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Statistical Modeling of the Default 
Mode Brain Network Reveals a 
Segregated Highway Structure
Paul E. Stillman1, James D. Wilson  2, Matthew J. Denny3, Bruce A. Desmarais3,  
Shankar Bhamidi4, Skyler J. Cranmer5 & Zhong-Lin Lu1

We investigate the functional organization of the Default Mode Network (DMN) – an important 
subnetwork within the brain associated with a wide range of higher-order cognitive functions. 
While past work has shown the whole-brain network of functional connectivity follows small-world 
organizational principles, subnetwork structure is less well understood. Current statistical tools, 
however, are not suited to quantifying the operating characteristics of functional networks as they 
often require threshold censoring of information and do not allow for inferential testing of the 
role that local processes play in determining network structure. Here, we develop the correlation 
Generalized Exponential Random Graph Model (cGERGM) – a statistical network model that uses 
local processes to capture the emergent structural properties of correlation networks without loss of 
information. Examining the DMN with the cGERGM, we show that, rather than demonstrating small-
world properties, the DMN appears to be organized according to principles of a segregated highway 
– suggesting it is optimized for function-specific coordination between brain regions as opposed to 
information integration across the DMN. We further validate our findings through assessing the power 
and accuracy of the cGERGM on a testbed of simulated networks representing various commonly 
observed brain architectures.

An important and powerful approach to modeling the brain originates from network science, which views the 
brain as a network of interrelated regions. Network models of the brain have led to important findings about how 
the functional and structural organization of the brain gives rise to cognition1–6. Recent research finds that the 
whole-brain network follows small-world architecture – relatively few nodes serve as hubs that facilitate infor-
mation transfer between tightly integrated communities – which in turn facilitates the integration of information 
across disparate regions of the brain7–11. The network of the brain is further organized into a series of subnet-
works12–15 – collections of regions that are highly interrelated to contribute to a specialized set of functions.

The operating principles of these subnetworks, however, are less well understood. We investigate the operating 
characteristics of one such functional subnetwork active during rest as well as higher order cognitive tasks – the 
Default Mode Network (DMN)16–19. A fundamental challenge in this analysis, however, is that current statistical 
techniques are not suited to quantifying the operating characteristics of correlation networks (the most common 
way of quantifying functional connectivity between regions of the brain). Contemporary methods often require 
threshold dichotomization of information about connectivity and do not allow for inferential testing of the role 
that local processes (e.g., preferential attachment, clustering) play in determining network structure.

To address these issues, we develop the correlation Generalized Exponential Random Graph Model 
(cGERGM) – a statistical network model that uses local processes to capture the emergent structural (henceforth 
“topological”) properties of co-activation correlation networks of the brain (henceforth “functional networks”) 
without any loss of information. We show that the cGERGM both produces excellent fit to real brain data, and 
simulates realistic functional networks, making it an ideal modeling tool for quantifying functional network 
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structure. Importantly, the parameter estimates produced by the cGERGM can be used to formally test the sig-
nificance of the role of local features of the brain. Thus, the model provides a statistical method to identify funda-
mental properties of the network of interest. Examination of the DMN with the cGERM reveals that, rather than 
demonstrating small-world properties similar to the whole-brain network, the DMN appears to be organized 
according to principles of a segregated highway – suggesting it is optimized for function-specific coordination 
between brain regions as opposed to information integration across the DMN.

Network Neuroscience
A network model of the brain typically treats regions of the brain as a collection of nodes or vertices. Edges 
are placed between pairs of interacting regions, and weights are placed on these edges to quantify the strength 
of the relationship between the two regions6,20. In the case of functional connectivity (the focus of the current 
paper), edge weights are most commonly the correlation of the time-series activation data between regions21 
while undergoing an fMRI scan22. Researchers can then use statistical techniques for the analysis of networks to 
study the organization of the brain. The shift to studying the interrelational aspect of brain activity has produced 
many advances in the understanding of neuroscience, including neural mechanisms of cognitive processes such 
as learning and working memory23,24, emotion25, cognitive control26, as well as neurological diseases such as 
schizophrenia27–29.

Research also finds that the brain is organized hierarchically, with many subnetworks – often specialized 
to particular functions – operating and interacting to give rise to cognition12–15. Integral to understanding the 
network architecture of the brain is an understanding of how these subnetworks are organized to promote their 
specific functions. Subnetwork structure is often assumed to follow the same organizational principles as the 
whole-brain (i.e., small-world structure), though comparatively less work has been done investigating subnet-
work structure (see ref.18). One of the primary findings in the interdisciplinary field of network science, however, 
is that different architectures support different functions30–33. Since the more specialized functions of individual 
subnetworks may be distinct from whole-brain synthesis and integration of information, we may expect to find 
different architecture for these subnetworks compared to the whole-brain. Indeed, there are many possible alter-
native organizations these subnetworks could display (e.g., physical proximity, random, etc.). These different 
network structures display different organizational properties, and in the present analysis we investigate the top-
ological organization of one important subnetwork – the Default Mode Network (DMN). The DMN is a highly 
interconnected subnetwork that, in addition to being active at rest, is believed to underlie such higher-order 
processes as prospection34–36 and perspective taking37, leading some to conclude it is responsible for internally 
generated cognition19,38.

In this study, we hypothesize the existence of what we refer to as a “segregated highway” structure in the 
DMN. A “segregated highway” structure is defined as a topology with fewer hubs and more triadic closure than 
would be expected at random. The lack of hubs indicates the absence of preferential attachment and less of a 
focus on globally efficient communication across all nodes in the network. The higher levels of triadic closure 
are indicative of clustering. Importantly, in a segregated highway structure, there is no strong correspondence 
between connections generally (and triadic connections in particular) and the 3-dimensional Euclidean distance 
between nodes. These three attributes taken together describe a network with multiple functional specializations. 
The pathways through such a network are optimized by function, meaning that such a topology is ideally suited 
for coordinating multiple tasks over potentially disparate regions. Bringing this definition back to the highway 
analogy, we can imagine different highway systems optimized for task-specific information traffic. Such a system 
will be less efficient overall, but highly optimized within task, and compartmentalized against failure in other 
task-related sub-networks. Previous work on the analysis of highway structures in the brain have been recently 
explored in refs39–41.

