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Unboxing cluster heatmaps
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From 6th Symposium on Biological Data Visualization
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Abstract

Background: Cluster heatmaps are commonly used in biology and related fields to reveal hierarchical clusters in
data matrices. This visualization technique has high data density and reveal clusters better than unordered heatmaps
alone. However, cluster heatmaps have known issues making them both time consuming to use and prone to error.
We hypothesize that visualization techniques without the rigid grid constraint of cluster heatmaps will perform better
at clustering-related tasks.

Results: We developed an approach to “unbox” the heatmap values and embed them directly in the hierarchical
clustering results, allowing us to use standard hierarchical visualization techniques as alternatives to cluster heatmaps.
We then tested our hypothesis by conducting a survey of 45 practitioners to determine how cluster heatmaps are
used, prototyping alternatives to cluster heatmaps using pair analytics with a computational biologist, and evaluating
those alternatives with hour-long interviews of 5 practitioners and an Amazon Mechanical Turk user study with
approximately 200 participants. We found statistically significant performance differences for most clustering-related
tasks, and in the number of perceived visual clusters. Visit git.io/vw0t3 for our results.

Conclusions: The optimal technique varied by task. However, gapmaps were preferred by the interviewed
practitioners and outperformed or performed as well as cluster heatmaps for clustering-related tasks. Gapmaps are
similar to cluster heatmaps, but relax the heatmap grid constraints by introducing gaps between rows and/or
columns that are not closely clustered. Based on these results, we recommend users adopt gapmaps as an alternative
to cluster heatmaps.

Keywords: Systems biology/omics data, Bioinformatics visualization, Hierarchy data, Data clustering, Qualitative
evaluation, Quantitative evaluation

Background
Cluster heatmaps are commonly used in biology and
related fields to reveal hierarchical clusters in data matri-
ces. Heatmaps visualize a data matrix by drawing a rect-
angular grid corresponding to rows and columns in the
matrix, and coloring the cells by their values in the
data matrix. In their most basic form, heatmaps have
been used for over a century [1]. In addition to coloring
cells, cluster heatmaps reorder the rows and/or columns
of the matrix based on the results of hierarchical clus-
tering. The hierarchical structure used to reorder the
matrix is often displayed as dendrograms in the margins.

*Correspondence: sjengle@usfca.edu
1University of San Francisco, San Francisco, CA, 94117 USA
Full list of author information is available at the end of the article

Cluster heatmaps have high data density, allowing them
to compact large amounts of information into a small
space [2].

Applications
Cluster heatmaps continue to find widespread application
in biology [3–9]. They are most commonly used to visu-
alize gene expression data across samples and conditions
as measured by microarray or RNA-seq experiments.
When applied to a correlation matrix, cluster heatmaps
are particularly helpful at identifying groups of correlated
samples or genes. These groups are revealed as block
structures along the diagonal and can identify outliers,
tissue subtypes, and novel gene pathways [10].
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There are other applications of cluster heatmaps
within biology beyond gene expression. Considermachine
learning models trained on data where rows are sam-
ples and columns are predictors of a dependent variable
such as a phenotype. Here, cluster heatmaps of correla-
tionmatrices are particularly helpful for identifying blocks
of highly correlated samples that violate the independent
and identically distributed (IID) assumptions made by
most machine learning algorithms. They can also identify
blocks of redundant predictors that may reduce predic-
tive performance, increase computation time, or intro-
duce collinearities that interfere with certain modeling
techniques.
Finally, cluster heatmaps can help visualize the relation-

ships between top predictive features, particularly when
using estimates such as ensemble feature importances that
lack a “directionality” that is more traditionally found in
the positive or negative sign of linear model coefficients. If
the relevance of a single feature to the positive or negative
class is known, other features in the same block struc-
ture are likely relevant to the same class. Such applications
are useful for interpreting “black-box” machine learning
models, even for symmetric matrices of relatively small
size.

Shortcomings
Cluster heatmaps have several shortcomings [2, 11]. The
Gestalt principles of proximity and similarity help define
what clusters are visible in a heatmap; clusters are formed
by cells that are close in proximity and visually similar
in color [12]. However, the grid structure of the heatmap
constrains how proximity may be used—we are limited to
reordering the rows and columns of the heatmap. Thus,
clusters may be perceived differently in the heatmap ver-
sus the dendrogram.
Flipping the right and left children in the dendrogram

has no impact on the underlying data matrix or hierar-
chy, but has a major impact on how clusters are perceived
in the heatmap. An optimal ordering can be found based
on different metrics to place the most relevant rows or
columns next to each other [13–15]. Even in that case,
when clusters are formed close to the root of the den-
drogram, cells that are not closely clustered must still be
placed adjacent in the heatmap due to the rigid grid struc-
ture. Rows or columns that are closely clustered can also
end up non-adjacent in large clusters.
To compensate, users must reference the dendrograms

in the margins to be certain that visible clusters in the
heatmap match the hierarchical clustering depicted in
the dendrograms. It can be fatiguing and error-prone to
shift focus back and forth between elements. These prob-
lems are particularly acute for large datasets where cluster
heatmaps have even greater potential as a tool for data
analysis.

