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Abstract: Due to increasing pressures on water resources, there is a need to monitor regional water
resource availability in a spatially and temporally explicit manner. However, for many parts of the
world, there is insufficient data to quantify stream flow or ground water infiltration rates. We present
the results of a pixel-based water balance formulation to partition rainfall into evapotranspiration,
surface water runoff and potential ground water infiltration. The method leverages remote sensing
derived estimates of precipitation, evapotranspiration, soil moisture, Leaf Area Index, and a single
F coefficient to distinguish between runoff and storage changes. The study produced significant
correlations between the remote sensing method and field based measurements of river flow in
two Vietnamese river basins. For the Ca basin, we found R2 values ranging from 0.88–0.97 and
Nash–Sutcliffe efficiency (NSE) values varying between 0.44–0.88. The R2 for the Red River varied
between 0.87–0.93 and NSE values between 0.61 and 0.79. Based on these findings, we conclude that
the method allows for a fast and cost-effective way to map water resource availability in basins with
no gauges or monitoring infrastructure, without the need for application of sophisticated hydrological
models or resource-intensive data.

Keywords: hydrological model; ungauged river basin; groundwater; surface flow; Vietnam; Ca basin;
Red River basin

1. Introduction

Due to economic and demographic development pressures, water is becoming an increasingly
valuable resource [1,2]. Access to clean and affordable water is vital for drinking, sanitation, and
especially food production (the dominant use of fresh water). Insight into available water resources
under climatic change and intensified agricultural production systems is crucial for effective water
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allocation. Intensified agricultural production systems have high water requirements, whereas climate
change presents a compounding threat to fresh water for human use (including agriculture, drinking
and industrial), due to an increased magnitude and a higher frequency of floods and droughts [3].
While human water use is often a key priority for water resource allocation, important ecosystem
services supplied by water should also not be ignored.

In countries where the water resources are under the most pressure, data on water availability and
usage is often scarce [4]. Therefore, open access global-scale water-related data products derived from
remote sensing have found their way into many studies in the field of hydrology to investigate water
resource availability [5–7]. In addition, frameworks to support stakeholders in planning water resources,
such as Water Accounting+ (WA+), use these data products to estimate spatio-temporal distribution
of water resources [8,9]. Satellite-derived data products on precipitation, evapotranspiration, soil
moisture and Leaf Area Index have a strong physical foundation, are well-tested and have a good
overall accuracy [10]. However, information on river flow and groundwater storage changes are also
required in order to calculate all terms of the water balance. These data are often difficult to acquire,
and, when available, often are of a poor quality, contain gaps or have errors. Complex hydrology
models are frequently applied to fill these gaps, but these models also require a large amount of
physical data that is not readily available [11]. Although this has increasingly prompted the scientific
community to use satellite-derived data as model input, an established, fully satellite-based approach
for pixel-based evaluation of the water balance is not yet available.

In this manuscript, we present a formulation to estimate surface runoff and storage changes
in ungauged basins. This innovative method solely relies on freely available global remote sensing
products. The demonstrated approach can have a wide range of applications, as it does not require
the implementation of complex hydrology models or a large number of physical parameters. As such,
river flow and storage changes can be calculated without ancillary data. The work is presented in the
context of the trans-boundary Ca River basin in Vietnam. Like many other river basins in southeast
Asia [12,13], there are many water related problems in the Ca River basin due to water shortage,
pollution, and competing interests. In addition to this, the Ca River basin has recently experienced
a drought and salt water intrusion, making it the focal point for a USAID funded study on alternative
water resource management strategies. However, data scarcity hampers a comprehensive insight into
available water resources. As such, we selected the Ca basin as an example to test the applicability of
our streamflow remote sensing model.

2. Materials and Methods

2.1. Study Area

The Ca River Basin (Figure 1) is located in the North-Central region of Vietnam. The river
basin covers an area of approximately 27,000 km2 (Figure 1). About 65% of the total territory of the
trans-boundary river system is located in Vietnam and the rest is in the Lao People’s Democratic
Republic (LPDR). The upstream northwestern part of the basin consists of highlands with elevations
ranging from 1000–2600 m, located in the Huaphahn and Xiangkhouang of the LPDR. The eastern part
of the basin covers part of the Vietnamese provinces of Nghe An and Ha Tinh. More then four million
people reside in the basin and about 20% of the total area is used for agricultural purposes. Three large
irrigation systems transport water from the Ca basin to smaller basins that are hydrologically not part
of the Ca basin. Five larger dams were recently constructed in the basin with a gross capacity ranging
between 97.8 and 1834.6 mm3. Monthly river flow data was collected for six stations for the period
2000–2010.
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Figure 1. The Ca river basin (light blue) and sub-basins in the Nghe An and Ha Tinh province
(other colors). The district boundaries are shown in red with provincial borders in black. Dams and
hydrological infrastructure are also shown.

