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ABSTRACT  
 
For nearly all call centers, agent schedules are typically created several days or weeks prior to the time 

that agents report to work. After schedules are created, call center resource managers receive additional 

information that can affect forecasted workload and resource availability. In particular, there is 

significant evidence, both among practitioners and in the research literature, suggesting that actual call 

arrival volumes early in a scheduling period (typically an individual day or week) can provide valuable 

information about the call arrival pattern later in the same scheduling period.  

In this paper, we develop a flexible and powerful heuristic framework for managers to make 

intra-day resource adjustment decisions that take into account updated call forecasts, updated agent 

requirements, existing agent schedules, agents’ schedule flexibility, and associated incremental labor 

costs. We demonstrate the value of this methodology in managing the trade-off between labor costs and 

service levels to best meet variable rates of demand for service, using data from an actual call center.   
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1. INTRODUCTION 

Effective and efficient operation of a telephone call center is largely dependent on strong workforce 

planning and management (Mehrotra 1997; Cleveland and Mayben 1997), as typically 60-80% of a call 

center’s budget is spent on labor costs. As illustrated in Figure 1, this workforce planning and 

management involves three levels of decision-making: long term planning, short term scheduling, and 

real time schedule adjustments (Abernathy et al. 1973).  Long term planning decisions address how 

many agents to hire and train at what times. These decisions are typically made 6-12 months ahead of 

time and take into account aggregate call forecasts, agent availability and productivity assumptions, and 

anticipated staff attrition rates. Short term scheduling decisions determine which agents are assigned to 

work on which shifts on which days at which times over the course of a scheduling period (typically 

one week). In most call center environments, scheduling is typically done 1-2 weeks ahead of time, 

with schedules communicated to individual agents so that they can plan accordingly.  Scheduling 

decisions are based on estimated agent requirements (which in turn are based on detailed forecasts for 

call arrival patterns and service times as well as customer waiting time goals), shift definitions and 

restrictions, agent rosters and shift preferences, and absenteeism assumptions.  

By contrast, real time schedule adjustments are made after agents have been hired and trained, 

agent schedules have been created, and additional details have become available about call volumes, 

absenteeism, and unanticipated off-phone activities such as training and meetings. Adjustments are then 

made on an intra-day basis to agents’ schedules.  There is typically a limited set of feasible adjustments 

that can be made due to human resource policies and practices (see Table 2 of Easton and Goodale 

2005 for a good overview).  

--------------------------------- 
Insert Figure 1 Here 

  ---------------------------------- 
There is a substantial and growing body of academic research on call center workforce 

management (Gans et al. 2004, Aksin et al. 2007).  The vast majority of this research focuses on call 
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forecasting, queueing, and short term scheduling, with a small amount of work on long term planning. 

Very little attention has been devoted to the issues and decisions associated with real time schedule 

adjustments, either for call centers or for other types of service systems.  

However, there are several factors that make real time schedule adjustments vital for successful 

call center management.  Most importantly, several researchers (Jongbloed and Koole 2001, Brown et 

al. 2002, Avradimis et al. 2004, Steckley et al. 2004, Weinberg et al 2006, and Shen and Huang 2006), 

have recently identified significant correlation between arrivals in different time intervals within the 

same day, and have suggested methods for updating call forecasts on an intra-day basis; a primary 

purpose for such updated call forecasts is to provide support for real time schedule adjustments.  

Secondly, given the lead time associated with schedule generation, many changes to employee 

availability can and do take place after the original schedules have been created.  Thirdly,  detecting 

how well the scheduled agent workforce actually matches the actual workload is often not possible for 

a given day until that day has begun, at which point responding to the incremental (positive or negative) 

demand may be crucial.  Finally, managers regularly struggle with staffing tradeoffs, for while having 

too few agents on duty can lead to severe degradations in service quality, having too many agents 

results in low resource utilization and overspending of scarce financial resources. 

The task of making intelligent real time schedule adjustments is a challenging undertaking. 

Managers have many possible ways of increasing staff levels (offering overtime to agents already 

scheduled to work, calling in additional agents from home or “borrowing” resources from another 

department, utilizing outsourcers, eliminating off-phone activities such as meetings or trainings) or 

decreasing total agent on-phone hours (offering Voluntary Time Off, moving agents to other activities 

or queues). All of this – when combined with multiple time periods, multiple agent types and costs, and 

broad classes of feasible shift change options – results in substantial combinatorial complexity.  

Despite this complexity, recent empirical research (Mehrotra et al. 2006) estimates that over 

70% of call centers routinely make real time schedule adjustments, with these decisions based largely 
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on experience and intuition. Typically, actual agent attendance and call volumes are observed and 

compared to forecasted values during the early part of the day, and then agent schedules are updated in 

an ad hoc manner based on these observations.  

The objectives and main contributions of this paper are as follows: (1) to develop a new 

mathematical framework for real time schedule adjustments that reflects the operational characteristics 

of the call center environment; (2) to connect the growing literature on random arrival rates and inter-

period correlations for inbound call centers to the problem of agent re-scheduling; (3) to identify and 

illustrate a tractable solution methodology for updating forecasts and determining cost effective 

schedule adjustments based on these updates; and (4) to illustrate the impact of making these real time 

schedule adjustments on operating costs and service quality.  

In Section 2, we describe the real time management challenge in more detail and review the 

relevant research literature. In Section 3, we present a framework for managing Real Time Schedule 

Adjustments within call centers, including a workload forecast updating model and an integer 

programming formulation that reflects the costs and constraints associated with adjusting agent 

schedules on an intra-day basis. In Section 4, we demonstrate the value of using this framework to 

update schedules through an illustrative set of numerical examples. Finally, in Section 5 we conclude 

by discussing the importance of real time monitoring and management in call center operations as well 

as directions for future research.  

2. REVIEW OF CALL CENTER WORKFORCE MANAGEMENT PROCESSES AND 

ASSOCIATED LITERATURE 

Throughout this paper, we focus on call centers in which all calls are inbound calls from customers and 

all agents are capable of handling all calls. In such call centers, as in many labor-intensive industries 

(Hur et al. 2004), the essential scheduling challenge faced is cost-effectively matching the actual 

demand for service with the service delivery resources (which we refer to as “agents”) available to 

handle this workload.  
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The actual workload faced by an inbound call center is typically modeled as a stochastic process 

based on a random number of arriving calls and a randomly distributed service time for each call. 

Therefore, the forecasting of workload is an important part of the agent scheduling (and re-scheduling) 

process. There is extensive literature in this area that is well reviewed by Gans et al. (2004) and by 

Aksin et al. (2007). In particular, Thompson (1998) provides a general tutorial on demand forecasting 

for service systems while Andrews and Cunningham (1995) present a vivid case study of one call 

center’s forecasting challenges.  

