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Brief Description: 

Employers often struggle to assess qualified applicants, particularly in contexts where 
they receive hundreds of applications for job openings. In an effort to increase efficiency 
and improve the process, many have begun employing new tools to sift through these 
applications, looking for signals that a candidate is “the best fit.” Some companies use 
tools that offer algorithmic assessments of workforce data to identify the variables that 
lead to stronger employee performance, or to high employee attrition rates, while others 
turn to third party ranking services to identify the top applicants in a labor pool. Still 
others eschew automated systems, but rely heavily on publicly available data to assess 
candidates beyond their applications. For example, some HR managers turn to LinkedIn 
to determine if a candidate knows other employees or to identify additional information 
about them or their networks. Although most companies do not intentionally engage in 
discriminatory hiring practices (particularly on the basis of protected classes), their 
reliance on automated systems, algorithms, and existing networks systematically 
benefits some at the expense of others, often without employers even recognizing the 
biases of such mechanisms. The intersection of hiring practices and the Big Data 
phenomenon has not produced inherently new challenges. While this paper addresses 
issues of privacy, fairness, transparency, accuracy, and inequality under the rubric of 
discrimination, it does not pivot solely around the legal definitions of discrimination 
under current federal anti-discrimination law. Rather, it describes a number of areas 
where issues of inherent bias intersect with, or come into conflict with, socio-cultural 
notions of fairness.  

Detailed Topic Description:  

Many large employers use (or rely on) staffing agencies that use Internet-based 
Vendor Management Systems (VMS) to procure both permanent employees and (more 
often) to contract with and manage contingent or temporary workforce labor (Johnson, 
2014). Both large companies and staffing agencies use Applicant Tracking Systems (ATS) 
software to electronically recruit applicants and manage their information. ATS can 
score and sort resumes and other job application materials from a central database they 
compile or have access to; then they rank applicants in order to achieve the best fit 
between a job opening and available job candidates (Rangel, 2014). Recruiters don’t 
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generally see beyond the information that applicants input, although they can make 
additional queries. Many do; according to a recent Microsoft survey, 80% of employers 
search for job candidates on Google during their review (Citron, 2014a).  

Large companies, particularly in the service and manufacturing industries, also use 
different kinds of Computer Business Systems (CBS) to micromanage singular 
employees and groups of employees by tracking and monitoring their actions 
(Skidelsky, 2014). For example, a CBS can act as digital control system for managing a 
large workforce by linking the workstations of employees together, storing information 
on their actions in central databases, and having a small group of managers activate and 
supervise automated management processes (Skidelsky, 2014). Because so many 
processes are digitized, employees produce much data about their actions and this data 
can be used for further analyses of the workplace. For example, Evolv, a recruiting 
software company, analyzed 3 million data points about 30,000 employees and 
identified that those who installed newer browsers, like Chrome or Firefox, onto their 
computers stayed at their jobs 15% longer than those who used default browsers that 
come pre-installed on their computers, like Safari (Economist, 2013).  

Data-driven employment opportunities are changing the ways that candidates are 
assessed for employment. These can be direct, like psychometric tests, or indirect, 
through databases that host the names of people suspected of employee misconduct, 
which can cause candidates to be screened out from the application process. Candidates 
may also be negatively or positively assessed by the stray, personal data available on 
them through a Google search; some negative association might even be attributed to 
them by the advertisements that surface next to the search results.  

Employers are interested in harnessing many kinds of data to improve efficiencies 
in their businesses, but it’s not always clear what kinds of data are relevant to 
employment, or what they should be optimizing for. Increasingly, job candidates are 
scored in ways that go far beyond traditional notions of credentials, like educational 
certificates. Non-work related data is often used in these scoring algorithms, but it is not 
always clear what data is included or how much control users have over how they are 
being interpreted. As law professor Danielle Keats Citron (2014b) has pointed out, 
consumers are largely unaware that their online browsing activity could result in their 
resumes being sifted out of the eligible talent pool.  