Alternatives
This work examines several standard hierarchical visual-
ization techniques as alternatives to cluster heatmaps, as
depicted in Fig. 1. Heer et al. [16] provides an excellent
description of these techniques.
To review, cluster heatmaps visualize a hierarchically

clustered data matrix using a reordered heatmap with
dendrograms in the margin. Gapmaps [11, 17] are a
recent variant of cluster heatmaps that encode the dis-
tance between the clusters as gaps between rows and/or
columns. Both of these are juxtaposed techniques [18],
combining heatmaps with dendrograms.
Dendrograms are a form of node-link diagram, where

all of the leaf nodes are placed at the same level in the
visualization. For traditional Cartesian dendrograms, this
usually means the root node is at the top of the visualiza-
tion and leaf nodes are found at the bottom. In a radial
dendrogram, which uses polar instead of Cartesian coor-
dinates, the root is in the center of a circle and the leaf
nodes are arranged along the outer-most ring. For small
datasets, radial layouts tend to use space more compactly
than Cartesian layouts that often require considerable
horizontal space [16].
Most node-link diagrams only differ in how the node

layout is calculated. For example, Reingold-Tilford trees
[19] do not place the leaf nodes at the same level.
Instead, node placement corresponds more directly to
the depth of that node in the tree. There are both rect-
angular/Cartesian and radial/polar versions with similar
properties as dendrograms. Force-directed trees [20] use
an approximation of a physics simulation to calculate node
placement, where disconnected nodes repel each other
and connected nodes attract each other. This results in a
compact node-link diagram.
Space-filling techniques are an alternative to node-link

diagrams that attempt to maximize (or fill) the display
space used. Sunbursts [21] are space-filling adjacency dia-
grams very similar to radial Reingold-Tilford trees, except
all nodes are represented by space-filling arcs radiating
from the center of the visualization instead of individual
circles. The root is encoded in the center, inner nodes are
represented as nested arcs radiating away from the center,
and leaf nodes are along the outermost rings of the circle.
There is also a Cartesian variant sometimes referred to as
partition or icicle diagrams.
In addition to space-filling adjacency diagrams, there

are also space-filling enclosure diagrams that use nested
shapes to encode hierarchy. The most common are
treemaps [22], which use nested rectangles to depict
hierarchy and the area of those rectangles to encode
other values. Squarified treemaps [23] attempt to produce
approximately square rectangles. While treemaps maxi-
mize the amount of space given to leaf nodes, the under-
lying hierarchy can be difficult to interpret. Circle packing
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Fig. 1 Alternatives to cluster heatmaps. We used these 5 alternatives (in addition to cluster heatmaps) in our final study. All five alternatives depicted
here are for the same dataset. From left to right: (a) gapmap [11, 17] (b) circle packing [24], (c) sunburst [21], (d) radial dendrogram, and (e)
force-directed tree [20]. Leaf nodes are filled to indicate the original value from the data matrix using the PRGn ColorBrewer scheme [66]. Positive
values are green in color, and negative values are purple in color. The root node, if depicted, is indicated by a black outline. Inner nodes have no fill
color and a gray outline. Edge tapering is used to indicate parent-child relationships in the node-link diagrams [37]

[24] represents hierarchy via nested circles instead of
squares, with the outermost circle representing the root
and the innermost nested circles representing leaves. The
tradeoff is less space dedicated to the leaf nodes, but
often results in a clearer depiction of the hierarchy than
treemaps.

Contributions
We hypothesize that techniques without the rigid grid
constraint of cluster heatmaps will perform better at
clustering-related tasks when visualizing the results of
hierarchical clustering. We test this hypothesis through a
series of qualitative and quantitative user studies:

• Practitioner survey: We surveyed 45 practitioners in
biology or related fields to understand how they use
cluster heatmaps and determine the scope of
experiments that would be useful to these
practitioners.

• Practitioner interviews: We interviewed 5
practitioners to qualitatively evaluate our prototypes
(see Fig. 1) and make adjustments prior to running a
larger scale user study. Practitioners answered
questions on each visualization technique and gave
free-form feedback over an hour.

• Mechanical Turk user study: We finally conducted a
between-subject Amazon Mechanical Turk user
study for 6 visualization techniques. We had
approximately 200 participants total, with over 30
participants per technique.

In addition to the above user studies, our contributions
include the following:

• Data processing: We embedded the data matrix
directly into the results of hierarchical clustering,
enabling us to use standard hierarchical visualization
techniques on this data.

• Pair analytics: We used a pair analytics pattern [25]
with a domain expert in computational biology to
identify and prototype alternatives to cluster
heatmaps.

We found that no single technique was optimal for
all tasks. However, gapmaps outperformed or performed
as well as cluster heatmaps for clustering-related tasks.
Given this technique was also preferred by our inter-
viewed practitioners and can support large datasets,
gapmaps are a promising alternative to cluster heatmaps.
We discuss our findings in more detail in the following
sections.

Related work
Cluster heatmaps are widely used in biological appli-
cations such as genome-wide association studies [3, 7],
genomic segmentation [4], exploring relationships
between environmental variables and microbial com-
munities [6], identifying patterns between signs and
symptoms of chest pain [26], and others. Many imple-
mentations exist, including Bioconductor packages in R
[27], the seaborn package in Python [28], stand-alone
tools such as Cytoscape [29], GENE-E [30], Maple Tree,
and Java Treeview [31], and web-based implementations
[32, 33]. Gehlenborg and Wong have discussed the prob-
lems of using cluster heatmaps and discussed advantages
of using gap maps as well as parallel coordinates [11].
Novel tools such as Furby [8, 34], OmicCircos [9], and