Within the call center literature, the standard forecasting approach is to treat call arrivals over 

the course of a day or week as a Non Homogeneous Poisson Process (NHPP) with piecewise constant 

arrival rates over specific time intervals of 15-, 30- or 60- minutes that are independent of each other. 

Indeed, there is significant theoretical and empirical evidence that supports the concept of modeling call 

arrivals as an NHPP. When one considers call arrivals as the superposition of arrivals from a large 

number of independent customers, the Palm-Khintchine Theorem shows that a Poisson Process 

provides a good approximation (Whitt 2002b). As part of an extensive empirical analysis of one call 

center’s data, Brown et al. (2002) report that they could find no evidence to reject the hypothesis that 

call arrivals follow an NHPP.  

The typical next step is to translate the forecasted arrival rates into a demand for agents, which 

depends not only on the workload forecast but also on a defined acceptable waiting time distribution. 

Grassman (1988) discusses many of the practical issues generally associated with this type of 

translation, while Green et al. (2001, 2003) describe the standard call center forecast translation 

process, which they refer to as the stationary, independent, period by period (“SIPP”) method. The 

SIPP method treats each individual period as an independent stationary queueing system, and for each 

period sets the target number of servers to be the minimum number for which the acceptable waiting 

time distribution will be achieved in steady state, given the workload forecast.  Green et al. (2001, 

2003) also propose improvements to the way in which agent requirements are determined for call 
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centers with cyclic demand (2001) and call centers with limited daily operating hours (2003).  

The translation of call arrival forecasts and target waiting time distributions into agent 

requirements depends implicitly on the assumption that the forecasted call arrival rates are known and 

deterministic.  However, recent research has also shown that the assumption of a deterministic arrival 

rate within a given period is often invalid, which has implications for determining the number of agents 

to schedule in each period. Brown et al. (2002), studying data from a bank’s call center, test and reject 

the hypothesis of deterministic (Poisson) arrival rates per time period. Similarly, Steckley et al. (2004) 

analyze data from several call centers’ queues, statistically testing and rejecting the hypothesis that 

arrival rates are deterministic for the vast majority of queues and time periods studied.  Whitt (1999) 

examines infinite-server systems as a mechanism for understanding the staffing levels required for 

systems in which the objective is to answer calls immediately, while Whitt (2002) also considers both 

random arrival rates and employee absenteeism (along with costs associated with servers, waiting time, 

and abandonment) in developing approximation techniques for determining the optimal number of 

servers for a given workload distribution. Steckley et al. (2008) provide approximation techniques for 

performance measures associated with waiting time distribution in the presence of a random arrival rate 

in order to facilitate the selection of the number of servers. Motivated by empirical observations of 

random arrival rates, Jongbloed and Koole (2001) consider the question of how to “schedule agents ... 

in a statistically correct way” when the arrival rate itself is a random variable. In particular, they 

propose a Poisson mixture model for arrivals within a specific time period, and then explore various 

methods for determining the number of agents to schedule.   Robbins (2007) suggests a stochastic 

programming approach to scheduling agents while explicitly accounting for arrival rate uncertainty.  

In addition to random arrival rates, there is also considerable evidence that the arrivals across 

different periods within the same day are correlated with one another; these correlations have in turn 

prompted researchers to create more sophisticated forecasting and staffing models. Motivated by 

empirical results that show strong correlations across periods within the same day, Avramidis et al. 
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(2004) develop and test several models in which the arrival rate for each interval of the day is a random 

variable that is correlated with the arrival rates of the other intervals. Brown et al. (2002) develops a 

non-linear least squares model in which a previous day’s call volume is an independent variable in 

predicting the subsequent day’s call volume, producing roughly a 50% reduction in the variability of 

the forecasted daily volumes. 

Most recently, several researchers have confirmed the persistent presence of intra-day cross-

period correlations in large call center datasets and developed sophisticated techniques for intra-day 

forecast updating.  Weinberg et al. (2006) use data from a large North American bank to develop a two-

way multiplicative Bayesian Gaussian model for forecasting call arrivals, with Monte Carlo Markov 

Chain (MCMC) methods used for parameter estimation; their empirical analysis shows strong intra-day 

correlations and substantial improvements in forecast accuracy based on MCMC parameter updating.    

Shen and Huang (2006) analyze data from a major financial services firm’s inbound call center and 

demonstrate strong intra-day correlations; these results are used to motivate intraday forecast updating 

methods based on Singular Value Decomposition techniques and a Penalized Least Squares model.    

Beyond call centers, this intra-period correlation has been investigated in many other settings as 

well. Bodily and Freeland (1988) examine several different forecast updating techniques for predicting 

overall product shipments based on initial observed orders, while Kekre et al. (1990) and Guerrero and 

Elizondo (1997) also examine the problem of updating a cumulative demand forecast based on a subset 

of actual demand. Hur (2002) proposes a variety of monitoring techniques to identify when new 

information might suggest the need to update previous forecasts.  

These recent research results support the premise that new information about call arrivals during 

the first few time intervals of a given day may provide important insights into the distribution of calls 

over the remainder of the day, and in turn provide motivation for adjusting agent schedules in order to 

better meet an updated demand forecast.  

Real time schedule adjustment processes start with initial forecasts and agent schedules, and 
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then seek to update them based on new information that has become available more recently.  The three 

components of the re-scheduling process are analogous to the three components of the scheduling 

process, and thus the literature on real time schedule adjustments includes work on: (1) updating call 

forecasts; (2) revising resource requirements; and (3) updating agent schedules. 

Interestingly, while there is great deal of literature on shift scheduling in general (Ernst et al. 

2004) and in call centers in particular (Gans et al. 2004, Aksin et al. 2007), real time schedule 

adjustments have been studied far less extensively. Thompson (1996, 1999) has done some initial work 

on real-time schedule adjustments in service systems. Easton and Goodale (2005) propose a 

methodology for re-scheduling resources in service systems to account for absenteeism, focusing on 

systems in which there is quantifiable marginal revenue associated with handling customers that would 

otherwise abandon the system. Hur et al. (2004) provide an excellent overview of the literature 

associated with Real Time Schedule Adjustments while highlighting some of the challenges and also 

developing re-scheduling techniques specifically for the context of quick service restaurants. Citing 

several sources, including Cleveland and Mayben (1997) and Mabert (1991, 1995), Hur et al. (2004) 

also assert that “even the most accurate call center staff scheduling must be complemented by real-time 

schedule adjustment to achieve the target customer service level.”  Despite this widespread belief, there 

is a surprising absence of research on real time agent schedule adjustments within the call center 

research literature.  

