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Abstract

omega: is a modifier of the LCP5 and related genes. Evidence indicates that OMEGA

is a dipeptidylaminopeptidase (DPAP) cleaving its substrate at the amino terminus after R-

P. The EMS induced recessive form of omega fails to cleave the Arg-Pro dipeptide

changing the migration pattern of LCP5 (and related proteins) in PAGE. Microsequencing

the N-terminal residues of Canton S wild type LCP6, LCP7, LCP8, LCP9 and another EMS

induced mutant RHO indicate that LCP6 and RHO represent alternate and mutated copies

of LCP5, respectively. LCP6 demonstrates a shift in migration pattern characteristic of LCP5

related cuticle proteins; however, a point mutation in RHO substituting serine for proline

in the penultimate residue eliminates the omega DPAP recognition site and subsequent

hydrolysis. Furthermore, LCP8 matches the translated sequence of dcp8, a recently

sequenced gene in the 65A5-6 cuticle protein cluster. LCP7 and LCP9 are not present in

either known cuticle protein gene cluster (65A5-6 and 44D). omega has been observed to

have two pleiotropic effects: a 24H delay prior to pupariation and a specific reduction in

male fertility of 33% in omega homozygote males as compared to wild type males. It is

probable that the developmental delay and the male specific reduction in fertility are tied

to the omega gene product's failure to act as a DPAP.



Introduction

The study of the regulation of eukaryotic gene expression is integral to

understanding the development of a single celled zygote into a multicellular

organism. The cells at each stage of development can be characterized by their

individual complements of expressed gene products (Wade, 1981). This

molecular characterization of gene expression during normal development may

aid in discerning the errors which culminate in some developmental genetic

disorders and unregulated cell proliferation.

Since its introduction as a subject for genetic analysis in 1906 Drosophila

melanogaster has proven to be art ideal organism. The 12 day lifecycle, many

easily identifiable phenotypes, availability of multiple strains and ease of

manipulation and culture were in the past sufficient reasons to study genetics in

Drosophila. As a result of that early work, the vast amount of information about

the genetics and biology of Drosophila has increased its appeal as one of the

developmental geneticist's organisms of choice.

The urea soluble cuticle proteins of Drosophila melanogaster, in

particular, are an excellent system for analysis of hormonally regulated and

mostly clustered genes which are expressed in a developmentally regulated

pattern throughout development (Hodgetts et. al. 1977;Chihara et. al. 1982).

Many developmentally important genes in the insect are initially regulated by

the steroid hormone 20-hydroxyecdysone (Ashburner 1990 for review). E.g. there

is evidence that the cuticle protein genes of the German cockroach, Anthonomus

grandis and the boll weevil, Blattella germanica are among those regulated by

ecdysone levels (Stiles and Newman 1992). Similarly, the Drosophila

melanogaster pupal cuticle proteins have been shown to be regulated by

ecdysone pulses in in vitro imaginal disk cultures (Doctor, et. al. 1985). Recently,

the molecular mechanism for steroid gene induction has been elucidated.
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Ecdysone facilitates dimerization of the proteins EcR (ecdysone receptor) and USP

(Ultraspiracle). The resulting heterodimer binds to DNA sequences termed

ecdysone response elements (EcREs) (Yao et. al. 1993; Antoniewski et. aI. 1995)

which when bound regulate transcription.

The development of D. meIanogaster at 25°C proceeds from egg

deposition to a sexually mature adult within 10-12 days. Within 24h of

fertilization, the first instar hatches from the egg. Two 24h larval stages follow,

during which the larva feeds while burrowing in the media. The third instar

lasts two days, two of which are similarly spent feeding. At some point prior to

pupariation, the larva crawls out of the media and wanders searching for a

suitable place on which to pupariate. Within four to five days of pupariation,

the adult fly emerges from the pupa case and is soon ready to mate (within six to

eight hours). As the insect grows its external 'skeleton' (the cuticle) must be

molted and a new, larger cuticle must be deposited. Molts are presumed to be

precipitated by pulses of high levels of 20-hydroxyecdysone.

Cuticle serves as an insect's exoskeleton, providing both anchoring points

for muscle and protection from the environment. Generally, insect cuticles are

composed of chitin (a polymer of N-acetyl-glucosamine), waxes, lipids and

protein (Elzinga, 1987). Chihara et.aI. (1982) demonstrated that there are four

distinct D. melanogaster urea soluble cuticle protein patterns for the five life

stages (the first and second instars sharing a similar protein pattern). The third

instar facilitates cuticle protein study because a single isolated third instar cuticle

contains sufficient protein to be visualized by Coommassie blue staining after

non-denaturing polyacrylamide gel electrophoresis (PAGE) following urea

extraction.

