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Abstract 

 This thesis has studied the oxidation behavior of different biofuels or additives, 2-methyl-3-

buten-2-ol and 2-methylfuran, in combustion experiments at the Chemical Dynamics Beamline held 

at the Advanced Light Source of the Lawrence Berkley National Laboratory. The oxidation of these 

fuels were initiated through O(3P) and the combustion experiments were analyzed using a multiplexed 

chemical kinetics photoionization mass spectrometer with tunable synchrotron radiation. Products of 

the different reactions were identified using kinetic profiles and further characterized using the 

photoionization spectra. The amount of each species was calculated using branching fractions.  

 Additionally, the unimolecular dissociation of the xylyl bromide isomers was studied using 

imaging and double imaging photoelectron photoion coincidence spectroscopy to obtain accurate 

thermochemical data. These experiments were conducted using the Swiss Light Source held at the 

Paul Scherrer Institute in Villigen, Switzerland.  

 The importance of biofuels, fuel additives, and aromatic hydrocarbons is discussed in detail in 

Chapter 1 of this thesis. Further, the specific experimental components of the beamlines used at the 

ALS and the SLS are thoroughly explained in Chapter 2. The theory behind the experiments and the 

computational methods to analyze the substantial experimental findings from both experimental 

apparatuses are explained in Chapter 3. The two combustion systems, 2-methyl-3-buten-2-ol and 2-

methylfuran with O(3P) are presented in Chapter 4 and 5. Lastly, the photodissociation dynamics of 

the xylyl bromide isomers is presented in Chapter 6, where a specific program, miniPEPICO, is used 

to determine the accurate appearance energy of the daughter ion and to calculate thermochemical 

data. 
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Chapter 1- Introduction 

1.1 Climate Change and Greenhouse Gas Emission 

 To this day, the Earth’s temperature is constantly rising. According to the Environmental 

Protection Agency (EPA), within the past century the planet has warmed up by 1.5 0F.1 Due to these 

statistics, researchers of the EPA have estimated another rise in the Earth’s temperature of around 0.5-

8.6 0F over the next hundred years.1 This ongoing rise in temperature has a direct effect on the 

climate, thus harming the environment; for instance, the oceans become more acidic, some areas see 

less rainfall resulting in droughts, some areas see increased rainfall resulting in flooding.2 When CO2 

is continually pumped into the atmosphere, some leaks into the ocean dropping the overall pH 

therefore carbonate concentration begins to acidify the ocean.2 The ocean absorbs 30% of 

CO2 emissions caused from human activity and about 85% over a long period of time, as water and 

air mix at the ocean’s surface.2 Due to the use of fossil fuels, humans are acidifying the ocean and 

primarily changing its extremely delicate geochemical balance. Global warming is therefore directly 

related to climate change.  

 One of the main sources that causes the climate to continuously change is the release of 

greenhouse gases.3 Although, greenhouse gases are essential to a controlled climate temperature, the 

accumulation of the gases can be detrimental to the climate over a long period of time. In the norm, 

the release of greenhouse gases run in a cycle; light absorbed from the sun heats up the surface of the 

Earth, from which some light is reflected back as infrared radiation in order to cool the surface back 

again.4 This cycle (Figure 1-1) keeps the temperature of the Earth’s surface roughly constant, not too 

cold and not too hot. However, the increase of greenhouse gases disturb this cycle from occurring at a 

comfortable and safe rate.4 Levels of greenhouse gases are determined through sources and sinks, 

which are processes that, either destroy or create greenhouse gases.5 Specifically, human activity 

introduces new sources or the activity that interferes with natural sinks.5 
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Figure 1-1. A schematic diagram showing the cycle of the global long-term radiative balance of the 
atmosphere from the light absorbed by the sun.5  
 

The major greenhouse gases that accumulate in the atmosphere are: carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O), chlorofluorocarbons (CFCs), and ozone (O3).5 When more and more 

greenhouse gases are released in the atmosphere, the heat given off from the sun becomes “trapped” 

in the atmosphere. The accumulation of greenhouse gases does not allow for the infrared radiation to 

be reflected back.4 This keeps all of the heat within the Earth’s surface and thus drastically increases 

its temperature.4 The United States Environmental Protection agency reported the amount of 

greenhouse gases emitted in 2014, Figure 1.6 The major greenhouse gas emitted into the atmosphere 

is CO2, mainly due to the burning of fossil fuels such as coal, natural gases, and oil.6  
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Figure 1-2. EPA report of total US Greenhouse Gas Emissions in 2014.6  

 

1.2 Fossil Fuels 

 The primary source of the excessive release of greenhouse gases throughout the past century 

is due to human activity, specifically the burning of fossil fuels (coal, natural gas, petroleum, 

bitumen). To this day, the burning of fossil fuels is used as the main form of energy for electricity and 

transportation. As visualized in Figure 1-3, the primary source contributing to the release of 

greenhouse gases into the atmosphere comes from electricity production.7 The EPA reports that 

around 67% of the electricity used in everyday life come directly from the burning of fossil fuels. 

Leading close behind is transportation, where almost 90% of the fuel used is petroleum-based 

(gasoline and diesel).7 The combustion of fossil fuels itself releases nitric oxides (NOx), volatile 

organic compounds (VOCs), nitrogen dioxide (NO2), carbon dioxide (CO2), and soot.  The other 

primary sources are also related to the burning of fossil fuels, however, they do not have a large 

contribution.7 
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Figure 1-3. Total contribution of primary sources of greenhouse gas emissions in 2014.7 

 

 Fossil fuels are made from the remains of once living organisms and are not readily available; 

they take centuries to form. The three types of fossil fuels burned for energy are coal, oil, and natural 

gases.8 Once these fossil fuels are burned, power plants convert this energy into electricity used in 

everyday life. In the past, fossil fuels were more available, however, nowadays they are running out 

of supply, becoming a serious threat to producing overall needed electricity.8  

 Another harmful emitted class of substances is particulate matter (PM), which has been found 

to cause severe health problems, such as respiratory and cardiovascular diseases.9 NOx poses high 

risks in human health as well, such as respiratory infection, airway resistance in asthmatics and 

decreases in pulmonary function.10,11,12 Due to these harmful effects, for example the state of New 

England has passed on regulations forcing many different facilities to reduce overall NOx emissions 

through modifying the combustion process and installing air pollution control equipment.13 

Additionally, gasoline itself is made of organic compounds resulting from the distillation of 

petroleum (a form of fossil fuels) very harmful to the environment. In 2015 researchers found that 1.1 

billion metric tons of CO2 in the United States were released into the atmosphere from combustion of 

transportation.14  
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1.3 Combustion 

 Due to the continuous increase in the warming of the Earth’s climate and emission of 

hazardous greenhouse gases, researchers have been trying to find ways to incorporate renewable 

energy and lessen the overall use for the burning of fossil fuels. Combustion is a series of exothermic 

chemical reactions occurring between an oxidant and some type of fuel. These chains of reactions 

consist of molecular bond breaking, converting reactants to products, and thus releasing heat into the 

atmosphere. Around 90% of the energy needed to support everyday life comes from combustion. In a 

perfect world, when automobiles are ignited, the ideal combustion of hydrocarbons should only 

release carbon dioxide (CO2), water (H2O), and heat, seen in equation 1.  

 Fuel (hydrocarbons) + O2 → xCO2 + yH2O + Heat    (1) 

However, the combustion of natural gases actually releases many different species (see Fig. 1-4 

below for the combustion of methane). Combustion of hydrocarbons is initiated through the 

abstraction of hydrogen atoms. In most cases, incomplete combustion causes byproducts, 

intermediates, and polycyclic aromatic hydrocarbon (PAHs) are formed and released into the 

atmosphere. The OH radical and O(3P)  radical play essential roles in the oxidation process occurring 

throughout combustion. The reaction of O(3P) with two biofuels is studied in this thesis.  

 

 
Figure 1-4. Schematic of a mechanism forming throughout combustion of methane at room 
temperature.15  
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 The intermediates and byproducts vary with the fuel itself as well as the engine. Most 

common engines used for transportation are powered by gasoline or diesel. Most engines consist of 

similar parts, such as an ignition source (happens with a spark or a resistor) and a combustion 

chamber (consisting of cylinders). In all engines there is one point of ignition with one propagation 

front. Engine knocking occurs when there is incomplete combustion; unburnt gases are expanded 

therefore autoigniting the propagation front,16 damaging the engine. For this reason, the amount of air 

and fuel mixture has to be stoichiometrically feasible and the compression has to have a ratio of 10:1 

to avoid any potential engine knocking from occurring.17 This ratio is common in gasoline engines, 

whereas diesel engines have a larger compression ratio of 18:1 contributing to higher fuel 

efficiency.18-19 Also, a major benefit of diesel engines is less unburnt hydrocarbon production and 

release of carbon monoxide gas. However, PM, soot, and NOx emissions are still in high occurrence.20  

 Comparable to the benefits of diesel engines are homogeneous charged compression ignition 

(HCCI) engines with higher efficiencies (Figure 1-5).21 What makes these engines more attractive are 

lower emissions of PM and NOx,. They can be described as a combination of spark ignition gasoline 

engines and compressed ignition diesel engines.22
 In contrast with other engines, the HCCI engines 

does not use a spark to ignite, yet it is ignited through accurate timing of the reaction of air and fuel, 

auto-ignition of multiple sites under high temperature, 1000—2800 K, and high pressure, 40-140 

MPa. In this engine, autoignition occurs at multiple sites at the same time forcing the reaction mixture 

(air and fuel) to burn simultaneously. However, the process is hard to control. In order to understand 

the function of the HCCI engine, researchers have been studying the control of ignition and 

combustion, specifically the timing of each, hydrocarbon emissions and performance of a larger load 

of different mixtures.  
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Figure 1-5. Diagram expressing the differences between SI, CI, and HCCI engines where it is visible 
that HCCI engine has several ignition points not just a single one.23 

 

1.4 Biofuels and Fuel Additives 

 The demand for energy is huge; therefore, in the last few years, great research efforts have 

been delegated to find renewable sources of energy. Some of the reliable, renewable energy sources 

are biofuels, wind, geothermal, and solar energy. Biofuels and fuel additives have increasingly 

become of interest due to their high octane numbers, which have a direct impact on decreasing any 

chance of engine knocking. In particular, oxygenated fuel additives have the potential to improve the 

fuel mixture, providing fuel with properties further lessening the chances of engine knocking. Engine 

performance is directly related to the combustion speed of a particular fuel or fuel blend as well as 

pollutant emission. This speed is represented by its cetane number (CN); the higher the number the 

faster the ignition of the engine upon fuel injection. Often, different fuel additives are added to fuel to 

diminish the undesirable effects that the burning of fossil fuels causes to the environment, especially 

those with ignition delay. 

 In general, biofuels are interesting because they are derived from natural plant biomass and 

with low sulfur, nitrogen, and more oxygen content.24 For instance, different known types of biofuels 

are biodiesel, bioethanol, biogas, biosynthetic gas (bio-syngas), bio-oil, bio-char, and bio hydrogen.25 

Most fossil fuels essentially have zero oxygen content, whereas biofuels are biodegradable and have 

10-45% oxygen content offering a cleaner burning compared to petroleum based fuels.26 These 
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properties help reduce the emissions of hazardous gases such as sulfur oxides (SOx), carbon dioxide 

(CO2),27 and nitrogen oxides (NOx).28. Biofuels can be derived using many different techniques. Sugar 

cane or starch (corn or maize) can be fermented to produce ethanol that is often used as a fuel.29 Plant 

oils (soybean or algae) can be burned directly in a diesel engine or blended with petroleum to make 

biodiesel.29 Wood can also be burned into solid fuels.29 Another one way of making biofuels is 

transesterfication, which is shown in Figure 1-6 below.  

 
 

Figure 1-6. Mechanism showing the process of forming biofuels from oils and fats through 
transesterfication.30  
 

Alternatively to biofuels, different additives have been found to be helpful to add to petroleum-

based fuel such as gasoline to lessen its bad effects on human health and the environment. For 

instance, lead (though still harmful to the environment) has been found to reduce engine knock, 

helping to ensure that the engines do not pre-ignite.14 Engine knocking can be reduced when a certain 

engine can have higher power, also known as a higher octane rating. Aromatic hydrocarbons have 

been found to reduce engine knocking due to their high energy density and high octane ratings, 

making them attractive fuel additives because these properties help decrease engine knock.31  
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1.5 An Overview of this Thesis 

  This thesis presents the investigation of two systems reacting with O(3P), 2-methyl-3-buten-2-

ol and 2-methylfuran. The reaction of O(3P) with different biofuels has not been studied in much 

detail compared to other types of combustion reactions. This particular type of reaction is interesting 

because two main pathways occur: hydrogen abstraction and oxygen addition to the unsaturated C 

atoms. This “adduct” (addition product) then undergoes intersystem crossing (ISC) to form the 

primary products in the singlet state. In order to analyze the combustion behavior of these two 

biofuels, the experiments presented in this thesis are carried out at the Advanced Light Source (ALS) 

of the Lawrence Berkley National Laboratory, where experiments are performed using a multiplex 

time- and energy-resolved photoionization mass spectrometer.  

 Along with studying combustion reactions, it is also important to analyze unimolecular 

reactions to reveal bonding characteristics that can influence combustion behavior. Another part of 

this thesis is focused of the photodissociation dynamics behavior of three isomeric compounds: ortho-

methylbenzyl bromide, meta-methylbenzyl bromide, and para-methylbenzyl bromide. The 

photodissociation of these isomers is examined using double imagining photoelectron photoion 

coincidence spectroscopy (i2PEPICO), as well as just imaging photoelectron photoion coincidence 

spectroscopy (iPEPICO) for meta-methylbenzyl bromide. The choice of these species is related to the 

analysis of the dissociation dynamics of these isomers in forming the xylyl ion and finding their 

accurate thermochemistry from measured appearance energies. The experiments were carried out 

using the VUV beamline at the Swiss Light Source of the Paul Scherrer Institute.  
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Chapter 2. Experimental 

 The experiments presented in this thesis are based on the study of elementary reactions 

relevant to the combustion and autoignition behavior of selected biofuels. In this work, 2-methyl-3-

buten-2-ol (MBO) and 2-methylfuran (2-MeF) oxidation reactions were investigated using the 

multiplexed photoionization mass spectrometer (MPIMS) of the Chemical Dynamics Beamline 9.0.2 

at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. The schematic 

of Figure 2.1 portrays the ALS floor plan. In the first part of this chapter, the main ALS components 

and the experimental apparatus at the beamline endstation specific to this research will be described. 

Additionally, the second portion of this chapter explains the experimental details of the investigation 

of the unimolecular dissociation of xylyl isomers carried using the VUV beamline and the imaging 

and double imaging photoelectron photoion coincidence spectroscopy (PEPICO and i2PEPICO, 

respectively) endstation at the Swiss Light Source (Paul Scherrer Institute) located in Villigen, 

Switzerland.  

 

2.1 The Advanced Light Source Experiments 

2.1.1 Sample Preparation 

The biofuels studied in this work are commercially obtained from Sigma-Aldrich, and 

purified using the freeze-pump-thaw method to remove possible impurities. Liquid fuels are 

dispensed into a glass bubbler hooked up to a vacuum pump and with the help of a steel line in which 

vapors of different compounds are allowed to continually flow through. The fuel vapors are dispensed 

into a gas cylinder and equilibrated with helium gas in order to reach a partial pressure of 

approximately 1%. The total pressure in these cylinders is such that it permits each tank to last for 

several hours with constant flow of the gas in our reactor. The total He pressure in each tank is 

usually around 2,000 to 2,400 Torr. The gas cylinders are continually flushed with He and allowed to 

be pumped for hours before a second system is ready and prepared. The pressures of these 

experiments are controlled using a feedback controlled throttle valve using three types of vacuum 

pump systems: roots pumps, turbomolecular pumps, and scroll pumps described in detail later.  

 

2.1.2 The Advanced Light Source 

 The ALS is a third generation synchrotron that uses a linear accelerator (Linac) to generate 

accelerating beams of electrons created to produce high intensity X-ray beams.1 A general floor plan 

of the ALS is presented in Figure 2-1.  
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Figure 2-1. Advanced Light Source of the Lawrence Berkeley National Laboratory generated a 
general floor plan of the Advanced Light Source.2  

 

 The charged particles used to generate electromagnetic radiation at the ALS are electrons. 

They are produced by an electron gun that consists of cathode covered with a thermoionic material, 

barium aluminate, which upon heating releases electrons (thermionic effect). Due to a strong positive 

500 MHz pulsed potential, the emitted electrons are attracted to the gate, passing through towards the 

anode, which in turn is circular, guiding the electrons to the buncher. This is part of the linear 

accelerator (Linac). By the application of microwave radiation (generated by a klystron3) the electron 

beam is accelerated reaching 60% of the speed of light. A klystron is a linear-beam vacuum tube that 

is used to amplify small signals up to higher power levels. These generated levels are then used in 

radar, deep-space satellite communications, and coherent RF power sources.4 They create low-power 

reference signals for superheterodyne (converts received signal to fixed frequency) radar receivers 

and also generate high-power carrier waves for communications by being used as amplifiers.5  

 The electron beam (0.2 mm by 0.2 mm) is then injected into the booster ring, which operates 

at 1.9 GeV, serving as a “mini synchrotron” where the electrons essentially reach the speed of light. 

Finally, the relativistic electron beam is introduced into the 200 m diameter storage ring, where it 
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orbits and generates the synchrotron radiation.6 Specific devices, called insertion devices, are used to 

maintain the electron beam in a circular path. These insertion devices, such as undulators, wigglers 

(both held at each straight section of the storage ring), and bending magnets, are responsible for 

keeping the electrons in the storage ring and generating the synchrotron radiation used in the various 

beamlines for experimentation. Undulators and wigglers have arrays of magnets with alternating 

poles. Wigglers produce synchrotron radiation with a broader spectrum compared to undulators. For 

clarification, the diagram below (Figure 2-2) shows the electron beam trajectory and the emitted 

electromagnetic radiation passing through undulator magnets. The electromagnetic radiation is 

generated due to the variation in distance between the opposite poles.  

 

 
Figure 2-2. A diagram of generated synchrotron radiation through the electron beam passing in 
between magnetic poles.7  
 
 The ALS radiation has a high brightness, which defines the direction of the photons in the 

beam, compared to similar synchrotron sources all over the world. This synchrotron radiation is six 

orders of magnitude more intense that light produced from X-ray tubes alone. This difference allows 

the ALS to complete fast experiments. In Figure 2-3, the comparison of different light sources 

available in the United States is reported. Synchrotron tunability allows radiation to be changed at the 

different beamlines through monochromators, varying photon energies with a small energy 

uncertainty (high energy resolution) and giving broader ranges for different experiments. 
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Figure 2-3. A graph reported by the Advanced Photon Source at the Argonne National Laboratory 
comparing the brilliance of different X-ray light sources within the United States.8  
 
 There are twelve straight sections in the storage ring; nine of these are used as insertion 

devices: undulators, wigglers, elliptically polarizing undulators (EPUs), and bending magnets. Each 

insertion device accelerates electrons through a long magnetic structure. During this continuous 

acceleration (change of travel direction), synchrotron radiation is emitted and directed towards the 

various beamlines (43 beamlines at the ALS). Undulators and wigglers are located at each straight 

section of the storage ring.6 The photon energy of the undulator can be calculated using the equation 

2.1 below, provided by Margaritondo.9 This equation provides the overall energy that can be 

produced when there is small spacing between the magnets.9 The photon energy of the undulator 

(ħ𝜛), is expressed with the reduced Planck constant (ħ), the speed of light (c), the beam energy (γ), 

the undulator period (λL), the wiggler strength parameter (K), and the light emission direction (θL). 
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    ħ𝜛   ≅ !ħ!"!!
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   (2.1) 

 

γ can be calculated separately using equation 2.2, where E is the electron energy and mo is the mass of 

an electron at rest. K can be calculated using equation 2.3, where e represents the electron charge and 

BL the magnetic field strength. 
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       (2.3) 

 

2.1.3 Chemical Dynamics Beamline 

 The experiments of this thesis are carried out at the Chemical Dynamics Beamline 9.0.2. At 

9.0.2 the undulator radiation passes through a narrow gas filter (filled with 30 Torr of either Ar or Kr 

gas). The gas filter is used to remove higher-order harmonic photons from the undulator. Beer’s Law 

(equation 2.4) is used to calculate the extent of suppression of the higher-order harmonic photons (I 

represents transmitted photon intensity, I0 is the incident photon intensity, N is the density of gas, σ is 

the photoabsorption cross section of either Ar and Kr, and l is the length of the gas cell).   

 

     !
!!
= 𝑒!!"#         (2.4) 

 

After the light passes through the gas filter, it reaches a 3 meter off-plane Eagle monochromator.10 

According to Bragg’s Law (equation 2.5), photon energies11 can be selected by a range though any 

incoming radiation that is reflected. Monochromators are essential in the selection of narrow 

bandwidths of different wavelengths from a wider input of the synchrotron light in the energy range 

of 7.2-25.4 eV. 

 

nλ=2dsinθ      (2.5) 

 

where n is an integer and d is the spacing between two parallel atomic layers of the monochromator 

lattice (reflecting plane). Only a certain wavelength (λ) can be reflected from the incident radiation. 
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According to the equation above, it is visible that the angle difference between the monochromator 

surface and the incident synchrotron radiation (θ) allows the selection of different wavelength ranges. 

From there, the narrow bandwidth helps direct the light into the ionization chamber. The range of 

photon energies is wide enough to be able to characterize species during combustion experiments. 

  

2.1.4 Experimental Apparatus  

 The actual apparatus used for the experiments presented in this thesis consists of four main 

parts, all under high vacuum: excimer laser, time-of-flight mass spectrometer (TOFMS), ionization 

chamber, and microchannel plates (MCP) detector. 

 

 
Figure 2-4. Multiplexed chemical kinetics orthogonal mass spectrometer schematic.12 

 

 When setting up the apparatus for experimentation several steps occur first. The apparatus is 

aligned with respect to the ALS radiation and a “polynomial” is obtained for the energy calibration. 

This calibration occurs due to the “energy alignment” between the monochromator and undulator. 

From this, the energy resolution can be measured through performing a calibration. This is done 

through running a mass spectrum of a noble gas, in our case Ar (15.76 eV), and a calibration gas (a 

gas consisting of known photoionization cross-sections; ethane, propene, and butene). The range of 
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photon energy for each run is based upon the adiabatic ionization energy (AIE) of the particular 

compound under investigation. The AIE can be found on the NIST chemical website or calculated 

using computational methods described later in this thesis. Usually, before analyzing a particular 

reaction it is essential to determine whether upon photoionization the particular species in question 

forms dissociative fragments. Photoionization spectra are taken for all the reaction species. 

Specifically, when this spectrum is not known for the reactant, an absolute photoionization spectrum 

is collected with no reaction, i.e., without the photolysis laser. In order to obtain this spectrum, a 

calibration gas containing ethene, propene, and 1-butene is used and ionized to determine relative 

fragmentation and photoionization cross-sections of the parent molecule of the particular compound 

of interest. This methodology is explained in detail in chapters 4 and 5 for the characterization of the 

oxidation reactions of two systems. 

 The reactions of these experiments are carried out in a heated 62 cm slow flow quartz reactor 

tube (insulated by a 18 µnm thick Nichrome tape ensuring temperature uniformity) with a 1.05 cm 

internal diameter.10 The reactant species are introduced into the reaction cell using calibrated mass 

flow controllers (MFCs) and flow through a 650 µm pinhole on the reactor side into the ionization 

region, where they are photoionized through crossing tunable synchrotron radiation. Throughout these 

experiments, the temperature and pressure are constantly controlled. In this work the combustion 

reaction of 2-methyl-3-buten-2-ol and 2-methylfuran with O(3P) are analyzed at varying 

temperatures. The temperature is measured by thermocouples and varied using a closed-loop 

feedback circuit. The pressure in the reactor tube is held at 4 Torr at room temperature and increased 

to 7 Torr at higher temperatures. This is done in order to have comparable concentrations at different 

temperatures.  

 The pressure of these experiments are maintained by a capacitive manometer and controlled 

with closed-loop feedback valve in conjunction with the Roots pump. As the combustion reaction is 

happening, the flow rates of the mixture and particular gases are controlled using MFCs. From 

equation 2.6 it is possible to calculate the initial concentration of the reactants. 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = (3.24  ×  10!")(𝑃) !!
!!

!
!"#.!"

!!
    (2.6) 

where P is the pressure maintained inside the chemical reactor, FR is the flow rate of the reactant 

(assuming 100% purity; otherwise, its purity should be used to have the correct initial concentration) 

in standard cubic centimeter per minute (sccm), FT is the total flow rate of all compounds in sccm, 

and T is the temperature of the reactor in K. The experiments occur with a continuous gas flow rate of 

approximately 400 cm s-1 and 4 Hz repetition of the excimer laser so that the sample keeps pumping 

into the reaction tube. 
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 The reaction mixture (consisting of the selected system, the photolytic precursor, and the 

carrier gas He) is flowed into the reactor tube and a 351 nm excimer laser generates the O(3P) from 

NO2 photolysis. As the gas mixture flows through the pinhole described above, a molecular beam is 

formed and directed to the differentially pumped ionization chamber. Within the ionization chamber 

synchrotron radiation then ionizes the species (byproducts and reactive intermediates) forming from 

the reaction with O(3P). Each particular combustion reaction of the experiments presented in this 

work is set up with a different photon energy range and has a step size of 0.025 eV with ~250 laser 

shots at each photon energy.  

 

2.1.4.1 The Excimer Laser 

 The oxidation reactions of the investigated system are carried out using a photolytic 

precursor. Specifically, in the presented experiments NO2 is photolyzed using an unfocused excimer 

laser at 351 nm13 to yield the wanted O(3P) reactant. Lasers operating principle is based on the 

fundamental concept of population inversion, which is defined by the population of a molecule at its 

excited electronic state being greater than the population it has at its ground state.14 Thus, as the 

molecule relaxes to its ground state, a photon with energy equal to the gap (laser band) between the 

ground and excited state is emitted.  