A fundamental challenge, however, is appropriately modeling the complexities inherent in brain connectivity 
data in order to draw conclusions about the topological organization of the network of interest. This is challeng-
ing both due to the large number of continuous [−1, 1] weighted connections for which we must simultaneously 
account (~n2 dependent observations), as well as the mathematical constraints on correlation networks. These 
features necessitate the development of a flexible and robust class of statistical models for correlation network 
data. We introduce the correlation Generalized Exponential Random Graph Model (cGERGM) – a statistical 
framework for modeling correlation networks – which we then use to analyze the DMN. We validate the power 
and accuracy of the cGERGM on a testbed of simulated networks representing various commonly observed brain 
architectures.

The correlation Generalized Exponential Random Graph Model (cGERGM)
The cGERGM builds upon and extends the recently developed Generalized Exponential Random Graph Model 
(GERGM), which models unconstrained (−∞, ∞) weighted network data42,43. This class of models, however, was 
not designed to account for the mathematical constraints of correlation matrices. One major structural constraint 
is that correlation matrices must be positive semidefinite – meaning that their eigenvalues are non-negative44. 
Models that do not account for this constraint are of limited predictive utility as they cannot be used to simulate 
valid correlation matrices, and may lead to inferential false positives due to artifacts in the data45. We use a set of 
mathematical techniques that allow us to harness the flexibility of the GERGM, but apply it in the more restric-
tive and complex case of correlation network data. In so doing, we bridge neuroscience and network science to 
develop a modeling tool that allows for the characterization of functional networks based on essential features.

The cGERGM models two important aspects of an observed brain correlation network: (a) the topological 
structure of the network – the local and global features that describe the correlations among brain region acti-
vations such as the total edge weight of the network or the total number of triangles in the network; and (b) 
the influence of exogenous features on the connectivity of the brain regions – the effect of other relationships 
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between the nodes, such as hemisphere location, physical distance, or any other node- or edge-level properties. 
The cGERGM thus allows theoretical testing of topological properties, as well as how properties of nodes or edges 
influence correlations between those regions, controlling for dependencies reflected in the topological structure.

Topological and exogenous features of the network are specified in the model by the user, and parameters for 
each of the features represent the influence of the features on the likelihood of a given network under that model. 
While accounting for these topological and exogenous features, the cGERGM furthermore maintains the positive 
semidefinite constraints of correlation matrices. Therefore, the cGERGM can be used to model a wide range of 
network interdependencies in functional correlation networks.

The cGERGM has four important advantages over existing models. First, the cGERGM takes all correlation 
information into account, and respects the mathematical constraints of correlation matrices. Many contempo-
rary methods in network neuroscience require arbitrary thresholding of the correlation network to achieve a 
binary network (i.e., a connection either exists or does not). By including this potentially critical information, the 
cGERGM is positioned to more accurately capture network structure. Second, the cGERGM is flexible, allow-
ing for user-specified topological and endogenous factors when modeling the correlation network. Third, the 
cGERGM captures and reproduces core structures of the network and can be used to simulate new networks 
given a set of parameters. In other words, it models the core topological processes that describe a network, and 
can be used to produce the emergent complexity seen in real brain correlation network data. Finally, the cGERGM 
produces both parameter estimates and standard errors for the unique influence of endogenous topological and 
exogenous effects (controlling for one another) on network structure, allowing for statistical testing and inference 
about the properties of the network.

The cGERGM thus offers two complementary advances for network neuroscience. First, it allows for quan-
tification of the network using a (relatively) small number of parameters that can recreate the structure of the 
network. Second, and particularly important for understanding brain networks, the topological parameters recov-
ered by the cGERGM can be used to differentiate between different network architectures, allowing researchers 
to understand the principles by which functional networks operate. For instance, small-world networks dis-
play heightened clustering (i.e., triadic closure) and hub usage (i.e., preferential attachment) relative to chance. 
Another such architecture is a “segregated highway” architecture, which displays heightened clustering but lower 
hub usage, and is highly optimized for function-specific coordination between regions, even across greater phys-
ical distances. An example of such a structure is a city transportation network. Trains, subways, bikes, cars, and 
pedestrians each travel along separate paths optimized for the particular mode of transportation46. Importantly, 
we can differentiate between these information processing architectures via assessing cGERGM parameters for 
different topological properties. As such, we can understand the operating principles at work in the network.

We investigate these issues in the context of the DMN, using the cGERGM to quantify the topological features 
that give rise to the network and allowing us to both recreate similar networks via simulation from a small num-
ber of parameters as well as gain valuable insight into the organizational principles of the DMN.

Results
We model functional connectivity in the DMN using the cGERGM (for full mathematical specification of the 
cGERGM, see the Methods). Brain regions are the nodes in this network, the correlations of the resting state 
functional connectivity data between the brain regions are the edges. In the present demonstration, we apply the 
cGERGM to a 20-node parcellation of the default mode network18,47,48. We take a dataset in which 154 partic-
ipants underwent six minutes of resting state fMRI, then calculated the correlation of the 20 regions across all 
participants to produce the network to be modeled (models run on individuals, rather than the group, produced 
similar conclusions and are reported in the supplemental materials). Detailed scanning parameters and network 
construction details are given in the Methods. When fitting a cGERGM, the user specifies the topological and 
exogenous features of interest. For the present demonstration, we use five features and run 15 models – every 
model contained an edges feature (which models the mean edge value), and each of the 15 possible combinations 
of the remaining four features (see Methods and Fig. 1). Our models include two topological features: two-stars 
(capturing the degree of preferential attachment or hub use) and triads (capturing the degree of triadic closure 
or clustering). Our models further include two exogenous features – which model the effect of a covariate on 
connection strength – corresponding to the hemisphere of the brain in which the node resides, and the physical 
distance between nodes. We compare the fit of each of these models, and find that models that include topological 
features fit the observed network structure substantially better than those without.