There are five major proteins (LCPl-5) and five minor proteins (LCP6-9, &

LCP2a) visible by PAGE when a third instar single cuticle is extracted with urea

2



Figure 1: Schematic of 15% PAGE separation of third instar cuticle proteins. The

major bands are depicted as the darkest bands (1-5). The omega protein banding

pattern is characterized by the appearance of a band between LCP3 and 4, and a

lack of a band at position 5. The arrow indicates the position of the 5 band absent

in the omega mutant. rho is characterized by the appearance of a band between

LCP3 and 4 shifted above omega. An actual stained gel can be found in Chihara

and Kimbrell (1982).
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(figure 1; nomenclature as Chihara et.al. 1982). The genes coding for LCPl-4

have been localized to a 7.9 kb cluster on the second chromosome at 44D (Snyder

et.al. 1982). Transcribed divergently, their organization may contribute to their

regulation. Another cuticle protein cluster has been identified at 6SAS-6

(position 11 on the third chromosome [Charles et.al., in press; Chihara and

Kimbrell 1986]). In this case approximately 22kb of genomic DNA was sequenced

and twelve genes and/or pseudo genes were identified. Again the genes are

organized in two divergently transcribed clusters, this time separated by a 4.5 kb

spacer. The genomic DNA sequenced came from D.melanogaster iso-l strain and

contained two copies of lcpS and three copies of lcpS. Hybridization of clones to

restriction digested Canton S DNA suggested the presence of three copies of lcpS

in that particular strain. Mapping indicates that also included in the third

chromosome cluster are Oregon R lcp6 and an ethane methane sulfonate (EMS)

induced mutant Rho (Chihara and Kimbrell 1986). Analysis of LCP6 and RHO

N-terminal residues indicates that these proteins are coded for by modified

copies of lcp5 (See Results and Discussion).

Rho is a codominant mutant producing a protein band that migrates

between LCP3 and 4 (figure 1). Another EMS induced mutant omega is a

recessive modifier of LCPS, shifting its migration pattern in PAGE (figure 1).

Wild type LCPS follows LCP4, while Lcpsomega migrates between LCP3 and

LCP4 slightly below RHO. omega has been shown to map at ca. 40.43, 29.3 map

units way from the 6SAS-6 gene cluster (Schneider 1990). Based upon this data

deficiency mapping was performed and indicated that omega lay at

approximately 69 (Schneider 1990). However, further deficiency mapping and

new cytology provided for the deficiencies previously tested revealed the need to

update omega's cytology (see Results and Discussion);

5



Previous observations indicated that the omega stock was

developmentally slow in one of the three larval instars by about 24h and that

omega males exhibited a reduced fertility when compared to wild type (Chihara,

personal communication).

This thesis presents work further characterizing third instar cuticle

proteins and omega, the recessive modifier of LCP5.
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Materials and Methods

Stocks

Fly stocks and crosses were maintained at 25°C on standard cornmeal-

molasses-yeast-agar media containing Tegosept and proprionic acid and

supplemented with live yeast in half-pint bottles or vials.

"Wild type" designation is given to both a strain of Oregon R Drosophila

melanogaster maintained under laboratory conditions for at least 20 years at the

University of San Francisco and its third instar cuticle protein electrophoretic

pattern.

omega (,Q) and Rho are ethane methane sulfonate induced mutants

previously described by Chihara and Kimbrel (1986). These stocks have been

maintained under laboratory conditions at the University of San Francisco for at

least 10 years.

Canton Special (Canton S) "wild type" strain used for micro sequencing of

LCP7, 8, and 9. Canton S was obtained from Dr. Lynn Riddiford, University of

Washington.

Balanced third chromosome deficiency stocks were used to determined the

location of omega using the cytological breakpoints of the deletions (See Table 1):

D-5rv5, D-5rv12, D-5rv14are deficiency stocks obtained from Dr. Adelaide

Carpenter, University of Cambridge.

00732 and st-f13 are deficiency stocks obtained from Amy Beaton in the lab

of Dr. Gerry Rubin, University of California, Berkeley.

Brd6, BklO, Jz-M21 are deficiency stocks obtained from the Bloomington

Drosophila Stock Center.

LE392 is a supressing strain used to propogate bacteriophage A.. Its

genotype is supE44, supF58, hsdR514, galK2, galT22, metB1, trpR55, lacYl. It was

used to prepare lysates of IgtlO eDNA clones.

