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Abstract 
 

The orphan nuclear hormone receptor DAX-1 (Dosage Sensitive Sex Reversal, Adrenal Hypoplasia 

Congenita on the X Chromosome, gene 1) plays an important role in the development of adrenal and 

gonadal tissues and functions as a global negative-regulator of steroidogenesis. In addition, it is known to 

be involved in several diseases including some cancers. Herein, we describe our examination of the role 

of DAX-1 in breast cancer, specifically its influence on proliferation and metastasis and its expression 

during progressive stages of disease. In an effort to understand how DAX-1 influences breast cancer cell 

proliferation and metastasis, we used MCF7 breast cancer cells and MCF10A normal breast cells and 

manipulated their DAX-1 expression to increase DAX-1 expression by adenovirus infection in MCF7 

cells, or knockdown expression of DAX-1 through the use of RNAi in MCF10A cells. We found a trend 

toward increased cell proliferation when DAX-1 expression was knocked down, and decreased 

proliferation when DAX-1 is overexpressed. In addition, we looked at the influence of DAX-1 on breast 

cancer cell proliferation when the estrogen receptor a (ERa) activity is inhibited by the antagonist, 

Fulvestrant. To gain a better understanding of the transcriptional role of DAX-1 in breast cancer, we 

utilized PCR arrays to analyze changes in gene expression in the presence of DAX-1.  We identified 

several genes with roles in breast cancer, estrogen receptor signaling and metastasis whose expression was 

significantly influenced by overexpression of DAX-1 in MCF7 cells. To investigate expression of DAX-

1 through progressive stages of disease we utilized IHC and bioinformatics techniques. We found DAX-

1 to be expressed more frequently and at higher levels at earlier stages of breast cancers and at very low 

levels regardless of stage in hormone receptor-positive (ER and PR) patients. Through these studies, we 

hypothesize that DAX-1 has the potential to be utilized clinically as biomarker for predicting disease 

progression and for tailoring more personalized treatment plans. There may even be a role for DAX-1 as 

a possible therapeutic for later stage or hormone receptor-positive patients. 
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Chapter 1 

General Introduction 

Breast Cancer Overview 

Breast cancer is the most commonly diagnosed cancer in women worldwide and the second leading cause 

of cancer-related deaths. The American Cancer Society estimates that around 252,710 new cases of 

invasive breast cancer, and 63,410 new cases of carcinoma in situ (CIS) will be diagnosed, and around 

40,610 women will die from breast cancer this year. Since 2007, death rates from breast cancer have been 

falling in women older than 50 but have remained unchanged in younger women. The decrease in death 

rates among older women is thought to be due to increased awareness and earlier detection, as well as 

improved treatments [1]. It is not clear why the same trend has not been seen in younger women but lifestyle 

factors such as alcohol consumption, diet and exercise, and hormonal factors such as later and fewer 

pregnancies, use of the combined oral contraceptive and HRT, earlier menses and later menopause, have 

all be suggested as possible influences in the continued incidences of cancer arising in these women. [2]  

Breast cancer encompasses a group of heterogeneous diseases that can be categorized into several 

subtypes based on differences at a clinical, histopathological, and molecular level. The subtypes are used 

to assess a patient's prognosis and determine the appropriate therapy. There have been five molecular 

subtypes of breast cancer identified to date (Table 1.1). 
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Table 1.1: Molecular subtypes of breast cancer [3] 

 
Hormone receptor 

(ERa and/or PR) 
HER2 Ki-67 Characteristics 

Luminal A Positive Negative Low Low-grade, slow growing, 
best prognosis 

Luminal B Positive 
Positive 
or 
negative 

High 
Faster growing than 
Luminal A with a slightly 
worse prognosis 

Triple 
negative/basal-like Negative Negative  Common in women with 

BRCA1 gene mutation 

HER2 enriched Negative Positive  
Faster growing than luminal 
cancers but respond well to 
targeted therapies 

Normal-like Positive Negative Low Good prognosis 

 

Hormone receptor status is one of the major factors on which the categorization is based. The most 

clinically relevant molecules for breast cancer are estrogen receptor (ER) and progesterone receptor (PR), 

human epidermal growth factor receptor 2 (HER2), Ki-67, CK5/6, epidermal growth factor receptor 

(EGFR) and androgen receptor (AR). Hormone receptor positive breast cancer is the most common form 

and current adjuvant therapies include Aromatase Inhibitors (AIs), which suppress estrogen production in 

postmenopausal women, Tamoxifen, which is a selective ER modulator, and ovarian suppression, which 

results in the cessation of the production of estrogen by the ovaries in premenopausal women. Despite the 

many therapies developed and survival rates being some of the best among cancer patients[1], receptor 

negative breast cancers remain difficult to treat, and drug resistance hampers long term survival rates [4]. 

Therefore, a continued effort to understand the role of molecular mechanisms underlying the 



	 14	

pathophysiology of breast cancer initiation, growth and progression is essential for the development of 

tissue-specific treatments.  

NHR Overview 

Some of the hormone receptors mentioned above, namely the steroid receptors ER, PR and AR, are known 

as nuclear hormone receptors. Nuclear hormone receptors (NHRs) are eukaryotic, intracellular proteins 

activated by ligand binding to act as transcription factors. They directly regulate gene expression by 

interacting with specific DNA sequences upstream of their targets [5] (Figure 1.1). Lipophilic ligands, 

including endogenous hormones and vitamins A and D, pass through the cell membrane via diffusion and 

bind to their NHR. Ligand binding triggers dissociation of the NHR from heat shock proteins (HSP) and 

binding as either hetero-dimers or homo-dimers to another NHR. Dimers then translocate to the nucleus 

via active transport and, along with co-activators or co-repressors, bind to the DNA at specific sequences 

known as hormone response elements (HRE). The target gene downstream of the HRE is then either up 

or downregulated, the DNA is transcribed into mRNA which moves out of the nucleus via a nuclear pore, 

is transcribed into a protein by ribosomes and finally results in a cellular response. 
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Figure 1.1: Typical nuclear hormone receptor action. Lipophilic ligands cross the cell’s plasma membrane and bind directly 
with the NHR located in either the cytoplasm or the nucleus. Binding causes dissociation of the receptor/HSP complex and 
homo- or hetero-dimerization of the NHRs. NHR then moves into the nucleus and binds to the HRE, upstream of the target 
gene, along with co-activators or co-repressors and additional proteins such as RNA polymerase, to up or down regulate the 
gene. The resulting mRNA moves out of the nucleus to the cytoplasm for translation, resulting in a cellular response. 

 

NHR Structure 

The NHRs are a superfamily to which seven subfamilies belong, identified as NR0 through NR7, based 

on sequence similarity in the conserved DBD and LBD regions of the genes [6]. These sub-categorizations 

help dictate the gene nomenclature rules.  

NHRs are composed of 6 conserved regions, designated A-F, making up the typical functional 

structure that includes: an N-terminal domain (A/B), a DNA binding domain (DBD) (C), a hinge region 

(D), a ligand binding domain (LBD) (E), and a C-terminal domain (F)(Figure 1.2). 
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Figure 1.2: Structural organization of nuclear hormone receptors. The general structural organization of a typical nuclear 
hormone receptor depicting an N-terminal domain (A/B), a DNA binding domain (C), a hinge region (D), a ligand binding 
domain (E), and a C-terminal domain (F). 
 

The N-terminal region is highly variable in sequence among NHRs, has a regulatory role in 

transcription transactivation, and includes the ligand independent activation function 1 (AF-1) which binds 

the NHR to coactivators [7, 8]. The DBD is classified as a type-II zinc finger motif. The two zinc fingers 

bind as a dimer to their Hormone Response Element (HRE), a short sequence of DNA located in the 

promoter region of the gene, anchoring the receptor in place. The DBD is highly conserved among 

receptors. The hinge region connects the DBD to the LBD and is thought to have a role in nuclear 

localization, DNA binding and co-activator recruitment [9]. The LBD is also highly conserved in structure 

among this group of receptors. This structure is known as an alpha helical sandwich, where three 

anti-parallel alpha helices are flanked by three alpha helices on one side and two on the other. Aside from 

binding with its ligand, the LBD mediates homo- and hetero-dimerization, binds to co-activator and co-

repressor proteins, and contains a ligand dependent activation function 2 (AF-2). The C-terminal region, 

or carboxyl-terminal domain, is highly variable in sequence between receptors and in most cases, has 

unknown functions [10, 11]. Ligands that bind to NHR include, steroid hormones such as estrogen, 

progesterone and androgens, and various other lipid soluble signals such as thyroid hormone, retinoic acid 

and vitamin D [5, 12, 13]. Based on the ligand it binds, an NHR can be subcategorized as a steroid hormone 

receptor, non-steroid hormone receptor or an orphan nuclear receptor (ONR) when the ligand has not been 

identified [13]. 
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NHR Function 

NHRs function primarily as transcription factors regulating genes involved in a wide variety of biological 

processes including cell proliferation, development, metabolism, reproduction and disease. These actions 

depend on several endogenous mechanisms, including ligand binding, posttranslational modifications of 

amino acids, protein dimerization, nuclear transfer, protein-protein interactions with co-activators and co-

repressors, and cooperative binding with other transcription factor to DNA [10, 14, 15]. The mechanism of 

action of NHRs is often represented by the inactive cytoplasmic receptor binding with its ligand and 

translocation to the nucleus where gene regulation takes place (Figure 1.1). While this model is valid for 

some steroid hormones, many NHRs are exclusively nuclear and can bind to DNA in the absence of a 

ligand, acting as gene repressors or promoters via other transcription factors [16]. Some NHRs have also 

been found to function in the cytoplasm regulating cellular functions; for example in the cytoplasm of 

endothelial cells, estrogen can act through its receptor to rapidly activate cellular pathways that control 

cell migration and control vascular tone [17].  

DAX-1: A Unique NHR 

A class of receptors within the NHR superfamily are the Orphan Nuclear Receptors (ONR) named so 

because their physiological ligands are unidentified. Whether all of these ONRs have ligands is unclear as 

many can act in their absence. DAX-1 is an atypical ONR and the focus of this research. It is an unusual 

NHR for several reasons; it lacks several conserved functional domains of the NHR superfamily including 

the modulatory domain harboring an AF-1 transactivation unit, a classical DBD, and a hinge region 

(Figure 1.3). Instead of the highly-conserved zinc finger motif of the DBD, there is a repeated 

Alanine/Glycine-rich peptide sequence of 65-67 amino acids. There are three full repeats and one 

incomplete repeat that transitions directly with the LBD [18]. Within each repeat is an LXXLL (Leu-x-x-

Leu-Leu)-like motif, that is thought to mediate protein/protein interactions in the absence of AF-1. DAX-1 
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is grouped in the family of NHRs due to its highly-conserved LBD. However, another characteristic that 

makes it atypical is that in this region there is an unusually long insertion of 26 amino acids between 

helices H6 and H7. This feature is conserved across human and mouse proteins suggesting that it has a 

significant role in its function. The C-terminal region consists of 12 a-helices, a repressor domain and a 

region similar to the ligand-inducible domain typical of other NHRs.  

 

Figure 1.3: Structural organization of human DAX-1 protein. The DAX-1 protein consists of 470 amino acids with an N-
terminal domain including 3 complete and one incomplete Alanine/Glycine (A/G) rich repeats and LXXLL-like motifs found 
within each one, a LDB and a C-terminal domain. 

 

The genomic location of DAX-1 was identified by Muscatelli et al., who noted the association of 

X-linked adrenal hypoplasia congenita (AHC) with glycerol kinase deficiency (GKD) and Duchenne 

muscular dystrophy (DMD), both of which are caused by mutations or deletions on the short arm of the 

X chromosome [19]. Further studies showed DAX-1 to be encoded by the two-exon gene NR0B1 (Nuclear 

Receptor family 0, Group B, member 1) located on the short arm of the X chromosome between position 

21.3 and 21.2, from base pair 30,082,120 to 30,087,136 [20]. DAX-1 was initially described in relation to 

a disorder of sex development, known as dosage-sensitive sex (DSS) reversal, causing male to female 

phenotypic sex reversal in 46,XY individuals with a normal SRY gene [20, 21]. Mutations in the same gene 

were then found in male patients with AHC. One of the main symptoms of AHC is adrenal insufficiency 

resulting in a lack of male sex hormones leading to hypogonadotropic hypogonadism (HH) after puberty. 

Given its involvement in two separate disorders the gene was named DAX-1, Dosage sensitive 
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sex-reversal (DSS), Adrenal hypoplasia congenita (AHC) locus on the X chromosome gene 1 [21].  

Normal DAX-1 function 

Since it discovery, there have been numerous studies into DAX-1’s role in development, physiology and 

disease. Because DAX-1 lacks the classic DBD, its mechanism of action has been explained through 

interactions with other NHRs, regulating their activities. DAX-I acts as a transcriptional corepressor in 

the majority of its interactions with these NHRs; examples include; Steroidogenic Factor-1 (SF-1), 

androgen receptor (AR), progesterone receptor (PR), estrogen receptor (ER), Nur77, hepatocyte nuclear 

factor 4 (HNF4), liver X receptor X (LXR), farnesoid X receptor (FXR), and constitutive androstane 

receptor (CAR) [18, 22]. The common mechanism of DAX-1 transcriptional repression is through binding 

with the AF-1 domain of another NHR via its LXXLL motifs and recruiting other corepressor proteins, 

competing with coactivators for target gene binding [23, 24]. 

In the adult, DAX-1 expression is restricted primarily to the adrenal glands, testes, lungs and 

pancreas. DAX-1 influences hormone production by acting as a coregulatory protein that inhibits the 

transcriptional activity of other nuclear hormone receptors through heterodimeric interactions [25]. Notably 

for this research, DAX-1 expression has been shown to correlate negatively with steroidogenic gene 

expression and can act as a repressor of steroidogenesis in vivo [26, 27]. During embryonic development, 

DAX-1 expression has a restricted pattern to several endocrine tissues, including adrenal glands, pituitary 

glands, hypothalamus, ovaries and testes [28, 29]. Historical studies showed DAX-1 plays a key role in sex 

determination along with SF1, SRY, SOX9 and AMH [20, 21, 30-32]. Specifically, DAX-1 functions as an 

anti-testes gene by acting antagonistically to SRY through binding to the STAR promoter. It can be 

detected in the genital ridge and adrenal cortex 33 days post ovulation (d.p.o.) [30] where it is regulated by 

WT1 to influence gonadal differentiation. More recently DAX-1 expression has been found in mouse 
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embryonic stem cells (mESCs) leading to the elucidation that, in addition to inhibiting steroidogenesis, 

DAX-1 also plays a significant but largely undefined role in the maintenance of pluripotency of mESCs 

[33-38]. In humans however, DAX-1 is only expressed at low levels in ES cells, and its expression is 

inconsistent during differentiation.  