Model Specification and Estimation. The specification of the cGERGM requires two steps (see Fig. 2 
and the Methods). First, the edges of the observed correlation network, which naturally take values on [−1, 1], 
are transformed into normalized partial correlations that lie on [0, 1]. This transformation from correlation to 
partial correlation values is a key feature of the model because it allows the model to perform estimation without 
the positive semidefiniteness constraint, while still preserving the topological features of the network. Exogenous 
covariate effects are then modeled using a Beta regression of the mean of each partial correlation weight on the 
exogenous regressors of interest (equation (4) in the Methods). Next, the topological structure of the normalized 
partial correlation network is modeled using an exponential family of probability distributions that parameterize 
the effects of topological features on the weight of the edges within the network (equation (2) in the Methods, 
and see refs42,43).

Broadly, estimation of the parameters of the cGERGM, or any model in the (G)ERGM family proceeds as 
follows. First, the estimation algorithm makes an initial “guess” for all model parameters. These parameters are 
then used to simulate a large sample of networks from the model generative process. These networks are then 
used to approximate the log likelihood of the model for the current set of model parameters. The estimation algo-
rithm then updates these parameter estimates in an attempt to simulate networks that better match the observed 
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network, and thus yield a higher model log-likelihood. This process repeats itself until the parameter estimates 
converge in the sense that the change in parameter estimates at the last iteration is less than some small threshold. 
The final parameter estimates can then be used to perform hypothesis testing about the topological and exoge-
nous features specified in the model. Further, it is straightforward to simulate networks from the fitted cGERGM, 
which are then used to assess model fit.

Figure 1. Visual depiction of each feature used in our cGERGM models. Spatial distance refers to the 
3-dimensional Euclidean distance between two nodes.

Figure 2. A flowchart describing the means of analyzing functional connectivity data. The left half depicts 
traditional methods, in which matrices are dichotomized based on some threshold (here shown at a threshold 
retaining the top 10% of connections), then analyzed by running descriptive statistics on the resulting 
thresholded network. The cGERGM approach is shown on the right, in which the network is first transformed 
to the constrained partial correlation space, and then topological features are assessed, in order to recover 
estimates of the parameters which characterize the generative process for the network under that model. Finally, 
these parameter estimates can be used to simulate new networks for the purpose of comparison. The images 
above each correlation matrix are the graphical representation for the thresholded (left) and continuous (right) 
networks. Note that while the graphical software does not show every edge for the weighted network case, no 
edges are censored to 0 for analysis purposes.
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Evaluating Model Fit. Before interpreting the cGERGM outputs, we first confirm adequate fit to the data. 
Model fit evaluation can be divided into two categories: (1) evaluating the performance of the cGERGM in mak-
ing edge predictions, and (2) evaluating whether the topological features of the observed network are typical of 
the distributions of topological features simulated from the cGERGM.

Model Fit I: Edgewise Strength. We first predict observed edge values using the fitted cGERGM. For each edge in 
the network, we fix all other edges at their observed value and then simulate a sample of 500 values for that edge 
from the fitted cGERGM. Each of these simulated edge values is used as a prediction of the given observed edge. 
We use these individual predictions to calculate the mean squared error (MSE) for the model predictions for each 
edge. When we visually compare the appearance of the observed network and these conditional edgewise mod-
els (Fig. 3), it is clear that our observed and the conditional edgewise predicted networks have strong structural 
similarities.

To quantify model fit across all edges, we take the average MSE from the individual edge predictions and 
compare this to the MSE from edges simulated using a null distribution. For this exercise, we use the maximum 
entropy null conditional distribution, in which we sample edge weights based only on the constraint that they 
maintain the positive semidefiniteness of the correlation matrix. The results of our edgewise prediction are pre-
sented in Table 1. While all models outperform the null model, there was systematic variability in model per-
formance. We find MSEs at or below 0.012 when models included both topological features, compared to 0.024 
when either topological feature is omitted. Together, this suggests both that our models recover edgewise strength 
beyond what would be expected by chance, and that the model has improved predictive power when topological 
features of the network are included.

Model Fit II: Topological Features. To assess the fit of topological features of a cGERGM, we first simulate 1000 
networks from the fitted model49. Next, topological features of the simulated networks (both those that were and 
were not considered in the model) are compared with the features of the observed network. We assess how well 
our fitted cGERGMs capture five important topological features (two of which were not included in our model 
specifications) in the DMN – transitive-triads, two-stars, density, degree distribution, and the intensity of the 
network. The degree distribution is the empirical distribution of the edge weights associated with the partial cor-
relation network, and the intensity is the sum of the absolute deviations of each edge value from the mean edge 
value of the network. The bottom half of Fig. 3 illustrates the fit of two example estimated models (see Figures S2  
through S6 for the results for each model fit). We see that model fit is poor when we include only exogenous 
features (hemisphere and distance), and that fit improves markedly when we model all features simultaneously. 
To statistically test the fit of a model, we calculate t-test statistics and Kolmogorov Smirnoff distances to deter-
mine whether the means of the simulated networks differ significantly from the observed. As was clear with the 

Figure 3. Plots illustrating both edgewise and structural fit. TOP: Observed network (middle) versus the 
conditional edgewise network predicted from the model with only edges, hemisphere, and distance (left) or 
from all features (right). From these, we can see that the conditional edgewise prediction is producing networks 
that closely map the observed networks. Further, the model that accounts for the topological features (right) 
produces more similar structure than the model which does not (left). BOTTOM: Goodness of fit for the model 
with only hemisphere and distance (left) versus all features (right). Boxplots reflect values from simulation 
based on the fitted cGERGM, with the red bars representing the mean of the simulations whereas the blue bars 
represent the values from the observed network. The curve to the right of each boxplot represents simulated 
(red) and observed (blue) degree distributions. The left model is specified to include only the edges term and 
the exogenous predictors of hemisphere and distance. The right model includes all topological and exogenous 
effects. While the model without topological features fits quite poorly, when modeling topological features our 
models fit quite well.

http://S2
http://S6
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box-plots, when topological features were omitted from the model, there are pronounced differences between 
observed and simulated values for most statistics aside from the degree distribution (the t-values between simu-
lated and observed networks are listed in Table 2). The average network intensity presents an interesting case—it 
is modeled indirectly via the scale parameter in the beta distribution, but based on Fig. 3 it looks like it would 
need to be included explicitly as a topological network statistic in order to be fit as well as the other features in the 
model. The four best-fitting models are the ones that include both topological features: two-stars and triads, as 
well as any combination of hemisphere and distance.

