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The compressed state Kalman filter for nonlinear state
estimation: Application to large-scale reservoir monitoring
Judith Yue Li1, Amalia Kokkinaki1, Hojat Ghorbanidehno2, Eric F. Darve2,3, and Peter K. Kitanidis1,3

1Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA, 2Department of
Mechanical Engineering, Stanford University, Stanford, California, USA, 3Institute for Computational and Mathematical
Engineering, Jen-Hsun Huang Engineering Center, Stanford University, Stanford, California, USA

Abstract Reservoir monitoring aims to provide snapshots of reservoir conditions and their uncertainties
to assist operation management and risk analysis. These snapshots may contain millions of state variables,
e.g., pressures and saturations, which can be estimated by assimilating data in real time using the Kalman
filter (KF). However, the KF has a computational cost that scales quadratically with the number of unknowns,
m, due to the cost of computing and storing the covariance and Jacobian matrices, along with their prod-
ucts. The compressed state Kalman filter (CSKF) adapts the KF for solving large-scale monitoring problems.
The CSKF uses N preselected orthogonal bases to compute an accurate rank-N approximation of the covari-
ance that is close to the optimal spectral approximation given by SVD. The CSKF has a computational cost
that scales linearly in m and uses an efficient matrix-free approach that propagates uncertainties using
N 1 1 forward model evaluations, where N � m. Here we present a generalized CSKF algorithm for nonlin-
ear state estimation problems such as CO2 monitoring. For simultaneous estimation of multiple types of
state variables, the algorithm allows selecting bases that represent the variability of each state type.
Through synthetic numerical experiments of CO2 monitoring, we show that the CSKF can reproduce the Kal-
man gain accurately even for large compression ratios (m/N). For a given computational cost, the CSKF uses
a robust and flexible compression scheme that gives more reliable uncertainty estimates than the ensemble
Kalman filter, which may display loss of ensemble variability leading to suboptimal uncertainty estimates.

1. Introduction

Reservoir monitoring is an essential part of many field operations such as aquifer recharge [Nenna et al.,
2011], groundwater contamination identification [McLaughlin et al., 1993], and CO2 storage [Arogunmati and
Harris, 2012]. Mathematically, the monitoring problem can be formulated as a state estimation problem, in
which state variables including pressure, phase saturation, and other time-varying quantities are sequen-
tially updated using data collected at discrete time steps. This sequential approach is particularly useful for
real-time control applications, where management decisions need to be made based on newly acquired
data and changes in reservoir conditions [Yeh, 1986]. Each time new data are assimilated, an inverse prob-
lem is solved. The unknowns at a given time and their respective uncertainties are inferred by combining a
physical model and the actual observations at that time [Tarantola, 2005].

One of the challenges of such inverse problems for applications in reservoir monitoring is the high-
dimensional state space that results from the discretization of a heterogeneous parameter field, combined
with the nonlinear multiphase flow equations governing the evolution of the state variables. This high
dimensionality translates into significant computational costs that often surpass the power of even modern
computers. Methods that are able to handle such high-dimensional problems are necessary in cases where
fine resolution of the estimated field is important, such as for CO2 leakage detection.

The Kalman filter [Kalman, 1960] and its nonlinear version, the extended Kalman filter (EKF) [Gelb, 1974], pro-
vide a Bayesian framework to continuously assimilate observed data in the predictions of an uncertain for-
ward simulator. In the case of modeling multiphase flow using reservoir simulators, data assimilation can be
used to correct errors due to assumed initial conditions, boundary conditions, or input parameters [Liu and
Gupta, 2007]. For a reservoir model of typical size, i.e., 104 to 106 unknowns after discretization, the original
implementation of KF is computationally intractable primarily because of the requirement to store and
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update a large covariance matrix of size equal to m2 (m is the number of the unknowns). In addition,
because of the nonlinearity of multiphase flow physics, at every assimilation step, the model has to be line-
arized around the current estimates using either expensive numerical differentiation techniques or adjoint
solvers, which are often difficult to implement and require code modifications of the forward model. There-
fore, another important contributor to the computational burden is the cost of computing and storing the
Jacobian matrices and their products with other matrices.

One approach to address the computational challenge of such large systems is to use a low-rank approxi-
mation of the covariance matrix. Examples of low-rank KF algorithms include the ensemble Kalman filter
(EnKF) [Evensen, 1994], the singular evolutive extended Kalman (SEEK) filter [Tuan Pham et al., 1998], and
the compressed state Kalman filter (CSKF) [Kitanidis, 2015]. Such methods approximate the estimation error
covariance matrix by a reduced rank matrix, which is often justified in applications [Oliver and Chen, 2011].
Low-rank methods can provide significant computational speedup compared to the original KF algorithm.
Fast linear algebra techniques for fast matrix-vector multiplication can further improve the computational
efficiency of low-rank methods [Kitanidis, 2015]. The computational cost of such methods is determined by
the size of the reduced rank covariance matrix, which also determines the number of forward runs of the
simulator required. For all low-rank methods, the rank must be chosen such that the error subspace cap-
tures most of the variability in the unknown state, otherwise rank deficiency can lead to underestimation of
uncertainty and result in inaccurate estimates of the unknown states and their uncertainties. This trade-off
between computational efficiency and estimation accuracy is the critical point of low-rank methods. Meth-
odologies that provide robust control of this trade-off are necessary for efficient and reliable estimation.