2.2. Climatic Setting

Vietnam has a tropical monsoon type climate that is influenced by two distinct rainfall regimes [14].
Summers are dominated by the the South Asian monsoon, which begins in early May in the southern
part of Vietnam and moves northward until late July–August. Precipitation amounts in the rainy
season, which starts in May and ends in October are related to the migration of the monsoon over the
continent. Due to Vietnam’s geographic stretch from North to South, months with peak amounts of
precipitation vary between provinces [15]. Winters are dominated by the East Asian monsoon. This
monsoon is cold and dry and mainly impacts the North and Central Areas of Vietnam [15]. The
Northern part of Vietnam receives the most precipitation in the summer, whereas the central part is
characterized by a fall regime. Inter-annual variations in precipitation are linked with changes in the
El Nino–South Oscillation [16,17].

2.3. Input Products

In this study, we used remote sensing derived data on precipitation (0.05◦), evapotranspiration
(0.0025◦) and soil moisture (0.005◦). Furthermore, data on canopy interception were derived. All data
have the monthly time resolution. These data were used in water balance calculations.
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2.3.1. Precipitation

Four gridded precipitation products were compared with data from rain gauges to validate the
consistency between ground measurements and the precipitation products. A total of 59 rainfall
gauges were included in the analysis. Physical data records were obtained from [18] and the National
Oceanic and Atmospheric Administration’s (NOAA’s) National Climatic Data Center (NCDC; [19]).
Due to the limited coverage of measurement stations within the Ca basin, the extent of the study area
was widened to increase the number of points at varying elevations. Four different global monthly
precipitation products were compared with the in situ measurements. The products were obtained
from different sources for the period 2001–2010, the temporal coverage of the in situ data. Products
from the Tropical Rainfall Measurement Mission (TRMM) and the Climate Hazards Group InfraRed
Precipitation Station (CHIRPS), the Climate Prediction Center Morphing Technique (CMORPH) and
the Climate Research Unit at the University of East Anglia (CRU; ts 3.22) were used. Table 1 provides
an overview of the different products and institutes involved in creating these data.

Table 1. Institutional rainfall products.

Abbreviation Product Institute

TRMM Tropical Rainfall Measurement Mission NASA
CHIRPS Climate Hazards Group InfraRed Precipitation Station Climate Hazards Group

CMORPH Climate Prediction Center Morphing Technique NOAA /CPC
CRU Climate Research Unit University of East Anglia

The rainfall products have different origins and apply various methodologies to estimate the
monthly precipitation (Table 2). The TRMM (3B43) data is constructed from a C-band radar and
passive microwave sensors designed to obtain quantitative information on rainfall including infrared
measurements from both TRMM sensors as well as from geostationary meteorological satellites
(GMS). TRMM has a resolution of 0.25◦. CHIRPS has the highest spatial resolution (0.05◦) and is
an ensemble product based on various interpolation schemes using a variety of sources such as
monthly precipitation climatology (CHPClim) satellite measurements, atmospheric model rainfall
fields (CFSv2) and surface measurements [20]. CMORPH has similar inputs as TRMM, but uses the
motion vector derived from stationary IR satellite data to interpolate precipitation at times that passive
microwave data is not available [21]. CRU is constructed from surface station observation and has
a resolution of 0.5◦ [22].

Table 2. Rainfall products methods and spatial resolutions. See Table 1 for details.

Abbreviation Method Resolution

TRMM (3B43) Microwave (TMI,SSMI,AMSU and AMSR) 0.25◦Infrared (GMS), Gauge data

CHIRPS CHPClim,Infrared & Microwave (TRMM (3B43) 0.05◦CFSv2. Gauge data

CMORPH

Microwave estimates (DMSP F-13, 1415 (SSM/I)

0.25◦NOAA-15, 16, 17 & 18
(AMSU-B), AMSR-E, and TRMM TMI
IR motion vectors, Gauge data

CRU Surface station observations 0.50◦

Figure 2 shows the R2 (top) and Root Mean Square Error (RMSE) (bottom) for all stations using
the TRMM, CHIRPS, CMORPH and CRU datasets (from left to right). A generally good agreement
was found, considering common problems in terms of scale mismatch between single point rain gauge
measurements and satellite derived integrated rainfall measurements (e.g., [23,24]). TRMM performs
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best in terms of R2 and RMSE, followed by CHIRPS and CMORPH. The latter performs relatively well
in lowlands, but has poor performance in the highlands. The performance of CRU is generally poor.
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Figure 2. Comparison of uncertainty across rainfall product types and R2 values versus root mean
square error (RMSE). The top row illustrates the determination coefficient for the monthly estimated
rainfall from the TRMM, CHIRPS, CMORPH and CRU (see Tables 1 and 2 for details) and the in-situ
measurements. The bottom row illustrates the amount of error (expressed as RMSE) between the rain
gauges and remote sensing derived products. Each dot represents a rain gauge. The colors of the dots
indicate the performance and are linked to the color-scales on the right. The analyses were done for the
period 2001–2010.