QCanvas [5] have been recently presented for visualizing
hierarchical data. Furby is a tool that allows interactive
exploration of hierarchical clusters for biological applica-
tions [8]. They conducted preliminary evaluations with
an expert user and found that for a force-directed layout,
“a stable layout is preferred over an optimal one which
takes longer to be created.” OmicCircos is a R-package that
arranges heatmaps in a radial layout to visualize patterns
[9]. Radial layouts have reduced performance compared
to orthogonal layouts [35, 36]. QCanvas allows users to
explore large-scale omics data, but information about its
adoption is not reported [5].
Evaluating graph visualizations is important to under-

standing the strengths and weaknesses of graphical rep-
resentations of hierarchical or network structures. Holten
and van Wijk evaluated six different representations to
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reduce visual clutter in directed graphs [37]. Stasko
et al. evaluated treemaps and sunburst representation
methods to visualize hierarchical structures and found
that users were faster and more accurate when using
the sunburst representation for large graphs [21]. Kobsa
conducted a user evaluation that evaluated frequently
used tree visualization techniques [38]. Heer and Bostock
used Amazon Mechanical Turk to evaluate design aspects
such as chart size and gridline spacing for visual
representations [39].
Lee et al. [40] introduced a graph-specific task taxon-

omy that extended Amar and Stasko’s [41] original task
taxonomy. Saket et al. expanded the task taxonomy for
evaluating graph representations that specialize in visual-
izing groups [42]. Their task taxonomy contained 31 total
tasks that belonged to one of four task groups: group-only
tasks, group-node tasks, group-link tasks, and group-
network tasks. The tasks for our expert interviews and
non-expert user study were drawn from a subset of their
tasks.
Diehl et al. evaluated the benefits of radial representa-

tions and found although participants took less time when
using cartesian layouts, the radial layout was useful for
seeing trends in a single dimension [36]. Eye tracking was
used by Burch et al. to evaluate radial, orthogonal, and
traditional tree representations [35]. They found that par-
ticipants performed poorly when using radial layouts as
compared to both orthogonal and traditional tree layouts.
Treemaps are one of the most popular technique for

visualizing hierarchical data [23, 43]. Novel techniques
such as circle packing have been used for visualizing
hierarchies [24, 44]. Ghoniem et al. compared node-link
andmatrix-based representations of graphs for readability
[45]. Based on their evaluations, they found that partici-
pants performed poorly on path finding tasks when using
matrix-based representations.
Jianu et al. used eye tracking-based evaluation to com-

pare recent graph visualization techniques that include a
semantic layer of set membership [46]. The techniques
they evaluated were BubbleSets [47], LineSets [48], and
GMaps [49]. BubbleSets and LineSets performed bet-
ter than variations of GMaps and traditional node-link
diagrams with colored nodes.

Methods
We now present details regarding how we processed the
data, developed prototypes, and conducted our qualitative
and quantitative user studies. Please see git.io/vw0t3 for
the raw data files from our practitioner survey and large-
scale non-expert user study.

Data processing
The process of running hierarchical clustering on a data
matrix usually produces two separate but related datasets:

a data matrix that has been reordered based on the clus-
tering results, and trees representing the hierarchical clus-
tering results. A cluster heatmap visualizes the reordered
data matrix with a heatmap and the trees separately as
dendrograms in the margins.
Before exploring alternative visualization techniques for

this data, we “unbox” the reordered data matrix and
embed the cell values directly into the hierarchical clus-
tering results. This is a key step that allows us to use stan-
dard hierarchical visualization techniques on the datasets
underlying cluster heatmaps. At a high level, this process
replaces leaves in the clustering tree that represented a
row or column from the original data matrix with nodes
for each appropriate cell instead. This results in a unified
tree that contains both the hierarchical clustering results
and the individual cell values from the data matrix. See
Fig. 2 for an simplification of this process for symmetric
matrices.
The full algorithm works for both symmetric and asym-

metric matrices, and for clustering along one or both
dimensions. We start by extracting the hierarchical clus-
tering tree for rows. In that tree, each leaf currently
represents a single row. We then add a copy of the col-
umn tree to each row leaf as a subtree. If the columns are
not clustered (as in the case with symmetric matrices), we
add one node per column to each row leaf instead. This
gives us our nested clustering tree. Each leaf in the cluster-
ing tree is then resolved to its associated row and column,
and replaced with the associated cell in the data matrix.
Finally, we trim redundant nodes from the tree. If we have
a symmetric correlation matrix, this involves removing
the cells along the diagonal and in the lower triangle. We
also remove unnecessary hierarchy during this step. For
example, inner nodes with a single child node are replaced
with that child such that A → B → C becomes A → C
instead. This helps reduce the space requirements to visu-
alize this hierarchy later. If we instead wanted to start with
the column tree, we first transpose the matrix and then
follow the same algorithm.
We applied this process to training data prepared for

predictive modeling of the gene targets of distal enhancers
in the K562 myelogenous leukemia human cell line.
The original data consists of 399 features derived from
chromatin immunoprecipitation followed by sequenc-
ing (ChIP-seq) and methylation assays generated by the
Encyclopedia of DNA Elements (ENCODE) project [50].
Specifically, we processed the correlation matrices con-
taining the top 16, 32, 64, 128, and 256 most important
variables, as well as the full dataset of 399 variables.
The processing of this data was implemented in R to
match the existing analysis being done. We started with
the hierarchical clustering results from the heatmap.2
function in the gplots package [51], transformed that out-
put with the dplyr and reshape2 packages [52, 53], and

