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Abstract: Peruvian agriculture is estimated to be subject to the greatest impacts of climate 
change in South America. Resulting shifts in rainfall patterns and extreme temperature 
realizations impose more frequent abnormal weather shocks on farmers and their production 
decisions. I study the impact of such shocks on agricultural practice choices of farmers 
growing two main staples, maize and potato; namely, I analyze adoption of practices reducing 
soil degradation, practices aimed towards water conservation, and application of inorganic 
fertilizer. I utilize unique cross-sectional data from Peru National Agricultural Survey over the 
years 2014 to 2016 in conjunction with long-term climate data, and construct georeferenced 
shocks posed by unusual rainfall levels as well as unusual variation by using a novel approach 
in the literature. I then apply fixed effects estimation to analyze how experienced shocks and, 
plausibly, changed perception regarding the riskiness of their environment affect farmers’ 
choice of practices over an agricultural year following a shock(s). My analysis shows that soil 
practices’ adoption is not sensitive to previous year’s shocks but increases after multiple years 
abnormal rainfall, while rate of fertilizer users goes up by 7 to 9 percentage points following a 
drought year. Use of water conservation measures decreases drastically after years of 
abnormally high rainfall or low variability of it. I find limited heterogeneities in responses.  
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1. Introduction 

In 2006, the seminal Stern Review claimed Peru to be one of the most vulnerable countries to 

climate change in the world (Stern 2006). IPCC1 Special Report on Emissions Scenarios later 

estimated that Peru is going to see the greatest change in temperature levels among South American 

countries, with an estimated increase of 0.7°C to 1.8°C by 2020 and 1°C to 4°C by 2050 

(Nakicenovic et al. 2000). As rainfall levels and patterns are expected to go through major shifts, 

weather-related emergencies became six times more frequent over the period of 1997 to 2006, and 

Peru's glaciers have irretrievably lost over third of their surface area since 1970 (MINAM 2010; 

USAID 2018). At the same time, 8.9 million people out of country’s population of 31 million are 

involved in agriculture, a sector extremely vulnerable to more prevalent extreme heat and increasing 

water shortages (CIA 2017).  

Globally, hundreds of millions of the world's poorest people depend directly on smallholder 

farming economies. These systems are tied to climate change through a double link: on one hand, 

there is a need for farmers to adapt to changing conditions; on the other hand, agricultural practices 

play an important part in the mitigation process (World Bank et al. 2015; Cohn et al. 2017). These 

facts underline the need to understand how farmers perceive and adapt to climate change, in order 

to guide future adaptation strategies and policy responses to reduce the negative impacts of changing 

weather patterns (Lipper et al. 2015). Potential on-farm responses from smallholder households 

include diversifying income among multiple crops (Arslan et al. 2017), changing the portfolio of 

crops/varieties and livestock (Seo and Mendelsohn 2007; Salazar-Espinoza et al. 2015), modifying 

planting times (Deressa et al. 2008), adopting improved soil and water conservation practices 

(Kurukulasuriya et al. 2008; Arslan et al. 2014, 2017), and adjusting the quantity of inputs applied 

(Salazar-Espinoza et al. 2015). 

In the context of Peru, the World Bank has identified Climate Smart Agriculture (CSA) 

concept as a high-potential coping mechanism for smallholder agriculture (World Bank et al. 2015). 

CSA is an approach that involves different elements embedded in local context; farming practices 

are considered CSA if they maintain or achieve increases in productivity as well as contribute 

towards at least one of the other objectives of CSA, adaptation to climate change and/or reduction 

in greenhouse gas emissions (FAO 2012; World Bank et al. 2015). While hundreds of technologies 

and approaches around the world fall under the heading of CSA, in the current study I am going to 

                                                
1 Intergovernmental Panel on Climate Change 



 3 

look at the adoption of those measured by the Peru National Agricultural Survey as desirable 

conservation practices. Importantly, although there is a wide range of practices that have the 

potential to increase the adaptive capacity of farming systems as well as to reduce emissions or 

enhance carbon storage in agricultural soils and biomass, implementing them may be costly for 

smallholders themselves, especially in the short run (McCarthy et al. 2011). 

Therefore, in what follows, the main question I am going to ask is whether farmers themselves 

change their production behavior after they have witnessed unusual weather realizations. I am going 

to use repeated cross-sections of nationally representative agricultural survey data in conjunction 

with climate data that spans over the last 30 years, and therefore allows me to identify spatially and 

temporarily comparable weather shocks with high precision. I can then measure how changes in 

aggregated use of conservation practices on the level of small geographically homogenous units 

differ over time for those who receive (a) weather shock(s) and for those who do not. The study 

focuses exclusively on smallholders growing two main staples – potato and maize – that both form 

the basis of Peruvian diet, are in big part grown in the Andes highlands exposed to volatile weather 

patterns, and are cultivated as subsistence crops. 

My results show robust evidence that Peruvian smallholders’ adoption rates of soil 

conservation measures do not change, on average, after a year of abnormal rainfall, whether in terms 

of levels or variation. On the other hand, it appears that multiple years of both, too high and too low 

rainfall levels incentivizes more farmers to engage in these soil practices: I find an average treatment 

effect of 0.06 standard deviation increase in the composite soil practice adoption index for every 

additional year of excessive rainfall or drought, over the past 3- or 5-year window, respectively. 

Importantly, I find that at the same time the rate of chemical fertilizer application goes up after a 

single rainfall shock year, leading to the discussion about long- and short-term benefits of these two 

types of farmer responses towards maintenance of soil nutrients. Finally, as opposed to soil 

conservation, water conservation practices are rather sensitive to past year’s abnormal weather and 

not to multiple years of shocks.  

The main policy implication of the study is to contribute to the understanding of the likely 

uptake of farm-level adaptations in response to climatic variability. It is important to be able to 

differentiate between adaptations that farmers undertake autonomously, i.e. as a regular part of on-

going management, from those that are consciously and specifically planned under climate-related 

risks (Smit and Skinner 2002), while as of today, relatively little empirical work has been done to 

examine the climatic factors that incentivize farmers to adopt different practices (Arslan et al. 2017; 
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Lipper et al. 2018). Additionally, the majority of the relevant studies come exclusively from African 

countries (Hassan et al. 2008; Seo et al. 2009; Deressa et al. 2010; Kassie et al. 2013; Teklewood et al. 

2013; Asfaw et al. 2014; Arslan et al. 2014), while quantitative analyses of South American farmers’ 

responses to weather shocks are rare2. In terms of empirical strategy, the study has a threefold 

contribution to the existing literature. First, I use large, nationally representative plot-level survey 

data that despite its rich socio-economic information has, to my knowledge, not yet been used in any 

empirical studies. Secondly, rainfall data that provide my identifying variation have likely the highest 

possible spatial resolution that is currently available for the area. Lastly, differently from the majority 

of prior studies, I conduct summary indices instead of analyzing each practice as a separate outcome 

to avoid the multiple hypothesis testing bias.  

The rest of the paper is organized as follows. Section 2 discusses the relevant economic 

theory, empirical evidence on adaptation and conservation practices up to date, and the context of 

agriculture and climate change in Peru. Section 3 describes the empirical strategy. Section 4 

introduces the data sources and construction of weather variables. Section 5 covers the econometric 

analysis and results. Section 6 discusses the findings, inference and limitations of the study, while 

Section 7 concludes with final remarks and policy recommendations. 

2. Literature Review 

2.1. Economic Theory 

My study is based on theories of adoption and adaptation; the common objective for both subfields 

is to model economic agents’ decisions on whether or not to undertake a given course of action. The 

central idea to the long stretch of literature on adoption – now also used by the adaptation studies – 

is that households are assumed to maximize their utility subject to their constraints, and adopt a 

given technology/input if and only if the selection decision is expected to be beneficial (Zilberman 

et al. 2012).  

Modeling the course of adoption of a new technology started with seminal papers from 

Griliches (1957) and Rogers (1962). The latter set the general conceptual framework where diffusion 

of a new technology is modelled using an S-shaped curve. Central to this initial stage of theory is the 

assumption that farmers are homogenous, and therefore new innovations diffuse as farmers imitate 

each other, while different exogenous sources of heterogeneity affect the timing and magnitude of 
                                                
2 Seo and Mendelsohn (2008) analysis of crop choice across seven South American countries is 
methodologically the closest study to mine in the region.  
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adoption (Zilberman et al. 2000). It is later stated that these approaches lack a clear microeconomic 

foundation, namely explicit modeling of behavior by individuals (Zhao 2012). Thus, the family of 

threshold models was designed to overcome these shortcomings and to account for population 

heterogeneities (David 1975; Feder et al. 1985). The threshold model moves from diffusion to 

adoption process, and assumes that individuals make adoption decisions using economic decision-

making rules; two other central assumptions are the heterogeneity of potential adopters (in terms of 

location, farm size, farm quality, human capital), and existence of dynamic processes/forces that 

make technology more attractive over time (Zilberman et al. 2000). This is where the literature 

prevailingly adopts the static expected utility portfolio model – a framework of choice for most 

applied work in agricultural economics –, where the main goal of a decision maker is to maximize 

his/her profits and, through that, utility (Zhao et al. 2012).  

In summary, the earlier theory on farm-level adoption suggests that at each moment decision-

makers select technologies with the best-expected net benefits, and thus, when a new technology is 

available, decision-makers continuously evaluate whether or not to adopt; when the discounted 

expected benefits of adoption are greater than the cost, the technology is going to be adopted. What 

varies across production units is timing of adoption, and that reflects differences in size, human 

capital, land quality, etc. However, this approach does not allow for adopters to incorporate dynamic 

learning processes, which for in the following literature the static expected utility portfolio model 

was replaced with a continuous optimization problem (Zilberman et al. 2000). Subsequent studies 

such as Foster and Rosenzweig (1995), Bandiera and Rasul (2006), and Conley and Udry (2010) 

integrate social interactions between farmers as a central piece in explaining the spread of new 

technologies.  

A wide branch of literature has focused on the impact that risk has on production decisions, 

where technology adoption is a channel feeding into eventual production function that also 

incorporates different levels of risk. Moschini and Hennessy (2001) show how the most important 

economic modelling tools, optimization and equilibrium have only limited use under uncertainty, and a 

valid model of decision making under risk requires accounting for the entire distribution of risky 

variables that the agents are exposed to. It then needs to take into account how this randomness 

affects the distribution of outcomes over alternative courses of action. Simply put, decision maker's 

problem is more difficult under uncertainty as opposed to under certainty. According to Bardhan 

and Udry (1999), theory of risk in agricultural economy has three broader steps, if analyzed from the 

household perspective. Firstly, determining whether Pareto-efficient allocation of risk within a 
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community is possible; seminal papers by Townsend (1994) and Udry (1995) have established that 

full risk-pooling is rarely achieved. Secondly, if full risk-pooling is not possible, a substitution by 

intertemporal consumption/income smoothing is attempted through saving and credit markets. 

Finally, if a (risk-averse) household is not able to achieve an entirely smooth consumption path 

through ex post mechanisms, it has an incentive to reallocate resources in production decisions in 

order to secure a less variable income stream through ex ante coping mechanisms (Bardhan et al. 

1999; Salazar-Espinosa et al. 2015). Such measures involve maintaining diversified portfolio of land, 

and adopting conservative production technologies such as intercropping or drought-resistant crops, 

which for such decisions run into the climate change adaptation literature. These theoretical models 

as well as contribution from Binswanger et al. (1993) show that poorer households (which are more 

likely to be subject to binding liquidity constraints) choose a more conservative portfolio of activities 

than richer households, explaining why such households opt into activities that reduce the variance 

of their incomes but that also have lower expected incomes than the activities chosen by wealthier 

households.   

The core difference between the question I ask and the traditional (agricultural) technology 

adoption literature is that the latter almost exclusively considers modern technology adoption, i.e. 

something that makes farmer incur fixed costs, that involves learning and information asymmetries, 

and which therefore is described by uncertain productivity. Adopting conservation practices, on the 

other hand, could be first seen as a response to uncertainty posed by exogenous climate forces, so 

that we could expect farmer to adopt if he/she behaves in a way that minimizes encountered risks. 

On the other hand, adoption and adaptation can both be modeled by using similar tools, as both are 

discrete responses to (plausibly) exogenous changes (Zilberman et al. 2004; Asfaw et al. 2014).  

Adaptation has been defined as the response of economic agents and societies to political and 

economic shocks (e.g. famine) or major environmental changes (e.g. climate change) (Zhao et al. 

2012). In the context of weather, it consists of adjustments that economics agents make in order to 

cope with a change in the expected weather distribution (Burke et al. 2010; Dell et al. 2014; Hsiang 

2016). Economic theory suggests that adaptive actions are efficient – and thus desirable – only if 

their benefits exceed their costs, and also that private adaptations are likely to be efficient because 

the benefits and cost accrue to the decision maker (Mendelsohn 2012). The debate on the impacts of 

climate on agriculture started off with two main approaches. The first is production function 

approach that specifies a relationship between climate and agricultural output, and uses this to 

simulate the impacts of changing weather outcomes (Dell et al. 2014). This approach, however, does 
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not include any mechanism to count for farmers behavioral responses, and thus suffers from the 

“dumb farmer bias”, where a variety of the adaptations that farmers make in response to changing 

economic and environmental conditions are not incorporated in the models (Mendelsohn et al. 

1994; Maddison 2007; Dell et al. 2014). In response, Ricardian analysis that assumes that farmers 

would adopt the best technology available given the new weather, was adopted in a seminal paper by 

Mendelsohn et al. (1994). Studying adaptation has claimed to be central to the question of how 

much the estimated impact of weather variations can be used to determine long-run effects of 

climates changes (Dell et al. 2014; Hsiang 2016). 