A critical requirement for achieving reliable estimation is the ability of a low-rank filter to reproduce the
optimal Kalman gain. The Kalman gain is a quantity that determines how state variables should be adjusted
in order to match the observations. Each element of the Kalman gain matrix can be thought of as a ‘‘linear
regression coefficient’’ between the state variable being estimated and a set of observations [Anderson,
2003]. Inaccurate low-rank approximations of the covariance can result in inaccurate Kalman gain estima-
tion, which may lead to unphysical state estimates and degradation of the filtering accuracy as more data
are being assimilated. One well-known case of this problem is when the EnKF is used with insufficient
ensemble size, resulting in deteriorated Kalman gain estimates [Zhou et al., 2006; Zhang and Oliver, 2010].
This may lead to a fast reduction in the ensemble variability and often a severe underestimation in the
uncertainty, a phenomenon that is referred to as ‘‘ensemble collapse’’ [Lorenc, 2003; Bengtsson et al., 2008].
Increasing the ensemble size can improve the quality of Kalman gain and provide more robust error var-
iance estimates [Reichle et al., 2002], yet at a rather slow rate, i.e., Oð1=

ffiffiffiffi
N
p
Þ [Furrer and Bengtsson, 2007],

and at an increased computational cost. In such cases, additional steps that introduce additional tuning
parameters, such as localization [Houtekamer and Mitchell, 1998; Anderson, 2012; Zhang and Oliver, 2010],
shrinkage regression [Sætrom and Omre, 2011], covariance tapering [Furrer and Bengtsson, 2007], or covari-
ance inflation [Anderson, 2001] have to be used to reduce the effect of sampling errors.

In this paper, we present the generalized compressed state Kalman filter (CSKF) that can be applied for both
linear and nonlinear large-scale state estimation problems. The core idea behind the method’s computational
efficiency, as proposed in Kitanidis [2015], is to provide an accurate low-rank representation of the covariance
matrix and thereby the optimal Kalman gain, and to avoid explicit calculation of the Jacobian by linearizing
the nonlinear equations using an efficient matrix-free approach. Several modifications to the method of
Kitanidis [2015] are presented that allow application of CSKF to more general cases such as CO2 monitoring,
where there is nonlinearity in both the model and the observation process, and also allowing the simultane-
ous estimation of multiple types of state variables that depend on each other. The paper begins with an over-
view of the extended Kalman filter and strategies to compress the covariance effectively. Then, we illustrate
how the CSKF reduces the computational cost for a single type of state variable, and for multiple types of state
variables by using a compression scheme that allows a different compression ratio for each type of state vari-
able. The algorithm is validated and analyzed using synthetic CO2 monitoring examples.

2. Methods

In this section, we formulate the state estimation problem in the context of reservoir monitoring. We first
summarize the solution given by the extended Kalman filter for the nonlinear estimation problem in order
to establish notation and then we present the generalized CSKF algorithm.
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2.1. State-Space Model and Extended Kalman Filter
Consider a state-space model that describes a nonlinear dynamic system,

xk115/ðxkÞ1wk; x 2 Rm31 (1)

and the measurement relation to the state variables:

yk115hðxk11Þ1vk ; y 2 Rn31 (2)

where m denotes the number of unknowns and n denotes the number of measurements. In the context of
reservoir monitoring, the unknown state variables xk (e.g., saturation and pressure) refer to the current reser-
voir condition at time instance k, evolving according to the discretized multiphase flow equation /ð�Þ. The
term wk represents the model errors due to incorrect initial, boundary conditions or parameters in equation
(1). The observations at time k, yk, (e.g., flux and pressure) are related to the reservoir state xk through equa-
tion (2), where the term vk represents measurement errors.

The operational assumption is that the unknown initial state x0 is Gaussian with mean the best linearized
estimate x̂ 0 and covariance R0, and x0, wk, and vk are mutually independent white (uncorrelated in time)
Gaussian processes, i.e.,

x0 � Nðx̂ 0;R0Þ (3)

wk � Nð0;QÞ (4)

vk � Nð0; RÞ (5)

with Q and R representing the model error and measurement error covariance matrices, respectively.

