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The Acquisition and Analysis of Electroencephalogram Data for the Diagnosis of Benign Partial 

Epilepsy of Childhood with Centrotemporal Spikes 

 

by 

 

Jessica Anne Scarborough 

 

 In this thesis, I will expand upon each step in the process of acquiring and analyzing 

electroencephalogram (EEG) for the classification of benign childhood epilepsy with 

centrotemporal spikes. Despite huge advancements in the field of health informatics—natural 

language processing, machine learning, predictive modeling—there are significant barriers to the 

access of clinical data. These barriers include information blocking, privacy policy concerns, and 

a lack of stakeholder support. We will see that these roadblocks are all responsible for stunting 

biomedical research in some way, including my own experiences in acquiring the data for the 

second chapter of this thesis.  

This second chapter expands upon just one possible advancement that can be achieved 

when researchers attain clinical data (in this case, EEG data). BECTS is a type of epilepsy that 

only displays epileptiform activity on night-time EEGs. We hypothesize that a brain affected by 

BECTS is also developmentally different during the daytime, and based on this assumption, our 

analysis aims to uncover these electrodynamic distinctions. After course-graining raw EEG 

segments, we extracted sample entropy, recurrence rate, laminarity, and determinism using 
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recurrence quantitative analysis. Our results displayed two major findings. First, awake BECTS 

and control patients can be classified with no overlap using all of these features. Second, BECTS 

patients show differences in sleep state RQA values from centrotemporal and non-

centrotemporal regions. We cannot confirm if these differences display epileptiform activity, 

however, because we do not have controls for sleep studies. With proper development and 

implementation, this research has the potential to become a clinical decision support tool and 

decrease the need for inconvenient sleep studies.  
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I. Accessing Clinical Data for Research 

A. Background 
 

Despite a large push for health scientists to explore the world of big data (Khoury & 

Loannidis, 2014; Margolis et al., 2014), attaining useful health data remains a firm roadblock in 

much of health informatics research. The United States government has invested almost $30 

billion into the development, regulation, and incentivizing of electronic health records (EHRs), 

yet the promises of an interoperable health information exchange (HIE) have not been realized 

(Marchibroda, 2014). Individual EHR vendors often act as data silos, and institutions are unable 

to effectively communicate with each other. Likewise, researchers often report unreasonable 

challenges when attempting to gather data in a usable manner from third-party EHRs, medical 

devices, and medical data collection software. In some cases, these third-party vendors may be 

attempting to block the transfer of information to make it difficult to change software, known as 

“locking in” users (ONC, 2015, pp. 13, 17-18). Ubiquitous and often unfounded fears of the 

HIPAA Privacy Rule can be heard in research laboratories and institutional review board (IRB) 

meetings in academic medical centers across the country. Many of these challenges can be 

overcome with the if stakeholders to health software development, government policy, and 

hospital administration support the needs of researchers. In this chapter, I will discuss why 

access to clinical data remains a significant barrier to biomedical research and recent policy and 

culture changes that have the potential to ease these burdens. 

 

B. Barriers to Clinical Data Access 
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There is a scarcity of formal studies regarding the complications in attaining medical data 

for biomedical and public health research (ONC, 2015, p. 7). Despite this, there is significant 

anecdotal evidence from conference proceedings and online informatics discussions that points 

to significant limitations faced by researchers trying to obtain data. Using these complaints as a 

foundation, I procured empirical evidence and government reports regarding significant 

obstructions researchers find when attempting to utilize biomedical research data. Throughout 

this chapter, I will demonstrate three major barriers in accessing medical data for research: 

1. Information Blocking 

2. Privacy Law Concerns 

3. Lack of Stakeholder Support 

As defined by the ONC, information blocking occurs “when persons or entities 

knowingly and unreasonably interfere with exchange or use of electronic health information” 

(ONC, 2015, p. 11). Next, concerns related to the Health Insurance Portability and 

Accountability Act (HIPAA) are often misdirected (Herdman, Moses, States, & (U.S.), 2006), as 

protected health information is removed from most research data in a process known as de-

identification. Despite this, these concerns play a significant role in stunting medical research 

(Dunlop, Graham, Leroy, Glanz, & Dunlop, 2007). The final barrier, a lack of stakeholder 

support, is demonstrated with anecdotal evidence and the need for government intervention to 

achieve “meaningful use” of electronic health records. 

 

Information Blocking 

Information blocking, a term that was first formally defined by the Office of the National 

Coordinator for Health Information Technology (ONC)(Adler-Milstein & Pfeifer, 2017), refers 
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to actions taken by individuals or entities who purposefully block or hinder the transfer of health 

information without reason (ONC, 2015, p. 11). Information blocking is an act that is difficult to 

define, because an individual or entity is only committing information blocking (as defined by 

the ONC) if they are aware that their actions are preventing the reasonable transfer of health 

information. Purposefully preventing information exchange to comply with privacy laws is a 

“reasonable” action; therefore, doing so would not be considered information blocking. 

Conversely, deliberately citing a privacy law (e.g. HIPAA’s Privacy Rule) as an excuse for not 

sharing patient health information is considered an act of information blocking (ONC, 2015, p. 

16).  Figure 1 below visualizes these three requirements in order for an act to be considered 

information blocking.  

 

Figure 1. Requirements to categorize an action as information blocking, as defined by the ONC. 

Taken from (ONC, 2015, p. 11) 

There are many motivations for individuals or entities to block the exchange of health 

information—economic, technological, and practical—that are documented from anecdotal 
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evidence. Although health IT developers (software vendors) are the primary culprits of 

information blocking (ONC, 2015, p. 15),  some providers may see an economic incentive to 

preventing the authorized transfer of medical records in order to impede patients from leaving 

their practice. Vendors may purposefully not pursue reasonable technological advances that 

increase interoperability in order to “lock-in” providers to one system (ONC, 2015, p. 13).  

Information blocking has been discussed anecdotally since the advent of the Health 

Information Technology for Economic and Clinical Health (HITECH) Act and the subsequent 

push for interoperability in healthcare. These concerns were brought to a national stage when the 

ONC published an information blocking report in April 2015 (ONC, 2015). This report took aim 

at EHR vendors who are believed to partake in the majority of information blocking, outlined 

mechanisms used to unnecessarily impede the transfer of health data, and laid out steps for 

remedying the situation. This report, however, is not intended to act as the final investigation into 

information blocking (ONC, 2015, pp. 19-20, 29). There are approximately 60 unsolicited 

complaints made to the ONC regarding information blocking in 2014 alone (ONC, 2015, p. 15). 