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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Fig. 2 Unboxing Approach. Illustrates how the data matrix is “unboxed” and embedded into the hierarchical clustering of a symmetric matrix. The
process is similar for asymmetric matrices, except there are no redundant cells to remove. Top Left: A standard cluster heatmap of a correlation
matrix. TopMiddle: The cluster heatmap with non-redundant information highlighted. Top Right: The cluster heatmap without the redundant
information. Bottom Left: Hierarchical clustering of the variables (rows and columns) from the cluster heatmap, shown as a dendrogram. Bottom
Middle: Hierarchical clustering of values (individual cells) and variables, shown as a dendrogram. Bottom Right: Hierarchical clustering of values and
variables, shown as a treemap

exported the unified tree as a JSON file using the RJSO-
NIO package [54].
We also generated a synthetic asymmetric dataset using

the scikit-learn package in Python [55]. This allows us
to control the specific numbers of samples, features,
and clustering structure using an approach adapted from
Guyon [56] for the Neural Information Processing Sys-
tems 2003 variable selection benchmark. To create eval-
uation datasets that balance both structure and noise, we
used 4 informative features to generate both an 8 by 16
dataset (128 cells) and an 32 by 64 dataset (2048 cells). For
both synthetic datasets, we reordered the columns of the
data matrix using hierarchical clustering with complete
linkage and an Euclidean distance metric using the SciPy
Python package [57].We applied our transformation using
the NetworkX Python package [58] on the hierarchical
clustering of both rows and columns.
At the end of this process, we had datasets that were

both real and synthetic, symmetric and asymmetric, and
with 100 cells or more. We used these datasets in our
pair analytics development, practitioner interviews, and
Amazon Mechanical Turk user study.

Pair analytics
We used the pair analytics pattern [25] to iteratively
develop and evaluate alternative visualization techniques
to cluster heatmaps. This involved rapidly deploying pro-
totypes and collecting feedback from a computational
biologist at the Gladstone Institutes, who used the pro-
totypes on the transformed ENCODE datasets to gain
insights. This dataset was part of an active research
project at that time.
We started with hierarchical visualization techniques

capable of encoding the same data as a cluster heatmap.
We focused on those techniques that had existing imple-
mentations in R [59] or Cytoscape [29]—two of the
most used tools from our practitioner survey. We also
wanted a mix of juxtaposed techniques [18], space-filling
techniques, and node-link diagrams. We identified sev-
eral possible alternatives based on this criteria: clus-
ter heatmaps [1], gapmaps [11, 17], squarified treemaps
[22, 23], partitions/icicles, sunbursts [21], circle packing
[24], rectangular and circular dendrograms, rectangular
and circular Reingold-Tilford trees [19], and force-
directed trees [20].
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We implemented our prototypes in D3 v3.0 [60] using
the default implementations provided where possible. The
prototypes supported both symmetric and asymmetric
matrices, flexible dataset sizes, clustering along one or
both dimensions, and limited interactivity via mouseover
tooltips with row and column information for each node
and the ability to make any tooltip “sticky” to serve as an
annotation for important cells.
Based on the feedback from our domain expert and

the minimum “useful” dataset size from our practitioner
survey, we eliminated techniques that could not support
datasets with at least 100 cells within 500 by 500 pixels.
This would ensure that the visualization and question text
would fit on most computer screens without scrolling for
our large scale user study later. As a result, most rect-
angular/Cartesian layouts like Reingold-Tilford trees that
traditionally take up a large amount of horizontal space
were eliminated in favor of circular/polar/radial layouts
that are more compact for small datasets [16].
Surprisingly, this also eliminated the space-filling

treemap technique but not the space-filling circle packing
technique. We found that the default squarified treemap
algorithm could not consistently produce treemaps such
that each leaf was large enough to interact with. Indeed,
the algorithm is known to work poorly for balanced trees
and when each leaf has equal size [23]. The domain expert
also noted the importance of being able to determine
which node was the parent versus child in the node-link
diagrams. As a result, we used edge tapering to indicate
parent-child relationships in the node-link diagrams [37].
The source node is indicated by a thick edge that tapers
to a narrow point at the target node. We also made other
minor modifications based on feedback.
At the end of this pair analytics process, we identified

6 techniques for further user testing: cluster heatmap,
gapmap, radial dendrogram, force-directed tree, sunburst,
and circle packing. See Fig. 3 for examples of our imple-
mentations.

Practitioner survey
The practitioner survey consisted of 15 questions, and
was designed to take between 5 and 10 minutes to com-
plete. Respondents had to be 18 years or older and have
basic familiarity with cluster heatmaps to participate. We
included questions on the background and experience of
the practitioners, which visual elements they looked for
in cluster heatmaps, the languages and tools they used
to create and/or explore cluster heatmaps, and the types
and sizes of data they typically visualized using cluster
heatmaps.
We used an anonymous Google Form to collect

responses over a 1 week period. To disseminate the form,
we emailed the form to specific individuals and research
labs that we knew had experience with cluster heatmaps

and encouraged participants to forward the survey to
others with relevant experience.
We had 48 total participants. There were 3 responses

that did not pass the qualification checks and were fil-
tered out of our remaining analysis. This left a total of
45 participants with valid responses. The overwhelming
majority of practitioners held a doctorate degree, encoun-
tered heatmaps at least weekly, and had 5 years or more
experience with cluster heatmaps. Areas of study included
biology (e.g. cancer, developmental, molecular), genomics
and genetics, and interdisciplinary fields such as biochem-
istry, biophysics, and bioinformatics.
We manually cleaned the long-form responses. This

involved standardizing the text for the area of study, lan-
guages, tools, and dataset sizes entered by the users. For
example, entries like “Java TreeView” and “Java tree view”
were standardized to the text “Java TreeView” instead.
Both the original and cleaned responses are available at
git.io/vw0t3 online.

