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CHAPTER I 

STATEMENT OF THE PROBLEM 

 In an increasingly competitive global manufacturing environment, 

organizations cannot realize their competitive advantage without maximizing their 

in-house employee skills training and performance improvement efforts. Many 

companies now recognize the strategic advantage of training rather than the worn 

perception of it as a tactical response. The current rise in the perceived 

significance of training is not localized to only U.S. companies. On the contrary, 

industrially-advanced and advancing companies across many global regions are 

now stressing the development of competitive advantage through training. 

Arguably, in the current period of remarkable global change where there is an 

imperative to focus on high value-added products; workforce quality is of central 

importance to an organization’s economic success (Crouch et al., 1997).  

 According to its 2005 State of the Industry Report, the American Society 

for Training and Development (ASTD, 2005) reports that U.S. organizations are 

investing more in employee learning—32 hours of learning per employee in 2004, 

up from 26 hours in 2003 at, of course, an increased cost. The recent ASTD 

(2006) report also states that most organizations train about 78% of their 

employees with the bulk of that training focused on technical accuracy (37%) and 

quality, competition, and business practices account for an additional 13% of 

training expenditure. This prodigious investment in training is testament to the 

significance now attributed to it as a primary source of competitive advantage. 
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What is more remarkable about recent ASTD (2006) research is the significance 

attributed to training by leaders at the top of some of the world’s largest and most 

competitive corporations. Not only are top organizational leaders cognizant of the 

significance of employee training to their organization’s competitive advantage, 

they are also aware that their organization’s training must be impeccably 

effective. This new premium placed on the training function underscores the need 

for the education field, as the parent of industrial training, to reexamine the 

current models of learning, especially instructional design, within naturalistic 

settings such as the workplace. In the face of increasing global competition, and 

the rise in employee development expenditure by organizations, the need to 

discover the most effective and efficient training approaches is quite conspicuous.  

 As manufacturing organizations chart the new territory of the global 

marketplace and strive for competitive advantage and performance excellence, the 

realm of training and instructional design becomes the bellwether of future 

success. In a recent ASTD/IBM study (2005) of 26 executives across 11 

industries, results showed that training is perceived as an essential enabler of 

business success. According to the findings, “learning is seen by senior executives 

to have a significant impact on a number of business outcomes, including 

revenue, productivity, turnover, and innovation” (p. 56). The stated implication is 

that learning governance now is seen as the primary mechanism for aligning 

performance with strategic business objectives. The strategic placement of 

learning governance at the top of organizational hierarchies is both a strategic 
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reframing and calculated restructuring of what used to be training and 

development. Ostensibly, effective employee skills training remains an integrally 

important element in learning governance of early twenty-first century companies 

across sectors. Ensuring the effectiveness of training now becomes an even more 

important factor than in years past.  

 Current methods for evaluating the effectiveness of industrial-use training 

were proposed nearly a half century ago by Kirkpatrick (1959) and consisted of 

four essential levels: reaction, learning retention, behavior and results. The first 

level measures the satisfaction of the trainee with the instructional delivery. The 

second measures the skill and knowledge acquired. The third level measures the 

effect of the training on job performance. The fourth and final level measures the 

effect of the overall training related to the organization’s performance. Jack 

Phillips added a fifth element to accommodate the advancement of technology 

into the learning environment (Mahapatra & Lai, 2005). The objective of 

measuring this fifth level is to assess the ease-of-use and relevance of utilized 

mediums in the training effect. Implicit in this evaluative framework is the 

multifocal perspective of assessors. Interested parties to training include the 

trainee, the trainer, the instructional designer, the employees’ managers and the 

organization itself.  

 The subject of evaluating training effectiveness has received generous 

attention recently (Holton, 2003; Holton & Baldwin, 2000; Kraiger, 2002; 

Mahapatra & Lai, 2005; Noe & Colquitt, 2002; Torres & Preskill, 2001). The 
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majority of the training effectiveness literature is consistent with Kirkpatrick’s 

original framework (Baldwin et al., 2000; Kraiger, 2002; Tannenbaum et al., 

1993). However, over the past decade effectiveness has become refocused on 

determining how and why training works. For example, Blickensderfer et al. 

(2000) examined task experience and Schraagen et al. (2002) examined cognitive 

task procedures to understand the mental processing involved in learning job 

tasks. While some of the focus of cognitive functioning literature uses cognitive 

load theory and is germane to the present study, cognitive function aspects of 

instructional design remain largely the purview of the education field.  

 A basic assumption of the instructional design literature in education is 

that cognitive load has an influence on task learning (Leahy & Sweller, 2004; 

Renkl & Atkinson, 2003; Merrienboer & Sweller, Paas et al., 2003). Cognitive 

load theory (CLT) predicts that learners allocate limited cognitive resources, 

through working memory, during the processes of learning and that working 

memory is strictly bound and too many cognitive activities burden this limited 

capacity (Clark, Nguyen, & Sweller, 2006; Kalyuga & Sweller, 2004). Learners 

can only process a certain amount of information before becoming overloaded 

(Sweller et al., 1998). Cognitive load imposed on learners by processing 

instructional material is thought to increase when instructional design strategies 

split the learner’s attention between text materials and other devices such as 

graphics (Kalyuga & Sweller, 2004). 
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 Researchers have identified three categories of cognitive load: intrinsic, 

extraneous and germane (Paas, et al., 2003). According to Paas and colleagues, 

intrinsic cognitive load results from the interactivity between instructional 

elements imposing too severe demands on working memory. The second category 

of cognitive load occurs when unnecessary instructional elements split the 

attention of the learner between text and graphics and forces the learner’s 

attention causing extraneous cognitive load. The third category, germane 

cognitive load, occurs because working memory resources are utilized in schema 

acquisition.  

 Cognitive load is important to training research for two reasons.  First, the 

working memory has a limited amount of space and may not be able to hold the 

information that is required for learning (Sweller, 2003) and second, a common 

instructional design feature of training materials is the worked example (Kalyuga 

& Sweller 2004).  Worked examples are instructions using text and/or graphics to 

display the work that is required to complete the task. There are several types of 

worked examples. The first type of worked example is separated text and graphic 

needed for completion of the task which may lead to an increase cognitive load by 

splitting attention between the text and the graphic.  The second type of worked 

example is where the text and graphics are integrated, which may reduce 

cognitive load (Sweller, Van Merrienboer, & Paas, 1998). 

While significant attention has been paid to cognitive load, very few 

researchers have explored the effects of split-attention until quite recently 
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(Kalyuga & Sweller, 2004; Sweller, 1999). Several studies conducted during the 

1990’s (e.g. Anderson et al., 1990;  Carroll, 1994; Cooper & Sweller, 1987; Paas, 

1992) found that while worked examples mitigate some effects associated with 

cognitive load, worked examples may result in a split-attention effect. 

Additionally, recent reviews of the literature indicate that with development of 

knowledge in a domain, procedures and techniques such as worked examples 

often became redundant and actually increase cognitive load (Kalyuga & Sweller, 

2004).   

Despite the empirical corroborations of the efficacy of worked examples 

in mitigating some cognitive load effects, and the need for integration of text and 

graphic portions of instructional materials (Kalyuga & Sweller, 2004; 

Merrienboer & Sweller, 2004) there is a significant deficiency in the instructional 

design knowledge base related to learning in organizational settings.  

This research study addressed the deficits in the instructional design and 

organizational training literature related to cognitive load, split-attention, and 

worked examples by testing conventional and modified worked examples in use 

by assembly workers in a semiconductor manufacturing environment. The target 

population for this quasi-experimental comparative study consisted of assembly 

workers in a manufacturing site in Fremont California.  

 The typical instructional material provided to the assembly workers, 

presented as worked examples, forces these learners to split their attention 

between text and graphics when that material incorporates both devices. The 
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workers, as learners, are required to interpret the text and graphics separately and 

then mentally integrate them into working memory before the instructional 

material can be useful. Meaning can be derived from neither the graphics nor text 

until after the instructional materials have been mentally integrated into working 

memory (Chandler, 1996; Kalyuga & Sweller, 2004; Mayer, 1999; Mayer & 

Moreno, 2003; Paas, 2003; Tversky, 1996).  If the two sources of information, 

text and graphics, are complex, then an increase in cognitive load may occur  

(Sweller, 1998; Kalyuga & Sweller, 2004, Mayer & Jackson, 2005).   

Kalyuga, Chandler, and Sweller (1998, 2000, 2001), Kalyuga, 

Chandler, Tuovinen, and Sweller (2001), and Tuovinen and Sweller (1999) 

found that procedures and techniques designed to reduce working memory 

overload, such as integrating textural explanations into diagrams to minimize 

split attention or using worked examples to  increase levels of instructional 

guidance, were most efficient for less knowledgeable learners. With the 

development of knowledge in a domain, such procedures and techniques often 

became redundant, resulting in a negative rather than positive or neutral 

effect. These redundant sources of information were hypothesized to have 

imposed an additional cognitive load for low knowledge learners. 

Knowledgeable learners with acquired schemas in a specific area who try to 

learn new information in the same area find it more difficult to process 

diagrams with explanations than diagram-only formats because of the 

additional unnecessary information. McNamara, Kintsch, Songer, and 
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Kintsch, (1996) obtained clear evidence to the expertise reversal effect 

although they did not interpret their results in a cognitive load framework.   

Why do experienced learners with worked examples result in a 

reduction in performance compared with reduced instruction? Constructing 

integrated mental representations of a current task is likely to require a 

considerable share of working memory resources. This activity may be 

supported either by available schema-based knowledge structures from long-

term memory or by external instruction. For novices learning new 

information, instruction may be the only available source to understanding. 

For experts dealing with a previously learned familiar domain, appropriate 

schema-based knowledge can carry out necessary control and regulation 

functions for the task. Human cognitive architecture dramatically alters the 

manner in which information is processed as that information increases in 

familiarity (Sweller, 2003). If more knowledgeable learners are presented 

instruction intended for schema construction purposes, that redundant 

instruction may conflict with currently held schemas, resulting in the 

redundancy and expertise reversal effects. The optimization of cognitive load 

in instruction assumes not only the presentation of appropriate information at 

the appropriate time but also timely removal of inefficient, redundant 

information as learner levels of knowledge increase. 

The modified worked example is a presentation of information where 

text and graphics are integrated as compared to a conventional worked 
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example that has text and graphics in two disparate places. The purpose of the 

modified worked example is to reduce the cognitive load for the learner. The 

conventional worked example is designed without the integration of text and 

graphics. Without integrating text and graphics in the modified work example, 

the learner may experience an increase in cognitive load. 

Purpose of the Study 

Consequently, the purpose of this study was to compare two types of 

worked examples, conventional worked example (CWE) and modified 

worked example (MWE). The (CWE) was designed with the text and graphics 

in two disparate places while the (MWE) was designed with the text and 

graphics integrated. Research subjects were assigned to the groups and then 

asked to complete the job tasks within a prescribed time using the worked 

examples. When subject’s completed the job tasks, they were assessed for 

their assembly time, error rate, and ability to complete the job.  

This study used a sample drawn from a population of manufacturing 

workers (N = 54) within a contract manufacturing firm serving the 

semiconductor manufacturing sector. The firm is located in the Silicon Valley 

of California. The subjects in this study are assemblers and have been 

assembling with this manufacturing company from 6 months to over 3 years. 

This study differs from previous research because it was conducted on-site in 

a manufacturing company using actual assemblers’ as subjects. These 

assemblers do not differ from other assemblers in manufacturing companies 
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because they use an engineering drawing, which is similar to a worked 

example but is more detailed about an entire unit, rather than just a worked 

example that is oriented around one-step.   

Significance of the Study 

There are several reasons why this study is important. First, no one has 

conducted a study on the use of worked examples in a manufacturing environment 

using assemblers as subjects. Second, with the exclusive use of a conventional 

worked example, there are no data to support or deny if either conventional or 

modified worked examples would be a benefit in training assemblers. Third, the 

use of the CWE without comparing them to MWE is of little or no use to support 

improvement of the MWE. Finally, no body of research exists that provides data 

indicating whether CWE or MWE is superior in performance, reduction in 

assembly time and a reduction in errors in the finish product. Current experts in 

the field recommend that research be conducted in a variety of settings with 

various learners (Kalyuga & Sweller, 2004). 

Theoretical Rationale 

Conventional worked examples (CWE) are developed with text, graphics, 

or a combination of both as a “stand-alone” instruction. A CWE is a work 

instruction that is written in text and pictures or drawings to describe a process for 

building a product. A typical text instruction on a conventional worked example 

might read as in figure 1, for insulation-resistance tests.  
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Modified worked examples, (MWEs) are worked examples that are 

designed with text and graphics integrated.  

Figure 1. Conventional worked example1   

 

When the learner views the graphic in Figure 2, and finds they are unable 

to solve the problem with the graphic presented, the learner will search for 

additional information. If the learner looks at the graphic Figure 2 presents the 

same instruction as the conventional worked example in Figure 1, except it has 

been modified so that the text and graphic are integrated. 

prior to reading the text, the learner may not be able to perform the test because 

the graphic makes no sense until the text has been integrated; hence, the learner 

                                                           
1 From “Instructional Design in Technical Areas” by J. Sweller, Experimental evidence using 
electrical engineering processes, p.120. Copyright 1999 by The Australian Council for 
Educational Research Ltd.Reprinted with permission of the author. 
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must use additional cognitive resources to engage in the process of integration 

before proceeding with the test.  

Several elements of information are required on a worked example to 

assist the technician to test the insulation-resistances successfully. When reading 

the worked example, the learner then may find the pieces of information 

overwhelming and find it difficult or impossible to interpret the instructions, 

which could result in overloading the working memory. Worked examples are 

self-contained and require little or no instruction about their use. The text on a 

CWE is written without engineer terminologies that include how the sequencing 

is to be done. This conventional worked example requires the learner to first read 

the test and then look at the graphic to explain visually the test procedure. The 

learner may have to search for additional information on the worked example, 

which would increase the cognitive load. After reviewing the graphic, the learner 

may have to read the text several times before the text and graphic are integrated. 