These complaints, along with some empirical evidence, are at the foundation of the report to 

Congress. Even with this evidence, the ONC strongly recommends that additional research is 

performed to confirm or disprove anecdotal complaints and gather more information from the 

perspective of providers and vendors being accused of information blocking (ONC, 2015, pp. 19-

20).  

In this report and later publications, the ONC outlines various methods that vendors and 

providers use to block the appropriate transfer of patient information; many of these information 

blocking techniques affect research in addition to clinical care. For example, the ONC states that 

complaints have been made alleging that “developers may be engaging in information blocking 
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as a means of ‘locking in’ providers and consumers to rigid technologies and information sharing 

networks that reinforce the market dominance of established players and prevent competition 

from more innovative technologies and services” (ONC, 2015, pp. 17-18). When EHRs act as 

data silos, clinical experiences suffer. Providers are unable to access family history, drug 

allergies, or previous test results if the patient hasn’t been seen at provider’s institution yet. 

Likewise, researchers may be unable to attain data, despite IRB approval for its extraction. The 

report continues, “Some of these developers cite security concerns and business justifications for 

these practices, while others provide no justification or, in some cases, appear to acknowledge a 

strong preference not to exchange information using federally adopted standards and to instead 

drive more users to exchange information using proprietary platforms and services.” This blatant 

preference for preventing data liquidity is damaging to current patients (who may receive sub-

optimal care when their medical records are not shared with authorized providers) and future 

patients (who could benefit from ground-breaking research that requires a decreased burden for 

HIE). The upcoming case study will demonstrate tangible consequences incurred when software 

developers force proprietary formatting of health data. Additionally, the inaccurate citation of 

HIPAA’s Privacy Rule will be discussed in the next section of this chapter. Although 

information blocking can occur in many forms, the outcomes are strikingly consistent to medical 

researchers—sample sizes drop, the significance of results is diminished, and/or research 

pursuits are abandoned altogether.    

The wide-ranging reactions to this report demonstrate that information blocking remains 

a contested issue. A letter of dissent, signed by the executives of Epic, Allscripts, McKesson, and 

other prominent EHR vendors, was presented to the ONC shortly after the publication of their 

report (Burchell et al., 2015). These vendors argued that what was described as “information 
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blocking” in the report was not intentional, but rather, a result of the high cost of developing and 

maintaining an interoperable interface. In this letter, the vendors maintain that there aren’t 

enough users who want these features to justify their development. The ONC report, which was 

based significantly on anecdotal evidence, admits that further research must be done. Within the 

report, they state, “There is little quantitative data available with which to reliably identify and 

measure the extent of information blocking… In particular, ONC lacks methods and data to 

precisely determine why a provider is not exchanging when they should have the capability to do 

so.” Due to its recent publication, there has been minimal follow-up research published regarding 

information blocking since this report to Congress. Yet, the ONC is not the only organization 

that believes EHR vendors are purposefully failing to deliver products that allow for data 

transfer. In a 2012 article titled Escaping the EHR Trap—The Future of Health IT, Dr. Kenneth 

Mandl and Dr. Isaac Kohane lament: 

We believe that EHR vendors propagate the myth that health IT is qualitatively different 

from industrial and consumer products in order to protect their prices and market share 

and block new entrants… This attitude has thwarted medicine's decades-long quest for an 

electronic information infrastructure capable of providing a dynamic and longitudinal 

view of the health care of individuals and populations. EHR companies have followed a 

business model whereby they control all data, rather than liberating the data for use in 

innovative applications in clinical care (Mandl & Kohane, 2012).  

 
 These authors, representing the Children’s Hospital Informatics program, the Harvard-

MIT Division of Health Sciences and Technology, and the Center for Biomedical Informatics at 

Harvard Medical School, note that despite general advancements in the field of data 

interoperability, EHR vendors have purposefully lagged behind these developments in order to 
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silo patient data. Although the ONC report is clearly based on anecdotal evidence, these 

complaints represent industry-wide concerns that cannot be dismissed.  

 
 In order to understand the causes of information blocking, EHR vendors must grant 

some transparency regarding their practices and contracts. The ONC expressed concern that 

attaining quantitative answers regarding the prevalence and mechanisms of information blocking 

(i.e. differences in charges for transferring data between institutions) is particularly challenging 

due to “gag clauses” often found in vendor agreements between providers and EHR companies 

(ONC, 2015, p. 16). Said gag clauses can prevent providers from discussing details of their 

contract, particularly cost. Given that intentionally prohibitive pricing is frequently referenced as 

a source of information blocking (ONC, 2015, p. 13), these restrictions limit the quantitative 

conclusions of any research on the matter (ONC, 2015, pp. 31-32).  

Despite previously stated concerns regarding the shortage of empirical evidence related 

to information blocking, congress has moved quickly to improve standards for HIE. The 21st 

Century Cures Act, written and passed with bipartisan support, was signed into law by President 

Obama at the end of 2016. In addition to increasing funding to medical research substantially, 

this legislation aims to improve HIE interoperability by setting data exchange standards and 

barring acts of information blocking("21st Century Cures Act," 2016). Due to its recent 

enactment, the long-term effects of this law are unknown, but it is undoubtedly a step towards 

progress in achieving an interoperable healthcare system. Given that most EHR vendors appear 

to believe that their practices do not constitute information blocking, it is possible that more 

action will be necessary to create change in the private sector. This legislation does, however, set 

a tone for the expectations vendors will be held to for achieving continued Meaningful Use 

certification. If methods for detecting and discouraging information blocking are implemented in 
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addition to this redefined tone, the United States healthcare system will take a large step towards 

interoperability—leading to an improved standard of care and biomedical research.  

Privacy Law Concerns 

The introduction and implementation of the Health Insurance Portability and 

Accountability Act (HIPAA) was not met with enthusiasm from all providers. In theory, HIPAA 

was designed to improve patient privacy and electronic billing, yet many practitioners saw these 

rules as onerous, costly, and unconducive to quality care (Barieri, 2003; Bowers, 2001; 

Kumekawa, 2005). As a field, healthcare is notoriously resistant to change; still, over 20 years 

later, HIPAA has become an accepted industry standard, safeguarding the privacy of patients and 

their protected health information (PHI) (Solove, 2013). Despite this acceptance in the clinical 

world, concerns related to HIPAA (some reasonable and some unfounded) continue to hinder the 

progress of medical research (Dunlop et al., 2007; Gostin & Nass, 2009; Wei, 2015).  