Yet up to today, a body of strongly founded microeconomic theory on adaptation behavior is 

still to be shaped (Zilberman et al. 2012; Asfaw et al. 2014). The central questions here are how do 

economic agents perceive weather realizations, and how do they adjust their expectations in 

response. Maddison (2007) notes that a farmer may perceive several hot summers but rationally 

attribute them to random variation in a stationary climate, while in another situation a farmer might 

adapt by changing his production decisions immediately. One possibility is that farmers engage in 

simple Bayesian updating of their prior beliefs according to the standard formula, which indicates a 

slow process (Udry et al. 2010); the other option – shown by a few empirical studies of input and 

crop choices – is that farmers place more weight on recent information than is efficient (Maddison 

2007). In support of this view, Cohen et al. (2008) formulates that perceptions can be understood as 

being derived from a sequence of past events, and so we expect the evaluation of risks by individuals 

to be dependent on past experiences. Under this process of “adaptive expectation formation”, risk 

posed by weather can be proxied by past realizations of weather-related shocks experienced by a 

household. According to this view, droughts, floods and other climate hazards occurring in the recent 

past are likely to shape farmers’ perceptions regarding the current riskiness of their environment 

(Maddison 2007; Cohen et al. 2008). 

Once the change is perceived, a discrete choice among major response alternatives becomes 

the heart of the farm household adaptation process (Asfaw et al. 2014). These types of decisions are 

in essence adoption decisions, as Feder et al. (1985) and others emphasize. The pace and extent of 

these decisions then depends on agents’ adaptive capacity, in the literature defined as “the ability of a 

system to prepare for stresses and changes in advance, or adjust and respond to the effects caused 

by the stresses … so as to decrease vulnerability” (Asfaw et al. 2014). Adaptive capacity describes 

the capacity of agents in a system to manage and influence resilience, an important conceptual idea 

in the case of conservation practices – while there is no coherent, widely-used theory base for these 
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kind of resilience-management decisions. So far, the adaptation literature often just assumes that 

adaptive capacity can be directly measured through agents’ engagement in agricultural practices or 

technologies that increase yields, or more specifically, incomes (Di Falco et al. 2011). 

2.2. Empirical Studies of Adaptation 

While empirical studies of farming practices’ adoption in context of climate change are still sparse, 

there is an emerging body of work from past several years. These studies build on the literature on 

formulation of expectations under risk, discussed above, and the fact that sustainable land 

management techniques are often seen as risk decreasing; due to this property, it could be expected 

that greater variability in rainfall and higher maximum temperatures increase the use of such 

practices (Asfaw et al. 2014). While the first round of economic assessments of climate change 

impacts did not adequately account for the role of human behavior to fully or partially offset the 

effects of environmental change (Zilberman et al. 2012, Dell et al. 2014), recent studies have showed 

that farmers do perceive the changing climate, and they also take actions to reduce the negative 

impacts of the environmental change (Asfaw et al. 2014). Thus, similar modeling approaches to the 

agricultural technology adoption literature have now also been employed in climate change studies 

(Zhao et al. 2012).  

Apart from implicit impacts of climate change, a great number of studies – starting with Ervin 

and Ervin (1982) – has analyzed factors contributing to as well as constraining the adoption of 

conservation measures in agriculture (Knowler et al. 2007; McCarthy et al. 2011). Until recently, the 

studies were exclusively cross-sectional ex post adoption studies that often suffer from endogeneity 

arising from omitted variable bias, and concerns regarding small sample sizes (Knowler et al. 2007; 

Schlenker et al. 2014). Probit and logit models are the most commonly used models in these analyses 

of practice adoption as the authors aim to model adoption decision as a binary (multivariate) choice 

that is an outcome of various (potentially endogenous) factors (Asfaw et al. 2014).  

To name a few, Nhemachena et al. (2007) employed a multivariate probit model to analyze 

factors influencing the choice of climate change adaptation options in Southern Africa. Deressa et al. 

(2009) adopted the multinomial logit model to analyze factors that affect the choice of adaptation 

methods in the Nile basin of Ethiopia, while Deressa et al. (2013) used a two-step Heckman model 

where the first step is a farmer recognizing that change is happening and the second step is adapting. 

Kassie et al. (2013) and Teklewood et al. (2013) use the number of adopted conservation practices as 

a dependent variable, to then model adaptation in an ordered probit framework, where a certain 

number of practices is adopted through maximization of the latent variable – underlying utility 
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function (Teklewood et al. 2013). Swinton (2000) and Posthumus et al. (2010) are studies specific to 

conservation practices in Peru, yet neither employs weather variation in their identification. 

These cross-sectional studies suffer from the problematic identification of decision, including 

adaptation responses to changing climatic conditions (Dell et al. 2014). To avoid the most common 

issue of omitted variable bias, growing body of literature uses more advanced identification 

methods, namely panel data, high-resolution weather data, or those two in conjunction (Aufhammer 

et al. 2014). The idea there is that while average climate could be correlated with other time-invariant 

factors that we as analysts potentially cannot observe, short-run variation in climate (weather 

variation within a given area) is plausibly random (Schlenker et al. 2009; Dell et al. 2014). This fact 

helps to then identify the effects of changes in climate variables on economic outcomes.  

Arslan et al. (2013) provides evidence for a positive correlation between rainfall variability and 

the selection of sustainable land management type practices. Kassie et al. (2008) analyze the impact 

of production risk arising from weather shocks on the adoption of conservation agriculture as well 

as use of inorganic fertilizer. They find that risk deters adoption of fertilizer, but has no effect on the 

conservation agriculture adoption decision. Seo et al. (2008) and Kurukulasuriya et al. (2008), using 

data of South American and African farmers respectively, show that crop choices are highly sensitive 

to changes in precipitation and temperature under different climate change scenarios. Di Falco and 

Veronesi (2013) find that crop adaptation is more effective when it is implemented along with a 

portfolio of sustainable land management practices rather than in isolation. 

Specific to studies using panel data, various methodological approaches have been used in 

conjunction with weather data. Salazar-Espinoza et al. (2015) use pooled fractional probit to analyze 

shock responses among small-holders in Mozambique. They find that farmers shift land use away 

from non-staple crops one year after a weather shock, while two years later they tend to switch back 

to cash crops again. Asfaw et al. (2014) employ a multivariate probit with fixed effects to model 

farming practice selection decisions and their yield impact estimates in Malawi, finding that higher 

variation in rainfall and temperature predicts the choice of risk-reducing agricultural practices such 

as soil and water conservation practices; additionally, wealthier households as well as these with 

secure land rights are more likely to adopt both modern and sustainable land management practices. 

Closest to my study, Arslan et al. (2014) examine a set of potentially climate smart agricultural 

practices in Zambia by using socioeconomic panel data in conjunction with geo-referenced data on 

historical rainfall and temperature. They find that post-shocks, the use of modern inputs (seeds and 

fertilizers) is significantly reduced, whilehange in soil conservation practices and crop rotation does 
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not turn out to be significant. Their productivity analysis shows that intercropping significantly 

reduces the probability of low yields when a household is under critical weather stress, proving its 

potential as an adaptation measure (Arslan et al. 2014). 

2.3. Peruvian Agriculture and Climate Change 

As indicated above, IPCC and the Stern Review have both identified Peru among the regions most 

vulnerable to adverse impact of changing weather patterns. UNDP Human Development Report 

states that 2°C increase in the maximum temperature and 20% increase in the variability of rainfall 

by 2020 would lower Peru’s GDP 20% and 23.4% from a scenario without climate change,  

respectively (UNDP 2013). Peru is also among the Latin American countries with the most limited 

water resources (McCarthy 2015). Normally, glaciers store water in the rainy season and release it 

throughout the year, while in current glacial retreat conditions, flooding is often caused by too much 

water being released over the rainy season, and drought by not enough released during the dry 

season (USAID 2017). Currently, more than 80 percent of farmers practice rain fed subsistence 

agriculture in situation where changes in precipitation and melting glaciers are increasingly resulting 

in competition over water resources (USAID 2017).  

Empirical evidence shows that Peruvian small-scale farmers have perceived climate change and 

that there is consensus about the more frequent extreme weather events as well as more 

unpredictability in weather patterns (Painter 2007). According to a 2013 Oxfam study, almost 50% 

of the households in Peru indicated that climate change has resulted in an expansion of the range of 

major pests (Oxfam Novib 2013), while the United Nations Food and Agriculture Organization 

reports that nine of the main crops in Peru – including potato and maize – suffer from significant 

yield losses under all six considered future climate change scenarios (FAO 2017). Results from 

Saldarriaga (2016) suggest that variability and not absolute levels of climate indicators have much 

greater effect on agricultural productivity in Peru, consistent with the rest of the economic literature 

on weather (Dell et al. 2014). He also shows the regionally distinct impacts, as weather variability 

affects agricultural activity in the Andes region and, to a large extent, in the Amazon region, while no 

statistically significant results are found for the Coast region (Saldarriaga 2016). 

As suggested by the heterogeneity of natural conditions and crop compositions in Peru (World 

Bank 2015; Saldarriaga 2016 MINAGRI 2018;), I am going to focus on two main staple crops in my 

analysis: potato and maize. About one fourth of 3.5 million hectares that are used for agriculture are 

used for maize and potato cultivation (MINAGRI 2015), crops rank as second and third for their 

economic importance, comprising 0.2% and 0.3% of GDP, respectively (World Bank 2015), but 
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most importantly, maize and potato are the most prevalent staple crops for Peruvians (UNDP 

2013). 64% of farmers live in the Andean region and implement subsistence, rain fed methods to 

grow crops like potatoes and maize (USAID 2017). In context of climate change, according to IPCC 

scenarios potato and maize are both estimated to lose their climatic aptness across their current 

cultivation areas in Peru (IPCC 2000), and the cultivation areas of both crops are claimed to have 

high biophysical and social sensitivity due to both poverty levels and sensitivity to natural shocks 

(MINAM 2010; CIAT 2014). According to Oxfam’s report, production risk for potato is especially 

high due to several recurrent factors, particularly drought, flooding, hail, and frost (Oxfam Novib 

2013). 

The rate of explicit agricultural adaptation in response to these climate observations appears to 

be low. Wheeler (2017) reports that 15% of farmers in their household survey reports having 

explicitly adopted adaptation behavior, while most households reports using one or more 

production practices that are considered to be climate adaptive by researchers (Wheeler 2017). 

According to the evidence on impact channels, greater emphasis must be placed on the use of 

irrigation technology, and prevention and elimination of pests arising from the effects of extreme 

temperatures (Saldarriaga 2016), while different stakeholders working with the Peruvian agriculture – 

FAO, the World Bank, CGIAR – have identified various sets of conservation measures that could 

potentially help small-holders to cope with the future weather pattern shifts.  

An overarching theme is what the agricultural development discourse has defined as climate-

smart agriculture (CSA), a context-specific approach “with many approaches potentially being CSA 

somewhere, but no single practice being CSA everywhere” (CGIAR 2017). Ideally, such practices 

would achieve at least two goals out of three: maintained productivity, enhanced resilience 

(adaptation), and mitigation, where “… productivity is the priority in developing countries 

dependent on agriculture for subsistence” (Rosenstrom et al. 2016). Most importantly, CSA 

technologies should address weather-related risks, and help to ameliorate the impacts of the latter 

both in short-term (i.e. current productivity) and in long-term (i.e. long run for variability in 

production under climate change) (Rosenstrom et al. 2016). Currently, an economic decision-making 

framework that could assist in identifying challenges for CSA application still needs to be developed 

(Lipper et al. 2017). CGIAR and the World Bank have conducted a situation-analysis of CSA in 

Peru, capturing the current status of CSA initiatives, vulnerabilities and threats given specific 

contexts, as well as the enabling environments at multiple levels (see Part C of Appendix) (World 
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Bank 2015). In the current study I am looking at approaches that multiple sources univocally identify 

as possessing adaptive potential.  

The first outcome I analyze is a composite measure of four desirable soil conservation 

practices as they are identified and measured by Peru National Agricultural Survey. The first one, 

crop rotations, is meant to ensure differential nutrient uptake between crops, and to thus enhance 

soil fertility, reduce dependency on chemical fertilization, and lead to higher yields (McCarthy et al. 

2011). The second, application of organic matter is a low-emission approach to increase soil’s water 

holding capacity and chemical properties (Arslan et al. 2017); Altieri et al. (2015) quote occasions 

from Guatemala, Brazil and Honduras where organic fertilization led to 20–250% higher maize 

yields, and Scialabba et al. (2002) found that potato yields increased by over 250% in Bolivia. 

Thirdly, construction of terraces is a measure that reduces soil erosion after high magnitude rainfall 

and thus increases soil quality (Singh et al. 2017; Arslan et al. 2017); Altieri et al. (2015) has shown 

that restoration of Incan terraces has led to 50% increase in a range of upland crops. Finally, soil 

analysis is a practice not commonly included in compilations of climate smart practices but rather a 

local interest for the Peruvian stakeholders. However, as its adoption rate remains only around 2% 

over the years under study, and as we use covariation-based index to capture overall practices’ 

uptake, we do not find it problematic to include it as one of four soil practices as suggested by INEI.  

The second outcome under study is a composite measure of practices aimed to reduce water 

shortages. Just like soil conservation, there is four practices that form my composite index: 

determining plants’ water needs prior to season, determining watering times, measuring irrigation, 

and maintenance of irrigation. The four are all simple ways to work towards a priority for Peruvian 

agriculture: to cope with upcoming water shortages (Singh et al. 2017). Proper water management 

can help capture more rainfall, use it more efficiently and make the maximum amount available to 

crops (McCarthy et al. 2011). The meta-analysis of climate-smart practices’ benefits by McCarthy et 

al. (2011) estimates the average marginal yield increase from adoption of water management 

practices to be 92% in dry areas and 164% in humid areas.  

The final outcome I analyze is the application of chemical fertilizer – an input that we expect 

to address rather short-term productivity-related concerns that farmers might have after shocks. The 

study most similar to mine, Arslan et al. (2017), finds that soil and water conservation practices are 

the main components of any combination of practices that result in improved yields in context of 

rainfall and temperature shocks; on the other hand, modern inputs – such as chemical fertilizer – are 

less resilient to shock but function better in combination with additional sustainable practices. As 
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discussed in Arslan et al. (2017), while in the short run the productivity impact of chemical fertilizer 

is higher than that of organic fertilizer, in long perspective the latter appears to be more beneficial in 

terms of maintaining soil productivity and reducing soil erosion. While literature widely finds 

fertilizer use to increase yields, the majority of this evidence is valid under average climatic conditions, 

and the superiority of inorganic fertilizer under harsh climatic conditions – expected to get worse 

under climate change – needs more research (Arslan et al. 2017). Asfaw et al. (2015),  

for example, find that the productivity increasing effects of improved seeds disappear under very hot 

growing season temperatures, and that of inorganic fertilizers decrease significantly under false 

rainfall onsets in smallholder maize systems of Zambia. 