For the above state-space models, the extended Kalman filter (EKF) (see textbooks such as Anderson and
Moore [1979]), i.e., the nonlinear version of the Kalman filter, gives the posterior mean x̂ k11jk11 and covari-
ance Rk11jk11 conditioned on the observations yk11. The subscript notation of xi|j denotes the estimate at
time i conditioned on the measurements up to time step j. The EKF consists of a forecast step, which uses
the forward model to predict the state at time k 1 1, and an analysis step that uses the observations
obtained at time k 1 1 to improve the corresponding states predicted at the forecast step (Algorithm 1).
The posterior mean x̂ k11jk11 in the analysis step of Algorithm 1 is obtained by minimizing the linearized
approximation of the objective function:

JðxÞ5jjyk112hðxÞjjR21 1jjx2/ðx̂ kjkÞjjR̂21
k11jk

(6)

where the notation jjxjjP denotes the product of xTPx. The computational challenge in the above minimiza-
tion is that it involves expensive matrix operations with the covariance matrix R, of size m 3 m, and the
computation of Jacobian matrices F5 @/

@x jx5x̂ kjk
and H5 @h

@x jx5x̂ k11jk
, which are computationally prohibitive for

large systems. The next section outlines how these operations can be made more efficiently.

2.2. Covariance Compression
Covariance compression can be used to reduce the cost of storing and updating large covariance matrices.
For many data assimilation problems, the covariance matrix, Rk11|k11, can be approximated adequately
with a low-rank matrix [Pham et al., 1998; Kitanidis, 2015; Tippett et al., 2003]. Consider that the m 3 m state
error covariance matrix R can be approximated using a matrix R̂ of rank N (N � m) through the following
factorization:

R ’ R̂5ACAT (7)

where A 2 Rm3N satisfies ATA 5 I, and the inner
matrix C 2 RN3N is a symmetric and positive
definite matrix. The columns of A are N ortho-
normal vectors that form the basis spanning a
subspace of the full m-dimensional space. As
suggested by Kitanidis [2015], in our method,

Algorithm 1. Extended Kalman filter algorithm (EKF)

Forecast:
Forecast state x̂ k11jk5/ðx̂ kjkÞ
Compute Jacobian F5 @/

@x jx̂ kjk
Forecast covariance matrix R̂k11jk5FR̂kjkF

T 1Q
Analysis:

Compute Jacobian H5 @h
@x jx̂ k11jk

Kalman gain K5R̂k11jk HT HR̂k11jk HT 1R
� �21

Update state x̂ k11jk115x̂ k11jk1K yk112hðx̂ k11jkÞ
� �

Posteriori covariance R̂k11jk115R̂k11jk2KHR̂k11jk

Water Resources Research 10.1002/2015WR017203

LI ET AL. COMPRESSED STATE KALMAN FILTER FOR NONLINEAR APPLICATIONS 9944



the basis A is kept constant through the filtering process so that only the small matrix C is updated. Also,
both R and Q are compressed using the same orthogonal basis, i.e., Q̂5AVAT .

To obtain the low-rank approximation of the covariance efficiently, A can be preselected following one of
several possible approaches. For example, A can be the first N eigenvectors of a representative covariance
matrix Z. The standard approach to compute the full factorization Z 5 ACAT is through direct eigen-
decomposition, which has computational complexity of Oðm3Þ. However, since only the first N dominant
eigenvectors are desired, they can be obtained using the randomized low-rank approximation at a much
lower cost of Oðm2NÞ [Halko et al., 2011]. The computational cost is further reduced to OðmNÞ when the lat-
ter method is combined with fast linear algebraic techniques [Lee and Kitanidis, 2014]. An OðmÞ randomized
low-rank algorithm used in this article is described in the supporting information S2.

Provided that the problem is discretized on a regular grid, a reasonable orthonormal basis A can be com-
puted more efficiently using the discrete cosine transform (DCT) [Strang, 1999]. The DCT is well known as an
effective image compression technique [Ahmed et al., 1974]. Recently, the DCT has also found applications
in reservoir modeling for representing complex geologic structures using a handful of coefficients [Jafar-
pour et al., 2009a, 2009b]. In one dimension, the elements of the DCT matrix A 2 Rm3N are defined by

Aðk; 1Þ5 1ffiffiffiffi
m
p ; k51; . . . ;m (8)

Aðk; jÞ5
ffiffiffiffi
2
m

r
cos

pð2k21Þðj21Þ
2m

� �
(9)

k51; . . . ;m; j52; . . . ;N (10)

where m is the number of grid blocks for a given discretization, and N is the number of orthonormal vec-
tors. Any spatial patterns can be represented by combining low-frequency and high-frequency DCT bases.
For spatial fields characterized by smooth covariance kernels whose eigenspectrum drops rapidly, their vari-
ability can be captured using only the low-frequency DCT basis, i.e., N may be small and the compression
therefore can be considerable.

Generally, the optimal choice of rank N for the estimation covariance compression depends on the eigens-
pectrum of the posterior covariance and the level of accuracy we are expecting from filtering. Even though
the posterior covariance is not known a priori, we can choose N based on the smoothness of the problem
and an assumed covariance that represents this smoothness reasonably well. Alternatively, the basis can be
obtained from the training images [Jafarpour and McLaughlin, 2008].

