
The University of San Francisco
USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center

Environmental Science College of Arts and Sciences

2017

Smoothing-based Compressed State Kalman Filter
for Joint State-parameter Estimation: Applications
in Reservoir Characterization and CO2 Storage
Monitoring
Y. J. Li

Amalia Kokkinaki
University of San Francisco, akokkinaki@usfca.edu

E F. Darve

P K. Kitanidis

Follow this and additional works at: https://repository.usfca.edu/envs

Part of the Water Resource Management Commons

This Article is brought to you for free and open access by the College of Arts and Sciences at USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center. It has been accepted for inclusion in Environmental Science by an authorized administrator of USF Scholarship: a digital repository @
Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

Recommended Citation
Li, Y. J., A. Kokkinaki, E. F. Darve, and P. K. Kitanidis (2017), Smoothing-based compressed state Kalman filter for joint state-
parameter estimation: Applications in reservoir characterization and CO2 storage monitoring, Water Resour. Res., 53, 7190–7207,
doi:10.1002/2016WR020168.

https://repository.usfca.edu?utm_source=repository.usfca.edu%2Fenvs%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.usfca.edu?utm_source=repository.usfca.edu%2Fenvs%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.usfca.edu/envs?utm_source=repository.usfca.edu%2Fenvs%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.usfca.edu/artsci?utm_source=repository.usfca.edu%2Fenvs%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.usfca.edu/envs?utm_source=repository.usfca.edu%2Fenvs%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1057?utm_source=repository.usfca.edu%2Fenvs%2F39&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@usfca.edu


RESEARCH ARTICLE
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Smoothing-based compressed state Kalman filter for joint
state-parameter estimation: Applications in reservoir
characterization and CO2 storage monitoring
Y. J. Li1 , Amalia Kokkinaki2 , Eric F. Darve3,4, and Peter K. Kitanidis1,3

1Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA, 2Department of
Environmental Science, University of San Francisco, San Francisco, California, USA, 3Institute for Computational and
Mathematical Engineering, Jen-Hsun Huang Engineering Center, Stanford University, Stanford, California, USA,
4Department of Mechanical Engineering, Stanford University, Stanford, California, USA

Abstract The operation of most engineered hydrogeological systems relies on simulating physical
processes using numerical models with uncertain parameters and initial conditions. Predictions by such
uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate
monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an
objective function about the model prediction and applying a linear correction to this prediction. However,
if model parameters and initial conditions are uncertain, the optimization problem becomes strongly
nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of
one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and
reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state
Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations
are used to correct the state and parameters one step back in time, with a nonensemble covariance
compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional
state and parameter space. Numerical experiments show that when model parameters are uncertain and
the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead
smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter
estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the
same computational cost, combining one step ahead smoothing and nonensemble compression is
advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with
sharp moving fronts.

Plain Language Summary Geologic CO2 storage is a promising technology to reduce the CO2 in
the atmosphere by injecting them into the deep saline reservoir for permanent storage. To assure safe oper-
ations and effective containment of CO2, numerical models are developed to accurately predict the CO2

behaviors underground in order to make informed decisions, such as adjusting the volume and rate of
injection to prevent fracturing the surrounding rock. However, because of our limited knowledge about the
reservoir properties, often the numerical model is highly uncertain. Statistical techniques like Kalman filter-
ing use sensor data to reduce the prediction uncertainty in the numerical model by correcting the unknown
reservoir properties recursively in time when data becomes available. The amount of correction is deter-
mined by solving an optimization problem. However, it is computationally intractable to find feasible
solutions to such problems if reservoir properties to be estimated are high dimensional. Moreover, when
the optimization problem is nonlinear, Kalman-type approaches can give unphysical results. By improving
the way information is extracted from the sensor data, we present a new Kalman-type approach that can
solve this optimization problem with better accuracy and reduced uncertainty.

1. Introduction

The major uncertainty in predicting fluid flow in the subsurface with numerical models arises from the het-
erogeneity in geologic parameters, which is inherently difficult to observe directly. This has implications for
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a wide range of applications, like groundwater storage [e.g., Zhou et al., 2010], groundwater contamination
[e.g., Snodgrass and Kitanidis, 1997], and storage of hazardous materials in the subsurface [e.g., Shapiro,
1996]. One specific application in the latter category is the storage of carbon dioxide (CO2) in subsurface for-
mations as a climate change mitigation measure. The permanence, and thereby the safety of such storage
is determined by the geologic properties of the utilized formations, with failures increasing the risks for
leakage and groundwater contamination. To reduce these risks, continuous monitoring of the spatial distri-
bution of the injected CO2 is required.

The location of injected CO2 can be estimated using data assimilation, a collection of powerful statistical
techniques that estimate the state of a system using direct or indirect measurements, such as information
collected at wells in the case of CO2 injection. Although data assimilation techniques are traditionally used
for state estimation, they can be adapted by using state augmentation, such that the unknowns include
both the state variables and model parameters [e.g., Naevdal et al., 2003]. In the CO2 storage case, this
would allow the estimation of CO2 saturation in space and simultaneous estimation of the heterogeneous
rock properties (e.g., permeability).

Direct application of conventional data assimilation techniques, like the extended Kalman filter (EKF), with
state augmentation for joint state-parameter estimation is challenging. First, the EKF is computationally pro-
hibitive for large-scale systems because its implementation operates directly on the full-order covariance
matrix, and the resulting computational cost scales with the squared number of unknowns. For a three-
dimensional reservoir that is coarsely discretized, the unknowns parameters may be in excess of 106, and
computations, which involve numerous runs of reservoir simulators, could take days or even months
depending on site-specific conditions. This problem has been handled with low-rank filters such as the
ensemble Kalman filter (EnKF) [Evensen, 1994; Burgers et al., 1998] and the compressed state Kalman filter
(CSKF) [Kitanidis, 2015; Li et al., 2015]. Ensemble-based methods have been shown to suffer from filter
inbreeding [Hendricks Franssen and Kinzelbach, 2008] and variance reduction problem [Lorenc, 2003]. Most
importantly, in both ensemble methods like the EnKF, and in nonensemble methods, like the CSKF, that fol-
low the conventional prediction-correction sequence, the extension to combined state and parameter esti-
mation (e.g., permeability and saturation) can result in physical inconsistencies between the estimated
states and parameters [Wen and Chen, 2006].