3. Data 
 
My analysis uses three types of data. The first source is three rounds of household surveys 

conducted by the Peru National Institute of Statistics and Informatics (INEI); the second and the 

third source are the Climate Hazards Group InfraRed Precipitation with Station (CHIRP) and the 

Center for Environmental Data Analysis (CEDA) for data on precipitation and temperature 

outcomes, respectively.  

3.1. Socioeconomic Data 

Peru National Agricultural Survey covers the years 2014, 2015 and 2016; each year’s sample is 25,000 

randomly drawn households, giving me a repeated cross-sectional dataset. The samples were chosen 

through a two-stage process using the 2012 Agricultural Census (IV CENAGRO 2012) as the 

sample frame, where the first step was randomly drawing 1,000 households from each department 

of the country. Thus, my socioeconomic data are nationally representative for Peru. After excluding 

the special strata included in the survey – medium and large sized agricultural operations with land 

size bigger than 50 hectares –, and households that do not grow potatoes or maize, the eventual 

numbers of households under study are 13,598 for 2014, 14,581 for 2015, and 15,200 for 20163. The 

survey asked detailed questions on crops and livestock operations during last agricultural year, and 

the information was collected for each plot within a household, and each crop within a plot, which  

 

                                                
3 Despite the intentional equal sample size of 25,000 households for each cross section, the actual sample size 
increased slightly over years. Thus, I do not have to be concerned about potato/maize growers being 
proportionally more represented in 2015 or 2016. 
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TABLE I: SUMMARY STATISTICS 
 

VARIABLES 2014 2015 2016 Total 

Gender of household head (1 = male) 0.716 0.720 0.712 0.716 

 (0.451) (0.449) (0.453) (0.451) 
     Age of household head 51.67 52.30 52.59 52.20 

 (15.67) (15.27) (15.10) (15.34) 
     Primary school or less 0.788 0.790 0.776 0.784 

 (0.409) (0.408) (0.417) (0.411) 
     Indigenous 0.520 0.487 0.504 0.503 

 (0.500) (0.500) (0.500) (0.500) 
Experience (years) 24.721 26.200 26.383 25.802 
 (15.133) (14.809) (14.744) (14.904) 
     Household size 3.909 3.820 3.812 3.845 

 (2.120) (2.076) (2.049) (2.081) 
     Distance to center (hours) 1.546 1.676 1.618 1.624 

 (2.103) (2.350) (2.135) (2.202) 
     Land size (hectares) - 4.701 4.856 4.780 

 (-) (7.310) (7.650) (7.487) 
Livestock ownership 0.825 0.858 0.870 0.852 
 (0.380) (0.349) (0.337) (0.356) 
     Technical irrigation 0.500 0.505 0.498 0.501 

 (0.500) (0.500) (0.500) (0.500) 
     Received extension  0.174 0.144 0.112 0.142 

 (0.379) (0.351) (0.315) (0.349) 
     Number of plots 2.772 3.528 3.921 3.429 
 (2.976) (3.393) (3.498) (3.339) 
Number of crops per plot 2.058 2.359 2.542 2.329 

 (1.687) (1.995) (2.196) (1.990) 
Cooperative membership 0.0574 0.0473 0.0499 0.0505 
 (0.227) (0.212) (0.218) (0.219) 

Number of years 7.427 7.278 6.754 7.147 
 (9.013) (8.706) (7.348) (8.377) 
     Access to credit 0.121 0.111 0.118 0.116 

 (0.326) (0.314) (0.322) (0.321) 
Saving account 0.060 0.191 0.227 0.163 
 (0.238) (0.393) (0.419) (0.369) 
     Land tenure (1 = own) 0.650 0.664 0.614 0.642 

 (0.477) (0.472) (0.487) (0.479) 

Observations 13,598 14,579 15,200 43,377 
Notes: Credit access refers to the percentage of households who requested credit and also received it during the 
preceding year. Receiving extension applies for the preceding three years. Number of crops is averaged over all 
plots that a household owns. 
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for I constructed the household level data from the plot and crop level data. The summary statistics 

for the socioeconomic data can be seen in Table I. 

Each household in the survey is assigned into a spatial unit called conglomerado. These have 

higher spatial precision than the smallest administrative units (districts), and therefore less 

heterogeneity in terms of natural conditions that the households are exposed to. Across the nation, 

there is 1,454 conglomerados in total for the year of 2014, and 1,889 conglomerados for 2015 and 20164. 

3.2. Climate Data 

The second set of data is monthly rainfall totals from the InfraRed Precipitation with Station, a 

second generation dataset from the Climate Hazard Group. It is quasi-global rainfall data that goes 

back to 1981 and combines records from satellites and ground stations (Funk et al. 2015). The data 

have a resolution of 30’’ (around 1 km at the equator) and are extracted to cover the period of 1986-

2016. After pre-processing the data for the right projection, we used ArcGIS 10.2.3 to extract values 

from interpolated surfaces for the longitude and latitude coordinates of all the conglomerados (spatial 

units in the household survey data), to capture the most precise possible local variability. 

The third, temperature dataset comes from CEDA Web Services framework, a high resolution 

gridded observational climate record (CEDA 2018). The data points come, once again, for every 

conglomerado, and go back 30 years in time (1986-2016), with a temporal resolution of one month (i.e. 

featuring monthly means), and a spatial resolution of 5’ (~10 km at the equator). While my 

temperature data have lower resolution than the precipitation data, the literature acknowledges that 

precipitation has much more spatial variation than temperature in general – especially in rugged 

areas like Peru –, which for it is more difficult to interpolate (Dell et al. 2014). 

3.3. Construction of weather variables 

In order to utilize weather shocks as treatment condition, I need to determine the definition of a 

shock and construct variables indicating whether a place received one. The most common approach 

in the economics literature is to define shocks as deviations from long-term normal, where the 

threshold level of deviation is open for interpretation (McKee et al. 1993; Auffhammer et al. 2013). 

For my calculations of climate variables, I am going to use a reference period of 1986-2016 that 

                                                
4 As the spatial units have perfect overlap for the last two years of the survey but not for the first one, I use 
Stata command Geonear to calculate the distances between the spatial units, and find the closest matches for 
each conglomerado among their counterparts in the 2014 sample; if two potential matches are available, I 
optimize the choice to achieve the minimal total distance between all the pairs. All the resulting pairs are 
within 10 kilometers from each other.  
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gives me a 30-year-window as done in previous literature (Dell et al. 2014); it is suggested that 30 

years is long enough to not be insensitive to recent shocks, while not so long as to misrepresent the 

current local climatic conditions (Auffhammer et al. 2013; Salazar-Espinosa et al. 2015). 

Climate data have complex structures due to spatial and temporal autocorrelation (Dell et al. 

2014). To come around that, climate indices are time series that summarize the behavior of climate 

in a region, and that are thus used to characterize the factors impacting the global climate (Zhang et 

al. 2011). For rainfall, common approaches to model deviations from normal are Palmer Drought 

Index, Percentage of Normal Precipitation, and Standard Precipitation Index (SPI) (NOAA 2017). 

The latter is a drought index, first developed in McKee et al. (1993), that is now most commonly 

used and recommended by the World Meteorological Organization for dry spell monitoring (Zhang 

et al. 2011). SPI is expressed as a number of standard deviations that the observed precipitation 

deviates from the long-term – in my case, 30-year – mean, for normalized annual values (Salazar-

Espinoza et al. 2015). Using this approach, for each location rainfall frequency needs to be 

transformed to another standard normal distribution, if appropriate for local rainfall patterns. 

Subsequently, there are different thresholds below which a shortfall in precipitation can be 

considered a negative rainfall shock (McKee et al. 1993); Zhang et al. (2011) suggest an 

interpretation where SPI above/below ±0.80 (standard deviations) indicates wet/dry weather 

outcomes, while SPI above/below ±1.60 indicates extremely wet/dry weather outcomes; I am 

initially going to restrict the analysis to a threshold of ±1.00 as a simply interpretable threshold that 

is widely used in previous literature (Dell et al. 2014; Salazar-Espinosa et al. 2015). For visual 

reference, level shock occurrences for the 2016 sample can be seen in Graph 3 in Appendix. 

In addition to rainfall level shocks, I am interested in how abnormal variation of rainfall – a 

widely observed expression of climate change in Peru – affects farmers’ behavior. For that purpose, 

I use a standardized version of a weather measure called Coefficient of Variation (CV), recently used 

in other studies of conservation agriculture as an absolute measure explaining adoption (Arslan et al. 

2014; Asfaw et al. 2014; Arslan et al. 2017). Rainfall CV of any time period is calculated as the 

standard deviation divided by the mean of the respective period’s rainfall, and it thus provides a 

comparable measure of variation for households that may have experienced very different rainfall 

levels (Asfaw et al. 2014). As an extension to this approach, I standardize each location’s CV over 

years5, obtaining a z-score of variation for each year under study. I can then define a shock as a CV 

                                                
5 Just like the SPI, coefficient of variation is calculated from monthly data; thus, the formula is standard 
deviation of monthly rainfall over mean of monthly rainfall for any given year. 
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z-score that is above/below ±1.00 standard deviations as in the case of SPI. This way, in addition to 

spatial comparability I now also have temporal comparability in my analysis of rainfall variation.  

The main question I ask is how a shock experienced over past year affects farmers’ 

input/practice choices over the current agricultural season, or – in other words – how do farmers 

update their expectations about the riskiness of the environment they work in. All rounds of the 

INEI survey are conducted over Southern hemisphere’s winter months so that households report 

on their activities during the season that has just ended6. Therefore, I define “current year” as the 12 

months leading up to the survey7, and use these months to calculate annual weather variables for all 

the 30 years in the dataset. “Previous year’s shock”, the main treatment variable is thus a shock 

happening during the year prior to those 12 months, or prior to an agricultural year that the data is 

about (see also the decision-making timeline in Graph XX in Appendix). 

Occurrences of defined climate shocks over the three year under study are summarized in 

Table II as proportions of conglomerado-s that experience respective abnormal rainfall years. 

 

TABLE II: CLIMATE SHOCK OCCURRENCES BY LOCATION8 

 Coast  Mountains  Forest 

VARIABLES 2014 2015 2016  2014 2015 2016  2014 2015 2016 
High rainfall shock (t-1) 0.42 

(0.49) 
0.47 

(0.50) 
0.43 

(0.49)  0.22 
(0.41) 

0.32 
(0.47) 

0.25 
(0.44)  0.21 

(0.42) 
0.48 

(0.50) 
0.39 

(0.49) 
Low rainfall shock (t-1) 0.013 

(0.11) 
0.024 
(0.15) 

0.035 
(0.18)  0.145 

(0.35) 
0.059 
(0.24) 

0.099 
(0.30)  0.071 

(0.26) 
0.007 
(0.08) 

0.064 
(0.24) 

High variation shock (t-1) 0.17 0.16 0.27  0.01 0.04 0.13  0.01 0.18 0.26 
(0.37) (0.37) (0.45)  (0.07) (0.26) (0.33)  (0.05) (0.39) (0.44) 

Low variation shock (t-1) 0.09 0.06 0.01  0.27 0.24 0.18  0.64 0.08 0.25 
(0.29) (0.25) (0.21)  (0.45) (0.43) (0.39)  (0.48) (0.28) (0.43) 

            
# of conglomerados 259 334 334  874 1,174 1,174  301 381 381 

Note: The figures indicate the proportion of conglomerado-s that experienced a respective shock (measured 
as 1/0 indicator variable) over the 12 months preceding the respective agricultural year (i.e., over period t-

1), further split up by the three main natural regions of Peru.  
Standard errors are in parentheses.  

                                                
6 Due to Peru’s latitude of 4°S, maize and potatoes are both planted in October and less in November, and 
harvested after March (Ministerio de Agricultura y Riego 2017). 
7 The survey was conducted in two waves: from May 30 to July 1 in the Andes region, and from July 31 to 
August 31 in the Amazon and the Coast regions. Following these dates, I define previous 12 months as 
previous year’s June up to current year’s May for the Andes region, and previous year’s August up to current 
year’s July for the other two regions. 
8 Frequencies of occurrence are reported on the level of conglomerados, not individuals. 
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4. Empirical Strategy 

Hsiang (2016) provides a term “time-series variation with stratification” as an econometric approach 

in the emerging climate-economy literature. Using the latter approach, my identification strategy 

builds on the fact that prior to shocks, different localities differ in terms of their agroecological 

conditions and resulting different levels of use of agricultural practices/inputs. To measure the 

behavioral response to these climate shocks, I then make an identifying assumption that the trend in 

outcomes in places that did not get the shock would have been the same as in the places that did get 

the shock, had they had the same recent weather realizations.  

4.1. Hypotheses and Outcome Variables 

Following the latter assumption, the primary hypothesis I am testing is whether recently experienced 

weather shocks incentivize farmers to use more conservational soil and water practices. 

The outcomes of interest are a) soil conservation practices, b) water conservation practices, and c) 

use of chemical fertilizer. The first two are composite measures of what the INEI National 

Agricultural Survey calls “good agricultural practices” [buenas practicas agriculturas] and what the survey 

is aimed to measure9; the components of both are answers to four different questions, each 

indicating weather a farmer uses/does not use a given practice that is expected to reduce soil 

degradation or reduce water shortage, respectively10. Practice questions overlap partially with the 

practices included in the World Bank’s Peru-specific Climate Smart Agriculture concept11.  