The instructional developer of this example elected to place the text at the top and 

the graphic at the bottom, which requires the learner to read the text first then look 

at the graphic. By separating the text and graphic, the learner may experience an 

increase in cognitive load and may not be able to determine what is expected after 

reading the text and comparing it to the graphic. 

In Figure 2, the worked example presents the information integrated rather 

than in separate sections as in the first example. There is no need for the learner to 

search for additional information because the information has been integrated. 
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When the text and graphic are integrated, a reduction in cognitive load may be 

possible, thereby reducing the split-attention effect. Too many elements can 

overwhelm working memory and increase cognitive load, which may decrease the 

effectiveness of instruction.  

Figure 2. Modified worked example2

                                              

Cognitive load theory suggests that effective instructional material 

facilitates learning by directing cognitive resources toward activities that are 

relevant to learning rather than toward preliminaries to learning (Kalyuga & 

Sweller, 2004). 

                                                           
2From “Instructional Design in Technical Areas” by J. Sweller, Experimental evidence using 
electrical engineering processes,  p.121. Copyright 1999 by The Australian Council for 
Educational Research Ltd. Reprinted with permission of the author. 
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The guidelines for cognitive load are designed to facilitate the 

presentation of information in a manner that encourages learners to use work 

examples to improve their performance.  

Current research indicates that the level of expertise of the learner is 

important to the structure of the instructional design (Kalyuga & Sweller, 2004). 

Novices might require the graphic to be integrated physically with related text-

based information in order to reduce the cognitive load. However, the same 

graphic might be intelligible in isolation by more experienced learners, who might 

require the elimination of a redundant cognitive load (Kalyuga et al., 1998). The 

cognitive load can be determined by the limited working memory. Limited 

working memory is one of the defining aspects of human cognitive architecture 

and, accordingly, all instructional design should be analyzed from a cognitive 

load perspective. Many commonly used instructional designs and procedures are 

designed without reference to working memory limitations (Mayer, 1991; Sweller 

& Chandler, 1992).  

Studies using worked examples demonstrate that when learners use 

modified worked examples, performance improved compared to personnel who 

used the conventional worked examples. Several findings suggest the 

effectiveness of solving large numbers of conventional problems increases the 

cognitive load more. Modified worked examples reduce the learner's cognitive 

load (Cooper & Sweller, 1987). It has been proposed that instructional design, 

working memory, and cognitive load are all factors in developing work examples 
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that may improve performance (Sweller & Chandler, 1991). It is appropriate to 

ask the question whether modified worked examples would help learners. 

Additional theories in cognitive science, dual channel assumption, limited 

capacity assumption, and active processing assumption guide the present research 

and are discussed next.   

First, the human information processing system consist of two separate 

channels an auditory/verbal channel for processing auditory input and verbal 

representations and a visual channel for processing visual input and pictorial 

representations. Based on research on discourse processing (Graesser, Millis, & 

Zwaan, 1997), to equate verbal channel with an auditory channel would not be 

appropriate since Mayer (2005) provided an extended discussion of the nature of 

dual channels. The dual-channel assumption is a central feature of Paivio’s (1986) 

dual-coding theory and Baddeley’s (1998) theory of working memory, although 

not all theorists characterize the subsystems similarly (Mayer, 2005).   

Second, each channel in the human information processing system has 

limited capacity, only a limited amount of cognitive processing can take place in 

the verbal channel at any one time, and only limited amount of cognitive 

processing can take place in the visual channel at any one time. This is the central 

assumption of Chandler and Seller’s (1991; Sweller, 1999) cognitive load theory 

and Baddeley’s (1998) working memory theory.   

Third, meaningful learning requires a substantial amount of cognitive 

processing to occur in the verbal and visual channels. This principle forms the 

 15



  

basis of Wittrock’s (1989) generative-learning theory and Mayer’s (1999) 

selecting, organizing, integrating theory of active learning. These processes 

include paying attention to the presented material, mentally organizing the 

presented material into a coherent structure, and integrating the presented material 

with existing knowledge.  

Another relevant theory, the theory of multimedia learning, figure 3 

below, is significant to the present study. The cognitive model of multimedia 

learning is intended to represent the human information processing system 

(Mayer, 2001). The two rows of boxes in figure 3 represent the two information–

processing channels, with the auditory/verbal channel on top and the 

visual/pictorial channel on the bottom. This configuration is consistent with dual-

channel assumption.  

        Figure 3.  Cognitive Module of Multimedia Learning3

 

The five columns in Figure 3 represent the modes of physical 

representation (e.g., words or pictures that are presented to the learner), sensory 

                                                           
3 From “Learning: A Cognitive Theory of Multimedia Learning,” by R Mayer, 2001, Multimedia 
Learning, p. 44. Copyrighted 2001 by Cambridge University Press. Reprinted with permission of 
the author. 
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representations (in the ears or eyes of the learner), shallow working memory 

representations (e.g., sounds or images attended to by the learner), deep working 

memory representation (e.g., verbal and pictorial models constructed by the 

learner), and long-term memory representations (e.g., the learner’s relevant prior 

knowledge). 

The capacity for physically presenting words and pictures is virtually 

unlimited, and the capacity for storing knowledge in ling-term memory is 

virtually unlimited, but the capacity for mentally holding and manipulating words 

and images in working memory is limited. The working memory columns in 

Figure 3 are subject to the limited capacity assumption.  

The arrows in Figure 3 represent cognitive processing. The arrow from 

words to eyes represents printed words impinging on the eyes; the arrow from 

words to ears represents spoken words impinging on the ears; and the arrow from 

pictures to eyes represents pictures (e.g., illustrations, charts, photos, graphics, 

animations, and videos) impinging on the eyes. The arrow labeled selecting words 

represents the learner’s paying attention to some of the auditory sensations 

coming in from the ears, whereas the arrow labeled selecting images represents 

the learner’s paying attention to some of the visual sensations coming in through 

the eyes. The arrow labeled organizing words represents the learner’s 

constructing a coherent verbal representation from the incoming words, whereas 

the arrow labeled organizing images represents the learner’s constructing a 

coherent pictorial representation from the incoming images.   
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Cognitive activity involving text and images takes place in the working 

memory. Working memory is used for temporarily holding and manipulating 

knowledge in the active conscious. For example, in reading a sentence, the learner 

may be able to concentrate actively on only some of the words at one time, or to 

concentrate on several images. What the learner is consciously aware of is what is 

taking place in the working memory. Mayer points out the limitations of the two 

channels: “the idea is that the verbal channel is limited and the visual channel is 

limited so it is important not to overload either one. When you present a small 

amount of material to each channel (simultaneously) learners are better able to 

make connections between visual and verbal representations” R. E. Mayer 

(personal communication, November 05, 2001). 

Finally, the arrow labeled integrating in Figure 3 represents the merging 

of the verbal model, the pictorial model, and relevant prior knowledge. In 

multimedia learning, active processing requires five cognitive processes: selecting 

words, selecting images, organizing words, organizing images, and integrating. 

Consistent with the active-processing assumption, these processes place demands 

on the cognitive capacity of the information processing system. Figure 3 

represents the active processing required for multimedia learning. 

The concept of separate information processing channels has a history in 

cognitive psychology and currently is most closely associated with Paivio’s dual-

coding theory (Clark & Paivio, 1991; Paivio, 1986) and Baddeley’s model of 

working memory (Baddeley, 1986, 1992, 1999). The importance of how humans 
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receive information from their ears and eyes and how they process that 

information in working memory is crucial in the development of worked 

examples. The cognitive model of multimedia learning model in Figure 3 is the 

base of developing worked examples. From these different examples, it can be 

seen that there are several ways in which one can process information and learn 

new methods. Because of this, it is important to find the most effective theory in 

providing learning and worked examples for learners.   

According to Sweller (1999), separating the text and graphics causes the 

learner to split attention and may give rise to a split-attention effect. The split-

attention effect is defined as any impairment in leaning that occurs when the 

learner must mentally integrate disparate sources of information. In the context of 

learning, Sweller and colleagues have demonstrated the split-attention effect from 

worked examples (Chandler & Sweller, 1990; Cooper & Sweller, 1987; Sweller 

& Cooper, 1985; Ward & Sweller, 1990). When worked examples are poorly 

designed, the learner must engage in irrelevant or ineffective cognitive 

processing. When the worked example is well designed, cognitive load is 

minimized (Mayer 2001). 

Background and Need 

The strategic purpose of employee training for organizations is 

threefold: enculturation, achieving high quality standards (AKA performance 

improvement), and increasing productivity (ASTD, 2005). The significance of 

training is perceivable through assessment of organizational expenditure. The 
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cost of training in manufacturing, customer service, and sales to and 

supervision of personnel in the United States runs 50 to 60 billion dollars each 

year (Dolezalek, 2004). Given the importance of training to strategic 

objectives, organizations desiring to realize their competitive advantage must 

ensure the effectiveness of training delivery to workers. When organizations 

provide instructional materials that thwart learning rather than enable it, they 

risk severe financial loss. It is incumbent upon organizations to understand 

what instructional design techniques work under various circumstances.  

Good instructional design is essential to learner success. Research has 

shown that at the beginning of the process of learning a new skill, learners are 

usually clumsy, error-prone and slow (Paas et al, 2003; Renkl & Atkinson, 

2003; Sweller, 1999), and under certain circumstances, existing performance 

may suffer. For example, on a manufacturing assembly line (where a new 

product is to be assembled), the assembler may not have been trained to 

assemble the new product and therefore may not be familiar with the worked 

instructions. These worked instructions, known as conventional worked 

examples (CWE), may be confusing to the assembler (Sweller, 1999). The 

accuracy and speed of placing or connecting parts to a new assembly may 

cause the assembler problems with reading the worked instructions until 

he/she is able to interpret from the CWE what indeed needs to be completed. 

Instruction can include multiple sources of information such as a 

combination of text and graphics. To understand the text and or the graphic, it 
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may be necessary mentally to integrate them into working memory. Such 

mental integration is likely to impose a heavy, extraneous cognitive load 

(Sweller et al. 1990, 1998, 2004). The cognitive load is extraneous because it 

is caused entirely by the format of the instruction rather than by the 

characteristics of the material. A combination of difficult and heavy 

extraneous cognitive load, along with how the worked example was 

developed, may undermine learning because the working memory is exceeded 

substantially. 

One purpose of instructional design is to provide communication in a manner 

that will result in others obtaining knowledge and being able to use that 

knowledge to carry out new tasks. Instructional design guidelines enable the 

instructional designer to select the best possible instructional methods, given 

the outcomes that instruction is intended to attain and the conditions under 

which instruction is to occur (Reigeluth, 1983). 

Richard Mayer’s cognitive theory of multimedia learning (2003) 

provides a background on the assumption made by an instructional designer 

on how human learners process information. Mayer points out that 

instructional designers do not take into account how human learners process 

information. According to Mayer, an assumption made by some instructional 

designers is that learners posses a single-channel unlimited-capacity and 

passive-processing system. This single channel assumption assumes all 

information enters the cognitive system in the same way regardless of its 
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modality. Furthermore, instructional developers often assume that the 

cognitive processing system ahs is based unlimited capacity and that learners 

can handle an unlimited amount of information. The passive-processing 

assumption presents many isolated pieces of information that assumes the 

learner is a tape recorder. The implicit assumptions of this view are that the 

learner does not need any guidance in organizing and making sense of the 

presented information.    

Current research in cognitive psychology shows a contrasting view of 

how mental processing works than what was assumed in the past (Bransford, 

Brown & Cocking, 1999; Lambert & McCombs, 1998; Schwartz, Bransford, 

& Sears, 2005). The three assumptions of Mayer’s cognitive theory of 

multimedia learning can be summarized as follows:  

1.  Dual Channels:  Humans’ posses separate channels for processing 

visual and auditory information. 

2. Limited Capacity:  Humans are limited in the amount of information 

that they can process in each channel at one time.   

3. Active Processing:  Humans engage in active learning by attending to 

relevant incoming information, organizing selected information into 

coherent mental representations, and integrating mental 

representations with other knowledge. 

 As Schwartz, Bransford and Sears (2005) posit, much of the cognitive 

work involved in multimedia learning takes place in working memory. Working 
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memory is used for temporarily holding and manipulating knowledge in active 

consciousness. Working memory usually is characterized as the part of our 

cognitive architecture in which information is undergoing active processing. This 

part of our cognitive architecture is considered to have only a very limited 

capacity. It is assumed that a mere seven chunks (plus or minus two), of 

information can be maintained simultaneously (Miller 1956). Not only is the 

storage capacity limited in working memory but its ability to process information 

(e.g., information that has to be compared or organized) is also restricted. Where 

there are multiple processing demands, working memory capacity may be limited 

to the simultaneous processing of two or perhaps three chunks of information. 

According to Sweller (1999), working memory is used to process raw data 

in the sense of organizing, contrasting, comparing, or processing it in some 

manner. The number of elements from the worked example may increase the 

cognitive load, which may then exceed the capacity of the working memory. 

When learners study a worked example that presents information in the form of 

text and or graphics through a demonstration used to illustrate how to complete a 

task, they are compelled to split their attention between the text and the graphic, 

which increases working memory thereby increasing cognitive load because of 

the additional information. The difficulty with conventional worked examples is 

the manipulation of new information elements in working memory, i.e., the 

difficulty of holding and processing new information such as text and graphics in 
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working memory (Kalyuga & Sweller, 2004; Sweller, 1999). This study will 

examine the efficacy of two types of worked examples. 

Research Questions 

The following research questions were examined in the present study.   

Hypothesis H01: Is there a difference in assembly time between the MWE and 

CWE groups? 

Hypothesis H02: Is there a difference in the errors between the MWE and 

CWE groups? 

Hypothesis H03: Is there a difference in tasks completed between the MWE 

and CWE groups? 

 

Definition of Terms 

In this study, several different terms must be defined to facilitate clarity 

concerning the use of the terms and the theories presented throughout the report.   

Assembly: Fitting together of parts to form a complete unit (Webster’s New 

World Dictionary, 1989). 

Assembly Time:  The time it takes a worker to prepare a part of the 

manufacturing item.   

