00009000 

 H                  0.15456400    1.66659000   -0.00003900 

 O                  1.08697000   -0.27167500   -0.00003100 

 H                  0.16558000   -0.81935000   -0.00017400 

 

8) acetaldehyde 

 

 C                  1.16874500   -0.14760200    0.00009600 

 H                  1.70800300    0.22235600   -0.87870500 

 H                  1.70744800    0.22174700    0.87950000 

 C                 -0.23564800    0.39721800   -0.00013300 

 H                 -0.30501700    1.50883200    0.00028100 

 O                 -1.23305000   -0.27660900   -0.00007500 

 H                  1.15538300   -1.23775900   -0.00025900 
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Figure 9 PES optimized structures (Cartesian coordinates) using the CBS-QB3 composite model: 

 

1) beta-2PE 

 

 C                  2.77865100   -0.22684100   -0.25784900 

 C                  1.94348700   -1.31538800   -0.00788700 

 C                  0.59566900   -1.11268200    0.27359900 

 C                  0.05733000    0.17887600    0.31377000 

 C                  0.90364300    1.26048600    0.05989900 

 C                  2.25470200    1.06225100   -0.22356700 

 H                  3.82906700   -0.38392900   -0.47602700 

 H                  2.34404600   -2.32305200   -0.03005100 

 H                 -0.05162900   -1.96234700    0.46444000 

 H                  0.50192000    2.26847900    0.08695900 

 H                  2.89582000    1.91547800   -0.41630700 

 C                 -1.41267900    0.38786400    0.61269900 

 H                 -1.68531700   -0.11700900    1.54861200 

 H                 -1.60301100    1.45938800    0.78806900 

 C                 -2.29262600   -0.13261600   -0.47367500 

 H                 -2.02255100    0.01588100   -1.51728600 

 O                 -3.63068900   -0.13385100   -0.16206400 
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 H                 -4.13189600   -0.41378400   -0.93382400 

 

2) O2 

 

 O                  0.00000000    0.00000000    0.60283800 

 O                  0.00000000    0.00000000   -0.60283800 

 

3) Species B (beta2PE o2 addition)  

 

 C                  3.26442900    0.43731500    0.35925700 

 C                  2.43661000    1.28418300   -0.37508800 

 C                  1.16669300    0.86262100   -0.75989400 

 C                  0.70416200   -0.41245300   -0.41856600 

 C                  1.54437100   -1.25407600    0.31714400 

 C                  2.81478300   -0.83448200    0.70535700 

 H                  4.25398200    0.76549200    0.65657800 

 H                  2.78024500    2.27514600   -0.64992800 

 H                  0.52511800    1.52952900   -1.32468300 

 H                  1.20467200   -2.25081000    0.58154900 

 H                  3.45391800   -1.50276700    1.27155500 

 C                 -0.67916300   -0.87458500   -0.82240900 

 H                 -0.96184700   -0.47673900   -1.80072700 

 H                 -0.70975400   -1.96424100   -0.89659400 

 C                 -1.77153900   -0.48416900    0.15758200 

 H                 -1.50182500   -0.68161400    1.20133500 

 O                 -2.96565600   -1.06437000   -0.20853600 
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 H                 -3.64034700   -0.73186600    0.39851100 

 O                 -1.89692200    1.00323900    0.09228200 

 O                 -2.92320100    1.39759900    0.81401800 

 

4) species B1 

 

 C                 -3.01374300    0.62566800   -0.31810100 

 C                 -2.00797300    1.46984400    0.15046400 

 C                 -0.75748200    0.95328700    0.47595900 

 C                 -0.49854700   -0.41508800    0.34212800 

 C                 -1.50991900   -1.25311100   -0.13121400 

 C                 -2.76235600   -0.73653500   -0.45841300 

 H                 -3.98757800    1.02842000   -0.57172700 

 H                 -2.19706300    2.53138200    0.26201400 

 H                  0.02223900    1.61567300    0.83772700 

 H                 -1.32097500   -2.31635700   -0.23866800 

 H                 -3.54006900   -1.39911100   -0.82089600 

 C                  0.87442600   -0.97011700    0.69897800 

 H                  1.16633200   -0.68244000    1.71218500 

 H                  0.84268000   -2.06521900    0.66196100 

 C                  1.91984300   -0.48840200   -0.24466700 

 H                  1.89922900   -0.66389400   -1.31849600 

 O                  2.87922700    0.19655700    0.20425500 

 O                  3.82698600    0.65822600   -0.65611800 

 

5) TS3 -(TS for B1) 
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 C                 -3.44210800    0.28923300   -0.37548000 