Once A and N are known, the compressed state covariance matrix C5AT ðRAÞ, and the compressed model error
covariance matrix V 5 AT(QA) can be computed efficiently as follows: assume that the initial state covariance
matrix R0 and the model error covariance matrix Q take the form of covariance kernels, examples of which are
exponential, or Gaussian covariance functions that are frequently encountered in kriging and state estimation
problems. Then, for the selected orthonormal basis A 2 Rm3N , each of the matrix-vector products R0A and QA
can be computed with OðN2mÞ computational cost with the aid of the hierarchical matrix approach [Saibaba
et al., 2012; Saibaba and Kitanidis, 2012; Ambikasaran et al., 2013a,b; Li et al., 2014; Aminfar et al., 2016]. Each
remaining product has anOðNmÞ computational cost, resulting in a total of (N 1 N2)m operations.

The CSKF algorithm proposed in Kitanidis [2015] is based on the idea of using covariance compression to
reduce the computational cost of EKF. In this paper, we present the generalized CSKF for solving nonlinear
state estimation problems with a reduced computational cost. Compared to the algorithm of Kitanidis [2015]
which is applicable for a linear measurement operator H and a single-state variable, the implementation pre-
sented here is for applications where both the model and measurement operators are nonlinear (see section
2.3) and for applications where we want to estimate multiple unknown states that depend on each other (see
section 2.4), e.g., estimation of the reservoir saturation and pressure given real-time production data.

2.3. CSKF for Single-Variable Nonlinear State Estimation
Let us denote the products of the Jacobians and the eigenvectors A as AF5FA and AH 5 HA. Assume both
AF and AH are computed and stored. In the forecast step of each data assimilation cycle, we obtain the best
state estimate given by the forward model and the previous state
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x̂ k11jk5/ðx̂ kjkÞ (11)

and its compressed covariance

Ck11jk5ðAT AFÞCkjkðAT AFÞT 1V (12)

with OðmÞ operations. Note that by compressing the model error covariance matrix Q using the selected
basis A, i.e., Q 5 AV AT, a matrix-free approach can be used to compute the otherwise expensive matrix-
matrix products QHT. This is necessary for cases with a nonlinear measurement operator hð�Þ, as opposed to
a linear hð�Þ case like the one discussed in Kitanidis [2015].

In the analysis step, the state at time step k 1 1 is updated using measurements at time step k 1 1:

xk11jk115xk11jk1Kðyk112hðxk11jkÞÞ (13)

The Kalman gain, K, which is used to compute the correction made to the prior state xk11|k, is given by the
following procedure:

First, compute the X by solving the system of linear equations

ðAHCk11jk AHT 1RÞX5AHCk11jk (14)

where RHH5AHCk11jk AHT 1R is the innovation covariance and can be computed with OðmÞ instead of Oðm2Þ
operations. Then, the Kalman gain is given by

K5AX T (15)

By substituting equation (15) into equation (13), it can be shown that the correction being made to xk11|k is
restricted in the subspace spanned by the orthogonal bases included in A. A more detailed derivation of
equations (12)–(15) can be found in Appendix A. If the innovation covariance matrix RHH of size n 3 n is ill
conditioned or singular, i.e., R21

HH does not exist [Evensen, 2007], the truncated singular value decomposition
(TSVD) may be used to compute the pseudoinverse of RHH in order to solve equation (14). For data of differ-
ent magnitudes, scaling of RHH is required before the TSVD to avoid loss of useful information [Wang et al.,
2010] (Appendix B).

The updated compressed covariance at time k 1 1 is given by

Ck11jk115ðIm2X T AHÞCk11jk (16)

The full posterior covariance matrix is given by Rk11jk115ACk11jk11AT . However, using the above sequence
of operations, Rk11|k11 is never computed explicitly, thereby reducing the storage and computation costs
dramatically.

Finally, note that in equations (12)–(16), instead of computing the Jacobian matrices F5 @/
@x

��
xkjk

and H5 @h
@x

��
xk11jk

directly, only the matrix-vector products of the Jacobian matrices AF (5FA) and AH (5HA) are required. This
matrix-vector product can be efficiently obtained using a matrix-free approach [Lee and Kitanidis, 2014] like the
finite difference method for calculating matrix-vector products,

AF
:;i5

/ðx1djjxjjA:;iÞ2/ðxÞ
djjxjj

����
xkjk

(17)

AH
:;i5

hðx1djjxjjA:;iÞ2hðxÞ
djjxjj

����
xk11jk

(18)

where A:;i is the ith column of A, a dimensionless orthonormal vector, i.e., jjA:;ijj51. Using this
approach, the computation of AF and AH requires N 1 1 evaluations of the forward model f ð�Þ and
hð�Þ. The approximation error can be reduced if a higher-order finite difference scheme (e.g., central
difference) is used, at the cost of increased computational burden. The selection of d depends on
the machine precision and the sensitivity. A reasonable choice is d5

ffiffi
�
p

, where � is the reading preci-
sion of the output f(x) and h(x).
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2.4. CSKF for Multiple-State Variables
In certain applications, we often want to update more than one type of uncertain state variable or model
parameter simultaneously using information from the observations. In this section, we show how the CSKF
can be extended to estimate two or more state variables that depend on each other (e.g., pressure and sat-
uration for multiphase flow), with a different orthogonal basis for each type of variable. Including multiple
states increases the computational cost of filtering, as there are more unknowns and respective covariances
to be estimated.