Interpreting cGERGM outputs. cGERGM results include both a parameter estimate and a standard error 
for each feature (parameter values produced by our models are presented in Table 3). Because interpretation of 
parameter estimates is only valid when the model fits adequately, we restrict interpretation to the models that 
include both topological features. Across all such models, we find a significantly negative two-stars parame-
ter, and a significantly positive triads parameter. These effects are relatively unchanged with the addition of the 
exogenous features. Together, these results show that the DMN displays more triadic closure (i.e., clustering) 
and less preferential attachment (i.e., the existence of hubs) than would be expected by chance. These results are 
particularly notable because, contrary to hypotheses that the default mode network would display small-world 

Model MSE

Null Model 0.128

Two-Stars 0.025

Triads 0.026

Hemisphere 0.025

Distance 0.024

Two-Stars + Hemisphere 0.025

Triads + Hemisphere 0.026

Two-Stars + Distance 0.024

Triads + Distance 0.024

Two-Stars + Triads 0.012

Hemisphere + Distance 0.024

Two-Stars + Hemisphere + Distance 0.024

Triads + Hemisphere + Distance 0.024

Two-Stars + Triads + Hemisphere 0.011

Two-Stars + Triads + Distance 0.011

Two-Stars + Triads + Hemisphere + Distance 0.011

Table 1. Mean squared errors for each model and the null model. Lower numbers indicate better 
correspondence between observed and simulated edge values.

Model Two.Stars Triads Edges Intensity Degree

Two-Stars −1.04 −5.68 6.5 23.5 0.18

Triads 26.68 1.06 30.86 37.91 0.32

Hemisphere 28.32 20.52 32.17 48.8 0.34

Distance 17.21 9.37 22.00 15.85 0.24

Two-Stars + Hemisphere −0.26 −3.34 6.24 28.8 0.16

Triads + Hemisphere 17.9 −1.87 20.95 39.6 0.30

Two-Stars + Distance 1.00 −14.79 16.84 23.08 0.17

Triads + Distance 21.58 0.34 28.95 24.35 0.21

Two-Stars + Triads −1.25 −0.99 −0.98 −39.36 0.13

Hemisphere + Distance 21.61 11.53 27.61 31.25 0.29

Two-Stars + Hemisphere + Distance −2.24 −12.33 10.08 31.39 0.16

Triads + Hemisphere + Distance 25.79 2.00 33.21 35.65 0.27

Two-Stars + Triads + Hemisphere 0.47 0.53 1.25 −36.64 0.12

Two-Stars + Triads + Distance 0.87 0.95 3.49 −50.52 0.16

Two-Stars + Triads + Hemisphere + Distance 3.06 2.96 5.18 −42.68 0.15

Table 2. Summary of model fit for each of the fitted models. The two-star, triads, edges, and intensity t* 
statistic measures the normalized difference between the average mean intensity of 1000 simulated networks 
and the mean intensity of the observed network. The degree KS-distance is the Kolmogorov-Smirnoff distance 
between the empirical degree distribution of the simulated networks and the degree distribution of the observed 
network. Statistically significant differences in statistic values (at the α = 0.05 level) are displayed in bold.
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structure, the observed configuration of low preferential attachment and high clustering suggest a segregated 
highway structure rather than a small-world structure. In other words, these results support a view of default 
mode connectivity that is organized around functional segregation as opposed to information transfer across the 
network. If some areas of the DMN served as hubs within the network, we would expect evidence of heightened 
preferential attachment. However, we see evidence of anti-preferential attachment, along with strong clustering, 
which suggests that different groups of brain regions tend to co-activate based around shared functions.

When investigating the exogenous features, we find a significantly positive effect of hemisphere, indicating 
that nodes have stronger connections within the same hemisphere compared to across hemispheres. Further, 
we find that the Euclidean distance between nodes is significantly related to network organization, such that the 
further two nodes are from one another, the less strong the connection between them. This is consistent with 
previous research refs50,51 that suggests the distance between nodes is a major contributor to the organizational 
properties of neural networks.

Simulation Study
To further validate our results for the application to the DMN, we assess the efficacy of the cGERGM on a test-
bed of simulated networks for which we know the true generative process. The aim of this simulation study is to 
assess the accuracy of the cGERGM on simulated networks with known parameters. We simulate networks that 
represent three common scenarios: (i) the simulated network displays no topological effects and therefore is a 
realization from a random graph (i.e., when θ = 0), (ii) the simulated network has non-zero topological effects 
matching our fitted model to the DMN, and (iii) the simulated network displays significant hub structure locally. 
For each of these simulation studies, we simulate 1000 networks of size 20 (matching the size of the DMN) from a 
cGERGM specification whose coefficients represent these desired scenarios and then estimate the parameter esti-
mates of each of the simulated networks. We report the median coefficient estimate, median standard error, and 
rate at which the effect was statistically significant at a 0.05 level in Table 4. Our results reveal not only that each 
of these common graph models can occur in a network of only 20 nodes, but also that the cGERGM accurately 
identifies each of the models with high power. We discuss these simulations and results below.