The design of data-driven hiring systems may be fraught with issues that pose a 
greater entry barrier for some applicants more so than others. For instance, there is some 
concern that particularly sensitive data, like health information, will factor into complex 
hiring algorithms that weed out employees whose real or perceived medical conditions 
represent a high-cost to their employers. While data mining tools can promote both 
inclusion and exclusion from job opportunities, current legal frameworks can make it 
challenging to remedy hiring tools that have a disparate impact on marginalized groups. 

Applicant Tracking Systems (ATS) 
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While the Internet has made the circulation of job advertisements easier and more 
accessible to a wider number of people, the applicant tracking systems (ATS) that 
manage electronic recruitment have narrowed whose applications employers see. These 
recruiting mechanisms can be valuable in terms of efficiency for employers, but these 
systems also have a number of drawbacks.  

Most broadly, large companies often rely on digital recruiting systems that only 
accept Internet-based job applications, which can act as a barrier to entry for people who 
do not have Internet access at home, or who must rely on libraries or other places with 
limited hours and access to computers to fill out applications. Although companies often 
rationalize Internet-based or Internet-only job application processes as a way to test for 
basic computer skills, numerous jobs do not require these skills, such as custodial, food 
service, and home healthcare personnel positions (Kelly, 2012). In this sense, Internet-
based applications act as a misleading proxy for an intelligence test, which can end up 
becoming counter-productive. A teenager may be better able to fill out the application, 
but a candidate who did not grow up around computerized devices might be more 
competent at the job. 

Outside of hiring tools that are developing more novel approaches to sorting and 
ranking applicants to promote specific goals, like workplace diversity, basic ATS’ rely 
primarily on keyword searches to sift through resumes to match the keywords found in 
the job posting. A good resume or a job candidate with solid credentials by traditional 
standards may be poorly equipped to satisfy ATS software (Hansen, 2013). To 
complicate matters further, some ATS cannot scan italicized words, and others can only 
read text but not graphics. Not all ATS can read documents with narrow margins, 
formatting that cramps the text (Fertig, 2013), or documents saved in particular formats, 
like PDF or some versions of Microsoft Word, etc. (UIC Office of Career Services, n.d.). A 
failed applicant may never find out that the reason she wasn’t selected for an interview 
was because of some small omission that didn’t gel with the ATS (Pasquale, 2015, p. 42).  

An ATS will sometimes incorporate pre-employment psychological, personality, 
cognitive, or other kinds of tests into their hiring process, particularly in screening 
potential retail employees. A 2009 survey found that these tests were used in 16% of 
retail hiring decisions (Pasquale, 2015, p. 43). The types of questions they ask and the 
selections that candidates make from the available responses may poorly reflect how 
capable they are of doing their job; still, this measurement will factor into how their 
application is scored, and can ultimately determine if they get an interview. For 
example, a question could ask if a potential employee ever thinks it’s okay to steal, and 
with response options of: Strongly Agree, Agree, Disagree or Strongly Disagree (Ehrenreich, 
2001, p. 29). A candidate who, for example, allows for contextual factors and answers 
‘Disagree’ instead of ‘Strongly Disagree’ may be faulted for lack of integrity in their 
honest response—and be penalized for it—simply because the test is not designed to be 
cognitive of context.  
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Such pitfalls in the application-sorting process can in turn render the impression 
that there is a skills shortage in the eligible pool of candidates rather than a sorting 
system with flawed granularity or design (Barocas & Selbst, 2014, p. 46), or a disconnect 
in the management theory that relies on automated systems. However, it can be 
challenging to interrogate the variables that go into a calculation, or the design of the 
sorting mechanism, both of which are often treated with the safeguard of ‘trade secret’.  

Wharton professor Peter Cappelli argues that data-driven employment is 
sometimes a deficient stratagem for recruiting labor because it feeds into the notion that 
with the right calculation, the perfect employee can be found. This is particularly 
problematic in a labor market with high unemployment. Cappelli contends that 
companies are leaving positions vacant for long periods of time as they search for 
candidates who fit a long list of micro-requirements, instead of opting to train 
employees for their jobs instead (Buchanan, 2012), although he supports workplace 
analytics that improve upon established HR practices (Lohr, 2014).  