The multiple-state estimation problem can be solved using a block compression scheme of the covariance.
Consider an augmented state vector with two unknown states (e.g., pressure and saturation): xk5½pk ; sk �T ,
whose covariance matrix has a block structure, with blocks on the diagonal representing the covariance of
each variable and the blocks off the diagonal representing the cross-covariances (equation (19)):

R5
Rpp Rps

RT
ps Rss

" #
(19)

where Rij is the covariance matrix for state variable i (i 5 j) or the cross-covariance for state variable i and j
(i 6¼ j). A reasonable initialization choice for the state covariance is Rii5Kðhjl;rÞ, where K(h) is a covariance
function of distance h (e.g., Gaussian and exponential), which is parameterized with standard deviation r
and correlation length l.

Their low-rank approximation of the form Rij5Ai Cij AT
j can be obtained following the description in section

2.2, where Ai is a preselected dimensionless orthogonal basis for each type of unknown i, and the inner
matrix Cij is the compressed covariance or cross-covariance that accounts for the units. The factorized state
error covariance matrix has a block low-rank structure

R5
ApCppAT

p ApCpsAT
s

AsCT
psAT

p AsCssAT
s

" #
(20)

Now we write R in the factorized form, i.e., R 5 ACAT, where

A5
Ap 0

0 As

" #
(21)

C5
Cpp Cps

CT
ps Css

" #
(22)

The factorization of model error covariance Q 5 AV AT can be obtained following the same procedure.

Similarly, the terms AF and AH for the augmented state can be obtained by computing individual parts for
each variable first and then assembling them together as follows,

AF5½AF
p ;AF

s �5
@/k11

@pkjk
Ap

@/k11

@skjk
As

� �
(23)

AH5½AH
p ;AH

s �5
@hk11

@pk11jk
Ap

@hk11

@sk11jk
As

� �
(24)

where /k11 denotes xk11jk5/ðxkjkÞ, and hk11 denotes yk115hðxk11jkÞ. Equations (23) and (24) consist of a
total of N5rankðApÞ1rankðAsÞ calls of forward model fk11 and hk11. With the newly defined C, AH, and AF,
the CSKF algorithm described in equations (1–18) can be applied to the augmented state for an arbitrary
number of state variables. A summary of the generalized CSKF algorithm for multiple-state estimation is
given by Algorithm 2.

2.5. Computational Cost
We compare the CSKF with two EnKF variants: a standard EnKF and a more typical EnKF variant that
includes localization (termed EnKF1LOC hereafter). Localization is performed directly on the Kalman gain
using the bootstrap-based method proposed by Zhang and Oliver [2010]. For both EnKF variants, an
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improved sampling scheme was used, to ensure consistency between the initial covariances of the EnKF
and the CSKF (see supporting information S1.2 for details).

Table 1 summarizes the computational cost of EKF, CSKF, and EnKF. It is shown that the CSKF and EnKF with
the same rank-N approximation of the covariance matrix have roughly the same computational cost, which
consists of N 1 1 evaluations of the forward model and OðmÞ operations to update mean and covariance,
while EKF requires at least Oðm2Þ operations for Jacobian computation and covariance propagation. Here
the sampling required by EnKF is done efficiently with the aid of fast linear algebra techniques (supporting
information S1.2). Note that the computational cost of EnKF1LOC is roughly the same as EnKF, as the boot-
strap sampling does not require additional forward simulations (supporting information S1.3).

3. Numerical Example

Validation of the CSKF for a linear
diffusion problem has been pre-
sented in Kitanidis [2015]. Here
we address the additional chal-
lenges involved in applying the
CSKF to a nonlinear data assimi-
lation problem. For this purpose,
we use a scenario of injecting
supercritical CO2 in a deep geo-
logical formation for storage, in
which case the states, including
CO2 pressure and saturation,
evolve according to a model
describing multiphase flow and
transport in porous media, i.e.,
the mass conservation equations
for two fluid phases, accompa-
nied with corresponding consti-
tutive relationships [Pruess and
Spycher, 2007].