7



omega crosses for fertility analysis

Five virgin omega female flies were placed in the same vial with a single

omega male for five days at which point the females were separated into

individual vials and the male discarded. The offspring in all six vials (the

original vial and the five individual vials) were scored for eleven days following

the emergence of the first adult fly. Ten replicates of this virgin female n./n. x

n./n. cross were performed. The same crossing scheme was performed for the

following pairings:

virgin female +/ + x n./ n. male

virgin female n./ n. x +/ + male

virgin female +/ + x +/ + male

virgin female n./ + x n./n. male

virgin female n./ + x +/ + male

Data was compared using a single tailed T test on Microsoft Excel 5.0.

omega modification of Oregon R "wild type" L3CP6

Virgin omega female flies were crossed to wild type males. The offspring

males were back-crossed to virgin omega female flies. The back-cross third

instar offspring were dissected and run on nondenaturing gels as described in

Chihara et. al. (1982). Gel controls included wild type, omega homozygous, and

heterozygous third instar cuticles. See figure 5 for crossing scheme.

Deficiency Mapping

omega virgin females were mated to deficiency stocks to determine the

cytological location of omega. omega was tested with those deficiencies described

above. Fl larval cuticles were hand dissected in Drosophila Ringer's Solution

(1.89 mM CaClz, 4.7 mM KCI, 128.4 mM NaCl). Cuticle proteins were extracted
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from individual larvae in 20111of urea extraction buffer (7 M urea,S mM

Tris-HCI pH 8.6, 7% ~-mercaptoethanol and enough bromophenol blue to serve

as tracking dye). Vertical gel electrophoresis was performed in a 0.75 mm slab gel

(15% acrylamide, 0.08% bis-acrylamide, 0.375 M Tris-HCl, pH 8.6). Note that

while there are no components of the gel that are denaturing, the cuticle proteins

are loaded directly onto the gel in the 7M urea extraction buffer. At least eight

progeny larvae were dissected per cross to reduce the probablility of missing the

homozygote omega to 1/256. Gels were stained in 0.01% Coomassie G-250, 10%

acetic acid, 5% methanol and destained in 10% acetic acid, 5% methanol.

Protein Microsequencing

Third instar larvae cuticles were prepared in batches of 50 cuticles from

wild type, omega and Rho by whirling in a Waring blender micro container

(Eberbach) for 2 minutes in cold Ringer's (1.89 mM CaCl2, 4.7 mM KCI, 128.4 mM

NaCI). Cuticles were extracted using urea extraction buffer (20Ill/ cuticle) and

separated using 15% non-denaturing 1.5 mm preparative PAGE (slab gel formula

as above). Edges of preparative gel were cut and proteins visualized in

Coomassie stain. R] values were calculated for proteins of interest (LCP5,

LCP5omega, RHO, LCP7, LCP8, LCP9) and the appropriate center gel section was

prepared for semi-dry blotting.

A semidry transfer procedure was done according to LeGendre (1993).

Immobilon-pSQ Transfer Membrane (Millipore ISEQ15150) and 6 VWR 238

Blotting paper sheets (Whatman 3MM equivalent) per gel were cut to the same

size as gel. Three blotting paper sheets were soaked in Cathode Buffer (25 mM

Tris, 40 mM glycine, 10% methanol, pH 9.4), one in Anode Buffer I (0.3 M Tris,

10% methanol, pH 10.4) and two in Anode Buffer II (25 mM Tris, 10% methanol,

pH 10.4). The cut membrane was wet in 100% methanol for 1-3 seconds, then

9



immersed in Milli-Q water for 2-3 minutes and finally equilibrated in Anode

Buffer II for at least 15 minutes. Meanwhile, the gel was equilibrated in Cathode

Buffer for 10 minutes. The transfer stack was assembled on the anode plate in

the following order: blotting paper soaked in Anode Buffer I, blotting paper

soaked in Anode Buffer II, membrane, equilibrated gel, and blotting paper soaked

in Cathode Buffer. The transfer was achieved by the application of constant

current (10.0 rnA per cm2 of gel) for at least 3 hr. After transfer, the membrane

was rinsed in Milli-Q H20 2-3 times for 5 minutes each wash at room

temperature. The washed membrane was stained in Coomassie R-250 (0.1% in

50% methanol) for 2 minutes and destained with several changes of 50%

methanol, 10% acetic acid. Destain was followed by several rinses of Milli-Q

water. Lastly, the membrane was air dried and stored in a sealed plastic bag at-

20°C until hand delivered to microsequencing laboratory.

Proteins were microsequenced at the Biomolecular Resource Center,

University of California, San Francisco.