 The founder of Entelo, a recruiting software company that conducts workforce 
analytics, lauds temp-to-perm hiring practices, such that employees and employers can 
test-drive each other before making permanent employment relationships by having a 
trial working arrangement first (Max, 2014). Hiring algorithms that can quickly produce 
new laborers with the right data profiles makes these practices easier to implement on a 
wide scale. Temp-to-perm hiring can mitigate vacancies and risk, but the practice 
generally undermines job security for workers who might be competing with several 
other ‘trial’ workers for a permanent position. An employee has to be an immediate 
rockstar in order to get a permanent position; in essence, they have to arrive pre-trained 
because an employer would rather be set-up with a great match than an untrained 
entry-level worker. Innovative hiring algorithms and practices are generally evolving in 
ways that support contingency and contract labor, and which empower employers to 
select from an increasingly analyzed labor pool.  

Networked Information: Social Media and Hiring Practices 

Applicant tracking systems (ATS) can come with a social recruiting component and 
a digital on-boarding process.1 “Social recruiting” refers both to using social media 
platforms to locate passive potential job candidates through direct sourcing (thus 
circumventing the possibility that HR will be inundated with job applications) and the 
distribution of job postings on social media networks and platforms or through Vendor 
Management Systems (VMS) that market job opportunities.1 While ATS systems may 
work primarily with the data that is inputted into its forms, the networked nature of 
information is raising the likelihood that employment algorithms will rely on new 
hordes of information on job candidates that will be sorted and categorized in even 
more obscure ways. According to a 2009 survey by Microsoft of HR professionals, 
recruiters, and consumers, only 7% of consumers thought their online reputations 
affected their job prospects, 70% of HR professionals reported that they rejected 
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candidates after mining their data (Microsoft, 2009, p. 5). 89% of U.S. recruiters and HR 
professionals seek out professional online data, like LinkedIn, while 84% think it is 
appropriate to check online personal data as well (Microsoft, 2009, p. 7). Employers scan 
social media for signs or flags of negative behavior, but they can also use the 
information available from public profiles to discriminate against job candidates on the 
basis of protected class information, like religion (Valentino-DeVries, 2013).  

To prevent employers from making hiring decisions on the basis of information 
they are prohibited from including in their job candidate assessments, a Fair Credit 
Reporting Act (FCRA)-compliant company called Social Intelligence offers to perform 
social media background checks on prospective employees on behalf of employers. 
Their Social Insight Executive Report blacks out information related to protected class 
categories, like race or age, from the written material it collects on job candidates’ online 
reputations, although the reports include photos that reveal information like gender, 
sex, race, etc., so the efficacy of their method is debatable. The following is a list of 
negative filters they use to raise red flags about job candidates: 
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Screenshot taken by Data & Society 2014-08-22. Content from Social Intelligence Corp.  

While the efficacy of their services is unclear, it is clear that job applicants are 
potentially subject to greater scrutiny of their private lives on the Internet than ever 
before. Crawford and Gillespie (In Press) recall one example in which a photo of two 
men kissing on Facebook was flagged as graphic sexual content, until protests from 
Facebook users, who pointed out that that straight kisses were not subject to the same 
treatment, prompted Facebook to remove the flag. As they observe, “…a flag is not 
merely a technical feature: it is a complex interplay between users and platforms, 
humans and algorithms, and the social norms and regulatory structures of social media” 
(p. 1). What an employer would see is that a job candidate has posted sexually explicit 
material on the Internet, rather than the values that went into the flag. Employers have 
to trust that the mechanisms of flagging are competent in order to sort through job 
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candidates efficiently, but this may come at a significant cost to the job prospects of 
candidates whose private lives have been communicated in negative ways to employers.  

