View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of San Francisco

The University of San Francisco
USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center

Business Analytics and Information Systems School of Management

2009

The Lookup Technique to Replace Nested-IF
Formulas in Spreadsheet Programming

Thomas A. Grossman Jr.
University of San Francisco, tagrossman@usfca.edu

O Ozluk

J Gustavson

Follow this and additional works at: http://repository.usfca.edu/at

b Part of the Databases and Information Systems Commons, Management Sciences and

Quantitative Methods Commons, Software Engineering Commons, and the Technology and

Innovation Commons

Recommended Citation

Grossman, T., Ozluk, O., Gustavson, J. "The Lookup Technique to Replace Nested-IF Formulas in Spreadsheet Programming".
Proceedings of EuSpRIG 2009 Conference, July 2009.

This Conference Proceeding is brought to you for free and open access by the School of Management at USF Scholarship: a digital repository @
Gleeson Library | Geschke Center. It has been accepted for inclusion in Business Analytics and Information Systems by an authorized administrator of

USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

https://core.ac.uk/display/216982434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/at?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/management?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/at?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=repository.usfca.edu%2Fat%2F69&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@usfca.edu

The Lookup Technique to Replace Nested-IF Formulas in
Spreadsheet Programming

Thomas A. Grossman
University of San Francisco, School of Business & Management, San Francisco CA 94117-1045
tagrossman@usfca.edu

Ozgiir Ozliik
San Francisco State University, College of Business, San Francisco, CA 94132
ozgur@sfsu.edu

Jan Gustavson
Senior Financial Analyst, Visa, Inc., San Francisco, CA 94128-8999

ABSTRACT

Spreadsheet programmers often implement contingent logic using a nested-IF formula even though this
technique is difficult to test and audit and is believed to be risky. We interpret the programming of contingent
logic in spreadsheets in the context of traditional computer programming. We investigate the “lookup
technique” as an alternative to nested-IF formulas, describe its benefits for testing and auditing, and define
its limitations. The lookup technique employs four distinct principles: 1) make logical tests visible; 2) make
outcomes visible; 3) make logical structure visible,; and 4) replace a multi-function nested-IF formula with a
single-function lookup formula. It can be used only for certain simple contingent logic. We describe how the
principles can be applied in more complex situations, and suggest avenues for further research.

1. INTRODUCTION

Spreadsheets are widely used in business for a variety of important purposes (Coles and Rowley 1996,
Ragsdale 2001, Croll 2005, Grossman, Mehrotra and Ozliik 2007). A spreadsheet containing cell formulas is
a computer program, and all computer programs are susceptible to errors. EuSpRIG maintains a corpus of
spreadsheet errors (EuSpRIG 2009). Several scoping-scale research projects (summarized in Panko 2000a,
2000b; Panko 2008) suggest that spreadsheets are particularly vulnerable to errors. However, follow-on
research (Powell, Baker and Lawson 2008a, 2008b, and 2008c) indicates that the prevalence and risk of errors
in important spreadsheets is not well understood and further research is required.

Spreadsheet programmers often implement contingent logic using the nested-IF formula even though this
technique is difficult to test and audit and is believed to be risky. In this paper, we investigate the “lookup
technique” for programming contingent logic that can reduce or eliminate the need to use the nested-IF
formulas. In certain circumstances, a complex nested-IF can be replaced in a mechanical fashion (without
exercise of judgment nor loss of functionality) by a lookup function that is safer to program and provides
other benefits.

1.1. Nested-IF Formulas Are Considered Risky

Computer programmers often need to program contingent logic. Contingent logic in spreadsheets seems
typically to be programmed using a nested-IF formula. We have encountered Nested-If formulas in research
observations and informal discussions with experienced spreadsheet programmers. We put out a call to the
EuSpRIG list and received many real-world examples of nested-IF formulas.

A nested-IF is created when an IF function used as an argument (“nested”) of one or more other IF functions.
There is much concern about the use of nested-IF formulas in spreadsheets. Lanza (2006) uses the number of
nested-IF formulas as a determinant in the likelihood of risk in a spreadsheet. Croll and Butler (2006)
examine the common sources of errors in medical spreadsheet applications and they find the complex nested-
IF formulas as one of the main culprits. Thiriez (2004) provides a nested-IF he used that he believes is
difficult to audit. Baxter (2005) discusses several spreadsheet auditing tools have been created to address the

Copyright © 2009 EuSpRIG & The Author(s) 1

potential flaws in logic creation which perform checks for logic elements that are known to be particularly
error prone (e.g. nested-IF formulas). Spreadsheet audit software such as Spreadsheet Professional and
XLAnalyst flag nested-IF formulas as a source of risk.