Physical inconsistencies are usually manifested as state predictions that are not physically possible for the
corresponding estimated parameter field. Such inconsistencies between estimated parameters and states
are caused by errors in an approximate linear correction in the state variables that occurs during the
updating step. An important practical implication of physical inconsistencies in estimated states and
parameters is that the filter becomes unstable; such cases have been reported using the joint EnKF [e.g.,
Moradkhani et al., 2005; Wen and Chen, 2007]. Unphysical linear corrections, also referred to as overshoot-
ing, are often attributed to strong nonlinearities in the relationship between measurements and
unknowns. The problem is exacerbated when model parameters and initial conditions are poorly known,
in which case significant linearization errors are expected, since Kalman filter methods were designed
and are expected to work for problems that, at least locally, vary linearly. Linearization errors can be
reduced through iterative approaches, where linearization points are improved successively by repeti-
tively conditioning the state variables on the same observations. This, however, increases the computa-
tional cost, as several iterations may be needed until convergence is achieved [Bar-Shalom and Li, 1993;
Kitanidis, 1995].

Noniterative methods that address the physical inconsistency problem often add a heuristic step to the
conventional prediction-correction filtering process, that involves generating the state variables from the
physical model as the final step of the estimation. For example, Wen and Chen [2006] included a third step
in the prediction-correction Kalman filter recurrence, the verification step, where the updated parameters
were used as input for an additional simulation to avoid nonphysical updates in the state variables. Gu and
Oliver [2007] used an approach, where again, forward simulations were restarted after permeabilities were
updated to obtain the final state estimates to reduce physical inconsistencies. This procedure is often
applied even for iterative approaches to avoid overshooting [Gu and Oliver, 2007; Man et al., 2016]. How-
ever, such fixes result in algorithms that are no longer consistent with the Bayesian framework [Hendricks
Franssen and Kinzelbach, 2008].
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Dual KF approaches, designed as two interactive filters that update state and model parameters separately,
have been introduced to reduce the physical inconsistency. A dual extended Kalman filter was applied to
neural networks models to estimate signals (states) and weights (parameters) separately by Wan and Nelson
[2001]. A dual EnKF was applied for joint state-parameter estimation by first updating the parameters and
then applying the EnKF again with the updated parameters to obtain the final state estimation [Moradkhani
et al., 2005]. A similar two-step updating approach was used by Hendricks Franssen and Kinzelbach [2008]
and then by Nowak [2009] where the final state was updated via simulation with the updated parameter
field instead of filtering to ensure physically consistent state and parameter estimates. Such approaches
resolve the physical inconsistency problems that arise from the joint updating of states and parameters,
however, deviate from the formal Bayesian filtering framework.

Recently, Desbouvries et al. [2011], followed by Gharamti et al. [2015] showed that the previously heuristi-
cally implemented dual filtering concept can be derived within the Bayesian framework by introducing
one-step-ahead smoothing in the probabilistic formulation. Compared to the standard Kalman Filter
sequence, in which model prediction is followed by parameter updates, the one-step ahead smoothing
algorithm adopts a smoothing step that simultaneously updates states at the previous time step and
parameters and then propagates states to the next time step using a physical model. This smoothing-based
filtering approach for joint estimation of states and parameters avoids physical inconsistencies while also
being Bayesian consistent [Desbouvries et al., 2011]. However, the smoothing-based filters developed so far
are based on ensemble representations of the covariance matrix. An evaluation of one-step ahead smooth-
ing in a setting unaffected by sampling and approximation errors has not been presented in the literature,
resulting in a limited understanding of the method and its utility in data assimilation.

This paper focuses on the relevance of one-step ahead smoothing for applications of hydrogeological interest,
specifically for systems with unknown model parameters and states exhibiting sharp moving fronts. In hydro-
geological problems, sharp fronts can be observed in the transport of immiscible fluids through the heteroge-
neous porous rocks. We modify and combine one step ahead smoothing with our efficient, nonensemble-
based filtering algorithm, compressed state Kalman filter (CSKF) [Kitanidis, 2015; Li et al., 2015], to conduct
joint state and parameter estimation for a CO2 injection application. Our results suggest that the smoothing
approach is more appropriate than the conventional filtering approach for reservoir applications, where the
model prediction errors stem from uncertain model parameters and where the state variable exhibits sharp
fronts and is physically bounded. The new algorithm, termed smoothing based CSKF (sCSKF) is compared to
alternative filters with the same computational cost, namely the CSKF, the ensemble Kalman filter (EnKF), and
a two-step iterative Kalman filter for nonlinear large-scale state-parameter estimation.

The paper is organized as follows: section 2 reviews two alternative information processing sequences for
Kalman-type data assimilation techniques and shows how sCSKF is derived. Section 3 compares the filter
performance with and without smoothing for a one-dimensional numerical benchmark and sheds light on
how smoothing affects the performance of the filter with a focus on physical consistency and the reliability
of the uncertainty estimates. In section 4, we apply the one-step-ahead smoothing-based CSKF (sCSKF) for a
synthetic application in characterizing and monitoring a heterogeneous reservoir during CO2 injection.

2. Theory and Methods

2.1. Two Paths for Bayesian Recursion
Consider a state-space model that describes a nonlinear dynamic system,

xk115f ðxk ; aÞ1wk ; x; a 2 Rm31 (1)

and the measurement operator:

yk115hðxk11Þ1vk ; y 2 Rn31 (2)

with m denoting the number of unknowns and n is the number of measurements, xk is the uncertain state
at time k, and a is the vector of uncertain parameters. In the context of reservoir monitoring, equation (1)
describes the multiphase flow process where f ð�Þ is the forward model, and equation (2) relates the obser-
vations collected at the wells (e.g., flux and pressure), to the changes in the reservoir states (e.g., saturation,
pressure) through the measurement function hð�Þ. The terms wk and vk represent the model and
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measurement noise at time k, respectively. To jointly estimate both state and parameters, state augmenta-
tion can be used, combining xk and a into an augmented unknown state Xk5½xk ; a�T .

