
The University of San Francisco
USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center

Business Analytics and Information Systems School of Management

2004

A Paradigm for Spreadsheet Engineering
Methodologies
Thomas A. Grossman Jr.
University of San Francisco, tagrossman@usfca.edu

O Ozluk

Follow this and additional works at: http://repository.usfca.edu/at

Part of the Databases and Information Systems Commons, Management Sciences and
Quantitative Methods Commons, Software Engineering Commons, and the Technology and
Innovation Commons

This Conference Proceeding is brought to you for free and open access by the School of Management at USF Scholarship: a digital repository @
Gleeson Library | Geschke Center. It has been accepted for inclusion in Business Analytics and Information Systems by an authorized administrator of
USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

Recommended Citation
Grossman, T. & Ozluk, O. "A Paradigm for Spreadsheet Engineering Methodologies". Proceedings of EuSpRIG 2004 Conference, July
2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of San Francisco

https://core.ac.uk/display/216982441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/at?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/management?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/at?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=repository.usfca.edu%2Fat%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@usfca.edu

Page 1 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

A Paradigm for Spreadsheet Engineering
Methodologies

Thomas A. Grossman
University of San Francisco, School of Business & Management, San Francisco CA

94117-1045
tagrossman@usfca.edu

Özgür Özlük

ISBA Department, College of Business, SFSU San Francisco, CA 94132
ozgur@sfsu.edu

ABSTRACT

Spreadsheet engineering methodologies are diverse and sometimes contradictory. It is difficult for
spreadsheet developers to identify a spreadsheet engineering methodology that is appropriate for their class
of spreadsheet, with its unique combination of goals, type of problem, and available time and resources.
There is a lack of well-organized, proven methodologies with known costs and benefits for well-defined
spreadsheet classes. It is difficult to compare and critically evaluate methodologies. We present a paradigm
for organizing and interpreting spreadsheet engineering recommendations. It systematically addresses the
myriad choices made when developing a spreadsheet, and explicitly considers resource constraints and other
development parameters. This paradigm provides a framework for evaluation, comparison, and selection of
methodologies, and a list of essential elements for developers or codifiers of new methodologies. This
paradigm identifies gaps in our knowledge that merit further research.

1. INTRODUCTION

Our goal is to see spreadsheet research mature into an important, widely-respected field,
which generates research results that are routinely used in business. This goal will be
achieved when spreadsheet developers regularly consider which spreadsheet engineering
methodology they will apply to a particular spreadsheet. A spreadsheet engineering
methodology provides prescriptive recommendations for the choices made throughout the
lifecycle of a spreadsheet. Four barriers must be overcome to achieve this goal.
The first barrier is lack of a compelling value proposition. Despite the extensive research
on spreadsheet errors [Panko 1998] and the occasional major error that appears in the
business press, the argument that current spreadsheet development practices are risky is
having little impact. As [Pettifor 2003] points out, “the world is not falling apart through
spreadsheet errors”. The argument that something must be done about spreadsheet errors
is so far achieving little traction in the business world.
With the benefit of hindsight, the limited success of the errors/risks argument is not
surprising. In essence, this is an attempt to sell a problem. People don’t invest in problems,
they invest in solutions. For spreadsheet research to have impact on business practice, it
must look beyond errors and their consequences, to the creation of solutions. These
solutions—spreadsheet engineering methodologies—must have a compelling value
proposition so that busy spreadsheet developers will invest in learning and applying them.
An attractive value proposition must include benefits that are important to spreadsheet

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 2 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