The TRMM and CHIRPS data were combined into an ensemble product, as TRMM shows the best
performance with a relatively coarse spatial resolution while CHIRPS shows acceptable performance
with a higher spatial resolution. The ensemble product was created by downscaling the TRMM to a
0.05◦ resolution using the pixel distribution of CHIRPS. The total precipitation in one TRMM pixel
was distributed over a higher density grid using the CHIRPS data of that same area. Finally, the
downscaled TRMM grid and CHIRPS data were averaged as the combined product was found to
give more consistent results. A comparison between the monthly averaged measured and estimated
precipitation using the ensemble grid is shown in Figure 3. It can be seen that there is a good agreement
between the measured and estimated total monthly precipitation(R2 = 0.98, p < 0.001). While satellite
derived precipitation products have limitations in terms of accuracy and resolution for extreme rainfall
events [25], it has been demonstrated that they produce reliable data on longer spatio-temporal scales.
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ensemble product (integration of TRMM and CHIRPS) based on 59 stations for the period 2000–2010.
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2.3.2. Evapotranspiration

Evapotranspiration (refered to as ET hereafter) is an important process in the hydrological cycle,
as it accounts for a large portion of the total water outflow from the basin. ET includes evaporation from
the soil, water bodies, vegetated surfaces and transpiration from plants. In contrast to precipitation,
it is difficult to obtain data on ET. Whereas rain gauges and satellite derived precipitation products
are commonly available, data on ET is often scarce, while its spatial and temporal variability can be
large. However, methods to estimate ET from space born data using the surface energy balance haven
been improved in the last decades, resulting in global scale data products. A review of [10] states that
remote sensing techniques offer spatially dense estimates of the actual ET with an overall accuracy
estimated at 95%.

The operational Simplified Surface Energy Balance (SSEBop) was used in this study. SSEBop is a global
application of the Simplified Surface Energy Balance approach (SSEB [26]), which was mainly focused
on small scale irrigation systems. The global scale approach contains a new parametrization using
predefined boundary conditions for hot and cold reference conditions on a pixel scale [26]. SSEBop was
successfully tested in in the semi-arid Plains using Landsat data and lysimeteric observations [27], and
was tested recently against 20 flux towers scattered across USA [28]. SSEBop performed well in water
balance analyses of the Nile [5] and Red River basins [6].

Since there were no in situ measurements available to validate SSEBop, the SSEBop product was
linked to precipitation and reference evaporation from the Global Land Data Assimilation System
(GLDAS) product in the Budyko curve in order to evaluate the performance. The ratio of ET to P was
plotted as function of the ratio of reference evaporation (ETp) to P, also known as the aridity index or
Budyko curve [29]. Equation (1) shows the original formulation of Budyko, where φ is defined as the
aridity index ETp/P. ETp was obtained from GLDAS [30]. Actual ET retrieved from SSEBop should be
in line with the theoretical work of Budyko

Ea

Ep
=
[
φtanh(

1
φ
)(1 − exp−φ

]0.5
. (1)

The relation among actual ET, reference evaporation and rainfall of the dataseries is shown in
Figure 4, where a higher density of points is represented by a higher intensity color. It can be seen
that the highest density of points is located close to the the original formulation [29,31] or in the ±10%
range, indicated with dashed lines. The results show that the SEBBop product gives estimates on
actual ET that are in close agreement with theory.
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Figure 4. The Budyko curve shows the relationship among evaporation, reference evaporation and
precipitation (2003–2013). The middle Budyko line shows the original formulation [29,31], with the
upper and lower lines representing a±10% range. The blue line indicates the water limit, the red line
the energy limit. The color-shaded point cloud indicates the density of points
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2.4. Interception

Rainfall interception by canopy cover can be an important process in the water balance, as
a portion of the intercepted water is directly evaporated and can not be used by surface runoff and
vegetation for transpiration. The Leaf Area Index (LAI) was calculated from the Enhanced Vegetation
Index (EVI) to estimate ground area covered by vegetation [32].

The amount of intercepted rainfall (I; in mm) was calculated by Equation (2) [33,34] using the LAI
(Equation (3)), P (mm·day−1) and an empirical coefficient (a; mm·day−1) representing the maximum
water film that can be stored on a leaf. The canopy cover is determined from the Normalized Difference
Vegetation Index (NDVI) using Equation (4). For empirical parameter a, we assumed a = 1 (mm·day−1).
The NDVImax and NDVImin represent the maximum and minimum NDVI, respectively. Daily rainfall
was calculated from the remote-sensing derived P and the number of rainy days each month. The latter
was calculated from the meteorological data.