To estimate the augmented state Xk based on measurements yk, there are two ways in which information
can be processed:

P-path : Xk21jk21���!Predict
Xkjk21���!Correct

yk

Xkjk

S-path : Xk21jk21 ���!Smoothing

yk

Xk21jk���!Predict
Xkjk

where the subscript of Xkjk21 denotes state at time step k conditioned on the data up to time step k 2 1,
and the notation yk below the arrow indicates conditioning on observation. Desbouvries et al. [2011] refers
to the two alternative processing sequences as the prediction-based P-path and the smoothing-based
S-path, respectively, and we will adopt the same notation. As indicated from the graph, the P-path first
obtains a prediction of the current state through a forward model and then performs a correction to the
predicted state Xkjk21 by conditioning on the observation yk. The S-path on the other hand, first uses the
observations yk to correct the initial condition Xk21, and then predicts the current state Xk is by the forward
model using the improved initial condition Xk21jk .

The solution to the joint state-parameter filtering problem is given by finding the state Xk that maximizes
the posterior distribution pðXk jy0:k ). We can express the unknown target posterior distribution pðXk jy0:kÞ at
time k in terms of the known posterior distribution pðXk21jy0:k21Þ at time k – 1 by first applying the law of
total probability:

pðXk jy0:kÞ5
ð

pðXk ; Xk21jy0:kÞdXk21 (3)

where pðXk ; Xk21jy0:kÞ denotes that Xk and Xk21 are jointly conditioned on the data history between the ini-
tial step 0 and the current step k. Bayes rule and the conditional independence properties of the hidden
Markov chain are used recursively to obtain [Ho and Lee, 1964]:

pðXk jy0:kÞ /
ð

pðXk ; yk jXk21ÞpðXk21jy0:k21ÞdXk21 (4)

Then, given the posterior density pðXk21jy0:k21Þ at time k 2 1, the posterior density pðXk jy0:kÞ can be com-
puted by expressing the transition probability density function pðXk ; yk jXk21Þ explicitly in terms of known
information.

In calculating pðXk ; yk jXk21Þ, the observation yk can be processed in two different orders. The P-path, which is
the conventional filtering process, is based on factorizing the fundamental transition density pðXk ; yk jXk21Þ
by:

pðXk ; yk jXk21Þ5pðyk jXkÞpðXk jXk21Þ (5)

Substituting equation (5) into equation (4), we obtain the posterior density pðXk jy0:kÞ as a function of known
quantities i.e.,

pðXk jy0:kÞ / pðyk jXkÞ
ð

pðXk jXk21ÞpðXk21jy0:k21ÞdXk21 (6)

In the P-path, equation (6) is evaluated in two steps: a prediction step that first integrates over Xk21 to com-
pute the predictive density (equation (7)) and then a correction step that multiplies the result with the likeli-
hood pðyk jXkÞ to obtain the posterior density (equation (8)):

pðXk jy0:k21Þ /
ð

pðXk jXk21ÞpðXk21jy0:k21ÞdXk21 (7)

pðXk jy0:kÞ / pðyk jXkÞpðXk jy0:k21Þ (8)

The S-path is based on factorizing the fundamental transition density by (cf., equation (5)):
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pðXk ; yk jXk21Þ5pðXk jXk21; ykÞpðyk jXk21Þ (9)

Substituting equation (9) into equation (4), the posterior density takes the following form:

pðXk jy0:kÞ /
ð

pðXk jXk21; ykÞpðyk jXk21ÞpðXk21jy0:k21ÞdXk21 (10)

equation (10) is evaluated in two steps: the second and third term of the integral are evaluated in a correc-
tion or smoothing step which uses the measurements yk to correct the initial conditions Xk21, i.e.,

pðXk21jy0:kÞ / pðyk jXk21ÞpðXk21jy0:k21Þ (11)

and then a prediction step integrates over Xk21 to compute the posterior density:

pðXk jy0:kÞ /
ð

pðXk jXk21; ykÞpðXk21jy0:kÞdXk21 (12)

where pðXk jXk21; ykÞ5 pðyk jXkÞpðXk jXk21Þ
pðyk jXk21Þ , which are all known quantities at a given data assimilation step. It

should be noted that a filter using the S-path is different from a smoother. While a smoother uses both
future and past observations to update the current state, the S-path only uses the most recent observation
to characterize the state in real time.

In the context of hydrogeological data assimilation, equation (12) can be further simplified. For cases like
subsurface transport predictions where the model prediction errors are dominated by model parameter
errors (e.g., soil permeability), the dynamic noise w is comparably small, i.e., the dynamic equation (1) is
often replaced by Xk115f ðXk ; aÞ, which is deterministic. Even for cases where the dynamic noise, which
often stems from the wrong model formulation, plays a significant role, it is often difficult to quantify and
can become another error source if not quantified correctly. In such cases, the dynamic noise is considered
unknown a priori and can be incorporated as part of the unknown initial condition, i.e., Xk115f ðXk ; a;wkÞ.
For both cases, the likelihood pðyk jXkÞ equals the likelihood pðyk jXk21Þ, hence pðXk jXk21; ykÞ5
pðyk jXkÞpðXk jXk21Þ

pðyk jXk21Þ 5pðXk jXk21Þ. Similar assumptions are made by Gharamti et al. [2015] [see Gharamti et al.,

2015, equation (16)].

With these assumptions, equation (12) can be simplified to:

pðXk jy0:kÞ5
ð

pðXk jXk21ÞpðXk21jy0:kÞdXk21 (13)

Note that the above derivation is general and does not make any assumptions about the probabilistic distri-
bution. Although the information is processed in a different order in the P and the S-path, both paths give
the posterior density pðXk jy0:kÞ by updating the probabilistic density of state X from time k 2 1 to time k
using only data from time k, yk. Therefore, both paths are designed for real-time estimation. For linear prob-
lems and when the probability densities are perfectly known, the two paths give exactly the same posterior
distribution (see supporting information Text S1).

2.2. EKF Versus Smoothing-Based EKF
If the probability density functions involved in equations (5–13) can be reasonably approximated by Gauss-
ian densities and if the physical models f and h are linear, then a closed-form analytical solution to the state
estimation problem can be derived from the equations presented in the previous section. These sequences,
originally derived for linear problems, can be extended to nonlinear problems, by applying linearization
techniques. When the information is processed according to the P-path, the derivation results in the
extended Kalman filter (EKF) [Anderson and Moore, 1979].

Here, using the S-path and applying the simplifications introduced in equation (13) and linear Gaussian
assumptions, we derive the smoothing-based EKF (sEKF) (Algorithm 1). Rather than first obtaining a predic-
tion, the sEKF first improves the initial condition �X k21jk21 using the new observation (smoothing step, equa-
tion (11)) and then integrates the improved initial condition �X k21jk to obtain a posterior mean estimate
f ð�X kjkÞ (prediction step).