developers who are relatively unconcerned with risks and errors. These might include
more enjoyable development, greater job satisfaction, cost and personnel savings, reduced
development time, lifecycle productivity, or enhanced quality of analysis and insight. The
contents of this value proposition is an important research question that can only be
answered by empirical research on spreadsheet developers.
We note that even if the spreadsheet research community were to be successful in
persuading spreadsheet developers and senior management to take spreadsheet risks
seriously, those risks can be mitigated only by the use of appropriate spreadsheet
engineering methodologies. The barriers below militate against such use.
The second barrier is lack of knowledge of spreadsheet practice. Spreadsheets are
undoubtedly the most widely used programming language, and are used for countless
different purposes with wide variety in development practices. Unfortunately, there is no
systematic knowledge about this diversity of usage and development. This diversity makes
it difficult to develop useful generalizations or theories regarding spreadsheets. As
discussed by [Grossman and Özlük 2003], any recommendations or theories will apply to
only a particular class of spreadsheets with similar characteristics. Empirical research is
needed to identify the most important spreadsheet classes so that suitable spreadsheet
engineering methodologies can be devised.
The third barrier is lack of a roadmap to appropriate spreadsheet engineering
methodologies. Take the point of view of a developer about to embark on a spreadsheet
development project. The developer has a certain amount of time and other resources
available, is working on a particular type of problem, and has certain (perhaps vaguely
defined) goals. What spreadsheet engineering methodology should he adopt?
The current spreadsheet engineering literature is not easily accessible to such a developer.
The developer must select among multiple methodologies. It can be difficult to understand
which practices are appropriate to a particular spreadsheet, and to match the resources
required by a methodology to the resources available. Indeed, existing spreadsheet
engineering recommendations are sometimes contradictory, because different spreadsheet
classes require different strategies. There is a need for a roadmap that starts with the
spreadsheet class and resource constraints and guides developers to appropriate
methodologies. We need a theoretical framework, or paradigm, to rigorously and
systematically organize and critically evaluate spreadsheet engineering methodologies,
including identification of their classes, benefits, and resource implications.
The fourth barrier is a lack of well-organized, proven solutions with known costs and
benefits for well-defined classes. Developing a roadmap requires a portfolio of
spreadsheet engineering methodologies from which developers can choose. To do this,
various spreadsheet classes must be identified, and provided with appropriate spreadsheet
engineering methodologies. These methodologies must then be compared to alternative
methodologies to elucidate when they are most appropriate. Finally, the methodologies
need to be tested or otherwise proven to be beneficial, and the proven benefits and
demonstrated resource needs must be clearly stated. This is a significant, long-term
challenge for spreadsheet researchers. We provide a paradigm of spreadsheet engineering
that facilitates the efficient development of spreadsheet engineering methodologies by
identifying a set of essential elements that any methodology must consider.
2. ESSENTIAL ELEMENTS OF THE PARADIGM

In this section we present a nine-element paradigm for spreadsheet engineering
methodologies that facilitates organizing, interpreting, and critically evaluating

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 3 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

spreadsheet engineering recommendations. This paradigm provides a vehicle to compare
and contrast different spreadsheet engineering recommendations to aid developers in
selecting methodologies, and researchers in understanding and improving them. It
provides for explicit statements about the relevant classes, and the resources necessary to
use the methodology. This paradigm enables us to evaluate the completeness of a
spreadsheet engineering methodology. It provides a list of essential elements to developers
of new spreadsheet engineering techniques and codifiers of existing practices.
When working with a spreadsheet, the developer makes a series of choices about what to
do and how to do it, such as how to organize the cells in the spreadsheet, and what
documentation to provide. These choices can be made consciously or unconsciously. If
made consciously, they can be made with careful analysis and reflection, or with only
momentary consideration. In aggregate these choices determine the efficiency of
development, the accuracy of the spreadsheet, and the ability to modify the spreadsheet in
the future. These choices are the essence of spreadsheet engineering.
A spreadsheet engineering methodology provides prescriptive recommendations for the
choices made throughout the lifecycle of a spreadsheet. By identifying, organizing, and
labeling these choices, we can create a paradigm of spreadsheet engineering
methodologies. We structure these choices into nine elements. Every activity in the
lifecycle of a spreadsheet fits into one of these elements. The purpose of the paradigm is to
clarify and articulate distinct concepts relating to spreadsheet development and usage. Our
intention is that any spreadsheet engineering methodology can be mapped into this
paradigm. The nine elements of our paradigm are below.