Although nested-IF formulas may be risky, there is reason to believe that skilled software engineers can
manage the risk. As with any challenging programming task, a diligent programmer can write a complex
nested-IF accurately. For example, Grossman, Mehrotra and Ozliik (2007) found an example of a nested-IF
formula with 5 levels of nesting and 11 IF functions that are believed to be correct. However, the prevalence
of such diligent programming practices is unknown.

1.2. Contribution

This paper considers the “lookup technique” that a programmer in certain circumstances can use instead of a
nested-IF formula. The technique uses a lookup function (specifically VLOOKUP or HLOOKUP) to obtain
the same functionality as a nested-IF. The general approach has been known for some time. We hypothesize
that many spreadsheet programmers have independently discovered it over the years. Read and Batson (2000
p. 6-55) discuss this concept in passing. Jelen (2008) recommends it and focuses on the syntax of the
VLOOKUP function.

The contribution of this paper is to present the principles underlying the lookup technique, describe its
benefits for testing and auditing, define its limitations, describe how the principles can be applied in more
complex situations, and suggest further research.

We interpret the programming of contingent logic in spreadsheets in the context of traditional computer
programming. We discuss the problems of nested-IF formulas for spreadsheet testing and spreadsheet
auditing. We explain why the lookup approach is beneficial for testing and auditing.

We decompose the lookup method for programming contingent logic into its component parts. We conclude
that the lookup approach consists of the application of four distinct principles: 1) make logical tests visible; 2)
make outcomes visible; 3) make logical structure visible; and 4) replace a multi-function nested-IF formula
with a single-function lookup formula.

We show the limitations of the lookup approach, which is applicable only for nested-IF formulas with certain
well-defined characteristics. For those nested-IF formulas that do not admit the use of a lookup function, we
believe there are benefits from providing visibility into the logical tests, outcomes, and logical structure. We
discuss areas that merit further research.

1.3. Structure of Paper

In section 2 we discuss contingent logic in traditional computer programming and point out that nested-IF
formulas were once the norm. We describe nested-IF formulas in spreadsheets and discuss the problems posed
for testing and auditing. In section 3 we develop an alternative called the “lookup technique”, and show how
this technique employs four distinct principles. In section 4 we evaluate the lookup technique. We compare it
with spreadsheet engineering recommendations, consider resource consumption, and explain when it can and
cannot be applied, and discuss the principles of visibility applied to more complex situations, and the
challenge of “acceptable errors”. We conclude in section 5.

2. NESTED-IF FOR SPREADSHEET CONTINGENT LOGIC

In this section we discuss contingent logic, including nested-IF in traditional programming languages and in
spreadsheets, and describe the difficulties of testing and auditing a spreadsheet that contains nested-IF
formulas.

2.1. Contingent Logic in Computer Programming

This paper addresses an important aspect of spreadsheet computer programming, namely the implementation
of contingent logic. Contingent logic is required when the programmer wants a computer program to return
different values depending on the state of one or more other values.

Traditional programming languages handle contingent logic using programming statements such as If-Then-
Else, If-Then-Elself, Case, and Switch. Early scientific languages such as FORTRAN 66 provided only the

2 Copyright © 2009 EuSpRIG & The Author(s)

If-Then-Else statement which required cumbersome nesting. Note that the challenge posed by nested-IF
predates the spreadsheet!

Later programming languages, such as FORTRAN 77, reduced the need for nested-IF constructs by providing
the more powerful If-Then-Elself statement. Some modern programming languages also provide the flexible
Case and Switch statements.

To better program complex logic, traditional programmers devised conventions such as indenting, line breaks,
and color coding. These conventions are universal in traditional programming and are often automated (for
example, the Visual Basic editor). However, there are no such standard conventions for programming
complex logic in spreadsheets. Indeed, Panko (2008) states that spreadsheet programming “seems to resemble
programming practice in the 1950s and 1960s”, suggesting there is significant opportunity for improvement in
productivity, maintainability, and accuracy. Just as the advent of the If-Then-Elself statement took traditional
programming out of the 1960’s approach of using nested-If statements, we hope that the lookup technique and
follow-on research can advance the practice of spreadsheet programming.