I = a × LAI ×
(

1 − 1

1 + 1 + cc × p
a × LAI

)
, (2)

LAI = (3.618 × EVI − 0.118) > 0, (3)

cc = 1 −
(

NDVImax − NDVI
NDVImax − NDVImin

)c

. (4)

2.4.1. Soil Water and Groundwater

Groundwater plays an important role in catchment hydrology. Despite advances in deriving
groundwater estimations from gravimetric measurements [35,36], it remains difficult to estimate
catchment scale groundwater quantities. However, the amount of water stored in the upper layer of
the soil can be estimated by means of remote sensing [37]. The Advanced Scatterometer (ASCAT) is
an active microwave remote sensing instrument designed to monitor winds over the oceans, but also
used for soil moisture purposes [38–40]. In order to obtain information of the root-zone rather than
only the top-layer, we use the the Soil Water Index (SWI; m3·m−3; [41]). This product provides soil
moisture estimates in relative units ranging between wilting level and full saturation. The product
applies an exponential filter to estimate soil moisture in the deeper layers [38,42]. The product provides
a series of 10 daily soil moisture estimates using a different time integration for each image, where
longer time windows provide better estimates for deeper soil layers [43]. To gain insight into water
resources in the soil layer, data products derived from a time length of 60 days were aggregated into
monthly maps. The monthly soil water amount (swm; m) was estimated from the maximum available
soil moisture, and SWI (Equation (5)). swmax was calculated from the depth of the soil layer (Zr; m) and
the available water content (WCavail ; m3·m−3), which represents the available water content between
field capacity and wilting point. Maps of WCavail content were obtained from [44], who applied
pedotransfer functions to derive soil hydraulic properties from the freely available global SoilGrids
1 km dataset ([45])

swm = SWI × swmax, (5)

swmax = Zr × WCavail . (6)

Whereas the rainfall was available with 5 km pixels, ET and LAI were available at 30 m Landsat
pixel scale. Such level of detail could also be worked out for soil moisture mapping (e.g., [46]), and
rainfall downscaling techniques are also under development (e.g., [47]). The latter implies that the
equations presented could be used to predict an unprecedented high resolution runoff processes.
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2.5. The Water Balance Model

The method presented relies on the water balance (Equation (7)) using the conservation of mass
principles in a soil column with defined depth. In the absence of additional supplies from river
inflow, flooding and irrigation, monthly precipitation (Pm) equals the monthly runoff (Rm; mm),
evapotranspiration (ETm; mm) and storage changes (∆Sm; mm). Monthly storage changes were calculated
as Sm − Sm−1

Pm = Rm + ETm + ∆Sm. (7)

The storage component was separated into two compartments (Equation (8)), the water available
in the root zone, referred to as the soil water component SWm and a groundwater component GWm.
The storage change was calculated as the sum of the two.

∆Sm = ∆GWm + ∆SWm. (8)

The pixel-wise surface runoff (Rm; mm) was calculated with Equation (9) ([48,49]). It contains
two components: the monthly flux of water incident on the soil surface including precipitation and
interception (Im; mm) (Pm − Im) and root zone moisture deficit (SWmax − SWm; mm). The maximum
available soil moisture is represented by SWmax (mm)

Rm =
(Pm − Im)2

Pm − Im + swmax − swm
. (9)

While Rm might give accurate results on a small scale, it is not suitable for application in larger
areas as no storage component or retention time is included in the formula. Therefore, we attribute a
fraction of the total runoff to storage changes, as shown in Equation (10), where Equations (7) and (9)
are combined

Pm − ETm = F × (Pm − Im)2

Pm − Im + swmax − sw
+ (1 − F) × ∆Sm. (10)

Equation (9) and the left term of Equation (10) can be solved by remote sensing data.
However, storage changes include changes in GWm and SWm. Soil moisture can be estimated from
microwave or thermal infrared measurements [37]. As SWm can be estimated from soil moisture
maps, Equation (11) was used to close the water balance. Here, ∆GWm is calculated from the runoff
(Equation (12)), assuming that a portion of the total runoff is comprised of slow groundwater runoff.
We added factor F to the equation, which was used as a calibration parameter to make sure the
amount of P-ET matches the runoff and storage changes on a basin scale over the whole period for
the catchment. As ∆S should be expected to be 0 over the whole period, F is in fact used to scale the
runoff with P-ET, while changes in storage should result in a better temporal alignment. Hence, it can
be concluded that F can be calibrated without ancillary data, as all parameters in Equation (11) are
deduced from remote sensing derived products

Pm − ETm = F × (Pm − Im)2

Pm − Im + swmax − sw
+ ∆SWm + ∆GWm, (11)

where
∆GWm = (1 − F) ∗ (Rm − Rm−1). (12)

The monthly river flow was calculated for different gauging stations in the basin. The monthly
flow was calculated as the sum of the upstream area using the direct runoff (Rm) and storage changes
∆Sm (Equation (13)). Negative changes in ∆Sm result in higher river levels, whereas positive changes
result in lower direct runoff

Qm = ∑ Rm − ∆Sm. (13)
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3. Results