1. Modeling
2. Development Parameters
3. Design
4. Programming
5. Quality Control
6. Debugging
7. Documentation
8. Usage
9. Modification

A meaningful spreadsheet engineering methodology must consider the problem-solving
context in which spreadsheets are created and used. Therefore, the scope of spreadsheet
engineering begins with the recognition that a spreadsheet shall be used to address a
business problem, and includes all spreadsheet activity through to usage and modification
of spreadsheet. Note that we do not consider whether a spreadsheet is the “right” software
for the problem; the assumption in this paradigm is that the developer has chosen to build
a spreadsheet, and will benefit from guidance on using it well.
Our paradigm is correct if every possible spreadsheet engineering methodology can be
mapped onto it in only one way. The choice of elements is somewhat arbitrary. What is
important is that the elements be individually distinct and collectively exhaustive. We
anticipate this paradigm will be refined as spreadsheet engineering research progresses.
Any particular spreadsheet engineering methodology may or may not proceed in the same
order that the elements are listed. Many methodologies commingle the elements in the
interest of efficiency. (This is desirable, but it makes it difficult to compare and evaluate
methodologies.) For example, all spreadsheet engineering recommendations suggest that
minimal documentation (element 7) such as row and column labels be done during
programming (element 4). When mapping a particular methodology onto our paradigm, it

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 4 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

will be necessary to disentangle the various elements to distinguish between the principles
embodied in the methodology, and the recommended process of applying those principles.
In the subsequent sections, we find it useful to distinguish between a “developer” and a
“user”; a developer is involved with building the spreadsheet through tasks such as
choosing column and row labels and writing cell formulas, whereas a user simply enter
inputs, and observes and interprets outputs.
3. ESSENTIAL ELEMENT 1: MODELING

Modeling is the act of determining what the spreadsheet shall do. Modeling is a
component of business problem-solving. The need to solve a problem motivates modeling,
which in turn motivates computation. A spreadsheet is a visual computer implementation
of a mathematical model. The model embodied in any spreadsheet can be written as a set
of algebraic equations which can, in principle, be computed by hand, or coded in a
procedural computer language. A spreadsheet model—like any model—takes a set of
inputs, and computes a set of outputs. Therefore, we formally define modeling as
determining the inputs and outputs, and detailing how outputs shall be computed from
inputs. Modeling includes considerations of the problem domain discussed in [Grossman
2002]. The best overview of modeling in isolation from programming is chapters 1 – 4 of
Powell and Baker 2004.
We intentionally avoid the use of the term “specification” in our definition of modeling. A
specification, whose roots are the waterfall lifecycle model of traditional software
engineering, describes in great detail the function of a computer program prior to
programming. This can be a powerful tool when working with procedural computer
languages. In contrast, one of the most powerful capabilities of spreadsheets is their
capability to program while modeling. It is apparent that most spreadsheets do not have
formal specifications, and it is unlikely that spreadsheet developers will become avid
specification writers. Therefore, creating a specification is but one choice that a developer
can make, and which will often be declined. A key challenge for spreadsheet engineering
researchers is to identify those situations where a specification is indeed essential, cost-
effective, or otherwise appropriate.
Because spreadsheets are a powerful vehicle for modeling, modeling is often integrated
with spreadsheet design and programming. This can obscure the role of modeling as an
independent intellectual activity. The relationship between modeling and programming is
an essential aspect of any software engineering methodology. This relationship can range
from complete separation to complete integration. Methodologies such as the classic
waterfall lifecycle model and the use of Jacksonian Structured Programming [Chadwick et
al 1999] recommend the completion of modeling before the start of programming. Certain
lifecycle models such as the spiral model [McConnell 1996] provide for a sequence of
distinct modeling and programming steps. [Nardi and Miller 1991] describe how
spreadsheet users and developers cooperate in creating spreadsheets, with programming
and modeling partially integrated. [Grossman 2002] discusses how developers can engage
in exploratory modeling, where they program a spreadsheet to help them think through
and understand their business problem fully integrating modeling and programming.
It is important that any spreadsheet engineering methodology address modeling, which is
the process of figuring out what the spreadsheet is to do, and carefully discuss the
interaction of modeling and programming.