DAX-1 Function in Disease 

In view of the action of DAX-1 as a transcriptional regulator, many studies have examined its role in 

different diseases, including cancers. Early studies linked DAX-1 with adrenocortical neoplasms, finding 

that it influenced steroid biosynthesis by tumors, hence putatively linking DAX-1 with cell proliferation 

and tumor formation [39]. It has since been found to play a role in many forms of cancers including; bone 

[40-43], lung [44, 45], prostate [46], uterine [47], ovarian [38], breast and other soft tissue tumors [48-50]. In the 

context of breast cancer, DAX-1 immunoreactivity has been found to directly correlate with androgen 

receptor (AR), estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) expression and lymph 

nodal metastasis. Intriguingly, all of these nuclear hormone receptors are used for clinical categorization 

of tumors [15, 48]. Similarly, DAX-1 immunoreactivity also directly correlates with the stage of ovarian 

carcinomas and with ERα and ERβ expression in endometrial cancer [38, 47]. However, it has an inverse 

relationship with prostate and endometrial carcinoma staging [46, 47]. Higher DAX-1 expression in lung 

cancer patients has been associated with increased risk of disease recurrence and a higher metastatic rate 

[44, 45].  

DAX-1 Role in Breast Cancer 

DAX-1 mRNA is present at low levels in normal breast tissue and is down regulated but continues to be 

present in many ER positive breast cancer cell lines [51]. It is a positive prognostic factor in node negative 

breast cancer, being correlated with smaller tumor size, earlier disease stage and increased survival [50, 51]. 

DAX-1 acts as a corepressor for ligand bound ER, inhibiting basal and estrogen dependent cell 
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proliferation [50, 52]. Unpublished data from our own laboratory supports this by showing DAX-1 to be a 

suppressor of tumorigenesis in MCF7 breast cancer cells [53].  

The actions of steroid hormones, most notably estrogens and progesterone, are driving forces in 

the development and progression of breast cancer. In addition, androgens can also play a role due to their 

ability to be converted into estrogens via the enzyme p450 aromatase [48].  Just over one third of all cancers 

occurring in the breast tissue are hormone dependent diseases, utilizing local or systemic estrogens for 

tumor cell growth and proliferation [54]. There are two types of ERs, ERα and ERβ. Estradiol (or 17b-

estradiol), the predominant form of naturally occurring estrogen, binds with the same high affinity to both 

receptors and to the estrogen response element (ERE) in a similar if not identical fashion. ERα and ERβ 

are products of different genes; the major difference is in their tissue distribution [55], with ERa being 

found in the endometrium, ovarian stromal cells, hypothalamus and breast cancer cells [56], while ERb 

expression is seen in the ovarian granulosa cells, kidney, brain, bone, heart, lungs, intestinal mucosa, 

prostate and endothelial cells [57]. While the ERa form is primarily responsible for growth and proliferation 

[58], the role of ERβ is currently unclear. Some studies suggest that ERβ opposes the actions of ERα and 

clinical evidence has indicated that the loss of ERβ expression is associated with poor prognosis and 

resistance to endocrine therapy [59]. Data from our laboratory shows that DAX-1 binds to ERα and ERβ 

with the same affinity. It does so via interactions with DAX-1’s LXXLL motifs in the N-terminal repeat 

domain, specifically motif 3 [50, 52].  

 In breast cancer, ERa interacts with many target genes [60], and one of the most important targets 

is the proliferation gene for Cyclin D1 (CCND1). Cyclin D1 is a major regulator of entry into the G1 stage 

of the cell cycle [61], and it is well established that it plays a crucial role in breast cancer growth and 

progression [49, 62-64]. Studies have shown DAX-1 to be a suppressor of Cyclin D1 activity [49]. 
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Unlike estrogens, androgens have been shown to have a play a protective role in breast cancer and 

have been directly correlated with DAX-1 expression [65, 66]. Studies into the relationship between ER, AR 

and DAX-1 have shown that AR may repress ER through DAX-1 activity.  In MCF7 cells (AR/ERa 

positive), expression of DAX-1 has been shown to be induced by ligand bound AR, and in association 

with the co-repressor N-CoR, it binds to the SF-1/LRH-1 region of the aromatase promoter suppressing 

its activity and hence ER activity [67]. When ERa positive breast cancer cells were treated with the non-

aromatizable androgen 5-α-dihydrotestosterone (DHT), DAX-1 was seen to be recruited by AR and 

mediated a reduction in Cyclin D1 activity slowing proliferation [49, 67]. 
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Chapter 2 

DAX-1 influence on breast cancer cell proliferation and metastasis 

Introduction 

Cell proliferation and metastasis play critical roles in the progression and behavior of cancer 

development. Altered control of cell growth is the primary characteristic feature of a malignant neoplastic 

cell population and increased proliferation in breast cancer tumors correlates strongly with poor prognosis 

[68]. The principle cause of death in cancer patients is from metastatic tumor development at secondary 

sites in the body. It is a complex process that is only partially understood at the biochemical and molecular 

level. In this chapter, we explore the influence DAX-1 has on breast cancer cell proliferation and 

metastasis. 

The adult female breast is composed of epithelial lactiferous ducts in a fibrous tissue framework 

and surrounded by fat. Normal breast growth and regression is cyclical, influenced by many complex 

interactions of hormones and mitogenic growth factors including, estrogen, progesterone, androgens, 

glucocorticoids, prolactin, thyroid hormone, insulin and insulin-like growth factors (IGF-1 and IGF-2), 

fibroblast growth factors (FGFs), and TGF-a [69-72]. These influences are endocrine, the majority arising 

from the ovarian tissue in an autocrine manner and secreted by the mammary cells themselves, as well as 

paracrine, secreted by the surrounding stromal cells. Proliferation of ER positive breast cancer tumors is 

caused by estradiol, produced by the actions of the enzyme aromatase, binding to ERs and activating 

expression of proliferative genes including Cyclin D1 [73]. Cyclin D1, encoded by the CCND1 gene, is a 

member of the cyclin family of proteins that controls a cell’s progression through their cell cycle by 

activating cyclin dependent kinases (CDK). Cyclin D1, specifically, is required for progression through 

G1 phase of the cell cycle (Figure 2.1). It dimerizes with CDK4 and CDK6 to regulate G1/S phase transition 
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and entry into S phase [61]. Overexpression of Cyclin D1 is found in more than 50% of human breast 

cancers and causes mammary tumors in transgenic mice. The normal cell cycle is disrupted when Cyclin 

D1 gene expression or function is dysregulated. Further studies have shown that Cyclin D1 has other roles 

in regulating gene expression through promoting cell migration and inhibiting mitochondrial metabolism, 

adding to the pathology associated with its dysregulation [74, 75].  

 

 

Figure 2.1: Mitotic cell cycle. G1 and G2 are both cell growth phases, S is a DNA synthesis phase and M is the mitotic phase 
where cell division occurs. G0 is the resting phase, so not technically part of the cell cycle. Cyclin D1 interacts with CDK4 and 
6 to regulate G0 to S phase transition, Cyclin E binds with CDK2 phosphorylating the cell cycle inhibitor p27Kip1 allowing the 
cell to move from G1 phase, past the R (restriction) point (indicated by the purple arrow) into S phase. Cyclin A associates with 
CDK2 during S phase and is involved in initiation and replication in the nucleus, it also associates with CDK1 late in S phase 
until G2 phase where it is involved in activation and stabilization of Cyclin B/CDK1 complex, Cyclin B is required for 
progression of the cell into and out of M phase of the cycle. 

 

Previous unpublished research from our laboratory has shown that in a subset of breast cancer 

patients, the DAX-1 gene is expressed in normal breast tissue but is down regulated or completely absent 
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in matched tumor tissue (Figure 2.2). This observation led to the hypothesis that DAX-1 plays a protective 

role in breast cancer and that its downregulation leads to a more proliferative phenotype. 

 

Figure 2.2: DAX-1 mRNA expression from 12 patient matched cDNA samples. Normal breast tissue samples are 
represented by white bars; adjacent cancerous breast tissue is represented by black bars. Expression level is measured by 
PCR band intensity from cDNA. 10/12 patients had reduced or no DAX-1 expression in the cancerous tissue compared with 
normal tissue. (Unpublished data) 

 

Research investigating the molecular mechanisms of DAX-1 repression in the breast is limited. 

However, one study did find DAX-1 to be recruited by AR to form a multiprotein repressor complex, 

involving histone deacetylase 1, to repress the Cyclin D1 gene CCND1 [49]. Preliminary work from our 

laboratory determined DAX-1 also inhibits ER induced Cyclin D1 expression. We have shown that DAX-

1 binds to the promoter near the ERE sequence, thereby downregulating Cyclin D1 expression and 

inhibiting cell proliferation. DAX-1’s influence on other proliferative genes has not yet been studied. We 

propose that DAX-1 acts as a negative regulator of other proliferation genes in addition to Cyclin D1 in 

breast cancer cells.  
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Based upon our current understanding of the mechanism of action of DAX-1 from the literature 

available and from what we have seen in our own laboratory, we hypothesize that DAX-1 suppresses cell 

proliferation in breast cancer cells, likely via interactions with other transcriptions factors and cellular 

proteins to act as a co-repressor of the cell cycle regulatory genes.  

In the context of metastasis, DAX-1’s role is poorly understood. Tumor metastasis involves a 

series of discrete biological processes that allow the tumor to spread from the primary site to distant 

locations in the body. This process involves a multi-step cascade of coordinated cell adhesion and 

contractility, along with proteolytic remodeling of the extracellular matrix (ECM)[76]. It begins with 

additional mutations of the tumor cell’s genome giving the cells the ability to invade the tissue surrounding 

the primary tumor. Once the metastatic cells breach the lymphatic system or vascular tissue, they are 

transported in the blood to distant sites. Cells are usually extravasated from the bloodstream in the first 

capillary bed encountered, colonizing the foreign tissue. This colonization involves a complex set of 

alterations to make the tissue receptive to the invading cells, involving its cellular composition, immune 

status, blood supply, ECM and virtually every other aspect of its properties [77]. One important process to 

note is epithelial-mesenchymal transition (EMT) by which cells transit between epithelial and 

mesenchymal states. It is a process normally seen in embryonic development but pathological EMT 

processes are seen in many cancers and require molecular changes, decreased cell-cell recognition and 

adhesion, and increased potential for cell motility[78]. Metastasis is driven by instability in the cells genome 

involving progressive loss of checks on normal chromosome stability, DNA repair and regulated gene 

expression. Very few metastatic cells that make it into the bloodstream actually go on to develop into 

secondary lesions, but those that do are often lethal. There is no cure for metastatic cancer. Current 

treatments are aimed at prolonging survival and maintaining a quality of life with cytostatic therapies as 

opposed to cytotoxic ones[77]. Currently, therapeutics are aimed at the trunk of tumorigenesis pathways 
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such as receptor tyrosine kinases, and there is very little in the way of therapies aimed further down the 

metastatic pathways[79]. With a deeper understanding of metastasis, in particular the later stages such as 

metastatic colonization, more effective druggable targeted pathways may be identified that will enhance 

the efficiency of current therapies [79]. 

In the context of breast cancer, distant metastases are the cause of 90% of deaths[80]. The most 

common site of breast cancer metastasis is the bone followed by lungs, regional lymph nodes, liver and 

brain[81]. It has been shown that ER positive breast cancers have a predilection to metastasize to the bone 

[82]. Established prognostic markers of breast cancer metastasis are reviewed in Table 2.1. Larger tumor 

size, auxiliary lymph node metastases and higher histological grade are all well-established markers and 

are used to base therapy decisions. In patients with node-negative tumors approximately one third will 

still develop distant metastases; therefore, angioinvasion is used as an additional predictor of metastasis. 

The urokinase-type plasminogen activator (uPA) enzyme pathway, comprised of factors such as uPA and 

its inhibitor PAI1, is involved in the early stages of the metastatic cascade which include degradation of 

the ECM. Patients with high levels of uPA activity have significantly shorter disease-free intervals than 

patients with low levels of activity [83].  

Steroid receptor positive tumors tend to be less aggressive than negative ones, and this is currently 

used clinically as a prognostic marker for disease progression. However, studies have shown ER signaling 

to promote metastasis in ER positive breast cancers with complex pathways involving coregulatory 

proteins (Figure 2.3).  For example, deregulation of ER-coregulator signaling can lead to aberrant 

expression of Snail that leads to loss of expression of the cell adhesion molecule E-cadherin and invasive 

growth. Disruption of several other coregulators of ERα, including MTA1, A1B1, SRC-1 and PELP1, 

have been shown to lead to breast cancer metastasis[84].  MTA1 (metastasis-associated protein 1), a 

commonly deregulated coregulator in breast cancer, promotes transcriptional repression of ER, leading to 
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metastatic progression. AIB1 (amplified in breast cancer 1) and SRC-1 (steroid receptor coactivator-1) 

are both nuclear receptor coactivators that interact with nuclear hormone receptors to enhance their 

transcriptional activator function and have been shown to promote breast cancer metastasis by interactions 

with the transcription factor PEA3 (polyoma enhancer activator 3). Specifically, AIB1 acts by promoting 

PEA3-mediated matrix metalloproteinase 2 (MMP2) and 9 (MMP9) expression leading to the breakdown 

of the ECM. SRC-1 acts through coactivation of PEA3-mediated Twist expression, regulating EMT 

transition. In addition, recent studies have found deregulation of the ERα coregulator PELP1 (proline, 

glutamate and leucine rich protein 1) in invasive and metastatic breast tumors [84]. Our own studies, 

described above, identified both ERa and PELP1 to be upregulated by DAX-1 overexpression in MCF7 

cells, which were originally derived from a metastatic source. Although treatments targeting estrogen and 

ER are well established in the treatment of breast cancer, initial or acquired resistance to hormone 

therapies is a common feature of metastatic breast tumors and a major problem for long term treatment. 