The presented method produces significant and operational results for water resource managers,
as you can see in Figure 5. An internal calibration of the water balance was created by calculating
Rm = P − ET for all soil depths (Zr; Equation (6)) between 0 and 2 m (Equation (11)) for the whole
period, resulting in no need for ground data. This internal calibration method is dynamic as seen
in Figure 5 that shows F for a range of Zr, including the R2 and Nash–Sutcliffe efficiency measure
(NSE) [50] for monthly Pm − ETm versus monthly Rm + ∆Sm and measured versus estimated river
flow. In this example, we used the Dua gauging stations, as this station has the best match in terms
of multiyear water balance, while it covers a large portion of the basin (see Figure 1). NSE and R2

values for simulated and measured river flow were calculated by comparison of the monthly median
flow quantities. It was found that F values vary between 0.44 and 1 and that R2 for Pm − ETm and
Rm + ∆Sm is high (>0.94) for all depths. The NSE is rather low for smaller depths but increases for
greater depths. Both R2 and NSE show an optimum depth (m) around 0.4–0.5 m for river discharge for
the Ca sub-basin.
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F

Figure 5. The Nash–Sutcliffe Efficiency (NSE) and R2 comparing precipitation (Pm) minus
evapotranspiration (ETm) versus runoff (Rm) and storage changes (∆Sm) (dashed lines; left axis).
The NSE and R2 comparing estimated (Q̃est) and observed discharge (Q̃obs) (dotted line; left axis). The
F is shown on the right axis, and the depth of the soil layer (zr) on the horizontal axis.

Distributions in monthly simulated river flow were compared with the measured ones using a
depth of 0.5 m. Figure 6 shows the results for six gauging stations in the basin, where the R2 and
NSE were calculated from the medians. It can be seen that there is good overall performance in
terms of temporal distribution as well as quantity. The R2 values range from 0.88 for Hoa Duyet and
0.97 for Dua and Nghia Khanh and were all found to be significant (p < 0.001). The lowest NSE was
found for Hoa Duyet (0.44) and the highest (0.88) for Dua and Nghia Khanh. However, the estimated
upper quantiles are lower than the measured ones. For Muong Xen and Quy Chau, there is a general
underestimation of flow quantity.
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Figure 6. Comparison of modeled versus measured results. The blue lines represent the mean and
inter-quintile ranges of the model, the boxplots represent the distribution of the measured values. The
R2 and Nash–Sutcliffe Efficiency (NSE) values represent the agreement between the means.

To test whether the model can be applied universally, it was also applied to the Red River basin
in China and Vietnam. Data from the study of Simons et al. [6] was used to run the model, and
more details can be found in their study. Figure 7 shows that an optimum depth of 0.8 m was found
with an F value of 0.68 (top right corner) using the most downstream station (Son Tay) to close the
multi-year water balance. The results were compared with six river flow stations (left and right images).
Overall, there is good agreement between simulated and measured river flows. The R2 varies between
0.87 for Vu Quang and 0.93 for Yen Bai and Son Tay. The lowest NSE value was found for Vu Quang
(0.61), and the highest for Son Tay (0.79). Systematic differences between measured and estimated Q
could at least partly be ascribed to factors such as reservoir operations and interbasin groundwater
flows, as discussed in detail by Simons et al. [6].
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Figure 7. Map of dam locations and gauging stations (middle). The F, NSE and R2 comparing P-ET
(precipitation–evapotranspiration) versus R + ∆S, Qobs versus Qest and F (top right box). Results of
the model in comparison with the measured values for six gauging stations in the Red River basin are
shown in the left and right panels.
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4. Discussion

We have shown that our formulation can be used to quickly solve all terms in the monthly
water balance using only data retrieved from remote sensing, and that the model calibrates itself.
On the monthly scale, the performance of this satellite-based approach rivals that of more complex
and data-intensive hydrological models. NSE values on the order of 0.6–0.8, such as those observed
in this study, are generally considered high in the context of hydrological model applications [51].
The application of a pixel-based approach, integrating various sources of open-access satellite data to
evaluate the full water balance, is rather unique. Whereas many models such as Soil and Water
Assessment Tool (SWAT) [52], Spatial Tools for River Basins and Environment and Analysis of
Management Options (STREAM) [53,54], Spatial Processes in Hydrology (SPHY) [55] and PCRaster
Global Water Balance (PCR-GLOBWB) [56,57] can ingest remote sensing products while performing
calculations on a gridded landscape, they do not calculate the soil water balance for each pixel solely
from satellite imagery. In comparison to many other hydrology models, it should be noted that
the applicability of the demonstrated approach is restricted to temporal resolutions of months to
years. For applications such as flood modeling, hourly to daily time steps are required, and advanced
hydrological models provide substantial added value.

Another limitation of the proposed method is that additional supplies of water are not included
in the analysis. Man-made interventions in the natural water cycle such as irrigation schemes and
hydraulic infrastructure are disregarded. Large-scale redistribution of water resources is visible from
space, and thus included in ET and SWI estimates, but is lacking on the supply side of the water
balance equation. In addition, a prerequisite of the method to generate reliable outcomes is that
estimates on P, ET and SWI are sufficiently accurate. We did an extensive validation of the precipitation
products but had no field data for ET and SWI. In addition, simple linear relationships used in this
study to e.g., link EVI with LAI (Equation (3)) can be further refined. There are a large number of
different products on P and ET, all developed in their own specific geographic domains. As such, it
is necessary to evaluate the suitability for the area under consideration. Techniques for doing so are
well-described in [23,58–60], among others. Reliable field data of one gauging station in the basin is
helpful to determine the optimum depth (zr) in relation to coefficient F.