3. INTRA-DAY SCHEDULE UPDATING METHODOLOGY 

3.1. Overview 

In this section, we describe our Intra-Day Schedule Updating methodology. The underlying business 

context is a (possibly virtual) call center that handles a single type of incoming phone call, with all 

agents being skilled to handle each call. At the beginning of the day, there is an initial call volume 

forecast for each period of the day, and an existing set of agents who are scheduled to handle this 
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workload. Agents are grouped into “types” by the specific details of their schedules, where an agent 

type is defined by (a) the period in which agents of this type begin their shift; (b) the specific periods 

during which they are available to handle calls; and (c) the period in which they complete their shift.   

Once the day begins, managers observe the actual workload (and the actual attendance of the 

agents) at the end of each period, paying attention to the deviation from the forecasted workload (and 

the expected agent coverage levels).  When the cumulative call volume deviates significantly from what 

was forecasted, the forecast for the remainder of the day is updated, an incremental demand for agents 

for each period for the remainder of the day is identified, and  some or all agents’ schedules can be 

updated to reflect these changes in demand.  If the value of these schedule changes exceeds the 

associated disruption costs, the schedule changes are communicated to agents and the updated 

schedules are followed for the remainder of the day.    

Once the incremental demand for agents has been identified for subsequent periods of the day, 

the intra-day rescheduling model seeks to identify a cost effective solution that meets the updated agent 

requirements for each remaining period. To accommodate this rescheduling, agents of a particular type 

may be asked to transition to a different schedule, with this new schedule featuring at least one period 

in which this agent was previously working (or idle) but is now idle (working). It is assumed that the 

range of possible new schedules for each agent type, the costs associated with each of these transitions, 

and the disruption costs associated with changing agent schedules are all known prior to solution of the 

re-scheduling problem.  

3.2. Initial Schedule Parameters and Notation 

To represent the call center’s daily operations and initial agent schedules, for a given day we define  the 

following notation:  

 

 

Initial Parameters  
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T  =   number of periods within a day  

N  =   number of agent types  

im  =   number of type i  agents originally scheduled to work on this day  

itb  =   1, if type i  agents are scheduled to take inbound calls in period t ,  

 0, otherwise, for i = 1, 2, …, N and 1 2t … T= , , ,   

td  =   number of agents scheduled to take inbound calls in period t , for 1 2t … T= , , ,   

 

For any given vector { }im=m  and matrix { }itb=B , we can compute { }td=d  using =d Bm .  

The case where 0itb =  for all 1 2t … T= , , ,  corresponds to all agents of type i being currently 

unscheduled for the particular day in question.  In practice an agent of this type may be someone who is 

available to be called in from home with some lead-time, an employee in another department who is 

capable of handling these calls, or an agent that is available from a third party or “outsourced” call 

center (see Easton and Goodale (2005) for a good discussion of these types of contingent resource 

options).  For this type of agent, the parameter im  corresponds to the maximum number of agents of 

this type who are available for duty as part of an updated agent schedule.  

3.3  Monitoring Call Volumes and Identifying Incremental Demand for Agents 

Prior to each time period u, our methodology monitors actual call arrivals and compares them to 

forecasted call volumes.  When the cumulative call volume deviates significantly from the expected 

cumulative call volume, we identify u as a possible schedule updating period and estimate an 

incremental demand for agents.  This incremental agent demand then serves as an input into the agent 

rescheduling model described in Section 3.4.  Our description below uses the following notation and 

associated definitions:  

 

Agent Demand Updating:  Definitions and Notation   
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Nt  = random variable representing the number of calls arriving in period t 

tλ   =   expected value of Nt  

Cu  =  random variable representing the cumulative number of calls arriving in periods   
1,2,…u-1  
 

tx  =   actual number of calls observed in period t, for 1 2 1t … u= , , , −   

Su  =   actual cumulative number of calls arriving in periods 1,2,…u - 1 

ˆ td  =   number of agents required to take inbound calls in period t  after the updated forecast, 
for 1t u u … T= , + , ,   
 

tδ  =   the amount of staff change justified by the updated forecast and observed agent  
attendance levels in period t , for t = u, u+1, …, T 
 

3.3.1. Modeling Call Arrivals 

We model Nt, as a stochastic process with random arrival rates in which the number of calls arriving in 

each period may be correlated with the number of calls arriving in previous periods.  This general 

model allows for a wide range of call forecasting techniques, including the distributional forecasting 

models presented in Whitt (1999), Brown et al. (2002), Avramidis et al. (2004), Weinberg et al. (2006), 

and Shen and Huang (2006).   

3.3.2. Comparing Actual Call Arrivals to Forecasted Call Arrivals 

Our first criterion for determining whether or not to adjust agent schedules at the beginning of a given 

period u is to compare actual calls to the distributional call forecasts.  Immediately prior to period u, we 

monitor the actual cumulative call arrivals Su.  Given the distributional forecasts for the call volumes 

N1, N2, …Nu-1, we also have a distributional forecast for the cumulative call volume Cu for periods 

1,2,…u-1.   Based on the distributional forecast for Cu, we can compute ).( uuu SCP >≡π   We interpret 

a small value (respectively, a large value) of uπ to suggest that the actual cumulative call volume is 

significantly greater than expected (significantly lower than expected).   Our methodology utilizes 

threshold values 1p and 2p , where 10 21 ≤≤≤ pp , to determine whether the call center is potentially 
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overstaffed (if 1pu ≤π ) or potentially understaffed (if 2pu ≥π ).     

On the other hand, we infer that Su is relatively close to E[Cu] if 21 pp u ≤≤ π , and consequently 

we do not consider updating agent schedules prior to period u.  In such cases, the remaining steps 

described in the sections below are not executed for period u.   

3.3.3. Updating Forecasts Based on Actual Call Volumes Su 

If the call center appears to be overstaffed or understaffed based on the criteria described in the 

previous section, the next step in our methodology is to update the forecasts.  This is defined quite 

generally, and can be either an update to the forecasted mean arrival rates tλ  for t=u,u+1, …T (which 

we denote u
tλ̂ ) or an update to the distributional forecast for Nt for periods t=u,u+1,…T (which we 

denote u
tN̂ ).  In either case, the purpose of the updated forecast is to determine an updated target for 

agent requirements, which we discuss in the next section.  

3.3.4. Updating Target Agent Requirements and Incremental Per Period Agent Demand 

Given an updated forecast for the call arrival rates u
tλ̂ , one can use the standard SIPP translation or one 

of several variants in the literature (as discussed in Green et al. 2001) to determine the value of u
td̂ , the 

minimum number of agents needed to achieve the desired waiting time objective in periods 

1t u u … T= , + , , .  Alternately, the additional information contained in the updated distributional 

forecasts u
tN̂ for periods 1t u u … T= , + , ,  can be used to determine u

td̂ using approximation techniques 

such as those presented by Steckley et al. (2008).  Throughout the remainder of this section, we 

suppress the superscript on u
td̂  for clarity.  