 The wavelength of the light always depends on the specific mixture and the laser band 

between the excited and ground state. The experiments carried out in this work utilize 351 nm 

photons using a xenon fluoride (XeF) excimer (that stands for “excited dimer”) laser. In a gas 

chamber, Xe and F2 gases are pumped in, where an electrical discharge creates a spark that ionizes 

and excites Xe atoms that bond to flouring atoms creating XeF. 

 

    F2+ Xe* + M → (XeF)* + F    (2.7) 

 

This rare gas halide is referred to as excimer (excited dimer). The excimer exists only in the excited 

state. From this it is seen how the population inversion is easily achieved in this lasing system 

because the ground state of the molecule is unbound. 

The excimer laser consists of a laser cavity that includes the gas mixture as well as a buffer 

gas where an electric current passes from the electrode through the gas exciting the electrons of the 

molecules.  
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Figure 2-5. A general schematic of an excimer laser.15  

 

 The ground state oxygen atoms are generated through 351 nm photolysis of 1% NO2 and 

helium gas (NO2 → O(3P) + NO). At a wavelength below 398 nm, O(3P) has a reported absolute 

photoionization cross-section of 4.62 x 10-19 cm2 according to Vandaele16 and quantum yield of 

around 1.00.17 The unfocused excimer laser in this work is fired at 4 Hz and has a pulsewidth of 20 ns 

and fluence of 170 mJ cm-2.10  

 

2.1.4.2 Vacuum Pumps 

 These experiments have three main vacuum pumps that are essential in ensuring that the 

reaction cell, the reaction chamber, the ionization region, and the TOF detector remain free of any 

contamination. These are root, turbomolecular, and scroll pumps.  

There are three turbomolecular pumps with pumping speeds of 3200 Ls-1, 1600 Ls-1, and 600 

Ls-1. These pumps help gas molecules travel from inlet to outlet due to rotor and stator blades that 

transfer momentum to the gas molecules to continue to flow to the exhaust, maintaining the pressure 

of 10-8 Torr.18 The 3200 Ls-1 turbomolecular pump is placed in the source chamber where the 
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molecular beam is formed. The 1600 Ls-1 is in charge of pumping the ionization region and the 600 

Ls-1 pumps the detector region of the experimental apparatus.19 A diagram presenting the main parts 

of the turbomolecular pumps is presented in Figure 2-6. 

 

 
Figure 2-6. On the left is the inside view of a Turbomolecular pump; a) vacuum inlet, b) stator pack, 
b) venting flange, d) forevacuum flange, e) splinter guard, f) rotor, g) pump casing, h),k) ball bearing, 
i) cooling water connection, j) motor.  The right is amore external view of the pump.19  
 
 The large main pump is coupled together with two other pumps; Roots pump and backing 

scroll pump located at the end of the slow flow reactor tube. Each scroll pump consists of two scrolls, 

where only one is moving.18-21 As the rotating scroll orbits, the gas pockets are pushed toward the 

pump center letting out gases. The pressure of these pumps is held at 10-2 Torr with a speed ranging 

from ~6 to 13 Ls-1.23 Once the inlet is closed, the trapped gas is compressed until it reaches a higher 

pressure, and it can then escape at the center of the spiral for the next gas to come in (Figure 2-7).  
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Figure 2-7. The inside view of a scroll pump and outside diagram.24  

 The root pump is a dry rotary displacement pump that is made up of two symmetrically 

shaped counter-rotating impellors that are synchronized by external gears and rotor bearings. These 

pumps obtain their fast rotation speed (1000-3000 rpm) from a pressure of 20-10-4 Torr. Their main 

job is to evacuate unwanted gases from the reactor tube. This is designed so that no physical contact 

occurs between the two impellors as they are rotating close together. The gas moves into the inlet of 

the roots pump and goes toward the outlet as the rotors rotate. Compared to the scroll pump, roots 

pump has a pressure ranging from 10 to 10-3 mbar and pumping speeds of ~21 to 8333 Ls-1 Figure 2-8 

portrays a schematic of the function of the root pump. 
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Figure 2-8. A diagram of a Roots pump.25 

 

2.1.4.3 Time-of-Flight Mass Spectrometer and Microchannel Plates 

 Whenever the energy of light is higher than the ionization energy of a molecule, ionization 

occurs. The ionic species created throughout these experiments are focused and collimated with the 

aid of a series of electric fields towards the end of the first part of the flight. A positive 150 V electric 

field and a negative 150 V help change the initial ions direction by 90o to guide them towards the 

detector.26 The focused ions enter the orthogonal accelerator at a velocity, vbeam, where the ion kinetic 

energy in the beam is in the range of 10-100 eV.26 With a voltage of 5-10 kV, ions are pushed 

orthogonally (with respect to their initial direction) by a sharp pulse and accelerated to a velocity of 

vtof into the TOF analyzer.26 The angle between the orthogonally accelerated ions and ion beam can 

be calculated using the below equation. The velocity of the beam and TOF can be determined using 

the following equation; 

 

     𝜃 = 𝑡𝑎𝑛!! !!"#
!!"#$

    (2.8)  
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where e is the electron charge (1.6021765 x 10-19 C), z in the integer number of electron charges, U is 

the applied voltage, mass of ion (mi), and Ki is the kinetic energy of the ions. Once the ions travel 

through the drift path to the TOF analyzer, a new set of ions come in. The ions created have the same 

kinetic energy and distance to the detector, however, the masses are separated based on their different 

velocities leading to their mass-to-charge ratio separation (m/z).  

     𝑣 = !!"#
!!

= !!!
!!

    (2.9) 

 Once the gas mixture reaches the ionization region of the TOF analyzer, ions are extracted 

into a continuous beam until the heaviest ions reach the detector.27  

 At the ALS, the detector is made up of micro-channel plates (MCP) and time-of-flight digital 

converters (TDC) that raise the resolution and convert data output for experimental data analysis. The 

MCP are basically channel electron multipliers (CEM) present in an electrooptical ion detector 

(EOID).28 CEM tubes are only one micrometer in diameter giving the advantage to be placed into an 

array close together. This increases the likelihood for created ions to hit them. This is important 

because the surface of CEMs is made up of semiconductors that, when hit with ions, create secondary 

electrons. In this work, Chevron configuration (V-stack) is used within the time-of-flight mass 

spectrometer that is made up of two stacked MCPs, which are responsible for transferring and 

intensifying the signal. Figure 2-9 shows a diagram of the three different types of MCP 

configurations.  

 

 
Figure 2-9.  The middle represent a chevron-plate orientation with two MCPs, the left is one MCP 
with an array of CEMs, and the right is a “z stack” orientation of three or more  
MCPs.29 

   

2.2 iPEPICO and i2PEPICO at the Swiss Light Source  

 Photoelectron photoion coincidence spectroscopy (PEPICO) is an experimental method 

encompassing both photoelectron spectroscopy as well as photoionization mass spectrometry. 

Vacuum ultraviolet (VUV) radiation is used to ionize gas-phase molecules forming a cation and 
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photoelectron. Through time-of-flight (TOF) mass spectrometry, the masses of different photoions 

formed can be determined and velocity map imaging (VMI) is used to detect photoelectrons. The 

experiments presented in this work were performed using the X04DB vacuum ultraviolet (VUV) 

beam line at the Swiss Light Source (Paul Scherrer Institute) in Villigen, Switzerland. The time-of-

flight for electrons are around three orders of magnitude smaller than the time-of-flight distributions 

for photoions. Ortho-xylyl bromide and para-xylyl bromide were measured using the double imaging 

photoelectron-photoion coincidence (i2PEPICO) spectrometer. Meta-xylyl bromide, however, was 

measured using the imaging photoelectron-photoion coincidence (iPEPICO) spectrometer.  

 

2.2.1 The Swiss Light Source 

 The SLS is a third generation synchrotron facility that produces electromagnetic radiation 

with very high brightness, wide wavelength spectrum, and very stable temperature conditions.30 

Radiation at the SLS is emitted at a horizontal angle of over 8 mrad through the X04DB bend magnet 

port. The SLS contains a 2.4 GeV electron storage ring operated at 400 mA current mode.30 The 

VUV, similar to visible and infrared light, has a considerably wider radiation cone above the plane of 

the storage ring. Within the storage ring, synchrotron light is linearly polarized (within the plane) and 

elliptically polarized (above and below the plane). In the bend magnet, the electron beam is 45 µm 

FWHM vertically and 185 µm FWHM horizontally.31 The possible endstations of the SLS are 

presented in the diagram below. 

 
Figure 2-10. Diagram displaying the endstation layout of beamlines located at the SLS.32 
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2.2.2. VUV Beamline  

 The VUV beamline located at the SLS with a photon energy range from 5 to 30 eV is used to 

excite electrons and trigger photoionization and photodissociation.33 This energy range has a 

resolving power of 104. VUV radiation is attractive due to its tunability over lasers and resolution 

over discharge lamps. The resolution is indeed sufficient to match almost accurate thermochemical 

data, 0.1 kJ/mol accuracy.34 Another attractive feature of the particular VUV beamline at the SLS is 

an in-house designed rare gas filter that suppresses higher harmonic radiation to get rid of higher 

energy contributions. This gas filter was specifically designed to be more compact, easy to align and 

require less pumping power. The use of a good filter is essential for studies because the pressure has 

to be low enough at each end of the filter for the proper operation of each beamline and, yet, reach 

high-enough photoabsorption efficiency for the suppression of higher harmonics.34 The gas filter is 

0.90 m long and has a total of nine differentially pumped sections (Figure 2-11a and b), in which 

seven are exactly similar to one another.34 Within the gas filter, section 7 holds the monochromator 

exit slit and section 6 is connected to the gas inlet. 

 
 
Figure 2-11. a) 90mm long gas filter diagram with all nine sections; VUV light enters from the left 
and endstation is attached right after section 9. b) Picture of the designed gas filter.34  
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The maximum pressure allowed within the transfer line to the storage ring is 10-8 mbar. To further 

prevent contamination, and in particular gas leakage, safety valves are placed. In front of section 1, a 

1 m automated pneumatic valve is placed to prevent any gas leakage throughout experiments.  

  

2.2.3 Experimental Apparatus 

There are two coincidence apparatuses available at the SLS, an imaging photoelectron photoion 

coincidence experiments (iPEPICO) and a double imaging photoelectron photoion coincidence 

experiment (i2PEPICO). Each gas-phase sample is cooled and ionized through monochromatic 

synchrotron VUV radiation. Upon ionization, a photoelectron is produced acting as start signal for the 

ion time-of-flight analysis, in which kinetic energy is analyzed using velocity map imaging on a 

Roentdek DLD40 position sensitive delay-line detector with sub-millielectronvolt kinetic energy 

resolution at threshold to record coincidences.35 In the case of the iPEPICO, the photoelectron is 

velocity mag imaged onto a 40mm Roentdek delay line detector and photoions are mass analyzed 

through time-of-flight distributions. For i2PEPICO however, both the photoelectrons and photoions 

are imaged in a symmetric setup. The four delay line signals from each detector are processed after 

constant fraction discrimination with the help of an 8-channel ATR 19 unit and recorded by a 

HPTDC8-PCI card.  

Gas samples are processed from the headspace of a glass vial through a 6 mm Teflon tube into the 

ionization region of the experimental chamber, (pressure of 1-3 x 10-6 mbar).36 The apparatus consists 

of a 2 mm x 2 mm interaction region, where VUV synchrotron radiation is dispersed in grazing 

incidence by a 600 grooves/mm laminar grating.35-36 Within the gas filter, is a 10 cm long chamber is 

filled with 10 mbar of Ne-Ar-Kr mixture. Photoions and photoelectrons from opposite directions are 

extracted using a constant 40/120 V cm-1electric field.37 The iPEPICO has an extraction field 

available of 20-120 V cm-1 and the i2PEPICO has a theoretical high limit of around 500 V cm-1. The 

key feature of the iPEPICO experimental setup is to resolve threshold electrons up to 1.2 GeV 

imagines onto the detector measuring unimolecular dissociations rate constants. For i2PEPICO, the 

experimental setup enables kinetic energy release in order to measure ion imaging and introduce 

second acceleration fields. Figure 2-12 represents a schematic of both endstations held at the VUV 

beamline at the SLS.  
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a) b)  

Figure 2-12. a) A schematic overview of the iPEPICO, b) schematic of the i2PEPICO endstation.  
 

 The attractive features of the double imaging PEPICO apparatus are: easy grating exchange; 

reproducible switch between gratings; greater adjustment ranges for alignment; and increased pitch 

angle to increase the energy range. As visualized in Figure 2-13, the double imaging setup was simply 

designed as an extension of the iPEPICO experimental setup. The i2PEPICO consists of an ionization 

chamber with a smaller size that allows mounting only one of the two pumps (2-6 x 10-6 mbar).37 

After the light passes through the gas filter, it travels 50 cm into the ionization region.37 The light 

beam is 4x8 mrad2 and the ionization chamber in the new setup is shifted 50 mm back to the center 

when compared to the original experimental setup.37 
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Figure 2-13. a) A diagram representing the changed from the velocity map imager/TOF analyzer of 
the iPEPICO set up to i2PEPICO. b) Experimental diagram c) The set up of the light beam entrance 
through the gas filter into the ionization chamber.37 

 

2.2.4 PEPICO Programs and Data Analysis 

Each experimental apparatus has a specific program for data analysis. The two programs allow 

for the coincidence counts from both the center detector and ring detector to be listed in a series of 

numbers. The multi-channel analyzer (MCAS) points out the total number of active channels that give 

the number of points. The number of points created can be controlled through the script input for both 

programs. The points are split in half; half are the detection of electrons on the center while the 

second half refers to the detection of hot electrons on the ring. In order to obtain the necessary 

information from the data, the data is inputted into both programs and specific scripts will isolate the 
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hot electrons and help visualize the signal. Figure 2-14 shows examples of iPEPICO data analysis 

program, which includes the electron subtraction. The data is extrapolated and a weighted factor can 

be used to determine the count of zero kinetic energy electrons.  

 

 
 

Figure 2-14. An example of the iPEPICO program; top right is the script, bottom right is the TOF 
and bottom left is the center and ring electron subtraction.  
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Chapter 3. Theory 

 The data analysis of this work is in an essential part to understanding the important concepts 

behind the findings. For the data obtained from the ALS, two types of plots help characterize and 

identify products: kinetic profiles and photoionization spectra. Additionally, important terms and 

concepts for understanding the data are described. The computational data analysis and methods vary 

for the iPEPICO and i2PEPICO experiments that are further described in this section. 

 

3.1 ALS Data Analysis 

 The experimental data obtained from the ALS produce a three-dimensional data set where the 

intensity of all the species observed is a function of reaction time, mass-to-charge (m/z) ratio, and 

photon energy. Fixing one variable, such as energy or time, reduces the dimensionality of the data. 

These so obtained two-dimensional images can now be reduced further to “normal” one-dimension 

plots that are the photoionization (PI) spectra and kinetic traces. This process is depicted in Figure 3-

1.1 The characterization of products begins through observing their kinetic time profiles and 

analyzing which species are primary products and which are secondary products. These plots are 

obtained through taking a vertical slice of the two dimensional images; intensity vs. kinetic time (ms) 

for a fixed m/z. The reaction time of the experiments are 150 ms and each data cycle initiates 20 ms 

before each laser shot is fired. Typically, in these experiments approximately 150-250 laser shots are 

collected at each photon energy.1 The total number of laser shots for each experiment varies and 

depends on the photon energy range. The data of photon energy and kinetic time in combination with 

mass-to-charge ratio (m/z) is collected from the time-to-digital converter (TDC) from the micro-

channel plates output.   

 The analysis of the data begins with background subtracting the average pre-photolysis signal 

creating a mass spectrum that represents post-photolysis and continues through IGOR2 Pro by using 

the in-house procedures developed by our Sandia collaborators. Since in each experiment there is a 

variation in photon flux of the light, the ion signal has to be normalized. This is done by measuring 

the ALS photocurrent through a calibrated vacuum ultra-violet (VUV) sensitive photodiode.  

 The kinetic time trace plots help visualizing whether a fraction of the reactant of interest 

“depletes” at the onset (t0 = 0 ms) of the reaction that is when the photolysis laser is firing. The 

kinetic time traces are ion signal intensity (S) as a function of time (t) at a specific m/z. This plot is 

then used to compare to the kinetic time trace plots of all the species seen throughout the reaction to 

identify primary or secondary chemistry. When the slope of the inverse reactant signal fits well to the 

slope of the forming species (reactive intermediates and/or byproducts), it is indicative of primary 

chemistry. When the formation of an observed species occurs past t0, it is most likely secondary 



	  
	  

35	  

chemistry and does not concern this research. It is possible that under certain conditions secondary 

chemistry can be as fast as primary reactions. Radicals of a reaction are very short lived and easily 

identified due to their kinetic time traces. They have a very sharp and quick increase followed by a 

fast decay after a few ms.  

 When the initial primary signals have been identified, further analysis occurs through the PI 

spectra, which are plots of ion signal intensity (S) as a function of photon energy (E) at a particular 

m/z. The next step is to characterize each of the signals. This is done using literature PI spectra of 

different species and comparing them to the specific signals. From these spectra the adiabatic 

ionization energy (AIE) can be obtained. When the shape of a reference photoionization spectrum of 

a species fits the experimental signal, a positive assignment is achieved. In some instances, there may 

be multiple species forming at one m/z. In this case, when the summation of multiple spectra matches 

the overall experimental signal, the multiple species can be identified as well. Additionally, when 

reference PI spectra are unavailable in the literature, there are two possible scenarios. One is if the 

species is commercially available, then we can measure its photoionization spectrum using the same 

procedure. Otherwise, we can simulate its spectrum within the Franck-Condon (FC) approximation 

discussed in the computational section of this chapter.  
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Figure 3-1. A schematic of the three-dimensional data block obtained from the ALS experiments 
where two-dimensional slices are taken along with their corresponding one-dimensional slice for 
actual analysis.1  
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3.2 Theoretical Concepts 

3.2.1 Photoionization 

 When a molecule absorbs energy equal to or in excess to the energy needed for an electron to 

be removed, it ionizes. This required energy is referred to as the molecules ionization energy (IE). 

When a lone pair is involved, the ionization energies are lower because those electrons are more 

weakly bound. On the other hand, noble gases have the highest ionization energies of all atoms due to 

having closed electron shells. There are several ways for ionizing molecules; two common ways are 

electron ionization and photoionization. In the case of electron ionization, electrons are removed by 

collisions of energetic electrons with the system whereas electron removal occurs in photoionization 

through the interaction of an electromagnetic radiation with the system.1-2  

 In gas phase, when high energy level electrons bombard and transfer some of their energy 

onto the neutral state of a molecule, the specific electron ionization occurs.  

 

     M + e- à M+ + 2e-         (3.1) 

 

When a molecule releases an electron while simultaneously absorbing a photon, it is undergoing 

photoionization. 

 

     M + hv à M+ + e-                        (3.2) 

 

M represented a neutral species in the gas phase, h represents Planck’s constant and v corresponds to 

the frequency of light. M+ is the molecule cation resulting from the neutral species being ionized.  

 

      E = hν                      (3.3) 

 

represents the energy of the ionization radiation. According to the photoelectric effect ionization 

occurs only when E ≥ IE.1-2 The photoionization cross-section represents the effectiveness (cm2) of a 

gaseous species that will interact with radiation (light) during ionization measured in Megabarns; 

1Mb=1x1018 cm2).  

 Spectroscopically, the ionization energy can be defined as adiabatic. Adiabatic ionization 

energy (AIE) is used throughout the data analysis presented in this work. It represents the lowest 

energy value from the lowest electronic, vibrational, and rotational state of the neutral system 

necessary in order for electron removal to occur. The equation below expresses that the AIE of a 
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certain molecule, given that the enthalpy of formation of a neutral species is known, can be used to 

calculate the enthalpy of formation of the ion (M+). 

 

    M + hν à M+ + e-     ΔHrxn = IE                    (3.4) 

 

 Vertical ionization energy (VIE) represents the most intense peak (large Franck-Condon 

factors, see below) in the first spectral band in a photoelectron spectrum.  

 When the photon energy exceeds the AIE of a particular molecule, the species may 

dissociatively photoionize producing fragmentation (daughter ions). In order to observe at what 

energy different fragments or dissociated species can arise, the appearance energy (AE) is calculated, 

which is the energy at which the dissociative species appears in the mass spectrum from the neutral 

molecules. This process is observed in equation 3.5 where AB presents the neutral molecule that 

dissociates into the ion, A+, and neutral fragment, B.  

 

     AB àA+ + B + e-                        (3.5) 

 

The AE calculated in this way is only the thermochemical limit, which does not take into account any 

barrier for dissociation. To have an accurate computed AE value, the ionic potential energy surface 

should be investigated for possible barrier to dissociation. 

    

3.2.2. Photoionization (PI) Spectra 

 As seen in Figure 3-1, these plots are obtained from taking a two-dimensional slice (intensity 

vs. photon energy (eV)) of the three-dimensional data block. Initially, primary products are 

characterized from observing their kinetic time traces; these plots are obtained from the three-

dimensional block as well by fixing the photoionization energy that are intensity vs. time (ms). In 

Figure 3-2 three different time plots are presented that help characterizing products: a depleting 

reactant, a forming product, and a radical species. In Figure 3-3, the time trace of a primary product is 

superimposed onto the signal of the reactant (multiplied by -1) showing that the product is formed as 

fast as the reactant reacts (primary product).  
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(a) 

  
 

(b) 
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(c)  

 
Figure 3-2. (a) It represents the time trace of a depleting reacting at t0 = 0 ms. (b) It represents the 
time trace of a fast forming product at t0 = 0 ms. (c) It represents the time trace of a radical species 
forming and fastly decaying. 
 

 
Figure 3-3. Characterizing a primary product observed in the data through superimposing its time 
trace onto the inverse time plot of the reactant species. 
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 Once the primary species have been selected, the PI spectra help identify them. The 

photoionization spectrum of each species is unique, with a different ionization onset and shape, which 

is due to specific geometric parameters that make their Franck-Condon factors (see below) unique. 

There are several literature PI spectra of different molecules and when available these are used to 

identify the species. When the spectrum is not available, then a simulation within the FC 

approximation can be performed to obtain the photoelectron spectrum of the species, which by 

integration is converted into the photoionization spectrum.  

 In some instances multiple isomers or species can be present and the summation of their 

spectra can be used to fit the experimental data and further identify species. Since the PI spectrum of 

each isomer is directly related to its photoionization cross section, then the fractional abundance (A) 

of each can be found if the photoionization cross sections are known.3  

 

A1 + A2 + A3... = 1 thus σTotal= A1σ1 + A2σ2 + A3σ3…   (3.6) 

 

Figure 3-4 shows the comparison of an experimentally obtained spectrum at m/z 44 superimposed 

onto the reference PI spectra of ethenol and acetaldehyde reported by Cool et al.3 The summation of 

the species fit the overall shape of the experimental photoionization curve, which confirms the 

presence of these two species.  

 
Figure 3-4. The reference PI spectra of ethenol (purple) and acetaldehyde (gray) superimposed onto 
the experimental PI spectrum of m/z = 44 (pink open circles). The summation (blue) of the two 
species fit the overall experimental curve.4  
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 The ion signal (S(E)) is a function of the photon energy and is proportional to the 

photoionization cross section (𝜎(𝐸)) as equation 3.7 shows: 

 

𝑆(𝐸) = 𝑘𝜎(𝐸)𝐶𝛿     (3.7) 

 

 where k is the instrumentation constant, C is the concentration of the species, and δ is the mass 

discrimination factor, which is approximately equal to the mass (m) of the species to the power of 

0.67.5 This factor takes into account how efficiently the detector can detect a species. The 

photoionization-cross section (𝜎(𝐸)) represents the area in which there is the highest probability to 

ionize the system.6  

 

3.2.3. Photoionization Cross Sections 

 In theory, when a neutral atom or molecule in the gas phase absorbs a photon, an electron is 

removed if the photon energy is equal or greater than the energy binding the electron to the system. 

Thus, the possibility of a certain electron removal is directly proportional to the number of photons 

hitting the specific atom or molecule. In reality, it is more complex than this. The experimental 

incident flux from states i to j is directly related to the number of photons that are absorbed per unit 

time (power), equation 3.8,7-8 where P is power, I is the intensity, c is the speed of light, nω is the 

average number of photon, σ is the photoionization cross section, Tij is determined using Fermi’s 

Golden rule that calculates the density of the final states, and ω represents the frequency interval.7-8 

Due to this, the photoionization cross section is commonly known as the likelihood in which the 

molecule can potentially ionize when it comes in contact with a photon beam of a particular 

frequency.  

 

      𝜎 = !
!
= !!!!

!!!!
!!
𝑇!"                            (3.8) 

 

The equation 3.9 shows how the photoionization cross section of a target molecule (𝜎!(𝐸)) 

can be derived from the observed ion signals (𝑆!(𝐸) and 𝑆!(𝐸)), known concentrations (CT and CR) 

and known photoionization cross section of the reference molecule (𝜎!(𝐸)). The signals and 

photoionization cross-sections in this work are obtained at 11 eV.  

 

         𝜎!(𝐸) =
!!(!)!!(!)!!!!

!.!"

!!(!)!!!!
!.!"                       (3.9) 
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When a signal in a PI spectrum comprises of several species, the total photoionization cross section of 

the measured signal can be calculated based on the additivity rule: 

 

                  𝜎! = 𝑥!!
!!! 𝜎!                                                                                                 𝑤ℎ𝑒𝑟𝑒, 𝑥!!

!!! = 1                (3.10) 

 

 where xi represents the mol fraction of the ith isomer and σi is the photoionization cross-section of the 

ith isomer.   