Cognitive Load Theory: the distribution and use of working memory resources 

during learning and problem solving. All cognitive activities will impose a 

cognitive load (Sweller, 1988).   
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Conventional Worked Example: An instructional device that has text and graphics 

located separately on a piece of 81/2 x 11 paper.   

Error: Used in manufacturing when one more parts are not used correctly or are 

missing from the product.   

Expertise Reversal: The negative effect of instructional methods that aid the 

learning of novices on the learning of experts.  

Germane Cognitive Load: Work imposed on working memory that uses mental 

capacity in ways that contribute to learning.  

Intrinsic Cognitive Load: work imposed on working memory because of the 

amount of element interactivity of the content to be learned. 

Long-term Memory: A relatively permanent ,mental repository of knowledge and 

skills in the form of schema that provided the basis for expertise. 

Modified Worked Examples: An instructional device that has text and graphics 

integrated together on a piece of 8 ½ x 11 of paper.   

Parts in Motion: A visual cue made of a graphic and a solid line to indicate where 

the new part is to be installed.   

Redundancy Principle: A cognitive load principle starting that content or content 

expressions that are duplications either of each other or of knowledge already in 

memory impede learning. 

Schema: A memory structure located in ling-term memory that is the basis for 

expertise. Schemas can be large or small and grow over time as learning 

progresses. 
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Scorecard: A piece of paper or card that has all the movements required of the 

subjects’ completing the product. The researcher will mark on the scorecard 

correct or incorrect for each movement.   

Split-Attention: Instructional material that requires the learner to split their 

attention between multiple sources of information and then mentally integrate 

those sources. Split-attention is common on conventional worked examples 

(Sweller, 1988).   

Worked Examples: A step-by-step demonstration used to illustrate how to 

complete a task. 

Working Memory: Working memory is used for temporarily holding and 

manipulating knowledge inactive consciousness (Mayer, 2001).     

Summary 

Learners often divide their attention between text and graphics, which 

increase cognitive load. This splits their ability to focus by resulting in more steps 

for cognitive processing. They can interpret both the text and graphic; however, 

they also have to mentally integrate both of them while learning new methods and 

continuing the process. Depending on the complexity, an overload in cognition 

can occur. This can be particularly harmful in the manufacturing environment 

where mistakes can be costly and quality control is important. This research 

focused on experiments conducted with groups of personnel from a highly 

profiled company in an effort to provide an alternative to cognition overload and 
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help designers of learning material to have further literary resources on the subject 

matter.  

  A systematic assessment of published work reveals some serious gaps in 

our knowledge base. Particularly, a review of the area of cognitive load and 

worked examples indicates that more research attention must be paid to the effects 

of cognitive load in the use of worked examples and resulting effects related to 

split-attention and learner knowledge level. Additionally, there is dearth of 

empirical research within naturalistic settings such as business organizations, 

which is attributable to the lack of knowledge sharing between fields as well as 

the recency of interest in the topic. Lastly, the mitigation of the learning 

challenges facing manufacturing organizations at present requires straightforward 

knowledge of specific instructional design techniques that enable learners to 

efficiently process and learn complex work tasks.  

In the manufacturing units serving semiconductor companies, there is a 

need to reduce assembly time and to increase accuracy of the assembly through 

the provision of efficient training methods. Often in the semiconductor industry, 

contract manufacturers build other manufacturers’ products. The contract 

manufacturers provide the assemblers to assemble, test, and package another 

company’s product for distribution. These assembly workers regularly must learn 

procedures and processes associated with new product as part of new contracts. 
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CHAPTER II 

REVIEW OF THE LITITURE  

Introduction 

 This quasi-experimental study compared the effects of a modified worked 

example (MWE) with a conventional worked example (CWE) on assembly time, 

accuracy, and efficiency in a manufacturing environment. Specifically, this study 

concerns development of instructional materials for use by manufacturing 

assemblers in their work. To develop effective worked examples for use in 

manufacturing environments, instructional designers must be knowledgeable in 

cognitive load theory and split-attention. This chapter provides a context for the 

importance of this area of research, reviews relevant literature that informs the 

study, discusses key constructs and definitions, and highlights gaps in the 

literature that indicate the potential contribution of this research. In this chapter 

particularly, the researcher reviews the existing knowledge on cognitive load 

theory, split-attention, and the specific instructional design techniques of modified 

and conventional worked examples. Before launching into the review of the 

relevant topic areas, however, it is important first to briefly describe the 

conditions under which learning takes place. 

 Learners in manufacturing settings typically are forced to split their 

attention between text and graphics when learning from task-related instructional 

material. They are required to interpret the text then the graphic and mentally 

integrate them into working memory before the instructional material can be 
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useful to them. Research informs us that when the two sources of information—

text and graphics—are complex, an increase in cognitive load occurs (Kalyuga & 

Sweller, 2004; Mayer & Jackson, 2005; Mayer & Moreno, 2003; Paas et al., 

2003). From the perspective of instructional design, the limited capacity of the 

working memory is the major restriction for designing new instruction materials 

(Ginns, 2005). 

 Sufficient research from learning psychology supports the view that 

working memory is used commonly to process information in the sense of 

organizing, contrasting, or comparing (McCrudden et al., 2004). Working 

memory in which all conscious cognitive processing occurs, can handle only a 

limited number possible no more than two or three of interacting elements (Paas 

et al., 2003). Long-term memory provides to increase the processing ability. 

Long-term memory store can contain many numbers of schemes, cognitive 

constructs that incorporate multiple elements of information into a single element. 

The number of elements or information from the worked example may increase 

the negative cognitive load, which may then exceed the capacity of the working 

memory (Paas et al., 2003). To augment the process, schemas can be imported 

from long-term memory into working memory. For example, whereas working 

memory might only deal with one element, that level may consist of a large 

number of lower level interacting elements. Those interacting elements may 

exceed working memory capacity if each element had to be processed. Their 

incorporation in a schema means that only one must be processed. The complex 
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set of interacting elements can be manipulated in working memory because of 

schemas held in long-term memory (Kalyuga & Sweller, 2004; Paas et al., 2003: 

Renkl & Atkinson, 2003). Once the working memory capacity is exceeded, the 

learner experiences cognitive overload. While research over the past decade has 

advanced our understanding of how cognitive functioning either supports or 

hinders learning, the majority of the work has focused on learners in academic 

settings. Additional research in the past five years has advanced our knowledge 

base somewhat concerning various conditions associated with cognitive load 

related to instructional design; however, there is a scarcity of research concerning 

learner characteristics and learning environments. The following discussion 

presents the historical and current perspective relative to the first important topic 

of cognitive load. 

Cognitive Load Theory 

Cognitive load theory (CLT) originated in the 1980’s and is concerned 

with the distribution and use of working memory resources during learning and 

problem solving. The theory is concerned with the instructional implications of 

interactions between information structures and cognitive architecture (Sweller, 

1998). As well as element interactivity, the manner in which information is 

presented to learners and the learning activities required of learners can impose a 

cognitive load. According to cognitive load theory, there are three forms of 

cognitive load (Kalyuga & Sweller, 2004; Merrienboer & Sweller, 2005). The 

first form is the intrinsic cognitive load, that is where demands on working 
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memory capacity imposed by element interactivity are intrinsic to the material 

being learned is called intrinsic cognitive load. Different materials differ in the 

levels of element interactivity and intrinsic cognitive load cannot be altered by 

instructional manipulations; only a simpler learning task that omits some 

interacting elements can be chosen to reduce this type of load.   

 The second form of cognitive load occurs when the load is unnecessary 

and interferes with schema acquisition, which it is referred to as an extraneous or 

ineffective cognitive load (Kalyuga & Sweller, 2004; Merrienboer & Sweller, 

2005). An example of extraneous load would be instructional material or worked 

examples that might include a graph consisting of symbols and an adjacent text in 

which the name of each feature is associated with its appropriate symbol. 

Meaning can be derived from neither the graphic nor text until after they have 

been mentally integrated in working memory. The third form of cognitive load is 

germane or effective cognitive load. Importantly, the instructional designer 

influences germane cognitive load (Renkl & Atkinson, 2003; Sweller, 1998). The 

design in which information is presented to learners and the learning activities 

required of learners are factors relevant to levels of germane cognitive load. 

Whereas extraneous cognitive load interferes with learning, germane cognitive 

load enhances learning. Instead of working memory resources being used to 

engage in searching for information, as occurs when dealing with extraneous 

cognitive load, germane cognitive load results in those resources being devoted to 
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schema acquisition (Chandler, 1998; Mayer, 1998; Mayer & Jackson, 2005; 

Mayer & Moreno, 2003; Tversky, 1996). 

One primary concern of cognitive load theory is how learners will allocate 

limited cognitive resources during the processes of learning. The theory assumes 

the working memory is strictly bound and many cognitive activities place 

restraints on this limited capacity (Mayer & Jackson, 2005). Consequently, high-

element interactivity material is difficult to understand. It turns out though; all 

cognitive activities will impose a cognitive load. In most learning contexts, the 

nature of the cognitive load will be determined in part by the presentation of 

instruction. For example, when material such as geometry and algebra problems 

are presented to learners either to learn or to manipulate, the manner in which 

they process the material will be heavily determined by its structure. The 

instructional formats will favor some cognitive activities to the exclusion of 

others.   

 Our cognitive functioning consists of a limited working memory used to 

learn, think, and solve problems and a large long-term memory used to store 

many automated schemas that can be imported into working memory for 

processing when required. Learning consists of the acquisition of automated 

schemas. The ease with which learning can occur depends on the extent to which 

the elements that need to be acquired interact. Cognitive load theory informs us 

that many commonly used instructional procedures impose a heavy working 

memory load that interferes with the very learning intended by the instructional 
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procedure (Kalyuga & Sweller, 2004; Sweller, 1998). In other words, some 

procedures interfere with rather than assist in schema acquisition and automation. 

The interference of schema acquisition imposed by well-intentioned designers, 

unnecessarily forces learners to solve many conventionally structured problems, 

process material that requires mental integration of multiple sources of 

information, and process redundant information. Only in the past five years, have 

researchers begun to address the serious deficits in our understanding of the 

multiple affects of instructional design on learners particularly related to the 

knowledge and experience level of the learner. 

Split Attention 

Another area that increases cognitive load and may impede learning is what 

is known as split-attention. Researchers examining split-attention (Renkl & 

Atkinson, 2003; Sweller, 1988) suggest that learners studying a worked example 

must split their attention between text and graphics and mentally integrate them 

into working memory before the information can be useful. The split-attention 

effect has been a major problem with some instructional designs (Chandler & 

Sweller, 1991, 1992; Sweller & Chandler, 1992, 1994; Sweller et al., 1990; 

Tarmizi & Sweller, 1988; Mousavi et al., 1995). For example, when two or more 

related sources of information (e.g., text and graphics), requires mental integration 

to construct a relevant schema and achieve understanding. When different sources 

of information are separated in space (e.g., text located separately from a graphic) 

or time (e.g., text presented after or before the graphic is displayed), this process 
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of information integration may place an unnecessary strain or limited working 

memory resources. Integration of the text and graphic for learning is impeded 

because the processes may be involved in cross-referencing the representations. 

This searching out the information may severely interfere with constructing 

integrated schemas, thus increasing the burden on working memory and impede 

learning.   

Split attention does not depend on different forms of information such as 

diagrams and text or equations and text. It can occur when any two or more 

sources of information must be integrated mentally before they can be understood, 

even if those sources of information are identical in structure. For example, 

textual information frequently is structured in a manner such that one part of the 

text is intelligible only by integrating it with another part. If this split-attention 

format is used, it only can be understood by holding relevant components in 

working memory and mentally integrating them. Frequently, that means reading 

one section while searching another section for details of significant referents 

(Kalyuga & Sweller, 2004). 

The activity of searching for references in a diagram, text, or asset of 

equations is likely to be cognitively demanding, exceeding working memory 

capacity under some circumstances. In addition, once the relevant section is 

found, the multiple sources of information (e.g. text and diagram) must be 

mentally integrated. Attention must not only be devoted to both sources of 

information simultaneously; both sources must be processed in order to effect the 
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necessary mental integration. Furthermore, the activity of integrating multiple 

sources of information seems quite unrelated to schema acquisition. These 

learning mechanisms are likely to come into play only after the necessary 

integration between the disparate sources of information has occurred. Until then, 

cognitive activity is directed towards recasting the instructional material into form 

suitable for learning.   

Sweller and his colleagues (Mawer & Sweller, 1982; Owen & Sweller, 

1985; Sweller & Levine, 1982; Sweller, Mawer, & Howe, 1982, Sweller, Mawer 

& Ward, 1983) began investigating how learners learn schemas and patterns that 

facilitate problem solving, through conventional, practice-oriented instruction. 

These studies focus on methods of increasing novices’ awareness of problem 

structure through practice (Owen & Sweller, 1985; Sweller et al., 1983). The 

theme of the time to become an expert was, “The best way to teach children how 

to solve problems is to give them lots of problems to solve” (Van Engen, 1959, p 

74). After studying chess experts, Chase and Simon (1973) concluded, “Practice 

is the major independent variable in the acquisition of skill” (p 279).  

Sweller’s research programs soon accumulated empirical evidence 

showing that traditional, practice-based problem solving was less than an ideal 

method for improving problem-solving performance when compared to 

instruction that paired practice problem with worked examples (Cooper & 

Sweller, 1987; Sweller & Cooper, 1985). Laboratory protocol studies revealed 

that when presented with traditional practice exercises, learners tended to employ 
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typical novice strategies, such as trail and error, while learners presented with 

worked examples before solving often employed more efficient problem-solving 

strategies and appeared to focus on structural aspects of problems.  

A number of researchers, including Sweller and his colleagues, 

investigated the efficacy of using more worked examples in classroom instruction. 

Zhu and Simon (1987) conducted the first most widely cited of these studies. 