5. Conclusions

Available global remote sensing derived data products offer great opportunities to study water
resource availability. We have demonstrated that these products can be integrated to solve a typical
water balance equation without the need for complex and resource intensive ancillary data. This method
provides a rapid, accurate, and cost-effective solution to mapping water resource availability in basins
with no gauges or monitoring infrastructure, one that can be used by water resource managers to make
informed decisions in a changing climate and with increasing demands on limited water supplies.

Acknowledgments: Four anonymous reviewers are thanked for their valuable comments.

Author Contributions: A.P., W.B., D.S. and M.F.conceived and designed the study; A.P., W.B. and G.S. performed
data collection and analysis; G.S. provided input data for the model; A.P., W.B., G.S. and D.S. wrote the paper;
and M.F., B.B. and J.K. supported writing, reviewing and editing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22.
2. Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2,

doi:10.1126/sciadv.1500323.
3. Tolentino, P.L.M.; Poortinga, A.; Kanamaru, H.; Keesstra, S.; Maroulis, J.; David, C.P.C.; Ritsema, C.J.

Projected Impact of Climate Change on Hydrological Regimes in the Philippines. PLoS ONE 2016, 11,
doi:10.1371/journal.pone.0163941.



Remote Sens. 2017, 9, 86 12 of 14

4. Lakshmi, V. The role of satellite remote sensing in the prediction of ungauged basins. Hydrol. Process. 2004,
18, 1029–1034.

5. Bastiaanssen, W.G.; Karimi, P.; Rebelo, L.M.; Duan, Z.; Senay, G.; Muthuwatte, L.; Smakhtin, V. Earth
observation based assessment of the water production and water consumption of Nile Basin agro-ecosystems.
Remote Sens. 2014, 6, 10306–10334.

6. Simons, G.; Bastiaanssen, W.; Ngô, L.A.; Hain, C.R.; Anderson, M.; Senay, G. Integrating Global
Satellite-Derived Data Products as a Pre-Analysis for Hydrological Modelling Studies: A Case Study
for the Red River Basin. Remote Sens. 2016, 8, 279.

7. Karimi, P.; Bastiaanssen, W.; Sood, A.; Hoogeveen, J.; Peiser, L.; Bastidas Obando, E.; Dost, R. Spatial
evapotranspiration, rainfall and land use data in water accounting. Part 2: Reliability of water accounting
results for policy decisions in the Awash basin. Hydrol. Earth Syst. Sci. 2015, 19 , 533–550.

8. Karimi, P.; Bastiaanssen, W.; Molden, D. Water Accounting Plus (WA+)—A water accounting procedure for
complex river basins based on satellite measurements. Hydrol. Earth Syst. Sci. 2013, 17, 2459–2472.

9. Molden, D.; Sakthivadivel, R. Water accounting to assess use and productivity of water. Int. J. Water
Resour. Dev. 1999, 15, 55–71.

10. Karimi, P.; Bastiaanssen, W. Spatial evapotranspiration, rainfall and land use data in water accounting.
Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532.

11. Immerzeel, W.; Droogers, P. Calibration of a distributed hydrological model based on satellite
evapotranspiration. J. Hydrol. 2008, 349, 411–424.

12. Bui, Y.T.; Orange, D.; Visser, S.; Hoanh, C.T.; Laissus, M.; Poortinga, A.; Tran, D.T.; Stroosnijder, L. Lumped
surface and sub-surface runoff for erosion modeling within a small hilly watershed in northern Vietnam.
Hydrol. Process. 2014, 28, 2961–2974.

13. Valentin, C.; Agus, F.; Alamban, R.; Boosaner, A.; Bricquet, J.P.; Chaplot, V.; De Guzman, T.; De Rouw, A.;
Janeau, J.L.; Orange, D.; et al. Runoff and sediment losses from 27 upland catchments in Southeast Asia:
Impact of rapid land use changes and conservation practices. Agric. Ecosyst. Environ. 2008, 128, 225–238.

14. Cheang, B.K. Short-and Long-Range Monsoon Prediction in Southeast Asia; Malaysia Meteoorlogical Service:
Petaling Jaya, Malaysia, 1987.

15. Nguyen, D.Q.; Renwick, J.; McGregor, J. Variations of surface temperature and rainfall in Vietnam from 1971
to 2010. Int. J. Climatol. 2014, 34, 249–264.

16. Yen, M.C.; Chen, T.C.; Hu, H.L.; Tzeng, R.Y.; Dinh, D.T.; Nguyen, T.T.T.; Wong, C.J. Interannual variation of
the fall rainfall in Central Vietnam. J. Meteorol. Soc. Jpn. 2011, 89, 193–204.