In breast cancers, an important marker for predicting metastatic potential and therefore patient 

prognosis is HER2. While only 15 – 20% of invasive breast cancers express abnormally high levels of 

HER2, approximately half of these will spread to the brain, a common metastatic site in breast cancer[85].  

As discussed in previous chapters, HER2 over expression has been well established as a promoter of breast 

cancer progression and metastasis. It is a transmembrane receptor with constitutive tyrosine kinase 

activity. Many aspects of tumor progression are favorably affected by overexpression of HER2 including 

increased motility of both intravasating and extravasating cells, decreased apoptosis, enhanced signaling 

interactions with the microenvironment and regulation of adhesion, among a multitude of other 

functions[86]. The current targeted therapy for patients with metastatic HER2 breast cancer is trastuzumab, 

a monoclonal antibody directed against the receptor. 
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Table 2.1: Breast cancer metastasis prognostic markers [77].  

Marker Use in clinic Metastatic determinants Details References 

Tumor size Established 

Tumors under 2cm in 
diameter have low risk of 
metastasis; 2-5cm have 

high risk; over 5cm very 
high risk of metastasis 

Independent 
prognosis marker [87-90] 

Auxiliary lymph-
node status Established 

If no lymph node-
metastasis, risk of distant 

metastasis is low; if lymph-
node metastasis is present, 
risk of distant metastasis is 

high; if > 4 lymph-node 
metastasis, risk of distant 

metastasis is very high 

Related to tumor 
size [87, 89, 90] 

Histological 
grade Established 

Grade 1 tumor = low risk of 
metastasis; Grade 2 tumor = 

intermediate risk of 
metastasis; Grade 3 = high 

risk of metastasis 

Related to tumor 
size [87, 89, 91] 

Angioinvasion 

Established in 
patients with 
lymph-node 

negative 
tumors 

Presence of tumor emboli 
in over 3 blood vessels is 
associated with metastasis 

In patients with 
node-negative 

tumors 
[92, 93] 

uPA/UPI1 
protein level 

Newly 
established 

marker 

High protein levels are 
associated with high risk of 

metastasis 

Independent 
prognosis marker [83, 94-98] 

Steroid-receptor 
expression 

Established for 
adjuvant 
therapy 
decision 

Low steroid-receptor levels 
are associated with 

metastasis 

Short term 
predictor of 

metastasis risk (5 
years); related to 
histological grade 

[87] 

HER2 protein 
expression 

Established for 
adjuvant 
therapy 
decision 

ERBB2 (HER2 gene) 
amplification and HER2 

overexpression are 
associated with high 

metastatic risk 

In patients with 
lymph-node 

positive tumors 
[99-101] 

(Table adapted from Weigelt et al. Table 2.)  
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Figure 2.3: Schematic representation of hormonal regulation of metastasis[84]. ERa mediated signaling involves nuclear 
as well as extranuclear actions and growth factor signaling cross talk. Estrogen signaling has the potential to activate 
extranuclear signaling that activates several kinase cascades, which have the potential to alter cytoskeleton, affect EMT and 
enhance cell migration. Deregulation or ERa-mediated signaling crosstalk will have implications in estrogen mediated tumor 
progression to metastasis. (Adapted from Saha Roy et al. figure 2) 
 

As described in Chapter 1, DAX-1 is associated with a higher metastatic rate in lung cancers [44, 45]. 

However, essential cellular components controlling the metastatic pathways in breast cancer have not been 

completely elucidated. Further research is needed to understand the molecular mechanisms involved in 

breast cancer metastasis and for the development of targeted therapeutics. Current prognostic criteria only 

poorly predict the risk of a breast cancer developing into metastatic disease, and as a result patients are 

being subjected to cytotoxic chemotherapies unnecessarily. Therefore, new prognostic markers, 

potentially including DAX-1, could lead to more accurate identification of patients at low and high-risk 

of developing metastatic disease, pinpointing those who would benefit from specific adjuvant therapies.   
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Materials & Methods 

 

Reagents 

Serial dilutions of Fulvestrant (Tocris Bioscience, Bristol, UK) aka ICI 182, 780 or FaslodexÒ, were made 

in DMSO and used to treat cells at final concentrations of 1µM, 100nM, 10nM, 1nM, 100pM, 10pM or 

1% DMSO for untreated cells. 

 

Cell Culture 

Cells were either obtained from American Type Culture Collection (AACTÒ, Manassas, VA) or Sigma-

AldrichÒ (St. Louis, MO). All cell lines were routinely passaged, cultured, and maintained at 37oC in a 

humidified 5% CO2 tissue culture incubator.  

MCF7 human breast adenocarcinoma cells were cultured in DMEM/F12 (Thermo Fisher Scientific, 

Waltham, MA) with no phenol red. Phenol red bears a structural resemblance to nonsteroidal estrogens 

and has been shown to bind to the estrogen receptors of MCF7 cells stimulating their proliferation, 

therefore it was not used in their culture[102]. Media was supplemented with 2.5mM L-Glutamine, 10% 

FBS (AACTÒ, Manassas, VA), 1% penicillin/streptomycin, 1% amphotericin B (both from Lonza Group 

Ltd, Basel, Switzerland), 1% Anti-Anti (100X) Antibiotic-Antimycotic and 1% kanamycin sulfate (100X) 

(both from Gibco by Life Technologies, Waltham, MA) 

MCF10A human mammary epithelial cells were cultured in in DMEM/F12 (Thermo Fisher Scientific, 

Waltham, MA) with no phenol red supplemented with 5% horse serum (AACTÒ, Manassas, VA), 1% 

penicillin/streptomycin (Lonza Group Ltd, Basel, Switzerland), 100ng/ml cholera toxin (Sigma-AldrichÒ, 

St. Louis, MO), 20ng/ml rhEGF (Lonza Group Ltd, Basel, Switzerland), 500ng/ml hydrocortisone 
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(Sigma-AldrichÒ, St. Louis, MO), 10µg/ml insulin (Thermo Fisher Scientific, Waltham, MA), 1% 

amphotericin B (Lonza Group Ltd, Basel, Switzerland), 1% Anti-Anti (100X) Antibiotic-Antimycotic and 

1% kanamycin sulfate (100X) (both Gibco by Life Technologies, Waltham, MA) 

To passage and maintain, cells were treated with 0.25% Trypsin-EDTA (Thermo Fisher Scientific, 

Waltham, MA) and incubated at 37oC until released from flask. Cells were suspended and passaged at a 

1:4 ratio. 

For a period of 24 to 48 hours prior to experiments, cells were seeded and maintained in their 

respective culture media as described above but with only 1% serum. In this way cell growth was arrested 

until complete media was introduced, synchronizing the cell growth cycles. 

 

RNAi to knockdown DAX-1 expression in MCF10A cells 

A set of three different target-specific 19-23 nucleotide siRNA oligo duplexes of human NR0B1 gene, 

designed to knockdown gene expression, were obtained from MyBioSource (San Diego, CA). The three 

siRNAs were pooled prior to transfection. Pooled siRNA at a concentration of 100nM was combined with 

the transfection reagent Lafectine RU50 (MednaBio, Hayward, CA) and incubated at room temperature 

for 15 minutes. The transfection mix was added to MCF10A cells 24 hours after they were seeded. Cells 

were incubated with the siRNA for 24 hours before further cell manipulation. As a control, cells were 

treated with Lafectine RU50 only. Successful gene knockdown was determined via qPCR. (Appendix 

AIII). 

 

CRISPR-Cas9 knockout of DAX-1 expression in MCF10A cells 

MCF10A cells were seeded in a six well plate at a concentration of 2.5 x 105 in 3ml antibiotic free growth 

medium per well 24 hours prior to transfection. To attain optimal transfection, wells were treated with a 
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DAX-1 CRISPR/Cas9 KO plasmid (Santa Cruz Biotechnolgy, Inc., Dallas, TX) with concentrations 

varying between 1-3µg and a transfection reagent volume varying between 5-15µl in Plasmid Transfection 

Medium. At the same time, cells were also co-transfected with an HDR plasmid containing a puromycin 

resistance gene. Cells were incubated for 72 hours and the media replaced after 48 hours. Successfully 

transfected cells were identified using puromycin selection. For these cells, optimal puromycin 

concentrations of 8µg/ml was determined prior to transfection. Growth media was removed and replaced 

with fresh media containing 8µg/ml of puromycin every two to three days for nine days. Surviving cells 

were then recovered in complete growth medium. Successful DAX-1 KO was determined via standard 

PCR to screen for the presence of absence of the DAX-1 gene (Appendix AII.1 & AII.2). 

 

Induction of DAX-1 expression in MCF7 cells by viral transfection 

Recombinant human NR0B1 adenoviral particles were obtained from Creative Biogene Biotechnology 

(Shirley, NY).  To induce DAX-1 expression, MCF7 cells were incubated with the adenoviral particles at 

a concentration of 2.62x108 VP/ml for 24 hours before further cell manipulation (Appendix I). 

 
ER transfection 

Prior to transfection, 1µg pcDNA3.1-HEO (expressing the human Estrogen Receptor a gene, Figure 2.4) 

and 50µl Lafectine RU50 (MednaBio, Hayward, CA) were incubated together, at room temperature, for 

15 minutes. The plasmid/Lafectine RU50 transfection mix was then added to MCF10A cells and incubated 

at 37oC. 
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Figure 2.4: pcDNA3.1 (+/-) vector. Summary of the features of the 5.4 kb pcDNATM3.1 vector utilized in transient 

transfection assays. Figure provided by Invitrogen Life Technologies.  

 

RNA extraction and cDNA synthesis 

Cells were harvested using 0.25% Trypsin-EDTA (Thermo Fisher Scientific, Waltham, MA) and collected 

in an RNAse free 1.5ml microcentrifuge tube. Total RNA was isolated using the RNeasyÒ Mini Kit 

(QiagenÒ, Austin, TX) as per the manufacturer’s instructions. RNA was measured for concentration and 

purity using the NanoDrop 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE). A QuantiTectÒ 

Reverse Transcription Kit (QiagenÒ, Austin, TX) was used to synthesize cDNA from the isolated RNA 

according to manufacturer’s instructions. 

 

 

 



	 35	

PCR 

cDNA synthesized as described above was used as a template for standard PCR. iProofTM High-Fidelity 

DNA Polymerase (Bio-Rad, Hercules, CA) Kit with the 5x iProofTM GC Buffer was used to make a 

PCR master mix, along with specific primers listed in Table 2.3. The MJ Mini Personal Thermal Cycler 

(Bio-Rad, Hercules, CA) was used to perform the PCR with the conditions described in Table 2.2. 

Primers were designed using the PrimerQuest tool available at IDTdna.com (Table 2.3). 

 

Table 2.2: Thermocycler conditions for standard PCR  

Step Temperature Time 

Initial Denaturation 98oC 30 secs 

29 Cycles: 

Denaturation 

Annealing 

Elongation 

 

98oC 

(see Table 2) 

72oC 

 

10 secs 

20 secs 

20 secs 

Final Extension 72oC 5 mins 

Hold 4oC ∞ 

 

Table 2.3: List of Primers used for standard PCR and two-step amplification qPCR 

 

 
Gene 
Name Forward Primer 5’-3’ Reverse Primer 5’-3’ Annealing 

Temp 

Housekeeping 
gene GAPDH CCA TCACCA TCTTCCAGGAGCG AGAGA TGA TGACCCTTTTGGC 58oC 

Targets DAX-1 GGGTAAAGAGGCGCTACCAG GCTTGA TTTGTGCTCGTGGG 67oC 

 ER𝛼 GTCCTGTGGCA TCCACGAAACT TACTTGCGCTCAGGAGGAGCAA 56oC 
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qPCR 

cDNA synthesized as described above was used as a template for qPCR. qPCR reactions were 

performed in triplicate using the BioRad CFX96 Real-Time PCR system (BioRad, Hercules, CA) 

following the protocol below with varying initial denaturation time and annealing temperatures. qPCR 

reactions were prepared using 10µL of SYBR Green Master Mix (Life Technologies, Carlsbad, CA) or 

QuantiTect SYBR Green PCR kit (Qiagen, Valencia, CA), 0.5µL of 10µM forward and reverse primers 

(Table 2.3), 7.5µL of dH2O, and 2µL of cDNA. GAPDH housekeeping gene was used as control and 

experimental genes were compared to GAPDH as a baseline. Error bars on qPCR results represent 

standard deviation of the mean following the ∆∆Ct method.  

Table 2.4: Thermocycler conditions for two-step amplification qPCR  

 

 

 

 

 

 

 

qPCR Arrays 

cDNA synthesized as described above, at an RNA concentration of over 500ng/ul, was used as a template 

for qPCR. cDNA was added to RT2 SYBR Green Master mix and the mixture aliquot across the array. 

Triplicate reactions were performed for each gene. ProfilerÔ PCR Array Human Breast Cancer (PAHS-

131Z), RT2 ProfilerÔ PCR Array Human Estrogen Receptor Signaling (PAHS-005Z) and RT2 ProfilerÔ 

Step Temperature Time 

Initial Denaturation 95oC 5 minutes 

45 Cycles:  

Denaturation  

Annealing + Plate read 

 

95oC  

50-65oC 

 

15 seconds  

30 seconds 

Hold 4oC ∞ 
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PCR Array Human Tumor Metastasis (PAHS-028Z) qPCR, each containing a profile of 84 related genes 

(gene lists available at https://www.qiagen.com/us/shop/pcr/primer-sets/rt2-profiler-pcr-

arrays/?catno=PAHS-131Z#geneglobe, https://www.qiagen.com/us/shop/pcr/primer-sets/rt2-profiler-

pcr-arrays/?catno=PAHS-005Z#geneglobe and https://www.qiagen.com/us/shop/pcr/primer-sets/rt2-

profiler-pcr-arrays/?catno=PAHS-028Z#orderinginformation), were obtained from QiagenÒ (Austin, 

TX). qPCR was performed using a Bio-Rad CFX96 Thermocycler and results were analyzed using the 

Qiagen Data Analysis Center [103]. 