Southern Blot of Putative LCP9 Clones

A Southern blot of seven (Al-A6,A8)AgtlO third instar cDNA clones was

performed using a digoxigenin (DIG) labeled degenerate oligonucleotide probe

(see figure 2) based upon 10 N terminal amino acid residues from LCP9 using

Boehringer Manheim Genius System.

3' Tailing of LCP9 Degenerate Oligonucleotide

The degenerate lcp9 oligos were labeled using Boehringer Mannheim

Genius System, version 2.0, Kit 6 and the suggested procedure. The following

reagents were added to a microfuge tube on ice in the following order:

10



5X Genius Labeling Reaction Buffer
25 mM CoCl2 solution

DIG labeled dUTP
degenerate oligonucleotide

dATP
Terminal Transferase

dIDO

4111
4 III
1 III

5111(1 IlgIIll)
1 III
1 III
4111

Both the experimental and the provided unlabled oligonucleotide reactions were

incubated at 3TC for 15 minutes. The respective tubes were placed on ice and 1

III glycogen (20mg/ml) and 1111200mM EDTA, pH 8.0, solutions were added .

. The DNA was precipitated with 0.1 volume 4M LiCI and 2.5-3 volumes ethanol

(-20°C); the solution was then vortexed and incubated at -70T for 30 minutes.

The microfuge tube was centrifuged at 14krpm, 4T for 15 minutes and the

ethanol was removed by vacuum aspiration. The precipitate was washed with

100 ul of 70% ethanol at 4T and then followed by centrifugation at 14krpm, 4°C

for 5 minutes. Again the ethanol was aspirated away and the pellet was dried

and stored in 20 III TE/O.1 % SDS at -20T.

Estimating Yield of Labeled Oligonucleotide

Serial dilutions (1:10, 1:100, 1:1000, 1:10,000) were made of the experimental

labeled oligo, control labeled oligo, and a pre-labeled control supplied in Genius

Kit 6. 1 ul of each dilution was spotted onto a nitrocellulose membrane (Gelman

Sciences Biotrace NT) and the membrane was baked at 80°C for 30 minutes. The

following incubations were performed at room temperature each in heat sealed

plastic bags:

Genius Buffer 1 (100 mM Tris-HCl, 150 mM NaCl, pH 7.5 filtered through

0.45 11mfilter) 30 seconds.

Genius Buffer 2 (2% [w /vl blocking reagent in Genius Buffer 1)- 5 minutes.

11



Conjugate antibody solution (1:5000 dilution of a dig-alkaline phosphatase

in Genius Buffer 2)- 5 minutes

2X in Genius Buffer 1- 5 minutes per wash.

20 ml of Genius Buffer 3 (100mM TriseHCl, pH 9.5, 100mM NaCl, 50mM

MgCL2)- 2 minutes.

Color Substrate Solution (45 III NBT solution, and 35111x-phosphate

solution in 10ml Genius Buffer 3 without agitation in the dark ~ 12 hrs.

2X dH20- 5 minutes.

Labeled experimental oligo concentration was determined by comparing spot

intensities between experimental oligo and provided labeled control

oligonucleotide. The membrane was dried and placed in a heat sealed plastic bag

for storage.

Bacteriophage Preparation

100111of AgtlO isolated phage containing third instar cDNA were mixed

with 300111of an over-night culture of LE392 and incubated at 37T for 20

minutes. After incubation 3 ml of LB top agarose was added and media was

poured on pre-warmed LB agar plates. Plates were allowed to harden upright at

room temperature, then incubated inverted over night at 3TC. 3 ml of "- diluent

(10 mM Tris- Cl, 10 mM MgS04, pH 7.5) was added to each plate. The plates were

then incubated under constant gentle agitation for 3 hrs at which point the "-

diluent was transferred to 15 ml tube. Each plate was washed with 2 ml of "-

diluent; each wash was then transferred to appropriate 15 ml tube. 20111of

chloroform was added to the wash tube followed by centrifugation at 2000 rpm at

4·C for 25 minutes in an IEC centrifuge to remove bacterial contamination.

Supernatant was transferred to a fresh 15 ml tube; 20 I1gof RNase/DNase were

added and the tubes were incubated for 30 minutes at 3TC. Each sample was

12



aliquoted in 750J.lIportions into 1.5 ml microfuge tubes. Equal volume of 20%

PEG (8000),2 M NaCI in SM (0.1 M NaCI, 10 mM MgS04, 50 mM Tris-Cl, pH 7.5,

0.01% gelatin) were added to each tube. The samples were incubated on ice for 1-

3 hrs. This incubation was followed by centrifugation at 14000 rpm for 10

minutes at 4°C. The supernatant was removed by vacuum aspiration, the

samples were air dried. for at least 10 minutes, and the pellets from each clone

were pooled and re suspended in 0.5 ml TE (10 mM Tris-Cl, 1 mM EDTA, pH

8.0).