Water Resources Research 10.1002/2016WR020168

LI ET AL. SMOOTHING-BASED COMPRESSED STATE KF 7194



As mentioned in the previous section, sEKF is different than the filter previously proposed by Desbouvries et al.
[2011] in that it specifically applies to state space models with negligible dynamic noise term wk compared to
the parameter uncertainty, an assumption that is justifiable in a wide range of hydrogeophysical estimation
problems. The sEKF algorithm presented in this work, compared to the version derived in Desbouvries et al.
[2011], does not employ a second correction step after prediction and therefore guarantees the physical con-
sistency of states and parameters while requiring fewer evaluations of the forward model.

Both the EKF (P-path) and the sEKF (S-path) are least square estimators that linearize the nonlinear functions
f(x) about the reference point �X k21 (equation (14)) using Taylor series expansion:

xk5fkðXk21Þ � fkð�X k21Þ1FkðXk212�X k21Þ1Oð½Xk212�X k21�2Þ (14)

in which Fk is the Jacobian matrix dfk
dXk21

���
Xk215�X k21

. These approximations generate second-order linearization

errors. The smaller the linearization errors are, the more accurate is the linear Gaussian approximation. The
linearization errors may become significant for models that are highly nonlinear and where the uncertainty
of Xk21 is particularly high. For example, when f(x) is a hyperbolic function, i.e., x exhibits sharp changes, the
linear approximation by equation (14) will yield large errors at these fronts. The errors will become more sig-
nificant when the reference point �X k21 is away from the truth, e.g., when the parameters or the initial condi-
tions are poorly known.

The major difference between sEKF and EKF in terms of the linearization errors is the reference point used
for the linearization. EKF computes the Jacobian Fk about the initial state and parameters (�X k21jk21), while
sEKF computes the Jacobian about the improved initial conditions and parameters (�X k21jk ) from the
smoothing step. By constraining the optimization solution using the information in current measurements
one step ahead, sEKF gives model predictions that are both more accurate, and by design physically consis-
tent with the parameters.

2.3. The sCSKF for Joint State and Parameter Estimation
Our motivation in evaluating sEKF is to investigate its utility for monitoring CO2 injection in heterogeneous
domains. In such applications the computational cost of running an expensive reservoir simulator numerous
times becomes the computational bottleneck. In this section, we will show how covariance compression
and the matrix-free approach adopted by the Compressed State Kalman Filter (CSKF) [Kitanidis, 2015; Li
et al., 2015] can be used to reduce the computational cost of sEKF (Algorithm 1), specifically by reducing
the cost associated with constructing and updating large matrices. We refer the readers to supporting infor-
mation Text S2 for a detailed description of the CSKF algorithm. The new CSKF variant, termed smoothing
based Compressed State Kalman Filter (sCSKF), can handle cases with large number of unknowns, and is
designed for joint state-parameter estimation.

To demonstrate the algorithm, we will consider an augmented state vector with two unknown states (e.g.,
pressure and saturation) and one unknown parameter (e.g., permeability): Xk5½pk ; sk ; ak �T . The augmented
covariance matrix has a block structure, with diagonal blocks representing the covariance of each variable,
and the off-diagonal blocks representing the cross covariances:

Algorithm 1 Smoothing-based EKF (sEKF) algorithm

Smoothing step:
Forecast state ys

k5hðf ð�X k21jk21ÞÞ
Compute Jacobian

H�5
@hðf ðxÞÞ
@x

���
�X k21jk21

Kalman gain K5Rk21jk21ðH�ÞT ðR1H�Rk21jk21ðH�ÞT Þ21

Update state �X k21jk5�X k21jk211Kðyk2ys
kÞ

Update covariance Rk21jk5ðI2KH�ÞRk21jk21

Prediction step:
Compute Jacobian

F5
@f
@x

���
�X k21jk

Forecast state �X f
k5f ð�X k21jkÞ

Forecast covariance Rkjk 5FRkjk FT
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R05

Rpp Rps Rpa

RT
ps Rss Rsa

RT
pa RT

sa Raa

2
664

3
775 (15)

Factorization of equation (15) can be efficiently done following the methods described by Li et al. [2015]
such that the computational costs scale linearly with m, the number of unknowns and state dimension
by using a low-rank approximation of the state error covariance for each type of variable i with a constant
basis A.

Rij5AiCij A
T
j (16)

where Ai is a preselected dimensionless orthogonal basis for each type of unknown i, and the inner matrix
Cii is the compressed covariance for unknown state i and Cij the compressed cross covariance for state i and
j. The factorized state error covariance matrix has a block low-rank structure

R5

ApCppAT
p ApCpsAT

s ApCpaAT
a

AsCT
psAT

p AsCssAT
s AsCsaAT

a

AaCT
paAT

p AaCT
saAT

s AaCaaAT
a

2
6664

3
7775 (17)

Then, R can be written in the factorized form, i.e., R5ACAT , where

A5

Ap 0 0

0 As 0

0 0 Aa

2
664

3
775 (18)

C5

Cpp Cps Cpa

CT
ps Css Csa

CT
pa CT

sa Caa

2
664

3
775 (19)

Given the low-rank factorization form of the covariance, matrix-vector products of the Jacobian
matrix and the column of A, i.e., AH5AH�

:;i and AF5AF
:;i can be calculated efficiently using a matrix-free

approach like finite differences. The matrix-vector product AH� and AF for the augmented state can
be obtained by computing individual parts for each variable first and then assembling them as
follows:

AH�5½AH�
p ;AH�

s ;AH�
a �5

@/
@pkjk

Ap
@/
@skjk

As
@/
@akjk

Aa

� �
(20)