 C                 -2.62257300    1.26222400    0.19419900 

 C                 -1.32381000    0.94286300    0.57933600 

 C                 -0.83187400   -0.35488800    0.40419400 

 C                 -1.65734400   -1.32329500   -0.17094100 

 C                 -2.95733000   -1.00359200   -0.55727700 

 H                 -4.45368000    0.53788700   -0.67494100 

 H                 -2.99430600    2.27004200    0.33912500 

 H                 -0.69024700    1.70421400    1.02282000 

 H                 -1.28569100   -2.33298600   -0.31089400 

 H                 -3.59044800   -1.76537500   -0.99756900 

 C                  0.59234700   -0.69135700    0.82353000 

 H                  0.80232800   -0.36008500    1.84296500 

 H                  0.74879400   -1.77439000    0.78233100 

 C                  1.57812300   -0.06941600   -0.09739800 

 H                  1.58692500   -0.24502000   -1.16731800 

 O                  3.57773600   -1.48746700   -0.35839400 

 H                  3.89584200   -0.55758400   -0.47306200 

 O                  2.38413900    0.79214900    0.35963900 

 O                  3.32560700    1.28231600   -0.53477700 

 

6) OH 

 

 H                  0.00000000    0.00000000   -0.86685200 

 O                  0.00000000    0.00000000    0.10835700 
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7) TS4 

 

 C                 -3.11373900    0.93587300   -0.21461500 

 C                 -2.16071100    1.76343000    0.38316800 

 C                 -0.87815700    1.29403900    0.61184000 

 C                 -0.50152500   -0.02348200    0.24759200 

 C                 -1.48892000   -0.84654400   -0.35114700 

 C                 -2.76786300   -0.36892800   -0.57923500 

 H                 -4.11756300    1.30243900   -0.39473800 

 H                 -2.42336600    2.77604500    0.66701500 

 H                 -0.13779000    1.93890500    1.07229500 

 H                 -1.24363200   -1.86124000   -0.63914400 

 H                 -3.50632400   -1.01270100   -1.04337900 

 C                  0.83548700   -0.45401800    0.49895400 

 H                  1.50600100    0.28087500    0.93343000 

 H                  2.08259000   -2.11894000    0.90150500 

 C                  1.40782200   -1.68937200    0.16169400 

 H                  0.80888200   -2.43808400   -0.34425600 

 O                  2.74138700   -1.53339900   -0.93879700 

 O                  3.32053200   -0.39315200   -0.91084600 

 

8) styrene 

 

 C                  2.26141600    0.26117200    0.00001000 

 C                  1.35978800    1.32693500   -0.00001400 
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 C                 -0.00854800    1.09037100   -0.00002500 

 C                 -0.51405600   -0.22033300   -0.00001700 

 C                  0.40608700   -1.27922000    0.00000700 

 C                  1.77817500   -1.04408700    0.00002700 

 H                  3.32900500    0.44951100    0.00001300 

 H                  1.72800100    2.34697100   -0.00003200 

 H                 -0.69101100    1.93221900   -0.00003000 

 H                  0.03577400   -2.29942200    0.00001600 

 H                  2.46838800   -1.88039300    0.00005400 

 C                 -1.95325700   -0.52820100   -0.00004700 

 H                 -2.18570700   -1.59103800   -0.00015400 

 C                 -2.97217300    0.33479200    0.00004900 

 H                 -3.99690700   -0.01639500    0.00001800 

 H                 -2.83212300    1.40997200    0.00016600 

 

9) TS1 

 

 C                 -3.30949100    0.37019300   -0.21575900 

 C                 -2.29364000    1.23301500   -0.62179800 

 C                 -0.95862800    0.88839800   -0.42978100 

 C                 -0.61447800   -0.33808100    0.15462600 

 C                 -1.64302100   -1.19269600    0.56729400 

 C                 -2.97810800   -0.84210000    0.38501600 

 H                 -4.34859900    0.64331800   -0.35905600 

 H                 -2.53975900    2.18558800   -1.07764800 

 H                 -0.17858400    1.58404100   -0.71894600 
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 H                 -1.39532200   -2.14269100    1.02988600 

 H                 -3.75991400   -1.51936700    0.71063500 

 C                  0.81800600   -0.72246700    0.36078200 

 H                  1.32429900    0.28174400    1.08177400 

 H                  0.96846100   -1.59376700    1.00161500 

 C                  1.71801900   -0.62654900   -0.71302600 

 H                  1.48059600   -0.10890600   -1.63177400 

 O                  2.84976000   -1.32663700   -0.81438300 

 H                  3.02416800   -1.79766300    0.01070900 

 O                  2.60292000    1.32480500    0.06927400 

 O                  2.05587000    1.32968500    1.22982700 

 

10) 2-phenylethenol 

 

 C                 -2.80370800    0.24889400   -0.04977400 

 C                 -1.90984900    1.31759800    0.02268000 

 C                 -0.54055800    1.09078700    0.08225600 

 C                 -0.02047300   -0.21572700    0.05713700 

 C                 -0.93559400   -1.27930100   -0.00540100 

 C                 -2.30724100   -1.05186700   -0.05912100 

 H                 -3.87168100    0.42950600   -0.09042300 

 H                 -2.28368700    2.33552600    0.04396000 

 H                  0.12944800    1.93894900    0.16559500 

 H                 -0.56080900   -2.29781400   -0.01842500 

 H                 -2.98890100   -1.89396700   -0.10872000 

 C                  1.41553200   -0.51186700    0.10095100 
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 H                  1.67923300   -1.55142000    0.29177200 

 C                  2.41072300    0.36197200   -0.09760500 

 H                  2.24791100    1.40721300   -0.33069100 

 O                  3.74097500    0.08891100   -0.05314300 

 H                  3.86770000   -0.84222300    0.16534100 

 