Uncut A samples were electrophoresed along with partially BamHI

digested Drosophila melanogaster genomic DNA in a 0.8% agarose IX TBE mini-

gel (see figure 3) at 90V for 1 hr. DNA was electroblotted onto a nitrocellulose

membrane that had been wet in IX TBE with VWR 238 Blotting paper

(Whatmann 3MM equivalent) also soaked in IX TBE at 100mA for 3 hrs under

constant current. DNA was fixed onto a membrane by baking at 8TC for 2 hrs.

Hybridization of 3' Tailed oligonucleotide proceeded over night as

specified by Boehringer Mannheim at 54.2T. In hybridization buffer (5X SSC,

1% Blocking reagent in Genius Buffer I, 0.1% N-Iauroyl sarcosine, 0.02% SDS,

labeled oligonucleotide) 100J.lI(10 mg/ml) poly A and 100J.lI(500 J.lg/ml) poly dA

were included. Detection was also performed as specified by manufacturer in

heat sealed plastic bags.

Drosophila melanogaster Genomic DNA Preparation

50 adult Oregon R wild type animals were homogenized in

homogenization buffer (0.1 M Tris-CI, pH 9.1,0.1 M NaCl, 0.2 M sucrose, 0.5 M

EDTA, 0.5% SDS). The sample was divided into two microfuge tubes. To each

25 J.lIRNase (10 mg/ml) was added, followed by room temperature incubation for

30 minutes and a 30 minute incubation at 65°C. 75 J.lIof 8M potassium Acetate

13



was added, the samples were vortexed and then incubated on ice for 30-60

minutes. The samples were centrifuged at 14000 rpm for five minutes at 4"C.

The supernatant was transferred to clean microfuge tube. They were then

phenol:chloroform (1:1) and chloroform extracted. The genomic DNA was

precipitated with 1 volume 95% ethanol at room temperature. The supernatant

was vacuum aspirated and the precipitate was washed with 70% ethanol at 4"C.

The DNA was re suspended in 50111TE and stored at -20°C. DNA was

quantitated using UV spectrophotometer.

Genomic DNA Digestion

2 Ilg of genomic DNA was digested in a final volume of 30 IIIwith 1 III of

BamHI overnight at 3TC.

14



Results and Discussion:

Initial work with omega included microsequencing the N terminal

residues of LCPS+ and LCP50mega (see figure 2; Mandalaparthy, et.al. 1996;

Schneider 1990). Preliminary data led to the thought that the omega mutant

product modified LCP5 through the addition of some functional group during the

normal protein processing for a secreted product. An EMS induced mutant,

omega's mutant phenotype is most likely due to a point mutation. This has been

substantiated by the occurence of a relatively rapid stock reversion to wild type

(Chihara, personal communication). The wild type OMEGA, therefore, acts post-

signal peptide removal as a dipeptidylaminopeptidase (DPAP) cleaving the fifth

cuticle protein and its variants, along with other as yet unidentified substrates, C-

terminal to R-P. Similar protein processing has been found in other organisms,

both eukaryotic and prokaryotic, cleaving after X-P or X-A. (There is some

evidence of cleavage, albeit with reduced efficiency, even after X-G.) In insects

DPAPs have been shown to function in the biosynthesis of lytic and bactericidal

peptides, for example, melittin and cecropins, respectively (Kreil, 1990). The

pleiotropic effects of omega (see below) can therefore reasonably be rationalized as

due to the reduced function of some unknown OMEGA substrate(s) caused by lack

of OMEGA DPAP cleavage in the various tissues and developmental stages which

express omega. Thus far, the N-termini of omega modified and unmodified LCPS

and LCPsSr (see Chihara and Kimbrell, 1986) have been microsequenced and both

exhibit the same omega" form of X-P cleavage (figure 2; Chihara, personal

communication).