Next, for all periods t ≥ u, we compute ( )ttt dd −= ˆδ  where the first term on the right hand side 

corresponds to the target number of agents for period t  based on the updated forecast and the second 

term corresponds to the number of agents originally scheduled for period t .   
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For clarity of exposition, we have omitted any adjustment for absenteeism in our description of 

the methodology here. However, absenteeism can be incorporated simply by adjusting the number of 

scheduled agents td  by the number of scheduled agents who as of the end of period 1u −  are projected 

to be absent during each period prior to computing the tδ  values for all periods t ≥ u. Similarly, 

although our presentation above focuses on changes in call volume forecasts, we note that  

changes to service time parameter forecasts and/or the waiting time distribution (“service level”) 

objectives for the remaining periods 1u u … T, + , ,  can also be considered in a straightforward manner.  

3.4. Formulation of the Re-Scheduling Model 

Once the change in agent demand tδ  has been determined, we then solve an integer programming 

model to determine a cost effective agent re-scheduling plan. This model is formulated in detail in this 

section, first in general terms and then for two important special cases.  

Schedule Updating Parameters  

iK  =   number of schedule transitions available to a type i  agent  

iktr  = 
0 with transition a type agent remains status quo in                   
1  with transition a type agent with 0 takes inbound calls in
1 with transition a type agent with 1 takes time off in         

it

it

k i t
k i b t
k i b t

,
 , =
− , =

 

 

Cost and Saving Parameters  

ikp  =   the penalty of making the transition k  for a type i  agent  

iktc+  =   the cost of having a type i  agent make a transition in period t  where 1iktr =   

iktc−  =   the savings from having a type i  agent make a transition in period t  where 1iktr = −   

 

Decision Variables  
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iky  =   the number of type i  agents who transition to the new schedule k  

 

The general schedule updating model determines the number of agents of each type that should 

make each type of feasible transitions in order to accommodate the forecast update while minimizing 

the total cost of the transitions. Mathematically, the objective is to:  

 
1 1 1 1 1 1 1 1

Minimize
i i

ikt ikt

K K KN N Ni

ik ik ikt ik ikt ik
i k i k t r i k t r

p y c y c y+ −

= = = = : = = = : =−

+ −∑∑ ∑∑ ∑ ∑∑ ∑  

Subject to  

1 1

iKN

ikt ik
i k

r y
= =

≥∑∑  tδ  ∀
1t u u … T= , + , ,  (4) 

1

iK

ik
k

y
=

≤∑  im  i∀  (5) 

iky ∈ {0}Z + ∪  i k∀ ,  (6) 

3.4.1. Special Case I: The Understaffed Call Center 

In the intra-day context, we describe a call center as being “understaffed” if ˆ≤d d  and ˆt td d<  for at 

least one period after the forecast update in period u .  When a call center is understaffed, management 

is confronted with a difficult choice:  maintaining current staffing levels is likely to result in long 

waiting times and high abandonment rates, while increasing staffing levels means additional labor 

expenditures.  In such cases, our modeling framework seeks to enable managers to improve service 

quality while at the same time cost-effectively managing incremental labor costs.   

One way to increase the staffing levels is by extending one or more agents’ shifts by one or 

more periods; this extension of an agent’s shift is known as “overtime” (OT) and typically has a pay 

premium associated with it. In this case, we assume that an agent who is done with his regular shift 

immediately starts working overtime if he is offered OT.  Another way to increase staffing levels is to 

add agents who are not already scheduled to handle these calls, either by calling in agents from home, 
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from another department or group, or from an outsourcer.  The challenge is to determine how many of 

each type of resource to add to the schedule over which periods of the day.  

We now present an integer programming model to determine a cost effective mix of OT offers 

and additional agents (how many agents and for what periods) to remedy the understaffing that is 

projected for periods t = 1u u … T, + , , . For clarity of exposition (and without loss of generality), we will 

assume that 1u =  for the remainder of the model section.  

For this special case, we will need the following additional notation:  

Parameters for the Understaffed Model  

io  =   overtime cost per period of a type i  agent   

itp  =   cost of making a schedule change to a type i  agent in period t   

ie  =   daily cost of bringing in a call-in agent of type i 

iL  =   The last period in which a type i  agent is on staff w.r.t. his original schedule  

 

Decision Variables for the Understaffed Model  

itY  =   the number of type i  agents that work overtime in period t .  

jtQ  =   the number of type j call-in agents that start working in period t .  

 

In our formulation, we assume that there are two types of call-in agents: Part-Time agents  

available for 4 hours only and Full-Time agents available for 8 hours. 

The following integer programming model is defined using the decision variables itY . However 

to relate these variables to the general formulation, we have 

                
1

t

it ik
k

Y y
=

= ∑             (7) 

where transition k  is defined for a type i  agent as the agent continuing work after his regular shift ends 
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and working overtime for k  periods before leaving for the workday. Therefore, if a type i  agent is on 

staff until period iL  on a given day, he is allowed to have one of T- iL  transitions to a new schedule, 

where transition k  is defined as the agent working overtime from period 1iL +  to iL k+ .  

Given the above parameters and decision variables, the OT integer program is defined as 

follows:  

 
2

1
1 2 1 1 1 1

Minimize ( )
N T TN T

it it i t i it j jt
i t i t j t

p Y Y o Y e Q, −
= = = = = =

− + +∑ ∑ ∑∑ ∑∑  

Subject to:  

itY ≤    1i tY , −   i∀ , 1it L> +   (8)  

itY =    0  i∀ , 1it L< +   (9)  

itY ≤    im   i∀ , 1it L= +   (10)  

1 21
max{0, 15} max{0, 31}

t t
N

it s si
s t s t

Y Q Q
=

= − = −

+ + ≥∑ ∑ ∑  tδ   
t∀   (11)   

itY ∈  {0}Z + ∪   i t∀ ,   (12)   

 

In the above formulation, the objective function has three components. The first component 

calculates the total schedule change penalty for the number of type i agents who just had a schedule 

change at period t using 1( )it i tY Y , −− . The second component computes the additional cost caused by 

agents who are asked to stay for overtime. The last term calculates the cost of the call-in agents. 

The constraints sets of the formulation can be described as follows: (8) after their regular shift is 

over, the number of type i  agents working overtime must be a monotonically non-increasing function 

in t ; (9) by definition, no agent can work overtime during his/her originally scheduled periods; (10) for 

any agent type, one may request overtime work from as many employees of that type as the number 

that are on duty that day; and (11) the total number of agents that are offered OT and that are called in 
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should be sufficient to account for the demand shift.  