11) OOH 

 

 H                 -0.88461600   -0.87070200    0.00000000 

 O                  0.05528900    0.71855200    0.00000000 

 O                  0.05528900   -0.60971400    0.00000000 

 

12) TS2 

 

 C                  2.82503800    0.24113500   -0.10595200 

 C                  2.04215900    1.29136300    0.36836300 

 C                  0.66924900    1.12158700    0.53327600 

 C                  0.05351700   -0.09797600    0.22415200 

 C                  0.85347600   -1.14582400   -0.24921700 

 C                  2.22658200   -0.97839500   -0.41491000 

 H                  3.89359000    0.37246400   -0.23491300 

 H                  2.49960900    2.24494200    0.60842200 

 H                  0.06138100    1.94072700    0.90134300 

 H                  0.38930100   -2.09543800   -0.49159100 

 H                  2.82828500   -1.80017500   -0.78750700 

 C                 -1.41271500   -0.28329300    0.41591200 
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 H                 -1.75037000   -0.64582400    1.38731200 

 C                 -2.31209200   -0.02821900   -0.53540300 

 H                 -2.03092100    0.33366000   -1.51816000 

 O                 -3.66252200   -0.17022500   -0.44189200 

 H                 -3.88535900   -0.49230400    0.43955500 

 

13) phenylacetaldehyde 

 

 C                 -2.62655500    0.29036400   -0.31557100 

 C                 -1.77238300    1.34736200   -0.00531200 

 C                 -0.44842100    1.09738400    0.34370900 

 C                  0.04175900   -0.21277100    0.39439400 

 C                 -0.82295200   -1.26485700    0.07910600 

 C                 -2.14814100   -1.01667200   -0.27330700 

 H                 -3.65818600    0.48478600   -0.58588600 

 H                 -2.13784800    2.36775200   -0.03412500 

 H                  0.21241000    1.92444700    0.58211000 

 H                 -0.46013100   -2.28700100    0.11876800 

 H                 -2.80676700   -1.84495000   -0.50956000 

 C                  1.49446000   -0.46619300    0.74200300 

 H                  1.62360400   -1.50914400    1.05414200 

 C                  2.39509400   -0.23257100   -0.46177300 

 H                  2.12224000   -0.82646400   -1.36208700 

 O                  3.32349700    0.53226500   -0.47929500 

 H                  1.83952900    0.18018700    1.55149400 
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Figure 10 PES optimized structures (Cartesian coordinates) using the CBS-QB3 composite model: 

 

1) alpha 2PE 

 

 C                  2.83993700   -0.27600100    0.01817200 

 C                  1.92246000   -1.33100200    0.01345400 

 C                  0.56001100   -1.08270100   -0.00166900 

 C                  0.05566100    0.24950100   -0.01342000 

 C                  1.01318200    1.30417600   -0.00850700 

 C                  2.37066200    1.04309200    0.00709100 

 H                  3.90466200   -0.47751600    0.03034100 

 H                  2.27970300   -2.35514700    0.02201800 

 H                 -0.13093000   -1.91782300   -0.00497900 

 H                  0.65699100    2.32891400   -0.01705500 

 H                  3.07620700    1.86679900    0.01074900 

 C                 -1.32306400    0.54380000   -0.02950600 

 H                 -1.64698300    1.57865600   -0.04950400 

 C                 -2.41608700   -0.46892500   -0.05582500 

 H                 -2.38522300   -1.03865400   -1.00214600 

 O                 -3.65592000    0.21920200    0.08131600 

 H                 -4.36447600   -0.42757200    0.02467500 

 H                 -2.27916800   -1.20291400    0.75662000 

 

2) O2 

 

 O                  0.00000000    0.00000000    0.60283800 
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 O                  0.00000000    0.00000000   -0.60283800 

 

 

 

 

 

 

 

3) Species A-(O2 addition) 

 

 C                 -3.30033200    0.08203400    0.16806000 

 C                 -2.45989200    1.00687900    0.78483400 

 C                 -1.08037300    0.91630800    0.62344000 

 C                 -0.52748200   -0.09859200   -0.16530700 

 C                 -1.37701900   -1.01554900   -0.78963000 

 C                 -2.75637400   -0.93019600   -0.61922800 

 H                 -4.37438800    0.15353000    0.29599100 

 H                 -2.87892700    1.80120200    1.39192300 

 H                 -0.43245700    1.64606300    1.09431000 

 H                 -0.95750400   -1.79851300   -1.41273100 

 H                 -3.40496200   -1.64802800   -1.10817200 

 C                  0.96257600   -0.23615200   -0.31115000 

 H                  1.22757500   -0.88909200   -1.14565400 

 C                  1.67185000   -0.73371000    0.95628100 

 H                  1.62000000    0.05710500    1.71964100 

 O                  2.99288300   -1.16678300    0.72196300 
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 H                  3.44295100   -0.44705700    0.26020100 

 H                  1.11584800   -1.59537400    1.33232600 

 O                  1.46650000    1.11410600   -0.66744000 

 O                  2.77113400    1.14943100   -0.84347600 

 