Studies by Carroll (1994), Ward, and Sweller (1990) also provided evidence in 

favor of the worked example instruction in the classroom rather than strictly 

problem-solving practice. In there most recent work Kalyuga and Sweller, (2004), 

presented novice students with diagrams and text in a format that separated the 

two sources of information learned less than novice students given materials that 

integrated the texts into the diagrams. The researchers posit that physical 

integration “reduced the need for mental integration and reduced extraneous 

cognitive load” (p 163). Further, the researchers found that as levels of expertise 

increased, the difference between the separate and integrated conditions first 

disappeared and eventually reversed with the separate condition superior to the 

integrated condition. Rather than integrating the diagrams and text, eliminating 

the text facilitated the best result. Interestingly, the text had become redundant for 

these more expert learners. 

Worked examples 

Multiple sources of information are often directed at learners who find one 

or more of the sources unintelligible and can only achieve understanding by 
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mentally integrating the various sources of information into working memory. A 

worked example consisting of graphic and associated statements is an example. 

The purpose of a worked example is to display information by either text and or 

graphic for sequentially completing a task. Chandler and Sweller (1991) suggest 

that a worked example with a presentation format that integrates text and graphic 

information should reduce cognitive load. The activity of searching for text and 

graphic references in a diagram is likely to be cognitively demanding. Once the 

relevant information is found, the text and graphic must be mentally integrated. 

Attention must be devoted to both sources of information simultaneously. Both 

sources must be processed in order to effect the necessary mental integration.   

The MWE 

The MWE with the integrated format should facilitate learning in which the 

text and graphic both need to be processed to achieve understanding. When 

instructional developers do not consider working memory, transfer, and retention 

may suffer. The act of mental integration is cognitively demanding and is required 

because the traditional manner in which worked examples have been presented in 

the past have not taken into account working memory. MWEs are worked 

examples that are designed with text and graphics integrated, see appendix A.  

The CWE 

 CWEs are worked examples with text and graphics separated, see appendix 

B. Comparing the MWE with the CWE, you will notice that the MWE has the 

text next to the graphic whereas the CWE the text is on one side of the instruction 
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sheet and the graphic on the other. When corresponding words and graphics are 

far from each other, learners have to use cognitive resources to visually search for 

information from the corresponding text and graphics. 

Split-attention effect 

According to Sweller, separating the text and graphics the learner is subject 

to the split-attention effect (1998, 2004). The split-attention effect is defined as 

any impairment in leaning occurs when the learner must mentally integrate 

disparate sources of information. In the context of learning, Sweller and his 

colleagues have demonstrated the split-attention effect from worked examples 

(Chandler & Sweller, 1990; Cooper & Sweller, 1987; Sweller & Cooper, 1985; 

Ward & Sweller, 1990). When learners use a worked example, they must split 

their attention between the text and graphic and mentally integrate them into 

working memory before the information can be useful to them. The split-attention 

effect has been shown to be a major problem with some instructional designs 

(Chandler & Sweller, 1991, 1992; Kalyuga & Sweller, 2004; Sweller & Chandler, 

1994; Sweller et al., 1990; Tarmizi & Sweller, 1988; Mousavi et al., 1995). 

The learner who is using a worked example would then have to split their 

attention between the text and the graphic, which would increase cognitive load 

because of the additional elements of information.   

Variation of worked example  

How the text and graphics are designed and developed can have substantial 

effects on the learner’s ability to assimilate that information. When learners use 
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MWEs, integrating text and graphics, performance is improved compared to 

CWEs where text and graphics are in two disparate locations. When worked 

examples are designed poorly, the learner must engage in irrelevant or ineffective 

cognitive processing; when the worked example is well designed, cognitive load 

is minimized (Mayer 2001). 

Comparison of examples 

Worked examples are used in other areas of curriculum, for example in 

industry requiring procedural testing on equipment. Figure 4 is a Conventional 

Worked Example, CWE that demonstrates an insulation-resistance testing 

procedure with text and graphic separate. Figure 5 is the same insulation 

resistance test procedure but it has been modified with the text and graphic 

physically integrated on the worked example. This modified worked example or 

MWE with the text and graphic integrated should reduce the split-attention effect 

and reduce cognitive load.  

Comparing the CWE Figure 4, with the MWE Figure 5, there are two 

different worked examples for the same procedure. In Figure 2 the developer of 

this worked example elected to place the text at the top and the graphic at the 

bottom. The CWE requires the learner to first read the text then look at the 

graphic to explain visually the test procedure. The learner who only reads the 

instruction may not be able to perform the test because of the lack of clarity of the 

text or the complexity of the procedure. The learner may have to search for 

additional information on the worked example, which would increase the 
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cognitive load. After reviewing the graphic, the learner may have to read the text 

several times before the text and graphic are integrated. 

Figure 4 provides the learner with all the information on the worked 

example rather than in a separate section. When the learner views the graphic in 

Figure 4 and finds they are unable to solve the problem with the graphic 

presented, the learner will search for additional information. If the learner looks at 

the graphic prior to reading the text, the learner may not be able to perform the 

test because the graphic makes no sense until the text have been integrated, the 

learner must use additional cognitive resources to engage in the process of 

integration before proceeding with the test. 

In Figure 5, the MWE presents the graphic and text together eliminating the 

split-attention effect. There is no need for the learner to search for additional 

information because the information has been integrated physically and no 

additional information is required for understanding. 
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History 

In the past, the literature has presented no theoretical reasons for choosing a 

MWE over a CWE. Worked examples were developed randomly with respect to 

working memory. In traditional manufacturing environments, electrical or process 

engineers develop the worked examples. Their primary goal of the developer was 

                                                           
 
4From “Instructional Design in Technical Areas” by J. Sweller, Experimental evidence using 
electrical engineering processes,  p.120. Copyright 1999 by The Australian Council for 
Educational Research Ltd. Reprinted with permission of the author. 
5 From “Instructional Design in Technical Areas” by J. Sweller, Experimental evidence using 
electrical engineering processes,  p.121. Copyright 1999 by The Australian Council for 
Educational Research Ltd. Reprinted with permission of the author. 
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to develop a worked example as quickly as possible without regard to the split-

attention effect or cognitive load.   

Not all curriculum area seems to have developed standard formats for 

worked examples because the various worked example structures were devised 

before knowledge of cognitive factors became available. They were quite 

inadequate in some areas for example, the algebra problem, but ideal in others 

like the geometry problem. Thus, on the evidence available currently, the normal 

format used to present algebra worked examples required no alterations. Neither 

theoretical grounds nor empirical evidence showed that students found the algebra 

worked example in its traditional format difficult to process. In contrast, the 

design of conventional geometry worked examples is quite inadequate. Both 

theory and data suggest that students in the geometry group found the CWEs 

difficult to process as compared to the MWE. 

Cognitive load theory 

Cognitive load theory is concerned with how cognitive resources are 

distributed during learning and problem solving. Many learning and problem-

solving activities impose a heavy, extraneous cognitive load that interferes with 

the primary goal of the task. An extraneous cognitive load is defined as any 

cognitive activity that is engaged in because of the way the task is organized and 

presented to attain relevant goals. Some worked examples can impose a 

substantial cognitive load before learning commences. The presentation format of 
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the worked example may require considerable initial mental reorganization and 

processing of elements. 

Split attention and redundancy 

Chandler and Sweller (1991) demonstrated the effects of the MWE and 

CWE by comparing the split-attention and redundancy factors. The split-attention 

and redundancy effects are closely related. If two or more sources of information 

that refer to each other cannot be understood in isolation then the split-attention 

effect may arise. If they can be understood in isolation then the redundancy effect 

may arise. A source of information can be anything to which the learner must 

attend. In the CWEs, the activity of searching for textural references in a graphic 

is likely to be cognitively demanding due to the learner splitting their attention 

from text to the graphic. Once the relevant section is found, the text and graphic 

must be mentally integrated. Not only does attention need to be devoted to both 

sources of information simultaneously, but also both sources must be processed in 

order to effect the necessary mental integration. 

The problems associated with the split-attention presentation format for 

geometry worked examples, were rectified by physically integrating the various 

sources of information. Under some conditions, physical integration may not be 

feasible. For example, in extreme cases, practical considerations may interfere, 

such as the excessive amount of integrated material that must be fitted on a small 

page. 
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 Chandler and Sweller (1991) demonstrate how the CWE of Figure 4 can 

be reformatted to eliminate the need for learners to integrate several sources of 

information. In Figure 5, the written material, instead of being separated from the 

graphics, is incorporated into them. The need to search for appropriate referents in 

the text or graphic is eliminated because all corresponding text and graphics are 

closely coordinated. Because there is physical integration in the initial 

presentation, there is no need for learners to expend cognitive resources in 

mentally integrating the text and graphics. The cognitive load associated with the 

integrated materials should be less than that of the conventional instructions. 
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�      Figure 6. Split-attention CWE6                             Figure 7.  Integrated 

MWE7  

 

The materials used to demonstrate the split-attention effect in the insulation-

resistance test example had one feature in common: the units of information had 

to be integrated before they could be understood. For example, it was necessary to 

integrate text and graphic, either physically or mentally, before either could be 

                                                           
6From “Instructional Design in Technical Areas” by J. Sweller, Experimental evidence using 
electrical engineering processes,  p.120. Copyright 1999 by The Australian Council for 
Educational Research Ltd. Reprinted with permission of the author. 
 
7From “Instructional Design in Technical Areas” by J. Sweller, Experimental evidence using 
electrical engineering processes,  p.121. Copyright 1999 by The Australian Council for 
Educational Research Ltd. Reprinted with permission of the author. 
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understood. The units were not self-contained and intelligible if processed alone. 

There were cognitive load consequences because there was a necessity to 

integrate disparate sources of information. 

Not all mutually referring sources of information necessarily must be 

integrated. Redundant information (see Figure 8) provides the clearest example of 

a situation where mental integration is voluntary. Viewing the information in 

Figure 8, readers can see that the graphic represents the circulation of blood in the 

human body. 

Associated text describes important aspects of the graphic. The arrows 

indicate the direction of blood flow from the lower and upper body flowing into 

the right atrium. The graphic, being understandable without any reference to the 

text, renders the text redundant.   

Reader’s looking at the two sources of information presented in Figure 8 

and comparing it with Figure 9, can see the sources of information are quite 

different between the multiple sources of information used. 
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Figure 8. Flow of blood in the heart, lungs   Figure 9. Flow of blood in 
the heart,  
and body, conventional worked example8 lungs and body, modified 

worked example9

  
 

 
 

If a learner studies Figure 9 and realizes that the text is redundant and that 

all necessary information is contained in the graphic then his or her cognitive load 

should be reduced. If the learner chooses to study both the text and the graphic 

and mentally integrate them, then his or her cognitive load should be increased. 

Mental integration should have the same consequences with respect to cognitive 

                                                           
8 From “Instructional Design in Technical Areas” by J. Sweller, Experimental evidence using 
electrical engineering processes,  p.54. Copyright 1999 by The Australian Council for Educational 
Research Ltd. Reprinted with permission of the author. 
 
9 From “Instructional Design in Technical Areas” by J. Sweller, Experimental evidence using 
electrical engineering processes,  p.124. Copyright 1999 by The Australian Council for 
Educational Research Ltd. Reprinted with permission of the author. 
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resources whether or not it is necessary. The cognitive load could be either light 

or heavy depending on the processing strategy that a learner chooses to use. 

Instructions that include material that contains redundant information 

permit physical integration just as easily as instructions for which integration is 

necessary for understanding.  

If that material is physically integrated, it will be difficult for learners to 

ignore the redundant information. Thus, physically integrated material should 

impose a heavier cognitive load than non-integrated materials under conditions 

where learners tend to ignore the redundant material. There is little opportunity to 

ignore the redundant material when it is integrated. In effect, learners are forced 

to process material that they do not need and, normally, would not process. 

The split-attention and redundancy effects are closely related. If two or 

more sources of information that refer to each other cannot be understood in 

isolation then the split-attention effect may arise. If multiple sources of the same 

information can be understood in isolation then the redundancy effect may arise. 

Whether the multiple sources of information are intelligible in isolation will 

depend not just on the nature of the material but also on the experience of the 

learners. Information that is intelligible in isolation for one person may be 

unintelligible to another. 

Stereotyping 

In technical areas, instructional formats tend to be stereotyped.   

1. New material is presented. 
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2. One or two worked examples provided the use of the new material, 

and last students are given a relatively large number of exercises on 

which to practice.   

Instruction and worked examples 

Worked examples are one aspect of instruction. Normally, they need to be 

preceded by introductory explanatory material. The layouts to present technical 

materials usually are determined by some combination of visual elegance, 

tradition, and random factors. Cognitive factors tend not to be predominating 

largely because until recently, cognitive theory was insufficiently developed to 

provide guidance. Packaging of information, Ross (1984, 1987, 1989) has 

demonstrated how superficial aspects of a problem influence the solution process. 

The use of multiple sources of mutually referring information in 

instructional materials is common. It is especially common in areas requiring 

graphic material. Text and graphics usually are clearly separated, and the student 

is required to refer to the graphic while reading the text and probably required to 

refer to the text while studying the graphic. It is unusual to see text and graphics 

integrated into a single entity. There are, of course, several reasons for the 

conventional layout in worked examples.   

Fads and traditions 

Fads. Fads are someone’s idea and belief of the latest way of developing 

worked examples from layout to the use of colors, text, and graphics. Fads are 

also promoted through professional organizations such as International Society 
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Performance Improvement, ISPI. Presenters from different industries such as 

manufacturing training departments present their “new way” of developing work 

instructions to audiences made up of instructional designers and curriculum 

developers. The audience is usually enthusiastic about the information presented 

but there never seems to be a follow-through to validate their findings on the 

learner’s performance from the development and use of the “new” work 

instructions.   

Traditions. Traditions are the default in organizations that do not have a 

methodology of developing worked examples. The developer may not be an 

instructional designer and may not have had training in the development of 

developing worked examples. They may find it takes less time and more efficient 

for them to use the same layout that has been used in the past then to research the 

methodology on how learners’ process information. Fads come and go and 

traditions stay on but the problem with both approaches is that they do not take 

into account how learners process information with respect to the split-attention 

effect and cognitive overload. 