3.4.2. Special Case II: The Overstaffed Call Center 

In the intra-day context, we describe a call center as being “overstaffed” if ˆ≥d d  and ˆt td d>  for at 

least one period after the forecast update in period u . When a call center is overstaffed, management’s 

goal is to modify the original schedules in order to reduce staffing costs and   increase agent utilization 

levels while simultaneously maintaining high service levels and low abandonment rates.   

In an overstaffed situation, management often has the opportunity to save money by giving 

agents a chance to leave work early; this is known as Voluntary Time Off (VTO). In this case, we 

assume that once an agent has taken VTO, he will not return to work the rest of the workday. The 

challenge is to offer VTO to the right mix of agents, given the updated demand levels td̂ , the mix of 

agents already scheduled, and the dynamics of each agent’s work schedule as represented by the 

elements of the shift matrix B . Hence, the goal is to determine the number of agents of each type i  to 

receive VTO at the beginning of each period t, .,...1, Tuut +−  Below, we present an integer 

programming model to determine a cost effective of VTO offers.  

For this special case, we will need the following additional notation:  

Parameters  

is  =   cost savings per period by giving VTO to a type i  agent   

itp  =   cost of making a schedule change to a type i  agent in period t   

iF  =   the first period in which a type i  agent is on staff in the original schedule  

 

Decision Variables  

itW  =  the cumulative number of type i  agents that are given voluntary time off up to and  

including period t .  

 



 18 

The following integer programming model is defined using the decision variables itW . However 

to relate these variables to the decision variables in our general formulation, we note that 

 
1

t

it ik
k

W y
=

= ∑ , (13) 

where transition k  is defined as the agent taking VTO starting period 1k −  and not returning to 

work for the rest of the workday. Hence, if a type i  agent is on staff for j  periods on a given day, he is 

allowed to have one of j  transitions to a new schedule. The VTO integer program  can now be defined 

as follows:  

 1
1 1 1 1

Minimize ( )
iLN T N

it it i t i it
i t i t

p W W sW, −
= = = =

− −∑∑ ∑∑  

Subject to  

itW ≥    1i tW , −   i∀ , it F≥   (14)  

itW =    0  i∀ , it F<   (15)  

itW ≤    im   i∀ , it L=   (16)  

itW =    1i tW , −   i∀ , it L>   (17)  

1

N
iti

B
=∑  itW ≤    )0,max( tδ−  t∀   (18)  

itW ∈   {0}Z + ∪   i t∀ ,   (19)  

 

In the above formulation, the objective function has two components. The first component 

calculates the total schedule change penalty for the number of type i agents who just had a schedule 

change at period t using 1( )it i tW W , −− , while the second component computes savings caused by agents 

who are asked to take VTO. 

The constraint sets of the formulation can be described as follows: (14) the total number of type 

i  agents offered VTO  is non-decreasing as a function of time, starting in the first period in which a 
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type i  agent is on staff; (15) no agent can be offered VTO for any period before he starts his shift; (16) 

for any agent type, one may offer VTO to as many employees as the number that are on duty that day 

of that type; (17) no agent can be offered VTO for any period that is after the completion of his or her 

shift; and (18) for each time period, the number of agents offered VTO cannot be greater than the 

change in the demand for agents.   

3.4.3. Characterization of the Rescheduling Models 

The OT model described above contains 2T N T× + ×  general integer decision variables and 

T N T× +  constraints, while the VTO model has T N×  general integer decision variables and 

T N T× +  constraints. For the numerical examples presented in the following section, the  optimization 

models were solved with Premium Solver (Fylstra et al. 1998) on a Pentium-class laptop computer in 2-

3 seconds each .   

3.5 Determining the Value of Schedule Changes and Making the Rescheduling Decision 

After solving the appropriate agent rescheduling integer model for a given rescheduling period u, the 

next step in the process is to estimate the net value associated with the proposed schedule adjustment.  

Once this value has been estimated, a final decision is made about whether or not to implement the 

updated schedules prior to period u.   

3.5.1 Quantifying the Value of a Schedule Update 

The net value of an updated agent schedule is comprised of three components:  (1) the impact of the 

updated schedule on direct labor costs; (2) the impact on customer service quality, as measured by the 

Service Level changes resulting from the updated schedules; and (3) the “disruption costs” that result 

from changing individual agents’ schedules.  We discuss modeling and calculation of each of these 

components below.  

The increase (or decrease) in direct labor costs associated with a schedule update is defined as 
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the additional cost (savings) incurred as a result of agents working overtime (taking voluntary time-off) 

and can be obtained directly from the objective function value of the integer programming model. For a 

schedule update taking place prior to period u, we denote this value as u
L∆ and note that a positive 

(negative) value for u
L∆  corresponds to an increase (decrease) in direct labor costs relative to the labor 

costs associated with the base schedule.  

To quantify the value of updated agent schedules on customer service quality in future periods, 

we first model a cost cS associated with each call that waits in queue longer than the target service level 

period.  For a proposed updated schedule (and associated schedule updating period u), we then estimate 

the number of calls that are expected to wait longer than the desired service level interval, which we 

denote as SL0 , based on the updated forecast and the original agent schedule. We then update the agent 

schedules for periods u, u+1,…T as described above and use the results along with the updated 

forecasts to estimate the number of calls that are expected to wait longer than the desired service level 

interval, which we denote SLu, based on these updates. The value of the impact of a schedule update on 

service levels prior to period u, which we denote u
S∆ , is then estimated by (SL0 - SLu) cS, where a 

positive (negative) value of u
S∆ corresponds to a decrease (increase) in the costs associated with not 

meeting Service Levels.  

 Finally, to model disruption costs associated with updated agent schedules, we include a cost cd 

for each individual agent whose schedule is changed in the updating process.  In addition, we 

define uγ to be the number of agents whose schedules would be updated if results of the rescheduling 

model were implemented prior to period u, where: 

∑
=

+=≡
n

i
itTuutu Y

1
,...1,maxγ  (OT Case) 

∑
=

+=≡
n

i
itTuutu W

1
,...1,maxγ  (VTO Case),  

where itY  ( itW ) is as defined in Section 3.4.1 (3.4.2) above.  The total disruption cost associated with 
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updating agent schedules prior to period u is denoted u
D∆  and is calculated as du cγ .  

3.5.2 Determining Whether or Not to Implement the Proposed Schedule Update 

The total costs associated with a schedule update prior to period u is denoted u∆ , with  

u
D

u
S

u
L

u ∆+∆+∆≡∆ .  Our methodology implements the updated schedule prior to period u only if 

0<∆u , which means that the net value (cost) of the updated schedule is positive (negative).   

 If 0≥∆u , schedules are not updated prior to period u, the actual call volume ux for period u is 

observed, and the process described in Sections 3.3 and 3.4 above is repeated.  