Apprehensions related to the inappropriate disclosure of PHI typically reference 

HIPAA’s Privacy Rule. This rule sets standards for the protection of PHI within a covered entity. 

These covered entities include health plans, health clearinghouses, and healthcare providers. Per 

Susan McAndrew, the Deputy Director for Health Information Privacy in the Office for Civil 

Rights (OCR), data that have already been excised from a covered entity (e.g. de-identified and 

moved into a data warehouse) are no longer a concern of the Privacy Rule (Herdman et al., 2006, 

p. 8).  Regulations are concerned with patient information that is being transferred between 

covered entities or between a covered and non-covered entity. In these circumstances, the 

Privacy Rule stipulates limitations for the use and disclosure of PHI.  
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With biomedical research in mind, the Privacy Rule creates several approaches for the 

transfer of identified medical records outside of one covered entity. These include the following: 

(Herdman et al., 2006, pp. 8-9) 

1. Acquiring informed consent from each patient before recruitment into a study 

2. Obtaining institutional review board (IRB) approval for the use of a limited data 

set (may contain broad geographical information and some dates) 

3. (In very limited cases) Attaining IRB approval to use PHI without the patient’s 

consent, stipulating that this PHI will be protected and remain unpublished 

Although these procedures may delay research temporarily, it is not without good reason. 

This purpose is stated by Dr. Roberta Ness of the University of Pittsburg: “Researchers 

fundamentally believe in and are engaged in protecting confidentiality as much as is possible, 

because they fundamentally understand… that without the protection of confidentiality, there 

will be no trust in research and, therefore, [they] will be unable to conduct research.”  In addition 

to the ethical obligation to protect patient confidentiality, scientists also have benevolently 

selfish reasons for ensuring that PHI in their control remains secure. If the public’s faith in the 

protection of PHI is diminished, less patients will agree to sharing their data, leading to reduced 

research opportunities and weaker results. With that being said, these sensible privacy 

requirements may inherently cause a delay to biomedical research. For example, obtaining 

informed consent, writing IRB proposals, and attending IRB meetings all require time and 

resources. Even given these acceptable burdens, the observed impact to biomedical research is 

disproportionate to the intended pauses set forth by the Privacy Rule (Ness, 2007).   

Some inadvertent burdens that stem from the Privacy Rule are caused by confusion 

regarding what the IRB is capable of approving. One of their many roles, IRBs are responsible 
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for interpreting HIPAA regulations; as such, these review boards can waive requirements as they 

see fit (NIH, 2003). Nevertheless, according to Paul Feldman, Director of the Health Privacy 

Project, “IRBs believe they have no authority to approve alterations to or waivers of 

authorization for protocols not subject to the Common Rule. They do” (Herdman et al., 2006, p. 

21). This statement was made at a forum regarding the effect of the HIPAA Privacy Rule on 

health research in 2006. It is now over 10 years later and there is little written about whether 

current IRBs are willing to waive HIPAA requirements when given the appropriate 

documentation of purpose and security. It is likely that a lack of discussion on this topic is a 

positive outcome—fewer researchers are experiencing this issue making further investigations 

unnecessary. Lessons learned from the confusion surrounding the initial roll-out of HIPAA 

regulations should be documented in order to improve the implementation of future health 

privacy policies. 

De-identification, the process of removing PHI from medical records, is a common 

option for researchers wishing to attain patient data and avoid HIPAA constraints. There are two 

methods of de-identification, the “Expert Determination” method and the “Safe Harbor” method. 

The “Expert Determination” method, also known as the statistician method, requires that a 

person with appropriate field knowledge and statistical skills declares that the data is not 

individually identifiable ("Health Insurance Portability and Accountability Act of 1996," 1996). 

Next, the “Safe Harbor” method, doesn’t require a statistician’s approval. Instead, de-

identification requires the removal of the 18 individual identifiers from medical records("Health 

Insurance Portability and Accountability Act of 1996," 1996). These identifiers can be found in 

Appendix A. The removal of all patient identifiers is the overwhelming method of choice, 
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despite the possibility of gaining valuable demographic information in a secure manner through 

the “Expert Determination Method.” 

The Privacy Rule stipulates that records de-identified with “expert determination” can be 

shared freely (Amatayukal, 2003; NIH, 2004); nonetheless, misguided concerns regarding the 

ability to share de-identified data are often accepted as valid. The statistician method of de-

identifying data is not universally accepted by IRBs, because these boards are often unsure of 

how to regulate whether it is being done properly (Herdman et al., 2006, p. 22). A statistician’s 

endorsement that data has been appropriately de-identified is only as infallible as the 

assumptions said statistician made during the evaluation process (Herdman et al., 2006, p. 17). 

For example, the statistician is only required to certify that the risk of re-identification is “very 

small,” but per guidance published by the Department for Health and Human Services (HHS), 

there is no definition for what “very small” is. Given these uncertainties, IRB concern may be 

warranted.  

In addition to good faith concerns, IRBs can be unsure of their liability for guaranteeing 

that de-identification is performed to adequate standards. By the very nature of IRB 

independence from a central agency, board requirements and decisions can differ widely 

between organizations (Herdman et al., 2006, pp. 25-28). While some variation is inevitable, not 

permitting a Privacy Rule-approved method of de-identification because of unfamiliarity with 

the technique may create unfair differences between institutions. Resolving these concerns will 

require addressing IRB reservations and unfamiliarity with the statistician method. First and 

foremost, detailed documentation of the de-identification process should be provided to the IRB, 

including assumptions made and steps taken to ensure there’s a “very small” chance of re-

identification. HHS guidance regarding the two methods of de-identification, including a lengthy 
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explanation of the “Expert Determination” technique, can be found online (OCR, 2017). And 

IRBs that are unfamiliar with their role in overseeing a statistician de-identification process 

should be provided with mechanisms to increase their understanding and awareness of this 

method.  

The 21st Century Cures Act, touched upon in the “Information Blocking” section of this 

chapter, also works to improve medical research by lightening Privacy Rule restrictions for 

medical researchers. Before this update, PHI could be utilized by a covered entity for health care 

operations, including treatment, billing, and hospital procedures. This legislation now classifies 

research as part of “health care operations,” giving researchers and business associates within 

covered entities autonomous access to medical records. Additionally, when authorization forms 

are required, the forms specify “one-time” consent, where the authorization to use said data is 

indefinite unless the patient later revokes authorization. This PHI is still protected by the HIPAA 

Privacy and Security Rules, involving significant protection standards and breach notification 

rules. These alterations to the Privacy Rule have the potential to make a large impact by giving 

researchers access to data. In order to realize this full impact, however, IRBs must be informed 

and educated on these changes.   