The persistence of negative information on the Internet and how it is sorted into 
databases is a departure from traditional methods of word-of-mouth referrals and other 
reputational tools. As law professor Frank Pasquale (2015) writes, “Unlike a 
recommendation letter written for one or a few readers, or a phone call that is almost 
never heard by anyone other than the callers, Internet-based rumors and lies are 
frequently persistent, searchable, replicable, and accessible to any decision maker with 
access to the right software or database” (p. 140). For example, Google search queries 
might turn up decontextualized or misleading contexts for a job candidate’s reputation 
online. Harvard researcher Latanya Sweeney’s (2013) study found that Google’s 
AdSense algorithm turns up ads that suggest possible arrest records when racially-
associated names like DeShawn are queried, as opposed to Caucasian-associated names 
like Jill. While Google may not have intended to produce defamatory results in its ads, 
the ads may appear in response to the frequency that they are clicked on, such that the 
hidden biases of users who query names are made explicit through the mediation of an 
algorithm.  

In an employment context, these ads might have a disparate impact on job 
candidates with names associated with certain races. Barocas and Selbst (2014) have 
observed a parallel phenomenon in LinkedIn’s featured “Talent Match” algorithm, 
which scours through 60 million LinkedIn profiles and selects 24 of them as suggestions 
for each new job posting (Barille, 2010). It may show candidates to potential employers 
that effectively reproduce a hidden bias, and which may result from how often 
employers click on the proffered candidates (Barocas & Selbst, 2014, p. 41). The 
recommendation engine can thus replicate the biases of employers overall without 
accounting for the harm that this does to the candidates who are rendered less visible.  

A hiring algorithm that operates in a social media space could predict good matches 
based on the increasingly visible social networks that employers and job candidates 
have in common. Who you know is knowledge that is valued in Google’s recruiting 
process: Google asks job candidates to make a list of all the people they are already 
acquainted with who work there, presumably on the premise that similarly-networked 
individuals will be a good fit. Even though our social networks can be strong predictors 
of our behavior or situations, individuals who are not already ensconced in desirable 
social networks may find that they are excluded from job opportunities, which could 
disparately impact marginalized communities.  

The use of hiring algorithms that rely on seemingly innocuous data to weed out 
higher-cost employees through effective proxies (or a simple lack of information on said 
employees) means that employers can use familiar scoring mechanisms to penalize or 
benefit job candidates, and do so by using rationales that constitute a black box of 
mysterious calculations to the job candidate (Pasquale, 2015, p. 137). The costs of 
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networked employment models can thus reproduce illegal or unpermitted (not illegal, 
but still uncomfortable or unethical) forms of discrimination against job candidates.1  

While these cases introduce possible mechanisms for abuse, identifying precise 
harm or holding companies accountable for their procedures turns out to be challenging. 
In short, too little is currently known about exactly how these processes are employed in 
the workforce. It’s important to remember that although algorithms are potentially 
useful replacements for ‘hunch’-based hiring, they are fallible in other ways that often 
get lost in the excitement about the Big Data phenomenon and its potential to automate 
and perfect scored hiring processes (Walker, 2012). 

Data Analytics and Inequalities 

ATS are characteristic or prototypical of what has been described as the ‘scoring 
society,’ a term that encompasses the way that much of daily life, along with specific 
activities at work, act as signals to feed into algorithmic systems that determine 
allocations of rewards or punishments to individuals (or their data-doubles) (Pasquale, 
2015, p. 32). However, the logics of efficiency and optimization, as well as the promise of 
algorithmic systems to be neutral and fair mechanisms for assessing employability, 
inform the way that data analytics practices can amplify the problematic scoring systems 
inherent to ATS.  

If employers only look at applicants above a certain score threshold, there is reason 
to be concerned about the ways in which algorithms might obfuscate opportunities 
through their sorting mechanisms, or through the databases and data they rely on to 
score candidates. The Big Data phenomenon is raising concerns that job candidates can 
be included or excluded in employment opportunities in ways that are unfamiliar, and 
potentially unfair.  

When the often-impenetrable logics of scoring systems are implemented 
automatically, there’s often no room for flexibility, as employers don’t see additional 
applicant information to consider trade-offs. For instance, Richfield Management LLC, a 
waste-disposal company, has reduced workers’ compensation claims by 68% by using a 
recruitment test to screen out applicants who represent a high disability risk (Walker, 
2012). The test asks candidates to agree or disagree with statements like "When I'm 
working for a company I take pride in making it as profitable as possible.” If a candidate 
scores poorly, the company does not hire them, without exception.  