4) TS1 

 

 C                 -3.30957800    0.13972200    0.14615600 

 C                 -2.46063500    1.15572200    0.58300700 

 C                 -1.08337100    1.03185800    0.43062000 

 C                 -0.54425500   -0.10826600   -0.17613400 

 C                 -1.40040600   -1.12198400   -0.61639900 

 C                 -2.77730500   -1.00007100   -0.45269600 

 H                 -4.38196600    0.23716100    0.27054700 

 H                 -2.87207000    2.04564600    1.04517600 

 H                 -0.42467400    1.82399800    0.76535800 

 H                 -0.98827900   -2.00495700   -1.09358900 

 H                 -3.43322600   -1.79040300   -0.79895400 

 C                  0.93450100   -0.27344600   -0.33145300 

 H                  1.21131900   -1.03681900   -1.06161000 

 C                  1.64875100   -0.71533100    1.07198100 

 H                  1.28583800   -0.00733800    1.83242100 

 O                  2.98242000   -0.71760900    0.89583600 

 H                  3.18175100    0.12139600   -0.11719900 

 H                  1.23883900   -1.72181300    1.25207200 

 O                  1.52994900    0.95140000   -0.67540200 
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 O                  2.87951700    0.72810700   -0.97161500 

 

5) QOOH1 

 

 C                  3.30036500   -0.12014200    0.16398500 

 C                  2.44901300   -1.08620300    0.69689000 

 C                  1.07126000   -0.97705800    0.52912200 

 C                  0.53101800    0.10214300   -0.17859300 

 C                  1.39127100    1.06084500   -0.72040700 

 C                  2.76867400    0.95432700   -0.54577500 

 H                  4.37290600   -0.20769500    0.29541700 

 H                  2.85847800   -1.92910500    1.24210600 

 H                  0.41102700   -1.73766400    0.92678200 

 H                  0.98158800    1.89301300   -1.28374300 

 H                  3.42561000    1.70455700   -0.97112400 

 C                 -0.96269300    0.25905700   -0.32114600 

 H                 -1.20234800    0.99447600   -1.10111500 

 C                 -1.65754600    0.73029300    0.97727300 

 H                 -1.57182200   -0.04141400    1.75948700 

 O                 -2.93333000    1.16155200    0.77441200 

 H                 -1.09726200    1.61803300    1.33007500 

 O                 -1.46135600   -1.03231200   -0.70594600 

 O                 -2.90056400   -1.03345600   -0.61413700 

 H                 -3.16434800   -0.60003000   -1.44062000 

 

6) TS2 
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 C                  3.27270800   -0.08113200    0.15764300 

 C                  2.44178300   -0.93203600    0.86966300 

 C                  1.07143700   -0.87296300    0.69820600 

 C                  0.51852900    0.03727100   -0.19943600 

 C                  1.35829200    0.88549500   -0.91468500 

 C                  2.72788400    0.82853000   -0.73451900 

 H                  4.34614300   -0.12807200    0.29697800 

 H                  2.86498800   -1.64634100    1.56570900 

 H                  0.42241800   -1.54155000    1.24888300 

 H                  0.93424800    1.59300200   -1.61867100 

 H                  3.37300400    1.49262300   -1.29714600 

 C                 -0.96130200    0.13569600   -0.38015400 

 H                 -1.25790900    0.69690600   -1.26859600 

 C                 -1.61747800    1.06903000    0.94180800 

 H                 -1.34417100    0.47645300    1.83140500 

 O                 -2.89945400    1.25812000    0.72123000 

 H                 -0.99943500    1.98017600    0.84962600 

 O                 -1.48864700   -1.15871900   -0.37928500 

 O                 -2.90078300   -1.10330200   -0.67013500 

 H                 -2.89932500   -1.31133200   -1.61382400 

 

7) benzaldehyde 

 

 C                 -2.21384100   -0.24842800    0.00011300 

 C                 -1.32592400   -1.32774400    0.00008300 
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 C                  0.04301100   -1.09967100   -0.00013600 

 C                  0.53281000    0.21268500   -0.00019700 

 C                 -0.35950100    1.28892000    0.00007900 

 C                 -1.73235900    1.05946300   -0.00012000 

 H                 -3.28296400   -0.42941100    0.00045700 

 H                 -1.70788100   -2.34224600   -0.00035300 

 H                  0.75451300   -1.91698100    0.00001000 

 H                  0.02618300    2.30391000   -0.00071900 

 H                 -2.42448900    1.89357300    0.00026100 

 C                  1.99246400    0.46543600    0.00008200 

 H                  2.27265500    1.54160700    0.00053000 

 O                  2.84275300   -0.39430200    0.00004900 

 

8) formaldehyde 

 

 C                 -0.52594400    0.00000600    0.00006300 

 H                 -1.11812200    0.93871700   -0.00012700 

 O                  0.67402200   -0.00001900   -0.00001600 

 H                 -1.11839000   -0.93860200   -0.00012700 

 

9) OH 

 

 H                  0.00000000    0.00000000   -0.86685200 

 O                  0.00000000    0.00000000    0.10835700 
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Chapter 5 - Stability of Lithium Substituted Silyls Superalkali Species  
 