HIPAA was not created with research as a priority. (Herdman et al., 2006, p. 13). This 

lack of foresight demonstrates a consequence of inconsistent stakeholder support in the pursuit of 

improving health research, which will be discussed further in the next section of this chapter. For 

good reason, obtaining medical records with PHI does require extra effort in obtaining patient 

consent or IRB approval. Yet, without the appropriate training in how to navigate these 

regulations, research will be stymied. 
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Lack of Stakeholder Support 

Clinical research has stakeholders in various sectors, ranging from clinicians to 

policymakers to medical institutions. In a clinical setting, the ability to acquire clinical data 

begins with data collection and storage mechanisms. The advent of electronic health records 

centered around improving patient care with increased safety, efficacy of treatments, and ease of 

billing. These are all crucial goals; yet, for the purposes of this discussion, these objectives make 

it clear that research was not a priority. We can therefore postulate that this lack of forethought 

provides some explanation for the difficulties encountered in obtaining data from electronic 

medical records. Stakeholders in clinical data collection and storage mechanisms traditionally 

include patients, clinicians, IT personnel, data warehouse engineers, hospital administrators, and 

corporate employees. Medical centers may choose to prioritize research as an institutional 

objective, adding additional stakeholders related to research and education. Simply put, there are 

fundamental differences in how various stakeholder prioritize institutional objectives. When 

choosing between electronic health record vendors and investment into backend design, 

corporate employees and administrators may focus on institutional reputation and budget-saving 

measures. When expressing their opinions regarding the use of technology in a clinical setting, 

clinicians and patients may believe improved workflow and diagnostic rates are fundamental to 

success. Research principle investigators, on the other hand, may prioritize a well-defined data 

warehouse that allows for the institution’s researchers to access de-identified data with ease.  A 

primary step to improving access to medical data in research must be coordinating stakeholder 

support of these goals.  

When included in the planning stages, these research stakeholders can influence 

fundamental government regulations, institutional mission statements, and organization cultural 
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attitudes related to the secure transfer of medical records.  To do so, however, all stakeholders 

must be invited to provide their expertise and opinions. According to Marcy Wilder, Esq., the 

lead lawyer working on HIPAA’s Privacy Rule, their team was not able to expand upon research 

regulations during the writing process, because there simply was a lack of expertise in the matter 

(Herdman et al., 2006, p. 14).  As discussed previously, some fundamental concerns related to 

the Privacy Rule may have been avoided if clinical research stakeholders played a role in writing 

said policy. And despite significant alterations to the Privacy Rule, which simplify the transfer of 

PHI to covered entity researchers, the academic field will need to be educated on these changes 

in order for them to be implemented fully.  

The Centers for Medicare & Medicaid (CMS) has created more recent policy 

incentivizing electronic health records (EHRs) that adhere to Meaningful Use standards. These 

standards are an example of creating policies that work to appropriately prioritize research goals 

in addition to clinical health. Meaningful Use regulations incentivize eligible providers and 

institutions to utilize EHRs that meet or exceed expectations of utilizing electronic health records 

in a “meaningful” way. In addition to increasing patient safety (e.g. requiring EHRs to perform 

drug-drug or drug-allergy interaction checks in Stage 1), this program requires participants to 

eventually utilize EHRs that promote public health (e.g. standards for reporting to public health 

repositories) (CMS, 2010). Additionally, in the beginning of 2017, CMS created a centralized 

repository for this reporting (CMS, 2017). Agencies that are able to accept public health and/or 

clinical data may sign up to be included, allowing clinical data sources to report to multiple 

agencies connected through this centralized repository. Here, we can see a path towards the 

interoperability required for achieving some of the true potential that EHRs hold.  
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Finally, the importance of economic incentive cannot be understated. There is little 

speculation regarding why vendors and institutions may want to prevent the easy transfer of 

medical information; easily transferred data can lead to easily changed systems. To some degree, 

this economic incentive needs to be respected, because it is precisely why developers work to 

create innovative products; it is why large academic medical centers exist. However, the EHR 

software industry has been made possible by Meaningful Use incentives that have a clear 

intention of promoting a health care system that benefits from easy, secure information 

exchange. Software developers, therefore, must recognize when benefits to consumers greatly 

outweigh economic incentives. Likewise, economic interests could and should be leveraged as an 

advantage to creating interoperable systems. From the perspective of institutions, academic 

medical centers that invest in software that easily transfers health data can produce research with 

more impressive sample sizes, more impressive results. Good research encourages additional 

funding; additional funding improves hospital and medical school rank, attracting even better 

talent to pursue even better research. Vendors, too, can benefit from this cycle. Institutions that 

wish to leverage data-driven research will invest in EHR systems and other health IT software 

(i.e. EKG analysis software) that makes the transfer and de-identification of medical records 

simple. Vendors may be concerned about making their software interoperable, but the 

consequence of not doing so could be much worse—isolating themselves from a market that is 

demanding interoperability.  
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C. Case Study: Acquiring Clinical Data from Boston Children’s Hospital’s 
Child Neurology Department 
 

Background 

 Since the advent of health informatics, Boston Children’s Hospital (BCH) has been a 

leader in striving for innovative techniques that improve health care with the use of information 

technology (IT). Their Computational Health Informatics Program (CHIP) was awarded “Best 

Health Care Organization” by Health 2.0. In an award that took into consideration the last 10 

years of health technology innovation, Boston Children’s Hospital’s global reputation was 

clearly demonstrated with this recognition. Furthermore, research division has created an 

Innovation and Digital Health Accelerator, which hopes to vet and foster technologies that 

advance the field of digital health. With a focus in remote care, clinical decision support, and 

innovation platforms (i.e. Fast Healthcare Interoperability Resources, also known as FHIR), 

Boston Children’s Hospital is a clear forerunner in the health informatics field. This forward-

thinking institution stands out with their investment in informatics, clearly recognizing the role 

that data-driven research will play in the future of medicine.  