Multiphase flow and transport
models often require a large
number of grid blocks to charac-
terize the reservoir states (e.g.,
pressure and saturation). The

Table 1. Comparison of Computational Cost of EKF, CSKF, and EnKF (m� n > N)

Equation O(Operations)

EKF Initialization
Construct initial covariance R0j0 m2

CSKF Initialization
1. Randomized SVD 1H2-matrix N2m 1 Nm
2. DCT 1H2-matrix mlogm1Nm1N2m

EnKF Initialization
Randomized SVD1H2-matrix N2m 1 Nm
Generate samples (supporting information S1.2) N2m

EKF Forecast
Jacobian and state forecast m2 1 1 evaluations of f(�)
Covariance matrix forecast m3 1 m2

CSKF Forecast
Compute AF and forecast mean N 1 1 evaluations of f(�)
Forecast compressed covariance N2m 1 N3

EnKF Forecast
Forecast ensemble N 1 1 evaluations of f(�)
Sample from Q (supporting information S1.2) N2m

EKF Update
Compute H nm evaluations of h(�)
Compute Kalman gain K nm21n2m1n3

Update mean and covariance nm2 1 nm
CSKF Update

Compute AH N 1 1 evaluations of h(�)
Compute Kalman gain K Nnm1Nn31N2n
Update mean and compressed covariance nm1N2n1N3

EnKF Update
Simulate data ensemble N 1 1 evaluations of h(�)
Compute Kalman gain Nnm1n31Nn2

Update ensemble Nnm

Algorithm 2. The nonlinear compressed state Kalman filter algorithm (CSKF)

Initialization Initialize A, C, and V so that R 5 ACAT and Q 5 AV AT for augmented state estimation:

A5
Ap 0

0 As

" #
; C5

Cpp Cps

CT
ps Css

" #
and V5

Vpp Vps

V T
ps Vss

" #

Forecast state xk11jk5fk11ðxkjkÞ
Compute AF

AF
:;i5

/ðx1djjxjjA:;i Þ2/ðxÞ
djjxjj jxkjk

AF5½AF
p ;AF

s � for augmented state estimation
Forecast compressed covariance Ck11jk5ðAT AFÞCkjkðAT AFÞT 1V
Compute AH

AH
:;i5

hðx1djjxjjA:;i Þ2hðxÞ
djjxjj jxk11jk

AH5½AH
p ;AH

s � for augmented state estimation
Kalman gain 1. Form RHH5AHCk11jk AH T 1R

2. Solve system RHHX5AHCk11jk for X
3. Compute Kalman gain K5AX T

Update state xk11jk115xk11jk1K dk112hk11ðxk11jkÞ
� �

Update compressed covariance Ck11jk115ðIm2X T AHÞCk11jk
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resulting high state-space dimension prevents the use of standard KF or EKF for state estimation due to
computational demands. In addition, with the number of unknowns being considerably higher than the
number of observations, the inverse problem becomes severely underdetermined. To investigate the per-
formance of CSKF for such underdetermined data assimilation problems, we use two 2-D CO2 monitoring
benchmark examples. In both examples, CO2 injection is simulated using TOUGH2 [Pruess, 1991], a multi-
phase multicomponent reservoir simulator, combined with the module ECO2N [Pruess and Spycher, 2007]
that models the physicochemical process of CO2 displacing brine water in a deep aquifer. The TOUGH2-
ECO2N code has been validated and is well documented in many carbon sequestration modeling studies
[Doughty, 2010; Pruess and Nordbotten, 2011; Zhou et al., 2010].

3.1. Case A: Validation
Before applying the proposed algorithm to a nonlinear case, let us first consider a case in which the true
state is simulated using TOUGH2, but for the filtering a simple linear transition model, i.e., the random walk
model, is used to approximate the nonlinear dynamics. For such a linear state-space model, it is possible to
evaluate the full KF and use the KF estimates (i.e., the optimal estimate) to validate the generalized CSKF
algorithm. Furthermore, we will show the convergence of the CSKF to the KF as the rank N increases.

This case study is based on a seismic CO2 monitoring example, Frio II, following Daley et al. [2011] and Li
et al. [2014]. Figure 1 shows the design of the Frio II experiment and the changes in seismic slowness
(inverse of velocity) due to CO2 injection. To map the velocity reduction zone due to CO2 injection, 288 seis-
mic travel time measurements are collected every 3 h using six seismic sources deployed at the injection
well and 48 receivers deployed at the monitoring well [see Li et al., 2014].

The objective is to continuously track a CO2 plume with an unknown injection rate and unknown injection
location, by estimating the changes in slowness x given the most up-to-date measurements of travel time
delay y. Here we assume a linear time-invariant measurement operator y5hðxÞ5Hx and a random walk
transition equation xk115/ðxkÞ5xk , an approximation of the true transition equation that is used in cases
where the true transition equation may be unavailable or too expensive to evaluate. Approximating the
transition equation as a random walk model is reasonable for cases where measurements are collected fre-
quently [Nenna et al., 2011].

The data assimilation problem is solved using KF, CSKF, EnKF, and EnKF1LOC assuming the same initial
conditions and regularization parameters. For the standard EnKF, in which no localization or covariance fil-
tering is applied (supporting information S1.1 and S1.2), the difference from CSKF in the solution is attrib-
uted solely to how the covariance matrix is represented. For EnKF1LOC, there is the added difference due
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Figure 1. Case A: seismic survey geometry and the true slowness before the injection, 30 and 120 h after CO2 injection.
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to localization (supporting information
S1.3), which aims to reduce spurious corre-
lations due to sampling errors.