AF5½AF
p;AF

s ;AF
a�5

@f
@pkjk11

Ap
@f

@skjk11
As

@f
@akjk11

Aa

� �
(21)

equations (20) and (21) consist of a total of N5rankðApÞ1rankðAsÞ1rankðAaÞ calls of forward model hð�Þ
and 2N calls of forward model f ð�Þ. Replacing the matrix vector products in Algorithm 1 with the com-
pressed state covariance C and matrix-vector product AH� and AU, the sCSKF is derived. Algorithm 2 shows
the steps of the sCSKF algorithm, as well as the computational costs for each step. The sCSKF algorithm
combines one-step ahead smoothing for a system with no model error and covariance compression. The
full covariance R is replaced by its compressed counterpart C. Compared to the sEKF, sCSKF requires much
fewer forward model runs, specifically N 1 1 evaluations of h(x) and 23ðN11Þ evaluations of f(x), where N is
the effective rank of the covariance and the number of basis functions used (typically N � 100) is far less
than the number of unknowns (e.g., m � 106Þ, i.e., N � m. Most importantly, the covariance compression is
performed in an optimal way with eigenvalue decomposition, and is not affected by sampling errors, as
ensemble-based methods are.
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3. 1-D Problem: Validation

In this section, we will first evaluate one-step ahead smoothing of sEKF and compare results to EKF for a
simple 1-D nonlinear system. The purpose of this rather simplified comparison is to evaluate the impact of
one step ahead smoothing for a case small enough that can be run without covariance compression, and
for nonlinear models where nonlinearities can be directly controlled. Although previous studies [e.g.,
Desbouvries et al., 2011; Gharamti et al., 2015] have found one step ahead smoothing to be beneficial in sev-
eral test cases, it has not been clarified whether this is true for all nonlinear systems or only for those tested,
and the final findings were affected by low-rank or sampling errors.

In the following, EKF and sEKF are compared; the only difference between the two methods is the order in
which the observation is processed and no other approximations are performed except linearization. There-
fore, the differences observed are due to linearization errors in the filtering process. For linear forward mod-
els, the two methods are strictly equivalent, as shown in the supporting information Text S1.

We will focus the analysis on a specific type of nonlinear model: one in which the state exhibits hyperbolic
behavior and sharp abrupt changes and that has bounded values. One such model is the following
[Kitagawa, 1991]:

xk115fkðxk ; aÞ5fkðxkÞ1a (22)

yk5gðxkÞ1vk (23)

with

fkðxkÞ50:5xk125xk=ð11x2
k Þ18cos ð1:2ðk11ÞÞ (24)

gðxkÞ5x2
k=20 (25)

a as unknown additive model parameter in fkðxk ; aÞ. The model parameter a and the observation noise vk

are i.i.d., mutually independent and independent of the initial condition x0, with a � Nð0:1; 0:5Þ; vk � N
ð0; RÞ and x0 � Nð0:5; 0:5Þ. The dynamic model f(x) is characterized by sharp changes near the origin
x 5 0 and linear behavior away from the origin (Figure 1). The state values vary between 220 and 20 over
time, forming a bounded oscillating time series (Figure 2). Because of the dramatic change near x 5 0, the
predictive density pðx1jx0Þ is bimodal when x0 is close to the origin. In simple terms, the model prediction
using erroneous parameters will either undershoot or overshoot the sharp front. The bimodality also
extends to the filtered density pðx1jy1Þ. Such characteristics can be found in hyperbolic-type variables that
change sharply near the front. For example, the concentration in advection-dominated groundwater trans-
port or saturation in multiphase flow, also exhibit bimodal behavior even if the initial concentration and the
conductivity are generated from a Gaussian distribution. In the following section, we will focus on such a
problem.

Algorithm 2 Smoothing-based CSKF algorithm for negligible dynamic noise

Smoothing step Computational cost
Forecast ys

k5hðf ð�X k21jk21ÞÞ 1f 1 1h

Jacobian matrix product
AH�

:;i 5
hðf ðx1djjxjjA:;iÞÞ2hðf ðxÞÞ

djjxjj

����
�X k21jk21

Nðh1f Þ

Kalman gain solve for v from ðR1AH�Ckjk AH� T ÞT v5AH�CT
kjk

K5AvT 2mnN1n3

Update augmented state �X k21jk5�X k21jk211Kðyk2ys
kÞ

Ck21jk 5ðI2vT AH� ÞCk21jk21 mnN1N2m

Prediction step
Forecast �X p

k 5f ð�X k21jkÞ 1f

Jacobian
AF

:;i5
f ðx1djjxjjA:;iÞ2f ðxÞ

djjxjj

����
�X k21jk

Nf

Forecast state �X kjk5�X p
k

Forecast covariance Ckjk5AT AF CðAT AFÞT mN2

Full computational cost ð2N12Þf 1ðN11Þh1OðmNðn1NÞÞ
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The 1-D data assimilation problem was
run with EKF and sEKF for joint param-
eter and state estimation. Figure 2
shows the state estimates, numerical
bias, confidence intervals, and parame-
ter estimates given by EKF and sEKF.
These results are obtained by averag-
ing of 300 independent simulations
with different random initialization of
initial condition and observation noise.
The averaging step ensures that the
difference in the final solution comes
from the algorithm and not from the
random noise.

Figure 2 shows that sEKF gives state
estimates that are closer to the true
states than EKF, with less numerical
bias especially in the first few steps.
While the estimation accuracy in the

state variables for EKF improves in the following steps, the parameter estimation becomes less accurate
than the estimates by sEKF (bottom row of Figure 2). The inability of EKF to provide accurate states and
parameters is likely related to the fact that EKF approximates the predictive and filtered density as unimodal
Gaussian while the actual density is bimodal when x is close to 0. In such cases, sEKF performs better than
EKF, as sEKF uses the future observation to single out the location of the initial state during the smoothing
step.

-30 -20 -10 0 10 20 30
x

k
: state at time k 

-10

-5

0

5

10

15

20

25

x k+
1
: s

ta
te

 a
t t

im
e 

k+
1

x
k+1

 = f(x
k
)

Figure 1. Plot of the state transition from time k to k 1 1 governed by the state
transition equation (equation (22)).
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Figure 2. State estimates, absolute numerical bias, 95% confidence interval, and parameter estimates given by EKF and sEKF for the 1-D
state-parameter estimation problem.
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A good indicator of the reliability of the uncertainty estimates is the percentage of true values that falls into
the 95% confidence interval predicted by each method (Figure 2). As shown in Figure 2, the 95% confidence
interval given by sEKF is closer to the true state than EKF and captures 66.7% of the true value over the sim-
ulated time span, which is more than the 38.1% coverage given by EKF. The fact that neither method can
fully capture 95% of the true values is most likely due to linearization errors.