 Once a particular m/z is fully characterized, it is essential to determine how much of each of 

the products is actually forming throughout the particular oxidation. This is done through comparing 

the concentration of the product to the concentration of the reactant, also referred to as branching 

fraction. This ratio is equal to:  

 

    
!!
!!
=    !!!!!!

!!!!!!
= !!!! !!

!.!"

!!!! !! !.!" =
!!!!
!!!!

∗𝑀𝐷𝐹                (3.11) 

 

The branching fractions in equation (3.11) are derived measuring the ratio of the concentration of the 

product (CP) divided by the concentration of the reactant (CR) at a specified photon energy (11 eV) 

that is equal to the ratio of the product of the ion signal (product, SP, and reactant, SR), the 

photoionization cross-section (product, σP, and reactants, σR), and the mass discrimination factor 

(MDF).9  

 

3.2.4 Franck-Condon Factors 

 As previously mentioned, in some cases reference photoionization spectra are unavailable in 

order to further characterize the observed species. When this occurs, a simulation within the Franck-

Condon approximation can be carried out on a particular structure that has an AIE identical to the 

experimentally observed AIE. The concepts behind these simulations refer to the Born-Oppenheimer 

approximation and the Franck-Condon principle. When a molecule is ionized, its bond length and 

position do not change because nuclei are fixed with respect to electron motion, possessing equal 

momentum. The Born-Oppenheimer approximation therefore suggests that the velocity of the 

electron is very fast suggesting that the motion of atomic nuclei and electrons in a molecule can be 

separated.5,10,11 This is concluded due to the heavier mass of the nuclei compared to the mass of the 

electron.5,10,11 For this reason, the wavefunction can be factored into vibrational and rotational 

components to solve for nuclear and electronic transitions independently. When the molecule 
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undergoes ionization and thus reaches its final state the electronic transitions occur, usually 

represented by E’1 à E’’0. This transitions indicates a small Franck-Condon overlap of the neutral 

and its corresponding cation.11,12 The maxima is where the highest chance of an electronic transition 

is achieved, according to the Franck-Condon principle.5,10,11 When there is an electronic transition of 

E’1 ß E’’0, no vibrational peak is present due to this small overlap between states.  

 As mentioned earlier, the adiabatic ionization energy (AIE) is thus the energy difference 

between the ground states of the neutral and cation. The AIE can be calculated through the CBS-QB3 

composite method in Gaussian 09 described later in this chapter. The Franck-Condon simulation is 

used to generate a photoelectron spectrum and its integration will provide the simulated 

photoionization spectrum, which can be compared to the experimental photoionization curve at the 

specific signal for further product identification. Specifically, the Franck-Condon (FC) and Franck-

Condon-Herzberg-Teller methods14,15,16 are employed. The FC overlap integrals are calculated using 

recursive formula developed by Ruhoff.17 Figure 3-5 shows an example of a simulated Franck-

Condon photoelectron simulation of 2-methylfuran, then an integrated simulation that is later used to 

further identify species, and the literature PI spectra to indicate how accurate the computational 

calculations are.  

 

 (a)  
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(b) 

 
 

(c) 

 
Figure 3-5. (a) Calculated Franck-Condon photoelectron spectrum simulation of 2-methylfuran. (b) 
Integrated Franck-Condon simulation to generate a PI spectrum curve of 2-methylfuran. (c) Integrated 
Franck-Condon simulation of 2-methylfuran superimposed onto the experimental PIE of m/z 82. 
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3.3 Electronic Structure Calculations 

 The studies reported in this thesis all make use of computational methods to help in the 

reaction species identification. The Gaussian 09 program18 is utilized to carry out electronic structure 

calculations to optimize molecular parameters using the complete basis set CBS-QB319-21 composite 

method along with Gaussian-4 (G4) theory. G4 was used for the computational calculations of the 

PEPICO experiments; in a sequence of Gx methods it is the fourth series to calculate molecular 

energies with an error of 1.19 kcal/mol.22-23 In order to obtain the total energy of a particular atom or 

molecule, this method performs several energy calculations; Møller-Plesset perturbation theory and 

coupled cluster theory. These theories are performed up to the fourth order for the G4 calculations. 

There are three basis sets used in G4 theory; G3LargeXP, quadrupole-zeta, quintuple-zeta. The last 

two basis sets are used for extrapolation to the Hartree-Fock limit to eliminate any error.22-23 

Throughout the calculation, the specific molecule or atom is polarized to 3d (1st row atoms)  and 4d 

(2nd row atoms). The polarization thus permits this specific method to calculate the geometries and 

zero-point energies obtained at the B3LYP/6-31G(2df,p) level to account for deficiencies in 

radicals.22-23 

 The adiabatic ionization energy (AIE) of a specific molecule is calculated using the zero-

point vibrational corrected total electronic energy (E0) obtained through optimization calculations of 

the neutral and cation of a particular species, i.e., AIE = E0 (cat) - E0 (neutral). The calculated AIE of 

a molecule is also used in generating Franck-Condon (FC) spectral simulations. Specifically, AIE 

predicts the onset of the curve (an increase in signal from the baseline), and the FC factors predict the 

general shape of the spectrum. 

 CBS-QB3 is known to provide reliable geometries and accurate energetics. Bond distances 

and harmonic vibrational frequencies were optimized at the Becke three-parameter exchange 

functional with Lee, Yang and Parr correlation functional (B3LYP) level of theory and all electron 6-

311+G* basis set. CBS-QB3 consists of different level of theory (ab initio and density functional) that 

help overcome the greatest amount of error, also referred to as the basis set truncation error, in 

electronic thermochemical calculations through using a linear combination of atomic orbitals (LCAO-

MO) approximations.19-21  

 CBS-QB3 is the main computational methodology used throughout this work in order to 

perform geometry optimization of specific structures, as well as perform frequency and energy 

calculations. This method is used due to the low estimated energy error of 1-1.5 kcal/mol according to 

Sirjean et al.24 Previously in this section, it was shown that the ionization energy obtained from 

photoionizing a species is equal to the enthalpy of the ionization reaction. The AIE is calculated from 

the difference between the zero-point energy corrected total electronic energies (ZPE) of the neutral 
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and cationic optimized species, displayed in the equation below. These values help obtain the AIE of 

a species as well as the heat of the reaction, helping in analyzing the experimental data.  

 

  𝐴𝐼𝐸 = 𝑍𝑃𝐸!"#
!"#!!"!  !"#$%$&'#$!( − 𝑍𝑃𝐸!"#$%&'

!"#!!"!  !"#$%$&'#$!(            (3.12) 

 

 ∆𝐻!"# = 𝑍𝑃𝐸!
!"#!!"!  !"#$%!"#$!%& − 𝑍𝑃𝐸!

!"#!!"!  !"#$%$&'#$!(            (3.13) 

 

3.4 Potential Energy Surface Scan using B3LYP Basis Set 

 A big part of this research is explaining the formation of specific reaction species, i.e., 

products and reactive intermediates, through thermodynamic and kinetics considerations. As 

mentioned before, the CBS-QB3 composite method is used to calculate the most accurate energy 

value of the species. In order to calculate whether the different pathways from the reactant to the 

different products have barriers, a potential energy surface scan is run on each optimized structure. 

B3LYP is a specific density-functional theory using the Hohenberg-Kohn theorem to calculate 

molecular energy at its ground state.25 The theoreom along with molecular energy also calculates the 

wave function in the ground state of a molecule, it is related to the ground-state electron probability 

density, ρ0 (x,y,z).25  

 In each particular reaction, molecules will have hydrogen transfers, bond stretching or 

breaking in order to form the desired products identified through their PI curves. Once a species has 

reached the lowest possible vibrational electronic level, it occupies its ground vibronic state (Ψ’0), 

which is referred to as the global minimum in a PES (potential energy surface) scan. The global 

minimum is the preferred structure in a PES scan because it the most energetically favorable 

conformation, i.e., the lowest energy state. In figure 3-6 a GaussView26 example is given of the 

structure at the global minimum and saddle point of a particular PES scan. The first saddle point is the 

highest point in a PES scans also known as the transition state. This “high-energy” species is also 

referred to as activation complex. When there is a barrier in a PES scan, in order to obtain the correct 

thermodynamic energy the particular structure at the saddle point is calculated using the CBS-QB3 

composite method. Indeed, each global minimum as well is saved and calculated again using the 

CBS-QB3 composite method to find the exact zero-point corrected total electronic energy value. All 

the structures present in the potential energy surface scan are calculated using the CBS-QB3 

composite method to be consistent with the reliable energetics.  
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Figure 3-6. A PES scan resulting from a B3LYP calculation. (a) The starting, (b) the saddle point, (c) 
the minima, ending structure.  
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3.5 Photoionization and Photodissocation Theories  

3.5.1. Isomerization and Unimolecular Dissociation 

 The analysis of molecules photodissociation takes into account the cation formed from the 

neutral species. The ionization of cation compared to a neutral species is fast due to nuclear or bond 

shifts of the neutral species. A cation forms when an electron is removed from the neutral molecules, 

as motioned before. However, the energy of the electromagnetic wave is greater than the energy of 

electron removal thus forming the corresponding ion. When analyzing the dissociation, a cation can 

be bound or unbound. When unbound, it is continually dissociating at the threshold. When analyzing 

the dissociation, the geometry of the neutral and cation can be identical due to vertical transition and a 

simple PES scan on a neutral species may give a global minimum that may not be completely 

accurate.  

 Molecules undergo photodissociation when there is enough internal energy due to an increase 

in photon energy to fragment (Equation 3.14).27  

 

    𝐴𝐵 + ℎ𝜈   → 𝐴𝐵!   →   𝐴! + 𝐵              (3.14) 

 

The neutral molecule AB is ionized forming the parent molecular ion AB+, which then 

photodissociates to form the experimental detected daughter ion is A+ and releases the neutral 

fragment referred to as B in the above equation. In the experimentation, only the cationic species of 

reactions are observed, in mass spectrometry neutral species are not detected.  

 In this particular work, the dissociation of the three isomer of interest had no barrier forming 

three-daughter isomers in their ionic states. Indeed, the potential energy pathway is “uphill” and the 

energy needed to form the daughter ion is termed as the bond dissociation energy (BDE) which 

equals to the energy at which the daughter isomers are first detected also referred to as the appearance 

energy (AE). The BDE is simply calculated from the energy difference between the fragments and 

parent species. This energy value along with the summation of the AIE of the particular species 

essentially provides the appearance energy needed to produce the daughter ion of the 

photodissociation (again, if no dissociation barrier is present). 

 

   𝐵𝐷𝐸 = 𝐸!"#$%&'()  !"#$%#& − 𝐸!"#$%&  !"#$%#&             (3.15) 

 

    𝐴𝐸 = 𝐵𝐷𝐸 + 𝐴𝐼𝐸               (3.16) 
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3.5.2 Thermodynamics and Photodissociation  

 From the appearance energies, useful thermochemical values of the neutral or cationic species 

of the investigated molecule can be calculated using the equation below:28-29  

 

  ∆!𝐻!!! = 𝐴𝐸 = ∆!𝐻!!! 𝐴! + ∆!𝐻!!! 𝐵 −   ∆!𝐻!!! (𝐴𝐵)   (3.17) 

 

   ∆!𝐻!!! 𝐴! = 𝐴𝐸 − ∆!𝐻!!! 𝐵 +   ∆!𝐻!!! (𝐴𝐵)   (3.18) 

 

When thermochemical information (heats of formation) for several of the species are known, the 

equation along with the appearance energy, which is the heat of the reaction for the formation of the 

neutral and cation fragment, can be used to find the heat of formation of the unknown. 

 

3.5.3 Computational Modeling for PEPICO 

 Photoelectron photoion coincidence spectroscopy as discussed in the previous chapter 

measures photoionization mass spectra and photoelectron spectra of gas phase molecules. In PEPICO 

experiments specifically, the photoelectrons ejected and particular ions are detected in coincidence 

and act as a time stamp for the ion time-of-flight distributions that provide kinetic information. In 

order to observe and identify fragments, many researchers use synchrotron photoionization mass 

spectrometry to report potential mechanisms that come into play for molecular photodissociaiton.30-31 

In order to visualize and find the amount of energy required for a particular species to photodissociate 

the energy is represented by the different between the AIE of the parent species (EZPE Neutral – EZPE 

Cation) and the experimental AE of the forming daughter ion. Breakdown diagrams take into account 

fractional abundance of each ion detected as a function of photon energy and are a better visualization 

of the photodissociation behavior of different species.   

 MiniPEPICO32 is computational software designed by Stzaray, Bodi and Baer that calculates 

the density and number of state functions creating a plot as a function of photon energy. The unique 

aspect of this program is that it takes into account the rates of photodissociation that can be extracted 

using Rice, Ramsperger, Kassel, and Marcus’s RRKM theory.  
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Figure 3-7. A diagram showing the steps and theories used in unimolecular reaction for the 
MiniPEPICO program.33  
 
The process to obtain accurate bond dissociation energies is represented in Figure 3-7. It enables the 

experimental dissociation rates to be extracted using vibrational transition state theory (VST)34, 

simplified statistical adiabatic channel model (SSACM)35, and Rice, Ramsperger, Kassel and 

Marcus’s RRKM theory.33,36,37 The rate constant is a function of internal energy (E), number of states 

of the energy that lies above the barrier to dissociate the species, the density (ρ(E)) of the states, 

Planck’s constant and reaction degeneracy (ħ)38.  

  

    𝑘 𝐸 = !" !!!!
ℏ!

(𝐸)      (3.19) 

 

In order for a breakdown diagram to be modeled, specific electronic structure calculations are 

performed similar to those described earlier. The input of the miniPEPICO program requires the 
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vibrational frequencies of the optimized neutral and cationic parent species. In this work, the 

vibrational frequencies were obtained using the G4 composite method to optimize and calculate the 

correct zero-point energy, Additionally, from the neutral output the rotational constants are obtained 

as well to input into the program. A PES scan is using B3LYP to observe whether there is a barrier to 

dissociate the ion, and TS calculations using G4 are performed to obtain the vibrational frequencies of 

the TS. The theoretical breakdown diagram created by the program is fitted to the experimental 

breakdown diagram, helping to determine the most accurate appearance energy for further analysis. 

There are two types of dissociations that occur throughout these types of experiments; slow and fast 

(Figure 3-8). When the parent ion travels through the drift tube and does not dissociate immediately, 

it undergoes a slow dissociation. In the case of the fast dissociation, the parent ion dissociated 

instantaneously.  

 

(a) 
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(b) 

 
Figure 3-8. a) Breakdown curve of the fast dissociation of bromine from bromocyclopropane. b) 
Breakdown diagram of the slow dissociation of the bromine loss from cis-1-bromopropene.39  
 

The 0 K appearance energy is obtained from fitting the statistical model of the breakdown diagram of 

fast dissociations or the breakdown diagram together with the time-of-flight distributions for slow 

dissociations. For fast reactions, there are no time-of-flight distributions analyses; the data analysis is 

only dependent upon the breakdown diagram. This is because if the reaction involves only a single 

product ion, there is 0 K dissociation limit and the thermal energy distributions help determine the 

approach to the limit using only the breakdown diagram. In the case of slow dissociations, it is 

essential to fit the breakdown diagram with the time-of-flight distributions. The TOF will exhibit an 

asymmetric fragment ion peak shape, the modeling of which will provide the absolute rate constants, 

Figure 3-9.  
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Figure 3-9. The asymmetric time-of-flight distribution due to the slow dissociation Bromine atom 
loss from cis-1-bromopropene.39  
 

 In order to do so, the hot electron time-of-flight spectrum needs to be subtracted from the 

central electrode in order for the parent and daughter ion to appear. In order to visualize the data bet, 

the channels numbers from the experiment are multiplied by at least 10. Therefore, the ion peak 

positions can be located to the nearest channel number and the peaks line up through scaling the hot 

electron TOF spectrum.  Another approach is to work with the original TOF data meaning having to 

determine the fractional part of each hot channel that needs to be subtracted from the central TOF 

spectrum so that the total counts are preserved. For molecules undergoing a slow dissociations, not all 

parent ions above the barrier dissociate within the time of the experiment thus a kinetic shift occurs 

and the following equation has to be taken into account.  

 

   𝐵𝐷 ℎ𝑣 = 𝑃! 𝑒, ℎ𝑣 𝑑𝐸 ≅ 𝑃! 𝐸 𝑑𝐸!!!!!
!

!!!!"
!            (3.20) 
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Chapter 4: Low- Temperature Synchrotron Photoionization Study of 2-Methyl-3-Buten-2-Ol 

(MBO) Oxidation Initiated by O(3P) Atoms in the 298-650 K Range‡ 

 ‡As published in the Journal of Physical Chemistry A, 121 (15), pg. 2936–2950 (2017) 
 

Yasmin Fathi, Chelsea Price, and Giovanni Meloni* 

Department of Chemistry, University of San Francisco, San Francisco, CA 94117 USA 

 

4.1 Abstract 

This work studies the oxidation of 2-methyl-3-buten-2-ol initiated by O(3P) atoms. The oxidation was 

investigated at room temperature, 550, and 650 K. Using the synchrotron radiation from the 

Advanced Light Source (ALS) of the Lawrence Berkley National Laboratory, reaction intermediates 

and products were studied by multiplexed photoionization mass spectrometry. Mass-to-charge ratios, 

kinetic time traces, photoionization spectra, and adiabatic ionization energies for each primary 

reaction species were obtained and used to characterize their identity. Using electronic structure 

calculations, potential energy surface scans of the different species produced throughout the oxidation 

were examined and presented in this paper to further validate the primary chemistry occurring. 

Branching fractions of primary products at all three temperatures were also provided. At room 

temperature only three primary products formed: ethenol (26.6%), acetaldehyde (4.2%), and acetone 

(53.4%). At 550 and 650 K the same primary products were observed in addition to propene (5.1%, 

11.2%), ethenol (18.1%, 2.8%), acetaldehyde (8.9%, 5.7%), cyclobutene (1.6%, 10.8%), 1-butene 

(2.0%, 10.9%), trans-2-butene (3.2%, 23.1%), acetone (50.4%, 16.8%), 3-penten-2-one (1.0%, 

11.5%), and 3-methyl-2-butenal (0.9%, 2.5%), where the first branching fraction value in parentheses 

corresponds to the 550 K data. At the highest temperature, a small amount of propyne (0.8%) was 

also observed.  
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4.2 Introduction 

Air pollution continues to be a leading threat to the environment. According to the 

Environmental Protection Agency (EPA), there are six common air pollutants; lead, ozone, particulate 

matter (PM), nitrogen oxides (NO2 and NO), sulfur dioxide (SO2), and carbon monoxide (CO).1 The 

burning of fossil fuels causes a dangerous amount of greenhouse gases to be released in the 

atmosphere. The release of these gases are detriment to the environment causing the earth’s climate to 

change.2 Fossil fuels have been used as the main source of energy throughout the past century. 

Petroleum-based gasoline emits constant air pollutants into the atmosphere that react with other 

compounds generating molecules harmful to human health and the environment. Fossil fuels are an 

expensive consumer product and have depleting resources.3 For this reason, researchers have been 

looking to find alternative sources for renewable energy and power transportation in a more 

affordable and earth friendly way.3 It has been found that the use of biofuels as an alternative fuel 

source produces less greenhouse gas emissions compared to fossil fuels4, specifically mixing ethanol 

with gasoline has been found to decrease carbon monoxide emissions5 and they are made from 

biomass that has been found as the only viable substitute.6    

Popular renewable energy sources, biofuels, are slowly providing a long-term solution to 

reducing harmful combustion emission of greenhouse gases. Most biofuels are oxygenated carbon-

neutral hydrocarbons, made from a mix of different feedstock, such as vegetable oil, fats, and 

different greases.7 Oxygenated fuel increases the oxygen content in fuel while simultaneously 

reducing toxic emission.7 While biofuels express several benefits as a renewable energy source, yet in 

combustion can increase emission of greenhouse gases such as nitrogen oxides and carbon oxides.8 

However, every biofuel reacts differently in the atmosphere and can create different byproducts that 

do not increase nitrogen oxide emissions. Short chain volatile alcohols are useful biofuels, which 

possess low water solubility and with linear hydrocarbon backbones, help confer combustion 

properties useful in internal combustion engines.9 Nevertheless, the combustion of short chain volatile 

alcohols, used as biofuels, have become of great interest to observe what byproducts are formed in the 

atmosphere.9 In general, knowledge of their combustion is scarce. 

2-methyl-3-buten-2-ol (MBO) has become an attractive biofuel and renewable fuel additive 

due to its high energy content and low solubility in water.10 MBO is produced from the methyl-

erythritol-4-phosphate isoprenoid pathway.10 Up to this point, ethanol has been the popular short 

chain volatile alcohol used as a biofuel. MBO has a greater energy output, due to its higher energy 

density of 106,000 BTU gallon-1 (British Thermal Unit), much closer to petroleum gasoline 125,000 

BTU gallon-1. Bioethanol on the other hand has a much lower energy content of 85,000 BTU gallon-
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1.10 Additionally, the low solubility in water helps purify the compound compared to ethanol allowing 

purified MBO to be captured of a culture without needed post harvesting.10  

In this investigation, the O(3P) initiated oxidation reaction of MBO is studied to investigate 

potential byproducts that can be formed in combustion. Ground state oxygen atoms are spread 

throughout the atmosphere through combustion from engines.11 For this reason, researchers have 

found interest in how specific biofuels will react with O(3P). Cvetanovic began researching the 

different pathways that occur initially in these type of reactions. He concluded that two main 

pathways might occur: an addition pathway to the less-substituted carbon atom of a multiple bond 

and a H-atom abstraction where the O(3P) acts electrophilic.12-13 Two different studies have been done 

to further this finding, using multiplexed synchrotron photoionization mass spectrometry (MPIMS)14-

15 and crossed molecular breams (CMBs),16 researchers concluded that at the beginning stages of the 

oxidation with O(3P) these reactions undergo intersystem crossing (ISC) taking the initial triplet 

reactant to singlet radical or intermediate leading to product formation. The MPIMS study of O(3P) 

with propene14-15 produced 40% of product formation from ISC, and the CBM study16 had almost 90% 

product formation from ISC.  

The research presented here is carried out at room temperature, 550, and 650 K using a 

tunable synchrotron multiplexed photoionization mass spectrometer, which has the ability to identify 

isomeric species via photoionization spectra. In addition, using electronic structure calculations 

potential energy surface scans of the different species produced throughout the oxidation are 

examined and presented. 

 

4.3 Experimental 

The synchrotron multiplexed time- and energy-resolved photoionization mass spectrometer at 

the Advanced Light Source (ALS) of Lawrence Berkley National Lab has been previously described 

and, therefore, a brief explanation will be presented in this work.17-19  

MBO (purity > 98%) is commercially obtained from Sigma Aldrich in liquid form, purified 

(freeze-pump-thaw technique), and along with helium gas is dispensed into a gas cylinder until the 

mixture has reached an overall partial pressure of 1%.19 Using calibrated mass flow controllers, the 

purified gas mixture flows through a 650 µm pinhole into a heated slow flow quartz reactor tube.19 

The mixture flows directly into an ionization region, where it is photoionized through crossing 

tunable synchrotron radiation.19 The ground state oxygen atoms are generated through 351 nm 

photolysis of 1% NO2 and helium gas (NO2 → O(3P) + NO).17 According to Troe20, at this wavelength 

the quantum yield of O(3P) is 1.00 and the absorption cross-section, according to Vandaele and co-



	  
	  

60	  

workers21 is 4.62 x 10-19 cm2. Based on these values together with the concentration of NO2 of 1.3 x 

1014 molecules cm-3 at 298 K, 3.7 x 1014 molecules cm-3 at 550 K, and 3.1 x 1014 molecules cm-3 at 650 

K, and the laser fluence of 201 mJ cm-2, the concentration of O(3P) is held at 2.1 x 1013 molecules cm-3 

at 298 K, 6.0 x 1013 molecules cm-3 at 550 K, and 5.1 x 1013 molecules cm-3 at 650 K.  

Based on the respective ionization energies, cations are formed and consequently accelerated 

and detected via a 50 kHz pulse orthogonal acceleration time-of-flight mass spectrometer.22-23 The 

mass resolution under the current experimental conditions is approximately 1,600.17 In this work the 

temperature of the reaction analyzed is varied and data is collected at 298, 550, and 650 K. 

Additionally, the pressures of these experiments are controlled using a feedback controlled throttle 

valve, starting at 4 Torr at 298 K and increasing to 7 Torr at both 550 and 650 K.   

These experiments results in a three dimensional data plot that is integrated and sliced into 

two dimensional data plots; photon energy (eV) vs. mass-to-charge ration (amu) and time (ms) vs. 

mass-to-charge ratio (amu).24 Photoionization (PI) spectra are used to identify reaction intermediates 

and products formed throughout the oxidation. These spectra are obtained through the integration of 

the ion signal of a specific reaction time range yielding the plot of ion intensity as a function of 

photon energy. In this work, the photoionization spectra are integrated in the time range of 0-70 ms at 

298 K, 0-30 ms at 550 K, and 0-10 ms at 650 K. The time intervals are chosen to minimize the 

presence of signal due to possible secondary reactions that might occur. Species identification is 

achieved by comparing the photoionization spectrum of detected products with either literature, 

calculated, or measured PI plots of species the products are believed to be. The AIE’s are determined 

by taking the linear extrapolation of the initial onset of the photoionization spectrum. The 

experimental adiabatic ionization energies have an estimated uncertainty of 0.05 eV for species 

identified with an onset. This uncertainty is due to the photon energy step size, possible presence of 

hot bands, and energy resolution.19 

The ion intensity over the whole photon energy range is integrated yielding a plot of ion 

intensity versus time. The time trace plots reveal the amount of reactant depleted or product formed 

over a certain time range of the oxidation. The primary products of this experiment are also identified 

via the comparison of their time traces with the depletion of the reactant. Secondary chemistry is 

observed when the product formation is slower than the reactant depletion. 