4. EMPIRICAL TESTING OF INTRA-DAY RESCHEDULING METHODOLOGY 

4.1 Numerical Experiments:  Description and Input Parameters 

To test the rescheduling framework described in the previous section, we used data from an actual call 

center’s operations to conduct a series of numerical experiments.  For each day of operations, our 

experimental framework is illustrated in Figure 2.  Our approach is to start with day-of-operations 

forecasts (“original forecasts”) and the associated agent schedules (“original schedules”).  From here, 

we observe the actual call arrivals for each day and use this information to create “updated forecasts.”  

Next, we examine the updated forecasts in conjunction with the original schedules to determine if and 

when to update agent schedules.  Finally, using the actual call arrivals for the entire day, we compare 

the performance of the call center when the original schedules are used for the entire day with the 

performance of the system when our rescheduling framework is used to update the schedules.  This 

process is described in more detail below.  

--------------------------------- 
Insert Figure 2 Here  

 ---------------------------------- 
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4.1.1  Overview of Call Center and Determination of Original Schedules 

The call center that was used for our numerical experiments was originally presented by Saltzman 

(2005).  This call center provides support for an on-line e-commerce portal and is open from 6:00 am to 

9:00 pm, with a schedule granularity of 15-minute increments.  The center employs 32 types of agents, 

10 with part time and 22 with full time schedules.   

In order to calculate the initial target staffing levels td , we used day-of-operations forecasts for 

call arrival rates tλ  and average service rates tµ . From here, the minimum number of agents required 

per period is calculated using the traditional Stationary Independent Poisson Process (SIPP) 

transformation with a service level goal of answering 99% of calls within 300 seconds.  Finally, the 

original agent schedules were created based on these day-of-operations forecasts and service level 

targets by using the schedule optimization algorithm from Saltzman (2005). 

It is important to note that our day-of-operations forecasts tλ  can differ significantly from the 

two-week moving average forecasts actually used by this call center to determine agent requirements 

and create agent schedules.  Specifically, we use the ratio of actual calls to forecasted calls during the 

first n days of the week to update the original forecast to get a day-of-operations forecast for the n+1st 

day.  In addition, our original schedules are based on these day-of-operations forecasts, whereas the 

actual schedules for this call center were based only on the original forecasts. 

4.1.2 Determining Whether or Not to Consider Updating Agent Schedules 

The general process for determining when and how to update agent schedules is described in detail in 

Sections 3.3 – 3.5 above.  Below, we provide additional details about the specific criteria used in our 

numerical experiments.  

For each day in our experiments, the first allowable period for re-scheduling is u = 9, meaning 

that all of the estimates used for forecast updates are based on at least eight observations (that is, at 

least two hours of data).  This is consistent with both current industry practice and with the empirical 
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results of Shen and Huang (2006) about the performance of this forecast updating method, which 

suggests that accuracy increases greatly after the first few periods.  Our last allowable period for re-

scheduling is u=17, meaning that the decision on whether or not to update call forecasts and agent 

schedules is based on at most sixteen observations (that is, four hours of data).   

For a given period u, we determine whether or not actual cumulative call arrivals are 

significantly higher (or lower) than forecasted cumulative call arrivals based on the value of uπ as 

described in Section 3.3.2.  In particular, in our experiments, we use the threshold value p1 = 0.2  (p2 = 

0.8) to determine whether call volumes are significantly higher (lower) than expected, which in turn 

suggests that the system is potentially understaffed (overstaffed).  Values of p1 and p2 closer to (or 

farther from) 0.5 correspond to a lower threshold (higher threshold) for concluding that the actual call 

arrivals have deviated significantly from the expected values.  

4.1.3 Updating Forecasts and Agent Requirements 

If we have determined that the call volumes are significantly higher or lower than expected, our next 

step is to make use of the call volumes observed in 1,2,…u-1 to update the demand for agents in period 

t for t = u,u+1,…60.  This is done in two steps.   

The first step is to create an updated forecast for the arrival rate in period t as of the beginning 

of period u, which we denote u
tλ̂ , where .

][
ˆ

u

u
t

u
t CE

S
λλ ≡   The second step is to use the updated forecast 

in the standard SIPP procedure (as discussed in Green et al. 2001, 2003) to determine the updated agent 

requirements 601
ˆ,...ˆ,ˆ ddd uu + .  The values of the incremental agent demand levels 601 ,..., δδδ +uu  are then 

computed as the difference between 601 ,..., ddd uu +  and 601
ˆ,...ˆ,ˆ ddd uu + .    

4.1.4  Creating Updated Agent Schedules and Evaluating the Associated Benefits 

After determining the updated agent requirements and incremental agent demand levels, for 

understaffed cases (overstaffed cases) the integer program to update schedules from Section 3.4.1 
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(Section 3.4.2) is run to determine the updated schedules. Once the updated schedules have been 

identified, we determine the net value of updating the schedules as of time u by following the procedure 

described in Section 3.5, using the following cost parameters.  

For our numerical experiments, we used a standard labor cost of $20/hour for all agents of all 

types as in Saltzman (2005) as well as values of $15/hour for the savings rate is  associated with an 

hour of Voluntary Time Off for all agents and a value of $27/hour for the overtime cost io  for all 

agents who are already scheduled.  In addition, we used a value of $36/hour for the hourly cost of for 

any previously-unscheduled agents who are called in to meet the increased demand levels.  In practice, 

call-in agents are asked to show up whenever needed and on very short notice, which is the justification 

for the higher overtime costs.  We assessed a cost of $25/call for each call not answered within the 

Service Level target period.  Finally, we included a charge of $5 for each individual agent whose 

schedule was changed, and this disruption charge was explicitly included in our calculation of the net 

value of any given schedule update, as described in Section 3.5.   

4.2 Experimental Results 

4.2.1  Initial Results 
 
Our numerical experiments are based on six and a half weeks of day-of-operations forecasts and call 

arrival data, for a total of thirty two distinct days of call center operations.  Our presentation of 

numerical results is focused on the financial impact of the schedule updates.  At the end of each day, we 

can estimate the financial impact of the schedule update decision by calculating the performance 

metrics using actual call volumes, first with the original agent schedules and then with the updated 

agent schedules. 

For three of these thirty two days, the model either did not identify any significant differences 

between the original call arrival forecast and the actual call arrivals or estimated that the value of 

updating agent schedules was less than the cost of disruption. Of the remaining twenty nine days, 
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sixteen were identified as “understaffed” and thirteen were identified as “overstaffed.”  For our initial 

tests, we used the updated value for the mean arrival rate u
tλ̂ to determine the updated agent 

requirements u
td̂ , as described in Section 3.3.4 above.  

When the early periods’ call arrivals suggest that the call center is understaffed, our model seeks 

to increase staffing levels to meet service level goals and reduce lost calls for the remainder of the day.  