Overall, it can be observed that the sEKF gives state and parameter estimates with less bias and more reli-
able uncertainty estimates than the EKF in the benchmark evaluated here, where the state variable exhibits
hyperbolic behavior and a sharp front. The improvement is more significant near the sharp front where the
state changes dramatically. The presence of that front creates a bimodal predictive density which the EKF
approximates using a single Gaussian density resulting in overshooting. In contrast, sEKF does not suffer
from overshooting as it uses measurements to constrain the predictive density. Interestingly, these findings
are not true for parabolic dynamics. The same experiments were run for f ðxÞ5ax1bx2 and it was found
that sEKF is not consistently better than the EKF (results not shown). In parabolic systems that vary
smoothly, the predictive density is indeed approximately Gaussian, and therefore the EKF does not experi-
ence overshooting as pronounced as for hyperbolic models.

4. 2-D CO2 Monitoring and Characterization

In this section, we evaluate one step ahead smoothing for estimating the CO2 distribution after injection
into a heterogeneous reservoir. The synthetic case has 2025 unknowns. Running the EKF and sEKF for this
problem is computationally intractable. Therefore, we employ sCSKF instead, where covariance compres-
sion reduces the computational cost significantly. The problem examined is consistent with the assump-
tions of sCSKF: most of the uncertainty is due to unknown parameters and not by inherent model errors,
and CO2 exhibits sharp fronts as it travels as nonwetting phase in a water-saturated domain.

The sCSKF is compared with its nonsmoothing version (CSKF), as well as EnKF, using a 2-D reservoir moni-
toring example where the reservoir states are governed by nonlinear multiphase flow and transport equa-
tions. Sensor data are assimilated sequentially to reduce the prediction uncertainty in the reservoir
simulation due to the unknown model parameters. We choose to benchmark sCSKF against the popular
EnKF because (a) both are designed to solve large nonlinear data assimilation problems and is therefore
useful to assess their relative performance for the same problem, and (b) to make the argument, via bench-
mark results, that a compression-based method with smoothing can alleviate the problems related to sam-
pling error and unphysical corrections faced by EnKF. In our analysis, we choose to implement the EnKF
version with improved sampling [Evensen, 2004] (see supporting information Text S3). The purpose is to
provide a fair comparison between EnKF and sCSKF by ensuring that both methods start with the same ini-
tial covariance, to avoid tuning parameters for covariance inflation and localization and to avoid the com-
parison with basic EnKF versions that have known issues. The sCSKF is also compared against a two-step
iterative CSKF to evaluate whether iterative improvement of linearization points can achieve the same
results given the same computational effort. Information on the iterative CSKF used can be found in sup-
porting information Text S4.

4.1. Experiment Setting
The synthetic CO2 flooding example is designed following Li et al. [2015]. As shown in Figure 3, a 450 m3

450 m310 m reservoir is simulated on a 45 3 45 3 1 grid with no-flux conditions on the north and south
boundary. CO2 is injected in the 2-D reservoir at a constant rate of 0.01 kg/s through 45 injection wells
located on the left boundary, while 45 wells on the right boundary extract water at a constant bottom hole
pressure of 206 bar. The true synthetic case is simulated with the permeability field shown in Figure 3 gen-
erated as a realization from a distribution with Gaussian covariance function Raa5r2

aexp ð2h2=l2Þ and a cor-
relation length of 200 m. Snapshots of the simulated CO2 saturation and pressure are also shown in Figure
3. The forward simulation is performed using the parallel version of TOUGH2 [Pruess, 1991], a multiphase
and multicomponent reservoir simulator, with the module ECO2N [Pruess and Spycher, 2007] used to simu-
late the fluid properties of the brine and the CO2 systems.

The objective of this numerical benchmark is to monitor CO2 saturation and pressure with time and simulta-
neously estimate the unknown permeability of the heterogeneous formation given measurements collected
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every 50 days. The measurements include 45 pressure values at the injection wells, 45 water flux measure-
ments at the extraction wells, and CO2 saturation measurements sampled at 15 locations uniformly dis-

tributed within the domain. The
observation noise and parame-
ters used for the forward simula-
tion are summarized in Table 1.
To constrain the value of esti-
mated CO2 saturation s in the
range ½0; 1� and permeability a
in ð0;11Þ, we truncate the sat-
uration values that are out of
range and apply log transforma-
tion to permeability before filter-
ing, i.e., aT 5log ðaÞ; a 2 ð0;11Þ
and back transformation before
running the reservoir simulation
i.e., a5expðaT Þ; aT 2 ð21;11Þ.
The initial conditions for pressure
and saturation are 200 bar
and zero, respectively; they are
assumed to be perfectly known,
implying that their initial cova-
riances are zero, i.e., Pss5Ppp50.

Figure 3. (a) True permeability and CO2 monitoring experiment setting (the injection wells are marked by green diamonds on the left
boundary, the extraction wells are marked by the pink diamonds on the right boundary and the saturation sampling locations are marked
by the x markers) (b) True CO2 pressures and saturations are shown every 50 days until 250 days after CO2 injection.

Table 1. Simulation and Data Assimilation Parameters for Reservoir Monitoring
Experiment

Forward Simulation Parameters
Phases CO2/brine
Simulation time 5 3 50 days
Grid system 4534531
Cell dimensions 10 m310 m310 m
Rock porosity 0.2 (constant)
Permeability Heterogeneous (Figure 3)
Number of injection well 45
Number of extraction well 45
Injection well constraints Injection rate (0.05 kg/s)
Extraction well constraints Pressure (200 bar)
Initial CO2 saturation Zero
Initial pressure 200 bar

Observation error
Water flux STD 0.008 kg/s
Pressure STD 0.05 bar
Saturation STD 0.01

Data assimilation parameters
Initial pressure mean 200 bar(constant)
Initial saturation mean Zero
Initial permeability mean 2 darcy (case A)/

heterogeneous (case B)
Initial permeability variance 0.5 (log transformed)
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The true covariance function for the permeability field is also known . To achieve computational efficiency
while preserving the estimation accuracy, the covariance matrix is compressed using 100 DCT bases, which
gives an approximation error of 1:8e22 and represents 99% of the variability in the covariance matrix.

Two test cases are designed to evaluate the filter performance under different degrees of parameter uncer-
tainty. Both test cases start with the same initial guess for pressure and saturation. The two cases are only
different in the initial guess for permeability; in case A (Figures 4 and 5), the initial guess for the permeabil-
ity is assumed to be a constant homogeneous field with a value of 2 darcy, and in case B (Figure 6) it is
assumed to be a close (but not exact) estimate of the true permeability field. In other words, case B provides
a better initial guess for the parameters than case A, and therefore the nonlinearity of the problem is
weaker by design compared to case A.