Research pursued by CHIP includes Health Data Fusion, SMART Health IT, HealthMap, 

and Apache cTakes. Each of these endeavors requires significant amounts of health data 

(sometimes millions of patient records) and the infrastructure necessary to obtain, process, and 

store large amounts of data. Of note, SMART Health IT is a platform comprised of open 

standards and open source software that allows external innovators and researchers to design 

health applications that can be used across the healthcare field. For example, “Cardiac Risk” is 

an app that uses an interactive interface to show a patient’s risk of heart attack or stroke within 

the next 10 years. Once these tools are developed, applications may be added to the SMART 
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App Gallery at no charge. These applications can be “bolted on” to various health IT platforms. 

The very foundation of SMART Health IT relies on developers who are willing to share their 

standards, software, and applications with clinical and academic communities around the world. 

It is this culture of open innovation that feeds the research at Boston Children’s Hospital. Yet, 

despite a strong concentration in big data research, this case study will demonstrate that BCH 

researchers are not without their own plights when attempting to access clinical data.  

 My time spent at Boston Children’s Hospital enlightened me to the realities of accessing 

clinical records for biomedical research. To expand upon the research discussed in the following 

chapter, I traveled to BCH with the goal of extracting de-identified electroencephalogram (EEG) 

records from the Neurology Department’s electronic medical record system. We worked in 

conjunction with Dr. Tobias Loddenkemper, an Associate Professor of Neurology at Harvard 

Medical School, with over 250 publications. At BCH, he is the Director of Clinical Epilepsy 

Research within the Neurology Department. As seen in many departments at Boston Children’s 

Hospital, both excellence in clinical care and pioneering research are Neurology Department 

stakeholder priorities. During my time, I found that despite being a world leader in informatics 

and data-driven research, this clinical department still faces difficulties with fragmented, difficult 

to extract data.  

Results 

 I traveled to Boston Children’s Hospital with the goal of learning how to extract de-

identified EEG records to be included in on-going epilepsy research with Dr. William Bosl. Our 

research required de-identified EEGs stored in the European Data Format (EDF), a standard 

format for the storage and transfer of time series data (e.g. EEG data) (Kemp, Varri, Rosa, 

Nielson, & Gade, 1993). We were specifically aiming to extract EEGs from developmentally 
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normal patients and patients who are diagnosed with Benign Epilepsy with Centro-Temporal 

Spikes.  

Appropriate precautions were taken to adhere to the HIPAA Privacy Rule, but none of 

these proved onerous. For one, I completed HIPAA training modules to ensure my understanding 

and awareness of the policies researchers are expected to follow. Because my machine was not 

issued by Boston Children’s Hospital, virtual private network (VPN) software was installed. 

Within this VPN, I could access clinical data in a secure, HIPAA-friendly manner. Although 

these steps required additional time and resources, the value of keeping clinical data secure and 

private is worth these minimal burdens.  

With the goal of learning how to independently extract de-identified EEG records, I met 

with clinicians, researchers, and IT experts within the department of Neurology.  In these 

meetings, I learned that in the Department of Neurology, EEG data is not stored within or 

attached to the EHR system that contains the majority of each patient’s clinical data. This 

translates to manually searching the EEG collection software for each individual patient. 

Additionally, the EHR software has no querying capabilities. To a clinician, this is likely of little 

to no consequence. There’s little need for them to see “All patients billed with ICD code X” or 

“What percentage of patients are taking medication Y?” Yet, these capabilities may be 

fundamental to a researcher’s workflow. Without the ability to search for patients who were 

diagnosed with BECTS, Dr. Bosl and I relied on a list of patients provided by Dr. 

Loddenkemper. With this list, we could search through the EEG collection software to obtain the 

appropriate EEGs.   
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After selecting a patient of interest, a user selects the data they wish to extract (i.e. time 

segments of a chosen EEG recording), and they begin the export process. The EEG collection 

software exports data in the following two outputs:  

1. De-identified EEG data in proprietary formatting 

2. Identifiable EEG data in EDF formatting 

Unfortunately, neither of these options works, as we needed de-identified data in a research-

friendly (EDF) format. To achieve this desired output, researchers devised a workaround. First, 

they exported using the first option, de-identified data in the proprietary format. This file was 

then re-uploaded to the EEG collection software and re-exported in EDF using the second 

option. This left us with an EDF-formatted file with no PHI. This new procedure is relatively 

simple in theory, but in practice it changes a 5-minute export process to a 20-minute export 

process per patient. To achieve a 40-person sample-size, the export task went from requiring less 

than 3.5 hours to over 26.5 hours. In short, an assignment that could be accomplished in one 

morning now requires at least three full days’ worth of work.  

Plainly, this workaround is not ideal, and the researchers in this department have been in 

contact with the software developers for the EEG collection program. A continuing request for 

an option to download de-identified data into EDF format has been communicated to the 

developers for over a year with no response. Anecdotally, researchers have reported that other 

bugs and complaints have been addressed in software updates, but this request has been largely 

ignored.  

 



 27 

Discussion 

 This experience at Boston Children’s Hospital demonstrates many of the barriers 

researchers face when attempting to access appropriate clinical data. Although extra steps were 

taken to adhere to the HIPAA Privacy Rule, they were not unreasonable. Conversely, despite 

being part of an institution that actively strides to promote research utilizing patient data, 

software shortcomings made the process decidedly difficult.  

An issue that effects both clinicians and researchers, it is disappointing to see clinical 

data such as EEG recordings not connected to a patient’s electronic medical record. Having data 

linked appropriately is an unobtrusively helpful feature to any medical team. Linked data allows 

clinicians to perform fundamental tasks, such as viewing both patient history and testing data 

(e.g. radiology report, blood test results, etc.) in the same application. In the Neurology 

Department at BCH, if a researcher comes across an anomaly in an EEG recording, there is no 

clinical data attached to the file to help elucidate this finding. Instead of an integrated platform, 

where the EEG results can be viewed within a patient’s EHR, researchers and clinicians are 

faced with two isolated systems.  

The demand to develop interoperable health systems is likely just breaching the market, 

and finding vendors that are willing to integrate with each other is difficult. SMART Health IT 

and SMART on FHIR hope to solve this issue by opening the market to software developers who 

are motivated to create health technology that prioritizes interoperability over data silos with 

“locked-in” customers.    

The additional barriers I came across, namely the inability to query the EHR and a 

challenging data export procedure, are prime examples of the consequences that stem from a lack 

of stakeholder support. The ability to query an EHR requires a significant investment in 
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development and resources, and discussing the logistics of creating such software could be a 

topic for another thesis. As most EHR software makes querying prohibitively difficult, 

organizations that wish to perform these tasks choose to export their data into a second, more 

analytics-friendly database (Mandl & Kohane, 2012). Still, an integrated querying feature would 

be a powerful tool in EHR software. If more research stakeholders were included in the planning 

stages of software development, these benefits could be articulated and the query functionality 

may be prioritized.  