The major N terminal sequences obtained from the Biomolecular

Resource Center are presented in figure 2. Very little can be said about LCP7, 8,

and 9. LCP8 has the same predicted sequence as recently identified dcp8 (Charles,

et. al., in press) and, therefore, belongs to the third chromosome cluster,

15



Figure 2: Micro sequencing data of the N terminal residues of third instar

Drosophila melanogaster cuticle proteins. Protein sequences are aligned to

demonstrate their identity. Note the extra residues included in the EMS induced

omega and rho mutant proteins. In all cases the residues with the strongest

detection signal is reported. LCP8 is a 100% match with dcp8 contained in the

65A5-6 cluster (Charles et. al., in press).
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LCP5
LCP50mega

RHO
LCP6
LCP7
LCP8
LCP9

NLAEIVRQVSDVEP
RPNLAEIVRQVSDVEP?K?S
RSNLAEIVRQ

NLAEIVRQVS
GVEVLRSDSN
AAEEPTIVRS
NEEADWKSD
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supporting meiotic mapping data obtained by Chihara and Kimbrell (1986). LCP7

and 9, on the other hand, do not match any known cuticle protein genes in

either the third chromosome cluster (at 6SAS-6) or the second chromosome

cluster (at 44D) and may compose a separate cluster of cuticle

proteins. In an effort to identify Icp9, Christian Wade screened a third instar

cDNA library in AgtlO using a degenerate oligonucleotide probe based upon the

N-terminal amino acids. His secondary screen resulted in eight clones. A

southern blot was performed on seven of the eight clones using the digoxigenin

poly-U end labeled degenerate Icp9 oligo identifying clones Al, A2, and A8 as

containing Icp9 -specific cDNA clones (see figure 3 and 4). Once isolated the Icp9

cDNA will be used to identify the cytology of Icp9, by an in situ hybridization, and

the gene sequence.

It is interesting to note that the N-terminus of LCPS and LCP6 are identical

and, as yet, the only apparent difference between RHO and Lcpsomega is the

substitution of a serine for a proline residue; the rest of the N-terminal RHO

sequence is identical to LCPS. Looking at the gene sequence of Icp5 presented in

figure 7 of Charles, et. al. (in press) this amino acid substitution results from a

CCC~TCC point mutation in the first nucleotide of codon eighteen (Icp5

corresponds to dcp3 in Charles, et. aI.). That substitution of a serine for a proline

may account for the omega" failure to modify RHO and subsequently its distinct

migration pattern in PAGE.

In Chihara and Kimbrell (1986) rho was placed very close to 1cpS; this new

data argues that rho is actually an EMS mutated copy of 1cpS contained within the

same third chromosome cluster. It has been shown that two D. melanogaster

strains (iso I and Canton S) contain multiple copies of 1cpS in the 6SA5-6 cluster

(Charles,et al in press). It stands to reason that the multiply marked stock used to

induce cuticle protein mutations also contained multiple lcp5 copies.
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Figure 3: Seven clones from a secondary screen of a AgtlO third ins tar cDNA

library were isolated and run on 0.8% agarose gel IX TBE along with genomic

Drosophila melanogaster Oregon R wild type DNA. The gel was stained with

ethidium bromide prior to transfer and photographed. Note the large amount of

RNA still present in the phage lysates and the poor digestion acheived by a 2hr

BamBI incubation at 3TC. AI-A6, A8 - clone designations, G - Drosophila

melanogaster genomic DNA BamBI digest.
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Figure 4: The nucleic acids present in the gel from figure 3 were transferred to

membrane and then probed with a degenerate lcp9 oligonucleotide probe based

upon the ten N -terminal amino acid residues of LCP9. For amino acid sequence

see figure 2. AI-A6, A8 - clone designations, G - Drosophila melanogaster BamHI

digest.
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Furthermore, Oregon R wild type lcp6 also represents a changed copy of

lcpS. This is substantiated by the inability of Chihara and Kimbrell (1986) to

isolate IcpS and lcp6 by meiotic mapping, their identical N termini and by the

omega modification of Oregon R wild type LCP6 in a 0./0. background. A

modified PAGE migration pattern when placed in an omega homozygote

background was previously used by Chihara and Kimbrell (1986) as a means of

identifying IcpS variants. The offspring of the 0./+ X 0./0. backcross have four

genotypes with three readily identifiable phenotypes (see figure 5 and 6): wild

type, LCP5omega, and LCP5omega, LCP6omega. This last phenotype represents the

omega-lcp6 recombinant flies. The omega -lcp6 recombinant banding pattern was

seen in 3 of 23 dissected larvae, a recombination frequency of 0.13. Both the N

terminal sequence identity and the shift in migration pattern of LCP6 when in an

omega homozygous background suggests a structural! functional similarity

between Oregon R LCP5 and LCP6. If lcp6 is a homologue of the identified and

sequenced lcpS, it is plausible that Icp6 would be found in the 65A5-6 gene cluster

as a duplication of IcpS. If so, the recombination frequency between omega and

Icp6 would be similar to the map distance between omega and IcpS (29.3 cM,

Schneider, 1990). Chi Square analysis (p=0.33) indicates that the hypothesis is

plausible if we assume that the three omega -lcp6 recombinant larvae represent

half of the recombination frequency. The recombination frequency is then 0.261.