Testing weather outcomes’ impact on each practice separately would suffer from the bias of 

multiple hypothesis testing, where I might see significant impact due to properties of probability 

distribution and not the actual causal mechanism in action (Anderson 2008). A potential solution is 

to compute indices that group the four soil and four water practice indicators together, are thus 

robust to over-testing and arguably allow for more powerful tests than individual-level inference 

(Anderson 2008; O’Brien 1984). As giving each practice an equal weight would not capture their 

overlapping functions as they occur to farmers, I rather utilize covariation between the practice 

                                                
9 The choice of these practices as outcomes under study derives directly from the fact that INEI’s own 
objective is to quantify the use of these practices; thus, while one could argue that it is not desirable to analyze 
adoption of identical methods/practices across so big and heterogeneous region, the motivation here is policy 
relevance, as identified by stakeholders in Peruvian agriculture. 
10 See the exact survey questions in Part III of Appendix, and corresponding summarized statistics for these 
variables in Part I, Table 1 and 2 of Appendix.  
11 See Part III of Appendix. 
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indicators to construct the composite indices12 – a method also known as Anderson index – where 

outcomes highly correlated with each other receive less weight, while outcomes that are uncorrelated 

and thus represent new information are given more weight (Anderson 2008). As a result, two of my 

outcomes come in form of such indices. The third outcome analyzed, use of chemical fertilizer, is a 

binary indicator of use/no use rather than a level response. 

4.2. Theoretical Model 

As described in the literature review section, relying on the vast literature on choice of farming 

practices – including input use –, I treat the practice selection decision as an outcome of a 

constrained optimization problem by rational agents (Feder 1980; Feder et al. 1985). In the model of 

adoption, households are assumed to maximize their utility, subject to constraints, and adopt a given 

technology if and only if the technology is available and affordable, and if at the same time the 

selection decision is expected to be beneficial (Zhao et al. 2012). When forming expectations of the 

benefits of using an input, a household considers experienced climate shock among other deciding 

factors such farm characteristics (Zhao et al. 2012). 

4.3. Fixed Effect Estimation 

Using variation over time within a given spatial entity, I take a view of the climate model where level 

changes matter in proportion to an area’s usual variation, not due to their absolute levels (Dell et al. 

2014). The empirical approach then used is a cluster (conglomerado) and year fixed effects model. The 

fixed effects address the problem of unobserved heterogeneity, controlling for the time-invariant 

differences of the clusters – or conglomerados –, and thus aim to identify impacts by eliminating the 

bias in estimates (Wooldridge 2010).  

The key to fixed effects estimation is my identifying assumption that a weather shock is as 

good as randomly assigned conditional on observed characteristics and unobserved characteristics 

controlled for by fixed effects13, i.e.: 

E[practicepict	|	Xic,	Cc,	Wct-1] = E[practicepict	|	Xic,	Cc] 

                                                
12 To construct an index, first all the outcomes are transformed to take a standard normal distribution; for 
each observation’s outcome in the domain of an index a weighted average is computed, where the weights are 
covariance matrices of the transformed outcomes in this domain. An efficient generalized least squares (GLS) 
estimator results. The preferred method to treat missing outcome values varies between studies; in my 
dataset, only 157 observations or 0.0021% of the total sample miss responses for the practice questions, and I 
decided to replace these with the mean of each respective outcome. 
13 Formally, cov(uict, WSct) = 0 
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where practicep indicates the three outcomes modeled, p = 1,..,3, c is a conglomerado index, c = 

1,...,1920 and i an individual index; Tt is the time variable, t = 2014, 2015, 2016; and WS is the 

“weather shock” dummy variable that takes value 1 when conglomerado i has experienced an 

above/below average weather realization over preceding year t-1. C captures the fixed spatial 

(conglomerado) characteristics and T fixed year effects. Then, assuming that the causal effect of 

weather shocks is additive and constant, we can write the regression form to be estimated as giving a 

separate intercept for each spatial unit in the study: 

E[practicepict	|	Xic,	Cc,	Wc,t-1] = β4 +	β6WS8,9:6 + β;X<8 + T9  + C8  + u<89  (1) 

Variable Xit represents a set of household control characteristics such as farm size14, family 

size, livestock ownership, land tenure, distance to the center/market, cooperative membership, and 

access to financial services; uit is the idiosyncratic error term. The fixed effects will then absorb fixed 

spatial characteristics – whether observed, such as topography or access to services, or unobserved – 

and time-specific effects across the spatial units, thus disentangling the shock from many possible 

sources of omitted variable bias15 (Dell et al. 2014). 

To address the expectations that households in a conglomerado a) are more similar to each other 

than households further away, and b) present autocorrelation over time, I cluster my errors at the 

level of conglomerado over years (Auffhammer et al. 2013). Cluster-robust standard errors then allow 

household outcomes to be correlated within a cluster as well as correct for the serial correlation of 

idiosyncratic errors that would otherwise violate the assumptions of fixed effects model. Clustering 

on year-conglomerado level would not work as errors within spatial units are expected to be serially 

correlated over time.  

The second model I am interested in is the potential impact of frequent shocks. The logic here 

is that households can make adaptive efforts to reduce their risks in case adverse weather event 

                                                
14 Although all three rounds of surveys were designed to be identical, in reality the National Institute of 
Statistics and Informatics did not collect some sections of data for 2014. Therefore I do not have households’ 
land (plot) areas for this year, and as a result no yield data either. I run a two-sample t-test with equal 
variances and find evidence that the mean area in 2016 is slightly higher than in the cross-section from the 
previous year, giving evidence that assuming equal land areas within conglomerado-s is not a reasonable 
assumption. Therefore, I predict sizes of landholdings for the 2014 cross-section using a set of household 
characteristics; among the models considered, quantile regression gives us the best fit with 92.5% correct 
prediction rate for 2015 and 2016 samples (see Graph 2 in Appendix). 
15 As the alternative option, random effects (RE) model assumes that the unobservable conglomerado-effects are 
random variables that are distributed independently of the regressors. To check this assumption here, 
Hausman test is run for the eventual models; H0 is rejected in the case of every outcome and I can thus 
conclude that fixed effects should be used. 
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occurs, while the theory predicts that adaptive efforts are made only until their marginal cost is equal 

to the expected marginal benefits, assuming that the cost function is convex (Anttila-Hughes et al. 

2015). Because such adaptation provides benefits only when an adverse events actually happens, 

locations that have more frequent events are expected to have greater returns to adaptation. 

Therefore, households located in areas with relatively frequent recent abnormal rainfall realizations 

will invest more in adaptation to reduce their marginal losses after a shock occurrence (Anttila-

Hughes et al. 2015).     

Thus, the model I am going to estimate considers the count of shocks over different time 

horizons as treatment conditions: 

Y@6<89	= β4 + β6WS8,9:AB
AC6 	+ β;X<8 + T9  + C8  + u<89    (2) 

where n Î [3, 5, 10]. 

Finally, I am interested in heterogeneity in shock responses. It is clear from the literature that 

adaptation responses to shocks are often heterogeneous depending on households’ characteristics 

(Fafchamps 1992; Rosenzweig et al. 1992). Following Dell et al. (2014), panel models can 

incorporate such heterogeneities simply by including the interaction term(s) between a variable that 

captures the differential of interest and the vector of climate variables. I am going to analyze such 

potential differences for one crucial determinant of both adaptation and adoption, size of land 

holdings; households with more land have shown to have higher capacity to mitigate production 

risks through their capital endowments (Feder et al. 1985; Zhao et al. 2012). The second 

characteristic that could result in heterogeneous adaptation and that I am going to look at is the age 

of a household head; we hypothesize that younger farmers could be more responsive to both, 

climatic changes as well as uptake of beneficial practices. For the empirical estimation, I construct 

variables indicating a household being a) below median landholding size, and b) below median age, 

to include their interaction terms with climate shock indicators in the main specification. 

4.5. Robustness  

To check the robustness of the models specified, one option is including “leads” – treatment 

indicators that turn on before actual treatment happens – to the model. The logic here is that 

weather shocks should not change outcomes before they appear, and if they do, we might suspect 

that there is another mechanism responsible for the results seen. The second Placebo-type test I 

implement is running the estimation with household-level variables that theoretically should not be 

affected by the shocks as outcome variables, as described in Section 5. 



 22 

The properties of fixed effects do not allow me to eliminate the differences between the 

treatment and comparison groups that change over time. In the context of the study, the most 

problematic factor interfering with weather outcomes could be extension service. If areas that receive 

weather shocks also receive extended technical assistance, i.e. the service comes as an outcome of 

those shocks, we will not be able to separate out the effect of the weather and of the extension service 

by using the proposed model (Gertler 2016). I therefore test an alternative model where weather 

shocks as treatment are tested in conjunction with extension service as treatment (i.e. we can observe 

the occurrence of both, as well as change in outcomes, over the given time period). 

5. Results 

Descriptive statistics of the households are presented in Table I; based on observable characteristics, 

samples from three years are close to identical. Notably, the size of Peruvian rural families is 

decreasing, while farmers are getting older, as seen from the trends in household heads’ age and 

experience as well as a high baseline mean value of 51 years of age. Interestingly, the biggest 

difference between the samples from three years is possession of a savings account: 6.1% of 

households has a savings account in the 2014 sample and 22.7% in the 2016 sample16. It is also 

important to note that the potato and maize farmers’ subsample under study is less commercialized 

than the national average; while the whole survey sample has a median percentage of crops sold of 

33.0%, the sub-sample has a median of 20.5%17. Baseline values of the outcome variables are 

reported in Tables 1 and 2 of Appendix, as well as visually in Graphs 3–5 of Appendix. Across the 

whole sample, depending on year 51% to 54% of the farmers use chemical fertilizer; four soil 

practices have different adoption rates where mixing soil with organic matter has the highest 

proportion of users with 53%, followed by crop rotations at the use rate of 48%. Use of four water 

practices ranges from 19% to 40% across the years. As the composite measures for both sets of 

practices are normalized around zero, base values do not enter further analysis and I estimate 

average treatment effects as decreases/increases by portions of standard deviations.    

Climate shock occurrences are summarized in Table II. I observe that positive total rainfall 

shocks are much more common than negative shocks (droughts) over the years under study. The 

proportion of conglomerado-s that experience abnormally high rainfall conditions ranges between 21% 

to 48% over the years, while 1% to 14% experience a negative rainfall shock. The figures for rainfall 

                                                
16 The difference is statistically significant at 1% level. 
17 Mean values are 38.9% and 29.9%, respectively. 
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variation shocks have more heterogeneity between regions and years. Overall, each year 1% to 27% 

of conglomerados in the sample face a high variation shock (that is, rainfall variation that is more than 

one standard deviation above long-term average), and 1% to 64% a low variation shock.  

The following analysis is conducted in five parts. First, I identify characteristics that correlate 

with adoption of practices under study. Secondly, I turn to the impacts of rainfall level shocks, and 

thirdly, add rainfall variation shocks to the analysis. Fourthly, I aim to determine whether including 

the occurrence of frequent shocks changes the results, and how does the latter’s impact compare to 

that of past year’s shocks in magnitude. Finally, I give attention to heterogeneous impacts; 

specifically, I look at whether abnormal weather triggers different responses from smaller farms, 

younger household heads, and – as a robustness check – whether the results are driven by specific 

regions.  

5.1. Conservation Practices’ Correlates 

The analysis here first takes an approach prevailing in a large strand of conservation agriculture 

adoption studies – the majority of which are unidentified18 – and looks at how various factors affect 

the probability that a farmer has adopted a conservation measure/practice. These initial results can 

be seen in three models in Table 3 of Appendix19, with conglomerado-level fixed effects included for 

each, estimating how various household characteristics correlate with adoption of each outcome. 

The output largely aligns with previous literature on adoption of respective practices (Ervin et al. 

1982; Feder et al. 1985; Bradshaw et al. 2007; Kassie et al. 2013). As expected, more education and 

years of experience correlate with higher likelihood of conservation practices’ adoption, while 

indigenous indicator is associated with more adoption of soil practices but not water practices – 

which makes sense on the basis that the water practices under study could be considered more 

modern while soil practices are rather “ancestry methods”. Bigger household size is positively 

correlated with every practice modeled, explained by labor-intensiveness of the latter, while 

ownership of land correlates with higher probability of using conservation practices – a highly 

expected outcome since tenure gives one an incentive to invest in their resources. Kassie et al. 

(2008), Teklewold et al. (2013) and Asfaw et al. (2014) all find that higher tenure security increases 

the likelihood that farmers adopt strategies that yield benefits in the long run, such as conservational 

                                                
18 See meta-analysis by Bradshaw and Knowler (2007). 
19 As the literature review discusses, many studies use logit/probit models for estimating factors correlated 
with adoption; here I find linear probability model sufficient as the probabilities modeled are not on the 
extreme ends of the [0,1] range, and most of all, true marginal effects are not of main interest at the first 
place. 
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practices, while farmers without tenure, in contrast, tend to use more inputs with short term 

benefits, like inorganic fertilizer and improved seeds.  

Longer distance to center has no effect on conservation practices but correlates with less use 

of fertilizer, a result seen in the majority of previous literature (Bradshaw et al. 2007). Surprisingly, 

credit access as well as membership in a producer organization are both strong predictors of 

adoption of all the practices. Bigger land area is positively associated with all the practice and input 

variables, an established fact in the literature (Kassie et al. 2013), but we might expect this 

relationship to be parabolic; as exploration of correlating factors is not the first interest of this study, 

I am not going to estimate models with quadratic terms included. 

GRAPH I: IMPACT OF PRECEDING YEAR’S RAINFALL SHOCKS ON PRACTICES 

 
 

5.2. Level Shocks 

Using weather realizations as treatment conditions, I first look at the effect of the plausibly 

exogenous climate shocks in isolation. To check the raw effects of abnormal rainfall, I categorize 

conglomerado-level differences in adoption rates by the shock that localities received over previous 

agricultural year. Graph I shows that although no controls or fixed effects are included, the adoption 
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rate does not change in places without shocks, on average, while considerable changes are observed 

for places with shocks, on average. 