Another instance of absent stakeholder support, EEG collection software developers are 

not prioritizing the production of the specified format export feature. Of note, stakeholder 

support of research needs is likely minimal within a clinical software company. It is likely that 

more important features are taking precedence, but without the company’s feedback it is 

impossible to be sure. There are always going to be “new and improved” features on the horizons 

for health IT development, and there is no shortage of wants from clinicians, researchers, and 

security specialists. Without a seat at the table, however, the wants and needs of researchers will 

be continually overlooked.  

 

D. Conclusion: Overcoming Barriers to Clinical Data Access 
 

As future informaticists, nearly every student in University of San Francisco’s Master of 

Science in Health Informatics (MSHI) program will face the persistent issue of encountering 

enticing data that is difficult to access, de-identify, or reformat. As such, it is imperative to 

understand these data acquisition challenges in order to achieve sought-after goals—the 

development of learning systems, clinical decision support tools, and natural language 

processing software.  
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Government policy has been an incredible driver in the advancement of the U.S. health 

care system, promoting HIE and interoperability, but some health policy did lead to unintended 

consequences. In both the case of HIPAA and Meaningful Use, the government stepped into the 

private health care sector in order to foster a secure and productive healthcare industry. Despite 

these common goals, the clear difference in consequences to biomedical research demonstrates 

that biomedical research was given much more consideration during the development of 

Meaningful Use. The HIPAA Privacy Rule was not intended to stymie research; that was made 

clear by the open-minded discussions and policy changes that followed the significant feedback 

submitted by medical researchers after deployment. Additionally, researchers are not advocating 

for weaker protection of PHI, especially when concerns are still being raised about the risks of 

re-identification (Benitez & Malin, 2010).  Yet, it is now clear that creating policy that affects 

research without including research stakeholders in the process led to unexpected results—

confusion on IRB responsibility, exceedingly cautious restrictions to access of patient data, and 

information blocking through inapplicable claims of Privacy Rule restrictions.  

 Changes in policy (i.e. The 21st Century Cures Act) and culture surrounding the transfer 

of health information to research professionals within a covered entity will require time and 

resources. Many organizations have decided to stop relying on third-party software vendors to 

prioritize the needs of research stakeholders; instead, they have sought in-house solutions. For 

example, academic medical centers in Cleveland, Ohio, have organized a research-friendly data 

warehouse that includes de-identified patient data from Cleveland Clinic, University Hospitals, 

and Metro Health Medical Center. All students and employees at any of these institutions are 

covered under the same IRB approval, allowing them to access this de-identified data without 

submitting a proposal. This effort is led by a research team at Case Western Reserve University’s 
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Institute for Computational Biology. BCH’s SMART Health IT is another demonstration of the 

changing culture surrounding health care interoperability. With developers striving to create 

open-API software that is accessible across platforms, SMART Health IT has created a path 

towards interoperability.  There are plenty of viable means to achieving interoperability, and 

choosing just one is wholly unnecessary. The most important step in accomplishing the goal of 

effortless HIE is continued motivation and stakeholder support; without it, incredible technology 

(such as the SMART “Cardiac Risk” platform) will remain isolated from health care clinicians 

and researchers.   
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II. Benign Partial Epilepsy of Childhood with Centrotemporal Spikes 

A. Background 
 

Epileptic encephalopathies are a relatively new category for seizures that present with 

developmental delays or even regression. These conditions are correspondingly associated with 

neurocognitive and behavioral dysfunction that may persist long after seizures cease, usually in 

early adolescence (Engel, 2001). While most research has focused on early warning signs of 

seizure onset, another significant challenge is to monitor brain development. In doing so, it may 

be possible to detect functional characteristics—biomarkers—that indicate the brain has entered 

a dynamical state in which seizures are likely to occur and to predict the developmental 

trajectory.  

 

Benign Childhood Epilepsy with Centro-Temporal Spikes 

Benign childhood epilepsy with centro-temporal spikes (BECTS), also known as 

Rolandic Epilepsy, is the focus of this research. With a typical onset age of 7-10, BECTS usually 

remits before the age of 18 (Callenbach et al., 2010). BECTS seizures typically occur during 

sleep and can be characterized as simple partial seizures that lead to motor, hemifacial, and rapid 

spasms (Miziara & Manreza, 2002). Despite its name, this “benign” epilepsy is associated with 

developmental delays. Rarely, BECTS has been shown evolve into more severe epilepsy types 

(e.g. continuous spike-and-wave during slow-wave sleep syndrome, Landau-Kleffner syndrome, 

intractable seizures, etc.) leading to even more severe neurological impairment (Callenbach et 

al., 2010; Joost Nicolai et al., 2007). Despite the developmental defects observed in children 
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diagnosed with BECTS (Callenbach et al., 2010), it is often left untreated due to comparable 

long-term effects from taking anti-epileptic medication (Kwan & Brodie, 2001; Shields & III, 

2009).  

Techniques for Complex Systems Analysis 

An automated method for quantifying epileptiform discharges in children has been 

developed by a co-investigator using a wavelet transform (Chavakula et al., 2013). Automated 

detection of continuous epileptiform activity is important because it can be present in the absence 

of overt seizures, yet has serious consequences. The complex systems methods developed in this 

project may be considered a further step in the development of automatic methods for detecting 

continuous spikes and waves during slow sleep (CSWS) and assessing severity. In another study 

by the co-investigator, spike counts were found to be relatively unaffected by confounding 

factors such as timing of epilepsy onset, clinical seizure type and frequency, and medication 

treatment and dose (Azhar, et al, in preparation). Furthermore, recently published research (W. J. 

Bosl, Tager-Flusberg, & Nelson, 2011) demonstrated that MSE could be used to distinguish 

infants at high risk for autism spectrum disorder (ASD) from those at low risk (on the basis of 

sibling history). A number of studies are beginning to show that patterns in nonlinear EEG 

features can be used as biomarkers for many neuropsychiatric disorders (Stam, 2005). 