[This chapter was adopted from an article with the same title published in Chemical Physics 

Letters(Chem.Phys.Lett. (2018), 692, 214-223). Authors include Adam Otten and Giovanni 

Meloni] 

 

 

Abstract 

  

In this computational study we investigated superalkali species with the formula SiLin (n = 1 – 6) 

and the mixed silyl species containing both H and Li, SiHLi, SiHLi2, SiH2Li, SiHLi3, SiH2Li2, 

SiH3Li, SiHLi4, SiH2Li3, SiH3Li2, SiH4Li, SiHLi5, SiH2Li4, SiH3Li3, SiH4Li2, and SiH5Li. The 

CBS-QB3 composite model was employed to obtain optimized geometries and energetics. We 

found that these clusters increase in stability from SiLi to SiLi4, but decrease in stability from SiLi4 

to SiLi6. Our findings also show that these clusters exhibit stronger superalkali properties when 

increasing the amount of substituted lithium.    
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5.1 Introduction: 

With the growing need for alternative fuel sources, hydrogen energy has become a possible 

solution because of its planetary abundance, its ability to burn clean, and contains the highest 

energy density per unit mass [1]. Currently, conventional methods to store hydrogen in its pure 

form are either as a compressed gas or cryogenic liquid [2]. These processes are not ideal for 

mobile applications since they are highly energy intensive and have inherent safety risks [3]. 

Recent investigations have focused on metal hydrides as hydrogen storage carriers since they rely 

on stronger chemical interactions, resulting in materials that store hydrogen at higher temperatures 

[4]. Superalkali metal hydrides and electrolytes have also gained much attention as potential 

hydrogen storage compounds due to their light weight and high energy density [5].  

Superalkali species are defined as compounds whose first ionization energy is lower than 

that of alkali metals [6, 7]. This low ionization energy suggests that these species are highly 

reactive, which makes them ideal for synthesizing charge transfer salts [8, 9]. Superalkali species 

also have potential applications for electrochemical storage as in lithium ion batteries because of 

their charge transfer ability[8]. This theoretical study aims to develop a new class of compounds 

that exhibits these superalkali characteristics.  

Silicon is the second most abundant element in the earth’s crust and works as an ideal 

semiconductor due to its narrow band gap of 1.1 eV [10]. This property renders silicon a promising 

material for photoelectrodes in solar fuel cells and for composite membranes in proton-exchange 

membrane fuel cells [10, 11].  

Previous theoretical studies conducted by Gutsev and coworkers[7] were successful in 

optimizing superalkali species such as Li2F, Li3O, Li4N, Li3S, and Li4P, by doping non-metals and 

halogens with lithium. Meloni and coworkers [12, 13] investigated compounds, oxides and 

phosphides, of the Li3F2 superalkali using the CBS-QB3 composite model, finding that these 

clusters increase in stability upon the addition of oxygen and phosphorus atoms. Castleman and 

coworkers [14] calculated new superalkali clusters by combining the superhalogen Al13 species 

with small superalkalis showing ionization energies as low as 2.49 eV, which they named as “ultra 

alkali motifs.” Recently, Jena and coworkers [15] were successful in calculating a variety of 

superalkali zintl phase phosphorous clusters, showing that these species exhibit superalkali 

characteristics when complexed with methyl substituents. Calculations on lithium substituted 

group 14 elements have been achieved by Patrick and coworkers, where they calculated small 



 80 

carbon-lithium clusters at the B3LYP level of theory [16]. He and coworkers [17] were successful 

in calculating SiLin clusters for n = 4-16, but energetics results for clusters smaller than n = 4 have 

not been achieved. Pure silicon clusters were previously studied by Meloni and Gingerich [18], 

where they investigated the thermodynamic properties of Si7 and Si8 by Knudsen cell mass 

spectrometry, finding that these species have a higher stability when containing an even number 

of atoms. Meloni et al. [19] also investigated the structural transitions of Sin clusters where n = 4-

35 by VUV negative ion photoelectron spectroscopy, and determined that these clusters decrease 

in band gap energy and form a continuum when increasing in cluster size. A recent theoretical 

study by Zhao and coworkers [20] investigated the structural motifs of Sin clusters where n= 2-33 

by optical absorption spectroscopy, and found that these species can modulate light absorption by 

controlling the structural design and building pattern. In this study, we investigated the stability of 

lithium substituted silicon compounds with the formulas SiLix (x = 1 – 6) and SiHnLix (x = 1 – 6, 

n = 0 – 5, and n + x = 1 – 6)   using the CBS-QB3 composite model. Adiabatic ionization energies, 

together with atomization enthalpies, fragmentation energies, binding energies, and enthalpy of 

formation are provided. These results help in understanding the general bonding and stability of 

these clusters.  