Model Edges Dispersion Two-Stars Triads Hemisphere Distance

Two-Stars 0.27 (0.01) 48.05 (3.43) −0.04 (0.01)

Triads 0.25 (0.01) 47.43 (3.4) 0 (0.01)

Hemisphere 0.87 (0.08) 49.23 (3.54) 0.12 (0.03)

Distance .26 (.01) 52.16 (3.75) −0.10 (0.2)

Two-Stars + Hemisphere 0.97 (0.08) 50.15 (3.58) −0.04 (0.01) 0.12 (0.03)

Triads + Hemisphere 0.89 (0.08) 49.46 (3.55) 0 (0.01) 0.12 (0.03)

Two-Stars + Distance 0.27 (0.01) 52.80 (3.78) −0.03 (0.01) −0.10 (0.02)

Triads + Distance 0.26 (0.01) 52.30 (3.76) 0 (0.01) −0.10 (0.02)

Two-Stars + Triads 0.25 (0.01) 38.28 (2.85) −0.75 (0.14) 0.34 (0.06)

Hemisphere + Distance 1.00 (0.08) 52.81 3.80 0.07 (0.03) −0.09 (0.02)

Two-Stars + Hemisphere + Distance 1.05 (0.08) 53.30 (3.82) −0.03 (0.02) 0.07 (0.03) −0.08 (0.02)

Triads + Hemisphere + Distance 1.01 (0.08) 52.94 (3.80) 0 (0.01) 0.07 (0.03) −0.09 (0.02)

Two-Stars + Triads + Hemisphere 0.86 (0.07) 38.95 (2.92) −0.85 (0.15) 0.4 (0.07) 0.13 (0.03)

Two-Stars + Triads + Distance 0.26 (0.01) 42.85 (3.19) −.65 (0.12) 0.30 (0.06) −0.08 (0.02)

Two-
Stars + Triads + Hemisphere + Distance 0.96 (0.07) 42.24 (3.16) −0.74 (0.13) 0.35 (0.06) 0.09 (0.03) 0.06 (0.02)

Table 3. cGERGM parameter estimates with standard errors in parentheses. Effects that are statistically 
significant at the α = 0.05 level are displayed in bold.

Statistic

Random Graph Model Two-Stars + Triads Model Two-Stars (Hub) Model

Est. S.E. Sign. Rate Est. S.E. Sign. Rate Est. S.E. Sign. Rate

Triads −0.0253 0.1241 0.047 0.2757 0.2511 0.245

Two-Stars 0.0317 0.1870 0.047 −0.6537 0.2543 0.684 0.478 0.033 1.00

Edges 0.5033 0.0187 1.00 0.1525 0.0945 0.429 −1.858 0.025 1.00

Dispersion −1.5941 0.0653 1.00 0.2787 0.0732 0.908 −1.309 0.079 1.00

Table 4. Summary of cGERGM parameter estimates in the Simulation Study. (Left) Networks were simulated 
with θTwo−Stars = θTriads = 0 and β0 = 0.5. (Middle) Networks were simulated with θTwo−Stars = −0.75, θTriads = 0.34 
and the intercept β0 = 0.25 to reflect the Two-Stars + Triads model fitted to the DMN. (Right) Networks were 
simulated with θTwo−Stars = 0.5 and the intercept β0 = −2.00 to reflect a model that demonstrates hub usage. 
Values are based on 1000 simulated networks and the significance rate represents the proportion of estimates 
that were statistically significant at a level of 0.05.
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In our first study, we set θTriads = θTwo−Stars = 0 and the intercept β0 = 0.5. We apply the cGERGM to each net-
work with the Edges (Intercept), Two-Stars, and Triads statistics specified. The coefficient estimates from this 
study are consistent with the true parameter values for each simulated network. As one would hope, the two-stars 
and triads coefficient estimates were identified as statistically significant (non-zero) at a rate of 0.047. This result 
is consistent with the anticipated false discovery rate of 0.05 associated with the level 0.05 test for each coefficient. 
The edges and dispersion coefficients were both identified as statistically significant at a 0.05 level in all of the 
simulated networks. Finally, the median estimate of the intercept was 0.5053, which matches the true β0 of 0.5. 
This first study provides evidence of the power of the cGERGM and shows that the model does not falsely identify 
significant coefficients when no topological effects are present.

In the next simulation study, we assess the ability of the cGERGM to estimate the coefficients of simulated net-
works with non-zero topological effects. To do so, we simulate networks from an example fitted model from the 
DMN study provided in Table 3. In particular, we simulate networks from the fitted Two-Stars + Triads model, 
applying θTwo−Stars = −0.75, θTriads = 0.34 and the intercept β0 = 0.25. We fit the cGERGM to each of the simulated 
networks and report the findings in the center of Table 4. We find that the estimated coefficients are consistent 
with the true parameter values of the simulated networks. Indeed, when considering the median estimate and 
standard error, we find that the true parameter values for θTwo−Stars, θTriads, and β0 are all within one standard error 
of the median estimated value on average. Though not shown, we also calculated the number of estimations for 
which the cGERGM produced significant estimates that had the opposite sign from which they were generated. 
For both the two-stars and triads statistic, this occurred very rarely, with only one model (out of 1000) signifi-
cantly positive for two-stars, and only two models (also out of 1000) significantly negative for triads. This study 
gives us confidence that the cGERGM is producing parameter estimates that capture the structure of the DMN.

In our last simulation, we generate networks with a strong tendency to form hubs (in other words, the pres-
ence of preferential attachment). A large amount of research has demonstrated the importance and prevalence of 
hubs in the context of whole-brain networks52,53, and it is therefore important for our model to be able to detect 
such preferential attachment tendencies should they exist at the subnetwork level. Notably, each of the fitted 
models to the DMN identified a significantly negative two-stars coefficient, suggesting a lack of hub-like structure 
in this subnetwork. To test whether the cGERGM can accurately identify hub structure (if it were present), we 
simulate networks with a significantly positive two-stars coefficient (θTwo−Stars = 0.50) and negative edge coeffi-
cient (β0 = −2.00). The results, presented on the right of Table 4, show that the cGERGM accurately identifies 
both the two-stars and edges coefficients as significant in all of the simulated networks. Furthermore, the median 
coefficient estimates were within one standard error of the true value on average. Thus, the cGERGM can identify 
hub-structure in a network of the same size as the DMN.