Practitioner interviews
We collected responses from 5 academic biostatisticians
at the Gladstone Institutes. Three had PhDs, one was
nearing completion of a PhD, and one had a Master’s
degree. Each participant had at least 5 years of experi-
ence using cluster heatmaps and primarily used the R
language.
Interviews were conducted on-site to maximize famil-

iarity. Participants were allowed to use their preferred web
browser. Three participants accepted a $20 honorarium
for an hour of their time, and two declined.
Participants evaluated 6 clustering techniques over the

course of an hour. For each technique, they answered 4
questions to familiarize themselves with a particular tech-
nique via static images of the technique applied to an 8 by
16 synthetic dataset. These preliminary questions had cor-
rect answers, and the users were told the correct answer
so that later answers were based on a better understanding
of the technique.
They were then asked for free-form answers to sub-

jective questions utilizing interactive plots of 8 by 16
and 32 by 64 synthetic datasets. These included “How
many distinct clusters do you see in this visualization?,”
“How would you summarize this dataset using this visu-
alization?,” “Identify an interesting cluster and describe
why it is interesting,” and “Did you find this visualiza-
tion easy to interpret?” They were also asked about per-
ceived advantages and disadvantages of each technique,
and to rank and describe their 3 favorite techniques at
the end.

Mechanical Turk user study
We created a single Amazon Mechanical Turk Human
Intelligence Task (HIT) with a maximum of 200 workers

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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Fig. 3Mechanical Turk Example. Shows example images presented to Amazon Mechanical Turk participants for question 15 (see Table 1 for details).
The question asked, “Which two of the highlighted elements are more closely clustered?” The correct answer is the pair K and S, since these clusters
connect at a lower depth in the tree than cluster C

to test the accuracy and efficiency of our visualization pro-
totypes. Amazon Mechanical Turk provides access to a
diverse pool of participants with a wide range of age, eth-
nicity, and socio-economic status [39, 61]. Each worker
was compensated $3.00 for completing the survey. Work-
ers were not compensated for incomplete surveys. The
maximum time limit was set to 20 minutes based on our
pilots, although this was too short for a small subset of
participants.
Participants were randomly redirected from Amazon

Mechanical Turk to one of our six technique-specific sur-
veys inQualtrics. A total of 284 participants fromAmazon
Mechanical Turk completed our intake survey to confirm
they were 18 years or older, but only 199 participants fin-
ished one of the technique-specific surveys. Between 32 to
34 users finished each technique survey. Examples of the
surveys as well as the original and cleaned responses are
at git.io/vw0t3 online.

Turk study design
We chose a between-subjects design such that each user
participated in a single technique-specific survey, and
users could not participate in multiple surveys. All of
the technique-specific surveys had the same structure,
questions, answers, order, and used the same datasets,
but had different static images specific to the technique.
All images had a maximum size of 500 by 500 pixels.
Each survey began with basic tree definitions, and a brief

description on how to interpret the visualization. This
information was accessible in every question by clicking a
“Toggle Help” button.
Each survey included three task sets, which were always

presented in the same order. Each task set included 2
training questions and 3 to 5 timed questions. Partici-
pants were notified before training began, and were asked
to focus on accuracy. If an incorrect answer was selected
during training, a hint would show up above the “Next”
button. Participants were also notified before the timing
questions began, and asked to focus on both accuracy and
efficiency for those questions. All questions were always
presented in the same order and used forced-choice input
via radio buttons or sliders. Participants had to select an
answer to move to the next question, but could select
“Unsure” if they were unable to answer a question.We col-
lected browser information, timing information, and click
information for all questions.
We began with questions that would help the partici-

pants understand how to interpret the visualization. The
first task set focused on basics, including interpreting
node color and the height of the tree. The second task
set focused on hierarchy, including interpreting node dis-
tance from the root and whether nodes were siblings.
Finally, the third task set focused on interpreting clusters.
See Fig. 3 for an example clustering question from our
study. Table 1 lists all of the questions asked for each task.
Using the group level task taxonomy for graphs, our tasks

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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Table 1 Mechanical Turk user study analysis

Type Task Number Question text Nodes Type Mean χ2 df p-value

Training 1 1 Is the highlighted cluster mostly positive or mostly negative? Clusters N/A

Training 1 2 What is the height of the tree? N/A N/A

Timed 1 3 Which of the highlighted elements has the highest value? Leaves Score 0.380 4.578 5 4.695 E-01

Timed 1 4 Is the highlighted cluster mostly positive or mostly negative? Clusters Score 0.661 14.650 5 1.197 E-02 ∗
Timed 1 5 What is the height of the tree? N/A Error 3.083 23.278 5 2.987 E-04 ∗∗∗
Training 2 6 Which of the highlighted elements is furthest away from the root? Leaves N/A

Training 2 7 Which of the highlighted elements are siblings? Leaves N/A

Timed 2 8 Which of the highlighted elements is furthest away from the root? Leaves Score 0.605 63.540 5 2.250 E-12 ∗∗∗
Timed 2 9 Which of the highlighted elements is furthest away from the root? Clusters Score 0.732 14.705 5 1.170 E-02 ∗
Timed 2 10 Which of the highlighted elements are siblings? Clusters Score 0.864 21.662 5 6.070 E-04 ∗∗∗
Training 3 11 Which two of the highlighted elements are more closely clustered? Clusters N/A

Training 3 12 How many visually distinct clusters do you see in this visualization? N/A N/A