Using data analytics, Evolv, the recruiting software company discussed above, 
discovered that workers whose homes are far from their workplaces are more likely to 
quit their jobs. However, it deliberately excludes the distance a worker lives from their 
workplace from its hiring algorithms because of concerns that including such 
information could disparately impact the members of disadvantaged socio-economic 
                                                        
1 Theoretically, employers could use the urinalysis results from routine drug tests to similarly 
determine medical conditions or pharmaceutical drug uses linked to certain disease treatment 
protocols.  
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communities (Volz, 2014). Evidently, data analytics can be a tool for inclusion as well as 
exclusion in employment opportunities, but creating accountability or incentives for 
measures that benefit inclusion rather than exclusion is challenging.  

Not all data, or databases, are made equal, and the way they sort job candidates into 
positive or negative categories can be just as harmful as errant flags in social media 
background checks. Job candidates may be paying a high opportunity cost for inaccurate 
information, small errors, or flawed recruitment software, that affects how they score 
both in singular job applications, and over the course of their careers, even if these costs 
are not immediately visible. For example, First Advantage Corporation maintains the 
Esteem database that ‘blacklists’ employees who are accused of theft, usually in retail 
settings. As Clifford and Silver-Greenberg (2013) explain, First Advantage Corporation 
has tens of thousands of subscribers, including major retail companies like CVS and 
Target. In this system, it is the existence of allegations that matters, rather than the 
veracity of the claim. Employees are largely unaware that the ‘records’ of their alleged 
misconduct are inputted to a larger database that could prevent them from getting a job 
later on because companies may view them as potential problem candidates. The Fair 
Credit Reporting Act does not regulate this database, but the system nonetheless puts a 
permanent black mark on the records of employees. The accuracy and implications of 
these records can be harder to contest than the veracity of information in one’s credit file 
because there are no legally-mandated procedures for doing so. From a business 
perspective, employers have a concerted interest in combatting employee theft, which 
accounts for about 44% of theft altogether in the retail industry, and back channeling 
information about problem employees is one method for doing so. However, the 
methods by which employers optimize for efficiencies can come into conflict with 
societal notions of fairness and due process.  

Fuzzy Nudges and Diversity 

Generally, relying on scoring systems to hire individuals to perform a discrete series 
of tasks can undermine efforts to form a diverse workforce. Best practices guides for 
diversity hiring emphasize cluster hiring, meaning that a group of people with 
complementary skills who are able to float between different areas of expertise are 
employed together. Cluster hiring can also minimize instances where a hiring practice 
aimed at integrating more diversity into the workforce effectively isolates individuals by 
their singular and representative presence (Guenter-Schlesinger & Kunle, 2009).  

Typically, an ATS ranks job candidates by criteria such that, out of thousands of 
resumes submitted for a job posting, just the top 10 or 20 or perhaps only a few are read 
by a hiring manager, even though the ATS ranking may be a poor indication of the 
availability of qualified applicants in the pool. The top resumes that are put in front of 
the hiring manager effectively direct them towards those applicants at the exclusion of 
others. Google uses a recruitment algorithm that matches an applicant’s resume with 
about 10 jobs based on the probability that the traits or experiences in their resume will 
match well with the job descriptions (Soltani, 2014, p. 57). Hiring managers are thus 
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nudged into selecting applicants from the pool of pre-scored candidates who appear on 
their desk(tops). However, these algorithms can obscure discrimination. While hiring 
managers may not be making decisions based on protected class information, an 
algorithm that sorts resumes according to fuzzy, non-transparent criteria may well be 
making correlations between protected-class characteristics like race or sex, and the 
traits that predict employee success (Soltani, 2014).  