Once the reference photoionization spectra identify primary products at each observed signal, 

it is important to find the relative concentrations of each. Equation (1) shows the relation of the 

concentration (C) of a specific species at the photoionization spectrum intensity at a chosen energy 

(SE), in our experiments 11 eV. The instrumentation constant is k, σ represents the photoionization 
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cross-section, and δ is the mass-discrimination factor, which has been determined to be equal to the 

mass of the identified species to the power of 0.67.25 

     𝑆(𝐸) = 𝑘𝜎(𝐸)𝛿𝐶     (1) 

This work presents primary products observed from the oxidation of MBO + O(3P) with their 

corresponding branching fractions, which are the concentration of different products formed relative 

to the reactant. In order to perform this quantification, absolute photoionization cross sections, which 

are obtained through absolute photoionization spectra, are needed. The absolute photoionization 

spectrum of the reactant is acquired through comparing the known literature photoionization spectrum 

of propene at a known concentration with the experimental data.  
!!
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∗𝑀𝐷𝐹    (2) 

The branching fractions in equation (2) are derived measuring the ratio of the concentration of the 

product (CP) divided by the concentration of the reactant (CR) (measured as change in the initial 

reactant concentration) at a specified photon energy that is equal to the ratio of the product of the ion 

signal (product, SP, and reactant, SR), the photoionization cross-section (product, σP, and reactants, 

σR), and the mass discrimination factor (MDF).25 MDF is the quotient of reactant and product mass to 

the power of 0.67,25 which takes into account the mass-dependent response of the detector.  

 

4.4 Computational 

 The identification of products continues through electronic structure calculations. In this study, 

all computational calculations are completed in the Gaussian 09 software suite using the CBS-QB3 

composite model.26-27 This choice is based on its high accurate energetics with a mean absolute 

deviation of 1 kcal/mol and relative low computational cost.28 The AIE of the reaction species is 

obtained using the computed values of the corrected zero-point vibrational electronic energies of the 

ground state neutral and cationic species. These values are also used to calculate the enthalpy changes 

of proposed mechanism pathways leading to the products.  

 The main focus of this research is to identify the products formed in combustion during the 

oxidation of MBO with O(3P). In most cases, reference photoionization spectra are available for 

comparison to the experimental data to verify which products are created. In the case, however, that a 

reference photoionization spectrum is unavailable, a photoelectron spectrum (PE) is simulated. The 

PE spectrum is generated using the Franck-Condon (FC) and Franck-Condon-Herzberg-Teller 

methods.29-31 The FC overlap integrals are calculated using recursive formula developed by Ruhoff.32 

Once the photoelectron spectrum is computed, its integration will provide the simulated 

photoionization spectrum, which can be compared to the experimental photoionization curve at the 
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specific signal for further product identification. 

 Once the products are identified, it is essential to determine the reaction pathways leading to 

the identified species from the initial oxidation. The potential energy surface scan is carried out as a 

function of bond lengths and bond angles using the B3LYP/6-31G(d) level of theory.33 The energies 

of stationary points, minima, and transition states are then re-calculated using the CBS-QB3 method. 

These values are used to determine the enthalpy changes throughout the proposed mechanisms using 

MBO + O(3P) as the energy reference level. In order to further verify the forward and reverse steps of 

the different potential energy surface scans as well as the local minima and saddle points, intrinsic 

reaction coordinate (IRC) calculations are also performed.  

4.5 Results 

To aid clarity to the discussion of the numerous observed reaction species and their pathways, 

the experimental data are first presented at the three temperature, 298, 550, and 650 K. A concise 

presentation of our quantitative results in form of branching fractions is then provided, followed by 

the computational characterization of the reaction pathways to substantiate the experimental findings.  

The oxidation with O(3P) yields two types of reactions: (1) oxygen addition and (2) hydrogen 

abstraction pathway. The most energetically favorable pathway is the O(3P) addition to either less-

substituted carbon of the double bond. As seen in Scheme 1, triplet diradicals A and B are formed 

from the ground state oxygen atom adding to either unsaturated carbons. The enthalpy change (ΔrH) 

for radical A is -106 kJ/mol and for radical B is -109 kJ/mol. Diradical B (O(3P) addition to the 

secondary unsaturated carbon) is therefore a few kJ mol-1 more stable than A (O(3P) addition to the 

primary unsaturated carbon). These diradicals can enter the singlet surface through intersystem 

crossing (ISC) to form an epoxide that leads to several products observed in this study. The calculated 

ΔrH yielding the epoxide from the reactant is -370 kJ/mol. The epoxide cation is computed to be 

unbound using the CBS-QB3 model and, in fact, it has not been experimentally observed. The second 

type of reaction formed throughout this oxidation is the hydrogen abstraction from a methyl group 

bonded to the γ carbon (-5 kJ/mol). This radical is then attacked by O2 forming a peroxide species (-

254 kJ/mol). The last possible hydrogen abstraction for the ground state oxygen atom throughout this 

oxidation is from the alcohol group bonded to the γ carbon. However, it is an endothermic process 

with a calculated ΔrH of 5 kJ/mol and, thus, it is not considered in the analysis of the formation of the 

different species.  
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Scheme 1: The three radical species forming from the initial MBO + O(3P) reaction (the CBS-QB3 
calculated enthalpy changes are provided): the two oxy radicals A and B, the H abstraction radical C, 
and peroxy species D. 

 
 
 MBO+ O(3P) reactions are carried out at three different temperatures. At 298 K the 

measurements are performed from 9.3 to 11 eV, and at 550 and 650 K in the 8.7–11 eV range.  

 

4.5.1 Product Identification of MBO + O(3P) at 298 K. At room temperature, the oxidation of 

MBO + O(3P)  forms only two signals at m/z 44, and m/z 58. The experimental photoionization 

spectrum at m/z 44 reveals two species. The experimental onset of the PI spectrum at 9.30 + 0.05 eV 

agrees with the reference PI spectrum of ethenol up to around 10.20 eV, where the literature PI 

spectrum of acetaldehyde is matched. According to Ruscic and Berkowitz,34 the m/z 44 experimental 

ionization onset matches very well with the reference adiabatic ionization energy of 9.33 + 0.01 eV 

for ethenol. The experimental ionization of acetaldehyde also is in good agreement with the literature 

adiabatic ionization energy of 10.20 + 0.02 eV.35 The summation of the literature photoionization 

spectra of ethenol and acetaldehyde taken by Cool et al.36  matches very well with the experimental 

m/z 44 photoionization curve (Figure 1). 
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Figure 1. Summation (blue line) of the literature photoionization spectra of ethenol (dark purple) and 
acetaldehyde (gray) superimposed onto the experimental photoionization curve at m/z 44 (pink line 
and open circles) at 298 K.  
 

 Experimentally, the adiabatic ionization energy of acetone (m/z 58) is observed to be 9.70 + 

0.05 eV, compared to the literature adiabatic ionization energy of 9.694 + 0.006 eV reported by 

Trott.37 In the absolute photoionization spectrum of MBO, m/z 58 is a dissociative photoionization 

fragment. However, in the studied reaction m/z 58 is observed as a product, i.e., its time trace is not 

depleting. The ratio of the dissociative photoionization fragment (daughter ion) and the reactant 

(parent ion) in the absolute photoionization spectrum (2.65 at 11 eV) is used to adjust the 

experimental m/z 58 spectrum. This is achieved by adding the normalized signal (with respect to the 

parent signal in the reaction data) of the daughter ion to the observed curve to take into account the 

depleting signal of the fragment. The resulting m/z 58 matches well to the literature photoionization 

spectrum of acetone within the very low signal-to-noise ratio, which affects the uncertainty of the 

measured ion signal as described in the branching fractions section (Figure 2).38 Acetone has been 

determined to be a primary product by comparing its kinetic trace to the temporal behavior of the 
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reactant. Its time trace is presented in Figure 3. The time trace of the reactant, which is indeed a 

depleting signal, has been multiplied by -1 for comparison with the formation of the product. 

 
Figure 2. Comparison of the experimental photoionization curve of product m/z 58 superimposed 
onto the literature photoionization spectrum of acetone at 298 K. 
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Figure 3. Time trace of m/z 58 (open triangles) superimposed onto the time trace of the reactant 
(open circle) at 298 K. The time trace of the reactant has been multiplied by -1. 
 

4.5.2 Product Identification of MBO + O(3P) at 550 and 650 K.  

 At the higher temperatures, the oxidation of MBO presents additional products. At both 

temperatures, the following signals are identified: m/z 42, 44, 54, 56, 58, 70, 82 and 84. At 650 K, an 

additional primary product is identified at m/z 40. When photolyzing NO2 to create O(3P), NO is 

formed as well. At signal m/z 30, the experimental photoionization spectrum matches very well to the 

reference photoionization spectrum of NO39 (Figure 4). A signal at m/z 40 is only observed at 650 K 

and assigned as propyne (Figure 5) based on the good agreement with its superimposed literature 

photoionization spectrum.38The observed adiabatic photoionization energy is 10.40 + 0.05 eV, which 

is in good agreement with the reported value of propyne of 10.37 + 0.01 eV.40 
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Figure 4. Literature photoionization spectra of NO (blue) superimposed onto the experimental 
photoionization curve at m/z 30 at 550 K (red line and open circles).  
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Figure 5. The experimental photoionization spectrum of m/z 44 (dark yellow line and open circles) 
and the reference photoionization spectrum of propyne (purple) for the MBO + O(3P) reaction at 650 
K. 
 

 Person and Nicole41 reference PI spectrum of propene agrees well with the experimental data 

at m/z 42 (Figure 6). The ionization onset of 9.70 + 0.05 eV matches the reference AIE of 9.74 + 

0.0141 eV. Similarly to 298 K, products at m/z 44 are observed, however, the ethenol contribution gets 

smaller as the temperature is increased (Figure 7). Figure 8 presents the time trace of m/z 44 

superimposed onto the time trace of the reactant at 550 K showing its fast formation as primary 

product. The time trace of the reactant (depleting signal) has been multiplied by -1 for comparison 

with the formation of the product (Figure 8). 
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Figure 6. The literature photoionization spectra of propene (dark red) superimposed onto the 
experimental photoionization spectrum at m/z 42 (red line and open circles) at 550 and 650 K. 
 

a) 
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b) 

	  
	  
Figure 7. a) Summation (blue line) of the literature photoionization spectra of ethenol (purple) and 
acetaldehyde (gray) superimposed onto the experimental photoionization spectrum at m/z 44 (red line 
and open circles) at 550 K. b) The reference photoionization spectrum of acetaldehyde and ethenol 
superimposed onto the experimental photoionization spectrum of m/z 44 at 650 K (dark yellow line 
and open circles). 
 

	  
	  
Figure 8. Time trace of m/z 44 (open triangles) superimposed onto the reactant time trace at 550 K. 
The time trace of the reactant has been multiplied by -1. 
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 The m/z 54 signal is assigned to cyclobutene (Figure 9) with its experimental AIE of 9.40 + 

0.05 eV in good agreement with the literature value of 9.43 + 0.02 eV.42 There is no literature PI 

spectrum for cyclobutene, thus using the CBS-QB3 optimized geometries and force constants of the 

cationic and neutral species (Franck-Condon approximation), a photoelectron curve is simulated and 

integrated into a photoionization spectrum, which agrees with this study experimental data. Two 

isomeric species are formed at m/z 56 (Figure 10), trans-2-butene and 1-butene. The ionization onset 

of 9.10 ± 0.05 eV is fit to the literature PI curve of trans-2-butene with a reported AIE of 9.10 ± 0.02 

eV.43 The literature AIE of 1-butene of 9.62 + 0.05 eV44 and Wang et al.45 PI spectrum agree well with 

the experimental data at the higher energy range. The summation of trans-2-butene and 1-butene 

spectra is a good match to the overall shape of the experimental signal at m/z 56 up to 10.1 eV. At 

higher photon energies the un-matched experimental signal might be due to dissociative 

photoionization of products at m/z 84, which could undergo a CO loss.  

	  
	  
Figure 9. The experimental photoionization spectrum of m/z 54 at 550 K (red line and open circles) 
and 650 K (dark yellow line and open circles) and the simulated Franck-Codon (FC) photoionization 
spectrum of Cyclobutene (purple) for the MBO + O(3P) reaction.  
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Figure 10. a) Summation (blue line) of the literature photoionization spectra of trans-2-butene 
(purple) and 1-butene (gray) superimposed onto the experimental photoionization spectrum of m/z 56 
at 650 K (dark yellow line and open circles) for the MBO + O(3P) reaction.  
 

A product at m/z 58 is observed. The same procedure used at 298 K is applied at both 550 

and 650 K to yield a signal consistent with the presence of acetone. m/z 70 is assigned to 2-butenal 

based on the good agreement of the observed ionization onset at 9.70 + 0.05 eV with the literature 

AIE of 9.73 + 0.01 eV46 and the literature spectrum (Figure 11).43 Based on the computational results 

presented below in the Proposed Mechanism of MBO with O(3P) section, the formation of this 

species is not kinetically favorable due to a very high barrier for this formation. Therefore, this 

species cannot be considered to be a primary product. Figure 12 presents the time trace of m/z 70 

superimposed onto the time trace of the reactant (multiplied by -1) at 550 K showing a slower 

formation than a primary product would have (see Figure 8 for comparison). The signal m/z 82 at 

both temperatures is assigned to cyclobutanecarbaldehyde based on the good match with the FC 

simulated spectrum (Figure 13). Finally, two non-isomeric species are characterized at m/z 84 (Figure 

14). The ionization onset of the spectrum at 9.40 + 0.05 eV is consistent with the measured spectrum 

of 3-penten-2-one with a reported AIE of 9.39 eV.47 The spectrum of this species alone does not 
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match the whole signal in the studied photoionization energy range. The inclusion of 3-methyl-2-

butenal with an AIE of 9.4 eV43 in the summation spectrum is in good agreement with the measured 

signal. 

 

	  
	  
	  
Figure 11. The experimental photoionization spectrum of m/z 70 at 550 K (red line and open circles) 
and 650 K (dark yellow line and open circles) and the reference photoionization spectrum of 2-
Butenal (purple) for the MBO + O(3P) reaction. 
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Figure 12. The time trace of m/z 70 (open triangles) superimposed on the reactant time trace (open 
circles) at 550 K. The time trace of the reactant has been multiplied by -1. 
	  

	  
Figure 13. Comparison of the experimental photoionization spectrum at m/z 82 superimposed onto 
the Franck-Condon simulation of the epoxide species at 550 K (red line and open circles) and 650 K 
(dark yellow line and open circles).  
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Figure 14.  Summation at 650 K (blue line) of the simulation Franck-Codon (FC) photoionization 
spectrum of 3-penten-2-one (purple) and the literature photoionization spectrum of 3-methyl-2-
butenal (gray) superimposed onto the experimental photoionization spectrum at m/z 84 at 650 K (dark 
yellow line and open circles) for the MBO + O(3P) reaction.  
 
4.5.3 Branching Fractions  

The products formed at all three temperatures and their corresponding branching fractions, 

calculated using equation (2), are presented in Table 1. Both ion intensities and photoionization cross-

sections are a function of photon energy. For this reason, PI spectra of each product formed are 

compared at the same photon energy of 11 eV to determine their concentrations. The uncertainties of 

the branching fractions are calculated using the propagation of errors of each variable in equation (2) 

and are listed in Table 1. The signal used to calculate the branching fractions at each temperature is 

average for 250 laser shots at each energy step. The uncertainties of the photoionization cross sections 

and the mass discrimination factor are from the literature, whereas the uncertainty of each ion signal 

is estimated by taking the difference between the measured upper value at 11 eV of a specific species 

and its reference (literature or simulation) spectrum used in the assignment. The same procedure is 

applied using the lower ion signal value at 11 eV.  
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Table 1. Branching fractions of products with their uncertainties formed during the 
oxidation of MBO using O(3P) at  298, 550, and 650 K.  
 
Compound m/z 298 K 550 K 650 K 
From the O(3P) addition pathway 
Propyne 40   1.0 + 0.5 
Ethenol 44 26.6 + 8.9 18.1 + 10.0 2.8 + 1.7 
Acetaldehyde 44 4.2 + 1.5 8.9 + 5.1 5.7 + 3.4 
Cis-2-Butene 56  3.2 + 1.7 23.1 + 10.5 
1-Butene 56  2.0 + 1.1 10.9 + 5.0 
Acetone 58 53.4 + 39.8 50.4 + 38.3 16.8 + 8.7 
3-Penten-2-One 84  1.0 + 0.5 11.5 + 5.1 
3-Methyl-2-Butenal 84  0.9 + 0.5 2.5 + 1.1 
From the O(3P) H abstraction pathway 
Propene 42  5.1 + 2.8 11.2 + 4.5 
Cyclobutene 54  1.6 + 0.8 10.8 + 4.7 
Cyclobutanecarbaldehyde 82  0.4 + 0.3 2.4 + 1.2 

 

At 298 K only three products are observed, ethenol, acetaldehyde, and acetone. They are 

quantified and the total branching fraction is 84.2 ± 40.8 %. The large estimated error of the 

branching fraction of acetone (± 39.8%) is due to the very low signal-to-noise ratio at m/z 58. At 550 

and 650 K more products are observed and the overall branching fractions are 91.6 ± 40.1 % and 98.7 

± 16.7 %, respectively. Acetone with a branching fraction of 50.4 ± 38.3 % is the major product at 

550 K, whereas at 650 K trans-2-butene becomes the most abundant product with a branching 

fraction of 23.1 + 10.5 %. The relative amount of formaldehyde and ethanol diminishes, as the 

temperature is increased. 

 

4.5.4 Proposed Mechanism of MBO with O(3P). As discussed above, the most favorable energetic 

pathway of the oxidation of MBO + O(3P) is the formation of the singlet epoxide from the triplet 

diradicals formed through the oxygen addition to the carbons of the double bond.

 The initial reaction of MBO with O(3P) forming triplet diradicals is used as the reference 

point for the energetic calculations of the products. Due to the numerous species computed in this 

oxidation, the products formed from the epoxide are separated into two different potential energy 

surface diagrams (a) and (b) (Fig. 15). The epoxide is not seen throughout this reaction. 

Computationally its cation is unbound, conveying that the epoxide dissociatively ionizes. Any 

molecular species or energetic barrier above the red line in the potential energy surface diagrams is 
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thermodynamically unfavorable. In Figure 15 (a) the direction to right follows the formation of 

acetaldehyde and propyne and to the left it follows the formation of cis-2-butene and 1-butene. 

Following the right side of the (a) energetic pathway, the hydrogen transfer from a methyl group 

bonded to the γ carbon cleaves γ and β C-C bond and forms acetaldehyde and prop-1-en-2-ol, with a 

calculated enthalpy change of 18 kJ/mol (E1*). The barrier of this hydrogen transfer is of 289 (TS1*). 

The formation of propyne has a calculated transition state barrier of 331 kJ/mol (TS2*).  

 The potential energy surface diagram pathway to the left forms two products identified at 

signal m/z 56. With a calculated barrier of 268 kJ/mol (TS1) and an enthalpy change of 50 kJ/mol 

(E1), the epoxide (E) rearranges through a hydrogen transfer to the alcohol group yielding an epoxide 

+ H2O. The epoxide breaks with a barrier of 326 kJ/mol (TS2). A hydrogen transfer to the methylene 

group initiates the breaking of the epoxide group forming 2-ethacrolein, which is not observed due to 

poor Franck-Condon factors. E2 converts into E3 with a barrier of 279 kJ/mol (TS3). This species has 

a calculated adiabatic ionization energy of 8.32 eV. The optimized cation has a slightly different 

structure than the neutral species, further indicating that the species is not observed due to poor FC 

factors. From this point, carbon monoxide cleaves off creating a double radical on the β carbon with a 

calculated heat of reaction of 278 kJ/mol (E4) and no barrier. E4 can undergo two different pathways. 

If hydrogen is transferred from the CH2 moiety to the adjacent C, a double bond is formed with a 

barrier of 14 kJ/mol (TS4a) yielding trans-2-butene and an enthalpy change of -278 kJ/mol. If instead 

hydrogen is transferred from the CH3 to the double radical C site, 1-butene is formed with a calculated 

barrier of 32 kJ/mol (TS4b) and enthalpy change of -279 kJ/mol (Figure 15 (a)).  

 In the second potential energy surface diagram (Figure 15 (b)), further products are 

energetically proven through the singlet epoxide (F). Similarly, to the previous potential energy 

surface diagram, the initial oxidation of MBO with O(3P) is used as the reference point. The hydrogen 

transfer from the β carbon to the epoxidic oxygen yields a double radical site on the β carbon with a 

calculated enthalpy change of 238 kJ/mol (F1) and barrier of 285 kJ/mol (TS1). With a computed 

barrier of 58 kJ/mol (TS2*), water is pulled off forming 3-methyl-2-butenal with an overall 

exothermicity of 298 kJ/mol. The hydrogen atom of the OH group from F1 can be transferred to the 

double radical to form F2 with a barrier of 30 kJ/mol (TS2) and enthalpy change of 243 kJ/mol. The 

βC-γC bond is cleaved yielding acetone and ethenol with a calculated enthalpy change of 25 kJ/mol 

and barrier of 239 kJ/mol (TS3*). Indeed, F2 has another fate; it can lead to the formation of 3-

penten-2-one with an overall exothermicity of 276 kJ/mol.  
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(a)	  	  

	  
	  
(b)	  

	  
	  
Figure 15. (a) Potential energy surface diagram of the proposed mechanisms of the oxidation of 
MBO + O(3P). Each energy level throughout this diagram was calculated using the CBS-QB3 method 
and are all relative to the epoxide (E) at-370 kJ/mol. (b) Potential energy surface diagram continued 
of the proposed mechanisms of the oxidation of MBO + O(3P) with the epoxide (F) reference point at 
-370 kJ/mol forming the rest of the products seen in the reaction.  
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 Since experimentally O2 is present in the 1% NO2 gas mixtures used to produce O(3P), O2 is 

considered for the mechanism of the formation of cyclobutene, formaldehyde, and propene. For this 

diagram shown in Figure 16, the radical plus the O2 is used as the reference point. Any transition state 

barrier above the red line is kinetically unfavorable throughout these pathways.  The formation of the 

peroxy radical (D), O2 addition has a heat of reaction of -254 kJ/mol as seen previously. For the 

formation pathways of the three observed products, the initial step from D is the formation of D1 with 

an enthalpy change of -15 kJ/mol (D1). This species is not observed because it dissociatively ionizes 

according to our CBS-QB3 calculations. Cyclobutene is yielded through a high barrier (TS2*) 30 

kJ/mol above the energy reference level. Cyclobutene is not observed at room temperature but it is 

formed at 550 and 650 K. The intermediate cyclobutanecarboaldehyde (D3*) is also observed at the 

higher temperatures.  

 The formation of propene continues from species D1 through the highest TS3 barrier, which 

is below the energy reference level. The intermediate D2 and D4 species in the pathway for propene 

formation are not observed because D2 dissociatively ionizes and D4 has poor FC factors. 

Formaldehyde is formed with D4 and is observed at 550 and 650 K. 2-Butenal, which is observed 

experimentally, cannot be yielded via the presented computed potential energy surface because it 

needs to overcome two very high barrier 217 (TS4) and 163 (TS5) kJ/mol higher than the energy 

reference level.  
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Figure 16. Potential energy surface diagram of the hydrogen abstraction radical reacting with O2 
addition onto radical C for the oxidation of MBO + O(3P) for the formation of propene, cyclobutene, 
and 2-butenal. The energies throughout these mechanisms were calculated using the CBS-QB3 
method and are expressed through radical D.	  	  
 

 

4.6 Conclusions 

 The biofuel additive, MBO is oxidized using O(3P) atoms at 298, 550, and 650 K. This study 

presents the thorough investigation of the low-pressure elementary reactions of this oxidation at 

different temperatures. The primary products in this study are identified and presented. The 

experiments are carried out using the synchrotron radiation as the ionization source of the Advanced 

Light Source (ALS) of the Lawrence Berkley National Laboratory. At room temperature only three 

species are identified, ethenol, acetaldehyde, and acetone with a total branching fraction of 84.2 + 

40.8 %. At 550 and 650 K more products are observed and the overall branching fractions are 91.6 + 

40.1 % and 98.7 + 16.7 %, respectively. Acetone with a branching fraction of 50.4 + 38.3 % is the 

major product at 550 K, whereas at 650 K trans-2-butene becomes the most abundant product with a 

branching fraction of 23.1 + 10.5 %. The relative amount of ethenol and acetone diminishes as the 
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temperature is increased. The potential energy surface has been computed using the CBS-QB3 

composite model to validate the formation of the observed species.  
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4.8 Supporting Information 

 
Table S1. Optimized molecular structures using the CBS-QB3 model of all the species presented 
in Fig. 15 a. 
 

Species Structure m/z 
TS1 

 

102 

TS2 

 

84 

TS3 

 

84 

TS4a 

 

56 

TS4b 

 

56 
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TS1* 

 

102 

TS2* 

 

58 

 
 
 
Table S2. Optimized molecular structures using the CBS-QB3 model of all the species presented 
in Fig. 15 b. 
 

Species Structure m/z 
TS1 

 

102 

TS2 

 

102 
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TS3 

 

84 

TS4 

 

84 

TS2* 

 

102 

TS3* 

 

102 

TS4* 

 

44 
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Table S3. Optimized molecular structures using the CBS-QB3 model of all the species presented 
in Fig. 16. 
 

Species Structure m/z 
TS1 

 

117 

TS2 

 

100 

TS3 

 

100 

TS4 

 

70 
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TS5 

 

70 

TS2* 

 

100 

TS3* 

 

82 

TS4* 

 

82 

TS4** 

 

70 
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TS5** 

 

70 

 
 
 
Table S4. Optimized geometries for neutral species calculated for this work in Figure 15a. All 
calculations were conducted using the CBS-QB3 model.  
 