2.2. Nested-IF in a Spreadsheet

Contingent logic is required when a cell in the program must return different values depending on the value of
an input or an intermediate calculation. Contingent logic in spreadsheets is typically programmed using the IF
function. The IF function allows the programmer to implement contingent logic that returns one outcome (the
“value if true” outcome) if the logical test evaluates TRUE, and another outcome (the “value_if false”
outcome) if the logical test evaluates to FALSE. The IF function syntax is as follows:

=IF(logical test, value if true, value if false)

When more than one contingency is present, the programmer can nest one IF function inside another. Any of
the arguments of the IF function can themselves be functions, providing a high degree of flexibility. For
example,

=IF(A3>A4 ,IF(A3>AS, “yes”, “first”) , “no”)
2.3. Difficulty Testing and Auditing Nested-1F

The simple example above is easy to understand. There are but two IF functions, and the outcomes

(value_if true and value if false) are text. However, the value if true and value if false can themselves be
IF functions. This nesting process can lead to cell formulas of substantial complexity. Consider this nested-IF
formula, drawn from a regularly used spreadsheet':

=IF(§D14="Rev",$C14*E$11/C11,IF($D14="Units",$C14*E$9/$C$9,IF(§D14="
MH",$C14*E$12/C12,IF($§D14="MC",$C14*E$13/$C$13,IF($C14="","""not
correct Allocation"))))).

In order to better visualize the formula, we rearrange it and strip out the “$” absolute
reference markers:

=IF(B10="Rev",B14*B15/B16,IF(B10="Units",B14*B17/B18,IF(B10="MH",B14*B
19/B20,IF(B10="MC",B14*B21/B22,IF(B11="","","not correct Alloc.")))))

We program this nested-If in Figure 1.

' This nested-IF formula was provided by an informant who indicated the spreadsheet is in routine use.

Copyright © 2009 EuSpRIG & The Author(s) 3

A B Cc D E F G H
Nested-IF contains: Logical Test Values, Outcome Values, Contingent Logic Structure

1

2

3

4

5
6 |=IF(B10="Rev"B14"B15/B16,IF(B10="Units". B14*B17/B18,IF(B10="MH"B14"B1%/B20,IF(B10="MC"B14°B21/B22,IF(B1 1="""""not correct Alioc."})}})
7

8

9 | Control Inputs

10 MH
11 §

13 | Other Inputs

ry
co
00 = O0 N f= L2 P2 — h

Figure 1: Example nested-IF formula

This nested-IF formula poses challenges for a programmer who wants to verify accuracy. One approach to
verifying accuracy is to audit the cell formula, by having a programmer (or team of programmers, Panko
2008) inspect the formula. However, it is not a simple exercise to understand the purpose of such a formula.
Even after the purpose is understood, it is difficult to verify its correctness.

There are three challenges in auditing this formula. First is the accuracy of the logical test formulas. Second is
the accuracy of the outcome formulas themselves; there are six different outcome values in this formula. Each
must be separately verified. Third is the accuracy of the contingent logic structure, which is controlled by the
location of the five IF functions and the match between the logical tests and the outcomes.

Another approach to verifying accuracy is to use traditional software testing. To test a spreadsheet containing
a nested-IF formula, it is necessary to devise test cases that will toggle every possible state of the nested-IF.
Such test cases can be challenging or even impossible to discover. Therefore, traditional input-output testing is
challenging and might be impossible.

3. THE FOUR PRINCIPLES OF THE LOOKUP TECHNIQUE

To ameliorate these problems, programmers sometimes use the lookup technique, which replaces the nested-
IF formula with several additional cells and a simple lookup function, as shown in Figure 5 below.

The lookup technique employs four principles. First is to make visible the logical test values (TRUE or
FALSE). Second is to make visible the outcome values. Third is to make visible the structure of the
contingent logic. Fourth is to use a simple formula to handle the contingent logic. To elucidate the principles
underlying the lookup technique, we will take a nested-IF and transform it step-by-step it into a lookup.

3.1. First Principle: Make Visible the Logical Test Values

We rewrite our example nested-IF to make visible in the spreadsheet the values of the logical tests. We
replace each logical test formula with the range name “Test1”, “Test2”, etc. This yields the following nested-
IF formula.