Entelo developed a diversity-hiring algorithm to sort candidates specifically by 
protected class characteristics in response to employers who expressed a desire to 
improve the gender balance on their engineering teams. Employers can thus be nudged 
toward diversity hiring, although Entelo insists that employers should always recruit 
the best person for the job (Bischke, 2014). A diversity-algorithm may offer a convenient 
technical solution to a non-technical, social problem, which might make diversity easier 
to achieve quickly, but this outcome-orientation may not address the workplace cultures 
that are inimical to diversity, or the best ways to achieve it. In other words, erasing an 
embarrassing absence of diversity through a ‘hack’ will not automatically generate the 
conditions that breed equality in the workforce. A quick fix is potentially a disincentive 
to examine more closely the issues that create an environment that is hostile to diversity 
in the first place. As such, an algorithmic solution can support a framing fallacy: just 
because Entelo provides a diversity solution through recruiting software does not mean 
that the fundamental problem spurring workplace homogeny is the absence of a good 
algorithm. However, it’s possible, though not a guarantee, that having more diverse 
people at work will itself re-orient conversations around workplace diversity in 
meaningful ways. As well, the potentialities of data analytics will create room for debate 
on the best ways to do so. 

Although individuals can be overwhelmed by the prospect of challenging a scoring 
algorithm or a database, data analytics can also be applied to identify patterns of 
negative bias in the workplace (Volz, 2014), and to identify the most effective areas for 
intervention. More data can create a broader and more granular view of labor conditions 
and relations, such that a seemingly innocuous item can be identified as having a greater 
predictive value for its impact on equality or inequality.  

Employment and Health Data: Reflections on Potential Harms 

The Big Data phenomenon generally implies that both public and more private, 
sensitive, localized, or otherwise restricted data are becoming more available for 
purposes that far exceed the original intent of their collection or use. There is some 
speculation that health data would be valuable to employers who could use it to assess 
whether job candidates will be high or low cost employees. Law professor Sharona 
Hoffman (2010) argues that employers, or the third-parties that employers rely on to 
fulfill staffing needs, could develop complex scoring algorithms that factor health needs 
into the cost of hiring or retaining a worker (p. 422), which could result in a disparate 
impact on workers with, or who develop, disabilities. According to Hoffman, over ten 
million workers sign authorizations releasing certain medical records to their employers 
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during the job application process (p. 415). The circumstances under which employers 
can request medical information, which kinds, and what they can do with that data is 
governed and restricted to some extent by US law. For example, it is illegal to make 
hiring decisions on the basis of genetic or disability information, with few exceptions.2 
But employers are sifting through these types of sensitive health data, and it is readily 
available to them—often with the inadvertent consent of employees and prospects. For 
instance, the urinalysis results from drug tests can also reveal certain medical conditions, 
like uncontrolled diabetes and pregnancy, as well as the presence of pharmaceutical 
drug uses linked to certain disease treatment protocols (Privacy Commissioner of 
Canada, 2012).   

The health data that is collected can legally be used for a variety of purposes, 
including to assess a person’s fitness for duty, reasonable accommodations in the 
workplace for disabilities, workers’ compensation and insurance claims, and to process 
Family and Medical Leave Act requests (Hoffman, 2010, p. 415). In such situations, 
having this type of information on employment candidates can be risky for employers, 
especially if their hiring processes could be called into question legally. In the interest of 
self-protection, many prefer to simply be told which candidates would be costly to the 
company if employed without knowing the reasons why. Commenting on Hoffman’s 
research, Pasquale (2015, p. 137) notes that an employer won’t explicitly say that a 
candidate was not hired because of their diabetes. Employers may not be looking to 
deliberately violate existing laws, but they are looking to determine which of their 
current or prospective employees will be high-cost workers. Although they do not need 
to find high-tech solutions to do so, external scoring leaves employers less vulnerable to 
questions about their hiring practices, particularly if they do not appear to be actively 
looking for medical correlations.  