Table III presents the results of the aggregate (conglomerado-) level adoption rate of fertilizer 

and standardized composite adoption rate of conservation practices regressed on the rainfall shocks 

of period t-1 as modeled with fixed effects20,21. The results obtained do not change much after 

adding household level controls (columns 2, 4 and 6 of Table III). We see that a negative rainfall 

shock experienced by a conglomerado during the year preceding the current agricultural season causes 

the ratio of farmers using fertilizer go up by ~6.1 percentage points; the result is significance at 0.05. 

High rainfall shocks have no statistically significant impact, while the impact of current season’s 

temperature is highly significant, lower temperatures being correlated with more fertilizer use.  

For soil and water practices, raw differences on Graph I give a glimpse that abnormal rainfall 

during the preceding year do not affect the adoption rate of soil conservation practices as much as 

water conservation. Indeed, fixed effects regression confirms that a year of high rainfall results in 

less farmers applying water conservation practices during the following year; the reduction of 0.06 

standard deviations is significant at 0.05 level. Time invariant household characteristics that are 

significant in the model with rainfall shocks are very similar to factors that were identified in the 

initial correlation analysis. The four factors that have a consistent, big correlation with outcome 

across three models are ownership of livestock, access to credit, extension services, and being a 

male.  

5.3. Variability Shocks  

Next, I add rainfall variation shocks to the previously estimated models, as well as interaction of the 

latter with rainfall level shocks. That is, that the treatments of interest here are highly variable rainfall 

combined with a shortage of it (drought conditions), and highly variable rainfall combined with an 

excess of it. The results are seen in Table IV and also illustrated in Graph II. It turns out that the 

drought shocks’ great impact on fertilizer use remains robust and only grows bigger; the estimated 

treatment effect across the regions is 9 percentage points (column 5 and 6). At the same time, the 

use of this input – the only one that requires physical capital among the set analyzed – drops by 0.10 

                                                
20 The analysis took advantage of Stata package reghdfe, a robust algorithm coded in Mata that can 
efficiently absorb multiple levels of fixed effects. 
21 Although the data structure is repeated cross-sections and the individuals are only observed at one point in 
time, I do the analysis on the level of individual, as we expect the estimates to converge to conglomerado-level 
estimates. Analytical weights are added to each model to reflect the number of observations in clusters 
(conglomerados). 
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TABLE III: EFFECTS OF RAINFALL LEVEL SHOCKS  
 

Note: growing season temperature is the mean temperature over December, January and February. 
Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 (1) (2) (3) (4) (5) (6) 
VARIABLES Soil index  

I 
Soil index  

II 
Water index 

I 
Water index 

II 
Fertilizer  

I 
Fertilizer  

II 
       
High rainfall shock (t-1) -0.0269 -0.0265 -0.0592** -0.0566** 0.0164 0.0173 
 (0.0182) (0.0179) (0.0230) (0.0228) (0.0119) (0.0117) 
Low rainfall shock (t-1) 0.0296 0.0295 -0.00101 -3.31e-05 0.0565** 0.0613** 
 (0.0301) (0.0302) (0.0395) (0.0392) (0.0287) (0.0285) 
Rainfall z-score -0.0118 -0.0106 0.00455 0.00558 -0.00967 -0.00806 
 (0.0103) (0.0101) (0.0133) (0.0133) (0.00754) (0.00738) 
Grow season T° -0.0450 -0.0369 -0.00385 0.00153 -0.104*** -0.1027*** 
 (0.0283) (0.0281) (0.0389) (0.0388) (0.0154) (0.0151) 
Male   0.0388***  0.0296***  0.0511*** 
  (0.00511)  (0.00604)  (0.00482) 
Age   -0.000685**  -0.00111***  -0.00136*** 
  (0.000294)  (0.000312)  (0.000235) 
Experience (years)  0.00102***  0.000721**  0.000252 
  (0.000308)  (0.000330)  (0.000236) 
Livestock  0.0520***  0.0505***  0.0298*** 
  (0.00814)  (0.00821)  (0.00620) 
Indigenous  0.0200  0.00431  0.00434 
  (0.0124)  (0.0165)  (0.00835) 
Household size  0.00471***  0.00262*  0.00546*** 
  (0.00117)  (0.00136)  (0.00105) 
Primary educ. or less  -0.0156**  -0.00486  -0.00609 
  (0.00682)  (0.00713)  (0.00529) 
Land tenure  0.0273***  0.00302  -0.00495 
  (0.00757)  (0.00928)  (0.00610) 
Technical irrigation  0.0441***  0.120***  0.102*** 
  (0.00859)  (0.0124)  (0.00862) 
Coop. membership  0.0855***  -0.0126  0.0190* 
  (0.0167)  (0.0141)  (0.0106) 
Savings account  0.0170**  0.00607  0.00247 
  (0.00820)  (0.00952)  (0.00642) 
Credit access  0.0336***  0.0323***  0.0683*** 
  (0.00849)  (0.00894)  (0.00627) 
Extension  0.119***  0.0409***  0.0772*** 
  (0.00967)  (0.00907)  (0.00655) 
Distance (hours)  -0.000672  -0.00334  -0.0117*** 
  (0.00238)  (0.00295)  (0.00209) 
       
Observations 42,996 42,728 42,996 42,728 43,004 42,728 
R-squared 0.376 0.387 0.575 0.577 0.423 0.439 
Number of clusters 2,016 2,016 2,016 2,016 2,016 2,016 
Fixed effects TxC TxC TxC TxC TxC TxC 
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standard deviations if the drought shock is combined with highly variable of rainfall, pointing to the 

risky decision of acquiring it under unknown conditions (see further discussion below). 

The results in Table IV also confirm that Peruvian farmers on average do not seem to adjust 

their soil conservation practices following a bad year weather-wise; I see no effect of rainfall level 

shock, variation shocks, nor the combination the these (see columns 1 and 2). Next, inference 

regarding water practices is somewhat affected by the inclusion of variation shocks: the negative 

impact of a high rainfall shock is mitigated, as low variation during the previous year seems to be a  

GRAPH II: RAINFALL LEVEL SHOCKS COMBINED WITH VARIATION SHOCKS 

 
 

bigger driver of reduced water conservation – intuitively a very logical result. While I do not see any 

impact of low rainfall shocks on water practices’ index, combined with a high variability shock – 

arguably the worst kind of combination for farmer – it has the greatest recorded impact so far, 

increasing the proportion of farmers who apply water conservation practices by 0.14 standard 

deviations (t = 1.84). The application of water conservation measures is thus very sensitive to past 

year’s weather realizations, and farmers tend to adjust their production behavior especially in 

response to experienced abnormal variation in rain.
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TABLE IV: VARIATION SHOCKS COMBINED WITH LEVEL SHOCKS OF PRECIPITATION 
 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
Note: CV is calculated as annual standard deviation over annual mean precipitation. Subsequently both, rainfall level shock and rainfall variation shock are defined 

through standardization, where “high CV shock” is CV z-score that is >1 standard deviation of 30-year average CV, while the opposite applies for “low CV shock”.

 (1) (2) (3) (4) (5) (6) 
VARIABLES Soil index III Soil index IV Water index III Water index IV Fertilizer III Fertilizer IV 
       
High rainfall shock (t-1) -0.0253 -0.0238 -0.0701*** -0.0729*** 0.0157 0.0184 
 (0.0183) (0.0185) (0.0236) (0.0238) (0.0121) (0.0122) 
Low rainfall shock (t-1) -0.00575 0.00351 -0.0301 -0.0569 0.0685*** 0.0899*** 
 (0.0297) (0.0310) (0.0380) (0.0401) (0.0259) (0.0278) 
Rainfall z-score -0.0104 -0.00959 -0.00105 -0.00489 -0.00910 -0.00643 
 (0.0105) (0.0106) (0.0140) (0.0143) (0.00772) (0.00776) 
CV z-score -0.00787 0.00874 0.000938 -0.0383 0.00843 0.0421* 
 (0.0199) (0.0255) (0.0312) (0.0407) (0.0167) (0.0227) 
High CV shock (t-1) 0.00357 0.00396 0.0195 0.0177 -0.00250 -0.00121 
 (0.00856) (0.00864) (0.0128) (0.0129) (0.00638) (0.00641) 
Low CV shock (t-1) 0.0114 0.0108 -0.0929*** -0.0911*** -0.00250 -0.0119 
 (0.0170) (0.0171) (0.0199) (0.0199) (0.00638) (0.0120) 
Grow season T° -0.0480* -0.0463* 0.0219 0.0202 -0.0984*** -0.0961*** 
 (0.0279) (0.0279) (0.0389) (0.0389) (0.0152) (0.0153) 
High CV x high rainfall (t-1)  -0.0343  0.0484  -0.0514 
  (0.0441)  (0.0606)  (0.0324) 
High CV x low rainfall (t-1)  -0.0374  0.135**  -0.101*** 
  (0.0428)  (0.0734)  (0.0363) 
       
Controls YES YES YES YES YES YES 
Observations 42,713 42,713 42,713 42,713 42,713 42,713 
R-squared 0.382 0.382 0.579 0.579 0.437 0.437 
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Support for the exogeneity of the weather shocks comes from the comparison between models with 

and without added controls (socioeconomic variables), as in every case the inclusion of confounding 

variables has only marginal effects of the sizes of shock impacts, while never affecting the significance 

or directionality. 

5.4. Frequent occurrence of weather shocks 

Next, I am interested how does counting for multiple years of experienced shock 1) alters the responses 

we have seen so far, 2) triggers different responses than experiencing bad weather realizations for just 

one year. 

Two models were considered: consecutive shocks as a treatment condition, and a number of 

shocks over certain time frame as a treatment condition. I find the second option to be a more flexible 

measure and to capture more of the experience that a farmer is making a decision from; thus shock 

count is the chosen model22. I construct the number of experienced rainfall level shocks as well as high 

variation shocks – both defined as above – over past 3, 5 and 10 year horizons.  

The results are reported in Table V, and in Table 4 and 5 of Appendix with additional model 

specifications considered. The most important result I can infer from the analysis considering multiple 

years of shocks is that the responses following past year’s shock, presented above, are robust to adding 

previous years’ weather outcomes. Practices concerning soil conservation are still insensitive to past 

year’s abnormal weather, while the rate of water practices’ users goes drastically down after a year of 

abnormally high rainfall or abnormally little variation in rain. Notably though, water practices do not 

seem to be sensitive to experiencing several years of shock (see columns 4–6 of Table V), while soil 

conservation tends to significantly increase after a locality receives multiple years of abnormally high or 

low rainfall (columns 1–3). Specifically, rate of soil practices use goes up by 0.06 standard deviations for 

every additional high rainfall shock received over previous 3 years, and by 0.07 standard deviations for 

every additional drought year experienced over previous 5 years. The result is robust to including the 

variability indicators or interactions of these with level shocks to the model (see additional 

specifications in Table 4 of Appendix). 

We do not see major responses to multiple years of shock in regard to fertilizer; the results in 

columns 7–8 of Table V indicate that in long run (5 and 10 year horizon), people are less likely to use 

fertilizer if frequently experiencing more than 1 standard deviation of normal rain for a year. However,  

                                                
22 I also conduct the analysis with consecutive shocks as a treatment condition too, but it does not yield enough 
statistical power due to small number of households in the treatment group.  
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TABLE V: FIXED EFFECTS MODELS WITH FREQUENT WEATHER SHOCKS AS TREATMENT CONDITION 
 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
 
 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
VARIABLES Soil index  

I 
Soil index  

II 
Soil index 

III 
Water 
index I 

Water 
index II 

Water 
index III 

Fertilizer 
 I 

Fertilizer  
II 

Fertilizer 
III 

High rainfall shock (t-1) -0.0261 -0.0191 -0.0392** -0.0691*** -0.0601** -0.0772*** 0.0253** 0.0250** 0.0250** 
 (0.0187) (0.0188) (0.0186) (0.0243) (0.0244) (0.0239) (0.0122) (0.0123) (0.0123) 
Low rainfall shock (t-1) -0.0110 -0.0218 0.00835 -0.0270 -0.0223 -0.0223 0.0748*** 0.0777*** 0.0777*** 
 (0.0300) (0.0303) (0.0288) (0.0382) (0.0389) (0.0380) (0.0257) (0.0260) (0.0260) 
High CV shock (t-1) -0.0136 -0.0226 -0.0250 -0.00485 -0.00246 -0.00461 0.00779 0.00972 0.00972 
 (0.0199) (0.0202) (0.0198) (0.0313) (0.0316) (0.0310) (0.0169) (0.0171) (0.0171) 
Low CV shock (t-1) 0.0156 0.0205 0.0257 -0.0924*** -0.0894*** -0.0886*** -0.0125 -0.0112 -0.0112 
 (0.0171) (0.0172) (0.0170) (0.0201) (0.0202) (0.0203) (0.0119) (0.0119) (0.0119) 
Low RF shock count, 10 years 0.0125   0.0384*   -0.00284   
 (0.0138)   (0.0197)   (0.0111)   
High RF shock  count, 10 years 0.00961   -0.0132   -0.0322**   
 (0.0178)   (0.0268)   (0.0135)   
Low RF shock count, 5 years  0.0639***   0.0211   -0.0196  
  (0.0214)   (0.0255)   (0.0148)  
High RF shock count, 5 years  -0.00993   -0.0364*   -0.0208*  
  (0.0139)   (0.0213)   (0.0107)  
Low RF shock count, 3 years   0.0289   0.00712   0.0254 
   (0.0227)   (0.0324)   (0.0175) 
High RF shock count, 3 years   0.0653***   0.0228   -0.00479 
   (0.0146)   (0.0198)   (0.0101) 
          
Controls YES YES YES YES YES YES YES YES YES 
Observations 42,825 42,825 42,825 41,674 41,674 41,674 41,674 41,674 41,674 
R-squared 0.391 0.392 0.392 0.576 0.578 0.578 0.445 0.445 0.446 
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observe a change in responses to previous year’s rainfall level shock after including the shock counts 

to analysis; namely, high amount of rainfall now has a positive and significant effect on following 

year’s fertilizer use. This is in accordance with the literature that discusses high rainfall intensity 

leading to higher rates of soil erosion and leaching of agricultural chemicals, for which additional 

fertilizer application makes sense (Rosenzweig et al. 1995). 