Assuming there is no CO2 present in the
field initially, the initial state is assumed to
have zero mean and the error covariance
R is assumed to be zero. To capture the
sharp changes in the slowness developed
during the evolution of the CO2 plume,
the model error covariance Q is repre-
sented through the kernel

K15r2exp½2ðh=lÞ0:5� (25)

with r251:1431024, l 5 900 m. h is the
separation distance between two state
variables, r2 is the variance, and l is a char-
acteristic length parameter. The covari-
ance matrix is compressed using the first
N eigenvectors of K1 generated by SVD.
This kernel contains a large portion of
high-frequency components and hence
can capture the sharp CO2 front.

3.2. Case B: Application
The second case used to evaluate the CSKF corresponds to a 450 m3450 m310 m horizontal reservoir
defined on a 45 3 45 3 1 grid shown in Figure 2. The domain has a no-flux boundary on the north and
south boundary except at the wells. Forty-five vertical injection wells deployed on the left boundary inject
CO2 at a constant rate of 0.01 kg/s, and 45 vertical extraction wells deployed on the right boundary extract
CO2 with a constant bottom hole pressure of 206 bar. The true synthetic case is simulated with the perme-
ability field shown in Figure 2 generated from a Gaussian distribution with a correlation length of 200 m.

The quantities we are interested to estimate are the CO2 saturation and pressure every 10 days, assuming
the permeabilities are known. To avoid generating saturation estimates that are outside the appropriate

range, the saturation estimated here is the
transformed saturation sT in equation (26)
as suggested in Jafarpour et al. [2009b]. The
transformed saturation sT is obtained by
projecting the saturation from the [0,1]
domain to the infinite domain through the
forward transform:

sT 5erf21ð2s21Þ; s 2 ð0; 1Þ (26)

The back transform is defined as

s50:5ðerf ðsT Þ11Þ; sT 2 ð21;11Þ
(27)

which converts the transformed saturation
to the actual saturation that can be
accepted as an input to the reservoir simu-
lator TOUGH2.

In terms of measurements, a total of 115
observations are collected every 10 days,
consisting of 45 pressure measurements at
the injection wells, 45 water flux

Figure 2. Case B: experiment design for the CO2 flooding synthetic experi-
ment. No flow boundary is assumed at both the top and the bottom.

Table 2. Simulation and Data Assimilation Parameters for Case B

Forward Simulation Parameters
Phases CO2/brine
Simulation time 5 3 10 days
Grid system 45 3 45 3 1
Cell dimensions 10 m 3 10 m 3 10 m
Rock porosity 0.2 (constant)
Permeability Heterogeneous (Figure 2)
Number of injection well 45
Number of extraction well 45
Injection well constraints Injection rate (0.05 kg/s)
Extraction well constraints Pressure (200 bar)
Initial CO2 saturation Transformed Gaussian N(21a, K2)
Initial pressure 200 bar

Observation Error
Water flux STD 0.01 kg/s
Pressure STD 0.05 bar
Saturation STD 0.02a

Data Assimilation Parameters
Initial pressure 200 bar(constant)
Initial saturation 21a

Initial saturation STD 1a (case B1)/0.1a (case B2)
Model error (saturation STD) 0.1a

Model error (pressure STD) 0.005 bar

aValue is for the transformed saturation.
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measurements at the extraction wells, and 25 saturation measurements sampled at 25 selected locations to
track the CO2 plume. The observation noise and other parameters used for the forward simulation are sum-
marized in Table 2.

Unlike in case A, here we consider the case where prior to injection there was CO2 left from a previous injec-
tion event. The true initial saturation field is generated from equation (27), where sT is a Gaussian field with
mean 21 and covariance as

K25r2exp½2ðh=lÞ2� (28)

where r 5 1 and l 5 100 m. Note that the nonlinear back transformation (equation (27)) does not
preserve the Gaussianity of the original random field, i.e., the initial saturation field s0 is not a Gaus-
sian field.

Since in a realistic application, we most likely would have no knowledge of whether CO2 is present in the
reservoir before the injection, in the filtering we assume that no CO2 is present. The 115 observations of
flux, pressure, and saturation along are used to correct 2025 gridblock reservoir states forecasted by
TOUGH2 using this wrong initial saturation. The heterogeneous permeability field, the boundary conditions,
the initial state error covariance R0, and the observation error covariance R are assumed to be known
perfectly.

Figure 3. Solution at the final assimilation step (fifth day) given by KF, CSKF with 300 bases, EnKF and EnKF1LOC with 301 realizations
(equivalent to rank N 5 300). (a) Posterior mean; (b) posterior variance; and (c) Kalman gain corresponding to the twentieth observation
(i.e., the twentieth column of the Kalman gain matrix).
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We will present two variants of case B to demonstrate the abilities of the CSKF:

1. Case B1, single unknown variable: estimate CO2 saturation distribution in space and assume the CO2

pressure is completely known at each location over time. Flux and saturation measurements are used.
2. Case B2, multiple unknown variables: estimate CO2 saturation and pressure simultaneously using water

flux, saturation, and pressure measurements.