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 5 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

4. ESSENTIAL ELEMENT 2: DEVELOPMENT PARAMETERS

Development parameters are the planning assumptions of a spreadsheet. This includes the
goals of the spreadsheet; the budget in terms of money, time and developer labor; the users
in terms of their number, skill, and experience; the frequency of use; the time period of
use; the likelihood and nature of modifications after usage; interactions with other
information systems; the importance of the spreadsheet; the desired accuracy; and any
other considerations that may affect the spreadsheet during its lifecycle.
The selection of development parameters strongly affects all the steps of spreadsheet
development. Unfortunately, because development parameters are prospective, they can be
wrong. For example, a spreadsheet intended for one-time usage by its developer might see
usage by multiple users. Or a spreadsheet that was to be programmed once and deleted is
modified for other uses. Poor selection of development parameters at the beginning can
cause expense and risk later. Therefore, the establishment of development parameters
includes any evaluation of risks, such as errors and development failure.
Development parameters are essentially business judgments about the deployment of
resources to create information systems to achieve organizational goals. Therefore,
development parameters are controlled by business considerations and resource
constraints, not by any inherent properties of the model to be developed.
We believe that consideration of development parameters is an essential component of any
spreadsheet engineering methodology. A given spreadsheet engineering methodology is
more appropriate for some development parameters than others. However, there is a
tendency in the spreadsheet engineering literature to provide insufficient discussion of
development parameters. Spreadsheet engineering methodologies should clearly identify
any assumptions of development and usage, and discuss the resources required during
initial development and potential future modifications.
5. ESSENTIAL ELEMENT 3: DESIGN

The design of a spreadsheet comprises two elements: structural design and visual design.
Structural design is the way cells are arranged. Structural design includes the designation
of rows and columns to have particular meaning, the use of modularity, and the provision
of space for documentation. Visual design refers to the appearance of cells and cell
borders. Visual design includes shading, borders, fonts and other formats.
The spreadsheet engineering literature is in agreement that good design is important.
However, there is no agreed list of what constitutes good design. Many discussions in the
literature mingle design considerations with programming and documentation.
Two principles of structural design are widespread. The first is to organize related
concepts using the rows and columns of the spreadsheet. For example, each column of a
cash flow statement contains a single year, and each row contains a single accounting
concept.
The second structural design principle is “modularity”, which says that logically related
elements be grouped into modules. A module might contain model inputs, model outputs,
a summary with selected inputs and outputs, a set of computations, or other items. The
module(s) that a spreadsheet user interacts with are called the “user interface” and often
require special attention. A module can comprise a single cell, a section of a worksheet, an
entire worksheet, a workbook, or even a set of linked workbooks. Modules can contain
submodules. For example, the authors recently observed a 27 MB workbook of a user
interface for a large spreadsheet application. The workbook contains numerous

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 6 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

submodules in the form of worksheets, with each worksheet containing a number of
submodules in the form of sections.
The final structural design principle is to provide space for documentation. Space should
be provided for row and column labels, and any other documentation. This is discussed in
more detail in the Documentation section below.
Visual design is essentially the formats applied to the spreadsheet. The most important
visual design elements are the use of fonts (including font choice, color, and bold/italic),
justification within a cell, cell colors, and cell borders. Visual design draws attention to
important elements in the spreadsheet; differentiates among inputs, intermediate variables
and outputs; communicates and reinforces modularity; and establishes hierarchical
relationships within a module.
Visual design elements are important for several reasons. [Nardi and Miller 1990] argue
that spreadsheets success relies on the strong visual format opportunities for structuring
and presenting data. [Reithel et al 1996] tells us that well-formatted spreadsheets are
perceived as more accurate. However, [Raffensperger 2000] argues that certain formats
such as excessive color, and non-constant column widths may reduce comprehension or
become a distraction.
6. ESSENTIAL ELEMENT 4: PROGRAMMING