Timed 3 13 Which two of the highlighted elements are more closely clustered? Siblings Score 0.738 29.499 5 1.850 E-05 ∗∗∗
Timed 3 14 Which two of the highlighted elements are more closely clustered? Leaves Score 0.275 12.775 5 2.558 E-02 ∗
Timed 3 15 Which two of the highlighted elements are more closely clustered? Clusters Score 0.352 9.539 5 8.941 E-02 ·
Timed 3 16 Which of the highlighted elements is least similar to its neighbors? Clusters Score 0.283 13.726 5 1.745 E-02 ∗
Timed 3 17 How many visually distinct clusters do you see in this visualization? N/A Value 8.794 31.138 5 8.796 E-06 ∗∗∗
Shows the type of question (training or timed), the task set, question number and text, the node type of the choices (leaf nodes, sibling nodes, or cluster nodes), the value
type (score, absolute error, or raw value), overall average, and results (χ2-test statistic, degrees of freedom, and p-value) from the per-question Kruskal-Wallis tests by
technique. See Figs. 4 and 5 for the distribution of values for these questions broken down by technique
Legend: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, . p ≤ 0.1

fall under group-only (e.g. questions 3, 4), group-node
(e.g. questions 8, 9, 10), and group-network tasks (e.g.
questions 13, 14, 15) [42].
The maximum time limit and fixed compensation

amount were the only mechanisms in place to ensure
efficient responses. We also used participants with the
“Masters” distinction, which requires those participants
to consistently complete work with a high degree of accu-
racy. We did not implement any other formal engagement
checks.

Turk study analysis
Incomplete surveys were not included in our analysis. We
used the pandas package in Python [62] to combine sur-
vey responses and calculate the score for every response.
We used the dplyr package in R for the remaining analysis
[52]. We discarded all training questions and filtered out
missing responses.
We filtered out spammers (whom want to complete the

survey as quickly as possible) by removing participants
with low-quality response patterns, responses completed
too quickly for the user to actually participate in the
task [61], and responses from participants that may have
left open the survey for extended periods of time. First,
we removed 3 participants that always selected the same
choices.We then plotted the distribution of time it took to
answer each question, and found the values ranged from

0 to 582 s. We conservatively chose to filter out a small
number of responses that fell outside the 0.01 and 0.99
quantiles, which removed responses that took less than
3.8 s and greater than 74.3 s. The average time after filter-
ing was 16 s per question. We did not run any additional
analysis on the timing data.
We tested for statistically significant differences

between techniques using ANOVA in R on logistic
regression models for binary dependent variables such
as score, and linear models for continuous dependent
variables such as absolute error and raw value. We also
ran a Kruskal-Wallis test since our data is not normally
distributed. We ran these tests per question by technique.
Both tests agreed on which questions had significant
differences between techniques, although the exact level
of significance differed slightly. These tests found sta-
tistically significant differences in the average scores of
questions 13, 14, and 16, and in the values of question
17. We report the results from the Kruskal-Wallis test in
Table 1.
Since the goal of task sets 1 and 2 was to familiarize the

participants with the technique, we focused the remain-
ing of our analysis on the clustering-related questions in
task set 3.We performed a post-hoc analysis using Tukey’s
HSD test for the scores of questions 13 through 16, and
the value of question 17. The results of this analysis are
provided in Table 2.
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Results
We conducted several qualitative and quantitative studies
to test whether hierarchical visualization techniques with-
out the rigid grid constraint of cluster heatmaps perform
better at clustering-related tasks. We discuss these results
next.

Practitioner survey
We conducted a survey of 45 practitioners in biology,
genetics, and other related fields to learn more about how
cluster heatmaps are used and determine the scope of
experiments that would be useful to these practitioners.
Visit git.io/vw0t3 for the survey results.

Survey results
We asked participants rate how often they viewed differ-
ent visual elements in cluster heatmaps and used sym-
metric versus asymmetric matrices on a scale of 1 (never)
to 5 (always). We then looked at the average response
value. Practitioners most frequently looked for blocks of
cells or bands of rows and/or columns in the heatmap
(avg = 4.6, 4.4 respectively). Practitioners also frequently
looked for clusters in the dendrograms in the margins
(avg = 4.1). Practitioners looked at the overview pro-
vided by the dendrogram and heatmap with less fre-
quency (avg = 3.7, 3.8 respectively). Most practitioners
did not frequently look at the values of individual cells
in the heatmap (avg = 2.6). They visualized both sym-
metric and asymmetric matrices with similar frequency
(avg = 3.7, 3.3).
We also looked at how many responses reported using

different tools. The practitioners primarily used R (90%)
and Cytoscape (80%) to generate cluster heatmaps. The
dataset sizes reported varied widely. The median sizes
ranged from approximately 100 to 250,000 cells (10 by 10
or 100 by 1000), but the variance was large. Some practi-
tioners worked with datasets having 30,000 rows and/or
columns.

Survey conclusions
We used the survey to make the simplifications necessary
for a large scale non-expert user study while obtaining
results that would still apply to expert practitioners.
Our first observation is that most practitioners are

looking for adjacent blocks of rows and/or columns,
confirming the importance of proximity in interpret-
ing the hierarchical clustering results. Most practitioners
also frequently reference the dendrograms of the cluster
heatmap—further motivating our focus on hierarchical
visualization techniques that are able to show the same
information without the strict grid constraints of cluster
heatmaps.
Additionally, most practitioners use R packages to gen-

erate static cluster heatmaps. This motivates our decision

not to develop prototypes with robust interactivity until
we have identified the most promising alternative tech-
niques. We also decided to focus on those techniques
available in the tools frequently used by practitioners to
increase the potential for wide-scale adoption. Finally, we
conclude that our datasets must have at least 100 cells or
more to be useful for practitioners. However, the matrices
may be either symmetric or asymmetric.