 

Cell counts 

Prior to plating, a representative sample of cells in a single cell suspension were stained with Trypan Blue 

Solution, 0.4% (Gibco by Life Technologies, Waltham, MA) to determine cell viability and a live cell 

count. Cells were counted using a hemocytometer and then seeded in 24 well plates at a concentration of 

0.05 x 106 in low serum medium. Culture medium was changed to complete media and Fulvestrant was 

added at the concentrations described above. Cells were cultured for 72 hours after addition of Fulvestrant 

and then trypsinized returning them to a single cell suspension, and counted using a hemocytometer. 

Experiments were carried out in triplicate. 

 

Proliferation Assay 

In order to quantitatively measure proliferation of the MCF10A and MCF7 cells, the Click-iTâ EdU HCS 

Alexa Fluorâ 488 (Invirtrogen, Eugene, OR) kit was used. Cells were seeded in an 8-well glass chamber 

slide in low serum media as described above. MCF10A and MCF7 cell culture media was changed to 

complete media 24 hours after seeding. MCF7 + AV cells had virus added as described above and 

MCF10A RNAi cells were transfected with siDAX-1 as described above, and cultured for a further 24 
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hours prior to further manipulation. MCF10A cells were transfected with ERa receptor as described above 

at least two hours prior to further manipulation. Fulvestrant was added to the cells at concentrations 

ranging from 10pM-1µM with the exception of an untreated control that received 0.1% DMSO and an 

EdU control that received no additions. After a 72-hour incubation with Fulvestrant, 10µM EdU was 

added to each well with the exception of the control. Cells were incubated with EdU for 24 hours before 

staining with the Click-iTâ EdU HCS kit. Briefly, culture media was removed and cells were fixed using 

3.7% formaldehyde in PBS and permeabilized using 0.1% Tritonâ X-100 in PBS. EdU detection was 

achieved by adding the Click-iTâ reaction cocktail containing a 1 X Click-iTâ EdU reaction buffer, 

CuSO4, Alexa Fluorâ 488 azide and 1 X Click-iTâ EdU buffer additive. Cells were incubated with the 

cocktail for 30 minutes at room temperature protected from the light. After removing the cocktail, the cells 

were washed in a Click-iTâ reaction rinse buffer. The chamber cassettes were then removed from the 

slides and mounted using ProLongä Gold Antifade Mountant with DAPI (Molecular Probesâ by Life 

Technologiesä, Eugene, OR) as a nuclear stain. Slides were imaged using a Zeiss A1 Axio Observer 

fluorescence microscope with Zen digital imaging software (Carl Zeiss Microscopy, LLC, Thornwood, 

NY) and analyzed using ImageJ software. Experiments were carried out in triplicate. 

 

Statistical Analysis 

Statistical significance was calculated using the two-tailed t-test formula built into Microsoft Excel. Data 

was found to be statistically significant if p < 0.05 (*) and highly statistically significant if p < 0.005 (**). 



	 39	

Results 
 

Expression of DAX-1 in human adenocarcinoma cells (MCF-7) by adenoviral transduction. 

 As mentioned previously and shown in Figure 2.2, it is common to see a downregulation or even 

complete absence of DAX-1 expression in breast cancer cells. Therefore, we used MCF7 human 

adenocarcinoma cells, which do not express any DAX-1, as our breast cancer model cell line. To 

investigate the effect of the loss of DAX-1 in breast cancer cells we sought to compare wild-type MCF7 

cells with MCF7 cells that were expressing DAX-1. This was achieved by viral transduction of MCF7 

cells with a human recombinant NR0B1 adenovirus (Appendix I). We used this method because 

adenoviruses have 100% gene delivery efficiency as opposed to retroviruses or lentiviruses which have 

only a 30% efficiency. Also, there is no integration with the host system.   

  Expression levels of GAPDH (control housekeeping gene) and DAX-1 were examined by PCR 

and qPCR (Figure 2.5). Successful transduction was confirmed by the presence of DAX-1. Control MCF7 

cells did not express DAX-1 whereas the viral transduced cells strongly expressed DAX-1. These cells 

will be referred to for the remainder of this thesis as MCF7 + DAX-1 cells. 
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A. 

  
 

B. 

 

 
 
Figure 2.5: Successful DAX-1 Expression in MCF7 Cells by Adenoviral Transduction. DAX-1 was introduced to MCF7 
cells using adenoviral (AV) transduction. Wild-type MCF7 cells were used as the control. A. DAX-1: Control shows no 
detection of DAX-1 cDNA by PCR, strong expression of DAX-1 cDNA is detectable in cells treated with NR0B1 adenovirus. 
GAPDH: Both the control and AV conditions show bands with strong expression of the housekeeping gene GAPDH. B. qPCR 
results showing very little DAX-1 expression in wild-type MCF7 cells and significant expression of DAX-1 in MCF7 + DAX-
1 cells. ∆∆Ct was used as a measure of relative mRNA expression. Error bars represent standard deviation of the mean (* = p 
< 0.05).  
 

Preliminary assessment of DAX-1s influence on cell proliferation in MCF7 cells 

As a preliminary method to assess the effects of DAX-1 on MCF7 cell proliferation, we performed 

cell counts using MCF7 and MCF7 + DAX-1 cells as well as MCF10A cells, as the control. A known 
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switched to complete medium and cultured for an additional 72 hours and cell counts were performed 

using a Neubauer hemocytometer (Figure 2.6). 

 

 

Figure 2.6: Fold change in cell number after 72 hours culture, when DAX-1 is expressed in MCF7 cells. MCF10A cell 
numbers increased around 5-10 fold, MCF7 cells number increased around 35-40 fold and MCF7 + DAX-1 cell numbers 
increased around 30-35 fold. Only the fold difference between the MCF10A cells and the MCF7 cells were statistically 
significant. Error bars represent standard deviation of the mean (** = p < 0.005). 
 

MCF10A cells are the least proliferative at only a 5-10 fold increase after 72 hours culture; MCF7 

cells were the most proliferative with a 35-40 fold increase in cell numbers after 72 hours; and MCF7 + 

DAX-1 cells showed a slightly reduced rate of proliferation (30-35 fold increase). These results fit with 

expectations. That is, normal breast cells are slowly proliferating while the breast cancer cells are growing 

much more aggressively. When DAX-1 is introduced the breast cancer cells, there is a detectable decrease 

in the proliferation rate, consistent with what we know from the literature and previous work from our 

own laboratory that DAX-1 is correlated with smaller tumor size[53].  
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Knockout of DAX-1 in human epithelial breast cells (MCF10A) by CRISPR-Cas9 

 After demonstrating that DAX-1 appears to have a suppressive effect on MCF7 cells, we wanted 

to next examine the effect of removing DAX-1 from our MCF10A control cell line. Therefore, to knockout 

DAX-1 expression in MCF10A cells, which normally express DAX-1, we used the CRISPR/Cas9 system. 

This technique is based on an adaptive immune defense mechanism used by archaea and bacteria to 

degrade foreign genetic material (Appendix II). The CRISPR/Cas9 system was only recently developed 

as a genome-editing tool in 2012[104], but has been quickly adopted due to its simplicity, high efficiency 

and versatility when compared with other genome editing tools such as, ZFNs and TALENs.  

 Expression levels of GAPDH (control housekeeping gene) and DAX-1 were examined by PCR 

(Figure 2.7). Successful knockdown was confirmed by the absence of DAX-1. Control MCF10A cells 

expressed high levels of DAX-1 whereas the CRISPR/Cas9 cells did not express any DAX-1.  

 

 

Figure 2.7: Confirmation of DAX-1 Knockout in MCF10A cells by CRISPR/Cas9 system. The control lane demonstrates 
strong levels of DAX-1 expression in the MCF10A cells whereas the DAX-1 K.O. cells have no detectable levels of DAX-1 
expression. The housekeeping gene GAPDH was used as a control and demonstrates strong expression in both samples 
 

 Due to cell line contamination and circumstances out with our control, there were not enough stock 

cells to carry out any further experiments with this cell line by the time this thesis was written. 
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Knockdown of DAX-1 in human epithelial breast cells (MCF10A) by RNAi 

 As an alternative to total DAX-1 knockout with CRISPR, we used RNAi technology to knockdown 

DAX-1 expression in MCF10A cells. This method is less effective than CRISPR in that it only knocks 

down gene expression rather than completely blocking it, and the effects of siRNA are only transient as 

opposed to CRISPR where the knockout is permanent. However, siRNA technology is sufficient for 

knockdown of DAX-1 in the experiments we performed as they were short term experiments only lasting 

for a few days (Appendix III).  

 MCF10A cells were plated in serum free medium 24 hours prior to transfection. 100nM siDAX-

1, was introduced to the cells using lafectine RU50 as the transfection reagent. Figure 2.8 shows qPCR 

results confirming successful knockdown of DAX-1 in MCF10A cells. These cells will be referred to as 

MCF10A – DAX-1 for the remainder of this thesis. 

 

 

Figure 2.8: Confirmation of DAX-1 Knockdown by siRNA. qPCR results showing DAX-1 expression in wild-type 
MCF10A cells and the lafectine only transfection control, and no expression of DAX-1 in MCF10A - DAX-1 cells. ∆∆Ct 
was used as a measure of relative mRNA expression. Error bars represent standard deviation of the mean (* = p < 0.05).  
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DAX-1s influence on both normal (MCF10A) and cancerous (MCF7) breast cell proliferation: EdU Assay 

 To obtain a less arbitrary measure of cell proliferation than the cell counts described above, we 

used an EdU HCS assay (Appendix IV). The reason for choosing this method over BrdU, for example, is 

that the EdU method is simple and efficient, requiring no denaturation steps or harsh treatments, it is gentle 

on samples giving better preservation of cell morphology, antigen structure and DNA integrity, and it 

provides consistent results.   

Cells manipulated to induce or knockdown DAX-1 were incubated with EdU for 24 hours. Cells 

were then fixed, permeabilized and the Click-iTÒ performed labelling the newly synthesized DNA with 

Alexa FluorÒ 488 which is a green fluorescent dye. Slides were then visualized and analyzed under 

Keyence BZ-9000E microscope with the BZ viewer and analyzed using BZ analyzer software. Figure 2.9 

shows the results of these experiments: 

 

 

Figure 2.9: MCF10A and MCF7 cell proliferation +/- DAX-1 expression. MCF10A cells had the lowest percentage of 
proliferating cells, < 20%. MCF10A –DAX-1 cells have a higher percentage of proliferating cells, 20-25%. MCF7 cells had 
the highest percentage of proliferative cells, ~ 40%. MCF7 + DAX-1 cells had a lower percentage proliferative cells when 
compared with MCF7 cells, 25-35%. Error bars represent standard deviation of the mean (* p < 0.05) (** p < 0.005). 
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MCF10A cells were found to be the least proliferative out of all four cell types with less than 20% 

of cells staining positive for EdU. MCF10A – DAX-1 were more proliferative at around 20-25%. MCF7 

cells were highly proliferative with around 40% of cells staining positive for EdU. Finally, MCF7 + DAX-

1 cells were more proliferative than either of the MCF10A populations, but less than the MCF7 alone 

cells, with 25-35% proliferation. There were significant (p < 0.05) differences between the percentage of 

proliferating cells in the MCF7 group and the MCF10 – DAX-1 group, and highly significant (p < 0.005) 

differences between MCF7 and MCF10A cell proliferation. Removing DAX-1 from normal breast cells 

results in an increase in cell proliferation and that addition of DAX-1 to breast cancer cells not normally 

expressing DAX-1 results in a suppression of cell proliferation. 

 

DAX-1 influence on breast cancer gene expression in human adenocarcinoma (MCF7) cells 

In an attempt to gain a clearer understanding of the mechanism involved in the suppression of 

cancer cell proliferation when DAX-1 is present, we performed a qPCR array analysis. The array 

contained 84 breast cancer related genes along with controls. Using wild type MCF7 cDNA as our baseline 

control compared with MCF7 + DAX-1 cDNA as our model, we obtained information on the changes in 

breast cancer gene expression when DAX-1 is overexpressed. We found significant downregulation of 

seven genes, including the cell cycle regulators CCND1, CCNA1 and SFN, growth factors VEGFA, EGF, 

and ABCB1. Only one gene was found to be upregulated, the apoptosis regulator BCL2 (Figure 2.10). 
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Figure 2.10: Changes in breast cancer gene expression when DAX-1 is overexpressed in MCF7 cells. Scatter plot 
showing Log10 values for normalized expression of breast cancer genes in MCF7 and MCF7 + DAX-1 cDNA. The central 
line indicates unchanged gene expression. The dotted line represents a twofold change in gene expression. Red dots represent 
gene upregulation and green dots represent gene down regulation. BCL2 was found to be upregulated and ATP binding 
cassette subfamily B member 1 (ABCB1), androgen receptor (AR), cyclin A1 (CCNA1), cyclin D1 (CCND1), epidermal 
growth factor (EGF), stratifin (SFN) and vascular endothelial growth factor (VEGFA) were found to be downregulated.  
 
 
BCL2 expression increased 2-fold and the majority of the downregulated genes showed a two- to four-

fold decrease in gene expression. SFN had the most dramatic downregulation decreasing eight-fold in 

response to DAX-1 overexpression (Figure 2.11). 
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Figure 2.11: Fold change in breast cancer gene expression when DAX-1 is overexpressed. Data from qPCR array showing 
up- and downregulation of breast cancer genes in response to overexpression of DAX-1 in MCF7 cells.  
 

Expression of ERa in human epithelial breast cells (MCF10A) by plasmid transfection. 

 We next wanted to explore the influence of DAX-1 in breast cell proliferation when ERa is 

inhibited. However, in normal breast tissue, ERa is expressed at very low levels, if at all in the majority 

of women [105]. We wanted to remain consistent with our MCF10A normal breast cancer cells line as the 

control but they do not express ERa. Consequently, we induced ERa expression in MCF10A cells before 

further manipulation.  

 Expression of ERa in MCF10A cells was achieved using Lafectine RU50 as the lipophilic 

transfection reagent (Figure AV). Cells were transfected with either an empty plasmid (VC - vehicle 

control) or plasmid containing wild-type ERa DNA sequence. Following transfection, cells were 

incubated for 24 hours before further manipulation. 

 Expression levels of GAPDH (control housekeeping gene) and ERa were examined by PCR and 

qPCR (Figure 2.12). As expected, ERa was not detected in the control MCF10A cells, nor was it found 
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in the lafectine only control cells or the empty plasmid control. Successful transfection is shown by the 

strong expression of ERa in the MCF10A + ERa cells. 