Programming is the creation of cell formulas and other logic in a spreadsheet.
Programming techniques range from broad principles such as “build a small-scale
prototype and then scale up” to precise recommendations such as “do not hard code
constants in cell formulas”.
Here is a limited list of programming techniques. Enter each input exactly once. Replicate
cell formulas using copying rather than typing. Use absolute references in cell formulas to
facilitate copying. Create a scenario tool to run multiple datasets through the same logic.
Check that input values are within established ranges. Use data validation tools to prevent
users from entering out-of-range inputs. Use cell protection to prevent accidental or
unauthorized modification of cell formulas. Check intermediate calculations for out-of-
range values. Use cross-foots and other redundant calculations. Use version control. Make
files read-only to prevent accidental overwriting of important information. Use
spreadsheet productivity features (such as Insert\Function…\, and selecting cell references
rather than typing them) to avoid syntax errors in formulas. There are many other
techniques.
There are some contradictions and open questions in the literature. Some authorities
recommend avoidance of certain spreadsheet functions deemed risky, such as OFFSET,
but others recommend OFFSET as being useful. Many spreadsheet auditing packages flag
the use of multiply-nested IF functions, yet some well-engineered spreadsheets use deep
nesting. The use of range names is recommended, but there are times when range names
interfere with copying formulas or modifying a spreadsheet. [Thommes 1994] and [Caine
and Robson 1993] recommend splitting lengthy cell formulas into smaller parts to keep
the formulas simple and easy to understand, whereas [Raffensperger 2000] argues that
splitting formulas may result in bloated hard-to-read spreadsheets.
Spreadsheet programming currently resemble a bag of tricks rather than a well-organized,
intellectually coherent toolbox. Research is needed to codify and organize the techniques.
Contradictory recommendations should be identified, and these contradictions resolved by
specifying the development parameters or design where each technique is appropriate. It
would be helpful to bring intellectual coherence to the dizzying array of techniques, by

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 7 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

categorizing them and distinguishing among high-level principles and low-level practices.
Of particular interest for spreadsheet engineering is how development parameters affect
programming practices and how programming practices affect spreadsheet quality and
usage.
7. ESSENTIAL ELEMENT 5: QUALITY CONTROL

Quality Control is all actions taken to determine whether the outputs of a spreadsheet are
satisfactory. There are two aspects to quality control, “verification” and “validation”.
Verification is concerned with the programming of the model, and validation is concerned
with the meaningfulness of the model as implemented.
Verification evaluates accuracy. It asks whether the spreadsheet program correctly
implements the model. Verification answers the question “does the spreadsheet contain
programming errors?” In principle, verification is an objective evaluation.
Validation evaluates model quality. It asks whether the model adequately depicts reality,
and how closely model outputs correspond to real world values. Validation answers the
question “is the model adequate?” In some situations, such as simple taxation models,
validation can be objectively evaluated. In other situations, such as a complex model used
by a bank to set the residual prices on car leases, objective evaluation is impossible.
There are two general approaches to verification, code inspection and testing. The
software engineering literature and [Panko 1999] argue that multi-person code inspection
has the highest error-detection rate. Spreadsheet auditing tools automate code inspection
for certain errors.
Testing is entering test data into a model and observing the outputs. The most useful test
inputs are those with corresponding outputs that are known to be correct. For spreadsheets
that address a problem that has never previously been modeled, the generation of test
cases is a significant challenge. The theoretically rigorous approach to testing in
[Rothermel et al 2001] assumes that test cases are available. Probably the best reference
on testing spreadsheets that lack test cases is the brief and non-comprehensive discussion
in chapter 5 of [Powell and Baker 2004].
In some cases, working through the model logic manually may be the only practical way
to obtain a test case. In extreme situations, it may be necessary to build independently a
parallel system, and compare results. Future research should consider how to test
spreadsheets where the correct outputs are not known a priori.
Validation and verification are distinct concepts. An inadequate model that is programmed
well is verified and invalid. A satisfactory model that has programming errors is inverified
and valid. (Note: a model that has not been evaluated for accuracy is “unverified”, a model
that has failed the evaluation is “inverified”.) Unfortunately, verification and validation
are sometimes conflated in practice. When a developer evaluates a spreadsheet by
examining the outputs and judging that they “seem about right” they are engaging in
validation rather than verification. They risk making the (often unstated) assumption that
validation insures verification. It does not. It simply insures that any errors tend towards
what the developer expected for the inputs being used. This is called “confirmation bias”
and can mask errors in a spreadsheet. There is no research on the prevalence of this
practice, but anecdotal evidence suggests it is widespread. In fact, [Burnett et al 1999] take
this approach, where testing is performed by developers “noticing” whether a particular
cell contains a correct or incorrect value.
When verification detects an error in the programming, or validation detects an error in the
model, it is necessary to fix the problem. This is called debugging.