For days that were identified as understaffed, Table 1 illustrates the impact of the schedule updating 

model on these metrics.  In particular, we note that schedule updating has a strong impact on the 

achieved Service Levels (with the mean increasing from 83.50% under the original schedules to 

89.07% in the presence of updated schedules).  As such, the cost of calls that fail to meet the Service 

Level objective decreases substantially as a result of our intra-day rescheduling, in all cases exceeding 

the cost of additional staff and the cost of disruption.  

--------------------------------- 
Insert Table 1 Here  

 ---------------------------------- 
When the early periods’ call arrivals suggest that the call center is overstaffed, our model seeks to 

reduce staffing levels, reducing labor costs and thereby increasing agent utilization levels, while also 

continuing to achieve the service level objectives.  For days that were identified as overstaffed, Table 1 

illustrates the impact of the schedule updating model. In the overstaffed case, we see that the cost of 

lost calls grows as a result of the decision to update agent schedules and that on average this cost 

exceeds the amount that is saved as a result of decreased labor costs.  In addition, we notice that even 

the original schedules fail to meet the service level objectives over the course of the day;  this reflects 

the fact that, for this call center, some days’ actual call arrivals are greater than expected in later periods 

even though the early periods are lower than expected.  We address this phenomenon with additional 

experiments, which are described in the next section.  

--------------------------------- 
Insert Table 2 Here  

 ---------------------------------- 
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4.2.2 Incorporating Distributional Information In Determining Updated Agent Requirements 
 

In our next round of numerical experiments, we explored the impact of using additional 

distributional information to determine the updated agent requirements u
td̂ , as described in Section 

3.3.4 above.  In particular, in understaffed (overstaffed) situations, we define values 01 >k ( )02 >k  and 

then use t
u
t k σλ 1

ˆ +  ( )t
u
t k σλ 2

ˆ +  as the updated mean arrival rates that are used to determine u
td̂ , where 

tσ  is the standard deviation of the call volume distribution for period t for t = u,u+1,…60.    

The parameters 1k  and 2k can be interpreted as “insurance” against the remaining arrival rate 

uncertainty, with larger ik values corresponding to more conservative estimates of the updated arrival 

rate.  In the understaffed case, a positive value of 1k  corresponds to a more aggressive attempt to meet 

service levels in periods u,u+1,…60 by adding more staff hours during the re-scheduling process than 

in our initial experiments, which correspond to the case where 01 =k .  Conversely, in the overstaffed 

case, a positive value of 2k corresponds to a more conservative approach to releasing resources that 

might be needed in the event of higher-than-expected call volumes in future periods than in our initial 

experiments, which correspond to the case where 02 =k .   

During the sixteen days that were identified as understaffed, we ran experiments with values of 

1k  ranging from 0.25 to 2.5 with increments of 0.25.  The results are shown in Table 3.   While 

increased values of 1k  always correspond to higher target values of u
td̂ and therefore lower costs 

associated with calls that fail to meet service level, it is interesting to note that the net benefit peaks 

when .25.11 =k  For 25.11 >k , the mean incremental benefits associated with improving service levels 

fell short of the cost of increased staff hours and disruption.  

--------------------------------- 
Insert Table 3 Here  

 ---------------------------------- 
On the other hand, the thirteen days identified as overstaffed show somewhat different 
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dynamics.  In particular, the higher the value of 2k , the smaller the change to staffing levels and the 

lower the loss associated with calls in future periods that do not achieve the service level goal.   

--------------------------------- 
Insert Table 4 Here  

 ---------------------------------- 
 
 

5. CONCLUSIONS AND NEXT STEPS FOR RESEARCH 

In this paper, we have described an important business problem associated with Real Time Schedule 

Adjustments for call center operations. The methodology that we have developed here enables 

managers to update daily workload forecasts and demand for agent resources by leveraging information 

obtained from observations of call traffic early in the day, and to then use these updated demand levels 

to intelligently re-schedule agents across a range of feasible adjustments. Our experimental results, 

based on data from an actual sales-and-service call center, show that there is significant business value 

associated with such intra-day adjustments when the call center appears to be understaffed.  When this 

particular call center appears to be overstaffed, on the other hand, there appears to be significant risk 

associated with releasing agents from their schedules, though our rescheduling framework provides a 

an approach to mitigating this risk.   

In developing our methodology, we have connected major ideas from the forecasting and 

forecast updating literature and from the optimal shift scheduling literature to produce an integrated 

solution for schedule updating. In addition, we have demonstrated the use of this methodology to 

update day-of-operations forecasts and agent schedules for an actual call center.  

We believe that the area of intra-day/real time schedule adjustments has received insufficient 

research attention, both in the call center literature and in the personnel scheduling literature overall. As 

such, we conclude by suggesting several other related research questions.  

One obvious critical input to this process is the joint distribution of (and correlation between) 

calls during different intervals within the same day. While a few papers have appeared in the literature 
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recently (Brown et al. 2002, Avramidis et al. 2004, Weinberg et al. 2006, Shen and Huang 2006), there 

is still a need for additional work in this area, as improved intra-day forecast updates will lead to better 

intra-day schedule updates.  

 A related issue is the process of determining of initial (and updated) staffing levels and the 

impact of these decisions on agent schedules.  Historically, agent requirement calculations have been 

made under the assumption of a deterministic arrival rate (the so-called SIPP method) and in turn agent 

schedules have been based on these agent requirement levels.  Recent work by Steckley et al. (2008) 

proposes an approximation method for determining staffing requirements to achieve a certain service 

level objective while explicitly accounting for arrival rate variability.  As such, another avenue for 

investigating Real Time Schedule Updates for call centers is to examine the effect of using such 

approximations for determining the agent requirement levels used to determine the initial agent 

schedules and/or updated agent schedules.   

For understaffed situations, our model assumes that there are additional resources available on 

an on-call basis that can be added to the schedule to help meet the higher-than-expected demand levels.  

In practice, such agents are often likely to be contracted by a third-party, a relationship commonly 

referred to as “outsourcing.”  Because of the rapid growth in the call center outsourcing industry, 

contracting and utilizing contingent resources has recently been explored by several researchers, 

including Milner and Lennon-Olsen (2006), Bhandari et al. (2006), and Gans and Zhou (2007).   

Exploring contract structures and contingent capacity planning models in the context of schedule 

updating, variable arrival rates, and cross-period correlation is of both theoretical and practical interest.  

Finally, there is clearly a need to extend this type of schedule updating framework to include 

more sophisticated and increasingly common call arrival and call management issues such as customer 

messages leading to callbacks (Armony and Maglaras 2004) and skill-based routing (Pot and Koole 

2005, Wallace and Whitt 2005, and Harrison and Zeevi 2005).  
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APPENDIX A: DETAILS OF PARAMETERS FOR THE NUMERICAL RESULTS  

Since B  (a 60 by 32 matrix) is too large to display properly, we have provided the start period, 

end period and break times for each agent type. The first five and the last five agent types are part-time 

schedules. Part-time agents take one 15-minute break, while full-time workers take one 15-minute, one 

30-minute and a final 15-minute break.  