Instructional Design 

There was a considerable amount of research in the mid-1970s dedicated 

to identifying ways to facilitate concept learning by a growing number of 

cognitively oriented educational researchers began to look beyond the goal of 

acquiring discrete concepts. Researchers turned their focus to more complex 

forms of knowledge and learning (Brewer & Nakamura, 1984). Topics of interest 
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included studying how experts and novices used knowledge to interpret 

experience and solve problems in domains such as chess, algebra, physics, and 

geometry. Research indicated that experts typically focus on deeper structural 

aspects of problems, whereas surface features (Chi, Feltovich, & Glaser, 1981; 

Chi, Glaser, & Rees, 1982; Silver, 1982) often mislead novices. Schemas were 

conceived to be complex memory structures possessed by experts that enabled 

them to recognize a problem as a member of a class (e.g., a type of physics 

problem) and retrieve and interpretation and procedure appropriate for that class. 

From these experiments, researchers began to create worked examples.   

Worked examples are instructional devices that provide the learner with 

information that may reduce the time of learning and reduce the errors when used 

to assemble components as in manufacturing environment. Worked examples are 

also presented to learners in all technical areas. It is suggested that the structure of 

those worked examples is frequently deficient and should be altered. 

Appropriately designed worked examples resulted in superior performance in 

learning and problem solving compared to conventional structured examples.   

 From worked examples, working memory is required in order to 

remember the problem being solved or learned. A common conception of those 

memories is the schema, which is a cognitive representation of a construct (an 

idea, concept, process, or phenomenon, for example). A schema for a problem 

consists of the kind of problem it is, the structural elements of the problem (such 

as acceleration, distance, and velocity in physics problem), situations in which 
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such problems occur (included planes and automobiles, for example), and the 

processing operations required to solve that problem (Jonassen, 2003). When 

schemas are well organized and integrated, they can be brought into working 

memory as a whole, thereby placing lower demands on working memory. The 

development of problem schemas can be supported explicit modeling the structure 

of the problem during the worked example (Jonassen, 2003) and by practicing 

solving particular kinds of problems. With extensive practice and reflection, 

schemas form different kinds of problems become automated.   

Cognitive and educational psychologists adopted the learning-by-example 

paradigm to examine and describe the processes involved in concept formation 

(Bourne, Goldstein, & Link, 1964; Bruner, Goodnow, & Austin, 1956; Tennyson, 

Wooley, & Merrill, 1972). While the examples used by these researchers were 

dissimilar to worked examples, they shared the same fundamental purpose: to 

illustrate a principle or pattern. From the perspective of educational psychologists, 

these studies could inform educational practice, particularly by showing how 

examples should be selected, presented, and sequenced (Tennyson & 

Cocchiarella, 1986). This focus on presentation and sequencing of examples 

paralleled the empirical investigations such as Bruner’s (1996) Toward a Theory 

of Instruction and Glaser’s (1976) Components of a Psychology of Instruction: 

Toward a Science of Design.   

The major step in analyzing a worked example for effectiveness was 

determined by its requirements to the learner in mentally integrating mutually 

 52



  

referring, disparate sources of information. This type of structure imposes an 

extraneous cognitive load that will interfere with the assimilation of the material. 

Mutually referring sources of information occur most obviously when we are 

dealing with diagrams and some other types of information such as text, 

statements of theorems, or equations. The cognitive load imposed by this process 

is likely to interfere with the learning and so the worked example may be 

inadequate. Cognitive resources must be used to reformulate the example prior to 

learning.  

 Worked examples that include diagrams are not the only origin of an 

extraneous cognitive load brought about by students having mentally to integrate 

extraneous sources of information. Any example that includes a detailed problem 

statement and question associated with the solution of that problem will usually 

require students to split their attention between the statement and the solution in 

order to understand the example. Arithmetic or algebra word problems provide 

the most obvious examples. When algebra is presented as worked examples they 

are formatted with separate problem statements and solutions. The problem 

statement will indicate that while it normally is intelligible in isolation, it does not 

constitute a worked example. The solution normally is not even intelligible 

without the problem statement. The worked example cannot be understood until 

after the statement and solution have been mentally integrated. Once integration 

has occurred, learning can begin. All worked examples will incorporate some 

mutually referring, disparate sources of information.     
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 The use of worked examples to facilitate learning and problem solving in 

algebra led to the use of worked examples in other areas of academia. It was 

assumed that worked examples appropriately directed attention and reduced 

cognitive load irrespective of the subject matter. Worked examples eliminate the 

need for a means-ends strategy and this should eliminate the heavy extraneous 

cognitive load associated with the strategy for all subject areas.   

 From pilot studies and years later, it was clear theses assumptions were 

wrong, at least with respect to geometry and physics. There was no sign of the 

significant effects that were found when using algebra worked examples. If 

anything, the worked examples seemed to have marginally worse results than 

conventional problems. Now, these worked examples are seen as requiring 

inappropriate attention and heavy cognitive load.   

Summary 

A review of the literature demonstrates that some forms of worked 

examples have been ineffective because learners must split their attention between 

multiple sources of information e.g., text and graphics. There have been several 

studies using worked examples in courses as algebra, geometry, biology, and 

electrical wiring insulation testing but no studies have been conducted in a 

manufacturing environment using assemblers as subjects. This study differs from 

previous studies because it was conducted on-site at a manufacturing company 

using their assemblers’ as subjects. 
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To date no study has been conducted on the use of worked examples in a 

manufacturing environment using assemblers as subjects. There is no data to 

confirm or contradict if either conventional or modified worked example would 

be a benefit in training assemblers. The use of the conventional worked examples 

without comparing them to modified worked examples is valueless for 

improvement of modified worked examples. No data exists that demonstrates that 

using conventional worked examples is superior in performance, reduction in 

assembly time and a reduction in errors in the finish product, when compared to 

the use of modified worked examples. 

There are instructional design models that present sets of procedures 

intended to lead to the selection of the best possible instructional methods (Gagne 

& Briggs, 1979; Dick & Carey, 1985; Kemp, 1986). Instructional designers 

acknowledge that their design models do not always allow learners the most 

efficient design for the development of worked examples. This study provides 

instructional designers with techniques and methods for the development of 

worked examples. This study also includes suggestions for the design of modified 

worked examples for the reduction of the split-attention effect and for the 

reduction of cognitive load. 

 While sufficient research exists concerning cognitive characteristics and 

split-attention research must be conducted to enable our understanding how the 

learner’s experience level relates to the design of worked examples. By 

understanding multiple references with worked examples, instructional designers 
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can determine whether the presentations given to learners should be in a multiple 

reference format. Worked examples research has been conducted in controlled 

laboratory settings using textbook problems from mathematics and science. There 

may be implications of these controlled experimental studies that may not include 

the naturalistic settings such as a manufacturing environment. The physical and 

cultural contexts shape our working personnel development and often are not 

taking into consideration and are controlled out of the experiment or not reported. 

However, there is strong evidence (Bruer, 1993; Kalyuga & Sweller; Renkl & 

Atkinson, 2003; McGilly, 1998) that controlled experimental research grounded 

in cognitive science has substantially improved educational practice.   
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CHAPTER III 

METHODOLOGY 

Introduction 

This chapter describes the quasi-experimental design employed in the 

study. Following statement of the hypotheses, the two treatments and the 

variables are defined; the nature, selection, and assignment of the participants are 

detailed; and the instruments and materials are described. Then the next sections 

after these describes the procedures carried out during the pilot study, which was 

conducted to determine whether there were areas in which there was a lack of 

clarity in either the verbal or the written instructions for both groups, whether the 

scorecards used to rate the participants’ success and speed were suitable to their 

function, and whether the researcher and observer were able to use them reliably. 

The chapter concludes with a brief description of the type of data analysis 

employed and a statement of compliance with the university’s human subject 

procedures.   

Research Questions 

The hypotheses tested in this study were the following:  

Hypothesis HO1: Is there a difference in assembly time between the MWE and 

CWE groups? 

Hypothesis HO2:  Is there a difference in the errors between the MWE and CWE 

groups? 
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Hypothesis HO3:  Is there difference in tasks completed between the MWE and 

CWE groups? 

Variables 

The independent variable in this study was the instructional treatment. One 

group of participants followed a set of MWEs, the other a set of CWEs. The 

assembly described in both sets of worked examples was identical; only the 

integration of text and graphics, in the case of the MWEs, and the non-integration 

of text and graphics, in the case of the CWEs, differentiated them. The three 

dependent variables were speed of assembly, incidence of errors, and number of 

completed steps of the assembly. 

The first dependent variable was speed of assembly. The speed of the 

assembly was how long it took the participant to complete the individual 

assembly. The range of time for the individual tasks was from 0 to a maximum of 

30 minutes. The researcher and one observer for each participant measured the 

time during each session. The researcher and observer would time each 

participant from the start of the tasks until either participant had completed the 

task or until 30 minutes were up. If the participant took longer than 30 minutes the 

researcher would say stop at which point the participant would stop what they 

were doing. Thirty minutes was the maximum time each participant had to 

complete the tasks.   

The second dependent variable was incidence of errors. The range of 

errors ranged from 0, no errors, to 34 errors where each step was done incorrectly. 
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The researcher or the observer on a scorecard scored each error for each of the 34 

steps. 

 The third dependent variable was the number of completed steps of the 

assembly. The number of completed steps ranged from 0 to 34. The researcher or 

observer would mark on the scorecard for each participant the number of 

completed steps then tally, after the experiment, the score for each completed step 

to determine the total of completed steps for that participant. 

Participants and Selection 

 The participants in this study were 54 manufacturing assemblers employed 

by a manufacturing company in Fremont, California, that produced, in the 

division in which these employees worked, high intensity light bulbs used inter 

alia in film projection and in NASA’s space shuttle. The selection of participants 

was accomplished with the assistance of the company’s Human Resources (HR) 

division, which circulated a call for volunteers. Fifty-four employees in the 

department involved in assembly responded. The manager of the department 

accepted responsibility for arranging suitable times for the testing sessions. Of the 

54 volunteers, 10 were selected for participation in the pilot study, the other 44 in 

the actual experiment.   

At the beginning of each testing session, the volunteers were asked to 

complete a demographic questionnaire (Appendix D; and see below). The 

responses indicated that the ethnic breakdown of the 44 members of the main 

testing group was 3 percent African American, 41 percent Asian, 29 percent 
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Hispanic, and 29 percent White. The participants ranged in age from 20 to 65 

years. As regards educational background, 2 percent had had zero to three years 

of formal education, 12 percent three to six years, 50 percent seven to twelve 

years, 30 percent thirteen to sixteen years, and 7 percent sixteen years or more. 

There were 22 males and 22 females in the sample. Table 1 summarizes the 

demographic data. 

 
                   Table 1. Demographic Data 
 

   Percentage 
 
Time in Manufacturing  
 1-2 years  7.30% 
 2-3 years  7.30% 
 3 + years  85.40% 
    
Time in Company   
 1-2 years  4.70% 
 2-3 years  11.60% 
 3+ years  81.40% 
    
Ethnicity    
 Latino/Hispanic 28.60% 

 
Asian/Pacific 
Islander 40.50% 

 African American 2.40% 
 White  28.60% 
    
Gender    
 Male  52.50% 
 Female  47.50% 
    
Education Level   
 0-3 years  2.30% 
 3-6 years  11.40% 
 7-12 years 50.00% 
 13-16 years 29.50% 
 16+ years  6.80% 
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The reading and interpretation of the MWEs or CWEs were not considered 

to pose any significant problem because the participants were currently using 

assembly instructions and engineering drawings closely resembling those in the 

CWEs.   

Human Subjects Consideration 

 Approval from the University of San Francisco’s Internal Review Board 

for the Protection of Human Subjects (IRBPHS) was obtained prior to conducting 

this study. All considerations were given to confidentiality and to ethical and 

moral issues for each participant. In accordance with the guidelines of the 

IRBPHS and the company’s Rules and Regulations, participants were informed of 

their rights as participants both during the solicitation process and at the 

beginning of the instructional phase. The appropriate consent form (Appendix G) 

was given to each participant, and each was required to sign and return the form 

to the researcher prior to participation. All participants were assured that all 

personal information, both data from the demographic survey and results of the 

testing, would be held in strict confidence and would in no circumstances be 

communicated to their employer.  

Materials 

 The researcher purchased two identical erector sets made by a French 

company. These kits, while relatively inexpensive, consisted of components that 

replicated quite closely those the subjects assembled at their daily workstations. 
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From the variety of different assemblies the kits were designed to build, the 

researcher selected a crane base assembly as the most suitable because of the 

complexity of the assembly and the moderate sizes of the parts used. The 

assembly required thirty-four steps.  

Instruments 

 The researcher developed two sets of seven worked examples. Each set of 

seven sheets together contained 34 discrete steps making up the full assembly 

process chosen for the experiment. The first set, the MWEs, was developed with 

text and graphics integrated (see Appendix A) and the second set, the CWEs, was 

developed with text and graphics separated (see Appendix B).  

 Each of the seven MWEs and each of the seven CWEs was presented on a 

single 8.5" x 11" sheet of paper, printed landscape. Across the top of each sheet 

was printed the product number, product description, and other identifying data. 

Each MWE and each CWE then contained, in the left-hand column of each sheet, 

an inventory of the parts required, consisting of item numbers, part numbers, 

descriptions, and quantities; at the head of the left column, above the inventory, 

each CWE set out brief instructions for that phase of the process. In the right-hand 

column of each sheet was a graphic. In the CWEs the only text accompanying the 

graphic was a set of labels identifying each of the part numbers (Appendix B). In 

the MWE the assembly instructions and the identification of the parts by number 

and name were closely integrated with the graphics (Appendix A).  
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Procedures 

Pilot Study 

Before the actual experiment began, a pilot study was carried out. The 

purpose of the pilot study was to identify areas that might lack clarity in the 

verbal instructions for either the MWEs or the CWEs, to test the ease of use of the 

scorecard layout, and to ensure that the scoring of the steps of the process could 

be achieved reliably. From the volunteer list of 54 participants, 10 assemblers 

were assigned by the manager to participate in the pilot study. Because the 

workspace was a small classroom that was limited in size, it was decided that all 

participants in both the pilot study and the main experiment would be tested in 

groups of two, one using a MWE and the other a CWE.  