Discussion
We developed a novel statistical framework for quantifying brain correlation network structure – the correlation 
Generalized Exponential Random Graph Model (cGERGM). The cGERGM allows for the statistical modeling of 
both topological and exogenous predictors of correlation network structure, while simultaneously removing the 
need for thresholding. This allows researchers to both (a) precisely quantify the core processes underlying brain 
network architecture, enabling researchers to describe (and recreate) a given network using a small number of 
parameters, and (b) perform deductive inference on the core processes that make up a network, enabling inves-
tigation of the type of network architecture occurring in different networks. The cGERGM thus both powerfully 
enhances network neuroscience’s ability to quantify networks of functional connectivity, allowing researchers 
to both gauge the influence of different endogenous topological or exogenous features, as well as dramatically 
improve inference on fundamental network principles. We have shown that the cGERGM can effectively charac-
terize the topological features of the functional default mode network, producing good fit to the observed data at 
both edgewise and structural levels. We further find evidence of clustering, anti-preferential attachment, hemi-
spheric homophily, and physical distance between regions (in a way that controls for network density, transitivity, 
and the other parameters in the model).

We can use cGERGM outputs on topological features to infer fundamental organizational principles of the 
networks in question. Our results suggest that the DMN is organized by segregated highway principles wherein 
different functional groups of regions build their own direct channels for information sharing, rather than 
small-world principles where information is shared via hubs. We note that this finding may appear to run coun-
ter to previous investigations of the DMN that found evidence for hub regions in the brain18. This past work, 
however, concluded hub-behavior from significant correlations and between-network centrality. While these are 
properties of hubs, their presence does not guarantee that a network is characterized by preferential attachment 
(rich get richer) dynamics. A brain region may be highly central purely due to its position between a number 
of other important regions. To conclude that the DMN is characterized by preferential attachment, we need to 
find evidence of a rich-get-richer dynamic even when controlling for other factors such as physical proximity, 
as well as other processes like triadic closure which could also account for strong connections incident to a few 
regions. We hasten to note, however, that the present findings actually reinforce the central conclusion of this past 
research and others, since a segregated highway architecture strongly points towards functional segregation of the 
DMN18,36, with different regions specialized for distinct functions. Indeed, the segregated highway architecture is 
highly optimized for this sort of functional segregation. The present results thus demonstrate how one can quan-
tify network properties with the cGERGM to test theoretical predictions about the structure of a given network, as 
well as lay the groundwork for understanding different properties of the many networks and subnetworks within 
the human brain.

An important caveat within these data is that, though we do not find evidence for small-world architecture, 
our conclusions on network activity are limited to the ways in which the regions of the DMN communicate with 
one another. The present results do not inform the role of these regions within the broader whole-brain network, 
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and therefore do not run counter to past work that has found DMN regions to be hubs of the whole-brain52,54,55. 
We do note, however, that segregated highway structure appears to occur across all individuals – while there 
are individual differences in subject architecture, people overwhelmingly show segregated highway structure as 
opposed to an alternative configuration of the network (see the supplemental materials). Further work from our 
lab additionally finds evidence for this same architecture across different subnetworks of the brain56, suggesting 
such an architecture may be more common within the brain than originally thought. We believe the cGERGM is 
poised to dramatically increase the ability of network neuroscientists to systematically study the organizational 
properties of networks of interest.

Future work should take advantage of the powerful network quantification offered by cGERGM. For instance, 
because the cGERGM quantifies the unique role of each topological and endogenous feature in the network (in 
a way that does not require thresholding of data), the parameters recovered from cGERGM may prove more 
powerful and sensitive than descriptive statistics currently employed in investigations of individual or task-based 
differences of network architecture. Future research should investigate these possibilities through a formal com-
parison. Furthermore, research should also extend the cGERGM to account for longitudinal variation in correla-
tion networks, allowing neuroscientists to harness the temporal dynamics at work in fMRI to investigate networks 
over the time-series23,24.

Future work should also continue the development and extension of the cGERGM. The present specification 
of the cGERGM includes only 3 structural features – edges, two-stars, and triads. We stress that the features used 
in the models considered here represent the beginning of possible model specifications, and future work should 
expand this suite of features, in particular to quantify global efficiency and rich-club coefficient – parameters past 
work has documented as important in cognition and disease.

Additionally, while we have focused on functional connectivity in the present paper, our approach can further 
be applied to neural connectivity data that is not derived from a correlation matrix. For instance, many research-
ers quantify structure based on white matter connectivity of the brain (e.g., via diffusion imaging) rather than 
correlations of activity between regions. The present statistical framework can be extended to other types of brain 
network connectivity data, allowing for advanced network quantification in many different contexts.

Finally, beyond neuroscience, the present method opens the topology of correlation networks to inferential 
study, with applications in many other domains of science. Many complex systems are such that the interaction of 
actors, institutions, or elements is best examined via correlation networks produced by these systems (e.g., stock 
prices in economics, correlations in the human genome). The cGERGM is a statistical technique that can open up 
these many fields to rigorous statistical analysis and quantification.

Overall, we develop and propose a new class of models for the quantification and simulation of brain correla-
tion networks – the cGERGM. Using this, we show that the default mode network can be modeled via cGERGM 
parameters in a way that provides good fit. These output parameters in turn allow inferences about core principles 
of network structure in ways existing techniques cannot. In particular, we show here that the DMN, contrary to 
existing investigation of brain network organizational structure, is characterized by a segregated highway archi-
tecture, suggesting it is optimized for functionally segregated tasks.

Methods
Data and Network Construction. Use of Human Participants. All experimental protocols were approved 
by the Ohio State University Institutional Review Board, and all methods were carried out in accordance with 
relevant guidelines and regulations. All participants provided informed consent at the beginning of the study and 
were fully debriefed at the conclusion.