=]F(Test1,B14*B15/B16,IF(Test2,B14*B17/B18,1F(Test3,B14*B19/B20,
IF(Test4,B14*B21/B22,IF(Test5,"","Not Correct Alloc.")))))
where
Testl replaces B10="Rev"
Test2 replaces B10="Units"
Test3 replaces B10="MH"
Test4 replaces B10="MC"
Test5 replaces B11=""

4 Copyright © 2009 EuSpRIG & The Author(s)

We can program this in a spreadsheet as shown in Figure 2.

A B Cc D E F G H
1 |Nested-IF contains: Outcome Values, Contingent Logic Structure
2 Visible in the Spreadsheet: Logical Test Values

(%)

-

5

B |=IF(Test1,58814*88815/88816,IF(Test2,58514*8B8817/88518,IF(Test3, 585 14*88519/88820,IF(Testd, 585 14*88821/58822,IF(Tests, ™, "Not Correct Alloc. "))
7

8 Logical Tests

9 | Control Inputs Name Value Value Formula
10 MH Test1 FALSE $B310="Rev"
11 5 Test2 FALSE B10="Units"
12 Test3 TRUE $B310="MH"
13| Other Inputs Testd FALSE $B§10="MC"
14 5 Testh FALSE $B§11=""
15 1

16 2

17 3

18 4

19 5

20 6

21 7

22 8

23

Figure 2: Logical Test Values Made Visible in cells E10:E14

Notice that we added five new formula cells, one for each of the five logical tests. This allows each logical
test to be instantly verified for accuracy, whatever the state of the spreadsheet.

3.2. Second Principle: Make Visible the Outcome Values

We next rewrite our example nested-IF to make visible in the spreadsheet the values of the Outcomes. We
replace each outcome (formula or text) with the range names “Valuel”, “Value2” and so forth. This yields the
following nested-IF formula.

=[F(Testl,Valuel, IF(Test2,Value2, IF(Test3,Value3, IF(Test4,Value4, IF(Test5,Value5,Value6)))))

where Valuel through Value6 is defined as above and

Valuel replaces B14*§B$15/$B$16
Value2 replaces B14*B17/B18
Value3 replaces B14*B19/B20
Value4 replaces B14*B21/B22
Value5 replaces "

Value6 replaces "not correct Allocation”

We can program this in a spreadsheet as shown in Figure 3:

Copyright © 2009 EuSpRIG & The Author(s) 5

A B C D E B G H
Nested-IF contains: Contingent Logic Structure
Visible in the Spreadsheet: Logical TestValues, Outcome Values

=IF{Test1, Valuet IFTest2 ValueZ IF(Test3 Value3,IF(Test4, Valued IF(Test5, Values, Values))))

1
2
3
4
:
6
7
8
9

Logical Tests

Control Inputs Name Value Value Formula
10 MH Testt FALSE $BS10="Rev"
11 5 Test2 FALSE $B§10="Units"
12 Test3 TRUE $B310="MH"
13| Other Inputs Test4 FALSE $B310="MC"
14 5 Tests FALSE $B311=""
15 1
16 2 Outcomes
17 3 Name Value Value Formula
18 4 Valuet 2500 $B%14*$B$15/5B516
19 5 Value2 3.750 $B314*$B317/3B518
20 6 Value3 4167 $B%14*$B319/5B520
21 7 Valued 4375 3$B314*3B321/3B522
22 8 Value5 "
23 Value6 Not correct Alloc. | Not correct Affoc.
24

Figure 3: Outcome Values Made Visible in cells E18:23

Notice that we added six new formulas cells, one for each of the six outcomes. This allows each outcome to
be instantly verified for accuracy, whatever the state of the spreadsheet. If we intend to perform traditional
testing, these outcome values can be tested for every test case, not just for the test cases that cause the
contingent logic to display that outcome.

3.3. Third Principle: Make Visible the Structure of the Contingent Logic

Our next improvement is to modify the spreadsheet to make the structure of the contingent logic more visible.
We rearrange the cells so that the logical tests are placed next to their corresponding outcome values.