17. Nguyen, T.D.; Uvo, C.; Rosbjerg, D. Relationship between the tropical Pacific and Indian Ocean sea-surface
temperature and monthly precipitation over the central highlands, Vietnam. J. Meteorol. Soc. Jpn. 2007,
27, 1439–1454.

18. Thomas, T.; Christiaensen, L.; Do, Q.T.; Trung, L.D. Natural Disasters and Household Welfare: Evidence from
Vietnam; World Bank Policy Research Working Paper Series; World Bank: Washington, DC, USA, 2010.

19. NCDC. Available online: http://land.copernicus.vgt.vito.be (accessed on 16 January 2016).
20. Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.;

Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring;
US Geological Survey Data Series: Reston, VA, USA, 2013; Volume 832.

21. Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation
estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol.
2004, 5, 487–503.

22. Harris, I.; Jones, P.; Osborn, T.; Lister, D. Updated high-resolution grids of monthly climatic
observations—The CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642.

23. Vernimmen, R.; Hooijer, A.; Mamenun; Aldrian, E.; van Dijk, A.I.J.M. Evaluation and bias correction of
satellite rainfall data for drought monitoring in Indonesia. Hydrol. Earth Syst. Sci. 2012, 16, 133–146.

24. Cheema, M.J.M.; Bastiaanssen, W.G. Local calibration of remotely sensed rainfall from the TRMM satellite
for different periods and spatial scales in the Indus Basin. Int. J. Remote Sens. 2012, 33, 2603–2627.

25. Huang, Y.; Chen, S.; Cao, Q.; Hong, Y.; Wu, B.; Huang, M.; Qiao, L.; Zhang, Z.; Li, Z.; Li, W.; et al. Evaluation
of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall
event of 21 July 2012. Water 2013, 6, 32–44.



Remote Sens. 2017, 9, 86 13 of 14

26. Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A coupled remote sensing and simplified surface energy
balance approach to estimate actual evapotranspiration from irrigated fields. Sensors 2007, 7, 979–1000.

27. Senay, G.; Gowda, P.; Bohms, S.; Howell, T.; Friedrichs, M.; Marek, T.; Verdin, J. Evaluating the SSEBop
approach for evapotranspiration mapping with landsat data using lysimetric observations in the semi-arid
Texas High Plains. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 723–756.

28. Chen, M.; Senay, G.B.; Singh, R.K.; Verdin, J.P. Uncertainty analysis of the Operational Simplified Surface
Energy Balance (SSEBop) model at multiple flux tower sites. J. Hydrol. 2016, 536, 384–399.

29. Budyko, M. Climate and Life; Academic Press: San Diego, CA, USA, 1974; pp. 72–191.
30. Rodell, M.; Houser, P.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, C.; Arsenault, K.; Cosgrove, B.;

Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004,
85, 381–394.

31. Gentine, P.; D’Odorico, P.; Lintner, B.R.; Sivandran, G.; Salvucci, G. Interdependence of climate, soil, and
vegetation as constrained by the Budyko curve. Geophys. Res. Lett. 2012, 39, doi:10.1029/2012GL053492.

32. Boegh, E.; Søgaard, H.; Broge, N.; Hasager, C.; Jensen, N.; Schelde, K.; Thomsen, A. Airborne multispectral
data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture.
Remote Sens. Environ. 2002, 81, 179–193.

33. Von Hoyningen-Huene, J. Die Interzeption des Niederschlags in Landwirtschaftlichen Pflanzenbeständen; Arbeitsbericht
Deutscher Verband für Wasserwirtschaft und Kulturbau (DVWK): Braunschweig, Germany, 1981; p. 63.

34. Braden, H. Ein energiehaushalts- und verdunstungsmodell fur wasser und stoffhaushaltsuntersuchungen
landwirtschaftlich genutzter einzugsgebiete. Mitt. Deutsch. Bodenk. Ges. 1985, 42, 294–299.

35. Yeh, P.J.F.; Swenson, S.; Famiglietti, J.; Rodell, M. Remote sensing of groundwater storage changes in
Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour. Res. 2006, 42,
doi:10.1029/2006WR005374.

36. Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating groundwater storage
changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 2007, 15, 159–166.

37. Nolet, C.; Poortinga, A.; Roosjen, P.; Bartholomeus, H.; Ruessink, G. Measuring and modeling the effect of
surface moisture on the spectral reflectance of coastal beach sand. PLoS ONE 2014, 9, e112151.

38. Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil
data. Remote Sens. Environ. 1999, 70, 191–207.

39. Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An improved soil moisture retrieval algorithm
for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013.

40. Naeimi, V.; Paulik, C.; Bartsch, A.; Wagner, W.; Kidd, R.; Park, S.E.; Elger, K.; Boike, J. ASCAT Surface
State Flag (SSF): Extracting information on surface freeze/thaw conditions from backscatter data using an
empirical threshold-analysis algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2566–2582.