Participants. Two-hundred and fifty participants (147 female, ages 18–51) completed a six-minute resting state 
scan in which they were instructed to close their eyes and let their mind wander (but stay awake). Because exces-
sive motion can introduce artificial correlations across regions in connectivity analyses, we opted for a strict 
movement cutoff whereby any participant who moved greater than 2 mm while undergoing resting state was 
excluded. Further, some participants had portions of their brain outside of the full field of view, and as such were 
excluded. Together, this yielded 154 total analyzable participants (100 female, ages 18–31).

Scanning parameters. Acquisition was done using a 3-T Siemens Trio scanner equipped with a 12 channel 
head-coil. 144 functional T2*-weighted blood-oxygen level-dependent (BOLD) echoplanar (EPI) images were 
acquired with TR of 2.5 s, TE of 28 ms, slice thickness of 2.5 mm, field of view = 195 * 220 mm, matrix = 78 × 88, 
and flip angle of 75 degrees.

Network construction. To construct the network, we used the functional parcellation of the DMN described 
by ref.18,supplementing this using right hemisphere coordinates47,48. This yielded a 20-node atlas covering both 
hemispheres. We then applied this atlas to each participant’s time-series data, such that each voxel within a region 
was averaged together, yielding 20 time-series’ for each participant. From this time-series, we partial out 6 param-
eters of motion, four parameters corresponding to cerebrospinal fluid, and four parameters corresponding to 
white matter57. To generate connectivity across participants, we concatenated together each subjects’ partialed 
time series for each ROI, and then took the Pearson correlation across all 20 ROIs. This yielded a single 20 × 20 
symmetric matrix corresponding to the connection strength between each of the 20 regions. While an alternative 
approach would be to construct a correlation matrix for each individual participant, and then average together 
these matrices, we take the present strategy to conserve the properties of a correlation matrix - namely, positive 
semidefiniteness.
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cGERGM: a Family of Exponential Random Graph models for Correlation Networks. Our model 
is motivated by the need to analyze the pairwise correlations among n brain regions. We model this data with 
an undirected network represented by the weighted symmetric adjacency matrix ρ = (ρij: i, j ∈ 1, …, n). Here, we 
have that ρij ∈ [−1, 1] and ρij = ρji for all i and j. The difficulty of directly analyzing ρ lies in the fact that correlation 
matrices must have ones along the diagonal and must be positive semidefinite, namely for any non-zero vector v 
of length n, the following relation must hold

ρ ≥ .v v 0 (1)T

There are two reasons that models for correlation networks must account for the constraint of positive sem-
idefiniteness. First, unconstrained models offer limited predictive utility as they cannot be used to simulate valid 
correlation matrices. Second, analyzing the structural properties of a brain correlation network without account-
ing for its positive semidefiniteness may lead to inferential false positives due to artifacts in the data (e.g., because 
they satisfy a triangle inequality, all correlation matrices exhibit non-zero transitivity relative to an unconstrained 
random graph45). For valid inference of ρ, we would like a model that ensures that estimates, say ρ


, also satisfy (1).

Our goal then is to provide a family of models for a random matrix ρ ∈ [−1, 1]n×n that (i) upholds the positive 
semidefinite constraint of ρ, (ii) describes the relational (network) structure of ρ, and (iii) describes the relation-
ship between the entries of ρ and a collection of potentially useful regressors z1, …, zq. There are some existing 
approaches to modeling covariance and correlation matrices (see e.g. ref.45); however, to the best of our knowl-
edge no contemporary model accounts for the joint network features present in a correlation network.

In what follows, we view ρ as an undirected and weighted network whose edge weights (ρij: i < j ∈ [n]) lie in 
[−1, 1]m, where m = n(n − 1)/2 is the total number of interactions among the n regions in the brain. Briefly, our 
model relies on 3 transformations from the observed correlation matrix ρ to an exponential model describing the 
weights on the edges (see Fig. 2).

Our proposed model begins with describing the joint relational features of ρ through a constrained network 
x ∈ [0, 1]m. One first specifies a vector of features h(x) of length p < m that describe the structural patterns of the 
graph x. The choice of these topological (network-structural) features is flexible, and in principle can be chosen to 
model any dyadic feature of a weighted graph. For instance43, investigated a suite of possible features for weighted 
graphs, and ref.20 described a collection of potentially useful descriptive features for brain networks. Once the 
features have been specified, the bounded network x ∈ [0, 1]m is modeled by the joint density function

∫
θ θ

θ
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[0,1]m

where θ is a p - dimensional vector of parameters that quantify the effects of the network features h(x) on the 
likelihood of the graph x.

In the next step, we generate a vector of unconstrained partial correlations φ = (φij: i < j ∈ [n]) ∈ [−1, 1]m by 
applying the transformation xij = Tij((φij + 1)/2|μij, α), where Tij(·|μij, α) is the cumulative distribution function of 
a Beta distribution with mean μij and scale parameter α. Let  →T : [0,1]m m be defined as the m-dimensional 
vector T(φ|μ, α) = (Tij(φij|μij, α), i < j ∈ [n]). Then φ is a random vector from the probability density function 
fΦ(φ|θ, μ, α), given by
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1  is the gamma function defined for t > 1 and wij ∈ (−1, 1). A notable property of (3) is 

that when the partial correlation network φ does not contain any network structure, i.e. when θ = 0, then the m 
components of (φ + 1)/2 are independent samples from a Beta(μij, α) distribution, where μij ∈ (0, 1) is the 
expected value of (φij + 1)/2 and α is the precision of the distribution.

Model (3) provides a flexible avenue to evaluate the effect of exogeneous variables z1, …, zq on the partial cor-
relation matrix φ. Let 



z  be a vector of dyadic observations = < ∈ 







z z i j n( ( ): )ij  for = … q1, , . We model the 
effect of each predictor using a generalized linear model for the mean μ of φ:
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=

z rlogit( ) ( )
(4)ij

r
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Since μij ∈ (0, 1), the logit(·) link in (4) is a natural choice, but any monotonically increasing and twice dif-
ferentiable function can be used here. The regression model in (4), together with the Beta density tij(·|μij, α) is 
well-studied and generally referred to as Beta regression58.