A B c D E E G H
Nested-IF contains: Contingent Logic Structure
Visible in the Spreadsheet: Logical Test Values, Outcome Values; also Contingent Logic Structure

=iF(Test1 Valuet, iF(Test2 ValueZ IF(Test3 Value 3 IF(Testd Valued, IF(Tests Value, Valueg)))})

1
2
3
4
:
3
7
8
9

Control Inputs Contingent Logic Structure
10 MH Logical Tests Outcomes
11 5 Name Value Value Name
12 Testt FALSE 2.500 Valuet
13| Other Inputs Test? FALSE 3.750 Value2
14 5 Test3 TRUE 4167 Value3
15 1 Test4 FALSE 4375 Value4
16 2 Test5 FALSE Value5
17 3 (otherwise) Not Correct Alloc Valueb
18 4
19 5
20 6
21 7
22 8
23

Figure 4: Structure of Contingent Logic Made Visible. The nested-IF in cell B5 displays the value in column F corresponding to the
first appearance of TRUE in Column C, or the value in row 17 if none are TRUE. Note that the nested-IF contains the contingent
logic, and the contingent logic is also visible in the spreadsheet.

Notice in Figure 4 that if Testl is TRUE, then the value in the same row is returned. If Testl is FALSE and
Test2 is TRUE, the value in the same row as Test2 is returned, and so forth. If all five logical tests are
FALSE, the final “(otherwise)” value is returned.

6 Copyright © 2009 EuSpRIG & The Author(s)

3.4. Fourth Principle: Simplify the Formula by Replacing Nested-IF with a Lookup

Our next improvement is to replace the complex, multi-function nested-IF cell formula with a simple, single-
function VLOOKUP cell formula. The new formula is

VLOOKUP(TRUE,E12:F17,2,FALSE)

Notice that we must type the logical test value TRUE in cell E17 to cause the VLOOKUP to return the last
Outcome value. Figure 5 presents a spreadsheet with the VLOOKUP formula and the equivalent nested-IF
formula.

A B c D E I G H
1 | Simpler Formula: VLOOKUP instead of Nested-IF
2
3 VLOOKUP FORMULA
4 |=VLOOKUP(TRUE E12:F17,2,FALSE)
=
6 Nested-IF FORMULA (for comparison)
T |=iF(Test1, Valuet iF(Test2 Value2 iF(Test3 Value3, iF(Testd, Valued. IF(Testd Values, Valueg)))))
8
9 | Control Inputs Contingent Logic Structure
10 MH Logical Tests Outcomes
11 5 Name Value Value Name
12 Test1 FALSE 2.500 Value1
13| Other Inputs Test? FALSE 3.750 Value?
14 5 Test3 TRUE 4167 Value3
15 1 Test4 FALSE 4375 Value4
16 2 Testh FALSE Valueb
17 3 TRUE Not Correct Alloc Valueb
18 4
19 5 Nate: Cell E19 contains the logical value TRUE.
20 6 This is necessary for the VLOOKUP in the case
21 7 where Test? through Test5 have Value FALSE.
22 8
23

Figure 5: Lookup Technique for Contingent Logic. The VLOOKUP in Cell B80 cell address displays the value in column D
corresponding to the first appearance of TRUE in Column C.

Compared to Figure 4, Figure 5 replaces the complex nested-IF formula with a simpler VLOOKUP that is
much easier to verify.

Compared to Figure 1, in Figure 5 the single nested-IF cell has been replaced by 12 cells. Five cells report the
value of the five logical tests. Six cells report the value of the six outcomes. One cell contains the structure
(and only the structure) of the contingent logic.

4. EVALUATION AND FURTHER RESEARCH

The lookup technique for contingent logic takes a complex nested-IF that is difficult to understand, test, and
audit and replaces it with new cells that are easy to understand, are testable, and are easier to audit.

4.1. Comparison with Spreadsheet Engineering Recommendations

The lookup technique for contingent logic expands a single cell with a complex formula into many cells with
simple formulas. It is consistent with the programming advice to “write for the reader”. This is well-known in
the traditional programming world, and is recommended by Powell and Baker textbook (2007b, page 101) . In
contrast, Raffensperger (2003) recommends using the fewest cells possible. This recommendation is driven by
the desire to present compact reports; this is easily handled by placing reports on a separate worksheet that
references the computational results.

4.2. Resource Consumption: Cells and Computation Time

The lookup technique for contingent logic increases the number of cells required by moving “covert
computations” out of the nested-IF and into their own cells. If the number of cells available is a constraint,
then this is problematic. For example, Thiriez (2004) describes a model that uses all 32,000 rows of an Excel
2003 spreadsheet. With the availability of one million rows in Excel 2007, the availability of cells should be
an issue rarely if ever.