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 8 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

8. ESSENTIAL ELEMENT 6: DEBUGGING

Quality control finds problems, and debugging fixes them. Debugging is modifying a
spreadsheet program to fix an output that has an unsatisfactory value. There are three key
issues in debugging: how to locate the source of the problem, how to fix the problem, and
how to avoid introducing new bugs.
Unfortunately, the spreadsheet engineering literature contains little guidance on
debugging, particularly in a spreadsheet with complex contingent logic programmed with
lookup formulas or nested IF formulas. Spreadsheet auditing software can be helpful in
locating the problem, and can sometimes provide guidance in fixing it.
When the issue with the spreadsheet is the invalidity of the underlying model, it may be
necessary to revisit element 1, modeling, to enhance the model. Then, it is necessary to
change the spreadsheet to incorporate the enhancements. Making these changes accurately
and efficiently is a similar if not more demanding skill compared to making changes to
eliminate a programming error.
The software engineering and quality control literatures argue persuasively that preventing
errors is cheaper than finding and fixing errors. Thus, incremental investment in design
and programming can bring disproportionate savings in debugging. Provided of course,
quality control is done at all!
Development of techniques for debugging is an area that has not received enough attention
and merits further research. Empirical research on quality control and debugging practices
would be valuable.
9. ESSENTIAL ELEMENT 7: DOCUMENTATION

Documentation is any written record regarding the spreadsheet. The most common form
of documentation is row and column labels in a spreadsheet. These can range from
minimal abbreviations, to lengthy formal names.
Documentation can reside in many places. It can be integrated with cell formulas within a
module, for example row and column labels, and a notes column. Documentation can
reside in its own documentation module within a spreadsheet, or it can be in the form of a
separate document such as a full-fledged user’s manual. Microsoft Excel has features such
as Comments and text boxes that allow documentation to be placed almost anywhere in
the spreadsheet. The programming technique of range names can make cell formulas more
readable and serves as a form of documentation.
Any element of a methodology can be documented, including modeling, development
parameters, design, programming, quality control, and debugging. Documentation can
consume substantial resources, and the amount of documentation to be done depends on
the development parameters.
Spreadsheet engineering methodologies must carefully consider the appropriate level and
type of documentation, and the resources required to create it. It is well known from
software engineering that documentation is often inadequate, and there is anecdotal and
empirical evidence that spreadsheet documentation is inadequate. Therefore, it may be
desirable for methodologies to distinguish between essential documentation and desirable
documentation.
10. ESSENTIAL ELEMENT 8: USAGE

We define the usage of a spreadsheet to be any process where a user provides inputs to a
spreadsheet, and observes the outputs. Usage does not involve programming.

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 9 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

Planned usage is considered in the development parameters element. Actual usage may
differ from planned usage. This can signal unanticipated success. Such success can be a
mixed blessing, because unplanned usage implies the spreadsheet is a poor platform for
those newly-discovered uses, whatever they may be.
There is great diversity in usage, but we have limited theoretical and empirical knowledge
because spreadsheet usage receives little attention in the literature. Usage can be by the
developer, or by other individuals. Usage can be by one individual or many. Usage can be
a single observation of a set of model outputs, or can involve multiple sets of inputs used
to generate multiple sets of outputs. Usage can be a one-off event, or can take place
regularly or irregularly over time. The user may or may not be able to interact with the
developer. There are questions about how users can analyze a spreadsheet model (or any
model) to systematically extract insight about a business process. There are also questions
on how spreadsheets are shared by different people.
This situation is problematic. The usage of a spreadsheet is particularly important to
spreadsheet development because expected usage helps determine the development
parameters. We are ignorant of usage, and therefore cannot present compelling, evidence-
based suggestions for integrating usage expectations into spreadsheet development. We
know that usage expectations are sometimes wrong, but we do not know how often or how
expected usage correlates to actual usage.
Clearly, rigorous research on spreadsheet usage would be beneficial.
11. ESSENTIAL ELEMENT 9: MODIFICATION