 

A.  

 

B. 

 

Figure 2.12: Confirmation of ERa expression in MCF10A cells after plasmid transfection. A. PCR results showing no 
expression of ERa in MCF10A cells or the transfection and vehicle controls. Successful expression of ERa after plasmid 
transfection is seen in the last two samples. GAPDH was used as a control. B. qPCR results showing no ERa expression in 
wild-type MCF10A cells, transfection control and vehicle control, and ERa expression in MCF10A + ERa cells. ∆∆Ct was 
used as a measure of relative mRNA expression. Error bars represent standard deviation of the mean (* = p < 0.05). 
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 Suppression of ERa in human epithelial breast cells (MCF10A) and human adenocarcinoma cells 

(MCF7) by the total estrogen antagonist, Fulvestrant. 

 To suppress ERa we used Fulvestrant (aka ICI 182, 780 or FaslodexÒ), which is a selective 

estrogen receptor degrader (SERD) used to treat late stage ER-positive metastatic breast carcinomas. Upon 

binding to ERa, Fulvestrant induces a misfolding of the protein leading to increased surface 

hydrophobicity and subsequently degradation of the receptor by the cells own mechanisms [106]. 

 

DAX-1 influence on breast cancer cell proliferation when ERa activity is inhibited 

All four cells types discussed above were treated with Fulvestrant in dose response experiments, 

where increasing concentrations of the drug from 10pM to 1µM dilute in DMSO, untreated (UT) control 

cells were given DMSO only. Cells were cultured with the drug for 72 hours before being collected for 

staining and analysis using the EdU HCS assay. The same trends across the four cell types are seen in the 

untreated cells as were found in the initial EdU HCS experiments (Figure 2.13). No significant differences 

were seen in the proliferation rates of the MCF10A and MCF10A – DAX-1 cells when Fulvestrant was 

added. MCF7 cells again showed the highest rate of proliferation in the untreated cells but when the drug 

was added a marked decrease in proliferation was seen that continued to drop when cells were exposed to 

higher concentrations of Fulvestrant. MCF7 + DAX-1 showed less cell proliferation in the UT cells 

compared to the MCF7 only cells, and an overall decrease in the rate of proliferation when Fulvestrant is 

added.  However, the decrease did not change in a dose-dependent manner.  
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Figure 2.13: Proliferation after 72 hours in culture with increasing concentrations of Fulvestrant. Percentage of 
proliferating cells, determined through EdU HCS assay staining, of normal and cancerous breast cells with/without DAX-1 
expression cultured for 72 hours with increasing concentrations of Fulvestrant. UT = untreated. Error bars represent standard 
deviation of the mean (* = p < 0.05, ** = p < 0.005). 
 

DAX-1 influence on estrogen signaling gene expression in human adenocarcinoma cells (MCF7) cells 

To further investigate estrogen receptor interactions with DAX-1 in breast cancer, we performed 

a qPCR array analysis for 84 estrogen signaling genes. Using wild type MCF7 cDNA as our baseline 

control compared with MCF7 + DAX-1 cDNA as our model, we obtained information on the changes in 

estrogen signaling gene expression when DAX-1 is overexpressed (Figure 2.14). We found significant 

downregulation of FOS and WNT1 inducible signaling pathway 2 (WISP2). Upregulation was seen in the 

cell cycle inhibitor amyloid beta precursor protein binding family B member 1 (APBB1); BCAR1, which 

also functions in cell cycle control; the tumor suppressor candidate caveolin 1 (CAV1); creatine kinase B 
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transcription factor F (MAFF); proline, glutamate and leucine rich protein 1 (PELP1) and X-box binding 

protein (XBP1). Also, transforming growth factor beta 3 (TGFB3). 

 
 

 
Figure 2.14: Changes in estrogen signaling gene expression when DAX-1 is overexpressed in breast cancer (MCF7) cells. 
Scatter plot showing Log10 values for normalized expression of breast cancer genes in MCF7 and MCF7 + DAX-1 cDNA. The 
central line indicates unchanged gene expression. The dotted line represents a twofold change in gene expression. Red dots 
represent gene upregulation and green dots represent gene down regulation. FOS and WNT1 inducible signaling pathway 2 
(WISP2) were found to be downregulated whereas amyloid beta precursor protein binding family B member 1 (APBB1), 
BCAR1, caveolin 1 (CAV1), creatine kinase B (CKB), cathepsin D (CTSD), estrogen receptor binding site associated, antigen 
9 (EBAG9), estrogen receptor 1 (ESR1), MAF bZIP transcription factor F (MAFF), proline, glutamate and leucine rich protein 
1 (PELP1), transforming growth factor beta 3 (TGFB3), X-box binding protein (XBP1). 
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While most of these genes were upregulated 2- to 4-fold, ESR1 and MAFF had the greatest increase at 

around 6- to 8-fold. FOS and WISP2 were both down regulated by approximately a 4-fold decrease (Figure 

2.15). 

 

 
Figure 2.15: Fold change in estrogen signaling gene expression when DAX-1 is overexpressed. Data from qPCR array 
showing up- and downregulation of estrogen signaling genes in response to overexpression of DAX-1 in MCF7 cells.  
 

Regulation of metastatic genes by DAX-1 in human adenocarcinoma cells (MCF7) cells 

To investigate DAX-1 interactions with known metastatic genes, we performed a qPCR array analysis 

including 84 metastatic genes along with controls. Using wild type MCF7 cDNA as our baseline control 

compared with MCF7 + DAX-1 cDNA as our model, we obtained information on the changes in 

metastatic gene expression when DAX-1 is overexpressed. We found significant downregulation of 

ITGB3, VEGFA, KISS1R, RORB and PTEN gene expression (Figure 2.16 and 2.17). ITGB3 (integrin 

subunit beta 3) is a gene encoding for a transmembrane receptor known to participate in cell adhesion as 
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well as cell surface mediated signaling. Intriguingly, it was the most significantly downregulated gene at 

5.53-fold. VEGFA (vascular endothelial growth factor A) is a growth factor involved in multiple 

metastatic processes including, cell adhesion, regulation of the cell cycle, cell growth and proliferation. It 

was found to be downregulated by 2.53-fold. KISS1R (KISS1 receptor) is a G-protein coupled receptor 

involved in cell growth and proliferation. The receptor binds metastin, a peptide encoded by the metastasis 

suppressor gene KISS1. KISS1R was down regulated by 2.77-fold. RORB (RAR related orphan receptor 

B) is an orphan nuclear receptor similar to DAX-1. It acts as a transcription factor with the ability to bind 

to HREs as a monomer or homodimer to enhance expression of downstream genes. It was downregulated 

4.28-fold. PTEN (phosphatase and tensin homolog) is a cell cycle regulator identified as a tumor 

suppressor that is mutated in a large number of cancers at high frequency. It was downregulated by 2.07-

fold. No upregulation of any of the genes was seen. The greatest fold change was see in ITGB3 at 5.5-

fold, then RORB at 4.5-fold. KISS1R, PTEN and VEGFA were all downregulated by 2-3-fold. (Figure 

2.17) 
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Figure 2.16: Changes in metastatic gene expression when DAX-1 is overexpressed in breast cancer (MCF7) cells. Scatter 
plot showing Log10 values for normalized expression of breast cancer genes in MCF7 and MCF7 + DAX-1 cDNA. The central 
line indicates unchanged gene expression. The dotted line represents a twofold change in gene expression. Red dots represent 
gene upregulation and green dots represent gene down regulation. Significant downregulation was seen in integrin subunit beta 
3 (ITGB3), KISS1 receptor (KISS1R), phosphatase and tensin homolog (PTEN), RAR related orphan receptor B (RORB) and 
vascular endothelial growth factor A (VEGFA). 
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Figure 2.17: Fold change in metastatic gene expression when DAX-1 is overexpressed. Data from qPCR array showing 
downregulation of metastatic genes in response to overexpression of DAX-1 in MCF7 cells.  
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Discussion 

 

DAX-1 acts as a repressor of breast cancer cells proliferation through downregulation of gene expression 

Results from the cell count and EdU experiments show that when DAX-1 is overexpressed in 

breast cancer (MCF7) cells, a decrease in cell proliferation occurs. The mirror image effect is seen in 

normal breast (MCF10A) cells when DAX-1 expression is removed. These findings fit with the previous 

reports of DAX-1 being correlated with smaller tumor size and as a repressor of breast cancer cell 

proliferation mechanisms[53]. 

 Results from gene analysis obtained from the qPCR arrays provided corroborating findings of prior 

research specifically DAX-1 is mainly a suppressor of breast cancer promoting genes. When DAX-1 was 

overexpressed in the MCF7 cells, a downregulation of the cyclin D1 gene (CCND1) was seen. This further 

supports previous studies showing that DAX-1 represses cyclin D1 by several different mechanisms, 

including acting as a co-repressor with ERa inhibiting its promotion of CCND1 expression and the 

recruitment of DAX-1 by AR to suppress cyclin D1 expression [49]. 

The qPCR array also showed downregulation of two other genes encoding for cell cycle regulators; 

CCNA1 and SFN, not previously linked with DAX-1. CCNA1 encodes for Cyclin A1 which binds both 

CDK2 and CDC2 kinases, giving two distinct kinase activities, one appearing in S phase, the other in G2, 

and thus regulating separate functions in cell cycle. This cyclin was found to bind to important cell cycle 

regulators, such as Rb family proteins, transcription factor E2F-1, and the p21 family proteins. SFN 

encodes for Stratifin which is a cell cycle checkpoint protein that binds to translation and initiation factors 

and functions as a regulator of mitotic translation.  

In addition to cell cycle regulators we also found downregulation of several growth factor encoding 

genes, namely VEGFA, EGF, and ABCB1. VEGFA encodes for vascular endothelial growth factor A, 
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which induces proliferation and migration of vascular endothelial cells, and is essential for both 

physiological and pathological angiogenesis. This gene is upregulated in many known tumors and its 

expression correlates with tumor stage and progression. EGF encodes epidermal growth factor, which acts 

as a potent mitogenic factor that plays an important role in the growth, proliferation and differentiation of 

numerous cell types.  ABCB1 encodes the ATP binding cassette subfamily B member 1 protein is known 

to be responsible for decreased drug accumulation in multidrug-resistant cells and often mediates the 

development of resistance to anticancer drugs.  

The downregulation of AR by DAX-1 identified by our qPCR array has been previously 

described[107]. Holter et al.  demonstrated that DAX-1 inhibits ligand-dependent transcription activation 

as well as interactions between the N- and C- terminal regions of AR [107].  Other studies have also shown 

DAX-1 to interact with and function as a negative coregulatory of AR [108, 109]. However, Lanzino et al. 

found that in MCF7 cells, DAX-1 binds to the androgen responsive region of the cyclin D1 promoter 

along with AR and HDAC1 forming a repressor complex inhibiting CCND1 transcription [49]. 

The only upregulated gene from this array was the apoptosis regulator BCL2 which has been shown 

to be a positive prognostic marker in ER positive and triple negative breast cancers [110]. Studies have 

shown DAX-1 to be associated with BAD/BCL2 ratio and its overexpression in MCF7 cells induces 

apoptosis [67] 

All of the genes highlighted from our analysis support DAX-1’s role as a suppressor of breast 

cancer proliferation and other closely related cancer mechanisms such as apoptosis. In addition, CCNA1, 

SFN, VEGFA, EGF and ABCB1 have all been identified as potential novel targets of DAX-1 that warrant 

further investigation. 
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Breast cancer cell proliferation in the absence of ERa is no further suppressed by the presence of DAX-1 

 Although we found that proliferation decreases when DAX-1 is overexpressed in MCF7 cells, 

there does not appear to be any additive effect of DAX-1 when ERa activity is inhibited. Given that 

Fulvestrant binds antagonistically to ERa and results in its ultimate degradation by the cell [105], we predict 

that the lack of anti-proliferative activity seen in the presence DAX-1 is due to it being unable to bind to 

ERa and have its suppressive effects. If this is the case then the use of SERDs or any other therapeutic 

that alters the structure or ERa, as a treatment for breast cancer may inadvertently be cancelling out the 

potential beneficial effect of other cellular components, such as DAX-1. More research is needed to 

determine the consequences of ERa disruption by anticancer drugs and potentially the development of 

improved adjuvant therapies harnessing the advantageous properties of breast cancer suppressors such as 

DAX-1. 

 

DAX-1 upregulates many estrogen signaling genes in breast cancer (MCF7) cells 

Our results from the estrogen signaling array show DAX-1 to upregulate the majority of genes it 

influences. At first sight this a contradictory outcome to what we know from the literature where DAX-1 

acts as a co-repressor in the majority of its interactions. However, several of these genes are involved in 

repression of proliferation and tumor progression (e.g. APBB1 has a role in regulating transcription and 

has been observed to breast cancer progression by downregulating thymidylate synthase expression [111]). 

CAV1 encodes a protein found in most cells types and is a tumor suppressor gene candidate. CAV1 along 

with NR0B1 have both been identified as targets of EWS/FL1 in Ewing sarcoma tumors but has not been 

linked in breast cancer [112]. BCAR1 encodes an adaptor protein that functions in multiple cellular 

pathways, including cell motility, apoptosis and cell cycle control, and its dysregulation has been 

associated with effects in a wide range of different pathways including in breast cancer. CTSD mutations 
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have been shown to be involved in the pathogenesis of breast cancer. TGFB3 encodes for a secreted ligand 

of the TGFb superfamily of proteins whose binding leads to the recruitment and activation of SMAD 

family transcription factors and is known to have a role in cell differentiation and possibly wound healing. 

Therefore, the upregulation of these genes could be directly involved in the mechanisms used by DAX-1 

to have its protective effects in breast cancer. In addition, the downregulated gene FOS forms part of the 

transcription factor complex AP-1 and has been implicated as a promotor of cell proliferation, 

differentiation and transformation. Therefore, the downregulation of FOS in the presence of DAX-1 also 

conforms with DAX-1 being a suppressor of cell proliferation. CKB encodes for a cytoplasmic enzyme 

involved in energy homeostasis and it has not been previously linked with DAX-1. However, CKB has 

also been shown to directly mediate cell invasion and lung metastasis in breast cancer. It may be that 

DAX-I is involved in CKBs metastatic pathway. 