A complete list of the inversion parameters can be found in Table 1.

4.2. Results
For case A, where the data assimilation problem is affected by stronger nonlinearity, the estimated satura-
tion, pressure and permeability estimated by sCSKF every 50 days are shown in Figure 4. The filter is able to
accurately resolve the high and low permeability areas, track the CO2 front, and the accumulation of pres-
sure, using just 100 DCT basis functions per variable (N 5 100), which corresponds to a compression ratio of
2025=100 � 20. The resolution of the permeability is improved over time as more observations are assimi-
lated. Pressure is resolved at a higher accuracy than CO2 saturation. This is due to the fact that the pressure
evolves parabolically and changes smoothly, such that N 5 100 provides more than enough bases to recon-
struct the smooth field with a small low rank approximation error. In contrast, the saturation displays a

Figure 4. Posterior mean and standard deviations of estimated states and parameters for case A given by sCSKF by assimilating observations every 50th day.
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hyperbolic nature with a sharp front moving at different speeds due to permeability heterogeneity, hence
requiring more bases to resolve the spatial variability. Although the number of basis functions are chosen
to be the same in this test case, sCSKF allows representing each state variable using different number of
basis functions. Estimation of nonsmooth variables like the saturation would benefit from including higher-
frequency components (larger N), albeit at higher computational cost.

CSKF, the variant without one step ahead smoothing, was applied to the same case A to evaluate the reduc-
tion in accuracy when one step ahead smoothing is not used. Figure 5 shows the posterior mean given by
CSKF for case A with observations assimilated every 50th day. As the initial guess of the parameter is far from
the truth, after assimilating the observation on day 50, it can be observed that CSKF has estimated the satura-
tion field inaccurately, significantly overestimating the saturations near the CO2 front (pointed by the arrows,
first row of Figure 5). This is a manifestation of overshooting that can happen close to sharp interfaces due to
inaccurate linear corrections at a location where the forward model exhibits strong nonlinear, hyperbolic
behavior. The same phenomenon can be observed in the permeability estimates of CSKF, where the highest
permeable zone is inaccurately estimated to be located at the top middle of the reservoir starting at day 150.

While CSKF estimates for saturation and permeability are visibly less accurate than those of sCSKF, for pres-
sure estimates there is no significant difference between the two filters. This contrast between pressure esti-
mates that exhibit parabolic behavior, and saturation estimates, that exhibit hyperbolic behavior,
corroborates our previous finding that overshooting and linearization errors mostly affect variables that are
subject to dominantly hyperbolic conservation laws.

Figure 5. Posterior mean and standard deviations of unknown states and parameters for case A given by CSKF by assimilating observations every 50th day. Overshoots in saturations
are marked by arrows. Overshoots due to linearization errors are noted with arrows and can be seen in the saturation posterior mean (first row). Comparison to Figure 4 (sCSKF) shows
the beneficial effects of smoothing.
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Overall, our results indicate that the final estimate of sCSKF is not affected by overshooting, even in the least
favorable case where the initial guess of model parameters was far from the truth. One step ahead smoothing
improved the initial conditions and model parameters; with this information, the model prediction provided
an accurate distribution of the CO2 saturation. By design, states and parameters are consistent by running the
improved physical model as the final step of the estimation. Note that both CSKF and sCSKF used 100 basis
functions to represent the variability of the saturation field and both filters matched the observations equally
well, hence the overcorrection is not due to insufficient rank or misfit in the observations.

Next, to investigate whether the overshooting observed for CSKF was a result of the bad initial guess of per-
meability, we conducted the same experiments for case B, for which the initial guess of the permeability
field is closer to the true heterogeneity. An initial guess of the unknown that is closer to the truth, makes
the linear correction less prone to errors, since assumption of local linearity holds. As shown in Figure 6 for
case B, CSKF gives reasonable estimates of the reservoir states, and shows fewer overcorrections in the satu-
ration estimates compared to case A. Also, the uncertainty associated with a good initial guess is smaller in
magnitude than the case with a bad initial guess (Figure 5). These results show that the uncertainty in the
hyperbolic saturation variable is strongly related to the quality of the model parameters.

The two benchmarks used to compare the filters represent a scenario that is rather difficult for Kalman filter-
ing. Even though the initial conditions and the true permeability field are Gaussian, the true probability den-
sity of the state variables as outputs from the nonlinear dynamic equation is highly non-Gaussian. When
the model parameters are highly uncertain (case A), the predicted probability density of saturation is very

Figure 6. Posterior mean and standard deviations of unknown states and parameters for case B given by CSKF by assimilating observations every 50th day. Comparison to Figure 5
(same experiment with worse initial guess) indicates that overshoots can be mitigated with a better initial guess of unknowns.
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broad and has multiple modes, posing difficulties for the traditional Kalman Filter that linearizes the prob-
lem by approximating the density with a unimodal Gaussian. In contrast, the proposed sCSKF is not affected
as much by the bad initial guess as the latter is first corrected using data, and then used to constrain the
predictive probabilistic density of the saturation. This suggests that one-step ahead smoothing is an effec-
tive means of alleviating overcorrections due to nonlinearities and providing physically consistent estimates
for systems exhibiting sharp fronts and hyperbolic behavior.

Finally, we perform a comparison of sCSKF with commonly used filters that do not employ one step ahead
smoothing. The objective of the comparison is to investigate whether overshooting can be alleviated with
methods other than one step ahead smoothing at the same computational cost. Two classes of filters that
have been proposed in the literature as being able to better handle nonlinear data assimilation are iterative
methods and ensemble-based methods. We compare the sCSKF with an EnKF variant with improved sam-
pling and with an iterative CSKF with two iterations. The computational cost of the compared methods is
the same, and we compare the results for overall accuracy and overshooting.