Copyright © 2009 EuSpRIG & The Author(s) 7

The lookup technique could increase computation time because evaluations of logical tests and values that
were previously computed only when needed by the contingent logic are now always evaluated. However,
with modern computer hardware this issue will likely only rarely be a problem.

4.3. Branch-on-False

The nested-IF formulas in this paper have a pattern to the structure of the logic that we call “branch-on-False”.
In the upper-level IF functions the value if true is an outcome and the value if false is a nested-IF:

IF(logical test, value , IF(...)).

The lookup technique we describe works directly only for branch-on-false. This limitation should be explored
by further research. First, with simple modification to our approach it should be easy to make the lookup
technique work for “branch-on-true”, which is of the form IF(logical test, IF(...), value). Second, by
selectively reversing the logical tests it should be possible to convert a nested-1F that has a mix of branch-on-
true and branch-on-false into a nested-IF that has only branch-on-false, thereby admitting the use of the
lookup technique.

4.4. Complexity of Logical Branching

The act of making the structure of the logic visible is difficult in the situation where there is an IF function
that has further IF functions for both value argument, which has the following form:

IF(logical test, IF(...), IF(...)).

It is not possible to directly apply the lookup technique on this type of complex contingent logic. Therefore,
such nested-IFs do not admit the lookup approach. This topic merits further research; what can we do to
enhance the programming of complex contingent logic?

4.5. Principles of Visibility Applied to Complex Branching

With complex branching, it is not possible to replace a multi-function nested-IF formula with a single-
function lookup formula. Whether there is an option to make an improvement merits further research.
Regardless, the “visibility” benefits seem to be available. These include making logical tests visible; making
outcomes visible; making logical structure visible. Further research should explore how to apply these three
principles to complex branching.

4.6. Acceptable Errors

In some nested-IF formulas we have seen, outcome values can evaluate to an error when the outcome value is
not returned by the nested-IF. An example is a divide-by-zero error that is trapped by the nested-IF. If the
programmer applies the principle of making outcome values visible, such error values will now appear in the
spreadsheet. If it is unacceptable to have error values in the spreadsheet, then the error message might need to
be detected and flagged in some fashion. This topic merits further research.

5. CONCLUSION AND FUTURE DIRECTIONS

We discuss the “lookup technique” for programming contingent logic in spreadsheets. We illustrate a step-by-
step process to convert a simple nested-IF into a lookup. We explain the benefits in terms of the lookup
technique in terms of testing and auditing.

We identify four principles associated with the technique. We propose that these four principles can and
should be used during spreadsheet design. If they are implemented during design and programming of a
spreadsheet, we hypothesize that they will reduce the total effort to create the spreadsheet (especially when
one considers how long it takes to code a complex nested-IF formula), and reduce the time to debug the
spreadsheet. Such hypotheses merit empirical evaluation, and we believe deployment of this approach to
programmers to be an important avenue of future research.

We show that the lookup technique does not apply to certain “complex” contingent logic situations that
present as a complex nested-IF formula. It would be desirable to determine what particular types of
spreadsheets benefit from the proposed approach and what types may not. We anticipate that some of the
principles can still be applied and yield benefits. We illustrated the lookup technique in a “spreadsheet
remediation” situation, by converting an existing nested-IF into a better lookup technique.

8 Copyright © 2009 EuSpRIG & The Author(s)

The lookup technique yields code that in our opinion is more readable because individual cell formulas are
shorter. We further believe that the task of verifying or auditing the accuracy of contingent logic is easier with
the lookup approach than with the nested-IF approach. These assertions merit empirical testing.

As with any programming principles, there will always be times when a programmer chooses not to adhere to
them. The four principles and the use of the lookup technique in general, should be viewed as guidelines
rather than rigid rules.

We view the use of the lookup technique, and any future more advanced techniques for programming
contingent logic in spreadsheets to be comparable to the traditional programming norm of systematic
indentation of a complex series of statements. It is interesting to consider whether other such spreadsheet
norms could be developed. Similar to traditional programming languages, we would like to see research to
develop the spreadsheet equivalent of a Case statement.

Finally, a referee drew our attention to the EUSES corpus” as a repository of spreadsheets. We hope to use this
corpus in future research efforts.

ACKNOWLEDGEMENTS

We would like to thank the EuSpRIG program chair and the anonymous referees for their constructive
feedback. Any errors of omission or commission are the responsibility of the authors.