The MAFF protein is a transcription repressor and has been shown to play a role in cellular stress 

response and to promote metastasis in breast cancer. PELP1 and XBP1 are both transcription factors, 

PELP1 is thought to be involved in the progression of several cancers and XBP1 is an ER coactivator and 

has been linked with SERM resistance in multiple ER positive cells lines. EBAG9, is an estrogen response 

gene whose protein is a tumor-associated antigen that is expressed at high frequency in breast cancer. 

DAX-1 upregulation of these genes is difficult to explain, but highlights the complexity of the pathways 

involved in this disease. 

WISP2 encodes a member of the WNT1 inducible signaling pathway (WISP) protein subfamily; 

the gene may be downstream in the WNT1 signaling pathway that is relevant to malignant transformation. 

The WNT1 pathway is a complex signaling pathway involving a signaling transduction cascade that is a 

key mediator in both embryonic development and in certain cancers[113, 114]. There is currently little 

published evidence linking DAX-1 with either WISP2 or the WNT1 pathway. However, studies from our 
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laboratory have highlighted DAX-1 as a negative regulator of Dickkopf 1 (Dkk1) gene expression. Dkk1 

is known to interact with components of the WNT1 pathway in mouse embryonic stem cells and prostate 

cancer cells[115, 116]. This link with DAX-1 and the WNT1 signaling pathway and the significant 4-fold 

down regulation seen in WISP2 expression when DAX-1 is overexpressed in breast cancer cells, 

highlights WISP2 it as a potential target for DAX-1 that warrants further investigation. 

 

DAX-1 downregulates several metastatic genes in breast cancer (MCF7) cells 

The role of DAX-1 in breast cancer metastasis has not been well studied. It has been associated 

with earlier disease stage which leads us to hypothesize that the loss of DAX-1 seen in later stage breast 

cancers may contribute to the tumors ability to metastasize. We compared metastatic gene expression 

levels of late stage breast cancer cells (MCF7) expressing negligible levels of DAX-1, with metastatic 

gene expression levels of the same MCF7 cells treated to exogenously express DAX-1. 

Of the 86 metastatic genes analyzed we found that overexpression of DAX-1 resulted in significant 

downregulation of 5 genes; ITGB3, KISS1R, PTEN, RORB and VEGFA. No genes were found to be 

upregulated, consistent with the previously identified role of DAX-1 as primarily a repressor of gene 

transcription. 

ITGB3 encodes for integrin subunit ß 3 (also identified as ß3 integrin) that is known to participate in 

cell adhesion as well as cell-surface mediated signaling. It has been found to be essential for breast cancer 

epithelial-mesenchymal transition (EMT) and metastasis [117-119]. Through in vivo studies, it has been 

found that the functional disruption of ß3 integrin through silencing with siRNA, alleviated triple negative 

breast cancer primary tumor burden and significantly inhibited metastasis [120]. DAX-1 and ITGB3 have 

not previously been linked, but our study showing downregulation of ITGB3 in response to DAX-1 over-

expression in breast cancer cells highlights this gene as a potential target for further investigation. 
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KISS1R encodes for the KISS1 receptor, which is a galanin-like G protein-coupled receptor that binds 

metastin, a peptide encoded by the metastasis suppressor gene KISS1. Interestingly, the tissue distribution 

of the expressed gene suggests that it is involved in the regulation of endocrine function, and this is 

supported by the finding that this gene appears to play a role in the onset of puberty[121]. Mutations in this 

gene have been associated with hypogonadotropic hypogonadism, one of the disorders were DAX-1 was 

first identified[19, 122].  

PTEN encodes for phosphatase and tensin homolog that functions as a tumor suppressor. It acts by 

negatively regulating the AKT/PKB signaling pathway, which promotes cell survival and growth in 

response to extracellular signals, and is mutated in a large number of cancers at high frequency including 

breast cancers[123]. Other studies have shown that methylation of its promotor region is also a major 

mechanism leading to its decreased expression in breast cancer cells [124]. KISSR1 and PTEN 

downregulation by DAX-1 over-expression is difficult to explain with our current understanding of their 

mechanisms of action. Further investigation into their association within the context of breast cancer is 

needed to understand their interactions more fully. 

RORB encodes for RAR (retinoic acid receptor) related orphan receptor B, a member of the NR1 

subfamily of nuclear hormone receptors (NHR). It is a DNA-binding protein that can bind as a monomer 

or as a homodimer to hormone response elements upstream of several genes to enhance their expression. 

It is known to regulate genes involved in the circadian rhythm, disruption of which has been linked to 

breast cancer [125]. It has also been identified as a suppressor of metastasis in ovarian carcinomas [126]. 

Beside these studies, there has been little research of the role of RORB plays in breast cancer metastasis 

or its interactions with DAX-1. We do know, however, that DAX-1 binds to other NHRs including ERa 

and SF1 through its LXXLL motifs in the N-terminal region. As RORB is a NHR, it is feasible that it 

could play a role as a transcription factor interacting with DAX-1 to regulate gene expression. 
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VEGFA, also already identified as a gene that is downregulated by DAX-1 in Chapter 2, encodes for 

vascular endothelial growth factor A. This gene is a member of the PDGF/VEGF growth factor family. It 

induces proliferation and migration of vascular endothelial cells and is essential for both physiological 

and pathological angiogenesis. Upregulation of the gene is seen in many known tumors and its expression 

is correlated with tumor stage and progression[127, 128]. DAX-1 and VEGFA have not been linked 

previously in the context of breast cancer. 

 Our study has found conflicting results with DAX-1 expression in breast cancer cells 

showing a downregulation of genes involved in both metastasis promotion and suppression. The process 

of metastasis is a complex one involving multiple different cell functions and molecular pathways and as 

can be seen from our results, DAX-1 appears to be involved in more than one of these processes. In the 

first instance, it appears to be involved in promotion of metastasis by suppressing KISS1R which binds 

with metastin, a tumor suppressor, however the KISS1R/metastins mechanism of action is not well 

understood. In addition, PTEN, known to act as tumor suppressor, is also downregulated by DAX-1. 

However, PTEN is part of a complex signaling pathway that is highly regulated by multiple mechanisms. 

DAX-1 could be interacting with any number of factors involved in these processes, possibly having 

beneficial effects that override the effects of downregulating KISS1R and PTEN expression. 

Downregulation of ITGB3 and VEGFR fits more easily with what we know about DAX-1 acting as a 

suppressor of metastasis in other cancers. RORB is an interesting NHR not previously linked with DAX-

1, that may be involved in a possible feedback loop with DAX-1. However, for all of these genes, it is not 

known if DAX-1 is acting as a transcription factor to directly suppress their expression or if it is 

influencing some other pathway or factor that then subsequently is resulting in the genes’ downregulation. 

Our results have identified several genes that are downregulated by DAX-1 in the MCF7 cells. Further 
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investigation of these genes is necessary in order to untangle their role breast cancer metastasis in the 

context of DAX-1. 
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Chapter 3 

DAX-1 and other receptor status during progressive stages of invasive 

ductal carcinoma 

Introduction 

Invasive ductal carcinoma (IDC) constitutes approximately 80% of all breast cancers [3]. As the 

name suggests, this type of breast cancer begins in the ducts and then breaks through the basement 

membrane to invade the surrounding breast tissue. Over time, IDC will then metastasize to the lymph 

nodes and other areas of the body. More than 250,000 women will be diagnosed with invasive breast 

cancer each year and most will be IDC. Women over 55 years old are most commonly diagnosed IDC; 

however, it also affects around 1 in 1,000 men [3]. 

 The breast cancer stage describes the extent of the disease and is one of the most important factors 

in determining the prognosis and treatment options. Table 3.1 give details of each stage based on the 

American Joint Committee on Cancer (AJCC) TNM scoring system. The TNM system takes into account: 

the size of the tumor (T) and if it has spread to nearby areas; whether the cancer has reached nearby lymph 

nodes (N); and whether the cancer has metastasized (M). 
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Table 3.1: Breast Cancer Stages. (adapted from the American Cancer Society, Stages of Breast Cancer 
Table) [1] 
 
Stage TNM score Description 

0 Tis, N0, M0 

 
Cancer has not spread to lymph node or distant sites. 
 
 
Includes, ductal carcinoma in situ (DCIS), lobular carcinoma in situ 
(LCIS), and Paget disease of the nipple 
 

IA T1, N0, M0 

 
The tumor is 2 cm or less across (T1) and has not spread to the lymph 
nodes (N0) or metastasized (M0) 
 

IB T0 or T1, N1mi, M0 

 
The tumor is 2 cm or less across (T0 or T1) with micrometastases in 1 
to 3 axillary lymph nodes (N1mi). The cancer has not spread to distant 
sites (M0) 
 

IIA T0 or T1, N1 (but not 
N1mi), M0 

 
The tumor is 2 cm or less across (or is not found) (T1 or T0) and either: 
Spread to 1-3 axillary lymph nodes and larger than 2 mm across (N1a) 
OR 
Tiny amount of cancer found in internal mammary lymph nodes (N1b) 
OR 
Both of the above (N1c) 
The cancer has not spread to distant sites (M0) 
 

 OR  

 T2, N0, M0 

 
The tumor is between 2 -5 cm across (T2) but has not spread to the 
lymph nodes (N0) or metastasized to distant sites (0) 
 

IIB T2, N1, M0 

 
The tumor is between 2 -5 cm across (T2) and spread to 1-3 axillary 
lymph nodes and/or tiny amount of cancer found in internal mammary 
lymph nodes (N1). The cancer has not spread to distant sites (M0) 
 

 OR  

 T3, N0, M0 

 
The tumor is larger than 5 cm across but does not grow into the chest 
walls or skin (T3). The cancer has not spread to the lymph nodes (N0) 
or to distant sites (M0) 
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IIIA T0 to T2, N2, M0 

 
Tumor is not more that 5 cm across (T0 to T2). It has spread to 4 to 9 
axillary lymph nodes, or has enlarged the internal mammary lymph 
nodes (N2). The cancer has not spread to distant sites (M0) 
 

 OR  

 T3, N1 or N2, M0 

 
The tumor is larger than 5 cm across but does not grow into the chest 
walls or skin (T3). It has spread to 1 to 9 axillary lymph nodes or to 
internal mammary lymph nodes (N1 or N2). The cancer has not spread 
to distant sites (M0) 
 

IIIB T4, N0 to N2, M0 

 
The tumor has grown into the chest wall or skin (T4), and one of the 
following applies: 

• It has not spread to the lymph nodes (N0). 

• It has spread to 1 to 3 axillary lymph nodes and/or tiny amounts 
of cancer are found in internal mammary lymph nodes on 
sentinel lymph node biopsy (N1). 

• It has spread to 4 to 9 axillary lymph nodes, or it has enlarged 
the internal mammary lymph nodes (N2). 

The cancer hasn't spread to distant sites (M0). 

IIIC any T, N3, M0 

 

The tumor is any size (or can't be found), and one of the following 
applies: 

• Cancer has spread to 10 or more axillary lymph nodes (N3). 

• Cancer has spread to the infraclavicular lymph nodes (N3). 

• Cancer has spread to above the infraclavicular lymph nodes 
(N3). 

• Cancer involves axillary lymph nodes and has enlarged the 
internal mammary lymph nodes (N3). 

• Cancer has spread to 4 or more axillary lymph nodes, and tiny 
amounts of cancer are found in internal mammary lymph nodes 
(N3). 

The cancer hasn't spread to distant sites (M0). 
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IV any T, any N, M1 

 

The tumor can be any size (any T) and may or may not have spread to 
nearby lymph nodes (any N). It has spread to distant organs or to lymph 
nodes far from the breast (M1). The most common sites are the bones. 
liver, brain or lungs. 

 

It is known that the steroid hormone receptors ER, PR and AR play an important role in cancer 

progression in IDC patients. It has been shown that expression of ER, PR and HER2 by tumors is 

associated with disease prognosis. Approximately two thirds of all breast cancer tumors express ER and 

PR and are known as hormone receptor positive breast cancers. They tend to grow more slowly than those 

that do not express these receptors.  This characteristic and the fact that there are more targeted treatment 

options available for hormone receptor positive patients, means that in the short term, their prognosis tends 

to be better than receptor negative patients. HER2 is a growth promoting protein and its overexpression is 

seen in 1 in 5 breast cancer tumors. HER2 positive cancers tend to grow and spread faster than HER2 

negative cancers, but again targeted therapies are available to treat positive tumors [1]. 

Immunohistochemistry staining of breast cancer tissue reveals 73-75% of all breast cancers are ER 

positive[1]. ER expression generally coincides with PR expression and is seen in half of all HER2 positive 

breast cancers. ER and PR interactions with their hormones are known to promote tumor cell proliferation 

and metastasis. The mechanism of action of ER in breast cancer is complex and as yet, not fully 

understood. One of the most well documented mechanisms is through circulating estrogens that bind to 

ERs, leading to receptor dimerization and binding to EREs upstream of specific target genes. As described 

previously, one well-known target of ER is the cyclin D1 gene, which leads to the activation of cell 

proliferation pathways[62, 63]. Other ER interactions are also known to promote growth of breast cancer 

cells, including targeting expression of signaling components of the insulin-like growth factor system. 
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Ligand bound ERa has been shown to influence gene expression by binding with other transcription 

factors and not directly to DNA. In addition, in the absence of estrogen, extracellular signaling can also 

induce ER-mediated transcription [129]. PR acts in a similar way to ligand bound ER, although through 

different signaling pathways, to exert its proliferative influence in breast cancer cells. Specifically, 

circulating progesterone binds to PR, activating the receptor to recruit a series of coactivator and 

corepressors such as SRC-1, SRC-2 and SRC-3, CBP/p300 and others [130]. These PR complexes bind to 

progesterone responsive elements (PRE) in the DNA and initiate transcription of target genes. In one 

study, high PR expression was correlated with DAX-1 in breast cancer patients [51], but no subsequent 

studies have explored this association any further. ER and PR are screened for in biopsy samples using 

IHC, where ³1% positive staining is identified as positive [3]. When one or both of these receptors are 

found to be present, the patient is diagnosed as having hormone receptor-positive breast cancer. Hormone 

receptor-positive breast cancers tend to be less aggressive and have a better short-term outlook than 

hormone receptor-negative breast cancers, largely because of drugs that have been developed to target the 

receptors or the hormones themselves.  