A comparison of sCSKF with CSKF, iterative CSKF and EnKF is shown in Figure 7 for case A where a bad ini-
tial guess of model parameters causes strong nonlinearity. Here, we only compare the state estimates after
two steps, at day 100. This is because the EnKF became unstable after day 100; unphysical corrections in

Figure 7. Comparison of posterior mean given by sCSKF, CSKF, iterative CSKF with two iteration and EnKF after assimilating data for 2 time
steps. Overshoots in saturations are marked by arrows.
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Figure 8. Comparison of posterior standard deviation given by sCSKF, CSKF, iterative CSKF with two iteration and EnKF after assimilating
data for 2 time steps.
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saturation prevented the model from con-
verging in the next step. It can be
observed that all methods give similar
estimates of pressure. However, for satu-
rations all filters except sCSKF yielded
unphysical corrections (see arrows in Fig-
ure 7). It is acknowledged that two itera-
tions are not enough for the iterative
CSKF to converge, however more itera-
tions would have resulted in higher com-
putational costs. sCSKF is compared with
the EnKF with improved sampling, where
N 1 1 ensemble members are generated

from the low-dimensional subspace spanned by the first N eigenvectors [see Li et al., 2015 for more details].
Interestingly, the EnKF with 100 ensemble members (a typical ensemble size suggested for EnKF) gives non-
physical estimates of saturation and permeability, and increasing the ensemble size from 100 to 200 did not
result in significant improvements in the final estimates. This suggests that the overshoots in saturation are
not a result of insufficient ensemble size, indicating EnKF may not be able to handle hyperbolic nonlinear
dynamics effectively. Moreover, because of the overshoots in saturation, the forward CO2 simulation failed
to converge and the EnKF stopped after two assimilation steps.

Figure 8 shows the uncertainty estimated by sCSKF and the other four filtering approaches. Table 2 shows
the percentage of true values that falls into the 95% confidence interval predicted by each method. A low
percentage means that the method underestimates the uncertainty, which is commonly observed for low-
rank filters like EnKF [Sætrom and Omre, 2011]. sCSKF gives robust 95% confidence interval estimates as it
includes 97.0% of the saturation, 96.2% of the pressure, and 91.9% of the permeability true values. In con-
trast, the CSKF for the poor initial guess case (case A) underestimates the uncertainty. With a better initial
guess (case B) the CSKF gives more reliable predictions of the confidence interval. The iterative CSKF with
two iterations does not improve the quality of the error bounds, as the filter presumably requires more iter-
ations to converge. The error bounds given by EnKF are similar to sCSKF, where the 95% confidence interval
captures more than 90% of the true state values. However, EnKF cannot give results for more than two steps
as the filter fails to converge due to overshooting in saturations.

To summarize, the CO2 benchmark used in this work showed that at the same computational costs, the pro-
posed algorithm sCSKF that uses one-step ahead smoothing is more accurate and more robust than other
nonlinear filters. States estimated by sCSKF are not affected by overshoots and unphysical corrections contrary
to other approaches, even when the initial guess of the parameters is far away from the true values. The
improved performance of the sCSKF comes at the cost of one additional forward model run for every run
needed for CSKF at each data assimilation cycle, a cost that is comparable to the cost of an EnKF with 200
ensemble members or an iterative approach with two iterations. Based on our 1 and 2-D benchmarks, we
expect that the advantages of sCSKF demonstrated in this study also hold for other hyperbolic-type state esti-
mation problems with sharp fronts where most of the uncertainty is caused by unknown parameters.

5. Conclusions

In this work, we presented the smoothing-based compressed state Kalman filter (sCSKF), a computationally
efficient Kalman filter for joint state and parameter estimation, which uses one-step-backward smoothing
to eliminate unphysical corrections in the states and parameters. By design, the proposed approach produ-
ces physically consistent state and parameter estimates. The method is derived following a statistically rig-
orous Bayesian sequence and is specifically applicable for systems where the model uncertainty is
predominantly due to unknown model parameters, a common situation in hydrogeologic applications.

Our analysis indicates that for state variables subject to hyperbolic conservation laws that exhibit sharp
fronts, overshoots and nonphysical corrections commonly produced by the traditional filtering sequence
are manifestations of linearization errors. Such errors are caused by approximating the true multimodal dis-
tribution of the state using a unimodal Gaussian distribution. Hyperbolically varying state models stretch

Table 2. Percentage of True Values of the Reservoir States Captured by the
Predicted 95% Confidence Interval for Five Different Methods

Percentage of True Values Captured by 95% Confidence Interval

Method Pressure Saturation Permeability

Case A: bad initial guess, strong nonlinearity
sCSKF 97.0% 96.2% 91.9%
CSKF 85.1% 63.7% 81.8%
CSKF (iter 5 2) 76.6% 49.0% 76.7%
EnKF (N 5 100) 97.5% 95.2% 90.0%
EnKF (N 5 200) 97.4% 95.1% 90.5%

Case B: good initial guess, weak nonlinearity
CSKF (case B) 91.2% 92.0% 85.6%
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the limits of the Kalman Filter sequence which assumes local linearity and Gaussianity. For hyperbolic non-
linear models, even if the initial states are Gaussian, the output states after the model forecast have a broad
and multimodal density. As a result, the linear Gaussian assumption leads to overshoots in the final estima-
tion, and the additional uncertainty introduced by the model parameters exaggerates the overshoots result-
ing in nonphysical corrections. The introduction of one-step-ahead smoothing is beneficial because it
assimilates data to improve the model parameters and the initial conditions of the state before obtaining a
model forecast. In doing that, a better model prediction is produced and physical inconsistencies in the final
estimates are eliminated by passing the states through the physical model.

The proposed smoothing-based filter is appropriate for large-scale problems as it uses covariance compres-
sion to control the computational cost. With the compression, the improved performance of sCSKF is made
possible at a cost equal to twice the effective rank of the unknowns’ variability, which is a cost comparable
to ensemble-based approaches, and smaller than the cost of iterative approaches. Unlike iterative and
ensemble approaches that aim to provide improved solutions to general nonlinear problems, the proposed
method focuses specifically on solving the problem of physical inconsistency and overshooting in
hyperbolic-type variables characterized by sharp changes in systems where model parameters are
unknown, a typical scenario in hydrogeologic applications. Building on previous findings, one step ahead
smoothing was indeed found to be beneficial for data assimilation problems with these characteristics, but
not as a general rule. This knowledge can help guide future work in Bayesian data assimilation in the geo-
sciences, where sharp fronts are commonly encountered.

Appendix A

We would like to acknowledge the following sources referenced in Supporting Information S1: Lee and Kita-
nidis [2014] and Nerger et al. [2005].
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