The manager assigned the first two participants to report to a designated 

classroom at a set time and continued to assign pairs of participants until all 10 

had been tested. When each pair of participants arrived, the researcher invited 

them to sit at one of two positions, at either end of an 8-foot table. No attempt was 

made to influence their choice of position. The participant who chose to sit on the 

right-hand end of the table would receive a set of MWEs and the participant who 

sat on the left-hand end would receive a set of CWEs. The participants did not 

know what kind of instructions they would receive when they entered the room. 

Apart from the researcher and the two scheduled participants, one observer was 

present for every session. 
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On the table in front of each participant was a set of part containers with 

all necessary components of the crane base, with each compartment labeled with 

the part category number it contained, corresponding with the part numbers 

shown on the working example sheets. Neither participant was able to see what 

the other was doing because each participant was sitting at each end of an eight-

foot table and the part containers obstructed each of the participant’s view of the 

other’s work. Each participant could only see his or her assembly and part 

containers. 

Before seeing their sets of worked examples, subjects signed the consent 

form, completed the demographic survey, and then listened to the verbal 

instructions presented by the researcher, consisting of an explanation common to 

both sets of worked examples, MWEs and CWEs. During this phase, and this 

phase alone, participants were permitted to ask questions of the researcher. 

 At this stage during each two-person session, the researcher gave each 

participant either a set of seven MWEs, those with text and graphics integrated, or 

a set of seven CWEs, those with non-integrated text and graphics, but at this time 

they were face-down on the table. The participants were asked first to count their 

worked example sheets to make sure each had received a full set of seven worked 

examples. The researcher then reviewed the elements of both the MWEs and the 

CWEs. The researcher read each item aloud, then the subjects were asked to 

respond to questions elicited from the researcher and from this process it was 

determined they understood the English Language. To assist in their 
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understanding of the printed directions, the participants were shown two sample 

items, one MWE and one CWE, by overhead projection. The researcher made 

every effort in each session to ensure that both subjects had responded and had 

indicated their understanding of the procedures before continuing. (See Appendix 

E for the script.)   

 At this point, the participants were asked to turn their worked example 

sheets face-up and to begin. At this point the timer was started. The researcher 

gave no assistance or feedback in any way during the testing period. After 30 

minutes, they were asked to stop what they were doing, whether finished or not.  

During the pilot study, the researcher and observer used the scorecard to 

score each of the 34 steps. A video camera, to provide a check on the scoring, was 

positioned to capture the movements of each participant. After each two-person 

session, the     participants were thanked for their contribution. The ten 

participants who had taken part in the pilot study were not used in the main study. 

The scoring is explained below.  

The scorecards, listing by number each of the 34 steps entailed in selecting 

and placing the various parts in correct sequence, enabled the researcher and 

observer to record every detail of the process as it occurred. As a participant 

completed each step, the researcher or the observer recorded a score for that step: 

a step completed correctly was scored “1” and a step completed incorrectly was 

scored “0.” (For a non-attempted or incomplete step, the corresponding space was 

left blank.) In each two-person session each workstation was labeled with a 
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number (1–10) identifying the subject taking the test there. This number was 

videotaped together with the subject’s movements, subsequently the researcher 

used the tape to validate the researcher’s, and observer’s scoring. In total, the 

experiment ran approximately 35 minutes from start to finish for each pair of 

subjects tested.  

Each completed scorecard was compared, systematically, with the videotape 

of the assembly for accuracy. There were no indications that the participants in 

the pilot study had difficulty following the instructions, so it was concluded that 

these, too, were clear. The time for the experiment was not an issue because all 

the participants’ in the pilot study had completed the seven set of MWEs or 

CWEs within the time limit of 30 minutes. No changes were considered necessary 

to the procedures, scorecards, or instructions because of the pilot study. Further, 

the particular worked examples used in the study had been used by the researcher 

in the past as a training exercise in another industry. They had worked 

satisfactorily in that setting, and now appeared to have been equally satisfactory 

in this pilot study. Therefore it was determined that these materials would be 

suitable, without change, for the regular study.   

Main Study 

 The participants in the main study were each assigned a number in the 

range 1–44. For the same reason as applied in the pilot study, participants were 

tested in pairs, each pair assigned by the manager at a designated time. The set-up 

in the testing room was identical to that employed for the pilot study and the 
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procedures—from completion of the consent form and demographic questionnaire 

through the introduction, the use of overhead projection to show parallel worked 

examples, and the dialog between researcher and participants to ensure 

understanding, to the 30-minute test itself—were likewise identical. 

While the participants worked, the researcher and observer, one per participant, 

manually scored each session (see Appendix C) as described above in the Pilot 

Study section. The researcher and observer, one for the subject with the MWE,  

the other for the subject with the CWE, had a scorecard (Appendix C) and scored 

each of the 34 steps (a step being the actual movement the assembler made either 

to select or to place each part).  

Validity and Reliability 

 The design of this study employed the standard method by which 

assemblers are instructed in the manufacturing environment. They may be 

instructed in a classroom or self-taught at their workstations. In the classroom, 

setting the instructor sets the pace of instruction and the leaner must keep up. In 

contrast, the employee at their workstation can control the rate of learning at 

which they progress by reviewing the worked example at their own pace. Both 

methods of training require a worked example, or a set of worked examples, to 

instruct workers in the assembly of the product. Because the worked example is 

the standard way of delivering instruction in manufacturing, the worked examples 

used in this study were considered to have high content validity. Because of the 
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high content validity and the high degree of scoring reliability, no changes or 

modifications were made to the worked examples. 

 The researcher and observer who took part in this study tested the 

reliability of the instrument during the pilot study, in which 10 volunteers 

participated in successive pairs. The researcher observed one participant while the 

observer observed the other participant, while the process was videotaped 

simultaneously. The researcher and observer subsequently checked their 

scorecards for accuracy against the videotape. For each participant, there were 34 

scores for the 34 steps on each scorecard, which totaled 340 possible scores for 

the 10 participants. After reviewing the videotape, both the researcher and the 

observer mutually agreed that of the 340 scores, 337 scores or 99 percent of the 

total were scored accurately. The degree of reliability in the use of the scorecard 

was therefore determined to be high. 

Data Analysis 

Descriptive statistics using means and frequencies were calculated for all 

of the relevant variables: assembly time, errors, and completed tasks. Two-tail t-

tests were used to determine whether there were any statistically significant 

differences between treatment groups for each of the 3 dependent variables. The 

level of significance set for the t-test analyses was .05.   
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CHAPTER IV 

RESULTS 

Introduction 

This study investigated whether a modified form of assembly instructions 

(MWEs) embodying the integration of text and graphics would increase assembly 

line efficiency by reducing assembly time, reducing errors, and increasing the 

number of completed tasks, when compared to the conventional form of 

instructions (CWEs) containing non-integrated text and graphics.  

The hypotheses tested in this investigation were: 

1. Is there a difference in assembly time between the MWE and CWE 

groups? 

2. Is there a difference in the number of errors between the MWE and 

CWE groups?  

3. Is there a difference in tasks completed between the MWE and 

CWE groups? 

Hypothesis 1 

 
Hypothesis 1 compared the difference between the 2 groups (n=22 for 

each group), to determine if there were differences in assembly time between the 

groups.  

As shown in Table 2 below, the MWEs had a mean of 26.65 minutes with 

a standard deviation of 5.00, the CWEs mean was 26.21 with a standard deviation 

of 5.85. The t and p values were .268 and .862 respectively. Table 2 indicates 
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there was no significant difference between the treatment groups in total time in 

assembly between the MWE and the CWE group at the .05 level. 

Table 2 Difference in Total Time for Each Group 
Instructional Treatment n Mean Standard Deviation 

MWEs 22 26.65 5.00 

CWEs 22 26.21 5.85 

 
 
         Table 3. Frequency Distribution for the MWE and CWE Assembly Times 

Worked Examples Time in Minutes Participants Percentage 
    
MWEs 16.3 1 4.5 
 17.0 2 9.1 
 18.0 1 4.5 
 23.3 1 4.5 
 25.3 1 4.5 
 25.5 1 4.5 
  27.0 1 4.5 
 27.3 1 4.5 
 29.7 1 4.5 
 30.0 12 54.5 
    
CWEs 11.4 1 4.5 
 12.3 1 4.5 
 16.3 1 4.5 
 19.0 1 4.5 
 26.0 3 13.6 
 26.5 1 4.5 
 27.0 1 4.5 
 27.5 1 4.5 
 28.5 1 4.5 
 29.9 1 4.5 
 30.0 10 45.5 
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Table 3 reveals 22 participants did not complete the tasks; 12 participants 

from the MWE group and 10 participants from the CWE group. In other words, 

the participants who completed all of the tasks did so between 11.4 and 29.9 

minutes.  

A second analysis was done to more accurately describe the outcome of 

the participants who completed the experiment within the allotted time. Table 4 

below, gives the results of the analysis from participants who completed the 

experiment within the time allotted.Table 4.  

Table 4. Total Time by Group that Completed All Tasks 

 

Instructional Treatment n Mean Standard Deviation 

MWEs 10 28.31 2.03 

CWEs 12 26.87 5.58 

When the analysis was done on those participants who completed all the 

tasks within the time allotted, the mean for the MWE was 28.31 with a standard 

deviation of 2.03 and the CWE groups mean was, 26.87 with a standard deviation 

of 5.58 with a 

 t of -.730 and a p=.334. The difference in time to complete the tasks was not 

significant at the .05 level. Based on the results of these t-tests, there was no 

difference on job performance, in terms of time to complete all the tasks, between 

the two groups. 
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Hypothesis 2 

Hypothesis 2 addressed the errors made between the 2 groups during the 

assembly of this product. A frequency table was generated showing the 34 steps 

matched with the correct (1) and error (0) values, and blank for uncompleted 

steps. In Table 4, it may be seen, in the MWE and CWE columns that 19 errors 

were made in the assembly process by the MWE group and 13 errors by the CWE 

group. That is, the assemblers using CWEs made 32 percent fewer errors than 

those using MWEs. It appears there was a higher level of accuracy on the part of 

assemblers using CWEs.  
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Table 5. Frequencies of Error, Correct, and Uncompleted for 
the MWE and CWE for Each Step 

 

  
 

MWE    CWE    
 
Step Errors Correct Uncompleted Errors Correct Uncompleted     Total 

1 2 20    22   44 
2 3 19   1 21   44 
3  22    22   44 
4  22   1 21   44 
5 1 21   1 21   44 
6 3 19   6 15 1  44 
7 2 20    20 2  44 
8 1 21    20 2  44 
9 1 20 1  1 19 2  44 

10 2 19 1   20 2  44 
11 1 21   1 19 2  44 
12 1 20 1   19 3  44 
13  21 1   19 3  44 
14 2 19 1   19 3  44 
15  19 3   19 3  44 
16  17 5   19 3  44 
17  14 8   19 3  44 
18  14 8   19 3  44 
19  14 8   18 4  44 
20  14 8   18 4  44 
21  14 8   18 4  44 
22  14 8   17 5  44 
23  13 9   15 7  44 
24  13 9   15 7  44 
25  13 9   13 9  44 
26  13 9   13 9  44 
27  13 9   13 9  44 
28  13 9   13 9  44 
29  11 11   12 10  44 
30  11 11   12 10  44 
31  10 12   11 11  44 
32  10 12  1 9 12  44 
33  10 12   10 12  44 
34  10 12  1 9 12  44 

TOTAL 19 544 185  13 569 166  1496 
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Table 6  presents the mean for the MWE group at 2.32 with a standard deviation 

of 2.43 and the CWE group with a mean of 2.18 with a standard deviation of 2.32 

with a  t of -.967  and a p= .339. The results indicate that there was no effect of 

treatment on completed tasks as the results were not statistically significant at the 

.05 level. 

Table 6. Means and Standard Deviations for Errors between the MWEs and 
CWEs 

  
Instructional Treatment 

 

n 
 

Mean 
 

Standard Deviation 
MWE 22 2.32 2.43 
CWE 22 2.18 2.32 

 
Hypothesis 3 

The third hypothesis looked at whether there would be an increase in 

completed assembly steps when MWEs were used. The mean for the MWE group 

was 25.86 steps and the standard deviation was 5.01. The CWE group had a mean 

of 24.72 steps with a standard deviation of 5.85. These values can be seen in 

Table 6, below. A two-tail t-test was used to assess whether there were 

statistically significant differences between these two groups, the t-value was .390 

and p=.699. The results indicate there was no effect of treatment on completed 

tasks as the results were not statistically significant at the .05 level. 

Table 7. Means and Standard Deviation for Assembly Steps Completed 
 
 
Instructional Treatment 

 
n 

 
Mean 

 
Standard Deviation 

MWE 22 25.86 5.01 
CWE 22 24.72 5.85 
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Ancillary Analysis 

 The purpose of the ancillary analysis was to look at additional data that 

may help to explain the results of this study and present data to identify variables 

for future studies. 

In the ancillary analysis, the researcher examined two specific areas that relate to 

this study. Both areas came from the demographic survey: time in years the 

participant was working for the company where the study was conducted and the 

number of years the participant was working in manufacturing. 

The Relative Experience of the Participants 

Table 8 displays the length of time in years that the participants had worked 

for the company where the study was conducted. The data indicate that 80.0 

percent had been working for the company for more than three years. This would 

suggest that a senior, more experienced workforce participated in this study. One 

person failed to complete the question regarding how many years they had 

worked for the company.   

    Table 8. Time in year’s participants had been working for the company 
 

 
n 

 
Time Working 

 
Percentage 

1 0–1     2.3 
2 1–2 4.5 
5 2–3 11.4 
35 3+ 79.5 
1 missing 2.3 

Total  100.0 
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Table 9 indicates the number of years the participants had been working in 

the manufacturing division for this company. From the data presented, 76 percent 

had 3 or more years in a manufacturing division. Three participants did not 

complete this demographic question on the questionnaire. 

Table 9. Time in years participants had been working in 
the manufacturing division 

 
n 

 
Time Working 

 
Percentage 

1 0–1 2.4 
3 1–2 7.3 

3 2–3 7.3 

34 3+ 75.7 

3 missing 7.3 
Total  100.0 

  
The results (shown in Tables 8 and 9),  suggest that one of the reasons why 

the incidence of errors did not differ significantly between the MWE and CWE 

groups may have been that the participants were relatively experienced and had 

become accustomed to working with conventional work examples when learning 

new assembly tasks.  