HER2 is overexpressed in 20-30% of breast cancers. It is associated with more aggressive disease, 

higher recurrence rate and increased mortality [99, 131, 132]. HER2 is member of the human epidermal growth 

factor receptor family, encoded by the ERBB2 gene. This family of receptors are membrane-bound 

receptor tyrosine kinases; they all contain extracellular ligand-binding domains, a transmembrane domain, 

and an intracellular domain capable of interacting with a multitude of signaling molecules. All members 

of the family exhibit both ligand-bound and ligand-independent activity. HER2 has no known ligand [133] 

and has the ability to heterodimerize with the other members of the epidermal growth factor receptor 

family. Dimerization results in autophosphorylation of tyrosine kinase residues within the cytoplasmic 

domain and initiation of several signaling pathways involved in cell proliferation and apoptosis 
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suppression, including, MAPK, PI3K/Akt, PKC and STAT, among others. Overexpression of HER2 has 

become one of the hallmark clinical markers screened for in breast cancer patients. Biopsy samples are 

often tested for HER2 using IHC giving results of either 0, 1+, 2+ or 3+. An assignment of 0-1+ means 

the cancer is HER2 negative, 2+ is an inconclusive result and further testing with FISH is often required, 

and 3+ is classed as HER2 positive. There are targeted therapies available for HER2 positive patients, 

such as trastuzumab (HerceptinÒ).  

There are several problems with the current handling and treatment of breast cancers. One being 

that often patients are screened only once to identify the phenotype of their breast cancer, but studies have 

shown that ER, PR and HER2 status can change throughout tumor progression [134]. Another issue is that 

although there have been many adjuvant therapies developed attempting to target the breast cancer more 

specifically based on hormone receptor status and HER2 status, they still tend to be too general and result 

in unfavorable side effects. For example, selective estrogen receptor modulators (SERMs), including 

Tamoxifen and Toremifene, block estrogen receptors in breast tissue suppressing estrogen/receptor 

activity. SERMs, however, upregulate the actions of estrogen in other tissues such as bone, liver and 

uterine cells and have been shown to lead to uterine cancer, blood clots and stroke. Selective estrogen 

receptor degraders (SERDs), such as Fulvestrant discussed in Chapter 2, are another hormone receptor 

targeted therapy. SERDs target all ERs in the body, blocking and damaging the receptor. They have only 

been approved by the FDA for use in post-menopausal women with late stage metastatic cancer and have 

been associated with osteoporosis. Aromatase inhibitors (AIs) block the production of estrogen by 

targeting the aromatase enzyme. Ovarian suppression can be achieved through oophorectomy, LHRH 

analogs and chemotherapy drugs. Both AIs and ovarian suppression target estrogen production giving rise 

to symptoms of menopause. More specifically targeted therapies for hormone receptor positive patients 

include CDK4/6 inhibitors, which block cell division, and Everolimus, which blocks mTOR, a protein 
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involved in cell proliferation. Both of these targeted therapies are only used to treat post-menopausal 

women with advanced breast cancer and have severe side effects including low blood cell counts and 

increased risk of serious infection. HER2 targeted therapies are also available in the form of monoclonal 

antibodies targeting the receptor and result in the block of ligand binding and tyrosine kinase inhibitors, 

which prevent phosphorylation and subsequent activation of the signal transduction pathways, leading to 

apoptosis and decreased proliferation. Overall, these drugs can lead to heart damage and congestive heart 

failure [1].   

 Another common proliferation marker screened for in many cancers, including breast, is the 

nuclear protein Ki-67. It is present during all active phases of the cells cycle (G1, S, G2, M) but absent 

during quiescence (G0). Ki-67 levels are low in G1 and S phases but peak early in mitosis leading to its 

strong association with cell proliferation and growth. Studies have identified Ki-67 involvement in the 

early stages of polymerase I-dependent ribosomal RNA synthesis, but beyond this its exact role is obscure 

and there is little published work on its overall function [135, 136]. The Ki-67 labelling index is used to 

classify tumors as low, intermediate or highly proliferating according to nuclear staining of Ki-67 of 

≤15%, 16-30%, and >30%. Ki-67 status is used to plan patient treatment and as a predictor of response 

to therapy. 

 As described in Chapter 1, androgens have been shown to play a protective role in breast 

cancer and have been directly correlated with DAX-1 expression [65, 66]. However, the research available 

examining androgens and AR actions in breast cancer is limited. From our own findings (Chapter 2) and 

in a study by Holter et al., AR is downregulated when DAX-1 is overexpressed. Other studies have shown 

that AR may repress ER through DAX-1 activity.  In MCF7 cells (AR/ERa positive), expression of 

DAX-1 has been shown to be induced by ligand bound AR, and in association with the co-repressor 

N-CoR, it binds to the SF-1/LRH-1 region of the aromatase promoter suppressing its activity and hence 
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ER activity [67]. When ERa positive breast cancer cells were treated with non-aromatizable androgen 5-α-

dihydrotestosterone (DHT), DAX-1 was seen to be recruited by AR and mediated a reduction in Cyclin 

D1 activity slowing proliferation [49, 67]. From these studies, it is evident that AR and DAX-1 are working 

together to negatively regulate breast cancer progression; however, the mechanisms by which this occurs 

remain unclear.  

In this chapter, we investigate DAX-1 expression in invasive ductal carcinoma subjects expressing 

major breast cancer markers. Correlations between DAX-1 expression and the clinical stage were then 

analyzed, as well as ER, PR, AR, Ki67 and HER2 antigen expression.  
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Materials and Methods 

Immunohistochemistry (IHC) 

A breast cancer tissue microarray was obtained from US Biomax inc. (BR1504a) (Figure 3.1). Table 3.2 

provides a breakdown of the patient demographics. The 4µm sections were deparaffinized and subjected 

to heat induced epitope retrieval. Immunohistochemical staining was then performed on the array using 

the following primary antibodies: anti-NR0B1/DAX1 raised in rabbit (ab60144 Abcam, SF, CA, USA) 

and anti-Androgen Receptor (AR V7 specific) raised in mouse (AR 441 ThermoFisher Scientific, 

Waltham, MA, USA). After incubation overnight, secondary antibodies, Goat anti-rabbit IgG conjugated 

with FITC (31635 ThermoFisher Scientific, Waltham, MA, USA) and Goat anti-mouse IgG conjugated 

with APC-Alexa Fluor 750 conjugate (21006 ThermoFisher Scientific, Waltham, MA, USA), were added 

to the array. The array was mounted using ProLongä Gold Antifade Mountant with DAPI (Molecular 

Probesâ by Life Technologiesä, Eugene, OR) as a nuclear stain. Images were taken using a Zeiss A1 

Axio Observer fluorescence microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY) at x20 

magnification with Zen digital imaging software (Carl Zeiss Microscopy, LLC, Thornwood, NY) and 

analyzed using ImageJ software. 
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Figure 3.1: Breast Cancer Tissue Microarray Panel Display. Breast cancer tissue microarray with cancer adjacent breast 
tissue, containing 70 cases of invasive ductal carcinoma, 4 cases of cancer adjacent breast tissue and 1 case of normal breast 
tissue, duplicate cores per case. Bre = Breast tissue, Adr = Adrenal gland tissue [137]. 

 

Table 3.2: Demographic data of the study participants. 

 

DISEASE STAGE AGE (YEARS) NUMBER 

I 45-62 3 

IIA 31-70 32 

IIB 27-75 18 

IIIA 47-59 4 

IIIB 34-69 10 

IV 50-58 3 

 

 
Bioinformatics  

The results shown here are in whole or part based upon data generated by the Breast Cancer portion of 

The Cancer Genome Atlas (TCGA) Research Network: http://cancergenome.nih.gov/. Analysis was 
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conducted in ‘R’, a free language and environment for statistical computing, using the TCGAbiolinks 

package to download and manipulate data from the TCGA database[138, 139]. An overview of the data is 

available online: https://wiki.nci.nih.gov/display/tcga/rnaseq+version+2.  
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Results 

 

DAX-1 expression during progressive stages of invasive ductal carcinoma compared with other breast 

cancer markers 

A tissue array containing breast tumor samples from 70 patients at progressive stages of invasive 

ductal carcinoma, in duplicate, was stained for the presence of DAX-1 and AR. Tissue was counterstained 

with DAPI to visualize the cells nuclear content. Patient age, pathology diagnosis, tumor grade, stage, 

TNM score, ER, PR, Ki67 and Her2 status were all known. The percentage of positive staining for both 

DAX-1 and AR on sections of the same disease stage varied widely. Samples were classed as receptor 

positive if there was > 0.5% staining. DAX-1 positive samples were identified at all stages of disease. AR 

positive samples were seen at all disease stages with the exception of stage IIIA samples. DAX-1 

expression was detected wherever AR was and occasionally seen in other areas. Staining of both receptors 

was found to be exclusively nuclear (Figure 3.2). 

 

  



	 76	

Disease Stage DAX-1 AR Merged with DAPI 

I 

   

IIA 

   

IIB 

   

IIIA 

   

IIIB 

   

IV 

   
 
Figure 3.2: Representative IHC protein staining during progressive stages of invasive ductal carcinoma. Left column: 
DAX-1 staining. Middle column: AR staining. Right column: Merged DAX-1, AR ad DAPI staining. Positive staining for 
DAX-1 was found at every stage of disease, AR was not seen at stage IIIA. DAX-1 expression was detected wherever AR was 
and occasionally seen in other areas.  
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Around 70% of patients with earlier stage disease (I-IIB) were DAX-1 positive whereas only 20 to 30% 

of patients expressed DAX-1 at later stages (IIIA-IV) (Figure 3.3A). AR expression follows a similar 

pattern to DAX-1 with more patients being positive at earlier stages than later (Figure 3.3B). No AR 

expression was seen at stage IIIA. ER expression remains relatively constant throughout stage at around 

50 – 70% of patients (Figure 3.3C). PR expression falls as disease stage increases with the exception of 

stage IIIA where around 50% of patients are PR positive (Figure 3.3D). It appears that Ki67 is expressed 

more frequently at higher than normal levels during early disease stage and drops later in the development 

of the disease (Figure 3.3E). High HER2 expression (3+ only) was observed at different stages of disease 

compared with DAX-1 expression (Fig. 3.3F). With the exception of stage I where there is no Her2 

expression, around 20 – 30% of patients express HER2 at all other stages. Due to low sample size within 

some of the stages from the microarray described above, we employed bioinformatics techniques to 

investigate the same parameters on a far greater scale. 
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A. 

 

B. 

 
 

C. 

 

D. 

 

E. 

 

F. 

 
 
Figure 3.3: DAX-1 expression compared with other breast cancer markers during progressive stages of invasive ductal 
carcinoma. Data summarized from the invasive ductal carcinoma array (US Biomax inc. BR1504a) and categorized into 
disease stage. A: Percentage of patients showing positive IHC staining for DAX-1. B: Percentage of patients showing positive 
IHC staining for AR. C: Percentage of patients showing positive IHC staining for ER.  D: Percentage of patients showing 
positive IHC staining for PR. E. Percentage of patients showing positive IHC staining for Ki67 (only intermediate and high 
levels on the Ki-67 labelling index). F: Percentage of patients showing positive IHC staining for HER2 (3+ only). 
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DAX-1 expression in receptor positive and negative breast cancer patients during progressive stages of 

disease 

Patient data was pooled from The Cancer Genome Atlas (TCGA) Research Network and analysis was 

conducted in ‘R’, a free language and environment for statistical computing. A total of 1,098 patients were 

found to have been screened for the DAX-1 gene, NR0B1, and many other markers. DAX-1 expression 

was measured in RNASeq reads, which is a measure of the quantity of mRNA in a sample at the time of 

RNA extraction. To study correlations between DAX-1 expression and the other common breast cancer 

biomarker genes, ESR1 (ERa), PGR (PR) and ERBB2 (HER2), the data was analyzed by first identifying 

DAX-1 expression levels in the biomarker positive and negative populations then subcategorizing these 

into progressive breast cancer stage, from I to IV. Comparatively low levels of DAX-1 expression (less 

than 50 RNASeq reads) were seen in both ESR1 and PGR positive patients at all oncological stages. ESR1 

and PGR negative patients initially showed comparatively high DAX-1 expression levels during earlier 

oncological stages, which then decreased with progressive stage (Figures 3.4 & 3.5).  

 

 

Figure 3.4: DAX-1 expression in ESR1 (ERa) positive and negative patients categorized by breast cancer stage: Mean 
RNASeq reads for DAX-1 expression are shown for breast cancer patients divided by ESR1 status and oncology stage. Higher 
expression of DAX-1 is seen in ESR1 negative patients regardless of oncology stage. DAX-1 expression drops with progressive 
oncology stage in ESR1 negative patients. Error bars represent standard deviation of the mean. 
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Figure 3.5: DAX-1 expression in PGR (PR) positive and negative patients categorized by breast cancer stage: Mean 
RNASeq reads for DAX-1 expression are shown for breast cancer patients divided by PGR status and oncology stage. Higher 
expression of DAX-1 is seen in PGR negative patients regardless of oncology stage. DAX-1 expression drops with progressive 
oncology stage in PGR negative patients. Error bars represent standard deviation of the mean. 
 

Levels of DAX-1 expression were low, less than 60 RNASeq reads, in ERBB2 positive and negative 

patients. In ERBB2 positive patients DAX-1 expression as the highest at stage I (with a mean of 40 

RNASeq reads) and dropped by approximately half in stage II and III patients and decreased again in stage 

IV patients. ERBB2 negative patients show very little DAX-1 expression in stage I patients, increasing to 

nearly 40 RNASeq reads in stage II patients before falling to very low levels again in later stage patients 

(Figure 3.6). 
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Figure 3.6: DAX-1 expression in HER2 positive and negative patients categorized by breast cancer stage: Mean RNASeq 
reads for DAX-1 expression are shown for breast cancer patients divided by HER2 status and oncology stage. Higher expression 
of DAX-1 is seen in HER2 positive patients at all stages of oncology with the exception stage II where HER2 negative patients 
show higher DAX-1 expression. DAX-1 expression drops with progressive oncology stage in HER2 positive patients. Error 
bars represent standard deviation of the mean. 