5.5. Heterogeneous treatment effects 

I now turn to potential differences in responses between smaller and larger farms, between older 

and younger farmers, and finally, between the main natural regions. If present, I expect all three 

heterogeneities to have high policy relevance. 

The first farm characteristic of interest is the land area used in production; as discussed in the 

literature review section, it has been established that bigger farms have higher adaptive capacity 

(Zhao et al. 2012) and also tend to adopt technologies before smaller farms (Foster et al. 1985; 

Rosenzweig et al. 1992). Since my survey data do not include land areas for year 2014 (see Section 

4), I predict this variable using a set of household characteristics and samples from the other two 

years23. I then estimate treatment effects of interest for households below median24 land area 

separately by interacting the small farm indicator with the treatment conditions. I find that, firstly, 

none of the water conservation responses is driven by small farms. Secondly, none of the soil 

conservation responses is driven by small farms either, neither for past year’s analysis nor with 

added reoccurring shocks. 

TABLE VI: RESPONSES TO SHOCKS BY SMALLER HOUSEHOLDS 

 (1) 
VARIABLES Water Index 
  
High rainfall shock (t-1) -0.0616** 
 (0.0277) 
High rainfall shock (t-1) x small farm -0.00481 
 (0.0280) 
Low rainfall shock (t-1)  -0.0480 
 (0.0386) 
Low rainfall shock (t-1) x small farm 0.0494 

                                                
23 Among the models considered, quantile regression gives us the best fit with 92.8% correct prediction rate.  
24 1.28 hectares in 2014, 1.32 ha in 2015 and 1.45 ha in 2016. Importantly, according to national census, 85% 
of Peruvian farms have size below 10 ha – a fact confirmed by my data – so “above median” in this case does 
definitely not mean a big farm in absolute terms. 
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 (0.0382) 
Low CV shock (t-1) -0.126*** 
 (0.0226) 
Low CV shock (t-1) x small farm 0.0814*** 
 (0.0304) 
High CV shock (t-1) 0.0357 
 (0.0288) 

 
High CV shock (t-1) x small farm -0.0811** 
 (0.0352) 
  
Observations 42,863 
R-squared 0.581 

Robust standard errors in parentheses  
*** p<0.01, ** p<0.05, * p<0.1 

 

Use of water conservation is the only outcome that seems to respond differently to weather 

shocks depending on farm’s size. I still see the main effects of decreased use of water practices after 

years of high rainfall and low variation, but it appears that small households are specifically 

responsive to rainfall variability. Both extra high and low variation trigger different responses from 

households who own less land than the sample median (see Table VI).   

The second heterogeneity of interest is farmer’s age. This interest is specific to local Peruvian 

context where farmers are increasingly becoming older, a fact that my own data highly supports. If 

some desirable practices are only adopted by younger farmers – as we might expect them to be more 

responsive to shocks – it would be a policy concern promotion of these practices. Simple correlation 

analysis with one cross-section shows that the likelihood of using all the practices analyzed decreases 

with farmer’s age, and after including a quadratic age term I see a parabolic relationship present (see 

Table 3 of Appendix). I thus interact “young farmer dummy”, here defined as being below the 

median age of 51, with different treatment conditions to check for heterogeneous responses of older 

and younger farmers. Across the nation, i.e. as an average treatment effect I see no effect of being a 

younger farmer in terms of increase/decrease in adoption rate of any practice after a weather shock 

(output available upon request). This is a surprising finding considering the correlations these 

characteristic have with overall adoption rates. 

Considering the geographic scope of the study, it is clear that the impacts of weather shocks 

are not homogeneous across regions. While the results discussed so far are average treatment effects 

across the nation, I now turn to local-level effects that might differ depending on the natural (or 

social, for that matter) setting. 
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The three main natural regions of Peru are the coastal zone (Coast), the highlands of the 

Andes (Mountains), and the far west end of the Amazonian rainforest (Forest). Table 6 in Appendix 

reports the results of the analysis that breaks the shocks’ impacts down by those three regions; from 

there, I can shed light on the validity of these regional trends by conducting the same analysis on 

scale that is one level coarser (i.e. the coarsest natural region indicator I have): sub-regions. This 

division breaks Coast and Mountain regions into three parts – North, Central and South – so I can 

compare whether the effects on sub-regional level follow the patterns identified on the regional 

level. In the latter case, we could claim the treatment effects to be representative of the three 

regions.  

As Table 6 in Appendix shows, national level effects are often driven by individual regions. 

Specifically, Mountain region appears to be the most sensitive to weather shocks; the latter has also 

been reported to be subject to the most severe expression of climate change outcomes in the 

country so far (Painter 2007). The dramatic changes I see in both the number of fertilizer appliers 

and users of water conservation are all driven by the Mountain region and to a lesser extent by the 

Forest region. This, however, aligns perfectly with the population of interest of this study, as the 

majority of potato and maize growers (76% of the sample) as well as smallholder subsistence farms 

in general (65% nationally) are located in the Mountain region. Two more interesting aspects are, 

firstly, the observation that farmers in Forest region do increase their soil treatment after shocks, in 

contrary to what farmers in other regions do; and secondly, farmers in the coastal region seem to be 

much less responsive to weather shocks received. We might suspect that this has to do with 

relatively higher level of commercialization and closeness to markets that are distinctive to the Coast, 

but this aspect needs further exploration. 

Finally, the sub-regional analysis mentioned above provides a good robustness check for this 

regional break-down by confirming similar regional trends on a coarser scale. 

5.6. Robustness Checks 

As discussed in the Section 4.4, the unbiasedness of my results could be threatened by the potential 

endogeneity of extension services. So far, I have included receiving technical assistance as a control 

variable and its positive effect of adoption of soil and water practices is robust to model 

specifications (see Table III and Table 3 in Appendix); on average, conglomerado-s that have received 

extension services have ~11 percentage points more fertilizer users, the use rate of soil practices is 

higher by 0.18 standard deviations and water practices by 0.06 standard deviations. However, there 
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is yet no robust evidence to conclude that the assistance can be seen as independent from weather 

shocks. I could hypothesize that places that receive “bad” weather shocks are also targeted by 

agricultural extension service, which then in turn would also bias the estimated impacts of weather 

shocks.  

In order to confirm robustness of the obtained standard errors, I re-analyze my models after 

collapsing the data to the level of clusters, i.e. to the conglomerado-level; the results are reported in 

Table 7 of Appendix. While I see few slight magnitude changes of up to 5%, no result loses their 

significance at any level, providing support for the robustness of the results seen. 

As another way to check the validity of the causal mechanism under study, I conduct a 

Placebo-test and look at the impact of these same weather shocks on variables that have a low 

likelihood of changing from year-to-year, due to their capital-intensive nature or otherwise. One 

such variable is livestock ownership – we could hypothesize that even though farmers do adjust their 

livestock portfolio and the ratio of resources devoted to crop cultivation versus animal husbandry in 

response to climate change, they are not likely to systematically obtain/abandon animals in response 

to a single shock, as it is a transaction that requires capital. Indeed, the same models estimated with 

animal ownership as an outcome shows no impact of weather shocks at any significance level. 

Similarly, the second indicator I test here is educational attainment as, following a close logic, I do 

not expect the demographic composition of conglomerado-s to change after a single year of unusual 

weather realization, at least on the level of household heads (i.e. not considering schooling decisions 

regarding kids). Again, shocks have no statistically significant impact on education levels. 

6. Discussion and Limitations 

When placing my findings in the larger context, I first have to discuss the importance of the first 

part of the analysis determining the characteristics that correlate with different practices. While it 

does not identify any causal relationships and while similar unidentified analyses have been 

conducted already for decades, it is worth noting that – to my knowledge – there is no well-powered 

studies from Peru, and few from South America in general, so far. 

Relying on two great meta-analysis compiled up to date25 (Knowler et al. 2007; Knowler 2015), 

I can see that farmer characteristics that are associated with adoption of conservation practices 

largely align with what has been observed in other parts of the world. Knowler et al. (2007) conclude 

                                                
25 Excluding analyses that only consider developed countries. 
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that the few variables that are consistently and positively associated with adoption of conservation 

measures are, among others, experience, family size (labor availability), extension services, and 

membership in organizations, while factors with consistent negative relationship are distance to 

paved road and proportion irrigated. For soil conservation, I observe all these positive associations 

here; cooperative membership and receiving extension have especially large and statistically 

significant coefficients (see Table 3 in Appendix). Yet I cannot confirm the negative correlations 

reported by Knowler et al.: fixed effects estimation shows that distance to center only has a 

statistically significant relationship with fertilizer use but not conservation measures – an intuitive 

result that gives hope that conservation could also thrive in remoter areas as opposed to chemical 

inputs –, and using technical irrigation correlates highly with all the practices.  

On the other hand, Knowler et al. show that variables with inconsistent contribution to 

adoption of conservational practices are age, education, farm size and tenure. I find a strong 

parabolic relationship between the first one, age, and adoption of any practice, a result of high policy 

relevance in context where higher age and smaller family size are important demographic trends for 

rural areas (Ministerio de Riego y Agricultura 2017), and an outcome that should thus be kept in 

mind for future promotional work regarding conservation practices. I also find that households who 

own their land are more likely to practice soil conservation; this finding is previously established in 

the adaptation literature (Arslan et al. 2014; Lawin et al. 2018), easy to explain with the incentives 

that owning land gives one, and has also a high policy relevance. Providing better incentives for 

sustainable management through improved land and water tenure systems have claimed to be one of 

the policy priorities for CSA-development (Caron et al. 2018). Thirdly, each conservation practice 

under study has higher adoption rate among educated as well as male household heads. The latter 

observation runs into a theme of high interest in the climate change research – gender-differentiated 

adaptations (CGIAR 2015). Nhemachena et al. (2007), for instance, argue that female-headed 

households are generally more likely to engage in climate change adaptation because of their greater 

involvement in related agricultural work, while Hassan et al. (2008) discuss female risk aversion as 

well as labor constraints, concluding that currently there is no consensus regarding the expected 

directionality of the relationship between gender and application of conservation measures. 

Moving on to weather shocks, three robust average treatment effects among farmers across 

Peru are found. Firstly, water conservation practices appear to be highly responsive to past year’s 

abnormal weather realization, but not to shocks over longer time periods. Specifically, use of water 

practices tends to drop after a year of a) high rainfall, or b) little variability of rainfall, while the 
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biggest impact is seen after a simultaneous occurrence of high rainfall variation and drought during 

the same year – arguably the riskiest kind of conditions –, with an estimated average treatment effect 

of 0.14 standard deviation increase in the fraction of water conservation practitioners.  

Secondly, while soil conservation does not seem to be sensitive to previous year’s shock, 

farmers tend to alter their practices after experiencing multiple years of abnormal levels of rain. I 

find that proportion of soil practices’ adopters see an increase similar in magnitude, around 0.06 

standard deviations, for every extra drought year over past five years, and for every extra year of 

excessive rain over past three years. These findings fit somewhat into the (sparse) literature of 

adaptation studies that incorporate rainfall data. Asfaw et al. (2014) find that greater rainfall 

variability is positively associated with the choice of risk-reducing practices such as soil and water 

conservation, and Arsan et al. (2014) show that Zambian farmers mitigate the risk of rainfall 

variability by using minimum soil disturbance practices. 

The third finding comes from the analysis of changes in fertilizer use, an element added to the 

study to see responses related to more immediate productivity related concerns that farmers might 

have. I show strong and statistically significant evidence that farmers respond to negative rainfall 

level shocks (that is, drought conditions) by taking up chemical fertilizer application over the 

agricultural year following a shock; I estimate an ATE of 6.1 to 8.9 percentage point increase in the 

proportion of fertilizer users. On the other hand, high rainfall combined with high variation induces 

the use rate to go down by close to 10 percentage points over the year following a shock. This 

finding aligns with what other studies have shown before: analyzing responses to previous year’s 

rainfall shocks in Malawi and Mozambique, respectively, Asfaw et al. (2014) conclude that high 

variability reduces the use of inorganic fertilizer in Malawi, while Salazar-Espinosa et al. (2015) show 

that the probability of using fertilizer increases after rainfall level shocks, both positive and negative, 

as opposed to variability shocks.  

The explanation for the latter and the ~7 percentage point increase found here is highly likely 

to be a decline in soil quality after a drought, that thus leads farmers to purchase inputs to recover 

productivity in soil (FAO 2005). The reduction in users after a variability shock, on the other hand, 

points to the behavioral response one might expect to see. As the act of purchasing fertilizer 

requires capital, experienced high variation makes risk averse producers hesitant to devote their 

resources towards this input despite its potential to enhance productivity. Previous studies analyzing 

yield impacts of various practices have found that timely access to fertilizer is one of the most robust 

determinants of both crop yields and yields’ resilience to shocks (Arslan et al. 2015). Additionally, 
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literature shows complementarities between conservational measures and “modern” practices such 

as chemical inputs and improved seeds: for example, inorganic fertilizer is found to provide 

significant yield benefits only when complemented with soil and water conservation practices or 

intercropping (Asfaw et al. 2014; Arslan et al. 2017). Putting this knowledge into the context of the 

current study, ideally we would like to see increase in fertilizer use being complemented with the 

other two types of conservational practices – which I unfortunately do not observe. From policy 

perspective, this means that the future promotion of farming practices should incorporate these 

complementarities as well as what we currently know about farmers simultaneous uptake of them.  