Practitioner interviews
After conducting the practitioner survey, we used pair
analytics to develop several visualization alternatives to
cluster heatmaps. We conducted 1 h interviews with 5
academic biostatisticians to pilot these alternatives, and
used their feedback to inform the design of our Amazon
Mechanical Turk study.

Interview results
Participants were shown several synthetic asymmetric
matrices and asked their preferences. They preferred tra-
ditional cluster heatmaps as well as gapmaps, with no
clear third preference. Gapmaps were preferred by all
but one participant, who found the spacing distracting
when quickly scanning for patterns and anticipated the
gaps would interfere with the metadata commonly plotted
along the axes.
Other alternates were heavily criticized for losing the

row structure of asymmetric matrices. This structure is
especially important to determine which cells belong to
the same sample. Practitioners found this loss of infor-
mation so disorienting that it outweighed any advantages
they identified in other techniques. Non-heatmaps were
also criticized for their “architectural” or “design” quali-
ties, related to a preference against visualizations that are
popular but are often perceived as overly complex (e.g. the
“ridiculogram” [63, 64]).
Rather than refer to the hierarchy illustrated by an unfa-

miliar visualization technique, practitioners were prone
to use color to infer the hierarchy. One practitioner also
pointed out the poor use of white as a background color
in our prototypes.
Finally, practitioners also noted that cluster heatmaps

often encode the linkage distance between clusters by
varying the level height in the dendrograms. Our proto-
type instead used equal height for each level.

Interview conclusions
This study confirmed a heavy practitioner preference
towards familiar techniques, namely cluster heatmaps and
gapmaps. While alternate techniques were seen as help-
ful for certain tasks, their advantages did not outweigh
their unfamiliarity and the loss of row/column informa-
tion. Based on these results, we proceeded with a larger
scale non-expert user study to quantitatively compare

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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these techniques. We made several minor modifications
to our prototypes including the use of a black background.
However, we were unable to encode linkage distance

between clusters for every alternative technique. The
interviewed practitioners also only evaluated these tech-
niques for asymmetric matrices—which was their primary
use case. Correlation matrices are symmetric and rely less
on row and column information, and the loss of this con-
text may be less of an issue. We revisit these issues in the
“Discussion” section.

Mechanical Turk user study
We conducted an Amazon Mechanical Turk user study
with approximately 200 participants to evaluate how well
different visualization techniques perform at clustering-
related tasks. See Table 1 for a summary of the questions.
Visit git.io/vw0t3 for the raw results.

Turk study results
We tested for statistically significant differences in accu-
racy across techniques. See the “Methods” section for
details on our analysis, and Tables 1 and 2 for the results of
this analysis. We found statistically significant differences
in the average scores for clustering-related questions.
These results are illustrated in Fig. 4.
Question 13 and 14 asked participants to estimate which

pair of nodes were more closely clustered. Question 13
included two leaf nodes that were siblings, and question
14 did not. Our analysis showed that cluster heatmaps
performed statistically significantly worse thanmost other
techniques in question 13. The results were mixed for
question 14; the only statistically significant finding was
that cluster heatmaps performed better than radial den-
drograms.

Question 15 asked users to estimate which pair of inner
cluster nodes were more closely clustered. The differences
were barely statistically significant, and no significance
was found in our post-hoc analysis. Question 16 asked
participants to determine which pair of nodes were least
similar to their neighbors. Gapmaps outperform radial
dendrograms, but none of the other differences were sta-
tistically significant.
We also compared whether the scores (including error

bars) for questions 13 through 16 were better than ran-
dom. Participants could choose between four values for
those questions, but one of those values was an “unsure”
option. Removing the “unsure” option from consideration,
random performance is 1 out of 3. For question 13, the
performance was better than random for all techniques.
For question 14, performance was only better than ran-
dom for cluster heatmap, with gapmap and circle packing
falling on the threshold. For question 15, the performance
of both cluster heatmap and gapmap were better than
random. For question 16, only gapmap outperformed ran-
dom, but force directed tree and cluster heatmap fall on
the threshold.
Finally, question 17 asked participants to estimate the

number of clusters from the visualization. This is a subjec-
tive question—there is no single correct answer.We found
that cluster heatmaps produced significantly lower esti-
mates on average compared to all other techniques except
for sunbursts. See Fig. 5 for details.

Turk study conclusions
No single technique consistently ranked best at all
clustering-related tasks. Cluster heatmaps was among
the worst performers for question 13, among the best
performers on questions 14 and 15, and had mediocre

Q13 − Close Siblings Q14 − Close Leaves Q15 − Close Clusters Q16 − Least Similar

Sunburst

Radial Dendrogram

Gapmap

Force Directed Tree

Cluster Heatmap

Circle Packing

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fig. 4Mechanical Turk Average Scores. Shows the distribution of scores for clustering-related questions. The circle and black bar indicate the
average score and standard error for each technique. The dotted line indicates random performance (not including the “Unsure” option). Our
analysis shows that cluster heatmaps perform worse on average on question 13 than sunbursts, radial dendrograms, and force directed trees.
Cluster heatmaps perform better on average than radial dendrograms in question 14. Question 15 did not have statistically significant differences in
our post-hoc analysis. Gapmap performed better than radial dendrograms in question 16. Performance is worse than random for certain techniques
in questions 14, 15, and 16—indicating their difficulty. However, there is at least one technique for each of these questions where the performance
is better than random. See Tables 1 and 2 for more details

https://github.com/usfvgl/unboxing-cluster-heatmaps/
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Q17 − Visual Clusters