 

5.2 Methods: 

All electronic energies and molecular structure parameters are optimized using the CBS-

QB3 composite method [21] with Gaussian09 [22] and Gaussview 5.0 [23] for visualization 

purposes. The CBS-QB3 method is widely used because it provides accurate energy values, with 

an absolute error less than 1.0 kcal/mol, and reliable structural optimized parameters [12]. To 

maximize efficiency, this method combines CBS-Q energy computations with B3LYP density 

functional theory (DFT) optimized geometries and frequencies [24]. Adiabatic ionization energies 

(AIE) are obtained by performing CBS-QB3 calculations on the ground state neutral and cation 

(+1 charge) species of each cluster. The AIE is defined as the difference of the zero point corrected 

(ZPE) total electronic energies (E0) between the neutral species and its corresponding cation. 

Atomization enthalpies (atH0), which are directly related to the stability of each species, are 

taken from the difference between the zero point corrected total electronic energies of neutral 

clusters and the sum of the calculated ground state electronic energies of its constituent atoms [12]. 

Larger atomization energy values correspond to larger energy needed to keep the species integer, 
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in other words it can be considered as the cohesive energy of a gaseous species. To determine 

thermodynamic stability, enthalpies of formation (fH0) are calculated by taking the difference 

between calculated atomization enthalpies and the sum of the literature enthalpies of formation for 

the constituent atoms in the gas phase [13]. Binding energies for pure clusters are calculated using 

the equation BE = atH0(SiLin)/n, where n 2 [17]. Fragmentation energies for the pure 

compounds are used to determine relative thermodynamic stability, and are calculated using the 

equation fragH0 = atH0(SiLix) - atH0(SiLix-1), where x  2. Higher fragmentation energies 

correspond to a greater stability than the neighboring clusters containing one more or one less atom, 

and are defined as the minimum energy to remove an atom from the cluster [18]. Highest Occupied 

Molecular Orbital – Lowest Unoccupied Molecular Orbital (HOMO-LUMO) gap energies are 

determined by taking the difference between molecular orbital (MO) energies, calculated using the 

restricted open shell method, ROB3LYP, when appropriate. The energetics results are listed in 

Table 1. 

 

5.3 Results and Discussion 

To prove the accuracy of the applied computational methodology, calculations were 

performed on the silicon hydride compounds SiHn (n = 1-6) for which literature data are available. 

Calculations were also performed at different spin multiplicities to establish the correct ground 

electronic state. The calculated AIE of the doublet ground electronic state of silyllidyne (SiH) 

using the CBS-QB3 composite method is 7.83 eV, which is in good agreement with the 

photoionization mass spectroscopic value of 7.91 eV [25]. Our calculated SiH bond length of 1.530 

Å and vibrational frequency of 2018.5 cm-1 agree well with the experimental values of 1.520 Å 

and 2042.0 cm-1 [26]. The computed AIE of SiH2 is 8.16 eV, which also agrees with the mass 

spectroscopic value of 8.24 eV [25]. Our calculated bond lengths and second vibrational mode for 

SiH2 (1.485 Å and 893 cm-1) match well with the literatures values of 1.487 Å and 860 cm-1 

[27].The silyl radical SiH3 has a reported spectroscopic AIE of 8.01 eV [25], which is in good 

agreement with our calculated value of 8.08 eV. Our computed Si-H bond lengths of 1.483 Å and 

the second vibrational mode of 940 cm-1 for SiH3 also match the values of 1.480 Å and 925 cm-1 

[27], respectively. SiH4 has a reported AIE of 11.02 eV [25], which matches perfectly with our 

calculated value of 11.01 eV. Bond lengths of 1.481 Å and the second vibrational mode of 926 

cm-1 are also in good agreement with the literature values of 1.480 Å and 960 cm-1 [27], 
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respectively. Gong and coworkers [28] were successful in calculating SiH5 with the D3h symmetry 

using MP2 and UHF levels of theory. Unfortunately, we were unable to reproduce their results. 

Attempts to optimize SiH5 using CBS-QB3, B3LYP, CCSD, and MP2 methodologies were 

unsuccessful because SiH5 results to be unbound dissociating into SiH4 + H. The compound SiH6 

was not previously studied. Calculations performed on SiH6 at the CBS-QB3, CBSB7, B3LYP, 

CCSD, and MP2 levels of theory yield SiH4 + H2. The computational methodology is additionally 

evaluated on the diatomic molecule SiLi (Fig. 1) with a ground state as a quartet and an AIE of 

6.29 eV, which also agrees with the literature value of 6.44 eV (PMP4) [29]. SiLi bond distance 

and vibrational frequency have not been experimentally determined, but our calculated values of 

2.367 Å and 444.4 cm-1 are in good agreement with the calculated literature values of 2.355 Å and 

472 cm-1 at the MP2 level of theory [29].   

 

Table 1. Energy quantities for SiHxLin and SiLin neutral clusters. atH0, fH0 , fragH0 , and BE 

are reported in kJ mol-1. AIE are in eV. 