The regional differences in both adoption of practices and shock responses is a crucial aspect 

of any climate-smart development in agriculture, in a diverse country like Peru especially. In their 

meta-analysis of climate-smart practices across developing countries, McCarthy et al. (2011) 

conclude that “[M]ost practices (agronomy, integrated nutrient management, tillage/residue 

management, agro forestry) show significant climate change mitigation potential in humid areas but 

smaller mitigation co-benefits in dry lands.” As discussed in Section 3, the purpose of this study was 

never to determine which practices could be beneficial for smallholders facing new weather events, 

but rather to look at the adoption of a set of practices that Peruvian agencies have already defined as 

desirable in context of soil degradation and water shortages. Thus, by no means do I believe that 

when facing shocks, farmers across the nation adopt the same set of practices, and the regional 

breakdown (see Section 5 and Table 6 in Appendix) aimed to shed light to this aspect. The same 

analysis by McCarthy et al. (2011) also notes that “… only water management is found to be 

effective in delivering significant food security benefits and mitigation co-benefits [for smallholders] 

both in dry and humid areas”. Interestingly, post-shock changes in water practices are the only ones 

that I find to show heterogeneity in terms of farms’ land area. � 

Specifically, I aimed to detect heterogeneous responses in terms of household head’s age and 

size of farm’s landholdings. I cannot reject the hypothesis that weather shocks trigger homogeneous 

responses from farmers below and above median age, and households with less and more than 

median number of hectares. The latter comes with one exception: change in water conservation 

practices. It turns out that farmers with less land are more responsive to high variation in rainfall, 

and tend to increase water conservation after such shock (see Table VI). As higher rainfall variability 

is one of the main stressors imposed by climate change in Peru (USAID 2016), these heterogeneous 

responses to abnormal weather variation should be given more attention to – especially as I have not 
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been able to locate any similar farm level analyses that include weather variability from South 

American countries.  

Both adoption and adaptation studies have established that access to extension services is a 

crucial determinant for adoption of adaptive and conservational measures (Nhemachena et al. 2007; 

Deressa et al. 2009; Arslan et al. 2014). My analysis poses that received technical assistance has a 

positive and highly significant correlation with the three outcomes under study, while the estimated 

magnitude of the effect26 is the greatest for soil conservation measures; such result makes sense 

considering the relative human capital intensiveness of the latter in comparison with the other two 

outcomes. However, correctly accounting for extension services currently remains one of the main 

pitfalls of the study as I have not yet determined its exogeneity in context of climate shocks. 

My findings support the suggestions made by global policy experts regarding CSA (Caron et al. 

2018): it is crucial to incorporate climate change effects into agricultural research and extension 

activities. That includes more integrated household-level and climatic data, research expansion to 

identify farming practices adapted to the specific climate and changes in it, and support to constantly 

updated training and extension programs (Caron et al. 2018). Specifically to the current article, in 

Peru there is no national-level household survey data that explicitly helps to understand weather 

related constraints and respective responses, while locality specific resilient practices are, to my 

knowledge, not identified and tested to sufficient extent. In general CSA and climate change context, 

the concern of farmers lacking capacity to utilize climate information has been raised by several 

policy experts (Caron et al. 2018). 

In terms of extension, the agriculture revolution has in the past been based on major 

disruptive innovations, while the future transition will be more knowledge and information intensive 

(Caron et al. 2018). Thus, farmers’ know-how needs to be integrated with disruptive technologies, 

and extension needs institutional arrangements that allow for information exchanges amongst 

stakeholders.  

6.1. Limitations 

Firstly, as mentioned above, disentangling extension services’ impact from weather outcomes would 

give us relevant information on the full magnitude of the latter. Secondly, and most importantly, 

heterogeneous effects of shocks under study could potentially be addressed more carefully.  

                                                
26 Change as measured in standard deviations. 
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A second relevant concern is the fact that I have analyzed all the practices as lumped into one 

variable, which might not adequately count for the differences in these practices in terms of their 

characteristics such as labor needs and implementation time. However, one of the central ideas of 

this study was to take a different approach in practice modelling than the great majority of similar 

studies that have not taken into account multiple hypothesis testing and the impact it has on the 

results they observe. In addition, as the primary interest here is the behavioral response to shocks, or 

abnormal conditions, rather than the exact agronomic characteristics of practices and their uptake – 

which we might expect to be more place-specific if analyzed on individual basis –, a summary index 

fulfills this purpose better.  

One more potential concern is people leaving agriculture – it would mean that the sample that 

I am looking at for 2016 differs from previous years by (potentially) other factors than demographic 

variables currently tell me. The mediating factor regarding this concern is the fact that my household 

survey data only span two years, winter of 2014 to winter of 2016. Due to the latter I do not expect 

there to be compositional demographic changes that would significantly alter the robustness of my 

analysis, as also confirmed by balance tests conducted on the three samples. 

7. Conclusion 

In the context of understanding the economic impact of climate change, adaptation ranks among the 

most important, yet the least understood (Di Falco et al. 2012; Zilberman et al. 2012). However, in 

order to design inclusive policies and programs that can help farmers adapt to new weather 

conditions, it is critical to understand what kind of adaptive choices people make when faced with 

shocks (CGIAR 2016). Motivated by the latter as well as the scarcity of adaptation studies from 

South America, the purpose of my research is to better understand farm-level adaptations to 

changing weather realizations in Peru, a country that is predicted to witness one of the greatest 

impacts of climate change over the decades to come. 

Specifically, I have looked at the change in adoption rates of conservational measures towards 

soil and water, and use of a more short-sighted input, chemical fertilizer. I see that climate change-

related effects are an important determinant of the practices that farmers growing staple crops, 

potato and maize, select, and that especially in the Andes highlands where the majority of 

subsistence farmers live. My main finding is that following a year of abnormal precipitation levels, 

the number of farmers who apply inorganic fertilizer goes up on average, after accounting for time-
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invariant, place-specific factors. At the same time, I do not see an increase in proportion of farmers 

who have adopted soil conservation measures, as indicated by an aggregate index over four 

practices. It appears, however, that more conservational practices are adopted after households have 

experienced multiple years of abnormal weather as opposed to a single shock over the preceding 

year. This points to a behavioral response: farmers who have experienced adverse conditions opt 

into a more short-sighed input, inorganic fertilizer, to address the reduction in soil quality, while it is 

not confirmed that this approach actually has yield benefits under extreme weather conditions.  

The findings regarding water conservation practices – similarly measured with an index that 

captures the information contained in variation in adoption rates across four practices – show 

reduction in adoption rates after shock years. Namely, Peruvian farmers are less likely to engage in 

these practices after they have experienced abnormally high levels of rainfall, or abnormally little 

variation of it. Meanwhile, water conservation does not seem to be sensitive to multiple years of 

“bad” weather, as opposed to measures towards soil conservation. 

While farm-level adaptation studies that incorporate climate data are increasing in numbers, 

they are yet hard to come by for South America, making it difficult to place my findings in a larger 

context-specific literature. This very same notion, however, points to the policy relevance of the 

work undertaken here. I have four specific suggestions to make. 

First, in terms of policy prescriptions, I find that a behavioral response to years that decrease 

the nutrient levels in soil is to apply more fertilizer, while practices that are identified as potentially 

increasing soil’s fertility in long term are not adopted. Yet previous studies have reported that 

inorganic fertilizer’s yield benefits disappear under extreme weather shocks, unless combined with 

sustainable land management practices (Arslan et al. 2014, 2017). This points to a need for nudging 

farmers, and extending training and extension to areas that are likely to face such shocks over the 

coming years. Based on the analysis of factors that correlate with adoption of different practices, I 

can suggest that extension services should also have a differentiated approach in promotion with 

respect to gender, age, and tenure of farmers.  

Secondly, I believe that there is a growing need for agricultural household surveys that 

incorporate climate change specific questions – for both, perceived risks as well as adaptive 

measures that farmers undertake – and that especially in panel format. Such surveys have been 

conducted in several African countries over the last decade, but to my knowledge, South America 

remains less studied. The current household survey data used give hints about potential threats that 

new weather patterns impose on farmers, but such information is not explicitly asked for from the 
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households, while the climate projections for the coming decades indicate that there is definitely 

need for improved understanding of agricultural decisions on micro level. 

Thirdly, in terms of future research I would like to point to the need for more experimental 

(behavioral) studies that incorporate a) farmer-specific incentives, such as land, water, and soil, and 

b) “new climate”-specific elements. In order to predict and incorporate choices that producers make 

under unusual and/or extreme conditions, we need a better understanding of their decision-making 

framework within the shocks–productivity–conservation nexus.  

Lastly, a general framework for analyzing the interactions between humans’ choices and 

weather variability is yet to be developed. Currently, there are no standard treatment conditions and 

mechanisms widely used in the literature, and therefore this study has also aimed to contribute to the 

climate-economy literature by a novel way of incorporating abnormal variation in weather outcomes: 

namely, by obtaining exogenous variation by standardizing the coefficient of variation in rainfall 

over a long time horizon for temporal comparability. This, as well as the practice indices that update 

the farm-level conservation and adaptation literature that largely does not account for multiple 

hypothesis testing are the big methodological contributions this paper has aimed to make. That in 

addition to the bottom-line message: climate change does matter in farm-level decision making, 

already today.
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Appendix 

Part A: Tables 

  2014 2015 2016 Total 
SO

IL
 P

RA
CT

IC
E

S 

Soil analysis 0.0286 0.0218 0.0177 0.0225 

 
(0.167) (0.146) (0.132) (0.148) 

Mixing organic matter  0.530 0.504 0.555 0.530 

 (0.499) (0.500) (0.497) (0.499) 
Crop rotation 0.463 0.471 0.501 0.479 

 
(0.499) (0.499) (0.500) (0.500) 

Terraces 0.0960 0.0821 0.0716 0.0829 

 
(0.295) (0.274) (0.258) (0.276) 

W
A

TE
R 

PR
A

CT
IC

E
S Determine crop water needs 0.243 0.147 0.182 0.192 

 
(0.475) (0.354) (0.386) (0.415) 

Determine irrigation times 0.303 0.217 0.232 0.250 

 
(0.460) (0.412) (0.422) (0.433) 

Irrigation measurement 0.0453 0.0518 0.0805 0.0597 

 (0.208) (0.222) (0.272) (0.237) 
Irrigation maintenance 0.386 0.383 0.430 0.400 

 
(0.487) (0.486) (0.495) (0.490) 

 

Fertilizer 0.5145 0.5471 0.5524 0.5384 

 
(0.499) (0.498) (0.497) (0.499) 

Pesticides/herbicides 0.466 0.482 0.508 0.486 

 
(0.499) (0.500) (0.500) (0.500) 

Biological control 0.0140 0.00912 0.00597 0.00959 

 (0.118) (0.0951) (0.0770) (0.0974) 
Integrated pest management 0.0646 0.136 0.115 0.106 

 (0.246) (0.343) (0.318) (0.308) 
 Observations 13,612 14,603 15,218 43,433 

 
Table 1. Summary statistics of agricultural practice variables that are used to construct soil and water 

indices (responses correspond to the survey instrument in Part B of Appendix).  
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Table 2. Outcome variables analyzed in the study. Composite measures for the use of soil/water 
conservation practices are calculated using Anderson index, or the covariation of the four 

components, as described in Section 3.  
 
  

 2014 2015 2016 Total 
Index of soil 0.0179 -0.0168 -0.0140 0.0004 
practices (0.627) (0.576) (0.548) (0.583) 
Index of water  0.0057 -0.0114 -0.0115 5.41e-06 
practices (0.774) (0.743) (0.724) (0.746) 
Fertilizer use 0.5145 0.5471 0.5524 0.5384 
 (0.499) (0.498) (0.497) (0.499) 
Observations 13,612 14,603 15,218 43,433 
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 (1) (2) (3) 
VARIABLES Soil index 

FE 
Water index 

FE 
Fertilizer 
LP/FE 

Gender (1 = male) 0.0422*** 0.0334*** 0.0540*** 
 (0.00527) (0.00619) (0.00495) 
Age 0.00428*** 0.000852 0.00328*** 
 (0.000899) (0.00103) (0.000827) 
Age^2 -4.69e-05*** -1.91e-05** -4.34e-05*** 
 (8.20e-06) (9.20e-06) (7.41e-06) 
Experience 0.00100*** 0.000730** 0.000392 
 (0.000315) (0.000342) (0.000239) 
Livestock ownership 0.0568*** 0.0548*** 0.0428*** 
 (0.00845) (0.00843) (0.00633) 
Indigenous 0.0238* 0.00335 0.000335 
 (0.0129) (0.0171) (0.00863) 
Household size 0.00459*** 0.00286** 0.00534*** 
 (0.00122) (0.00141) (0.00109) 
Primary education or less -0.0225*** -0.00777 -0.0144*** 
 (0.00703) (0.00730) (0.00546) 
Owns land 0.0255*** 0.00581 -0.00530 
 (0.00787) (0.00965) (0.00638) 
Technical irrigation 0.0511*** 0.122*** 0.112*** 
 (0.00894) (0.0127) (0.00889) 
Cooperative membership 0.130*** 0.00191 0.0465*** 
 (0.0169) (0.0140) (0.0109) 
Saving account 0.0164* -0.00108 0.0185*** 
 (0.00868) (0.0105) (0.00683) 
Credit access 0.0425*** 0.0360*** 0.0724*** 
 (0.00888) (0.00922) (0.00630) 
Distance to market -0.00139 -0.00337 -0.0128*** 
 (0.00894) (0.0127) (0.00889) 
Constant -0.0309* 0.0633*** 0.603*** 
 (0.0173) (0.0210) (0.0151) 
    
Observations 42,851 42,851 42,851 
R-squared 0.380 0.573 0.431 
Number of clusters 2,018 2,018 2,018 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
Note: conglomerado-level fixed effects are absorbed. 

 
Table 3. Estimated relationships between control variables and outcomes of interest, where fertilizer 

and single-cropping are 1/0 indicator variables, thus linear probability models are used.  
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Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
Note: For each of the outcomes, IV model has 10 year level shocks’ counts included, V model has 5 year level shocks’ counts included, and VI model has 3 year level shocks’ counts 

included. VII model checks the robustness and has only last year level shocks + 3 year count. Level VIII turns to frequent variation shocks by including the count over 5 years. 
 
 

Table 4. Supplementary table for Table V in the main body of the paper. I check the robustness of results presented in Table V by adding 
previous year’s level and variation shocks’ interaction terms, as well as comparing the simplest model (denoted as model VII for each 

outcome) to the results found previously. Finally, impact of variation shocks’ count is looked at (model VIII).  