MBO Neutral  
 

C	   -‐1.140138645	   1.599837135	   -‐0.997759073	  
C	   -‐0.840846331	   0.66392199	   0.185430866	  
C	   -‐0.440911367	   -‐0.725274078	   -‐0.30345361	  
C	   0.187284072	   1.309621538	   1.095519439	  
C	   1.414508407	   0.882144959	   1.370966638	  
O	   -‐2.053250311	   0.45186613	   0.940732752	  
H	   -‐1.946230507	   1.180461079	   -‐1.604656328	  
H	   -‐0.257307898	   1.743113139	   -‐1.626150251	  
H	   -‐1.459129906	   2.584748397	   -‐0.640313664	  
H	   2.358599864	   1.3084372	   1.258231146	  
H	   -‐1.254425658	   -‐1.143261688	   -‐0.899297578	  
H	   0.458667918	   -‐0.686628099	   -‐0.921057722	  
H	   -‐0.263645678	   -‐1.38833524	   0.544935007	  
H	   -‐0.158946013	   2.235928928	   1.556236379	  
H	   2.062828988	   1.433890839	   2.042459321	  
H	   1.82199079	   -‐0.02759223	   0.944784677	  

 
E 
 

C	   -‐1.365648805	   1.728836668	   -‐0.865746855	  
C	   -‐0.84187062	   0.727774989	   0.171061457	  
C	   -‐0.350427779	   -‐0.550808675	   -‐0.499608786	  
C	   0.236422234	   1.410713042	   1.013162771	  
C	   1.434729466	   0.755121066	   1.542573052	  
O	   -‐1.90038128	   0.32489597	   1.057145778	  
H	   -‐2.176922982	   1.281234834	   -‐1.443957355	  
H	   -‐0.568500714	   2.034988436	   -‐1.547443475	  
H	   -‐1.749663002	   2.630736469	   -‐0.375608328	  
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H	   -‐2.345558307	   1.11861455	   1.372680829	  
H	   -‐1.114413419	   -‐0.927447238	   -‐1.182093697	  
H	   0.565635932	   -‐0.359631399	   -‐1.061449617	  
H	   -‐0.160558527	   -‐1.321015745	   0.249862456	  
H	   -‐0.142670657	   2.272516556	   1.567795009	  
H	   1.888979523	   1.134643672	   2.454585037	  
H	   1.62483144	   -‐0.291480313	   1.327348898	  
O	   1.51418706	   1.637314138	   0.409922577	  

 
 
E1 
 

C	   -‐1.649957	   1.061916	   -‐0.070677	  
C	   -‐0.801972	   -‐0.169255	   0.104741	  
C	   -‐1.250876	   -‐1.408847	   -‐0.08707	  
C	   0.603532	   0.09107	   0.549046	  
C	   1.772048	   -‐0.516301	   -‐0.09687	  
H	   -‐2.657422	   0.812255	   -‐0.407415	  
H	   -‐1.188275	   1.732793	   -‐0.801221	  
H	   -‐1.728443	   1.62144	   0.868774	  
H	   -‐2.276821	   -‐1.600585	   -‐0.383466	  
H	   -‐0.611445	   -‐2.273661	   0.051269	  
H	   0.708254	   0.41449	   1.586192	  
H	   2.687326	   -‐0.663336	   0.472103	  
H	   1.621812	   -‐1.196763	   -‐0.930462	  
O	   1.426046	   0.850234	   -‐0.356349	  

 
E2  
 

C	   -‐1.303328	   0.145618	   0.589167	  
C	   0.122907	   0.411887	   0.172463	  
C	   0.590336	   1.605943	   -‐0.203582	  
C	   1.062172	   -‐0.751887	   0.184606	  
C	   -‐2.116718	   -‐0.58671	   -‐0.492631	  
H	   -‐1.791225	   1.091591	   0.838315	  
H	   -‐1.30463	   -‐0.45549	   1.506995	  
H	   -‐3.134827	   -‐0.783532	   -‐0.146926	  
H	   -‐0.037112	   2.490331	   -‐0.218753	  
H	   1.627144	   1.711093	   -‐0.502535	  
H	   0.621841	   -‐1.69592	   0.575153	  
H	   -‐1.663631	   -‐1.546887	   -‐0.755577	  
H	   -‐2.174907	   0.012743	   -‐1.404574	  
O	   2.215642	   -‐0.72163	   -‐0.174029	  
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E3 
 

C	   -‐1.073487	   -‐0.847085	   -‐0.000323	  
C	   0.379337	   -‐0.405598	   0.000113	  
C	   1.461932	   -‐1.465596	   0.000241	  
C	   0.711149	   0.863182	   -‐0.000142	  
C	   -‐2.103793	   0.284264	   0.000286	  
H	   -‐1.236171	   -‐1.489393	   0.875392	  
H	   -‐1.23608	   -‐1.488364	   -‐0.876813	  
H	   -‐3.118294	   -‐0.1207	   -‐0.000086	  
H	   1.374165	   -‐2.106817	   0.88469	  
H	   1.374617	   -‐2.106675	   -‐0.884356	  
H	   2.464034	   -‐1.033222	   0.000532	  
H	   -‐1.999254	   0.919573	   -‐0.883765	  
H	   -‐1.999401	   0.918426	   0.885172	  
O	   1.015695	   1.991522	   -‐0.000227	  

 
E4 
 

C	   0.496063	   0.408261	   -‐0.113622	  
C	   -‐0.601064	   -‐0.56233	   -‐0.211023	  
C	   -‐1.914668	   0.032666	   0.095918	  
C	   1.904241	   -‐0.146095	   0.115396	  
H	   0.292784	   1.30302	   0.505163	  
H	   0.414339	   0.776167	   -‐1.163463	  
H	   2.667627	   0.618505	   -‐0.052296	  
H	   -‐2.000207	   1.133554	   0.099733	  
H	   -‐2.744376	   -‐0.428921	   -‐0.445362	  
H	   -‐2.039534	   -‐0.304433	   1.143668	  
H	   2.093008	   -‐0.989813	   -‐0.550708	  
H	   2.008926	   -‐0.503095	   1.143257	  

 
Cis-2-butene 
 

C	   0.543206	   -‐0.384823	   0.000019	  
C	   -‐0.543206	   0.384823	   0.000019	  
C	   -‐0.543206	   1.885943	   0.000005	  
C	   0.543206	   -‐1.885943	   0.000005	  
H	   -‐1.522053	   -‐0.094609	   -‐0.00018	  
H	   1.522053	   0.094609	   -‐0.00018	  
H	   1.063572	   -‐2.283049	   0.879015	  
H	   0.47348	   2.28649	   -‐0.000698	  
H	   -‐1.064739	   2.283003	   -‐0.878283	  
H	   -‐1.063572	   2.283049	   0.879015	  
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H	   1.064739	   -‐2.283003	   -‐0.878283	  
H	   -‐0.47348	   -‐2.28649	   -‐0.000698	  

 
 
 
 
 
 
1-Butene 
 

C	   -‐0.539049	   0.520068	   0.308049	  
C	   0.724158	   -‐0.293849	   0.340682	  
C	   1.857721	   0.017124	   -‐0.280921	  
C	   -‐1.727564	   -‐0.246943	   -‐0.294278	  
H	   -‐0.365419	   1.442055	   -‐0.25619	  
H	   -‐0.796811	   0.822427	   1.331338	  
H	   -‐2.636852	   0.359816	   -‐0.274299	  
H	   0.676965	   -‐1.216239	   0.91954	  
H	   2.733992	   -‐0.618753	   -‐0.221633	  
H	   1.951541	   0.923958	   -‐0.87151	  
H	   -‐1.928386	   -‐1.166523	   0.263707	  
H	   -‐1.526625	   -‐0.525148	   -‐1.332146	  

 
E1* 
 

C	   1.810786	   1.382402	   0.163721	  
C	   1.994616	   -‐0.099882	   0.012923	  
C	   3.086342	   -‐0.773833	   0.37146	  
O	   0.932757	   -‐0.774856	   -‐0.54089	  

H	   1.629345	   1.852347	   -‐0.810368	  
H	   2.690335	   1.847911	   0.607214	  
H	   0.947462	   1.603749	   0.802667	  
H	   0.229616	   -‐0.151185	   -‐0.742747	  
H	   3.145518	   -‐1.845214	   0.231318	  
H	   3.930849	   -‐0.26079	   0.808334	  

 
 
 
Acetaldehyde 
 
  

C	   -‐0.235687	   0.397307	   -‐0.000024	  
C	   1.168775	   -‐0.147701	   -‐0.000026	  
H	   1.70773	   0.221575	   0.879356	  
H	   -‐0.305349	   1.508865	   0.000067	  
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H	   1.708268	   0.222598	   -‐0.878603	  
H	   1.154974	   -‐1.237462	   -‐0.000541	  
O	   -‐1.233019	   -‐0.276652	   0.000002	  

 
 
 
Acetone 
 

C	   -‐1.288693	   -‐0.546612	   -‐0.000021	  
C	   0.120808	   -‐0.029886	   0.000037	  
C	   1.213132	   -‐0.792418	   0.000004	  
O	   0.249642	   1.338778	   -‐0.000029	  
H	   -‐1.832304	   -‐0.192238	   0.884017	  
H	   -‐1.311654	   -‐1.635861	   0.000767	  
H	   -‐1.831866	   -‐0.19343	   -‐0.884781	  
H	   -‐0.623656	   1.740612	   0.000154	  
H	   2.198908	   -‐0.346049	   -‐0.000018	  
H	   1.131957	   -‐1.869764	   -‐0.000024	  

 
 
 
Propyne 
 

C	   1.238071	   -‐0.000262	   -‐0.000013	  
C	   -‐0.21917	   0.001144	   -‐0.000067	  
C	   -‐1.420089	   -‐0.000432	   0.000137	  
H	   1.630113	   0.448256	   0.917064	  
H	   1.630647	   0.569009	   -‐0.847244	  
H	   1.628509	   -‐1.019424	   -‐0.069658	  
H	   -‐2.482138	   -‐0.000542	   -‐0.000502	  

 
Table S5. Optimized geometries for neutral species calculated for this work in Figure 15b. All 
calculations were conducted using the CBS-QB3 model.  
 
F  
 

C	   -‐1.365648805	   1.728836668	   -‐0.865746855	  
C	   -‐0.84187062	   0.727774989	   0.171061457	  
C	   -‐0.350427779	   -‐0.550808675	   -‐0.499608786	  
C	   0.236422234	   1.410713042	   1.013162771	  
C	   1.434729466	   0.755121066	   1.542573052	  
O	   -‐1.90038128	   0.32489597	   1.057145778	  
H	   -‐2.176922982	   1.281234834	   -‐1.443957355	  
H	   -‐0.568500714	   2.034988436	   -‐1.547443475	  
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H	   -‐1.749663002	   2.630736469	   -‐0.375608328	  
H	   -‐2.345558307	   1.11861455	   1.372680829	  
H	   -‐1.114413419	   -‐0.927447238	   -‐1.182093697	  
H	   0.565635932	   -‐0.359631399	   -‐1.061449617	  
H	   -‐0.160558527	   -‐1.321015745	   0.249862456	  
H	   -‐0.142670657	   2.272516556	   1.567795009	  
H	   1.888979523	   1.134643672	   2.454585037	  
H	   1.62483144	   -‐0.291480313	   1.327348898	  
O	   1.51418706	   1.637314138	   0.409922577	  

 
F1 
 

C 1.963285 0.760467 0.8116 
C 0.87937 0.022753 0.036367 
C 1.15853 -1.477037 -0.029958 
C -0.503825 0.551254 0.287347 
C -1.605472 -0.387742 0.191179 
O 0.796335 0.487122 -1.349483 
H 2.949401 0.562252 0.382124 
H 1.969576 0.43593 1.856563 
H 1.768972 1.835146 0.801984 
H 0.769123 1.453702 -1.322144 
H 2.170092 -1.653248 -0.403516 
H 1.081324 -1.921851 0.965544 
H 0.462848 -1.986066 -0.696897 
H -2.772563 1.118984 0.288105 
H -1.526011 -1.197656 -0.543542 
H -1.486079 -0.875989 1.194938 
O -2.890379 0.187158 0.063264 

 
F2 
 

C	   2.134615682	   -‐0.926427302	   -‐0.412062152	  
C	   1.008798769	   0.002430897	   -‐0.007338694	  

C	   1.37907512	   1.47039899	   0.032237664	  
C	   -‐0.385453444	   -‐0.453302105	   -‐0.182213109	  
C	   -‐1.581861934	   0.441531946	   -‐0.39464926	  
O	   0.230698889	   -‐0.468153053	   1.112145823	  

H	   2.98028571	   -‐0.813782893	   0.27314316	  
H	   2.486950076	   -‐0.700319641	   -‐1.42310816	  
H	   1.80800234	   -‐1.967122116	   -‐0.379834971	  
H	   -‐0.517709834	   -‐1.450887714	   -‐0.610836017	  
H	   2.228799689	   1.616373412	   0.705835186	  

H	   1.674512482	   1.823987804	   -‐0.960334436	  
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H	   0.557912315	   2.087936988	   0.393458799	  
H	   -‐2.952986294	   -‐0.945193712	   -‐0.434511386	  
H	   -‐1.468660351	   1.36810251	   0.16625571	  
H	   -‐1.655826938	   0.693812499	   -‐1.46395744	  

O	   -‐2.790096279	   -‐0.14672451	   0.077219283	  
 
F3 
 

C	   2.228868	   -‐1.122101	   -‐0.760779	  
C	   1.157345	   -‐0.521502	   0.095566	  
C	   -‐0.0435	   2.309286	   -‐0.017007	  
C	   -‐0.170602	   -‐0.264223	   -‐0.205348	  
C	   -‐0.812065	   1.036719	   -‐0.403441	  
O	   1.253354	   -‐0.310618	   1.327495	  
H	   3.122404	   -‐0.495049	   -‐0.699063	  
H	   1.914632	   -‐1.213569	   -‐1.802502	  
H	   2.491009	   -‐2.111552	   -‐0.376421	  
H	   0.235392	   2.26923	   1.036987	  
H	   0.873598	   2.412002	   -‐0.602219	  
H	   -‐0.660197	   3.196132	   -‐0.182309	  
H	   -‐1.824516	   1.034311	   0.016722	  
H	   -‐0.99086	   1.004333	   -‐1.497733	  

 
3-penten-2-one 
 

C	   -‐2.338869473	   -‐0.284465862	   -‐3.25686E-‐06	  
C	   -‐0.888489424	   0.170999713	   -‐4.69913E-‐06	  
C	   2.270399954	   0.456934708	   -‐1.13375E-‐05	  
C	   0.118324766	   -‐0.925498648	   -‐2.47427E-‐06	  
C	   1.454360779	   -‐0.795980122	   -‐5.32415E-‐06	  
O	   -‐0.607659481	   1.355614164	   -‐7.57029E-‐06	  
H	   -‐2.994362981	   0.584881264	   -‐4.53347E-‐06	  
H	   -‐2.54448745	   -‐0.902353427	   0.88024747	  
H	   -‐2.544488065	   -‐0.902356387	   -‐0.880251763	  
H	   2.929457983	   0.468245899	   -‐0.876253328	  
H	   1.651813622	   1.349106174	   -‐1.50232E-‐05	  
H	   2.929458431	   0.468253958	   0.876230273	  
H	   2.029927031	   -‐1.721034073	   -‐3.07931E-‐06	  
H	   -‐0.292876692	   -‐1.931325363	   1.64689E-‐06	  

 
3-methyl-2-butenal 
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C	   2.559484937	   0.678023425	   0.420493202	  
C	   1.216179723	   0.168318429	   -‐0.02611089	  
C	   0.360803797	   1.16586541	   -‐0.754014682	  
C	   0.852882788	   -‐1.105241145	   0.234025216	  
C	   -‐0.408233969	   -‐1.777784652	   -‐0.120060641	  
H	   2.43850643	   1.540567083	   1.085643607	  
H	   3.139521119	   1.030090059	   -‐0.440112085	  
H	   3.140000232	   -‐0.083957849	   0.942161057	  
H	   0.192575387	   2.04237079	   -‐0.117171335	  
H	   0.891695212	   1.528999117	   -‐1.641965277	  
H	   -‐0.595351732	   0.747006155	   -‐1.051555713	  
H	   -‐0.444560457	   -‐2.836546514	   0.218741004	  
H	   1.554446902	   -‐1.740371034	   0.769557014	  
O	   -‐1.359180369	   -‐1.310505273	   -‐0.714228479	  

 
 
Ethenol 
 

C	   -‐2.023553248	   1.013227657	   -‐0.187195976	  
C	   -‐2.260879697	   -‐0.065753284	   0.554835214	  
H	   -‐1.722810888	   0.945984194	   -‐1.227978166	  
H	   -‐1.906410862	   -‐1.399979313	   -‐0.759945681	  
H	   -‐2.561483874	   -‐0.003250979	   1.594798507	  
H	   -‐2.128094281	   1.999709609	   0.242089403	  
O	   -‐2.174483148	   -‐1.366512886	   0.166031699	  

 
Acetone 
 

C	   2.483864881	   -‐1.192822883	   0.065494122	  
C	   1.426617121	   -‐0.103745224	   0.003729494	  
C	   1.929119991	   1.329668864	   0.025998749	  
O	   0.247544338	   -‐0.364037573	   -‐0.059786155	  
H	   2.004439794	   -‐2.170500507	   0.049572489	  
H	   3.085016337	   -‐1.091129175	   0.974610782	  
H	   3.171110986	   -‐1.105549887	   -‐0.782106549	  
H	   2.499107354	   1.519711355	   0.9410633	  
H	   2.606673557	   1.510496135	   -‐0.814506217	  
H	   1.084643642	   2.015084895	   -‐0.02893799	  

 
Acetaldehyde 
 

C	   -‐0.235687	   0.397307	   -‐0.000024	  
C	   1.168775	   -‐0.147701	   -‐0.000026	  
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H	   1.70773	   0.221575	   0.879356	  
H	   -‐0.305349	   1.508865	   0.000067	  
H	   1.708268	   0.222598	   -‐0.878603	  
H	   1.154974	   -‐1.237462	   -‐0.000541	  
O	   -‐1.233019	   -‐0.276652	   0.000002	  

 
Table S6. Optimized geometries for neutral species calculated for this work in Figure 16. All 
calculations were conducted using the CBS-QB3 model.  
 
Radical C 
 

C	   -‐0.928926	   -‐0.556739	   1.299927	  
C	   -‐0.413412	   1.511323	   -‐0.026998	  
C	   -‐0.394154	   -‐0.021522	   0.006706	  
C	   0.988049	   -‐0.620277	   -‐0.181792	  
C	   2.157865	   -‐0.010332	   -‐0.008332	  
H	   -‐1.213068	   -‐1.601143	   1.354476	  
H	   -‐0.824942	   0.005488	   2.220005	  
H	   -‐2.091333	   -‐0.358325	   -‐0.902062	  
H	   -‐1.441258	   1.868514	   0.08159	  
H	   -‐0.020243	   1.866154	   -‐0.980679	  
H	   0.175867	   1.943339	   0.785643	  
H	   2.237344	   1.035023	   0.267623	  
H	   3.08983	   -‐0.547349	   -‐0.142641	  
H	   0.954386	   -‐1.669944	   -‐0.460852	  
O	   -‐1.16539	   -‐0.544559	   -‐1.09502	  

 
Radical D 
 

C	   -‐0.757794	   -‐0.687936	   -‐0.697607	  
C	   1.725488	   -‐0.867133	   -‐0.829044	  
C	   0.561943	   -‐0.420077	   0.06306	  
C	   0.636383	   1.027996	   0.494528	  
C	   1.421014	   1.968444	   -‐0.018032	  
H	   -‐0.863765	   -‐1.758651	   -‐0.896653	  
H	   -‐0.814629	   -‐0.118194	   -‐1.625038	  
H	   0.520338	   -‐2.09983	   1.079537	  
H	   1.629361	   -‐1.930771	   -‐1.069601	  
H	   2.66633	   -‐0.721558	   -‐0.297051	  
H	   1.762205	   -‐0.315425	   -‐1.771234	  
H	   2.118192	   1.778932	   -‐0.826302	  
H	   1.389109	   2.982716	   0.362341	  
H	   -‐0.040165	   1.269193	   1.308073	  
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O	   0.565051	   -‐1.160696	   1.290189	  
O	   -‐1.923346	   -‐0.349826	   0.096494	  
O	   -‐2.377852	   0.85875	   -‐0.179371	  

 
D1 
 

C	   0.928245	   0.276943	   -‐1.040007	  
C	   0.728302	   0.49847	   1.011434	  
C	   0.06184	   -‐0.482701	   0.013516	  
C	   -‐1.42432	   -‐0.355774	   -‐0.179643	  
C	   -‐2.154379	   0.732534	   0.039521	  
H	   0.408078	   0.708315	   -‐1.897832	  
H	   1.794437	   -‐0.307698	   -‐1.3799	  
H	   1.273012	   -‐1.983181	   0.276184	  
H	   1.499915	   0.016576	   1.626584	  
H	   0.069205	   1.091201	   1.650144	  
H	   -‐1.725884	   1.657398	   0.411457	  
H	   -‐3.218742	   0.739449	   -‐0.163173	  
H	   -‐1.886756	   -‐1.259952	   -‐0.566026	  
O	   0.322208	   -‐1.860997	   0.186957	  
O	   1.296368	   1.276131	   -‐0.065252	  

 
D2 
 

C	   -‐1.59548	   0.27112	   -‐0.497067	  
C	   -‐0.250133	   -‐0.740891	   0.699626	  
C	   -‐0.15588	   0.556408	   -‐0.083073	  
C	   0.726417	   -‐0.611837	   -‐0.446778	  
C	   2.196543	   -‐0.493933	   -‐0.106034	  
H	   -‐1.810052	   0.160281	   -‐1.564389	  
H	   -‐2.321399	   0.949706	   -‐0.034274	  
H	   -‐0.104993	   2.20808	   0.894994	  
H	   0.000107	   -‐1.045645	   1.709059	  
H	   2.732693	   0.066331	   -‐0.876264	  
H	   2.346724	   0.033056	   0.838781	  
H	   2.652196	   -‐1.484453	   -‐0.023035	  
H	   0.493637	   -‐1.172014	   -‐1.351274	  
O	   0.382116	   1.805486	   0.167585	  
O	   -‐1.57183	   -‐1.005553	   0.20821	  

 
 
D3 
 

C	   -‐3.13004	   -‐0.162581	   -‐0.000091	  
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C	   -‐0.793424	   -‐0.633454	   0.000061	  
C	   0.49171	   -‐0.008352	   -‐0.000054	  
C	   1.645328	   -‐0.717465	   -‐0.000038	  
C	   3.014372	   -‐0.116093	   0.000045	  
H	   -‐3.427656	   -‐1.200905	   0.000029	  
H	   -‐3.79499	   0.681609	   0.000297	  
H	   -‐0.375323	   1.692091	   -‐0.000162	  
H	   -‐0.933347	   -‐1.706702	   -‐0.000003	  
H	   3.590631	   -‐0.429647	   -‐0.879429	  
H	   2.966221	   0.972905	   0.001131	  
H	   3.591218	   -‐0.431474	   0.878455	  
H	   1.557864	   -‐1.798697	   -‐0.000137	  
O	   0.530096	   1.362684	   -‐0.000009	  
O	   -‐1.847883	   0.143378	   0.000045	  

 
D4 
 

C	   0.176537	   -‐1.256233	   0.171568	  
C	   0.72255	   -‐0.102996	   -‐0.046531	  
C	   -‐0.680934	   -‐0.162255	   -‐0.498228	  
C	   -‐1.80999	   0.539935	   0.241333	  
H	   2.499101	   0.296431	   0.436765	  
H	   0.18862	   -‐2.270479	   0.526394	  
H	   -‐2.749792	   -‐0.011845	   0.134321	  
H	   -‐1.584898	   0.622893	   1.308319	  
H	   -‐1.97477	   1.549009	   -‐0.151503	  
H	   -‐0.866781	   -‐0.255563	   -‐1.573757	  
O	   1.754943	   0.744855	   0.013826	  

 
D5  
 

C	   0.002571	   0.239041	   -‐0.004317	  
C	   -‐1.204019	   -‐0.402674	   0.000047	  
C	   1.154912	   -‐0.570751	   -‐0.005409	  
C	   2.437024	   0.185564	   0.000669	  
H	   -‐2.310327	   1.12646	   0.001034	  
H	   0.000523	   1.344315	   -‐0.007619	  
H	   3.066255	   -‐0.174111	   -‐0.823654	  
H	   2.384948	   1.289142	   -‐0.038275	  
H	   2.994841	   -‐0.109928	   0.900324	  
H	   -‐1.245799	   -‐1.485282	   0.001516	  
O	   -‐2.40417	   0.162791	   0.002592	  

 



	  
	  

98	  

2-butenal 
 

C	   0.06653	   0.690236	   0.000047	  
C	   1.518765	   0.411703	   -‐0.000058	  
C	   -‐0.838565	   -‐0.295627	   -‐0.000006	  
C	   -‐2.320475	   -‐0.122096	   0.000093	  
H	   -‐0.455835	   -‐1.314519	   -‐0.000133	  
H	   -‐0.236511	   1.73438	   0.000138	  
H	   -‐2.763956	   -‐0.607898	   0.876621	  
H	   -‐2.613575	   0.929529	   -‐0.000013	  
H	   -‐2.764139	   -‐0.608157	   -‐0.876193	  
H	   2.166177	   1.31459	   -‐0.000101	  
O	   2.013789	   -‐0.694153	   -‐0.000098	  

 
D5** 
 

C	   -‐0.251609	   1.268111	   -‐0.19432	  
C	   -‐0.809314	   -‐0.073563	   0.054107	  
C	   0.575258	   0.126284	   0.509839	  
C	   1.746675	   -‐0.5271	   -‐0.196518	  
H	   1.535726	   -‐0.670648	   -‐1.259495	  
H	   0.01829	   1.53056	   -‐1.213908	  

H	   -‐0.577211	   2.105162	   0.415489	  
H	   1.960457	   -‐1.508788	   0.234058	  
H	   2.64695	   0.088296	   -‐0.109856	  
H	   0.702458	   0.273416	   1.580592	  
O	   -‐1.731592	   -‐0.822548	   -‐0.085691	  

 
Propene 
 

C	   1.280463	   0.220496	   -‐0.000011	  
C	   0.134691	   -‐0.453663	   0.00001	  
C	   -‐1.233503	   0.162312	   -‐0.000001	  
H	   -‐1.807057	   -‐0.151727	   0.87926	  

H	   1.301452	   1.306478	   -‐0.000058	  
H	   2.238784	   -‐0.286536	   0.000162	  
H	   -‐1.807812	   -‐0.15467	   -‐0.877651	  
H	   -‐1.181938	   1.253645	   -‐0.001713	  
H	   0.166665	   -‐1.542057	   0.000017	  
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D2* 
 

C	   1.134776	   -‐0.924344	   0.000103	  
C	   0.805048	   1.013595	   -‐0.000116	  
C	   -‐0.033268	   -‐0.251025	   0.000387	  
C	   -‐1.434222	   -‐0.559586	   -‐0.000164	  
C	   -‐2.429582	   0.338307	   0.0001	  
H	   1.501426	   -‐1.942256	   0.00046	  
H	   0.786341	   1.627948	   0.901003	  
H	   0.785756	   1.627223	   -‐0.901727	  
H	   -‐2.237028	   1.406251	   0.000851	  
H	   -‐3.467059	   0.029188	   -‐0.000503	  
H	   -‐1.680759	   -‐1.619293	   -‐0.000922	  
O	   2.006851	   0.146157	   -‐0.000128	  

 
 
D3* 
 

C	   -‐1.513001	   0.466958	   0.000003	  
C	   0.749813	   -‐1.06032	   -‐0.000069	  
C	   -‐0.07376	   0.216068	   -‐0.00005	  
C	   0.99785	   1.032761	   -‐0.000227	  
C	   1.998719	   -‐0.104061	   0.000056	  
H	   -‐1.798467	   1.541954	   0.000066	  
H	   0.642943	   -‐1.68547	   0.888786	  
H	   0.643111	   -‐1.685617	   -‐0.888851	  
H	   2.634105	   -‐0.169061	   -‐0.887922	  
H	   2.634021	   -‐0.169026	   0.888112	  
H	   1.111344	   2.111631	   -‐0.000322	  
O	   -‐2.353098	   -‐0.406606	   0.000231	  

 
 
Cyclobutene 
 

C	   -‐0.699193	   -‐0.787011	   0.000061	  
C	   0.815145	   -‐0.667837	   -‐0.00002	  
C	   0.813461	   0.669529	   -‐0.000093	  
C	   -‐0.700852	   0.785527	   -‐0.000096	  
H	   1.602953	   -‐1.412639	   -‐0.000363	  
H	   -‐1.142436	   -‐1.247046	   -‐0.88826	  
H	   -‐1.141907	   -‐1.246397	   0.888995	  
H	   -‐1.144687	   1.244352	   0.888554	  
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H	   -‐1.144855	   1.24423	   -‐0.888695	  
H	   1.599571	   1.41625	   0.000656	  

 
Table S7. Optimized geometries for the transition states from Figure 15a. All calculations were 
conducted using the CBS-QB3 model.  
 