In an ecosystem where data mining services are able to anticipate medical 
interventions (Taylor, 2014) based on credit card data or search engine results 
(Pettypiece & Robertson, 2014a), it’s not clear that the protections that currently exist to 
protect patient privacy, like the Health Information Privacy Protection Act (HIPPA), are 
sufficient to protect medical information. Many types of sensitive medical conditions can 
be inferred from data that is not protected in its collection or dissemination by HIPPA in 
the first place, which can make it more accessible to employers, even if it is unverified. 
Data analytics practices of collecting, compiling, sorting, and creating easy access to 
huge amounts of information undermines restrictions that are put in place to ensure that 
information can be collected only for the purposes to which an individual initially 
consented. As boyd and Levy (2014) have described, networked harms stem from the 
sudden availability of large amounts of data on individuals that is gathered and shared 

                                                        
2 There is a grey-zone between permitted and illegal discrimination when it comes to medical 
issues. For example, an employee could be fired for poor hygiene for emitting foul smells, but if 
they have halitosis and there is sufficient proof to render it representative of a disability, then 
they could potentially be protected from employment discrimination under law.   
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beyond their control. The problem is two-fold; in addition to the initial breach, there are 
no real legal remedies available for those whose privacy rights or expectations have been 
violated by a lapse in system-design or in the collapse of context around sensitive 
information. The sheer availability of information leaves many potential applicants 
vulnerable, even if some protections have been put in place. 

Job candidates do not need to undergo direct screening to be implicated with an 
expensive disease that can potentially harm their employment prospects. For example, 
Dan Abate, a technology worker, had his name and address posted online under the 
header Sampler Diabetes Mailing List, even though he does not have diabetes. However, 
Acxiom Corp, a leading data broker that resells the information it compiles on millions 
of people to other data brokers, often to marketers, catalogued his information as ‘of 
diabetes interest’, which is how he wound up on a mailing list for diabetes (Pettypiece & 
Robertson, 2014b). While in a marketing context, the harm this misinformation and mis-
categorization can have seems small, the line between marketing data and employment 
data, is blurry. If a Google search can turn up reputation data that gets flagged and 
harms job prospects, is there something about health data that is distinctly different in 
its production, dissemination, or prospective effect on employability? 

Although penalizing potential employees for their probable or possible medical 
conditions may be viewed as unethical if not illegal, giving preferential treatment to 
candidates willing to track and voluntarily share medical information is not viewed as 
negatively. Quantified-self tools, like the Fitbit and Nike’s Fuelband, are being readily 
adopted by countless health-conscious individuals already. Increasingly, companies are 
already encouraging employees to adopt health and wellness programs that involve 
personalized health tracking (Hendrickson, 2014). The start-up company Appirio gave 
Fitbits to around 400 employees in 2013-2014, and based on the data it collected, it 
convinced its insurance provider to reduce their rates by 5%, which amounted to a 
savings of $280,000 for the company; in 2013, BP America purchased Fitbits for 14,000 
employees, 6,000 spouses, and 4,000 retirees (Bort, 2014). There is clearly a strong cost-
savings incentive for companies to encourage employees to track and score their fitness 
activities, and potential health benefits to employees. Many companies have started to 
encourage adoption of these tools, offering discounts and opportunities to those who 
participate. It is not hard to imagine that candidates who are willing to offer such 
information might fare better in scoring systems than those whose data are missing. 

Legal Challenges 

It’s very difficult to challenge hiring algorithms and strategies that tout greater 
efficiency, productivity, and quantifiable qualities, especially when they give the 
impression of equalization or fairness because the barrier to entry is universally applied. 
In other words, it’s hard to assert that two people with a high score should not get the 
job compared to the person with a low or middling score, even if there are substantive 
inequalities inherent to the assessment tests that produce the lower-scoring candidate. 
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This fraught notion of fairness is reflected in legal precedent, particularly in the case of 
Ricci v. DeStefano (Barocas & Selbst, 2014, p. 44). In 2003, the city of New Haven held a 
civil service exam to determine promotions for its firefighters. One Hispanic and 
seventeen white firefighters scored disproportionately higher than their black 
counterparts, none of whom would merit promotion based on the results. As a result of 
this disparate impact, the city refused to certify the examination results, arguing that this 
would constitute a violation of Title VII of the Civil Rights Act of 1964. With the exam 
results called into question and ultimately not counted, none of the qualifying 
firefighters were promoted. They sued the city of New Haven as a group, and the case 
went up to the Supreme Court in 2009. The Court ruled in a 5-4 vote that the city could 
not ignore the test results because there was no strong basis in evidence that certifying 
the results would have made the city liable for disparate impact lawsuits. The city could 
have changed the test design before it was given in order to remedy potential disparate 
impact results, but effectively, using race as a reason to disqualify the results is 
discriminatory against the successful candidates (United States Department of Labor, 
n.d.).  