Previous work had placed omega 29.3 cM from IcpS , as noted above. Based

upon the most recent cytologies presented on Flybase omega has been localized to

70E8;71A1 by deficiency mapping (See figure 7 and Table 1). omega is uncovered

by three deficiencies induced at three different laboratories: Df(3L)Brd6, gamma

ray induced by J. Posakony; Df(3L)fz-M21, gamma ray induced by Adler; and

Df(3L)D-5rv series X-ray induced by A. Carpenter (FlyBase as of May 28, 1997). The

presented cytology for omega is dependent upon not only deletions which
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uncover omega, but also deletions which do not, in particular Df(3L)00732 and

Df(3L)Brd15 and Df(3L)fzD21.

Once localized, the cytology will aid in identifying the omega locus, which

should aid in its characterization. The DNA itself (and the translated amino acid

sequence), however, will only provide partial explanations to a few of our

questions such as the developmental delay mentioned earlier and the sex specific

reduction in fertility. omega males demonstrate a reduction in fertility as

compared to wild type males in all crosses performed (with omega homozygote

females a two tailed student's t: P = 7.7xl0-S, with wild type females: P = 2.3 X 10-6,

heterozygote females: P = 9.9 X 10-3, where P is the probability that the samples are

taken from the same population and therefore have equal means. Probabilities

are based upon means presented in figure 8, assuming unequal variances;

Microsoft Excel 5.0 for Macintosh). This reduced fitness in omega males is likely

caused by the synergistic effect of two omega characteristics. First, omega

homozygous males appear to be impaired in successfully copulating with females

as compared to wild type males (see figure 9). Five days after introducing males to

the females, the females were separated into individual vials and the males

discarded. In crosses using omega homozygotes, it is dear that fewer successful

matings occurred (see figure 10). Second, of those successful matings omega

homozygote males sired fewer adult offspring. And this reduction cannot be

attributed to a developmental problem associated with offspring possession of an

omega allele (see below) and therefore must be associated with spermatogenesis.

The successful copulation frequency (SCF) when an omega homozygote male is

mated to an omega homozygote female is 0.62 (as compared to a wild type male

mated to an omega homozygote female which has an SCF of 1.0). The reduction

in adult offspring numbers expected from an omega male cross is given by the

number of adult offspring from the appropriate control cross multiplied by the
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Figure 5: omega modification of Oregon R LCP6 cross scheme and expected

results. The omega flies' sixth cuticle protein variant is designated mms for

"multiply marked stock." The mms designation refers to the characteristic minor

protein banding pattern of the chromosome on which omega was induced (see

Chihara and Kimbrell 1986). "Parental wild type" refers to the omega+ / omega,

lcpb": /lcp6mms genotype flies. The remaining offspring follow similar

nomenclature except for the fly genotype: omega/ omega, lcpb" / lcp6mms which

is referred to as "omega-lcp6 recombinant."
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PI: omega/omega, 13cp6mms/13cp6mms

Fl: omega" / omega, 13cp6+/ 13Cp6mms X omega / omega, /3Cp6mms /13cp6mms

B k Offac -cross spring:

Parental Recombinant

Genotype /' omega" / omega, lcp6+ / lcp6mms omega" / omega, lcp6mms / 13p6mms
<,

Phenotype wild type wild type

Genotype' omega /ome!(a, lcp6mms /lcp6mms omega/ omega, 13p6+/ lcp6mms

Ph~notype; LCpSomega LCPSomega, LCP60mega
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Figure 6: Following the mating scheme presented in figure 5, backcross offspring

larvae were dissected and run on PAGE (see Chihara and Kimbrell, 1982). Arrow

indicates recombinant LCP6omega. Also shown for comparison are a wild type

migration pattern and an omega migration pattern.
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copulation frequency of the corresponding omega male cross. For example,

from the omega male/omega female cross (SCF = 0.62) we would expect 0.62 x

171.lto equal the expected number of adult offspring (where 171.1 is the average

number of adult offspring from the appropriate control cross, figure 8). 0.62 x

171.1 is equal to 106.08, which is 150% of the observed average number of adult

offspring (69.8, figure 8). The other two tested crosses give similar results.