 
 
 

 
 

  

ERBB2	Positive ERBB2	Negative 
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Discussion 

A small number of studies[50, 51] and unpublished data from our own laboratory[53] have shown 

DAX-1 to be correlated with smaller tumor size, earlier disease stage and increased survival rates in 

several cancers including breast. We have also shown that DAX-1 is a suppressor of tumorigenesis in 

MCF7 breast cancer cells. To explore this relationship further, we looked at the expression of DAX-1 in 

tumor tissue samples from patients with progressive stages of invasive ductal carcinoma and tumor 

samples from the TCGA database also at progressive stages of breast cancer. From the tissue samples, we 

found that the proportion of patients with DAX-1 positive tumors was high (approximately 70%) in stage 

I and II, and decreased to 30 - 40% in stage III and IV tumors. The tumor samples from the TCGA database 

showed that in certain subpopulations, i.e. ER and PR negative and HER2 positive patients, DAX-1 

expression levels were higher at earlier stages of disease. These findings agree with previous findings 

mentioned above. 

AR is emerging as an important steroid hormone receptor in the progression of breast cancer and 

has been shown to interact with DAX-1 to suppress cyclin D1 expression[49, 67]. Therefore, we examined 

the correlation between DAX-1 and AR in the IDC tissue array. DAX-1 and AR expression were found 

together in the majority of patients, with the exception of a small number expressing DAX-1 only. The 

expression was seen in the same locations on the tissue samples and were exclusively nuclear, providing 

evidence that both proteins co-localize. Unfortunately, no data were available for AR expression in the 

TCGA database so we were unable to look at this correlation in a wider patient cohort.  

 We next wanted to explore the correlation between other common breast cancer biomarkers 

including ER, PR, HER2, Ki-67. Our tissue array showed ER expression to be consistently high, at around 

50 - 70%, across the oncological stages. This is as we would expect, knowing that around two thirds of 

breast cancer tumors are ER positive. Similarly, PR was expressed consistently throughout oncological 
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stage but in a lower proportion of patients than ER. Again, this fit with what is already known, that is a 

lower percentage of patients are PR positive (around 65%). HER2 and Ki-67 are both expressed under 

normal circumstances in the breast but at elevated levels in some breast cancers. Therefore, when 

screening patients for these markers, scoring systems are applied as described above. In line with clinical 

standards, we only took patients with HER2 grade 3+ and Ki-67 levels greater than 16% as positive for 

these markers. Only 1 in 5 breast tumors express high levels of HER2 and our staining showed a similar 

pattern to this with some stages having 20 - 40% of patients expressing the marker and other stages with 

no patients being positive. Ki-67 showed similarly sporadic expression across the oncology stages. 

 Besides the DAX-1/AR correlation, no other strong correlations were seen between the proportion 

of patients expressing the other breast cancer markers and DAX-1. A drawback to this study was the 

limited sample size (Table 4.2); e.g. at some stages there were only three representative patients. This 

restricted the analysis that could be performed with the data. Therefore, we employed bioinformatics 

techniques to investigate further. Expression levels for DAX-1, ER, PR and HER2 in 1,098 breast cancer 

patients across the range of oncological stages, were available and we found DAX-1 expression levels to 

be significantly higher in ER and PR negative patients compared with positive patients. The highest levels 

of DAX-1 expression were seen in stage I patients. DAX-1 expression progressively decreased through 

the stages to its lowest levels at stage IV. DAX-1 expression in HER2 positive patients was at a similar 

level to those found in the receptor positive patients but did show the progressive decrease in DAX-1 

expression as oncological stage increased. These data show that DAX-1 has the potential to be utilized as 

an additional clinical biomarker when assessing patients for prognosis and planning treatments. 

Specifically, if a patient is DAX-1 negative in early stage breast cancer this could indicate a more 

aggressive suppression of cell proliferation may be beneficial. Conversely if the patient is DAX-1 positive 

at early stages then a less aggressive form of treatment might be the best option, limiting the many side 
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effects of therapeutics. DAX-1 may even have the potential for use as a therapeutic itself. For example, if 

expression of DAX-1 could be re-activated in patients that have lost its expression, such as later stage 

patients and those that are hormone receptor positive, then cancer progression could potentially be 

suppressed. Further investigation into the mechanism of DAX-1s action and analysis of a larger sample 

size of breast cancer patients DAX-1 expression levels are needed to fully explore its potential as a 

biomarker and/or a therapeutic. 
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Thesis Summary 

 The research conducted throughout this thesis highlight some of the factors contributing to breast 

cancer biology. Biological processes are usually never simple, and breast cancer is no exception. Here we 

touched on breast cancer cell growth, proliferation and metastasis but there are many other processes at 

play. The intricacies of the cross-talk between proteins within the cell at any one time are complex and 

the cells response to intrinsic and extrinsic factors mediate its outcome. Development of more effective 

ways to fight this disease is based on our ability to untangle and understand these pathways and 

mechanisms of action. 

 The role of DAX-1 in breast cancer cells is poorly understood but previous research has shown 

that it does play a role in potentially more than one way. That, with the added complexity of the different 

characteristics this disease can take on, makes for a hugely convoluted area of study. The focus of this 

thesis has been on the role of DAX-1 in breast cancer cell proliferation and metastasis because these are 

two of the most important mechanisms by which the disease progresses. We found that when DAX-1 is 

overexpressed in breast cancer cells, proliferation rate drops and conversely when DAX-1 expression is 

knocked down in normal breast cells, proliferation rates increase. When the estrogen receptor antagonist 

Fulvestrant was introduced to these cells, no further potentiation of DAX-1s effects were seen suggesting 

that DAX-1s suppressive influence on proliferation is lost when ER is blocked. We also identified many 

novel key genes involved in cell growth, proliferation and metastasis, whose transcription is modulated 

by DAX-1. The most significant changes in gene expression were downregulation of SFN, ITGB3 and 

RORB and upregulation of ERS1 and MAFF. The upregulation of gene expression is of particular interest 

as traditionally DAX-1 has been known to act as a suppressor of gene transcription. These findings suggest 

a potential direct effect of DAX-1 in the growth of breast cancer cells. 
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Through our IHC and bioinformatics data, we found DAX-1 to be a marker commonly expressed 

in breast cancer cells. Expression was more frequently seen during earlier stages of disease and in ER and 

PR negative and HER2 positive patients. In addition, we found that DAX-1 and AR expression almost 

always occurred together and co-localized in the nucleus. With the addition of more AR and DAX-1 

expression data in breast cancers, find more definitive associations between the two. 

 Our findings have identified DAX-1 as playing an important role in breast cancer and as such 

shows potential for use clinically. Based on our data demonstrating DAX-1’s role in controlling cell 

proliferation, it could be that DAX-1 would be a useful biomarker when planning patient treatments. For 

example, if DAX-1 expression was still present in later stage patients then clinicians may consider 

alternatives to ER inhibitors to allow DAX-1 to continue is suppression of cell proliferation by acting 

through the ER. DAX-1 also holds promise as a targeted therapeutic. If normal levels of DAX-1 expression 

could be reintroduced to cells that had lost it, tumor progression may be slowed through both suppression 

of cell growth and proliferation and limit cell migration and metastasis. Whatever its potential, DAX-1’s 

role in breast cancer warrants further investigation, and this work has lain a foundation upon which to 

expand our understanding of it mechanisms of action in this context.  
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Appendix I 

 

Expression of DAX-1 in human adenocarcinoma cells (MCF-7) by adenoviral transduction. 

Adenoviruses are replication deficient due to the deletion of their E1 gene, involved in replication of the 

virus, and E3 gene, involved in modulation the host immune response[140]. Adenoviruses retain the ability 

to infect cells but, are unable to produce new viral particles (virons). As shown in Figure 2.3, attachment 

of the viral particles to the cell is mediated by high affinity binding to the Coxsackie-Adenovirus Receptor 

(CAR). Internalization occurs through endocytosis upon interaction with αV-integrins. Via transport 

mechanisms provided by microtubules, the adenovirus reaches the host nucleus and injects its DNA. After 

entering the nucleus, the viral DNA remains epichromosomal and, therefore does not integrate into the 

host cell and does not activate or inactivate the host genes[140]. The viral DNA is then transcribed by the 

cells own mechanisms and the DAX-1 protein is expressed in the cells where it would not otherwise have 

been. As this is not a stable line and DAX-1 is only expressed transiently, cells were treated with the 

adenovirus at the beginning of each experiment. 
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Figure AI: Simplified Illustration of the Adenovirus Transduction Method. Virus particles lacking the ability to replicate 
and containing the NR0B1 gene, are introduced to the cell culture. The virus particle binds to the cell via the CAR and is 
internalized by endocytosis. The endosome moves through the cytoplasm to the nucleus where the viral DNA is released and 
transcription can occur. DAX-1 mRNA moves out of the nucleus to be translated into a protein by the ribosome. 
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Appendix II  

 

Knockout of DAX-1 in human epithelial breast cells (MCF10A) by CRISPR-Cas9 

CRISPR/Cas9 knockout plasmids were designed containing a pool of three plasmids, each 

encoding the Cas9 nuclease and a DAX-1 specific 20 nucleotide guide RNA (gRNA) (Figure 2.6). Cells, 

in this case MCF10A cells, were transfected with the plasmids. Expression of the plasmid by the cell gives 

rise to short CRISPR RNAs (crRNA) that guide the Cas9 protein to it complimentary DNA sequence. The  

Cas9/crRNA complex binds to a proto-spacer adjacent motif (PAM) site and unwinds the DNA. The 

crRNA binds to the target DAX-1 locus in the genomic DNA adjacent to the PAM site. Cas9 cleaves the 

5’ exon of the gene targeted by the three gRNA plasmids at three specific sites and the DAX-1 gene is 

disrupted. These breaks in the DNA can be repaired via the homogenous directed repair (HDR) pathway. 

HDR plasmids (Figure 2.7) are co-transfected with the CRISPR/Cas9 KO plasmids and contain a 

puromycin resistance gene that is used for selection of cells where successful Cas9-induced DNA cleavage 

has occurred. 
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Figure AII.1: CRISPR-Cas9 knockout mechanism. 1. CRISPR/Cas9 plasmid is transfected into target cells. 2. Expression 
of the plasmid produces the crRNA guide strand. 3. crRNA binds to the activated Cas9. 4. The crRNA identifies the target 
sequence on the genomic DNA, Cas9 unwinds the unwinds the DNA and crRNA binds. 5. Double stranded cleavage of the 
target DNA occurs. 6. The DNA is repaired by HDR. 
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1. 2. 

 

 

Figure AII.2: CRISPR/Cas9 knockout plasmids & HDR plasmid. 1. CRISPR/Cas9 Knockout plasmids. A pool of 3 
plasmids containing sequences encoding for the Cas9 nuclease and target-specific 20 nt guide RNA. 2. Homology Directed 
Repair (HDR) Plasmid containing a puromycin resistance gene to allow for selection of cells successfully transfected with the 
DAX-1 CRISPR/Cas9 KO plasmid [141].  
 
 

 MCF10A cells were treated with a DAX-1 CRISPR/Cas9 KO plasmid in plasmid transfection 

medium and co-transfected with an HDR plasmid containing a puromycin resistance gene. Cells were 

incubated for 72 hours and those that were successfully transfected were identified using puromycin 

selection. 
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Appendix III 

 

Knockdown of DAX-1 in human epithelial breast cells (MCF10A) by RNAi  

The mechanism of action of siRNA in this case is as follows (Figure AIII): a long double stranded 

RNA (dsRNA) coding for the DAX-1 gene is introduced to the cell by means of lipophilic transfection. 

Once in the cell dsRNA is cleaved by Dicer, an endo-ribonuclease, into short interfering (siRNA) 

duplexes, approximately 21 nucleotides long. The siRNA then binds with an Argonaut (Ago) protein and 

is unwound to form single stranded siRNA known as the guide strand. The Ago/siRNA complex bind with 

other proteins to form the RNA induced silencing complex (RISC). The guide siRNA directs the RISC 

complex to the complimentary DAX-1 mRNA where it binds and Ago cleaves the mRNA which will then 

be degraded by the cells own mechanisms and the gene will be silenced.  

 

Figure AIII: siRNA Mechanism. dsRNA is cleaved by Dicer to produce siRNA duplexes which then bind to Ago 
which unwinds the siRNA releasing one copy to be degraded and retaining the other copy as the guide siRNA. (*) other 
proteins within the cells then bind to form the RISC complex which is guided to the complementary mRNA by the guide 
siRNA to form the siRNA/mRNA complex. The mRNA is cleaved by Ago and the gene is silenced [142]. 
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Appendix IV 
 
 

EdU Assay 

EdU (5-ethynyl-2’deoxyuridine) is a modified nucleoside thymidine analogue that, when cultured with 

cells, becomes incorporated in newly synthesized DNA. Once cells have been cultured with EdU for 24 

hours they are fixed and detergent permeabilization allows the small molecule-based Click-iTÒ EdU 

detection reagent to gain access to the DNA. The click reaction is a copper catalyzed covalent reaction 

between an azide and an alkyne which attaches a fluorescent dye, specifically Alex Fluor 488 in our case, 

to the EdU molecule (Figure AIV.1). 

 

 

Figure AIV.1: EdU HCS mechanism of action. EdU is incorporated into newly synthesized DNA. Once cells have been 
cultured with EdU for 24 hours they are fixed and permeabilized. Using a highly specific click-iT reaction the EdU molecules 
become labelled with a fluorescent dye, specifically Alex Fluor 488 in our case. Cells are then counter stained with the nuclear 
dye, DAPI, visualized under a Keyence BZ-9000E microscope with the BZ viewer and analyzed using BZ analyzer software. 
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Figure AIV.2: Detection of the incorporated EdU with the Alexa FluorÒ. Alexa Fluor azide binds with DNA incorporated 
EdU molecules via the Click-iTÒ reaction allowing for visualization of newly synthesized DNA [143]. 
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Appendix V 

Lipophilic transfection 

 

Figure AV: Lipophilic transfection. Liposomes are synthetic analogues of the phospholipid bilayer, that form spherical 
structures under aqueous conditions and encapsulate nucleic acids in the presence of free DNA. Access to the cell is gained by 
endocytosis and the liposome-DNA complex is moved through the cytoplasm to the nucleus in an endosome. The DNA is then 
released into the nucleus and transiently transcribed by the cells own mechanisms.  
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