The final step in defining the cGERGM relies on the relationship between the partial correlation matrix φ and 
its associated correlation matrix ρ for the collection of n brain regions. Let φjj+k denote the partial correlation 
between region j and j + k given regions j + 1, …, j + k − 1 for k ≥ 2. A well-known result in multivariate statistics 
is that there exists a one-to-one mapping between ρ and φ59. Given φ, one can calculate the correlation network 
ρ using the following recursion:
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Represent the multivariate transformation from ρ to φ given by the recursion in (5) by ρ = g(φ). Then the 
Jacobian of this transformation, as shown by ref.60,is given by
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Applying the inverse probability transform to the density in (3), we can generate a positive semidefinite corre-
lation network ρ from the density:

θ µ θ µρ α ρ α ρ| = | | |Φ
− −f f g J g( , , ) ( ( ) , , ) ( ( )) ,R

1 1

In summary, for fixed parameters θ = (θ1, …, θp), β = (β0, …, βq), and α > 0 the cGERGM model for a corre-
lation network ρ on n brain regions is described by the following generative process
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Model Specification. To fit a cGERGM to an observed correlation network, we need to specify topological 
features to be included in h(x), and/or exogenous predictors for the regression function T(·|β). The correspond-
ing vectors of coefficients, θ and β, describe the effects of the specified features on the generative process of the 
observed weighted graph. In our investigation, we fit a family of cGERGMs to the DMN using a suite of topologi-
cal and exogenous features that represent important processes in the brain. A visualization of the features that we 
use are available in Fig. 1. We discuss these features in more detail in the remainder of this section.

Topological features. We consider three topological features as predictors in our fitted models – two-stars, triads, 
and edges. The two-stars statistic is a measure of preferential attachment in the brain61. This value will be higher 
for networks in which there is a high variance in the popularity of vertices (i.e., those in which there exist highly 
connected hubs). The two-stars statistic is highly relevant to network approaches to neuroscience, as it closely 
associates with the extent to which hubs are present in a given network relative to pure chance. This statistic 
directly allows for inferential testing of the role of hubs in a given network, which we expect to be significant given 
the importance for hubs in brain networks53.

The next term we include, the triads statistic, is a measure of clustering of the regions in the DMN. In an 
unweighted network, this statistic counts the number of closed triangles in a network. In weighted networks, the 
triads statistic expresses the overall strength of connection of triangles in the restricted network x. As with prefer-
ential attachment, a high degree of clustering has been consistently shown to be a feature of brain networks7,11,20. 
Furthermore, reductions in clustering (in addition to other metrics), have been shown to be closely associated 
with disease states, such as schizophrenia28.

The edges term, which we also include, parameterizes the mean edge value in the restricted network. The 
parameter estimate for this value is analogous to an intercept term in a standard regression model, and is included 
as part of the transformation of exogenous covariates onto the network (described in the next section). We note 
that including an edges term is important for model fitting as this term normalizes the overall connectivity of the 
observed network so as to avoid erroneous inflation of the parameter estimates for the remaining features.

Exogenous features. Exogenous features are covariates that capture properties of the DMN at a node or dyad 
level. The parameter estimate associated with an exogenous feature describes the influence of the specified feature 
on the overall strength of an edge in the observed correlation network. Exogenous features can be either categor-
ical or continuous variables.
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In our study, we consider two relevant exogenous features that describe the spatial relationship of the regions 
in the DMN—hemisphere location and distance between regions. The hemisphere feature is a dyad-level variable 
that indicates whether or not a pair of nodes (regions) are located in the same hemisphere of the brain, either 
the left hemisphere, right hemisphere, or the midline. Given that regions within a hemisphere are typically more 
connected within rather than across hemisphere62, we expected this covariate to be significantly positive.

The second feature that we consider in our model specification is the physical distance between nodes. For 
each pair of regions, this feature records the physical distance between the center of each ROI in the DMN. The 
distance feature accounts for the functional similarity of regions that are physically close to one another in space. 
Past work in neural architecture has identified distance as being an important driving factor for the development 
of connections, with closer regions having stronger connections than further regions8,51. While distance certainly 
plays a crucial role in the architecture of connections, it is unclear whether this will be present in the default mode 
– a network spatially dispersed across many regions of the brain.

Our Fitted Network Models. Necessary inputs for estimating the cGERGM include the network data (i.e., the 
correlation matrix), exogenous covariate data, and the list of topological features. For the present demonstration, 
we fit 15 different models to the DMN. All models include an edges feature (which corresponds to an intercept), 
and the remaining features correspond to all 15 possible combinations of our four topological and exogenous 
features. We set T(·|β) as a Beta distribution, and model the partial correlations as a regression on the exogenous 
predictors using Beta regression58. To avoid model degeneracy – a common issue in exponential random graph 
models63 – we applied a geometric down-weighting strategy to the structural predictors as described by ref.43. This 
resulted in geometric downweights of 0.8 for two-stars and 0.4 for triads.

Data and Code Availability. For all analyses, we used the R package GERGM to fit the specified models. Upon 
acceptance for publication, all code necessary for reproduction, as well as the network data and model output, will 
be posted at the Open Science Framework, osf.io/d5yk7.

Fitting the cGERGM. To fit a cGERGM (equation 4 in the main text) to an observed correlation network ρ, 
one needs to only define topological (network-level) features h(x) = (h1(x), …, hp(x)) and exogenous features z1, 
…, zq. We then apply the Metropolis–Hastings Markov Chain Monte Carlo methodology from ref.43 to calculate 
the maximum likelihood estimators for the fixed unknown parameters θ and β. The resulting parameter esti-
mates θ and β describe the effects of the topological and exogenous features on the likelihood of ρ, respectively. 
These parameter estimates can be used to further explore the nature of the data through simulation and testing.
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