Sunburst

Radial Dendrogram

Gapmap

Force Directed Tree

Cluster Heatmap

Circle Packing

2 8 14 20

Fig. 5Mechanical Turk Average Clusters. Shows the distribution of
responses to question 17, “How many visually distinct clusters do you
see in this visualization?” The circle and black bar indicate the mean
estimate and standard error for each technique. Our analysis shows
that cluster heatmaps and sunbursts produce lower estimates on
average compared to the other techniques. See Tables 1 and 2 for
more details

performance for question 16. Radial dendrograms and
sunbursts are among the best performers on question 13,
but are among the worst performers on questions 14–16.
Force directed trees did moderately well on questions 13
and 16, but poorly on questions 14 and 15. The perfor-
mance of circle packing was mediocre across all clustering
questions.
The results show consistently high performance for

gapmaps, even if not always top ranked. Gapmaps outper-
form cluster heatmaps on question 13, have performance
similar to cluster heatmaps on questions 14 and 15, and
are pulling ahead of cluster heatmaps on question 16.
Given that this technique can also support dense datasets
and were liked by our practitioners, gapmaps have signifi-
cant promise as an alternative to cluster heatmaps.
A large caveat, however, is how poor the performance

is overall. Only question 13 outperformed random chance
for all techniques. Questions 14 through 16 only had 1 or
2 techniques that clearly outperformed random chance—
indicating the difficulty of these questions for novice
users. It would be interesting to compare these findings
with a more expert audience that could achieve higher
scores.

Discussion
Involving practitioners at multiple stages in this project
was critical. Thanks to feedback we received from prac-
titioners via the survey, the pair analytics development
pattern, and the one-on-one interviews, we were able
to identify several cases where our assumptions did not
necessarily hold.
For example, we anticipated the loss of row and/or

column labels would be an issue for some techniques.
However, we did not anticipate how important the con-
text provided by the grid was for asymmetric matrices. For

example, cells that belong to the same row often belong
to the same sample. Depending on the dimensions being
clustered, cells from the same row may become indistin-
guishable from those belonging to different rows in many
of our alternatives. This is not an issue when visualiz-
ing symmetric correlation matrices where this context is
not as informative, but symmetric matrices were a smaller
subset of many practitioner’s common use cases. Given
this, it is possible that the techniques that did not include
this context may perform better in studies focused on
symmetric matrices.
Symmetric matrices have other important advantages.

Since half the cells are redundant, alternative techniques
can utilize this space to better support larger datasets.
Also, these matrices need only be clustered along a single
dimension. This reduces the amount of nesting required
to illustrate the hierarchy.
There are many other research directions to explore.

There is still room for optimization of our “unboxing”
approach to reduce unnecessary levels of nesting. This is
especially important when both the rows and columns are
clustered, which is common for asymmetric matrices.
We focused on techniques practitioners could immedi-

ately adopt via existing tools—but customized implemen-
tations and novel techniques may produce better results.
We also used color to encode the value from the cell
across all techniques to keep the encoding consistent
with that of cluster heatmaps. However, area (commonly
used in space-filling techniques) is more effective for
encoding quantitative values [65]. Encoding linkage dis-
tance in these techniques is another potential direction of
research.
Interactivity is critical to explore further as well,

although it is difficult to user test interactivity on a large
scale. Even a cluster heatmap is unable to display the entire
dataset at a certain size. This makes critical the ability to
search, sort, filter, and brush. In this interactive setting,
the ease of navigation with rectangular layouts may begin
to outweigh the compactness of some circular layouts.
Given these caveats and the results of our qualitative

and quantitative studies, gapmaps are a promising alter-
native to cluster heatmaps for asymmetric matrices. Sym-
metric matrices may be suited to additional alternative
techniques and need more study.

Conclusions
Cluster heatmaps have become a staple of biological and
biomedical research since their introduction in the field
over 20 years ago [1], and are clearly a valuable visual-
ization technique for these practitioners. However, while
cluster heatmaps have high density, they suffer from issues
caused by their rigid grid layout [2, 11].
Motivated by our own use and reinforced by a series

of qualitative and quantitative user studies, we used
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pair analytics with a computational biologist to develop
alternative visualization techniques based on “unboxing”
heatmap cells and embedding them directly into hierar-
chical clustering results. By relaxing the grid constraint
of cluster heatmaps, our unboxing approach aimed to
improve performance of tasks where practitioners com-
monly shift their attention back and forth between the
cells and the hierarchy. Such tasks are common for many,
but not all, practitioners.
Our study involved practitioners from biology and related

fields at multiple stages in our development and evalua-
tion process. We surveyed 45 practitioners to learn how
they use cluster heatmaps, and evaluated our alternatives
via hour-long interviews with 5 practitioners and an Ama-
zon Mechanical Turk user study with 200 participants.
While more study is needed, we found multiple sta-

tistically significant differences in average performance
between several techniques. No single technique con-
sistently ranked best at all clustering-related tasks. For
example, radial dendrograms, force directed trees, and
sunbursts were among the best performers at identify-
ing closely clustered siblings, but performed poorly for
longer-distance relationships. The performance of circle
packing was mediocre for all clustering tasks. However,
gapmaps either outperformed or performed as well as
cluster heatmaps for clustering-related tasks.
Integrating these non-expert large-scale results with

our smaller-scale expert interviews, we conclude that
gapmaps are a promising alternative to cluster heatmaps
for asymmetric matrices, while other hierarchical tech-
niques may not improve performance enough to justify
their adoption by practitioners for this use case. How-
ever, more exploration is needed for the specific case of
symmetric matrices.
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