Summary 

 
Three different dependent variables were tested in this study: assembly time, 

errors, and number of tasks completed and 2 independent variables, modified 

worked example and a conventional worked example. A total of 44 participants 
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equally divided into 2 groups of 22 each, volunteered to participate. Modified 

worked examples, MWEs, were given to one-half of them and conventional 

worked examples, CWEs, to the remainder.  

When testing all 3 hypotheses, there was no statistical significance between 

the groups. Therefore, our best conclusion is that there is no difference between 

the MWEs and CWEs for the particular dependent variables for this study.   

An ancillary analysis was presented that indicated the high number of 

experienced participants, those with more than three years with the company, 

almost all of whom had worked for that time in manufacturing. This relative high 

level of previous experienced workers may have skewed the results. Experienced 

workers were presumably well accustomed to working with CWEs prior to this 

study. The company had been reducing labor force, the more experienced having 

the advantage over their less experienced co-workers, and it may not have been 

possible at the time of this study to use less experienced workers. The finding of 

the study is that, the use of MWEs is not more effective when compared with 

CWEs with assemblers in a manufacturing environment.  
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CHAPTER V  

DISCUSSION AND CONCLUSIONS 

Introduction 

 The purpose of this study was to examine differences between two types 

of worked examples to assess which form of worked example was more effective 

in facilitating assembly workers’ in their jobs. Current training models, employing 

conventional worked examples (CWE) cause learners to split their attention 

between text and graphics when learning a new process. Therefore, modified 

worked examples (MWE) were created to test whether reducing cognitive load in 

working memory could produce a more effective training tool. A procedure was 

created to assess which worked example was more effective in training 

manufacturing personnel. The factors compared consisted of assembly time, 

incidence of errors, and number of tasks completed. Although the original 

research plan called for 200 participants, it commenced with only 54 participants 

because of a reduction in force resulting from a downturn in the semiconductor-

manufacturing sector.  

Limitations 

Sample Size 
 
 The first limitation of the study is that it was conducted in a manufacturing 

environment with a sample size of 54 participants, 44 of them for the main study. 

This small size may have affected the results in that it did not provide a large 
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variety in demographics. Because of the small sample size, the statistical power of 

the study was limited. 

Availability of Participants 

 The second limitation to this experiment was in relation to the selection of 

employees. The limitations with this were changes in the company, decrease in 

production and time restrictions. The first problem consisted in the global 

economic conditions that were taking place during the beginning of this study. It 

was first expected that there would be 200 employees made available from 3 

different manufacturing plants. However, layoffs were taking place, causing 

subjects to be unavailable as well as scheduling the experiment to be delayed. By 

the time that the experiment could be conducted, only 54 participants were 

available.  

Work Experience 

 The third limitation was in the high average level of experience of 

assemblers using CWEs. The sample size consisted almost entirely of assemblers 

thoroughly experienced in the use of CWEs. Therefore, instead of comparing 

average workers’ use of a CWE with average workers’ use of a superior worked 

example, MWE, this study ended up comparing experienced workers using a 

familiar worked example with experienced  workers using an unfamiliar worked 

example. Because of the small sample size that was used, there were problems in 

acquiring a large enough sample size with less work experience. The time in 

which the participants in the study had been working with the company and 
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working in manufacturing appeared to be unbalanced. Eighty percent of the 

participants had three years or more working for this company and 76 percent of 

the participants had three or more years working in manufacturing. This may have 

skewed the results and presented an unbalance assumption that the MWE would 

be superior in assembly time, reduced errors, and would have completed more 

assemblies within the allotted time. This may have given the participants’ the 

ability to easily adjust to either of the worked examples than a less experienced 

assembler who might not done as well with assembly time, errors, and time to 

complete assemblies.  

A third type of concern was the number of male and females in the actual study. 

A two-tail t-test was performed on male and females in the two groups, MWE and 

CWE. The MWE group had equal numbers of males and females, 11 males and 

11 females. In this group the mean number of steps completed correctly by the 

males was 21.91 and the mean number completed correctly by females was 26.36. 

In the CWE group, with a slightly higher number of males than females, 12 and 

10 respectively, the gender difference was comparable: the mean score for the 

males was 23.00 steps completed correctly and for the females 28.13 steps 

completed correctly. The females had the same overall error rate as the males, but 

they completed more steps correctly. In other words, the females made fewer 

errors per step. It appears that the females were better at following instructions 

than the males, and therefore completed more steps accurately than did the males.   

Worked Examples 
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Another limitation was in the choice of worked examples to use. These 

worked examples first went through a pilot study with 10 participants. During the 

pilot study, the allotted time of 30 minutes appeared to be sufficient to complete 

the tasks before time elapsed. During the actual experiment, the time allotted was, 

again, 30 minutes but the results indicated that 50 percent of the participants, 

whether using MWEs or CWEs, did time out. This is interesting because the 

participants from the pilot study were from the same sample group as the 

participants from the actual study. Their manager assigned the participants for 

both the pilot study and the actual study in the exact same way. The manager 

assigned the first two participants to report to a designated classroom at a set time 

and continued to assign pairs of participants until all participants had been tested. 

It is not clear from the results why the participants in the pilot study completed 

the tasks within the time allotted and 50 percent of the participants in the actual 

study could not complete the task.   

The researcher was unable to observe or to acquire the actual task 

performed or determine the time the assembler had to complete their task at their 

workstation. In future studies it is suggested the researcher try to obtain what the 

participants actual duties are,  review their worked examples and try to determine 

the time they are allotted to complete their required tasks at their workstation. It 

was unfortunate that the researcher did not determine the task the assembler was 

assigned or the time the assembler had to complete the assembly because it may 

have provided clues that led to the pilot study participants completing the task 
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within the 30-minute limit. In future studies, it is recommended that not only the 

time be increased but have the participants provide more information about their 

work environment and the type of work they do. By increasing the time of the 

study and providing a survey for additional information about their work 

environment, this research project may have had different results with time to 

assemble, errors, and time to complete the assembly.  

Interpretation of Results 

The three hypotheses addressed the efficiency of the assembly line when 

modified worked examples, as compared with conventional worked examples, 

were used in terms of reducing assembly time, reducing errors, and increasing the 

number of completed tasks. Both MWEs and CWEs contained both text and 

graphics, but in the former, they were integrated and in the latter, they were not.  

Assembly Time 

The first hypothesis addressed the time to assemble.  

Hypothesis HO1: Is there a difference in assembly time between the MWE 

and CWE groups? 

The data indicated the mean score for the MWEs was 26.65 minutes 

whereas the mean score for the CWEs was 26.21 minutes. This may suggest that 

comparing the MWE with the CWE in time to assemble, the MWE was 1.68 

minutes longer than the CWEs time to assemble. However, this was not the case 

because the results of a two-tail t-test indicated at the .05 level of significance, 

there was no significant advantage when using an MWE compared to a CWE. 
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Error Rate 

The second hypothesis addressed the incidence of errors during the 

assembly of this product.  

Hypothesis HO2: Is there a difference in the number of errors between the MWE 

and CWE groups?  

An error frequency table was generated for the 34 steps matched with the 

error and correct values and uncompleted. The data indicated that the MWE group 

made 19 errors in the assembly process and the CWE group made 13 errors. That 

is, the assemblers using MWEs made 46 percent more errors than those using 

CWEs. From the frequency table data, a two-tail t-test was performed on both the 

MWE and CWE to determine whether there was a significant difference in error 

rate between the MWE group and the CWE group. The results indicated at the .05 

level of significance, there was no significant difference in the use of either the 

MWE or CWE for the reduction of errors. 

Task Completion 

The third hypothesis addressed the number of completed assembly steps 

when MWEs were used.  

Hypothesis HO3: Is there a difference in the number of tasks completed between 

the MWE and CWE groups. 

The mean for the MWE group was 25.86 steps and for the CWE group 

24.72 steps. A two-tail t-test was used to assess if there were statistical 
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significance differences between the two groups. The result of the two-tail t-test 

was .390 and p=.699, which was not statistically significant.   

Thus far in this section, it can be seen that comparing the MWE to the 

CWE, there was no statistical significance that would indicate that use of the 

MWEs was superior to that of the CWEs in time taken to assemble, incidence of 

errors, or number of steps completed.   

Ancillary Analysis 

The researcher performed an ancillary analysis using two demographic 

factors form the survey to ascertain whether there were other variables that might 

help explain the lack of statistically significant difference between the two types 

of worked example. The two factors used were the length of time participants had 

worked for the company and the length of time participant had been working in 

the manufacturing section in particular.   

From the frequency table indicating the time in years participants had been 

working for the company, it emerged that 35, or 79.5 percent, of  the participants 

had spent three or more years working for this company and only eight, below 20 

percent, of the participants had served less than three years. The next 

demographic factor considered was the participants’ level of experience—the 

number of years that participants had been working in the manufacturing section. 

The data were very similar: 34, or 75.7 percent, of the participants had worked 

three years or more manufacturing and only seven, again below 20 percent, had 

less than three years of experience. These two variables may have been 
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responsible for skewing the results, reducing to zero any statistically significant 

difference between the two assembly instructional types. Further research, using a 

broader range of employees including in particular a more typical balance 

between expert and novice assemblers and those in between, might produce a 

more indicative result.   

The study findings indicate that experienced assemblers using MWEs do 

not take significantly less time to assemble a product, do not make fewer errors, 

and do not complete more tasks. This finding does not support the use of MWEs 

for senior, more experienced assemblers, which confirms pervious research 

findings (Van Merrienboer & Sweller, 2005). The study provides a basis for 

further research within the manufacturing environment as it relates to the design 

and development of worked examples. However, this study is the first study using 

worked examples with assemblers in a manufacturing environment and point the 

way forward for future research in the area of worked examples. 

There is considerable evidence in the literature of research on worked 

examples (Van Merrienboer, 1990; Van Merrienboer & Sweller, 2005), which 

compared to CWEs, MWEs decreased cognitive load, facilitated the construction 

of effective schemas, and led to better transfer of performance. In previous 

duration studies (Kalyuga et al., 2004); Van Merrienboer, 2003), results indicated 

that completion problems were equally effective as worked examples intermixed 

with conventional problems. In studies of longer duration, completion problems 

may better help learners maintain motivation and focus their attention on useful 
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solution steps that are available in the partial examples (Ericsson & Kintsch, 

1995; Sweller, 2003, 2004). 

 Chandler and Sweller (1990, 1991) and Sweller (1989) have pointed out 

that worked examples have to be structured effectively. According to these 

researchers, students should not be faced with activities that impose extraneous 

cognitive load, such as mentally integrating and mutually referring disparate 

sources of information (e.g., text and graphic). These researchers suggested that 

the instructional designer should integrate the multiple sources of their 

information in the worked examples. While the results of the present study did not 

confirm their expectation of improvement, the data consistent with the hypothesis 

that MWEs may be better for assembly where novices are concerned. One 

drawback of modified worked examples is that they can be time-consuming to 

construct. An instructional designer must consider which part of the solution is 

presented to the learners, or from the opposite perspective, which part is left for 

learners to complete for themselves. There are two issues in particular that the 

instructional designer should address. A good completion problem typically 

requires that the learners must first understand the partial solution before they are 

able to complete it and second must understand how to perform nontrivial 

completion. This presents the instructional designer with a considerable number 

of decisions. 

 Chi and colleagues (1982) pointed out that good students use worked 

examples in a way that are different from the way that poor students use them. 
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The researchers concluded from students’ self-explanations that students’ ability 

level determines the way students make use of worked examples. During problem 

solving, good students use the examples for specific reference, whereas poor 

students reread them to search for a solution. Furthermore, good students seem to 

refer to the examples less frequently within each solution attempt. In relation to 

the Chi et al. study, a similar argument can be made for the present study, namely, 

that senior workers are able to overcome bad instructional design, whereas 

novices may struggle more. One reason why seasoned workers do not do better 

with better designed instructions may be that they may be more resistant to 

change (Van Merrienboer et al., 2005). The assumption is that senior workers can 

overcome faulty instructions; arguably, and more importantly might be that they 

resist being asked to do things differently. Interestingly, the same may have been 

true for both genders; although, the women were better at following their worked 

examples, they were no better than the males comparatively speaking, at taking 

advantage of better-designed instruction. 

 Novices lack sophisticated schemas associated with a task or situation. For 

inexperienced learners, there is no instructional guidance for holding a given 

situation or task as provided by schemas in long-term memory. Instructional 

guidance can act as a substitute for missing schemas and can be effective as a 

means of constructing schemas. Effective instruction provides instructional 

guidance while minimizing working memory load (Sweller, 1999, 2004; Sweller 

et al., 1998). If the instructional presentation fails to provide necessary guidance, 
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learners will have to resort to problem-solving search strategies that are 

cognitively inefficient because they impose a heavy working-memory load.   

 Experts, on the other hand, bring their activated schemas to the process of 

constructing mental representations of a situation or task. They may not need 

additional instructional guidance because their schemas provide full guidance. If 

the instruction provides information designed to assist learners in constructing 

appropriate mental representations, and experts are unable to avoid attending to 

this information, there will be an overlap between the schema-based and the 

redundant instruction-based components of guidance. For more experienced 

learners, instead of risking conflict between schemas and instruction-based 

guidance, it may be preferable to eliminate the instruction-based guidance. 

Consequently, instructional guidance, which may be essential for novices, may 

have negative consequences for more experienced learners. The situation in which 

an instruction design that includes guidance is beneficial for novices (resulting in 

better performance when compared with performance of novices who receive a 

format wherein such guidance is omitted) but disadvantageous for more expert 

learners (resulting in poorer performance when compared with performance of 

experts who receive a format wherein such guidance is omitted) is considered an 

expertise reversal effect.   