 

B. Methods 
 

Invariant measures convey information about the dynamics of the system from which 

they are derived. The challenge for clinical neuroscience is to determine which invariant 

measures, if any, are most relevant to detection and monitoring of specific conditions of clinical 

interest. One approach is to compute as many invariant measures as possible from populations of 
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patients with a condition of interest, and from controls, then use statistical learning algorithms to 

find the combinations of features, or feature patterns, that are most highly associated with the 

condition of interest. This data-driven approach may not be sufficient for a complete scientific 

understanding of the relationship between brain dynamics and behavioral, cognitive, or affective 

conditions, but may be sufficient for discovering useful clinical biomarkers. Data-driven 

discovery may also point in the direction of the most likely neural correlates of relevant 

behavioral constructs or cognitive phenotypes (W. Bosl, 2017). 

The primary goal of the methods and results presented in this paper are clinical. We seek 

clinical decision support methods that will eventually provide the practicing physician, 

psychologist, or neurodiagnostic technologist with tools to enable risk assessment for BECTS 

during a child’s routine neurological examination. The ultimate goal is avoiding unnecessary and 

expensive overnight EEG monitoring when possible.   

 

Study Population 

Epilepsy patients and a control group were seen at a tertiary epilepsy center in the 

Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston 

Children’s Hospital (BCH). Patients with benign focal epilepsy of childhood were selected 

retrospectively. BECTS was confirmed by clinical history and EEG findings by an experienced 

neurologist.  Patients were consecutively selected from the epilepsy outpatient clinic at 

Children’s Hospital Boston, and were included if they were between 4 and 16 years old, 

presented with unilateral nocturnal motor seizures, and exhibited uni-or bilateral central-

temporal sleep activated sharp waves with a frontal dipole on interictal EEG. Eleven age-
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matched controls with normal EEG were also selected from the same clinical database. In total, 

19 BECTS patients and 11 controls were used for this study. 

 

Data Collection: 

EEG data was sampled at 200 Hz for all Epilepsy Center subjects. Based on the Nyquist 

criterion, this implies that frequencies up to 100 Hz are included. From the BECTS cases, an 

experienced neurophysiology resident not directly involved in this study used visual review to 

select 30-second samples containing no spikes or evidence of epileptiform activity from awake 

EEG data. Similarly, 30-second segments were selected from awake subjects in the control group 

after visual review. A single segment of equal length was collected on 19 channels located 

according to the standard 10-20 system. EEG samples that were taken during sleep sessions with  

the BECTS patients. These segments were classified into sleep stages 2 and 3 by an experienced 

polysomnographic technologist and reviewed by the resident neurophysiologist. All awake EEG 

samples collected that were chosen, both BECTS cases and controls, appeared normal to the 

neurophysiologist on visual analysis. The sleep segments (BECTS cases only) were likely to 

contain nocturnal epileptiform spikes, but were not reviewed further for this study. No other 

filtering was performed on the EEG signals. 

 

Signal processing 

Multiscale entropy and recurrence quantitative analysis (RQA) values were computed 

from EEG signals using two steps. First, the coarse-graining described by (Costa et al., 2005) 

uses successive averaging of a time series to create new coarse-grained time series. For a 
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window size t, t = 1, 2, … j, the jth coarse-grain series, yt
j, is computed by averaging non-

overlapping windows, as shown in the figure below: 

 

 

Figure 2. Schematic illustration of the coarse-graining procedure. Adapted from (Costa, 

Goldberger, & Peng, 2005)  

Multiscale entropy (MSE) was computed using the modified sample entropy defined in 

(Xie, He, & Liu, 2008), which has been used in other studies for complexity analysis of 

physiological time series. Details about computing MSE are discussed in (Bosl et al. 2011).  

Multiscale entropy is a useful nonlinear method for analyze biological signals and distinguishing 

healthy from pathological states (Catarino, Churches, Baron-Cohen, Andrade, & Ring, 2011; 

Costa et al., 2005; Norris, Stein, & Morris, 2008; Takahashi et al., 2010; Vandendriessche et al., 

2014). 

Another approach to computing nonlinear time series properties is recurrence quantitative 

analysis (RQA). RQA is an empirical approach to analyzing time series data and is in principle 

capable of characterizing all of the essential dynamics of a complex system and is useful for 
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analyzing “real-world, noisy, high dimensional data” (Webber & Zbilut, 2005). It has proven to 

be a powerful tool already in physics, geophysics, engineering and biology (Komalapriya et al., 

2008; Norbert Marwan, Romano, Thiel, & Kurths, 2007). Applications to neurology and 

neuroscience are in the early stages. In principle, RQA is capable of detecting significant state 

changes in a dynamical system (Norbert Marwan et al., 2007; Schinkel, Marwan, & Kurths, 

2009; Webber & Marwan, 2015), which suggests that it may be appropriate for detecting 

developmental changes in brain function that are associated with chronic neurological and 

mental dysfunction.  

RQA values were computed for all of the scales derived from each EEG channel using 

publicly available software (N. Marwan, 2012; Norbert Marwan et al., 2007).  For input to the 

algorithms, the embedding dimension (m) was 10, the time delay was 2, and the threshold for the 

recurrence plot (tau) was 30. For detailed discussions of how these values may be determined, 

see (Chen, Zou, & Zhang, 2013; Niknazar, Mousavi, Vahdat, & Sayyah, 2013; Webber & 

Marwan, 2015).  

Multiscale sample entropy was also computed and included in this set of EEG signal 

features and is denoted by SampE as in (W. J. Bosl et al., 2011). Sample entropy and the entropy 

derived from RQA, denoted “L_entr”, are expected to be similar quantitative measures, but 

derived from different algorithms. Thus, multiscale curves were computed for eight features or 

values and each EEG sensor time series. Table 1 lists the nonlinear values computed for this 

study and provides a brief description of their meaning in a physical context. 
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RQA 
Variable Symbol Description 

Recurrence 
rate RR 

The probability that a system state recurs in a finite time. RR 
has been found useful for detecting evoked response potentials 
(ERPs) using single trials (Schinkel et al., 2009).  

Determinism DET 

DET comes from repeating patterns in the system and is an 
indication of its predictability. Regular, deterministic signals, 
such as sine waves, will have higher DET values, while 
uncorrelated time series, such as chaotic processes and random 
numbers, will cause low DET. 

Laminarity LAM 

Laminarity represents the frequency of occurrence of laminar 
states in the system without describing the length of these 
laminar phases. More frequent appearance of laminar states 
may relate to more frequent “seeds” for synchronized dynamics 
(Hirata & Aihara, 2011), which may be related to epileptiform 
spiking on an EEG trace. 

Max line 
length L_max 

Lmax is related to the largest Lyapunov exponent of a chaotic 
signal, which is a dynamic complexity measure that describes 
the divergence of trajectories starting at nearby initial states, 
(Gomez & Hornero, 2010). Lower values are typically 
associated with pathological conditions (Goldberger, 1997; 
Peng, Costa, & Goldberger, 2009).   