If a legal precedent like Ricci v. DeStefano serves to inform how algorithms are held 
accountable for discriminatory effects resulting from a test, Barocas and Selbst (2014) 
argue that hiring algorithms (and others) will similarly confound attempts to remedy the 
disparate impact effects they might produce. It is difficult to find ways of correcting for 
prejudicial results in advance of any resulting disparate impact because the notion of 
what the correct classificatory label is for the information that algorithms sort is fuzzy 
(Calders & Zliobaite, 2013). Hiring algorithms are designed using historical data to 
create predictions about which qualities correlate to a strong job performance. If the 
historical data has an implicit bias that favors one group over another, then the measure 
of a strong worker may have a strong correlation to race, sex, or another protected class, 
even if the algorithm-designer has no intention of replicating past hiring decisions that 
marginalize groups of people based on these categories (Barocas & Selbst, 2014, p. 45-
46). An algorithm could also rely on proxies for these, which could make it difficult for 
job candidates to hold employers accountable for intentional or unintentional 
discrimination. 

Cases of employment discrimination are notoriously difficult to prove, even 
without algorithms to contend with. For instance, a 2004 survey of court cases in which 
plaintiffs brought suits against their employers under the Americans with Disabilities 
Act prevailed successfully in only 3% of cases (Allbright, 2004). Thus, it may be cost-
effective for employers to continue using algorithmic calculations that could 
theoretically make them accountable for discrimination because the likelihood that they 
will be is so low. It can also be exceedingly difficult for employees or job candidates to 
prove that the discrimination was related to their consensual release of medical 
information in particular, especially if an employer does not act based upon that 
information immediately (Hoffman, 2010, p. 423). Legal remedies for individual harm are 
not structured in a way that accounts for networked harms. An injury must have a close 
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relation to harmful conduct, such that a specific plaintiff can be held accountable by a 
defendant for a wrongdoing (boyd & Levy, 2014). In the case of algorithmic hiring 
models, it would be challenging to detect where the precise harm is if the source of 
damage is located in proxies rather than in obvious points of contention, and it is more 
challenging still to determine who or which platform or network is liable for its 
functions or outcomes (given that a hiring algorithm would operate in co-ordination 
with other organizational mandates). At what point does the cost to individuals in 
negotiating their own employment prospects merit a re-evaluation of the system that 
causes their particular penalties (Barocas & Selbst, 2014)?  

Conclusion 

While a lot of the questions that networked employment discrimination provokes 
are speculative at this stage, they invite us to consider the ways in which such 
discrimination can be obscured or re-invigorated using algorithmic hiring practices. The 
networked nature of information signifies that employers potentially have access to 
more comprehensive electronic profiles on job candidates than has been traditionally 
available to them, which can expose job candidates to a greater scrutiny of their personal 
lives. Online reputations can be flagged in ways that are misleading, and even 
advertisements can create negative associations between job candidates in ways that are 
subtle, but present. Moreover, a small item in an employee’s history may be the tipping 
point between a low and a high cost to an employer, but those factors are ill understood. 
It is unclear what employers are optimizing for in their attempts to maximize efficiencies 
and minimize risk and costs, nor is it easy to determine whether job candidates who 
successfully achieve good or clean scores are participating in a fair process. There are 
natural barriers to transparency in said process, and the argument against transparency 
is that if the rationales behind algorithmic calculations are released, applicants will try to 
“game the system.” While workplace analytics and scoring represent opportunities for 
inclusion and exclusion in the workplace, the scoring and ranking systems they use to 
discriminate between job candidates requires careful consideration. Data analytics can 
be used to improve equality of outcome, but they can also mask hiring processes that 
contain prejudicial elements. 
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