Modification refers to changes made to the spreadsheet after it has been used. This
includes terms such as “maintenance”, “enhancement” and “extension”. Like any
software, modification of spreadsheets can be substantially more expensive than building
in features from the beginning, and provision for modifications made early in development
can significantly reduce the time, cost and risk of making modifications.
We know little about modifications. We know that spreadsheets whose development
parameters indicated no modifications may indeed be modified after usage. Even when
modifications are included in the development parameters, it may not be possible to
anticipate the nature of the modifications. There is no systematic research on the origin of
modification requests, and how these connect to usage, development parameters, design
and programming decisions.
There is a clear opportunity for research on spreadsheet modifications. It would be helpful
to have a categorization of the kinds of modifications that are made, who proposes them,
and the effect of early-development planning (or its lack) on later modifications. In
particular, it would be valuable to better understand the twin risks of over-engineering for
modifications that never happen vis-à-vis the risk of under-engineering for unexpected
modifications that later prove necessary.
12. CLASSES OF SPREADSHEETS

Because of the great diversity among spreadsheets and spreadsheet developers, it is
difficult to make detailed spreadsheet engineering recommendations that are widely
applicable. In contrast, recommendations with narrow scope, pertaining to specific classes
of spreadsheets, can provide detailed and specific guidance. The level of detail and
specificity of spreadsheet engineering recommendations is inversely proportional to the
scope of the recommendations. Therefore, it is important that any spreadsheet engineering
methodology carefully define the class of problems to which it applies. In our nine-

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 10 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

element paradigm, the defining characteristics of a class are to be found in the
development parameters and modeling elements.
When the class is well-defined, highly specific methodologies can be provided. For
example, [Conway and Ragsdale 1997] consider the narrowly-defined class of small scale
optimization models, and are able to provide very specific recommendations.
Therefore, it is essential that a spreadsheet engineering methodology clearly indicate in the
development parameters and modeling elements the class of spreadsheet to which it
applies. We note that many existing spreadsheet engineering methodologies provide
insufficient class information, and have hidden assumptions about where they can usefully
be employed. This reduces their effectiveness, because some of their recommendations are
ineffective or even inappropriate in certain classes, and developers for whom the
recommendations are most appropriate may not recognize the relevance of the
methodology.
13. CONCLUSIONS

Our hope is to see spreadsheet research mature into an important, widely-respected field,
which generates research results that are extensively used in business. This entails
prescriptive research with sufficient power and applicability to motivate adoption and
employment by busy spreadsheet developers. This power will emerge only with specific,
detailed methodologies. Applicability will emerge with carefully specification of class. In
principle, a specific spreadsheet engineering methodology can be defined for any class of
spreadsheet. In practice, methodologies will probably only be defined for classes where
significant value can be obtained through better practices.
Currently, it is difficult to compare, contrast, and critically evaluate spreadsheet
engineering methodologies. This is because the methodologies are organized to support a
particular development process, and it is challenging to decompose them into their
components to observe commonalities and differences. More important, it can be difficult
to recognize the hidden assumptions that underlie many methodologies, particularly
assumptions about class.
We present paradigm of spreadsheet engineering that will help with these difficulties. By
mapping spreadsheet engineering recommendations onto the nine essential elements of
this paradigm, it will be easy to compare and evaluate methodologies, and determine their
completeness. This paradigm provides a framework for developing new spreadsheet
engineering methodologies, and makes explicit provision for identifying the modeling
approach and development parameters which together define the class.
This paradigm identifies gaps in our knowledge that can guide further research. Important
research opportunities include systematizing and organizing the wealth of programming
techniques; devising techniques for testing spreadsheets that lack test cases; systematic
methods for debugging spreadsheets; better understanding spreadsheet usage; and
increasing our knowledge of spreadsheet modifications. Finally, there is an opportunity to
systematically interpret existing spreadsheet engineering methodologies in light of our
nine-element paradigm, and compare models to identify commonalities.
Future research on spreadsheet engineering should identify high-value classes with large
numbers of developers who are sensitive to the investment they make in spreadsheets.
These are the audiences most likely to adopt new spreadsheet engineering methodologies.
Spreadsheet developers should be interviewed to identify what value proposition would
induce them to invest in deploying new methodologies in their organizations.