TS1 
 

C	   0.524952	   -‐1.093446	   1.16928	  
C	   0.492385	   -‐0.353433	   -‐0.13387	  
C	   1.4708	   -‐0.606682	   -‐1.138847	  
C	   -‐0.760349	   0.346786	   -‐0.515558	  
C	   -‐2.072888	   -‐0.323434	   -‐0.397411	  
O	   1.538545	   1.319181	   0.306896	  
H	   1.555016	   -‐1.247442	   1.490036	  
H	   0.070408	   -‐2.082354	   1.031689	  
H	   -‐0.030683	   -‐0.560432	   1.939136	  
H	   1.900489	   1.577786	   1.167378	  
H	   2.105304	   -‐1.476991	   -‐0.998312	  
H	   1.202828	   -‐0.387655	   -‐2.168818	  
H	   2.020404	   0.468966	   -‐0.567773	  
H	   -‐0.633493	   1.095541	   -‐1.2915	  
H	   -‐2.861545	   -‐0.05753	   -‐1.096955	  
H	   -‐2.137574	   -‐1.323341	   0.023957	  
O	   -‐1.678615	   0.702657	   0.514304	  

 
TS2  
 

C	   1.292177	   1.349698	   0.088166	  
C	   0.857032	   0.005797	   -‐0.093223	  
C	   1.62945	   -‐1.196147	   -‐0.031716	  

C	   -‐0.579508	   -‐0.177681	   -‐0.525622	  
C	   -‐1.645126	   -‐0.628152	   0.377085	  
H	   1.024799	   -‐0.024378	   1.075547	  
H	   2.319035	   1.569752	   0.348417	  
H	   0.552494	   2.134364	   0.111304	  

H	   2.692983	   -‐1.167361	   0.162582	  
H	   1.122724	   -‐2.149543	   -‐0.046041	  
H	   -‐0.663865	   -‐0.41121	   -‐1.585206	  
H	   -‐2.49074	   -‐1.186043	   -‐0.017007	  

H	   -‐1.415764	   -‐0.805668	   1.425343	  
O	   -‐1.558228	   0.739874	   -‐0.045386	  
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TS3 
 

C	   -‐1.238569	   -‐1.828462	   -‐0.087361	  
C	   -‐0.64868	   -‐0.46919	   0.104009	  
C	   -‐1.287431	   0.823507	   0.028698	  
C	   0.61088	   -‐0.04456	   0.469864	  
C	   -‐0.625155	   -‐2.912332	   0.8078	  
H	   -‐1.165454	   -‐2.128905	   -‐1.141478	  
H	   -‐2.317091	   -‐1.736031	   0.102242	  
H	   -‐1.077985	   -‐3.886115	   0.605741	  
H	   -‐2.265263	   0.968547	   0.504747	  
H	   -‐1.119189	   1.512838	   -‐0.794066	  
H	   0.149223	   1.262779	   0.358847	  
H	   -‐0.775373	   -‐2.677882	   1.864237	  
H	   0.451055	   -‐2.998015	   0.640233	  
O	   1.627625	   -‐0.253613	   1.065475	  

	  
TS4a 
 

C	   -‐0.491902	   0.337447	   -‐0.052875	  
C	   0.572225	   -‐0.565472	   0.027502	  
C	   1.931718	   0.077064	   0.04427	  
C	   -‐1.943266	   -‐0.069709	   0.063856	  
H	   -‐0.087741	   -‐0.247491	   -‐1.098077	  
H	   -‐0.319862	   1.430669	   -‐0.031108	  
H	   -‐2.580174	   0.454078	   -‐0.654729	  
H	   1.961316	   1.167054	   -‐0.131433	  
H	   2.330581	   -‐0.107413	   1.049604	  
H	   2.626402	   -‐0.419553	   -‐0.63795	  
H	   -‐2.296545	   0.19557	   1.0653	  
H	   -‐2.046626	   -‐1.148895	   -‐0.058124	  

 
TS4b 
 

C	   0.525636	   0.594041	   0.083512	  
C	   -‐0.650787	   -‐0.069352	   -‐0.585166	  
C	   -‐1.767343	   -‐0.232065	   0.233022	  
C	   1.723466	   -‐0.374047	   0.048965	  
H	   0.337078	   0.900661	   1.129123	  
H	   0.799832	   1.491875	   -‐0.480881	  
H	   2.604412	   0.091374	   0.498169	  
H	   -‐1.756778	   0.692371	   -‐0.629532	  
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H	   -‐2.649495	   -‐0.756309	   -‐0.136383	  
H	   -‐1.788408	   0.015348	   1.308951	  
H	   1.960476	   -‐0.65751	   -‐0.978403	  
H	   1.50705	   -‐1.289279	   0.606961	  

 
TS1* 
 

C	   0.330484	   0.983541	   1.059217	  
C	   -‐0.007541	   0.214715	   -‐0.209442	  
C	   -‐0.346452	   -‐1.208434	   -‐0.033279	  
C	   -‐1.42061	   0.842375	   -‐0.874529	  
C	   -‐2.491187	   -‐0.057877	   -‐0.30377	  
O	   0.955976	   0.42991	   -‐1.240398	  
H	   1.310334	   0.691206	   1.453496	  
H	   -‐0.413697	   0.811532	   1.841124	  
H	   0.332469	   2.049952	   0.829593	  
H	   1.824131	   0.214461	   -‐0.883664	  
H	   -‐0.024254	   -‐1.891322	   -‐0.814716	  
H	   -‐0.417042	   -‐1.637538	   0.962258	  
H	   -‐1.725251	   -‐1.12545	   -‐0.292751	  
H	   -‐1.253009	   0.64501	   -‐1.955154	  
H	   -‐3.415968	   -‐0.187121	   -‐0.868373	  
H	   -‐2.67129	   0.090636	   0.760055	  
O	   -‐1.81432	   2.033104	   -‐0.545485	  

 
TS2* 
 

C	   1.514234	   -‐0.142314	   -‐0.005261	  
C	   0.112927	   0.324161	   0.018745	  
C	   -‐0.800994	   1.231721	   0.01521	  
O	   -‐0.927988	   -‐1.058996	   -‐0.105381	  
H	   1.761886	   -‐0.760483	   0.863347	  
H	   2.167304	   0.734253	   0.004941	  
H	   1.724769	   -‐0.7239	   -‐0.906338	  
H	   -‐0.994955	   -‐1.477366	   0.766995	  
H	   -‐1.552634	   -‐0.08391	   -‐0.091158	  
H	   -‐0.639468	   2.301958	   0.03309	  

 
Table S8. Optimized geometries the transition states from Figure 15b. All calculations were 
conducted at the CBS-QB3 level.  
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TS1 
 

C	   -‐1.351363	   -‐1.353865	   0.140217	  
C	   -‐0.698695	   0.019903	   -‐0.017734	  
C	   -‐0.732724	   0.804759	   1.29003	  
C	   0.635083	   -‐0.091734	   -‐0.739092	  
C	   1.822269	   0.618371	   -‐0.211214	  
O	   -‐1.4246	   0.82605	   -‐0.976841	  
H	   -‐2.384229	   -‐1.242548	   0.479236	  
H	   -‐0.805252	   -‐1.959304	   0.868939	  
H	   -‐1.347388	   -‐1.88921	   -‐0.812992	  
H	   -‐1.428692	   0.339341	   -‐1.811032	  
H	   -‐1.745501	   0.803649	   1.698703	  
H	   -‐0.060843	   0.354903	   2.024852	  
H	   -‐0.439986	   1.842439	   1.121992	  
H	   1.476719	   -‐1.191873	   -‐0.616037	  
H	   2.60418	   0.915252	   -‐0.90917	  
H	   1.709706	   1.307229	   0.621166	  
O	   1.971333	   -‐0.734111	   0.296979	  

 
TS2 
 

C	   2.082407	   -‐0.827629	   -‐0.628142	  
C	   0.948115	   -‐0.013814	   -‐0.033778	  
C	   1.262664	   1.468428	   0.07655	  
C	   -‐0.439161	   -‐0.489619	   -‐0.293131	  
C	   -‐1.583338	   0.452593	   -‐0.279565	  

O	   0.485077	   -‐0.540369	   1.252515	  
H	   2.991972	   -‐0.704715	   -‐0.032978	  
H	   2.293091	   -‐0.497857	   -‐1.650077	  
H	   1.81649	   -‐1.884807	   -‐0.657425	  
H	   -‐0.166411	   -‐1.339414	   0.743855	  

H	   2.218115	   1.613701	   0.586418	  
H	   1.346674	   1.90913	   -‐0.92096	  
H	   0.497595	   2.005775	   0.634964	  
H	   -‐2.770909	   -‐1.055062	   -‐0.465767	  

H	   -‐1.503079	   1.244414	   0.470108	  
H	   -‐1.551586	   0.943635	   -‐1.273178	  
O	   -‐2.834585	   -‐0.18145	   -‐0.063336	  
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TS3 
 

C	   1.832584	   -‐1.052745	   -‐0.617424	  
C	   0.951391	   0.027049	   -‐0.031669	  
C	   1.312207	   1.450341	   -‐0.379889	  
C	   -‐0.422092	   -‐0.29875	   0.378423	  
C	   -‐1.639381	   0.636692	   0.383514	  
O	   0.596992	   -‐0.186615	   1.362807	  

H	   2.867336	   -‐0.918484	   -‐0.288402	  
H	   1.81666	   -‐1.014648	   -‐1.710523	  
H	   1.502402	   -‐2.042819	   -‐0.297088	  
H	   -‐0.790824	   -‐1.312541	   0.236714	  
H	   2.330346	   1.675153	   -‐0.048914	  

H	   1.26138	   1.604676	   -‐1.46157	  
H	   0.628817	   2.150415	   0.101861	  
H	   -‐2.334503	   -‐0.857109	   -‐0.874864	  
H	   -‐2.151476	   0.067988	   1.209711	  

H	   -‐2.510425	   1.306058	   0.387156	  
O	   -‐2.305394	   0.106276	   -‐0.89744	  

 
TS4 
 

C	   -‐1.836363	   -‐0.842534	   0.503672	  
C	   -‐0.910972	   0.176003	   -‐0.142357	  
C	   2.03972	   0.202528	   0.773588	  
C	   0.168197	   -‐0.293556	   -‐0.983972	  
C	   1.483751	   -‐0.351569	   -‐0.524451	  
O	   -‐1.132865	   1.381365	   -‐0.099286	  
H	   -‐2.390247	   -‐0.351471	   1.30442	  

H	   -‐1.296681	   -‐1.709416	   0.897551	  
H	   -‐2.547323	   -‐1.210097	   -‐0.241778	  
H	   2.480606	   1.181452	   0.562266	  
H	   1.264391	   0.343051	   1.526803	  
H	   2.831028	   -‐0.435911	   1.173125	  

H	   2.24907	   -‐0.62347	   -‐1.257861	  
H	   0.857894	   -‐1.427085	   -‐0.528372	  

 
TS2* 
 

C	   1.477702	   1.007515	   0.730902	  
C	   0.640276	   -‐0.136307	   0.192711	  
C	   1.416337	   -‐1.375393	   -‐0.187446	  
C	   -‐0.609646	   -‐0.356557	   0.857044	  
C	   -‐1.783495	   -‐0.73041	   0.084603	  
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O	   0.097856	   0.593885	   -‐1.404752	  
H	   2.290809	   1.268093	   0.047064	  
H	   1.922281	   0.699346	   1.680975	  
H	   0.863025	   1.88756	   0.928205	  
H	   0.648533	   1.365397	   -‐1.571011	  
H	   2.226098	   -‐1.117492	   -‐0.871875	  
H	   1.854344	   -‐1.826574	   0.707196	  
H	   0.772374	   -‐2.113128	   -‐0.667515	  
H	   -‐0.925296	   0.910074	   -‐0.672394	  
H	   -‐1.733825	   -‐1.034007	   -‐0.961454	  
H	   -‐2.663406	   -‐1.089413	   0.610755	  
O	   -‐1.610603	   0.730747	   0.242648	  

 
TS3* 
 

C	   2.496873	   -‐0.787624	   0.388115	  
C	   1.333927	   0.068103	   0.035061	  
C	   1.502641	   1.378962	   -‐0.657831	  
C	   -‐0.693946	   -‐0.247141	   -‐0.508362	  
C	   -‐2.062612	   0.25257	   -‐0.257643	  
O	   0.171558	   -‐0.342043	   0.566971	  
H	   2.319001	   -‐1.25568	   1.362764	  
H	   3.428852	   -‐0.216635	   0.407753	  
H	   2.633917	   -‐1.60804	   -‐0.331891	  
H	   -‐0.441165	   -‐0.88359	   -‐1.343326	  
H	   2.349179	   1.922318	   -‐0.207519	  
H	   1.724184	   1.301601	   -‐1.72839	  
H	   0.58263	   1.962013	   -‐0.570508	  
H	   -‐2.743792	   -‐1.48326	   0.32312	  
H	   -‐2.063024	   1.232261	   0.228932	  
H	   -‐2.568942	   0.363218	   -‐1.22685	  
O	   -‐2.84343	   -‐0.576894	   0.634442	  

 
TS4* 
 

C	   0.276331	   -‐0.460657	   -‐0.51212	  

C	   1.045502	   0.593015	   0.027741	  
H	   0.064031	   -‐1.233368	   0.229363	  
H	   1.734029	   -‐0.808077	   -‐0.340549	  
H	   0.793765	   1.64556	   0.180474	  
H	   -‐0.548281	   -‐0.284054	   -‐1.196762	  
O	   2.22035	   0.189727	   0.32533	  
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Table S9. Optimized geometries for the transition states from Figure 16. All calculations were 
conducted using the CBS-QB3 model.  
 
TS1 
 

C	   0.607043	   -‐0.518514	   -‐1.005119	  
C	   0.023025	   -‐0.451071	   1.439531	  
C	   -‐0.561677	   -‐0.478594	   0.042615	  
C	   -‐1.463651	   0.696722	   -‐0.255555	  
C	   -‐1.247927	   1.953253	   0.115416	  
H	   0.218068	   -‐0.352082	   -‐2.010365	  
H	   1.115827	   -‐1.488708	   -‐0.950096	  
H	   -‐0.844632	   -‐2.427608	   0.031385	  
H	   0.281977	   -‐1.426961	   1.848951	  
H	   -‐0.423359	   0.231055	   2.156884	  
H	   1.307061	   0.043522	   1.151451	  
H	   -‐0.391333	   2.245571	   0.71277	  
H	   -‐1.924837	   2.745273	   -‐0.182696	  
H	   -‐2.320607	   0.437379	   -‐0.870504	  
O	   -‐1.371396	   -‐1.648479	   -‐0.177174	  
O	   1.527826	   0.525568	   -‐0.760075	  
O	   2.198689	   0.220633	   0.448611	  

 
TS2  
 

C	   -‐0.979123	   -‐0.462889	   -‐0.937484	  
C	   -‐0.391632	   -‐0.634752	   0.984345	  
C	   -‐0.155316	   0.547543	   0.019833	  
C	   1.245551	   0.68107	   -‐0.330958	  
C	   2.05789	   -‐0.433006	   0.054862	  
H	   -‐0.540904	   -‐0.743205	   -‐1.897057	  
H	   -‐1.995166	   -‐0.082626	   -‐1.058071	  
H	   -‐1.703736	   1.671876	   0.38388	  
H	   -‐0.939985	   -‐0.582015	   1.930904	  
H	   1.472171	   -‐0.768655	   1.038992	  
H	   1.878537	   -‐1.388992	   -‐0.466494	  
H	   3.133561	   -‐0.2477	   0.088883	  
H	   1.601923	   1.562313	   -‐0.848189	  
O	   -‐0.760107	   1.805321	   0.233873	  
O	   -‐0.936221	   -‐1.506421	   0.026572	  
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TS3 
 

C	   -‐2.876365	   -‐0.324239	   0.460719	  
C	   -‐0.772442	   -‐0.694461	   -‐0.578318	  
C	   0.67114	   -‐0.533983	   -‐0.362462	  
C	   1.437771	   -‐1.455357	   0.231464	  
C	   2.919348	   -‐1.341388	   0.435654	  
H	   -‐3.454157	   -‐0.804529	   -‐0.318584	  
H	   -‐3.290553	   0.131148	   1.343311	  
H	   0.549296	   1.160627	   -‐1.233785	  
H	   -‐1.214577	   -‐1.234068	   -‐1.409261	  
H	   3.447779	   -‐2.177427	   -‐0.036672	  
H	   3.304804	   -‐0.411828	   0.017323	  
H	   3.173275	   -‐1.368767	   1.501589	  
H	   0.941986	   -‐2.350483	   0.589772	  
O	   1.252729	   0.631591	   -‐0.844851	  
O	   -‐1.583089	   -‐0.257349	   0.3617	  

 
TS4 
 

C	   -‐0.074802	   0.559337	   1.280684	  
C	   0.909692	   0.304299	   0.295787	  
C	   -‐0.481731	   -‐0.012619	   0.117647	  
C	   -‐1.483105	   -‐0.753844	   -‐0.671694	  
H	   2.289274	   0.854898	   -‐0.907638	  
H	   -‐0.341089	   0.826441	   2.293563	  
H	   -‐1.612674	   -‐0.281701	   -‐1.648355	  

H	   -‐1.075101	   -‐1.756847	   -‐0.845213	  
H	   -‐2.44743	   -‐0.823382	   -‐0.168886	  
H	   -‐1.283684	   1.417342	   0.500761	  
O	   1.627814	   1.293976	   -‐0.366442	  

 
TS5 
 

C	   0.471683	   1.263729	   -‐0.003971	  

C	   0.777489	   -‐0.054319	   0.594546	  
C	   -‐0.477582	   0.283726	   -‐0.225083	  
C	   -‐1.834377	   -‐0.293105	   0.013859	  
H	   0.247416	   -‐0.370019	   -‐1.122715	  
H	   1.020677	   1.872057	   -‐0.721239	  
H	   -‐2.195114	   -‐0.02203	   1.009493	  
H	   -‐2.545049	   0.074574	   -‐0.730824	  
H	   -‐1.794886	   -‐1.381549	   -‐0.06111	  
H	   0.698481	   -‐0.289864	   1.650962	  
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O	   1.36815	   -‐0.885419	   -‐0.287585	  
 
TS4** 
 

C	   0.178395	   1.259105	   -‐0.178796	  
C	   0.724082	   0.109619	   0.054556	  
C	   -‐0.678797	   0.175177	   0.507139	  
C	   -‐1.803504	   -‐0.547799	   -‐0.242013	  
H	   2.482371	   -‐0.322591	   -‐0.469063	  
H	   0.177787	   2.261091	   -‐0.567347	  
H	   -‐2.618609	   -‐0.81207	   0.437144	  
H	   -‐2.221143	   0.081946	   -‐1.033121	  
H	   -‐1.451633	   -‐1.473212	   -‐0.707886	  
H	   -‐0.863379	   0.285727	   1.579482	  
O	   1.746695	   -‐0.749687	   -‐0.010566	  

 
TS5** 
 

C	   -‐0.160995	   1.231611	   -‐0.209404	  
C	   -‐1.085117	   0.113061	   -‐0.093847	  
C	   0.831173	   0.409614	   0.494729	  
C	   1.584928	   -‐0.686047	   -‐0.191437	  
H	   1.038408	   -‐1.648207	   -‐0.22788	  
H	   0.017615	   1.482422	   -‐1.261667	  
H	   -‐0.540517	   2.115156	   0.308613	  
H	   2.52611	   -‐0.887158	   0.328396	  
H	   1.84218	   -‐0.423695	   -‐1.225196	  
H	   0.775046	   0.413527	   1.576258	  
O	   -‐1.603069	   -‐0.926831	   0.054812	  

 
TS2* 
 

C	   1.116571	   0.050507	   0.896392	  
C	   0.598798	   -‐1.026888	   -‐0.737949	  
C	   -‐0.122973	   -‐0.088587	   0.188924	  
C	   -‐1.502013	   0.181997	   0.472988	  
C	   -‐2.522563	   -‐0.463424	   -‐0.108717	  
H	   1.27987	   -‐0.007634	   1.970282	  
H	   1.273058	   1.201695	   0.40433	  
H	   0.447208	   2.568066	   -‐1.161532	  
H	   0.729217	   -‐0.687117	   -‐1.76536	  
H	   0.212933	   -‐2.052358	   -‐0.708576	  
H	   -‐2.363188	   -‐1.219557	   -‐0.869755	  
H	   -‐3.548965	   -‐0.25624	   0.167164	  
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H	   -‐1.687354	   0.935567	   1.231046	  
O	   0.475957	   1.856579	   -‐0.500709	  
O	   1.80533	   -‐0.907086	   0.05853	  

 
 
TS3*  
 

C	   -‐1.114296	   0.056035	   1.296623	  
C	   0.050911	   -‐0.077405	   -‐1.002203	  
C	   0.024821	   -‐0.222062	   0.420081	  
C	   1.224958	   -‐0.850582	   0.716354	  
C	   1.609524	   -‐1.46625	   -‐0.50024	  
H	   -‐0.921575	   -‐0.118779	   2.377636	  
H	   -‐0.84329	   -‐0.201387	   -‐1.612912	  
H	   0.829322	   0.526575	   -‐1.445806	  
H	   2.649131	   -‐1.572537	   -‐0.812909	  
H	   0.934135	   -‐2.180273	   -‐0.952796	  
H	   1.822492	   -‐0.794292	   1.621701	  
O	   -‐2.200528	   0.430892	   0.907389	  

 
TS4* 
 

C	   1.490853	   0.090747	   -‐0.038257	  
C	   -‐0.889036	   -‐1.048938	   -‐0.077388	  
C	   0.098586	   0.15146	   0.109823	  
C	   -‐0.963422	   1.080245	   -‐0.177084	  
C	   -‐2.026572	   0.011798	   0.029172	  
H	   0.58152	   -‐0.040469	   1.275337	  
H	   -‐0.787854	   -‐1.507914	   -‐1.060082	  
H	   -‐0.835779	   -‐1.808564	   0.706678	  
H	   -‐2.509553	   -‐0.05138	   1.019804	  
H	   -‐2.815106	   -‐0.054744	   -‐0.729618	  
H	   -‐0.995466	   2.115805	   0.143475	  
O	   2.637472	   -‐0.045576	   -‐0.05415	  
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5. Study of the Synchrotron Photoionization Oxidation Initiated by O(3P) of 2-Methylfuran (2-
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5.1 Abstract 

The initiated O(3P) oxidation of 2-methylfuran (2-MF) is investigated using vacuum ultraviolet 

(VUV) synchrotron radiation from the Advanced Light Source (ALS) of the Lawrence Berkeley 

National Laboratory. Reaction species are studied by multiplexed photoionization mass spectrometry 

at 550 and 650 K. Mass-to-charge ratios, photoionization spectra, and adiabatic ionization energies 

for each primary reaction species are obtained and used to characterize their identity. Using electronic 

structure calculations, potential energy surface scans of the different species produced throughout the 

oxidation are examined and presented in this paper to further validate the primary chemistry 

occurring. Branching fractions of primary products at the two temperatures are also provided.  
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5.2 Introduction 

 The burning of different fuels, gasoline, diesel, and more attractive biofuels release different 

species in the atmosphere together with ground state oxygen atoms due to the continuous reaction of 

H + O2.74 Consequently, it is essential to analyze how O(3P) atoms react once these gases are released 

and what products are formed. This type of reaction has not been studied extensively in comparison to 

other combustion reactions. However, previous research75-76 has found two possible pathways of 

interest: (1) hydrogen abstraction, and (2) oxygen addition pathways that follow intersystem crossing 

(ISC) into the singlet surface. Cvetanovic2-76 found that the oxygen addition occurs at the less-

substituted unsaturated carbon atom and the H-abstraction is a less energetically favorable pathway. 