41. Copernicus Global Land Service. Available online: http://land.copernicus.vgt.vito.be (accessed on
16 January 2016).

42. Albergel, C.; Rüdiger, C.; Pellarin, T.; Calvet, J.C.; Fritz, N.; Froissard, F.; Suquia, D.; Petitpa, A.; Piguet, B.;
Martin, E. From near-surface to root-zone soil moisture using an exponential filter: An assessment of
the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. Discuss. 2008,
12, 1323–1337.

43. Ceballos, A.; Scipal, K.; Wagner, W.; Martínez-Fernández, J. Validation of ERS scatterometer-derived soil
moisture data in the central part of the Duero Basin, Spain. Hydrol. Process. 2005, 19, 1549–1566.

44. De Boer, F. HiHydroSoil: A High Resolution Soil Map of Hydraulic Properties—Version 1.2; Technical Report;
FutureWater: Wageningen, The Netherlands, 2016.

45. Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.; Ribeiro, E.; Rosa, A.S.; Kempen, B.;
Leenaars, J.G.; Walsh, M.G.; et al. SoilGrids1km—Global soil information based on automated mapping.
PLoS ONE 2014, 9, e105992.

46. Scott, C.A.; Bastiaanssen, W.G.; Ahmad, M.u.D. Mapping root zone soil moisture using remotely sensed
optical imagery. J. Irrig. Drain. Eng. 2003, 129, 326–335.

47. Duan, Z.; Bastiaanssen, W. First results from Version 7 TRMM 3B43 precipitation product in combination
with a new downscaling–calibration procedure. Remote Sens. Environ. 2013, 131, 1–13.



Remote Sens. 2017, 9, 86 14 of 14

48. Choudhury, B.J.; DiGirolamo, N.E. A biophysical process-based estimate of global land surface evaporation
using satellite and ancillary data I. Model description and comparison with observations. J. Hydrol. 1998,
205, 164–185.

49. Schaake, J.C.; Koren, V.I.; Duan, Q.Y.; Mitchell, K.; Chen, F. Simple water balance model for estimating runoff
at different spatial and temporal scales. J. Geophys. Res. Atmos. 1996, 101, 7461–7475.

50. Nash, J.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles.
J. Hydrol. 1970, 10, 282–290.

51. Foglia, L.; Hill, M.C.; Mehl, S.W.; Burlando, P. Sensitivity analysis, calibration, and testing of a distributed
hydrological model using error-based weighting and one objective function. Water Resour. Res. 2009, 45,
doi:10.1029/2008WR007255.

52. Ghaffari, G.; Keesstra, S.; Ghodousi, J.; Ahmadi, H. SWAT-simulated hydrological impact of land-use change
in the Zanjanrood Basin, Northwest Iran. Hydrol. Process. 2010, 24, 892–903.

53. Stürck, J.; Poortinga, A.; Verburg, P.H. Mapping ecosystem services: The supply and demand of flood
regulation services in Europe. Ecol. Indic. 2014, 38, 198–211.

54. Poortinga, A.; Delobel, F.; Rojas, O.; Peters, S.; Ward, P. MOSAICC: An inter-disciplinary system of models
to evaluate the impact of climate change on agriculture. In Proceedings of The 8th International Symposium
Agro Environ, Wageningen, The Netherlands, 1–4 May 2012.

55. Terink, W.; Lutz, A.F.; Simons, G.W.H.; Immerzeel, W.W.; Droogers, P. SPHY v2.0: Spatial Processes in
Hydrology. Geosci. Model Dev. 2015, 8, 2009–2034.

56. Wada, Y.; van Beek, L.P.; van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of
groundwater resources. Geophys. Res. Lett. 2010, 37, doi:10.1029/2010GL044571.

57. Bierkens, M.; Van Beek, L. Seasonal predictability of European discharge: NAO and hydrological response
time. J. Hydrometeorol. 2009, 10, 953–968.

58. Singh, R.K.; Senay, G.B. Comparison of four different energy balance models for estimating evapotranspiration
in the Midwestern United States. Water 2015, 8, doi:10.3390/w8010009.

59. Bhattarai, N.; Shaw, S.B.; Quackenbush, L.J.; Im, J.; Niraula, R. Evaluating five remote sensing based
single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical
climate. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 75–86.

60. Asadullah, A.; McINTYRE, N.; Kigobe, M. Evaluation of five satellite products for estimation of rainfall
over Uganda/Evaluation de cinq produits satellitaires pour l’estimation des précipitations en Ouganda.
Hydrol. Sci. J. 2008, 53, 1137–1150.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	The University of San Francisco
	USF Scholarship: a digital repository @ Gleeson Library | Geschke Center
	2017

	A Self-calibrating Runoff and Streamflow Remote Sensing Model for Ungauged Basins Using Open-access Earth Observation Data
	A Poortinga
	W Bastiaanssen
	G Simons
	David Saah
	G Senay
	See next page for additional authors
	Recommended Citation
	Authors


	Introduction
	Materials and Methods
	Study Area
	Climatic Setting
	Input Products
	Precipitation
	Evapotranspiration

	Interception
	Soil Water and Groundwater

	The Water Balance Model

	Results
	Discussion
	Conclusions