Entropy 
derived from 

diagonal 
lines 

L_entr 

This measure of entropy is derived from the diagonal lines of 
the recurrence plot. It is related, but not identical to, other 
measures of entropy, such as the sample entropy used in 
previous studies (W. J. Bosl et al., 2011) 

Trapping 
time TT 

Trapping time is an estimate of the time that a system will 
remain in a given state - “trapped” state. Thus, lower TT values 
may be an indication of more frequent transitions between 
dynamical states and less system stability.   

 

Table 1. Recurrence Quantitative Analysis variables and their interpretation. 

 

C. Results 
 

Significant group differences were found for several RQA features, including recurrence 

rate, determinism, and laminarity, as well as sample entropy. The awake BECTS patients can be 

distinguished from controls with perfect accuracy in our sample population.  
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The scalp plots in the figures show multiscale curves for SampE, RR, DET, and LAM. 

95% confidence intervals are shaded around the curves, demonstrating the relatively small 

variance. 

 

Figure 3. a. Multiscale curve with centrotemporal region highlighted; b. Multiscale 

curves typical of centrotemporal sensors; c. Multiscale entropy curves typical of non-

central region 

 

Determinism (DET) and Laminarity (LAM) have been found in previous studies to be 

lower closer to the epileptic zone in patients with focal epilepsies (Ngamga et al., 2016) 

b. c. 

Sample	Entropy	(SampE) 

a. 
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Figure 4. Multiscale RR curves for awake and asleep cases.  

The separation in BECTS patients between awake multiscale RR curves and the sleep-2 

and sleep-3 curves in the centro-temporal region (Fz, C3, Cz, C4, P3, Pz, P4) is greater than 

away from this region. 
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Figure 5. Multiscale DET curves for awake and asleep cases. 

 

Lower scale multiscale DET curves show differences in awake BECTS patients between 

the centrotemporal and non-centrotemporal regions.  
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Figure 6. Multiscale LAM curves for awake and asleep cases. 

Similarly, multiscale LAM curves reveal differences in lower scales within the 

centrotemporal region from other regions.  
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Taken together, multiscale entropy, recurrence rate, determinism, and laminarity appear 

to be potential biomarkers for BECTS, and may also be useful as research methods for 

understanding the role of sleep in BECTS nighttime seizures. 

 

D. Discussion 
 

Multiscale analysis, which gives insight into frequency dependence, provides more 

discriminatory information than quantitative EEG analysis nonlinear analysis of original EEG 

signals alone. 

Our results suggest that changes in the nonlinear values (entropy, RR, DET, and LAM) 

from awake to sleep 2 and 3 are different in the centrotemporal region from other regions. This 

raises the question: is this because of epileptiform activity in this region, or are sleep-potentiated 

dynamical changes in this region of the brain promoting epileptic activity in this region. This 

study would be much stronger if sleep stage 2 and 3 EEG measurements were available for the 

control subjects for comparison. It cannot be determined if the differences between awake and 

sleep multiscale curves for BECTS patients are significantly different from differences that 

would be observed in controls in equivalent awake or sleep stages. Although the analysis to 

answer this question would be relatively straightforward, all-night EEG studies are not 

commonly done on patients who do not have a suspected sleep disorder or sleep-potentiated 

epilepsy such as BECTS. Hence, this data may be difficult to obtain. Given the challenges faced 

when trying to access clinical data, as discussed in chapter 1, this was an insurmountable 

problem for this project. 
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Although it is clear that significant differences were found between awake BECTS 

subjects and controls, further analysis is required to determine what neurophysiological 

differences in the BECTS patients is causing the differences. Nevertheless, our analysis 

demonstrates that functional brain differences may be present in BECTS patients even when 

visual review of the awake EEG does not reveal any abnormalities.  

E. Conclusion 
 

Modern classification or statistical learning methods present a challenge for the clinician 

who wants clinical decision support methods that improve patient outcomes through better 

detection or monitoring of treatment progression. Some data analytics methods find patterns in 

data that are correlated with outcomes, as we have shown in our results, yet are somewhat 

opaque. It is difficult to interpret the features and patterns that are predictive in a scientific or 

biomedical conceptualization. This may be secondary to the clinician, but the research scientist 

needs to understand the causes that are producing observed results. Simpler models, such as 

linear regression, make the relationship between the outcome variable and the predictors 

relatively easy to interpret. However, these simple models are unable to discover more complex 

relationships between predictor variables. More complex modeling methods, such as support 

vector machines, decision trees, random forests, and even nearest neighbor methods are more 

difficult to interpret (James, Witten, Hastie, & Tibshirani, 2013). They often give better 

predictive results, which may be the primary clinical goal and thus more desirable than 

immediate scientific understanding. 

With the successful implementation of our results into a clinical setting, we can reduce 

the need of overnight EEG monitoring. This is helpful for both patients and families, who can be 

highly inconvenienced by these long stays at a clinic. The successful creation of an algorithm, 
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however, is simply the first step in an implementation process. In order to be implemented as 

clinical decision support, we will need clinical trials with much larger patient populations, sleep 

EEGs for control subjects, and the development of software to analyze EEG data for real-time 

feedback for physicians.  
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IV. Appendix 

A. 18 PHI Identifiers. 
 

 Adapted from ("Other requirements relating to uses and disclosures of protected health 

information.," 2000) 

 
1. Names 
2. Geographic subdivisions greater than state 

a. The initial three digits of a zip code may be included if following conditions are met:  
1. There are more than 20,000 people within the zip codes starting with those three 

digits 
2. The initial three digits of regions that do not have 20,000 people within them are 

changed to 000 
3. All date elements except for year in patients under 89 years old, and all age elements 

(including year) for patients over 89 years old 
4. Telephone numbers 
5. Fax numbers 
6. Electronic mail addresses 
7. Social security numbers 
8. Medical record numbers 
9. Health plan beneficiary numbers 
10. Account numbers 
11. Certificate/license numbers 
12. Vehicle identifiers, serial numbers, and license plate numbers 
13. Device identifiers and serial numbers 
14. Web universal resource locators (URLs) 
15. Internet protocol (IP) address numbers 
16. Biometric identifiers including voice and finger prints  
17. Full face photographs or photographs containing identifying features 
18. Any other unique identifier (except a code created for the original covered entity to be 

capable of re-identification)  
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