Therefore, SCF alone overestimates the number of offspring expected from any

cross involving an omega male. This gross overestimate supports the proposed

synergistic reduction in adult offspring production.

omega matings with heterozygotes demonstrate an increased percentage of

females fertilized, an increase in number of adult offspring per female and

subsequently, an increased average number of offspring per cross (figure 8, 9, and

10). Both the omega male and wild type male crosses, however, demonstrate this

hybrid vigor, that is increased fitness through allele recombination of genomes

homozygosed through normal laboratory stock maintenance. Note, however,

that while the number of offspring in both types of crosses increases, offspring in

the omega male cross are still reduced.

Comparing the two mating schemes by which heterozygote offspring are

generated, (see figure 8) it is clear that only when omega males are utilized is

there a reduction in quantity of adult offspring. This strongly indicates that the

diminished offspring numbers are not caused by a developmental abnormality

associated with carrying an omega allele. That is, animals are not dying after

having hatched because they are homo or heterozygote for omega .. This suggests

that in the other crosses the low fecundity is also due to the omega sire. Tracking

the numbers of animals at each developmental stage, comparing wild type and

omega homo zygotes would rule out any post egg laying lethality or reduced
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Figure 7: Deficiency Map. Three distinct groups of deficiencies have been isolated

in three different laboratories which uncover omega: fzM21, Brd6 and the D-Srv

series (all shown above the segments in solid lines). Below the segments in

dashed lines are four deficiencies which do not uncover omega, but using their

breakpoints the omega locus can be defined a? 70E8-71Al. omega is shown in a

thick solid line. For exact breakpoints of these key deficiencies and other

deficiencies tested refer to Table 1. Arrows for D-Srv12 and 14 indicate that the

deficiency extends beyond the scope of the presented segments.
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Table 1: Past and Current Deficiency Mapping Results. For facility the name and

cytology have been provided as well as the date tested and the results. Note that

a positive result indicates that the omega locus is contained within the

breakpoints. Spring/Fall 1995 are replicate trials of the deficiency performed by

different members of the lab.
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Figure 8: Average Adult Offspring per Cross. In all cases where omega males

sired the offspring there is a significant reduction in the number of adult

offspring. This figure takes into account both omega characteristics which result

in reduced adult offspring in crosses with an omega homozygote male. For each

sample both mean and standard deviation (s) are given.
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Figure 9: Percent Fertilized Females. For each cross males were introduced to a

vial containing five females on day one. On day five the male was discarded and

the females were separated into individual vials. Those females which produced

offspring post day five were considered fertilized. In all cases there omega males

are less successful at fertilizing females. 'n' given is the number of females in the

sample. n < 50 indicates that some females died/escaped prior to determining

whether or not the male had successfully fertilized it.
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Figure 10: Average Number of Progeny per Female. Of the females which were

successfully fertilized (the value given by 'n') presented here is the average

number of adult offspring per female. Note the hybrid vigor illustrated in the

heterozygote female crosses. In that case the effects of the omega male are still

evident when compared to the heterozygote female cross with wild type male.

For each sample both mean and standard deviation (5) are given.
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fitness associated with omega; taking into account the developmental delay

associated with omega. Localization of the omega locus may be facilitated by a

double screening process. The proposed screening process depends on the

assumption that the reduced fertility observed in the adult omega homozygotes is

due to specific omega expression in the testis and upon the deficiency cytology

data. First, subtracting a testis specific mRNA preparation with polystyrene

bound adult male carcass ss cDNA library. The primary screen would remove all

the genes in common, including the house keeping genes, leaving the testis

specific mRNA in the flow through. The secondary screen identifies the genes

that are common only to the testis and the third instar. This screen can easily be

done by labeled first strand synthesis cDNA from the testis specific RNA against

phage containing third instar cDNA. Depending upon how many clones are

finally selected, those that are of most interest (i.e. the longest clones which

probably contain larger cDNA fragments) can be identified by an in situ

hybridization to the 70E5:71Al region of the third chromosome.

The OMEGA dipeptidylaminopeptidase works on different substrates

whose resultant functions vary widely. One the one hand, OMEGA modifies

LCP5 whose function in the cuticle is unknown. Cuticle protein null mutants

demonstrate that elimination of an individual cuticle protein, itself, is not life

threatening, so long as there are sufficient other proteins to replace it.

Conversely, omega also functions in development and reproduction, two

important life processes. The story of omega seems to provide a glimpse into the

intricacies of life which still elude us. At once this gene is tied by evolution to a

mundane task of processing cuticle building blocks, yet simultaneously it

comprises a developmental element and is a key modifier in the complex

reproductive pathways that make life itself possible for the small fruit fly.
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