T  =   60 (each period is 15-minutes)  

N  =   32 (10 part-time and 22 full-time agent types)  

im  =   1, 4, 5, 0, 0, 1, 1, 4, 1, 0, 2, 5, 1, 0, 0, 0, 5, 0, 0, 4, 0, 2, 1, 2, 1, 6, 0, 0, 0, 2, 1, 4  

td  =   3, 3, 8, 8, 14, 14, 20, 19, 24, 24, 26, 25, 27, 30, 25, 25, 29, 27, 28, 28, 24, 26, 27, 27, 35, 

29, 32, 32, 30, 30, 32, 34, 30, 34, 28, 32, 27, 31, 23, 27, 21, 21, 16, 16, 23, 23, 22, 20, 23, 

23, 16, 17, 17, 17, 17, 17, 13, 13, 10, 10  

iF  =   1, 5, 9, 13, 17, 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 17, 17, 19, 19, 23, 23, 25, 25, 27, 27, 28, 

32, 36, 40, 44  

iL  =   17, 21, 25, 29, 33, 34, 34, 36, 36, 38, 38, 40, 40, 42, 42, 44, 44, 50, 50, 52, 52, 56, 56, 58, 

58, 60, 60, 44, 48, 52, 56, 60  

Break 1 =   8, 12, 16, 20, 26, 9, 12, 11, 10, 15, 13, 15, 13, 18, 17, 20, 21, 26, 25, 28, 27, 32, 31, 34, 

33, 35, 34, 36, 40, 44, 48, 52  

Break 2 =   -, -, -, -, -, 17, 20, 19, 18, 23, 21, 23, 21, 26, 25, 28, 29, 34, 33, 36, 35, 40 39, 42, 41, 43, 

42, -, -, -, -, -  

Break 3 =   -, -, -, -, -, 29, 30, 27, 26, 33 31 33, 31, 36, 35, 38, 39, 42, 41, 44, 43, 48, 47, 52, 51, 51, 

52, -, -, -, -, -  

 

The forecasted service rates per period ( tµ ) are:  

tµ  =   48, 48, 28, 28, 14, 14, 11, 11, 11, 11, 11, 11, 10, 10, 11, 11, 11, 11, 11, 11, 10, 10 ,9.9 
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,9.9, 10, 10, 10, 10, 11, 11, 10, 10, 11, 11, 10, 10 ,9.8 ,9.8, 11, 11, 11, 11, 10, 10, 11, 11, 

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11 ,9.1 ,9.1   
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TABLES 

Table 1:  Summary Results for the Days Identified As Understaffed 
 

 

Performance Measure 

“End Of Day” 

Comparison Based on  

Actual Call Arrivals  

Mean Service Level  

With the Updated Schedule  83.50% 

With the Original Schedule  89.07% 

∆ 5.57% 

Mean Cost of Not Meeting SL Targets  

With the Updated Schedule   $ 12,798 

With the Original Schedule   $ 19,112 

∆ -$ 6,314 

Payroll Impact of Update  $ 3,902 

Disruption Impact of Update  $ 61 

 

Table 2:  Summary Results for the Days Identified As Overstaffed 
 

Performance Measure 

“End Of Day” 

Comparison Based on  

Actual Call Arrivals  

Service Level  

With the Updated Schedule  81.33% 

With the Original Schedule  97.37% 

∆ -16.04% 

Cost of Not Meeting SL Targets  

With the Updated Schedule   $ 18,505 

With the Original Schedule   $ 2,693 

∆  $ 15,812  

Payroll Impact of Update -$ 2,015 

Disruption Impact of Update  $ 335 
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Table 3:  Summary Results for the Days Identified As Understaffed with different k1 values 
 

k1 SL w/o 
update 

SL w/ 
update 

Cost of Calls 
Lost w/o 

Update ($) 

Cost of Calls 
Lost w/ 

Update ($) 

Cost of 
Update ($) 

Cost of 
Disruption 

($) 

Net Benefit 
($) 

0.25 83.50% 91.34% 19,112 10,189 4,678 72 4,172 
0.50 83.50% 92.32% 19,112 9,066 5,374 77 4,595 
0.75 83.50% 93.36% 19,112 7,865 6,131 89 5,027 
1.00 83.50% 94.43% 19,112 6,643 6,926 97 5,445 
1.25 83.50% 95.53% 19,112 5,313 7,752 104 5,943 
1.50 83.50% 96.30% 19,112 4,417 8,600 108 5,987 
1.75 83.50% 96.68% 19,112 3,980 9,466 112 5,554 
2.00 83.50% 97.07% 19,112 3,512 10,320 118 5,161 
2.25 83.50% 97.61% 19,112 2,862 11,199 125 4,926 
2.50 83.50% 97.72% 19,112 2,710 12,080 125 4,197 

 
 

 
Table 4:  Summary Results for the Days Identified As Overstaffed with different k2 values 
 

k2 
SL w/o 
update 

SL w/ 
update 

Cost of Calls 
Lost w/o 

Update ($) 

Cost of Calls 
Lost w/ 

Update ($) 

Cost of 
Update ($) 

Cost of 
Disruption 

($) 

Net Benefit 
($) 

0.25 97.37% 84.76% 2,693.02 15,127.92 (1,790.14) 327.86 (10,972.61) 
0.50 97.37% 87.43% 2,693.02 12,573.83 (1,562.14) 321.79 (8,640.45) 
0.75 97.37% 89.25% 2,693.02 10,806.28 (1,333.71) 311.79 (7,091.33) 
1.00 97.37% 90.94% 2,693.02 9,128.89 (1,141.29) 294.29 (5,588.87) 
1.25 97.37% 92.96% 2,693.02 7,105.36 (937.71) 279.29 (3,753.92) 
1.50 97.37% 94.41% 2,693.02 5,668.62 (753.86) 265.71 (2,487.46) 
1.75 97.37% 95.48% 2,693.02 4,580.73 (603.00) 249.29 (1,534.00) 
2.00 97.37% 96.23% 2,693.02 3,841.74 (459.43) 231.07 (920.37) 
2.25 97.37% 96.77% 2,693.02 3,295.02 (342.86) 212.14 (471.29) 
2.50 97.37% 97.06% 2,693.02 3,000.02 (232.71) 181.79 (256.08) 
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FIGURES 

Figure 1: Three Level Hierarchical Model of Call Center Resource Planning 
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Figure 2: Rescheduling Framework and Experimental Workflow 
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