REFERENCES

Baxter, R. (2005), “Regulation and the Integrity of Spreadsheets in the Information Supply Chain”,
http://arxiv.org/ftp/arxiv/papers/0801/0801.2678.pdf 9:30am 3/27/2009

Coles, S. and J. Rowley (1996), “Spreadsheet modelling for management decision making”, Industrial
Management & Data Systems, Vol. 96, Issue 7, pp. 17-23.

Croll, G. J. and Butler, R.J. (2006), “Spreadsheets in Clinical Medicine - A Public Health Warning”, Proc.
European Spreadsheet Risks Int. Grp. http://arxiv.org/ftp/arxiv/papers/0710/0710.0871.pdf 9:30am 3/27/2009

Croll G. J. (2005), “The Importance and Criticality of Spreadsheets in the City of London”, Proc. European
Spreadsheet Risks Int. Grp. http://www.eusprig.org/tiacositco4.pdf 10:00am 3/27/2009

EuSpRIG (2009), “Spreadsheet Mistakes — News Stories”, http://www.eusprig.org/stories.htm 10:00am
3/277/2009

Grossman T. A., Mehrotra, V. and , Ozliik, O. (2007) “Lessons from Mission-Critical Spreadsheets”, The
Communications of the Association for Information Systems, Vol. 20, Article 60.

Jelen, B. (2008), “Replacing nested IF functions with a lookup,”
http://findarticles.com/p/articles/mi_hb6421/is 2008 Feb/ai_n29414853 Noon 5/27/2009

Lanza, R. B. (2006), “Guarding Against Excel Spreadsheet Vulnerabilities”, The Trusted Professional,
http://www.nysscpa.org/trustedprof/206/tp7.htm 10:00am 3/27/2009

Powell, S. G., Baker, K. R., and Lawson, B. (2007a), ”Impact of Errors in Operational Spreadsheets”, Proc.
European Spreadsheet Risks Int. Grp. http://arxiv.org/ftp/arxiv/papers/0801/0801.0715.pdf 10:30am
3/27/2009

2 http://esquared.unl.edu/wikka.php?wakka=EUSESSpreadsheetCorpus

Copyright © 2009 EuSpRIG & The Author(s) 9

Powell S. and K. Baker. (2007b). Management Science: The Art of Modeling with Spreadsheets, John Wiley
& Sons.

Powell, S. G., Baker, K. R., and Lawson, B. (2008a), “An auditing protocol for spreadsheet models”,
Information and Management. 45 (5), 312-320.

Powell, S. G., Baker, K. R., and Lawson, B. (2008b), “A critical review of the literature on spreadsheet
errors”, Decision Support Systems 46 (1), 128-138.

Panko, R. (2000a). “Errors in Spreadsheet Auditing Experiments”,
http://panko.shidler.hawaii.edu/ssr/auditexp.htm, 9:00am 3/25/2009

Panko, R. (2000a). “Errors during Spreadsheet Development Experiments”,
http://panko.shidler.hawaii.edu/sst/devexpt.htm, 9:00am 3/25/2009

Panko, R. (revised in 2008). “What We Know About Spreadsheet Errors”,
http://panko.shidler.hawaii.edu/ssr/mypapers/whatknow.htm, 9:00am 3/25/2009

Raffensperger, John F. (2003) , “New Guidelines for Spreadsheets”, International Journal of Business and
Economics, Vol. 2 Issue 2, pp. 141-154.

Ragsdale, C. T. (2001), “Teaching Management Science With Spreadsheets: From Decision Models to
Decision Support,” INFORMS Transactions on Education, Vol. 1, Issue. 2.

Read, N. and J. Batson (1999), “Spreadsheet modeling best practice”, http://www.eusprig.org/smbp.pdf,
accessed 9:30am 3/27/2009.

Thiriez, H. (2004), "Spreadsheet-Based Professional Modelling," INFORMS Transactions on Education, Vol.
4, No 2, http://ite.pubs.informs.org/Vol4No2/Thiriez/, accessed 9:00p.m. 3/27/09.

10 Copyright © 2009 EuSpRIG & The Author(s)

	The University of San Francisco
	USF Scholarship: a digital repository @ Gleeson Library | Geschke Center
	2009

	The Lookup Technique to Replace Nested-IF Formulas in Spreadsheet Programming
	Thomas A. Grossman Jr.
	O Ozluk
	J Gustavson
	Recommended Citation

	tmp.1485453247.pdf.HO4JC