A Paradigm for Spreadsheet Engineering Methodologies Thomas A. Grossman & Özgür Özlük

Page 11 of 11
Extracted from Proceedings of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best
practice for spreadsheet users in the new Europe ISBN: 1 902724 94 1
Copyright © European Spreadsheet Risks Interest Group 2004 www.eusprig.org

With the class carefully defined, and a clear sense of the benefits that developers need to
see, researchers can use our nine-element paradigm to devise an appropriate, detailed
spreadsheet engineering methodology, which they can then test against current practice to
determine the benefits and required resources.
REFERENCES
Burnett, M., Sheretov, A., and Rothermel, G. (1999), “Scaling up a ‘What You See is What You Test’
Methodology to Spreadsheet Grids”, Proceedings of the 1999 IEEE Symposium on Visual Languages, pp.
30-37.
Caine, D. J. and Robson, A. J. (1993), “Spreadsheet modelling: Guidelines for model development”,
Management Decision 31(1), pp. 38-44.
Chadwick, D., Rajalingham, K., Knight, B., and Edwards, D. (1999), “A Methodology for Spreadsheet
Development Based on Data Structure”, University of Greenwich Centre for Numerical Modelling and
Process Analysis 99(50), pp. 1-12.
Conway, D. G. and Ragsdale, C. T. (1997), “Modeling optimization problems in the unstructured world of
spreadsheets”, Omega 25(3), pp. 313-322.
Grossman, T. A. (2002), “Spreadsheet Engineering: A Research Framework”, European Spreadsheet Risks
Interest Group 3rd Annual Symposium, Cardiff, pp. 21-34, July.
Grossman, T. A. and Özlük, Ö. (2003), “Research Strategy and Scoping Survey on Spreadsheet Practices”,
European Spreadsheet Risks Interest Group 4th Annual Symposium, Dublin, pp. 23-32, July.
McConnell, S. (1996), Rapid Development: Taming Wild Software Schedules, Microsoft Press.
Nardi, B. A. and Miller, J. R. (1990), “The Spreadsheet Interface: A Basis for End User Programming”,
IFIP TC 13 Third International Conference on Human-Computer Interaction, Cambridge, U.K. Elsevier
Science Publishers.
Nardi, B. A. and Miller, J. R. (1991), “Twinkling lights and nested loops: distributed problem solving and
spreadsheet development. IJM-Machine Studies 34, pp. 161-184.
Panko, R. R. (1999), “Applying code inspection to spreadsheet testing”, Journal of Management Information
Systems 16(2), pp. 159-176.
Panko, R. R. (1998), “What We Know About Spreadsheet Errors”, Journal of End User Computing, 10(2),
pp. 15-21.
Pettifor, B. (2003), “Management Summary: Getting spreadsheets under control—practical issues and
ideas”, European Spreadsheet Risks Interest Group 4th Annual Symposium, Dublin, pp. 105-110, July.
Powell, S. P. and Baker, K. R. (2004), “The art of modeling with spreadsheets: Management science,
spreadsheet engineering and modeling craft”, Wiley.
Raffensperger, J. F. (2000), “The new guidelines for writing spreadsheets”,
http://www.mang.canterbury.ac.nz/people/jfraffen/spreadsheets/index.html, accessed April 9, 2004.
Rothermel, G., Burnett, M., Li, L., DuPuis, C., and Sheretov, A. (2001), “A Methodology for Testing
Spreadsheets”, ACM Transactions on Software Engineering and Methodology, 10(2).
Thommes, M. C (1994), “Advanced Spreadsheet Design Using Lotus Macros”, Boyd & Fraser Publishing
Company.

	The University of San Francisco
	USF Scholarship: a digital repository @ Gleeson Library | Geschke Center
	2004

	A Paradigm for Spreadsheet Engineering Methodologies
	Thomas A. Grossman Jr.
	O Ozluk
	Recommended Citation

	Microsoft Word - A Paradigm for Spreadsheet Engineering Methodologies.doc