The oxygen addition to an unsaturated hydrocarbon forms a triplet diradical species, which undergoes 

intersystem crossing (ISC) to form a singlet epoxide.2-3 Recently, different studies have confirmed 

this finding.4-7 Using multiplexed synchrotron photoionization mass spectrometry (MPIMS)77-78 and 

crossed molecular breams (CMBs),79 researchers concluded product formation occurs through the 

singlet epoxide species.  

 The interest in studying the O(3P) reaction with different compounds, which can be used as 

biofuels or fuel additives, arise from the paramount attention generated by the necessity of 

understanding and reducing the harmful effects of burning fuels. The United States Environmental 

Protection Agency (US EPA) reports that approximately 67% of the electricity used in every day life 

comes directly from burning fossil fuels.7 Leading close behind is transportation, where almost 90% 

of the fuel used is petroleum based (gasoline and diesel).7 In order to make day-to-day energy, 

electricity, and transportation, fossil fuels are burned in power plants and internal combustion 

engines.9 This, however, releases harmful substances into the environment, such as particulate matter 

(PM), nitrogen oxides (NOx), and carbon dioxide (CO2) and hydrocarbons.9 

Petroleum sources over the past decades have begun to diminish, further increasing the need 

to find alternative fuel sources. Biofuels have become progressively attractive due to their readily 

available resources and easy to process. Furan and alkylfurans have been identified as potential 

alternative biofuels.80-181 2,5-Dimethylfuran (2,5-DMF) is an alkylfuran that can be used as a biofuel 

due to some similarities with ethanol.81-82 Previous research has found that the emission of carbon 

monoxide (CO) and hydrocarbons (HC) burning 2,5-DMF are higher in ethanol and lower than 

gasoline, increasing the need to find other alkylfurans with better combustion properties than both 

gasoline and ethanol.13-14  

 In general, biofuels and fuel additives have become increasingly of interest due to their high 

octane numbers, which indeed decrease the chance of engine knocking. In particular, alcohols have 
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the potential to lessen engine knocking and the emission of particle matter due to higher energy 

density and lower hygroscopicity.15-83  To this day, bioethanol has been the most commonly used 

biofuel due to its renewable nature. However, recent research has found that 2-methylfuran (2-MF) 

can be used as a novel biofuel.81,18-84 When compared to commercial fuel and ethanol, 2-MF has a 

high octane number of 95 and a drop in HC emission of 61%.81-82, 85 Similar to 2,5-DMF, it exhibits 

the same behavior with greater nitrous oxide emissions compared to ethanol.13-20 

Wei et al.11 conducted experiments on 2-MF and oxygen flames, in which they identified 

combustion intermediates using tunable synchrotron vacuum ultraviolet photoionization and 

molecular beam mass spectrometry. They found that furfural is one of the main oxidation products 

coming from the hydrogen abstraction pathways, which was not observed in this present 

investigation. Also, a study presented by Villanueva and co-workers21 concluded that furfural is one 

of the combustion products reaction of 2-MF by analyzing FTIR absorption spectra in conjunction 

with mass spectrometry, electron capture, and solid phase microextraction on the system. They found 

furfural is an oxidation product yielded through the hydrogen abstraction from 2-MF and reacted with 

O2.  

The work presented here is focused on the combustion reaction of 2-MF at 550 and 650 K 

initiated through the ground state oxygen atom, O(3P), using a tunable synchrotron multiplexed 

photoionization mass spectrometer, which has the ability to identify isomeric species via 

photoionization spectra. Computations are also carried out to explain the formation of the observed 

products with the aid of the CBS-QB3 composite model. 

 

5.3 Experimental  

The experiments reported in this work are performed at the Chemical Dynamics Beamline of 

the Advanced Light Source (ALS) held at the Lawrence Berkeley National Laboratory. The ALS 

photoionization source produces tunable synchrotron radiation that is coupled with a multiplexed 

time- and energy-resolved mass spectrometer detecting and probing reaction species, intermediates, 

and products. Further detail about these types of experiments is discussed in previous work.7,22-24  

The vapors of 2-MF (Sigma-Aldrich; purity > 98%) along with He gas are collected into a 

gas cylinder to reach an overall 1% reaction mixture.  In this work, 2-MF reacts with O(3P) at 

different temperatures, 550 and 650 K, and a pressure of 7 Torr. 2-MF, NO2 (photolytic precursor), 

and He are introduced in the 62 cm long slow-flow reactor using calibrated mass flow controllers. 

The reaction species then form an effusive molecular beam through a 650 µm wide pinhole located on 

the side of the reactor tube and flow into a differentially vacuumed ionization region. The reaction 

temperature can be varied using a 18 µm thick nichrome heating tape that wraps the reactor tube. 
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Additionally, a feedback controlled throttle valve connects a roots pump to the reaction cell that 

allows the pressure to be changed and maintained throughout the different experiments. The reaction 

is photolytically intiated using a 4 Hz-pulsed unfocused 351 nm (XeF) excimer laser:86  

         

              NO2                                 O(3P) + NO 

The concentration of NO2 used throughout these experiments are calculated to be 5.35 x 1016 

molecules cm-3 at 550 K and 3.47 x 1016 molecules cm-3 at 650 K. Along with the concentration values 

calculated from the experiment and the previous reported quantum yield of O(3P), 1.0025, at 351 nm 

as well as the absorption cross-section, 4.62 x 10-19 cm2,26 the concentrations of O(3P) is 8.03 x 1013 

molecules cm-3 at 550 K and 5.21 x 1013 molecules cm-3 at 650 K.  

Once the reactions species are ionized, they are accelerated, collimated, focused, and detected 

via a 50 kHz pulse orthogonal acceleration time-of-flight mass spectrometer with a current mass 

resolution of approximately 1,600.86  

The data analysis begins with taking two-dimensional slices of the resulting three-

dimensional data block consisting of the ion signal being a function of photon energy (eV), time (ms), 

and mass-to-charge (m/z) ratio. The data is background subtracted for the pre-photolysis signal and 

normalized at individual photon energies using a calibrated photodiode. A negative ion signal is 

expected for depleting species (reactants) and a positive ion signal for formation of products. Primary 

products are identified through their kinetic time plots (ion signal (arb. units) vs. kinetic time (ms)). 

An example is provided in Figure 1a for the primary product m/z 42. Secondary chemistry is 

eliminated through analysis when the initial kinetic rise is slower than the inverse kinetic time trace of 

the depleting reactant. Figure 1b provides an example of a secondary product at m/z 58.40 The 

identified primary species are then characterized through their photoionization (PI) spectra and 

adiabatic ionization energies (AIE). The AIE’s are determined by taking the linear extrapolation of 

the initial onset of the experimental PI spectrum.23 The photon energy step size in this work is 25 

meV, therefore, with the possible presence of hot bands and energy resolution, the estimated AIE 

uncertaint is 0.05 eV.23 

The photoionization spectra are obtained through a vertical slice of the two- dimensional 

image m/z vs. photon energy (eV). In order to obtain an accurate PI spectrum and minimize the 

presence of signal due to any possible secondary products, the data is integrated in the time range of 

0-30 ms at 550 K and 0-10 ms at 650 K. Identification begins through the “fitting” of literature PI 

spectra when available or the integration of a computed simulated Franck-Condon photoelectron 

spectrum.  

	  
351	  nm	  
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 In addition to characterizing and identifying the primary chemistry occurring throughout this 

oxidation, it is essential to determine the thermodynamic feasibility of the pathways to form these 

species (their exothermicity). Product quantification is also achieved calculating branching fractions, 

which represent the quotient of the concentration of the products with respect to the concentration of 

the reactant. Equation 1 below shows how branching fractions are obtained experimentally:  
!!
!!
=    !!!!!!

!!!!!!
= !!!! !!

!.!"

!!!! !! !.!" =
!!!!
!!!!

*MDF    (1) 

where CP is the concentration of the product, CR the concentration of the reactant (measured as 

change in the initial reactant concentration), SP and SR are the signal of the product and reactant, 

respectively, at a specified photon energy, σP and σR are the photoionization cross-section of the 

product and reactant, respectively, at a specified photon  energy, and the mass discrimination factor 

(MDF) is the quotient of reactant and product mass to the power of 0.67,27 which takes into account 

the mass-dependent response of the detector.  

For the branching fraction determination, the ion signals and photoionization cross-sections 

are used at 11 eV. In addition, the ion signal is averaged for 250 laser shots at each energy step. The 

overall branching fractions uncertainties are calculated using the propagation of errors of the 

quantities in equation 1. Specifically, the uncertainties of the photoionization cross sections and the 

mass discrimination factor are from the literature, whereas the uncertainty of each ion signal is 

estimated by taking the difference between the measured upper value at 11 eV of a specific species 

and its reference (literature or simulation) spectrum used in the assignment. The same procedure is 

applied using the lower ion signal value at 11 eV and the average of the two differences is used.   

 

5.4 Computational 

 The products identified in this work are optimized through electronic structure calculations 

utilizing the complete basis set CBS-QB328-29 composite model with the Gaussian0930 program. The 

CBS-QB3 is used due to its high energetics accuracy with a reported mean average deviation of 4-5 

kJ/mol.28-29 Within this composite method, the molecular parameters, bond lengths and angles, 

harmonic vibrational frequencies, force constants, and rotational constants are optimized at the 

B3LYP density functional level. The computational methods of this work are first used for further 

identification of primary products in calculating the AIE of particular molecules. The CBS-QB3 zero-

point vibrational corrected total electronic energy (E0) for the neutral and cation ground state are used 

to compute the adiabatic ionization energies (AIE) as seen in equation 2:  

 

     AIE = E!(!"#$%&)-‐E!(!"#$%&')       (2) 
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 The identification of primary products occurs when the AIE and the overall photoionization 

spectrum are in good agreement with the literature values. In some instances, however, PI spectra are 

unavailable and computational methods are used to run a spectral simulation. This is achieved using 

the optimized molecular parameters to simulate a photoelectron spectrum within the Franck-Condon 

(FC) and Franck-Condon-Herzberg-Teller31-33 (FCHT) approximations through the Gaussian 09 

program. In this methodology the vibrational normal modes are expressed using the Duschinsky31 

rotation matrix. The FC overlap integrals are calculated using recursive formulae developed by 

Ruhoff,35 based on Lermé33 and Sharp-Rosenstock54 methods for the overlap integrals calculations.  

 Then, mechanisms to prove that primary products are formed from the oxygen addition 

pathway are computed and, based on the pathway exothermicity, they are determined to be 

thermodynamically feasible. PES scans using the B3LYP/6-31G(d) level of theory and basis set are 

carried out as a function of bond lengths and bond angles, to visualize whether transition state barriers 

occur at different steps of each pathway.52 Each transition state barrier and minimum are recalculated 

using the CBS-QB3 and the obtained ZPE corrected total electronic energies are used. In order to 

further verify the forward and reverse steps of the different potential energy surface scans as well as 

the local minima and saddle points, intrinsic reaction coordinate (IRC) calculations are also 

performed.37  

 
5.5 Results 
 
 The initiated oxidation of 2-MF with O(3P) has two main pathways, oxygen addition to the 

unsaturated carbons as well as hydrogen abstraction. In this work all the primary products are formed 

from the singlet epoxide species that form from the triplet diradicals that occur through the oxygen 

addition and a secondary product is formed from the initial hydrogen abstraction. As visualized in 

Scheme 1, there are four different possible triplet diradicals. The heat of formation computed and 

presented in this work are calculated at 0 K. They undergo intersystem crossing to yield the singlet 

epoxide species at -315 kJ/mol (E) and -317 kJ/mol (F). The primary products observed in this work 

are only presented from epoxide E and F. Triplet diradical A is the most favorable with an enthalpy of 

-138 kJ/mol and triplet diradical D falls close behind at -134 kJ/mol. The radicals B and C are less 

favorable with a heat of reaction of -57 kJ/mol and -54 kJ/mol, respectively.  
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Scheme 1. The four possible triplet diradicals forming from the oxygen addition pathway are 
presented along with the singlet epoxide species forming.  
 

5.5.1 Product Identification  

 In the 2-MF + O(3P) reaction the same products are observed at both temperatures. They are 

m/z 30, 42, and 70. As mentioned above, the characterization of primary products is completed 

through the observation of kinetic time plots (Figure 1a and 1b).   

a) 
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b)  

 
Figure 1. a) Kinetic time trace of primary product, m/z 70, (full blue circles) superimposed onto the 
inverse of the temporal plot of the parent (red full circles); b) kinetic time trace of secondary product, 
m/z 58, (full blue circles) superimposed onto reverse reactant time trace (red full circles). 
 

 From the photolysis of NO2 to generate O(3P), NO is produced as well and it shows at m/z 30. 

However, at m/z 30 formaldehyde is also formed. Its literature spectrum38 summed to the reference PI 

spectrum of NO5 fits very well the experimental data (Figure 2a and 2b).  
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a) 

 
b) 

 
 
Figure 2.  The reference PI spectrum of NO in purple and formaldehyde in green superimposed onto 
the m/z 30 experimental PI spectrum (a) at 550 K (yellow open circles) and (b) and 650 K (red open 
circles); the summation of the two literature spectra is in blue. 
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 Signal at m/z 42 is assigned to propene and cyclopropane. m/z 42  kinetic time trace is 

presented in Figure 3. The literature PI spectrum of the Person and Nicole39 of propene fits well the 

initial part of the experimental PI spectrum at m/z 42 at both 550 and 650 K (Figure 4a and 4b). The 

ionization onset of 9.70 ± 0.05 eV matches the reference AIE of 9.74 ± 0.01 eV.39 At higher photon 

energies, the experimental spectrum is matched by the literature spectrum of cyclopropane41 with an 

ionization energy of 9.90 ± 0.05 eV. The summation of both literature spectra fits well the overall 

shape of the experimental spectrum.  

 
Figure 3. Kinetic time trace of m/z 42 (full blue circles) superimposed onto the inverse of the 
temporal plot of the parent (red full circles) at 650 K.  
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a)  

 
 
b) 
 

 
 
Figure 4. a) The literature PI spectra of propene and cyclopropane superimposed onto the 
experimental PI spectrum of m/z 42 at (a) 550 K and (b) 650 K. 
 

 Two species are identified forming at m/z 70. The summation of the reference PI spectrum of 

methyl vinyl ketone40 and 2-butenal40 is in very good agreement with the experimental PI spectrum at 

both temperatures (Figure 5a and 5b). The m/z 70 signal onset matches methyl vinyl ketone at 9.64 
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eV40 and at higher photon energy 2-butenal spectrum, which has a literature AIE of 9.73 ± 0.01 eV,41  

is in good agreement with the experimental data. 

a)  

 
b)  

 
 
Figure 5. The summation (blue line) of the reference PI spectra of methyl vinyl ketone (green line) 
and 2-butenal (gray line) is fit to the experimental PI spectrum at a) 550 K (yellow open circles), and 
b) 650 K (red open circles).  
 

 As mentioned before, previous studies have found that furfural is a primary oxidation product 

forming from the hydrogen abstraction of 2-MF. This is observed in this study as well, however it is 

not a primary product. The time trace of m/z 96 superimposed onto the inverse of the reactant is a bit 
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slower indicating a slower formation (Figure 6a and 6b). A reference PIE of furfural is fit to the 

experimental PIE at m/z 96 at both temperatures. Additionally, the reported AIE of furfural is 9.21 + 

0.01 eV42 which fits well with the experimental AIE of 9.20 + 0.05 eV. Only the onset of this signal is 

observed experimentally at both temperatures (Figure 7a and 7b). 

a) 
 

b) 

 
Figure 6. a) Kinetic time trace of m/z 96 (full yellow circles) superimposed onto the inverse of the 
temporal plot of the parent (red full circles) at 550 K. b) Kinetic time trace of m/z 96 (full purple 
circles) superimposed onto the inverse of the temporal plot of the parent (red full circles) at 650 K.  
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a) 
 
 

 
 
 
 
b) 

 
Figure 7. a) A Franck-Condon PI simulation spectrum of furfural (purple line) fit to the experimental 
PI spectrum onset at m/z 96 at a) 550 K (yellow open circles), and b) 650 K (red open circles). 
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5.5.2 Thermodynamic Mechanism for Primary Products 

 The O(3P) addition pathway in this work yields the observed primary products, no 

contribution was observed from the hydrogen abstraction pathways. The hydrogen abstraction radical 

reacting with O2 forms secondary chemistry. A study performed on the chemical kinetic of the 

hydrogen abstraction from allylic sites by molecular absorption reported the activation barrier to the 

hydrogen abstraction to be 167 kJ/mol.43 The primary products in this work form from two different 

singlet epoxide species thermodynamically feasible (E and F in Scheme 1). The initial reaction of 

O(3P) with 2-MF forming triplet diradicals is used as the reference point (the zero energy) for the 

energetic calculations of the primary characterized species. Any molecular species or energetic barrier 

above the red line in the potential energy surface diagrams is thermodynamically or kinetically, 

respectively, unfavorable. 

As seen in Scheme 1, the oxidation reaction of 2-MF starts with four possible different 

energetically favorable triplet diradicals, from which two-singlet epoxide species forms. The most 

energetically favorable triplet diradical A and the diradical B both yield the epoxide E, which has an 

unbound cation and dissociatively ionizes, therefore, is not observed in this work. This epoxide is 

responsible for the formation of formaldehyde, cyclopropane, methyl vinyl ketone, and 2-butenal. 

From epoxide E to E1, an activation barrier of 249 kJ/mol occurs through the hydrogen transfer from 

the alpha to the beta carbon forming a radical species with a heat of reaction of 118 kJ/mol. Methyl 

vinyl ketone forms from the loss of CO. This formation consists of a transition state of 20 kJ/mol and 

an enthalpy of -204 kJ/mol (Figure 8). 
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Figure 8. A potential energy surface diagram is displayed representing the formation of methyl vinyl 
ketone from epoxide E. The dashed line from the triplet diradical A represents the intersystem 
crossing to the singlet surface. 

 

 The formation of 2-butenal, propene, and cyclopropane are represented in Figure 9.  

The epoxide E breaks to form 4-ketopentenal with a heat of reaction of -68 kJ/mol, associated with an 

activation barrier of 63 kJ/mol. This species has an unbound cation and, therefore, it is not observed 

experimentally throughout this reaction. With a transition state barrier of 294 kJ/mol, 4-ketopentenal 

forms E2* through the hydrogen transfer of the methyl group to the γC forming a species also not 

observed throughout this experiment because it has an unbound cation. The heat of reaction of this 

hydrogen transfer is 106 kJ/mol. With an activation barrier of 146 kJ/mol, CO cleaves of forming 

prop-2-enal at 86 kJ/mol. Prop-2-enal is not observed at m/z 70 in this work due to poor Franck-

Condon factors that occur from geometrical differences between its neutral and cation state. It forms 

2-butenal with a barrier of 299 kJ/mol through a hydrogen transfer. The associated heat of reaction 

forming 2-butenal is of 1 kJ/mol. Prop-2-enal can also lose CO to form cyclopropane and propene. 

The associated transition state barrier of TS1 is 267 kJ/mol with an enthalpy of 19 kJ/mol for 

cyclopropane Figure 9). Propene is formed with a heat of reaction and a barrier of 192 kJ/mol and -18 
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kJ/mol, respectively. From prop-2-enal a hydrogen transfer to the ketocarbon with a barrier of 192 

kJ/mol cleaves the C-C bond forming formaldehyde with a heat of reaction of 232 kJ/mol (Figure 10). 

 
 
 
 
Figure 9. The energy diagram presents the formation of 2-butenal from epoxide E, which further 
decomposes to forming cycloporpane and propene. The dashed line from the triplet diradical B 
represents the intersystem crossing to the singlet surface. 
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Figure 10. The energy diagram presents the formation of formaldehyde from epoxide E. The dashed 
line from the triplet diradical B represents the intersystem crossing to the singlet surface. 
 

 Methyl vinyl ketone is also formed from epoxide F observed in Figure 9. As mentioned 

before epoxide F, heat of reaction -317 kJ/mol, forms from the triplet diradical D (-134 kJ/mol) and C 

(-54 kJ/mol). With a transition state barrier of 289 kJ/mol, a hydrogen transfer forms a radical species, 

F1, at an enthalpy of 179 kJ/mol. Methyl vinyl ketone forms through a CO cleavage with transition 

state barrier of 127 kJ/mol. The formation of this product has an enthalpy of 251 kJ/mol (Figure 11).  
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Figure 11. The energy diagram presents the formation of methyl vinyl ketone from epoxide F 
forming from triplet diradical C and D. 
 

5.5.3 Branching Fractions  

The primary products in this work are identified using kinetic time trace and characterized 

through their PI spectra. It is essential to know the concentration of the reactant and how much of 

each product is actually formed to compute the branching fractions. Using equation 1 presented in the 

computational section, the branching fractions of each product is presented in Table 1 for all three 

temperatures. The photoionization signal and photoionization cross-section are used at 11 eV for each 

measurement.  
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Table 1. Branching fractions of the primary products observed throughout this oxidation at 550 and 
650 K.  
 
Signal Identified species 550 K 650 K 
m/z 30 Formaldehyde 39.3 + 12.9 27.8 + 9.7 
m/z 42 Cyclopropane 1.05 + 0.5 0.87 + 0.3 
m/z 42 Propene 9.0 + 2.9 26.3 + 9.0 
m/z 70 2-Butenal 16.6 + 6.3 32.9 + 12.3  
m/z 70 Methyl vinyl ketone 29.2 + 10.5 13.4 + 4.9 

 

 The largest contribution is given from formaldehyde at 550 K, 39.3 ± 12.9 % where at 650 K 

it contributes a little less than 27.8 ± 9.7 %. 2-Butenal’s contribution increases with the increase in 

temperature from 16.6 ± 6.3 % at 550 K to 32.9 ± 12.3 % at 650 K. Interestingly, methyl vinyl ketone 

follows the opposite path, decreasing its contribution with the increase in temperature from 29.2 ± 

10.5 % at 550 K to 13.4 ± 4.9  % at 650 K. This means that m/z 70 signal consists of a higher portion 

of 2-butenal as the temperature rises. A small contribution of cyclopropane is given at 550 K as 1.05 

± 0.5 % and at 650 K is 0.87 ±  

0.3%. Propene increases from 9.0 ± 2.9 % at 550 K to 26.3 ± 9.0 % at 650 K.  

 

5.6 Conclusions 

 This work used the synchrotron radiation at the Lawrence Berkeley National Laboratory to 

investigate the O(3P) initiated oxidation of 2-MF at 550 and 650 K. The primary products of this work 

are identified using time traces and characterized through reference photoionization spectra. The 

oxygen addition pathway is favored in this reaction forming four triplet diradicals that undergo 

intersystem crossing into singlet epoxide species that lead to the formation of m/z 30, 42, and 70. 

Using the CBS-QB3 composite method, theoretical calculations are performed to determine 

energetically favorable pathways leading to the formation of these primary products. Their branching 

fractions contributed 95.2 ± 18.0 % at 550 K and contributed 101.3 ± 18.7 % at 650 K. At 550 K, 

formaldehyde contributes for 39.3 ± 12.95 %, cyclopropane and propene for 1.05 ± 0.5 % and 9.0 ± 

2.9 %, respectively, and methyl vinyl ketone and 2-butenal for 29.2 ± 10.5 % and 16.6 ± 6.3 %, 

respectively. At 650 K, formaldehyde contribution decreases to 27.8 ± 9.7 %, cyclopropane is almost 

identical (0.87 ± 0.3 %), propene becomes three times larger (26.3 ± 9.0 %), methyl vinyl ketone 

decreases to 13.4 ± 4.9 %, and 2-butenal contribution doubles to 32.9 ± 12.3 %.  
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 6. Photoionization and Photodissocation of Xylyl (Methylbenzyl) Bromide Radicals using VUV 

Synchrotron Radiation 

 

Yasmin Fathi,§ Patrick Hemberger,⌘ and Giovanni Meloni§,* 
§Department of Chemistry, University of San Francisco, San Francisco, CA 94117 United States 
⌘Laboratory for Femtochemistry and Synchrotron Radiation, Paul Scherrer Institute, Villigen 
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6.1 Abstract 

The dissociative photoionization of energy-selected xylyl (methylbenzyl) bromide isomers is investigated 

by imaging (iPEPICO) and double imaging (i2PEPICO) photoelectron coincidence  spectroscopy using the 

vacuum ultraviolet (VUV) synchrotron radiation at the Swiss Light Source. In the photon energy range 8.88 

-10.25 eV, only one dissociation channel is observed, corresponding to the bromine loss. All three isomers, 

ortho-, para-, and meta- show a slow photodissociation. Breakdown diagrams and time-of-flight 

distributions are used to derive the 0 K appearance energies of the bromine loss dissociation channels. 