Species Symmetry atH0 fH0 frag H0 BE AIE 

SiH Cv 299 363 - - 7.83  

SiLi Cv 177 478 - - 6.29 

SiHLi Cs 440 379 - - 5.99 

SiLi2 D∞h 289 472 148 145 4.81 

SiH2Li C2v 785 251 - - 6.06 

SiHLi2 C2v 618 359 - - 4.94 

SiLi3 C2v 492 427 167 164 4.69 

SiH3Li C1 1118 134 - - 6.96 

SiH2Li2 C2v 929 264 - - 5.24 

SiHLi3 C1 802 333 - - 4.64 

SiLi4 C2v 692 385 200 173 4.47 

SiH4Li C1 1227 241 - - 4.11 

SiH3Li2 C1 1194 212 - - 4.01 

SiH2Li3 C1 1039 312 - - 3.87 

SiHLi4 C1 914 379 - - 3.53 

SiLi5 C2v 837 397 145 164 3.73 

SiH5Li C1 1540 143 - - 7.33 

SiH4Li2 C1 1518 93 - - 6.68 

SiH3Li3 C1 1337 107 - - 4.77 

SiH2Li4 C1 1235 197 - - 4.28 
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SiHLi5 C2v 1055 395 - - 4.15 

SiLi6 Oh 984 408 146 153 3.88 

 

 

 

 

In the following sections, the silicon clusters are grouped based on the total number of 

atoms bonded to Si. All the relevant energetics information, enthalpies of formation at 0 K, 

atomization enthalpies at 0 K, fragmentation energies, binding energies, and adiabatic ionization 

energies are presented on Table 1. Upon substitution of one H with one Li atom SiH2 (C2V) loses 

its symmetry to yield SiHLi (Cs) with an increased H-Si-Li bond angle of 139o (Fig. 1).  

 

SiLi 

 

               
 

SiHLi 

   
 

 

 

 

 

 

 



 84 

SiLi2 

    
 

Figure 1. Optimized structures and highest-occupied molecular orbitals of SiLi, SiHLi, and 

SiLi2. 

 

 

Upon the substitution of the second lithium, the molecule SiLi2 (Fig. 1) exhibits a linear geometry 

(D∞h) in the ground state as a triplet, which differs from bent singlet SiH2. SiLi2 is the first 

superalkali species with an AIE of 4.81 eV. SiLi2 becomes less energetically stable with respect to 

SiHLi. This is showed by a decrease of its atomization enthalpy by 151 kJ mol-1 and an increase 

of its formation enthalpy by 93 kJ mol-1. SiLi2 displays the least stability, since it has the lowest 

binding and fragmentation energies out of all the lithiated clusters.  

When a H is substituted with one Li atom the SiH3 (C3V) becomes SiH2Li (C2v) with the 

elongated Si-Li distance of 2.73 Å (Fig.2). With the next substitution yielding SiHLi2 (Fig. 2), the 

compound still retains the C2v symmetry with a Li-Si-Li bond angle of 153o and Si-Li bond lengths 

of 2.41 Å. The fully lithiated SiLi3 assumes a “T-shaped- like” (C2v) planar structure (Fig. 2).  
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SiH2Li 

             
 

SiHLi2 

        
 

SiLi3 

        
Figure 2. Optimized structures and HOMO’s of SiH2Li, SiHLi2, and SiLi3. 
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Two species in this group of clusters display superalkali character. SiHLi2 and SiLi3 have an AIE 

of 4.94 and 4.69 eV, respectively, much lower than atomic lithium AIE of 5.39 eV [30]. These 

structures become less energetically stable as H atoms are substituted, which is seen from the 

decrease of the atomization enthalpy and increase of the enthalpy of formation. There is an increase 

in binding and fragmentation energy from SiLi2 to SiLi3, which suggests that SiLi3 is more 

thermodynamically stable.  

In the fourth group of clusters shown in Fig. 3, there is a change in geometry on the first 

substitution from tetrahedral SiH4 (Td) to SiH3Li (C3v) with the Si-Li bond length of 2.46 Å and 

the H-Si-Li bond angles of 116o. Upon the second substitution SiH2Li2 (C2v) takes a tetrahedral-

like geometry with the Si-Li distances of 2.45 Å, H-Si-H angle of 100 o, and Li-Si-Li angle of 132 

o. With the third substitution SiHLi3 (C1) loses the main symmetry with a Si-Li bond distance of 

2.41 Å and the other two Si-Li lengths of 2.44 Å. 

 

SiH3Li 

            
 

SiH2Li2 
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SiHLi3 

           
 

 

 

 

 

SiLi4 

          
 

Figure 3. Optimized structures and HOMO’s of SiH3Li, SiH2Li2, SiHLi3, and SiLi4. 

 

The last substitution yielding SiLi4 creates a see-saw-like (C2v) structure with four identical Si-Li 

distances of 2.35 Å. Three species in this group display superalkali properties, with SiLi4 having 

the lowest AIE of 4.47 eV. While SiLi4 is more energetically stable than both SiLi2 and SiLi3 

because of higher binding and fragmentation energy, we are still seeing a decrease in stability with 

each additional lithium substitution, with an overall atomization enthalpy decrease of 426 kJ mol-

1 and formation enthalpy increase of 251 kJ mol-1 from SiH3Li to SiLi4. 
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SiH4Li (Fig. 4) takes an asymmetric structure (C1) with Si-Li bond distances of 2.31 Å. 