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 
VARIABLES Soil index  

IV 
Soil index  

V 
Soil index 

VI 
Soil index 

VII 
Soil index 

VIII 
Water 

index IV 
Water 

index V 
Water 

index VI 
Water 

index VII 
Water 

index VIII 
Fertilizer 

 IV 
Fertilizer  

V 
Fertilizer 

VI 
Fertilizer 

VII 
Fertilizer 

VIII 
High rainfall shock -0.0234 -0.0147 -0.0349* -0.0392** -0.0244 -0.072*** -0.0625** -0.0771*** -0.0663*** -0.0664*** 0.0304** 0.0315** 0.0269** 0.0220* 0.0204* 
(t-1) (0.0191) (0.0191) (0.0190) (0.0186) (0.0181) (0.0245) (0.0245) (0.0241) (0.0236) (0.0235) (0.0123) (0.0124) (0.0122) (0.0119) (0.0120) 
Low rainfall shock 0.00796 0.00384 0.00580 0.00835 -0.00756 -0.0557 -0.0538 -0.0547 -0.0509 -0.0283 0.0913*** 0.0916*** 0.0795*** 0.0599** 0.0735*** 
(t-1) (0.0311) (0.0308) (0.0314) (0.0288) (0.0297) (0.0403) (0.0406) (0.0402) (0.0371) (0.0381) (0.0277) (0.0277) (0.0278) (0.0251) (0.0254) 
High CV shock (t-1) 0.0139 0.0108 0.0109  -0.0112 -0.0401 -0.0462 -0.0427   0.0425* 0.0428* 0.0423*   
 (0.0252) (0.0252) (0.0249)  (0.0236) (0.0405) (0.0404) (0.0404)   (0.0232) (0.0233) (0.0233)   
Low CV shock (t-1) 0.0128 0.0189 0.0200  0.0146 -0.0811*** -0.0864*** -0.0859***   -0.0152 -0.0127 -0.0148   
 (0.0171) (0.0172) (0.0170)  (0.0170) (0.0184) (0.0200) (0.0198)   (0.0118) (0.0117) (0.0118)   
High CV x high  -0.0401 -0.0252 -0.0521   0.0596 0.0668 0.0370   -0.0440 -0.0365 -0.0299   
rainfall (t-1) (0.0433) (0.0432) (0.0426)   (0.0626) (0.0616) (0.0603)   (0.0329) (0.0332) (0.0333)   
High CV x low -0.0635 -0.133 -0.0815*   0.0951 0.107 0.127*   -0.108*** -0.0966** -0.108***   
rainfall (t-1) (0.0475) (0.1501) (0.0450)   (0.0783) (0.0788) (0.0758)   (0.0366) (0.0396) (0.0385)   
Low rain shock  0.0171     0.0342     0.00581     
count, 10 y. (0.0152)     (0.0208)     (0.0119)     
High rain shock  0.00992     -0.0162     -0.0320**     
count, 10 y. (0.0186)     (0.0269)     (0.0137)     
Low rain shock  0.0782***     0.00837     -0.00795    
count, 5 y.  (0.0236)     (0.0265)     (0.0162)    
High rain shock   -0.0124     -0.0326     -0.0202*    
count, 5 y.  (0.0144)     (0.0208)     (0.0109)    
Low rain shock    0.0334 0.0270    -0.00232 0.0254    0.0325* 0.0254  
count, 3 y.   (0.0236) (0.0225)    (0.0323) (0.0172)    (0.0179) (0.0172)  
High rain shock.   0.0657*** 0.0607***    0.0226 -0.00318    -0.00271 -0.00318  
count, 3 y.   (0.0148) (0.0145)    (0.0192) (0.00994)    (0.0102) (0.00994)  
High variation     7.38e-05     0.0483*     -0.0236** 
shock count, 5 y.     (0.0137)     (0.0247)     (0.0104) 
                
Controls YES YES YES YES YES YES YES YES YES YES YES YES YES YES YES 
Observations 41,674 41,674 41,674 42,825 42,825 41,674 41,674 41,674 41,674 41,674 41,674 41,674 41,674 41,674 41,674 
R-squared 0.391 0.392 0.393 0.392 0.391 0.579 0.579 0.579 0.578 0.578 0.446 0.446 0.446 0.446 0.446 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
VARIABLES Soil 

practices 
10 y. 

Soil 
practices. 

5 y. 

Soil 
practices 

3 y. 

Water 
practices 

10 y. 

Water 
practices 

5 y. 

Water 
practices 

3 y. 

Fertilizer 
 

10 y. 

Fertilizer 
 

5 y. 

Fertilizer 
 

3 y. 
          
Low rain shock  0.0120   0.0412   0.00460   
count, 10 y. (0.0133)   (0.0696)   (0.0105)   
High rain shock  -0.000930   -0.0201   -0.0191   
count, 10 y. (0.0170)   (0.0262)   (0.0125)   
Low rain shock  0.0564***   0.0276   -0.00342  
count, 5 y.  (0.0201)   (0.0243)   (0.0134)  
High rain shock   -0.0166   -0.0487*   -0.00767  
count, 5 y.  (0.0132)   (0.0294)   (0.00957)  
Low rain shock    0.0299   0.00593   0.0244 
count, 3 y.   (0.0214)   (0.0310)   (0.0156) 
High rain shock.   0.0546***   0.0294   0.00154 
count, 3 y.   (0.0141)   (0.0194)   (0.00930) 
Rainfall z-score -0.00527 -0.00758 -0.000910 0.00923 0.0126 0.0179 -0.0116 -0.00890 -0.00866 
 (0.0104) (0.0102) (0.0101) (0.0131) (0.0126) (0.0125) (0.00715) (0.00692) (0.00697) 
Grow season T -0.0301 -0.0198 -0.0589** 0.0295 0.0366 -0.00847 -0.0843*** -0.0875*** -0.0882*** 
 (0.0287) (0.0286) (0.0293) (0.0391) (0.0400) (0.0399) (0.0159) (0.0157) (0.0159) 
          
Observations 42,713 42,713 42,713 42,713 42,713 42,713 42,713 42,713 42,713 
R-squared 0.389 0.390 0.391 0.578 0.578 0.578 0.467 0.467 0.467 

 
Table 5. Supplementary table for Table V in the main body of the paper (cont.). All models with  

only shock counts for robustness check. 
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Table 6. Estimated average treatment effects across the nation broken down by the three main natural regions of Peru. Analysis on coarser 

scale, by the seven sub-regions is not shown here but it confirms the regional trends observed in the table above. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 
VARIABLES SOIL 

PRACTIC
ES 

Coast Mountains Forest WATER 
PRACTIC

ES 

Coast Mountains Forest FERTILI
ZER 
USE 

Coast Mountains Forest 

             
High rainfall shock (t-1) -0.0238 0.0484 -0.0454* 0.0932** -0.0729*** 0.0816 -0.0956*** 0.00297 0.0184 0.0403* 0.0118 0.0328 
 (0.0185) (0.0544) (0.0267) (0.0361) (0.0238) (0.107) (0.0273) (0.0271) (0.0122) (0.0224) (0.0141) (0.0354) 
Low rainfall shock (t-1) 0.00351 0.0275 -0.00435 -0.00690 -0.0569 0.197 -0.0964* 0.0391 0.0899*** 0.0784 0.0844** 0.0715 
 (0.0310) (0.0933) (0.0384) (0.0567) (0.0401) (0.262) (0.0514) (0.0326) (0.0278) (0.0844) (0.0328) (0.0630) 
Rainfall z-score -0.00959 -0.00137 -0.000672 -0.00362 -0.00489 0.0626* -0.0189 0.0635** -0.00643 0.0122 0.00533 -0.0280* 
 (0.0106) (0.0232) (0.0169) (0.0165) (0.0143) (0.0355) (0.0228) (0.0249) (0.00776) (0.00898) (0.0122) (0.0158) 
High CV shock (t-1) 0.00874 0.0636 0.0146 0.0372 -0.0383 -0.0193 -0.0886 0.0380 0.0421* 0.0730 0.0332 0.0352 
 (0.0255) (0.0883) (0.0340) (0.0433) (0.0407) (0.124) (0.0584) (0.0434) (0.0227) (0.0450) (0.0293) (0.0503) 
Low CV shock (t-1) 0.0108 -0.0252 0.0290 0.0168 -0.0911*** -0.184 -0.0911*** 0.0111 -0.0119 0.0217 -0.00435 -0.0123 
 (0.0171) (0.0666) (0.0202) (0.0244) (0.0199) (0.129) (0.0245) (0.0296) (0.0120) (0.0332) (0.0140) (0.0306) 
CV z-score 0.00396 0.00503 0.0210** -0.0212 0.0177 -0.00567 0.0273* -0.0660*** -0.00121 0.00134 0.00230 0.00739 
 (0.00864) (0.0263) (0.0103) (0.0169) (0.0129) (0.0560) (0.0153) (0.0253) (0.00641) (0.0110) (0.00779) (0.0163) 
High CV x high rainfall (t-1) -0.0343 -0.126 -0.0542 0.00437 0.0484 0.118 -0.0647 -0.0580 -0.0514 -0.0966** -0.0537 -0.0353 
 (0.0441) (0.0970) (0.0875) (0.0616) (0.0606) (0.142) (0.112) (0.0519) (0.0324) (0.0451) (0.0670) (0.0621) 
High CV x low rainfall (t-1) -0.0374 -0.127 -0.0601 0.272** 0.135** -0.0971 0.206** -0.296** -0.101*** -0.262** -0.0927** -0.185*** 
 (0.0428) (0.102) (0.0510) (0.123) (0.0634) (0.315) (0.0872) (0.122) (0.0363) (0.104) (0.0419) (0.0712) 
             
Controls YES YES YES YES YES YES YES YES YES YES YES YES 
No. of conglomerados 1,889 334 1,174 381 1,889 334 1,174 381 1,889 334 1,174 381 
Observations 42,713 4,401 32,768 5,535 42,713 4,401 32,768 5,535 42,713 4,401 32,768 5,535 
R-squared 0.382 0.341 0.313 0.296 0.579 0.527 0.391 0.511 0.437 0.393 0.397 0.387 
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 (1) (2) (3) (4) (5) (6) 
VARIABLES Fertilizer 

IND. 
Fertilizer 
CLUS. 

Soil index 
IND. 

Soil index 
CLUS.  

Index 
water  
IND. 

Index 
water 

CLUS. 
       
High rainfall shock (t-1) 0.00943 0.00178 -0.00979 -0.00800 -0.0397* -0.0266 
 (0.0103) (0.0101) (0.0170) (0.0165) (0.0206) (0.0202) 
Low rainfall shock (t-1) 0.0897*** 0.0926*** 0.0239 0.0216 0.00218 -0.0104 
 (0.0291) (0.0287) (0.0285) (0.0282) (0.0375) (0.0374) 
Rainfall z-score -0.00751 -0.0101* -0.0107 -0.00983 0.00154 0.00190 
 (0.00603) (0.00605) (0.00843) (0.00837) (0.0112) (0.0112) 
CV z-score 0.0161 0.0130 0.00823 0.00394 0.0248 0.0134 
 (0.0173) (0.0171) (0.0198) (0.0190) (0.0329) (0.0314) 
High CV shock (t-1) -0.00545 -0.00558 0.0110 0.0120 -0.0802*** -0.0748*** 
 (0.0103) (0.00989) (0.0136) (0.0136) (0.0174) (0.0173) 
Low CV shock (t-1) -0.000251 -0.00386 -0.00608 -0.00857 0.0205** 0.0197* 
 (0.00510) (0.00502) (0.00687) (0.00687) (0.0103) (0.0102) 
High CV x high RF (t-1) -0.0528** -0.0510** -0.0291 -0.0396 -0.0886* -0.0870* 
 (0.0227) (0.0226) (0.0346) (0.0326) (0.0496) (0.0477) 
High CV x low RF (t-1) -0.0616 -0.0538 -0.0196 -0.0160 0.170** 0.161** 
 (0.0447) (0.0415) (0.0477) (0.0500) (0.0821) (0.0789) 
Grow season temp. -0.101*** -0.0757*** -0.0565** -0.0587*** 0.0109 0.00869 
 (0.0135) (0.0148) (0.0219) (0.0219) (0.0305) (0.0312) 
       
       
LEVEL Individual Cluster Individual Cluster Individual Cluster 
Controls NO NO NO NO YES YES 
Observations 42,768 5,649 42,813 5,760 42,768 5,649 
R-squared 0.407 0.785 0.360 0.785 0.574 0.769 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
Table 7. Robustness check for the standard errors is conducted by collapsing the analysis to the level 

of clusters, or, conglomerado-level climate shock models. 
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Part II: Graphs 

 
 

  
 

Graph 1: Peruvian farmers’ responses to questions on a) whether they perceive their plots to 
produce less, and b) what is the main perceived reason 

 
 
 

 
 

Graph 2: Predicted vs. actual size of landholdings for 2015 and 2016. 2014 data do not include the 
farm size (area), which for I use regression to predict the sizes using observable characteristics of 

households. Quantile regression gives the best fit. 
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Graph 3: Rainfall level shock occurrences across the country in 2016, as defined by a threshold value 
of a rainfall z-score value below 1. 
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Graphs 4, 5 and 6: 
Composite soil practices’ adoption rate, composite 
water practices adoption rate, and rate of fertilizer 
use, respectively, for each conglomerado in 2016. 
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Part III: Supplemental Materials 

 
 

 
 
Suppl. Material 1: Survey instrument. Section 300A: good agricultural practices (basis for indices of 
soil and water conservation practices). Peru Istituto Nacional de Estadística e Informática (INEI). 
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Suppl. Material 2: Climate Smart Practices in Peru as evaluated by the World Bank. Also analyzed in 

my study are: efficient use of fertilizers, recovery of ancestral production practices (rotations, 
terraces, crop diversity), intercropping, terracing/stone contour bunds, and efficient management of 

water.  
World Bank; CIAT; CATIE. 2015. Climate-Smart Agriculture in Peru. CSA Country Profiles for Latin 

America Series. 2nd. ed. Washington D.C.: The World Bank Group.  
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