Along with literature thermochemical information known for the bromine atom and the daughter ion 

dissociating from the parent molecules, the heat of formation for the three cationic isomers is obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Corresponding author: gmeloni@usfca.edu 



	  
	  

137	  

6.2 Introduction 

Gasoline, a mixture of organic compounds resulting from the distillation of petroleum, is used for 

internal combustion engines in motor vehicles. As the global consumption of gasoline has increased every 

year for decades, it has become increasingly important to consider the effect that burning gasoline has on 

the global environment.87 In 2015, motor vehicles produced more than 1.1 billion metric tons of CO2 in the 

United States alone.14 While the harmful atmospheric effects of CO2 are well established, the burning of 

gasoline presents many other environmental and health concerns. It is only in recent years, however, that 

the United States government has begun to regulate the composition of gasoline.88 For example, twenty 

years ago the United States banned leaded gasoline due to inhalation risk, the consequences of which have 

been known for decades.88   

Additives such as lead have been added to gasoline to reduce engine knock, wherein excess fuel is 

prematurely ignited during the combustion cycle of an engine.14 Gasoline is gauged on its anti-knock 

characteristics using an octane rating, comparing the fuel to a mixture of iso-octane and heptane with 

similar anti-knocking capacity.89 A higher octane rating indicates gasoline's ability to withstand higher 

pressures, thereby mitigating knock. Yet, lead and other anti-knock additives have proven harmful to 

humans and the environment.89 In recent years, other anti-knock additives of lower toxicity have been 

identified, such as ether, alcohols, and aromatic hydrocarbons.90 The most promising of these additives, so 

far, have been aromatic hydrocarbons. Aromatic hydrocarbons have a high energy density and high octane 

ratings, making them attractive fuel additives because these properties help decrease engine knock.31  

One of the difficulties in finding a better gasoline additive is balancing the anti-knock requirements 

against the potential health and environmental risks. Benzene is a natural component of petroleum and has a 

high octane rating. However, benzene alone is highly carcinogenic and harmful to the environment. In 

many countries, fuel compositions are now regulated to contain no more than 1% benzene. Toluene, also 

referred to as methylbenzene, is another often used additive in gasoline, but has a relatively low octane 

rating, prompting researchers to look for other aromatic hydrocarbons to be used as gasoline additives. 

Toluene is employed as a replacement for benzene because it is metabolized differently than benzene 

through its methyl side groups. It can reach a mol fraction of 10% in premium fuels compared to other 

aromatic compounds.91-92 Next to benzene and toluene, different polyalkylated benzenes, which can form 

radicals quicker than benzene and are generally unreactive towards O2, are used nowadays to increase 

antiknock properties and better the combustion of gasoline. Example are xylenes, trimethylbenzes, and 

ethylbenzenes.93 The unreactive behavior of these species provides a higher chance of side reactions that 

may lead to forming polycyclic aromatic hydrocarbon (PAH) formation.93 PAHs are a large class of 

aromatic molecules created from the burning of crude oil and gasoline and are the main source of the 

formation of particulate matter (PM) in the air. Soot is a substance of largely amorphous carbon atoms that 
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occurs through the incomplete burning of organic matter. Toluene pyrolysis, however, has been found to 

create radicals that can be further decomposed. It is important to study different aromatic hydrocarbon 

dissociations due to their role in the formation of PAHs.  

Much research has been devoted into finding different additives that can lower the harmful effects of 

gasoline with elevated octane number. Increase in these numbers helps an engine with a high compression 

by keeping it from autoigniting.94 As mentioned before, other promising additives are aromatics, such as 

xylene (methylbenzene) isomers due to their higher energy density and anti-knock rating. Meta-xylene and 

para-xylene have higher octane ratings than toluene and thus can be good replacements as fuel additives.95 

On the other hand, the octane rating of ortho-xylene is a full 25 points lower than meta- and para-xylyne.96 

The isomeric xylene compounds react differently in combustion and their decomposition has not been 

studied. Previous experiments were conducted in a shock tube in the temperature range of 1330-1800 K and 

no distinct differences were found regarding the xylene isomers autoigniton.97 Several studies have been 

carried out to investigate the behavior of the xylyl isomer radicals since they are a key intermediate in the 

combustion behavior of xylenes.98,99,100 The laminar burning velocities of the o- and p-xylyl radicals have 

similar behavior, however m-xylyl is much slower. The two similar radicals form a conjugated 

intermediate; however, it is not formed in the case for m-xylyl radical concluding that it is a very reactive 

free radical species.98 Fernandes et al.99 and da Silva et al.100 further studied the behavior of the radical 

isomers and concluded that m-xylyl ionizes much slower and slowly undergoes a hydrogen abstraction thus 

it is harder to analyze than the other two. In a different study m-Xylyl bromide was also investigated to 

generate m-xylyl radical in a pyrolysis source.98 The conclusions of this study were surprising in that m-

xylylene was not identified, however, p-xylylene was the primary observed species.98 

 In the present investigation the photoionization and photodissociation of the ortho-, para-, and meta 

xylyl bromide isomers has been studied at the vacuum ultraviolet (VUV) beamline of the Swiss Light 

Source using Imaging Photoelectron Photoion Coincidence Spectroscopy (iPEPICO) as well as double 

Imaging Photoelectron Photoion Coincidence Spectroscopy (i2PEPICO). Threshold photoelectron spectra of 

the decomposition of xylyl bromide isomers were analyzed and used to determine highly accurate 

dissociative photoionization onsets and explain the dissociation dynamics of internal energy selected gas 

phase ions.  

 

6.3 Experiment  

The experiments presented in this work are performed using the X04DB VUV beamline at the Swiss 

Light Source (Paul Scherrer Institute) in Villigen Switzerland. Ortho-xylyl bromide and para-xylyl bromide 

are measured using the double imaging photoelectron-photoion coincidence (i2PEPICO) spectrometer. 

Meta-xylyl bromide is measured using the imaging photoelectron-photoion coincidence (iPEPICO) 
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spectrometer. These experimental apparatuses have been described in detail elsewhere and only a short 

description will be given here.36,38,37,101 

Briefly, PEPICO is a versatile spectroscopic technique with which the internal energy of selected ions 

(Einternal(AB+)) is measured through the time-of-flight mass spectra in coincidence with the kinetic energy of 

the electrons (e-(KE)) presented in equation (1): 

 

 AB + hν à Einternal (AB+) + e- (KE) – IE                        (1) 

 

The iPEPICO and i2PEPICO experiments are similar, except i2PEPICO has a double imaging apparatus 

so that the imaging of both photoelectrons and photoions is performed simultaneously. The main purpose of 

these experiments is to study the unimolecular dissociation dynamics by creating selected ions with a 

specific internal energy. Both PEPICO experiments combine velocity map imaging (VMI) of the electrons 

along with Wiley McLarren time-of-flight (TOF) mass spectrometry.37 The key feature of the iPEPICO 

experimental setup is small electric fields that enable to resolve threshold electrons up to 5 meV to measure 

unimolecular dissociations rate constants. iPEPICO is powerful in determining the thermochemistry of 

different ion cycles due to its highly accurate measurement of appearance energies (AE). i2PEPICO is an 

improved apparatus based off of the experimental components of the iPEPICO endstation. This 

experimental set up allows for fast alignment along with grating change.39 i2PEPICO can be used in 

pyrolysis experiments to create radicals much quicker and from non-volatile solids.39 Two fast position 

sensitive detectors detect in delayed coincidence the velocity map imaged photoelectron as well as the 

photoion.39 

The three samples, meta-, ortho-, and para-xylyl (methylbenzyl) bromide are obtained from Sigma 

Aldrich with a purity of ≥ 99%. Without any further purification, the samples are placed into a temperature-

controlled bubbler and their vapor is directly flowed into the reaction chamber, a resistively heated SiC 

reactor, from a 30 cm long 6 mm o.d. teflon tube through a 150 µm pinhole, where the pressure is 

maintained around 5.5-9.5 x 10-7 mbar using Argon as backing gas. The temperature of the gas samples is 

held at room temperature with the help of a lamp heating the needle valve. The interaction region is a 2 mm 

x 2 mm and the photon energy resolution is 3-5 meV.  

Initially, a photoelectron is ejected and velocity map imaged onto a position-sensitive delay-line 

Roentdek DLD40 detector (1 meV kinetic energy resolution at threshold). Based off of lateral and axial 

velocity, threshold, energetic or hot electrons are separated. A constant electric field of 120 V cm-1 forces 

the photoelectrons and photoions to accelerate in opposite directions. The experimental time-of-flight 

(TOF) spectra generated experimentally are measured with the ejection of the photoelectron acting as the 

“start” signal. This is because the TOF of the electrons are shorter than the TOF of ions by three orders of 
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magnitude, thus the initial time of ionization is determined through the onset of electron detection. The 

lateral velocities of the photoelectrons throughout the experiments are separated with the use of the velocity 

map imaging. Threshold electrons consist of only axial velocity and are focused on the center spot of the 

detector. The mass spectrometer used to space focus and mass-analyze the photoions generated consists of a 

5.5 cm long extraction, 1 cm long acceleration, and 55 cm long drift region that detects the ions with a non-

imaging Jordan TOF C-726 microchannel place (MCP) detector (iPEPICO apparatus).38 The relatively long 

extraction region of the TOF spectrometer correlates with the extraction field to allow ion residence times 

in microseconds that gives metastability to parent ions. Parent ions that are metastable can therefore 

dissociate in the extraction region and are detected between the parent and corresponding daughter ion time-

of-flight yielding asymmetric peaks.37,102,103,104 

 The background-noise signal is subtracted from the intensity of the parent cation and fragment at the 

respective photon energy to generate a breakdown diagram, which is created through the fractional ion 

abundance in the threshold photoionization mass spectra as a function of photon energy. There are two 

types of dissociations that occur throughout these types of experiments: slow and fast. The 0 K appearance 

energy (AE) is obtained from fitting the statistical model of the breakdown diagram of fast dissociations or 

the breakdown diagram together with the time-of-flight distributions for slow dissociations. For fast 

reactions, there are no time-of-flight distributions analyses because the fractional ion abundance of the 

parent ion lowers as the photon energy goes up therefore the first daughter ion reaches 100%. In a fast 

dissociation this is referred as the photoionization threshold energy, E0, in which 100% of the cation of the 

parent molecule dissociate.105 In the case of slow dissociations not all of the parent ion has dissociated 

within the given time frame thus the TOF will exhibit an asymmetric fragment ion peak shape, the 

modeling of which will provide the absolute rate constants. This study observed slow dissociations of the 

three isomers.  

 

6.4 Computational and Modeling 

 All quantum chemical calculations presented in this work are performed using Gaussian 09.106 

Rotational and vibrational constants, and zero-point corrected total electronic energies of the ionic and 

neutral species of the three isomers and the three isomeric dissociative fragments are computed. Using the 

B3LYP/6-31G(d) level of theory, different stationary points are found from the Synchronous Transit 

Guided Quasi-Newton (STQN) method.57b In order to determine the optimized energies and their relative 

energies, the G4 composite method is used.107 It is the fourth in a series of Gx methods to calculate 

molecular energies through performing a series of molecular orbital calculations.107 The level of theory used 

is the Møller-Plesset (MP) perturbation theory up to fourth-order in conjunction with coupled cluster theory. 
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The G4 method takes into account the extrapolation procedure to obtain the Hartree-Forck (HF) limit with a 

root mean squared error of 1.19 kcal/mol.58  

Potential energy surfaces have been scanned using the B3LYP/6-31G(d) level of theory and basis set in 

order to visualize and determine whether the bromine loss from the three isomeric compounds has a reverse 

barrier for dissociation.108-109 In these experiments the Br loss from the isomeric compounds is a slow 

dissociation leading to a kinetic shift. When the parent molecule is not fully dissociated within the original 

time scale of the experiment a kinetic shift occurs experimentally. 

  The studied processes can be summarized concisely in the following reaction  

 

  AB + hv à AB+ à A+ + B       (2) 

 

where the neutral molecule AB is ionized (AB+), and consequently dissociated into a daughter ion (A+) and 

a neutral fragment (B). The formed daughter ion is the species that has the lowest ionization energy. The 

AE of the daughter ion is found through the miniPEPICO program66 and is used in determining the 

thermochemistry. The appearance energy can also be calculated theoretically through the adiabatic 

ionization energy and bond dissociation energy (BDE) of the daughter ion and neutral fragment if no 

reverse barrier for dissociation is present. In the case where there is no barrier, the energy needed to form 

the daughter ion can be computed using the following equation: 

 

    AE = AIE + BDE = ΣEfragments – Eneutral parent             (3)  

 

 The bond dissociation energy can be added to the adiabatic ionization energy to find the appearance 

energy of the daughter ion. From the appearance energy along with literature heat of formation of the 

neutral fragment and daughter ion, thermochemical information for the cationic and neutral parent can be 

determined.61,110,111  

 

                           𝐴𝐸 − 𝐴𝐼𝐸 = 𝐵𝐷𝐸!!! 𝑥 − 𝐶!𝐻!! − 𝐵𝑟                     (4) 

   𝐵𝐷𝐸!!! 𝑥 − 𝐶!𝐻!! − 𝐵𝑟 = ∆ 𝐻   𝐵𝑟 +   ∆ 𝐻   𝐶!𝐻!! − ∆ 𝐻  (𝑥 − 𝐶!𝐻!𝐵𝑟!)!
!

!
!

!
!             (5) 

∆ 𝐻(𝑥 − 𝐶!𝐻!𝐵𝑟!)!
! =   ∆ 𝐻 𝐵𝑟 +   ∆ 𝐻(𝑥 − 𝐶!𝐻!!) − 𝐵𝐷𝐸!!!

!
!
! (𝑥 − 𝐶!𝐻!! − 𝐵𝑟)          (6) 

∆ 𝐻   𝑥 − 𝐶!𝐻!𝐵𝑟 = ∆ 𝐻(𝑥 − 𝐶!𝐻!𝐵𝑟!!
! ) − 𝐴𝐼𝐸!

!              (7) 

 

The x in the previous equations represents the specific isomer of the xylenes bromide, i.e., ortho- (o-), meta- 

(m-), or para- (p-).  
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 In this work, the enthalpies of formation of the dissociative neutral fragment and cationic daughter 

ion are taken from previous studies and helped to determine the unknown heats of formation of the three 

isomeric cation compounds.72,63,112 The enthalpy of formation is solved for the unknown using the bond 

dissociation energy calculation for the cationic reactant from the appearance energy of the daughter ion and 

the adiabatic ionization energy. Finally, the enthalpy of formation of the neutral isomers can be calculated 

using the measured adiabatic ionization energy and the obtained enthalpy of formation of the cation 

isomers. The relative energies of the three isomeric compounds and their relative cationic fragments are 

calculated using the G4 composite model.    

 The MiniPEPICO program models a breakdown diagram of the experimental data to obtain the most 

accurate AE of the daughter ion. The electronic structure calculations results (rotational constants and 

vibrational frequencies) described in the computational section of this work are entered into the program to 

calculate the thermal energy distribution of the neutral and daughter ions. There are two types of 

dissociations that might occur throughout these types of experiments: slow or fast. In this work, the 

dissociation of all three isomers is slow. For slow dissociations, the miniPEPICO program uses the Rigid 

Activated Complex (RAC-) RRKM theory to model the dissociation rates.67,70,71 The rate constants in 

PEPICO experiments are a function of internal energy: 

 

       𝑘 𝐸 = !!∓(!!!!)
ℏ!(!)

                    (4) 

 

where 𝑁∓(𝐸 − 𝐸!) represents the number of states of the transition state that are in excess energy above the 

barrier E0, ρ(Ε) is the density of the states, ℏ is Planck’s constant, and σ represents the symmetry number of 

the TS.23,27, 69,57b, 99, 109 The slope of the breakdown diagram, provides a visual whether a dissociation is 

fast or slow and is further determined through the TOF distributions. A slow dissociation means that the 

daughter ion or ions have never fully dissociated from the parent molecule within the given time frame, also 

causing kinetic shifts as mentioned above. In this work, bromine slowly dissociates from the three cationic 

isomers. In this case, it is important to fit the breakdown diagram to the time-of-flight distributions.  

 

6.5 Results 
 

For ortho-xylyl bromide the experiment is performed at room temperature and data is collected in the 

8.49-12.0 eV range, 8.45-14.0 eV range for para-xylyl bromide, and 8.50-10.25 eV range for meta-xylyl 

bromide using a 120 V cm-1 constant extraction field. The general dissociative photoionization scheme is 

observed in Scheme 1 for all three isomers.  



	  
	  

143	  

 
Scheme 1. Dissociative Photoionization Scheme for the xylyl bromide isomers at 298 K. 

 

The breakdown diagram for o-xylyl bromide is shown within the photon energy range of 

8.8-10.2 eV (Figure 1a). In order to calculate the density state of the ion and transition state, the 

frequencies and rotational constants of the optimized geometries of the parent and cation of o-

xylyl bromide are used. The obtained 0 K appearance energy for the Br loss from o-xylyl bromide 

is 9.50 + 0.025 eV with a kinetic shift of ~588 meV. The C8H9
+ time-of-flight is asymmetric as 

the parent peak at 16-17 µs indicating a slow dissociation, specifically the rate constant lies 

between 1.0 x 109 s-1, with a kinetic shift. The time-of-flight data for o-xylyl bromide within the 

9.30-9.52 eV photon energy range is shown in Figure 1b. Since, the dissociation is slow, the 

states ion density depends on the ion internal energy as a function of the ionization energy. The 

two asymmetric peaks correspond to 79Br and 81Br parent isotopologues. From the B3LYP 

calculations, the bromine loss does not have a barrier. The temperature at which the fit is done is 

290 K.  
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(a) 

 
 (b) 

 
Figure 1. (a) Breakdown diagram showing the bromine loss in the dissociative photoionization of 
o-xylyl bromide. The red open circles represent the experimental dissociation of o-xylyl bromide 
and red solid line represents the calculated miniPEPICO dissociation. The filled purple triangles 
represent the appearance of C8H9

+ daughter ion along the calculated purple solid line. (b) Time-
of-flight distributions for o-xylyl bromide in the vicinity of the bromine loss onset. The open grey 
circles represent the experimentally measured ion abundances and the solid red line represents the 
best fit modeled in the miniPEPICO program. 
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The dissociation of p-xylyl bromide is similar to o-xylyl bromide. The breakdown 

diagram is presented within the photon energy range of 8.81-10.25 eV (Figure 2a). In this case 

the temperature used for the fitting is relaxed to 310 K in order to obtain the best fit of the time-

of-flight distributions in reference to the dissociation of the breakdown diagram. The time-of-

flight spectra for p-xylyl bromide are collected in the photon energy range of 9.29-9.55 eV also 

using the i2PEPICO instrument. Once again, the two parent isotopologues (m/z 184 and m/z 186) 

are detected in the time-of-flight range of 14-15 µs, indicating that the C8H9
+ ion appears slowly. 

The daughter ion, C8H9
+ (m/z 105), is highly metastable and it is detected in the range of 11-12 

µs, the rate constant from the specified photon energy range lie between 1.0x10-9 s-1 (Figure 2b). 

The 0 K appearance energy of the p-C8H9
+ ion is 9.47 + 0.028 eV with a kinetic shift of ~730 

meV.  

 

(a) 
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(b) 

 
Figure 2. (a) Breakdown diagram showing the bromine loss in the dissociative photoionization of 
para-xylyl bromide. The red open circles represent the experimental dissociation of p-xylyl 
bromide and red solid line represents the calculated miniPEPICO dissociation. The filled purple 
triangles represent the appearance of C8H9

+ daughter ion along the calculated purple solid line. (b) 
Time-of-flight distributions for p-xylyl bromide in the onset of the dissociation. The metastable 
parent peaks and asymmetric daughter ion indicate a slow dissociation. The open grey circles 
represent the experimentally measured ion abundances and the solid red line represents the best 
fit modeled in the miniPEPICO program.  
  

 

 m-Xylyl bromide is measured using iPEPICO. This experimental data is also taken at 

room temperature. The photon energy range is from 8.87 to 10.25 eV represented in Figure 3a, 

where the rate constant lies begins at 1x10-9 s-1. The TOF distributions are asymmetric, indicating 

a slow dissociation similar to the other two isomers as well. Previous studies proved that indeed it 

is a more stable free radical species, which confirms the results of this study.98,99,100 The TOF 

distributions presented in Figure 3b are fitted in the energy range of 9.3-9.7 eV. The 0 K AE of 

the m- C8H9
+ ion is derived as 9.450+ 0.020 eV with a kinetic shift ~850 meV. 
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a) 

 
b) 

 
Figure 3. (a) Breakdown diagram showing the bromine loss in the dissociative photoionization of 
meta-xylyl bromide. (b) Time-of-flight distributions for m-xylyl bromide in the onset of the 
dissociation. The metastable parent peaks and asymmetric daughter ion indicate a slow 
dissociation.  
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A summary of the computed AIE and AE of the daughter ion formation from the three 

neutral isomers is presented in Figure 4. Although the daughter ion formation is established, the 

decomposition of the xylyl bromide isomers could also form the methyl-tropylium ion with an 

appearance energy comparable to the experimental values. However, the transition state barrier to 

form this ion is too high to be considered. In Scheme 2 a), the decomposition of o-xylyl bromide 

is presented, the reactive intermediate has an AE of 9.46 eV but the first transition state barrier 

TS1 is 10.20 eV and TS2 is 10.25 eV. These barriers are too high to actually form the tropylium 

ion and intermediate. 

 
 
Figure 4. Energy diagram that represents the AIE of neutral and cationic isomers and the AE of 
the three daughter ions that form throughout this work.  

 

The other two isomers have similar appearance energies and transition state barriers for 

the formation of the methyl-tropylium. For m-xylyl bromide reactive intermediate the TS1 barrier 

is at 10.19 eV and the TS2 at 10.20 eV, although the appearance energy of the reactive 

intermediate is 9.56 eV (Scheme 2 b)). For p-xylyl bromide, two reactive intermediates form with 

the same appearance energy, 9.56 eV and the same transition state barrier (Scheme 2 c)). These 

results can rule out the possibility of the formation of the tropylium ion. 
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a) 

 
 

b) 
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c) 

 
Scheme 2. Dissociative Photoionization Scheme for the a) o-xylyl bromide b) m-xylyl 
bromide and c) p-xylyl bromide to form the methyl-tropylium ion. 
 

6.6 Thermochemistry 

In order to determine the enthalpies of formation for neutral isomeric species, the 

available thermochemical data of the bromine atom and C8H9
+ ion (o-, m-, and p-) are used. The 

enthalpy of formation of the Br fragment published by NIST-JANAF113 thermochemical data is 

117.92 + 0.06 kJ/mol at 298.15 K and 111.86 + 0.06 kJ/mol at 0 K.  

Hayashibara114 reported the heat of formation for o-xylyl ion as 849 + 0.84 kJ/mol at 

298.15 K. The set of equations (4) – (7) presented in the Computational and Modeling part are 

used in order to obtain the enthalpy of formation of the compounds under study. For ortho-xylyl 

bromide, the calculated BDEo
0Kis 0.95 eV. Along with the thermochemical data known from the 

daughter ion and bromine fragment, the calculated bond dissociation energy is used to find the 

Δf
0H (RX+) = 966 + 5.0 kJ/mol. The adiabatic ionization energy of ortho-xylyl bromide is 

subtracted from the Δf
0H (o-C8H9Br+), to calculate the Δf

0H (o-C8H9Br)= 957 ± 7.0 kJ/mol.  

The reported heat of formation at 298.15 K for para-xylyl ion is 837 ± 0.84 kJ/mol.44 The 

calculated BDEo
0K of 0.94 eV is used to determine the Δf

0H (p-C8H9Br+) to be 954 ± 5.0 kJ/mol. 

Following the same pathway as ortho-xylyl bromide, the heat of formation of the neutral para-

xylyl bromide species is derived as Δf
0H (p-C8H9Br) = 945 ± 7.0 kJ/mol.  
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The reported heat of formation at 298.15 K for meta-xylyl ion is 854 ± 0.84 kJ/mol.44 The 

calculated BDEo
0K of 0.99 eV is used to determine the Δf

0H (p-C8H9Br+) to be 971 ± 5.0 kJ/mol. 

Following the same pathway as mentioned above, Δf
0H (m-C8H9Br) = 962 ± 7.0 kJ/mol.  

 

6.7 Conclusions 

The unimolecular dissociation of C8H9Br isomers was investigated using iPEPICO for 

meta-xylyl bromide and i2PEPICO for ortho- and para-xylyl bromide. These experiments are 

known for finding accurate appearance energies. Accurate dissociation onset of Br- loss from all 

three isomers forming the isomeric daughter ions are obtained through these experiments. The 

results also show slow photodissociations for all three isomers. The 0 K appearance energy of o-

xylyl daughter ion is 9.50 ± 0.025 eV, which is used to find the Δf
0H (o-C8H9Br) to be 311 ± 4.0 

kJ/mol. The heat of formation is computed using the literature values of the heat of formation of 

the o-,p-, and m- isomers as well as the bromine neutral species. For p-xylyl bromide the 0 K 

appearance energy of the daughter ion is 9.47 ± 0.028 eV, which is used to compute the heat of 

formation 309 ± 3.5 kJ/mol. Lastly, for m-xyly bromide the heat of formation was calculated to 

be 314 ± 4.4 kJ/mol using the 0 K appearance energy of the daughter ion 9.450 ± 0.020 eV. 
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