The second substitution to SiH3Li2 creates a similar geometry as SiH4Li with Si-Li bond lengths 

of 2.42 Å. Also SiH2Li3 takes an asymmetric structure with Si-Li distances of 2.52 Å. The fourth 

substitution yields a structure with Si-Li lengths of 2.46 Å and Li-Si-Li angles of 67 o, 80 o, and 

155o. The final substitution to SiLi5 (C2v) displays an “umbrella-like” geometry with 4 equatorial 

lithium at 88o and 92o apart from each other and one lithium in the axial position, with Si-Li bond 

equatorial lengths of 2.39 Å and axial distance of 2.45 Å.  

 

SiH4Li 
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SiiH2Li3 

    
 

 

SiHLi4 

      
 

 

SiLi5 

     
 

Figure 4. Optimized structures and HOMO’s of SiH4Li, SiH3Li2, SiH2Li3, SiHLi4, and SiLi5. 
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Each species in this fourth group of clusters demonstrates superalkali properties, with tri-, tetra-, 

and penta-substituted species displaying an ionization energy lower than atomic Cesium at 3.89 

eV [30]. The AIE calculations for SiLi5 match well with He and coworkers [17] value of 3.72 eV. 

SiLi5 is less stable than SiLi4 because of its lower fragmentation and binding energy.   

In this last group of clusters shown in Fig. 5, we do not see the appearance of a superalkali 

species until the third substitution yielding SiH3Li3 with a kite-like geometry (C1). The fourth and 

fifth substitutions produce C1 and C2v structures, respectively.  

 

SiH5Li 

       
 

SiH4Li2 

     
 

 

 

 

 



 91 

SiH3Li3 
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SiLi6 

       
Figure 5. Optimized structures and HOMO’s of SiH5Li, SiH4Li2, SiH3Li3, SiH2Li4, SiHLi5, and 

SiLi6. 

 

The fully lithiated SiLi6 species (Oh) exhibits an octahedral geometry with Si-Li bond distances of 

2.41 Å and an adiabatic ionization energy of 3.88 eV, which matches well with He and coworkers 

[17] calculation of 3.91 eV at the CCSD/B3LYP level of theory. Like the previous group, there is 

a decrease in binding energy and the fragmentation energy remains constant.  

In Fig. 6 the AIE’s of the lithiated clusters are plotted against the number of Li atoms.  

 

 
 

Figure 6. CBS-QB3 adiabatic ionization energies in eV of the fully lithiated SiLin clusters vs. 

number of Li atoms (n). 

 

The trend shows that upon sequential addition of Li the AIE’s become smaller reaching the lowest 

value for SiLi5. A larger drop of the AIE value from the first four clusters, SiLi, SiLi2, SiLi3, SiLi4, 

to SiLi5 and SiLi6 can be explained observing the HOMO’s of these species and their atomic 
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charges. Up to SiLi4 the HOMO electron density is mainly localized on the central Si atom. For 

SiLi5 and SiLi6 the HOMO electron density starts shifting to the Li atoms. In SiLi5, approximately 

one third of the HOMO electron density is localized on the Li atoms and in SiLi6 the HOMO 

electron density is localized on the six Li atoms.  

 
 

Figure 7. Fragmentation energies, atH0(SiLix) - atH0(SiLix-1), in kJ mol-1of the SiLin (n = 2 – 

6) clusters vs. number of Li atoms (n). 

 

The fragmentation and binding energies plotted against the number of Li atoms shown in Fig. 7 

and 8, respectively, present a maximum corresponding to the most stable species within the 

investigated lithiated clusters, i.e., SiLi4. Tong et al. [31] attributed the magnitude of the HOMO-

LUMO gap to the molecular stability and reactivity of the clusters, such that a larger energy gap 

implied decreased reactivity and, therefore, increased molecular stability.  

 
 

Figure 8. Binding energies, atH0(SiLin)/n, in kJ mol-1of the SiLin (n = 2 – 6) clusters vs. number 

of Li atoms (n). 
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The HOMO-LUMO gaps in Fig. 9 therefore show that the most stable species is again SiLi4 with 

the largest gap of 1.91 eV.  

 

 
 

Figure 9. HOMO/LUMO gap energies in eV of the SiLin (n = 2 – 6) clusters vs. number of Li 

atoms (n). 

 

 

5.4 Conclusions: 

 Electronic energies and molecular structural parameters have been computed for fully 

lithiated SiLin (n = 1 – 6) clusters using the CBS-QB3 composite method. Using the calculated 

atomization enthalpies, formation enthalpies, fragmentation energies, binding energies, adiabatic 

ionization energies, and HOMO/LUMO gap energies for neutral structures, the relative stability 

of these species has been investigated. It was found that the smallest superalkali is SiLi2 with an 

AIE of 4.81 eV. From the analysis of HOMO/LUMO gap energies we are able to qualitatively 

quantify the stability of the pure species, which are found to increase in stability upon each lithium 

substitution up until SiLi4, then to decrease in stability from SiLi4 to SiLi6, with SiLi4 being the 

most stable out of all the pure clusters. We are seeing this enhanced stability in SiLi4 over the other 

pure clusters because all valence electrons in SiLi4 are occupied in bonding, while the other pure 

clusters have unpaired electrons unused during bonding. The larger drop in the AIE values of SiLi5 
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and SiLi6 is explained in the shifting of the electron density from the central Si atom to the Li 

atoms.  
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