 Kalyuga, Chandler, and Sweller (2001) found that inexperienced electrical 

trainees benefited from textual explanations integrated into the diagrams of 

electrical circuits to reduce split attention. They were not able to comprehend a 
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diagram-only format. However, more experienced trainees performed 

significantly better with the electrical circuit diagram-only format. More 

experienced trainees also reported less mental effort associated with studying the 

diagram-only format. For these experienced learners, the textual information, 

rather than being essential and so best integrated with the diagram, was redundant, 

and should be eliminated. The split-attention effect for novices was replaced by 

the redundancy effect for experts. An instruction design that included explanatory 

material in an integrated format was superior for novices but inferior for 

knowledgeable learners, which demonstrates an expertise reversal effect. 

 Using textual materials, Yeung, Jin, and Sweller (1998) also obtained this 

effect. Integrating explanatory notes into the primary text assisted learners with 

low levels of language competence. The same format, on the other hand, retarded 

leaning for more expert learners because the integrated notes, although redundant, 

were difficult to ignore when integrated into the primary text. The most important 

instructional implication of this effect is that, to be efficient, instructional design 

should be tailored to the level of experience of the learners who are receiving the 

instruction.  

Theoretical Implications 

Additional research is needed on the measurement of cognitive load. New 

methods must be devised to gauge a) cognitive load experienced by learners, b) 

the cognitive demands of instructional materials, and c) the cognitive resources 

available to individual learners. The information that learners must process varies 
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in many dimensions, the extent to which relevant elements interact being a critical 

feature. Information varies from low to high in element interactivity. Each 

element of low-element interactivity material can be understood and learnt 

individually, without consideration of any other elements. The elements of high-

element interactivity material can be learned individually, but they cannot be 

understood until all of the elements and their interactions are processed 

simultaneously. Consequently, high-element interactivity material is difficult to 

understand.  

Future research with MWEs should be done on their impact on senior 

manufacturing assemblers in comparison to novice manufacturing assemblers. 

The sample employed in the present study, for reasons beyond the researcher’s 

control, did not exhibit a broad range of experienced and non-experienced 

assemblers. Future studies might attempt to remedy this by requiring the 

demographic survey to be completed prior to assignment to the study. For future 

research the use of the responses from the demographic survey could enable the 

participants to be divided into two equal groups, each including assemblers 

representing as wide range of experience as possible. Similarly, the selection of 

each group should aim for a wider range of experience in actual manufacturing. 

To determine which type of worked example more effectively reduces cognitive 

load, thus, reducing assembly time and errors and increasing the number of tasks 

completed, future studies must review the demographics more closely to provide a 

more balanced sample of participants’ experience. 
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Methodical Implications 

Several recommendations are appropriate for future research to ensure 

better outcomes in similar studies conducted in work environments. The first 

recommendation is to obtain a more diverse range of subjects. While the company 

that was used was very helpful in finding participants, there were problems with 

getting the right types of participants. In future, it would be ideal to be able to 

have both a larger sample and a wider variety of subjects, both in terms of time 

with company and time in manufacturing. The experience level of the participants 

would have to be determined prior to the actual study. One proposal would be to 

have the participants complete the demographic survey prior to the pilot study, 

then assign one MWE group and one CWE group to include both levels of 

experience i.e., with the most experienced and with the least experienced in two 

individual groups. The participants would then be assigned by the number years 

they had in the manufacturing division of the company. This ought to provide a 

suitable variety of seniors and novices to find the best type of worked examples. 

A novice would be someone who had not worked for the company or who had 

been there for less than six months.   

Practical Implications 

This study was a beginning to allowing the instructional design practices in 

manufacturing to be revisited in terms of the development of worked examples. 

Through this and future studies to determine which type of worked examples 

work best, the systems that are now used to train workers and students may 
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change to better serve both trainees and the instructional designers who are 

designing and developing worked examples for the manufacturing assembler.     

Summary 

Instructional design used for developing worked examples often cause 

problems. If the worked example is not designed to the level of experience of the 

assembler, the senior assembler may find the worked example to be distracting 

and not helpful being trained to learn a new process. In some cases, when 

instructional material is presented to more experienced learners, a part or all of the 

provided instructional material might be redundant. An instructional format 

without redundant material is likely to be the best instructional format for the 

more experienced learners because all the necessary support for the construction 

of mental representations in working memory is provided by schema-based 

knowledge structures held in long-term memory. In contrast, that same material 

may be essential for less experienced learners.   

Worked examples often cause problems in the understanding and learning 

of these new tasks. Usually they are designed in a way that separates text and 

graphics. Worked examples that integrate text and graphics should reduce the 

number of sources of information for those being trained. If such improved ways 

of presenting information can be found, assemblers may be enabled to better 

assimilate new information in working memory, resulting in a decrease in 

assembly time, a reduction in errors, and an increase in productivity. 

 92



  

This study has the potential for instructional designers to open new doors 

in the development of worked examples. By using different types of worker 

experience in future studies, new kinds of worked examples may be devised for 

use in more effective training of more productive workers.   
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APPENDIX B 

Conventional Worked Examples 
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APPENDIX C 

Scorecard 
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Date:      
Start Time:________Finished Time:______ 

 
Scorecard for      

Modified & Conventional Worked Examples  
 

  
Seq. # 

 
Task 

 
Score 

 
Comments 

 Worked Example 1   

1. Install 2 linear large chrome flanged brackets 1411 
onto yellow large 1401 

  

2. with 2 15/64” socket head cap screws 
 

  

3. 5106 plate    

 
4. Attach 2 nuts 1000 

  

 Worked Example 2   

5. Orient yellow small plate 1407 slots face assembler   

6. Install 1 yellow triangular flanged bracket 1405 onto 
chrome hinged bracket 1410 with small plate 

  

7. Install 2 15/64” socket head cap screw 5106 
 

  

8. Attach 2 nuts 1000 
 

  

 Worked Example 3   

9. Install assembly 6000 on assembly 7000 
 

  

10. Insert 15/64” 5106  
 

  

11. Attach 2 nuts 1000 
 

  

 Worked Example 4   

12. Select socket head screw 5105 
 

  

13. Slide Parts: large spacer 900 
 

  

14. Round yellow insert 1418 
 

  

15. Rubber capsin 2000   

16. Attach nut 1000   
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Date:      
Start Time:________Finished Time:_______ 

        
Scorecard for  

Modified & Conventional Worked Examples  
 

Seq. # Task Score Comments 

 Worked Example 5   

17. Insert yellow flanged bracket 1405 onto yellow large 
plate 1401 

  

18. Select socket head cap screw 5104   

19. Slide through yellow plate 1401   

20. Large spacer 900   

21. Round yellow insert 1418   

22. Attach with nut 1000   

 Worked Example 6   

23. Select socket head cap screw 5105   

24. Slide through:  1 chrome bracket 1413   

25. 2 large spacer 900   

26. 1 chrome bracket 1413   

27. Through center top hole of triangular flange   

28. Attach with nut 1000   

 Worked Example 7   

29. Install 1 chrome 11 hole bracket 2100 onto 1 chrome 
L bracket 1413 

  

30. Insert 2 15/64” socket head cap screw 5106    

31. Attach with 2 nuts 1000   

32. Install 1 chrome 11 hole bracket 2100 onto 1 chrome 
L bracket 1413 

  

33. Insert 2 15/64” socket head cap screw 5106    

34 Attach with 2 nuts 1000   
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APPENDIX D 

Demographic Survey 
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Respondent Demographic Survey 

 In the following questions place a check mark next to the answer that most fits your 

response. 

1.  How long have you been working in manufacturing as an assembler? 

a. Less than 1 year___  b. 1-2 years___  c. 2-3 years___  d. More than 3 years___ 

2.  How long have you been working for this company? 

a. Less than 1 year___  b. 1-2 years___  c. 2-3 years___  d. More than 3 years___ 

3.  How many years of training have you had in manufacturing? 

 a. Less than 6 months___  b. 6-12 months___  c. 1-2 years___  d. More than 2 years___ 

4.  In addition to English, what other language(s) do you speak? 

a. Spanish___ b. Tagalog___ c. Mandarin or Cantonese___  d. French___   

e. Vietnamese___ f. Japanese___ g. Other_____ h. None___ 

5.  What is your racial or ethnic background? 

a. Latino/Hispanic___  b. Asian/Pacific Islander___  c. African American/Black___   

 d. Euro American/White___  e. Other___  f. Multi-Racial___ 

6.  How old are you? _______ 

7.  Were you born in the United States? Yes_____   No____ 

8.  Indicate your gender:  Male___Female___ 

9.  How many years of schooling have you had? Less than 3 years____ 3-6 years____  

 7-12 years____ 13-16 years____ more than 16 years____ 
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APPENDIX E  

Instruction Script 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 126



  

Instructional Script 

The following is the script that will be used during the pilot and the test phase for this 

study.  

Good morning and thank you for participating in my study on worked examples. 

My name is James Dill and my assistant name is ______________. I am a doctoral 

student at the University of San Francisco in the Learning and Instruction department in 

the school of Education. I have developed this experiment using worked examples similar 

to the ones you use at your workstation. The purpose of my study is to compare the 

conventional worked example with the modified worked example that I developed. The 

experiment will take you approximately 30 minutes from start to finish.  

Before I begin the instruction phase of this study, I would like you to fill out the 

consent form that is in front of you. This form will inform you about the study and will 

authorize me to use you as a subject. Please take a few minutes and read the consent form 

and sign it. If you feel you cannot participate for any reasons please tell me now and you 

may leave.   

Are there any questions? 

 Thank you for signing the consent form. The next item I would like you to fill out 

is the demographic survey. The information on this survey will be used to correlate items 

that you filled out. Please take a moment and fill out the survey. 

Thank you for signing the consent form and filling out the survey. We well now 
proceed to the instruction phase of this study.   

Overhead project will be on with a slide of either the modified or conventional 

worked example. Please look at the screen at the modified or conventional worked 
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example. Please note when you use the worked examples to assemble the product the 

worked example will be very close to the one I am showing you now. The only difference 

will be the format but the information I am about to give you now will be the same. I will 

hand out your worked examples after I complete the instructions.   

 Looking at the overhead on the screen. When you look at your worked example 

you will notice the following. First, the worked example you have (modified or 

conventional) written is at the top. The line below will have the product number, product 

description, process identification, operation number, S.O.E. Range, and a Revision 

Level.   

For the modified group the following will be explained. On the left side of your worked 

example you will notice a list of materials that include item number, part number, 

description, and quantity. On the right side, notice is a graphic with a circled yellow 

number starting with one. Below that number is a description in text that you are to 

follow. Next to each part there are arrows from the part name with the part number in 

parentheses. At the bottom of the worked example, a number tells you what page you are 

on and with the total number of pages. The first page will look like this, 1 of 1 and the 

final page will look like this, 7 of 7. There are a total of 7 worked examples.   

The assembly has 7worked examples and they need to be done in the sequence from the 

first page 1, through page 7. 

For the conventional group the following will be explained. On the left side of your 

worked example you will notice instructions for the assembly and underneath the 

instructions is a list of materials that include item number, part number, description, and 
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quantity. On the right side notice a graphic and part numbers and arrows pointing to the 

part. At the bottom of the worked example, a number tells you what page you are on and 

the total number of pages. At the bottom of the worked example, a number tells you what 

page you are on and the total number of pages. The first page will look like this, 1 of 1 

and the final page will look like this, 7 of 7. There are totaled of 7 worked examples. 

The assembly has 7 worked examples and they need to be done in the sequence 

from the first page 1, through page 7. 

Are there any questions? 

For either group modified or conventional I will ask 3 questions. Pointing to the screen, I 

will ask both of the subjects the following questions. First, where on the worked example 

do you find the instructions? Second, where do you find the part numbers for each part? 

Third, where do you look to find which page I am on? 

After the subjects have answered the 3 questions correctly the following instruction will 

be stated.   

Pointing to the containers on the workstation. Notice at your workstation you have 

several containers with parts in them. Also notice the label on the container has the part 

number that is inside that container. 

Are there any questions? 

Passing out the worked examples. Here are your worked examples. Take a moment and 

make sure you have 7 (modified or conventional) worked examples. 
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Are there any questions? 

You may now begin. When you are finished leave you assembly on the 

workstation and return to your work.   

Thank you again for your participation. 
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APPENDIX F 

Consent Form 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 131



  

Participants’ Statement of Consent 

  

I agree to participate in a research project being conducted by James Dill in conjunction 
with the University of San Francisco’s Learning & Instructional doctoral program. I understand 
that the intent of this study is to contribute to professional knowledge in the manufacturing 
environment using worked examples. I have been informed that the purpose of the research study 
is to compare modified and conventional worked examples as it pertains to assemble line 
production in a manufacturing environment. 

 
I understand that my participation in this study is entirely voluntary. If I wish to withdraw 

my consent later, I may freely do so without even after I sign this consent form. I agree that I 
will notify James Dill if I choose to withdraw my consent to participate in this study. 
 

I understand there is no physical risk or discomfort involved, and I am protected from any 
potential embarrassment by the safeguard described in the Privacy Protection section of this 
form. I understand that the session will last up to 30 minutes and will be held at the location that 
I am now working. 
 

I understand that the research interviewer is not an employee of the company that I work 
for and that he will keep information abut me confidential by keeping all research data at a place 
other than on my employer’s property. All data will be locked in a safe and secure place not on 
mg employer’s property. Participation in this study will not affect my position with my 
employer or my position with the other manufacturing personnel. I further understand that 
publication of research results in any form will protect my privacy and disguise my identity by 
not using my name or videotape showing my face. 
 

I understand that my involvement in the study will consist of participation in assembling 
a product and answering a demographic survey that will take no longer than 30 minutes.  I am 
free to leave after the 30 minutes are up. My consent to participate also includes permission for 
James Dill to videotape my assembling the product that has been identified by him. 
 

I understand that I may contact James Dill at any time during the course of the study if I 
have questions. I may contact James Dill at 831.338.2588. 
 

I understand that my participation in this research is completely voluntary, and I 
understand that my signature below signifies my voluntary consent to my participation in this 
study. I understand that I may choose not to continue to assemble anytime during the study. I 
may also refuse to answer any of the demographic questions. I may withdraw fro the study at 
any time with no consequence to myself. 

 
 

I have read the statements above and agree to take part in this study.  
 

Research participant’s Signature       Date 
            

 
Research’s Signature        Date 
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