4. Results and Analysis

4.1. Case A: Validation
Figure 3 presents the posterior mean, variance and Kalman gain at the final step (the fifth day) given by KF,
CSKF, EnKF, and EnKF1LOC. CSKF, EnKF, and EnKF1LOC adopt the same N-rank approximation of the
model covariance matrix Q defined in equation (25) using randomized SVD and minimum second-order
exact sampling (see supporting information S1.2). This means we are using an improved version of the
EnKF. For a valid comparison of all methods, the initial mean and covariance are the same. Given the same
rank N 5 300, i.e., the same compression ratio (m=N 5 3245=300), all methods give a good estimate of the
posterior mean (Figure 3a), similar to KF and capture the spatial pattern of the posterior variance (Figure
3b). As expected, the images given by CSKF, EnKF, and EnKF1LOC are smoother compared to KF; however,
the EnKF solution contains several nonzero values in the areas away from the CO2 plume, where the values
should be equal to 0. All methods slightly underestimate the magnitude of the variance. The smoothness
and underestimation in variance result from using a low-rank approximation of the covariance matrix in all
methods. The unphysical values in the posterior mean given by the EnKF are due to sampling errors. Local-
ization improves the mean and variance given by EnKF by reducing spurious values, as expected.

The correction made to the state at each location is the weighted sum of the data residuals, where the
weights are provided by the Kalman gain (equation (13)). Therefore, the accuracy of Kalman gain is related

Figure 4. Case A: comparison of CSKF, EnKF, and EnKF1LOC to KF for (a) the posterior mean, (b) the posterior variance, and (c) the Kalman gain corresponding to the twentieth
measurement.
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to estimation accuracy of the mean. Each column of the Kalman gain matrix contains the sensitivity of each
state location to a particular measurement. Figure 3c shows the estimated Kalman gain computed by each
method corresponding to the twentieth observation, by rearranging the twentieth column of Kalman gain
matrix at the final assimilation step into an image. Warm colors in Figure 3c indicate regions with high sensi-
tivity to the twentieth observation, suggesting which state variables to adjust in order to fit the particular
observation. It is shown that the CSKF with 300 bases accurately estimates the optimal Kalman gain given
by KF (note the smoothing due to low-rank approximation), while the EnKF produces spurious correlations.
Such spurious correlations may prompt the EnKF to adjust a region that should not be corrected. Figure 3c
shows that the localization used here indeed filters out some spurious Kalman gain values (values below
22 3 1024).

A pixel to pixel comparison of the posterior mean, variance, and the Kalman gain shown in Figure 3 is given
in Figure 4, where CSKF, EnKF, and EnKF1LOC (y axis) are compared to KF (x axis). Whether the estimates
fall above or below the red line indicates an overestimation or underestimation, respectively. Overall, all
three methods accurately reproduce the posterior mean, although EnKF tends to underestimate the peak
values and overestimate the zeros values. All methods underestimate the posterior variance because of the
low-rank approximation, with the CSKF displaying a uniform deviation from KF that is smaller than the
respective deviations from the EnKF and EnKF1LOC. Figure 4c shows that the CSKF gives the most reliable
Kalman gain estimates among all the methods tested, while localization introduces some spurious high-
value Kalman gain entries.

Next, we evaluate the KF, CSKF, EnKF, and EnKF1LOC for a fixed rank of N 5 300. Figure 5 plots the estima-
tion accuracy as given by the root-mean-square error (RMSE) over time for each of the four methods. The
RMSE is calculated using the difference between the true and estimated state for each method. For the cal-
culation of the RMSE, we used only the state variables in the area covered by the straight rays, in order to
exclude the effect of errors in the part of the domain that is not affected by the data. The RMSE profile
shows that as the CO2 plume expands with time, the error increases, until about the fifteenth time step,
when the plume and the associated RMSE stabilize for all low-rank methods. Because of the low-rank
approximation, all low-rank methods start diverging from the KF early on and show an increasing error over
time. However, the CSKF estimate is consistently closer to the optimal estimate given by KF compared to
the EnKF methods. We found that the seed used for the EnKF methods affects the relative performance of
EnKF and EnKF1LOC. Interestingly, the difference in the RMSE between EnKF and EnKF1LOC is not signifi-
cant despite the clear differences in the spatial distribution (Figure 4a). The same was observed for the total
variance, where all low-rank methods underestimated the total variance compared to the KF, but the differ-
ence between the EnKF and EnKF1LOC was not significant.

Next, we examine the convergence rate of each method with an increasing rank N. As the rank N and the
ensemble size increase, both the CSKF and the standard EnKF should converge to the KF. The EnKF with
localization, however, is not expected to display such convergence due to postprocessing made in the Kal-
man gain. The following metrics are used here to quantify the errors of CSKF, EnKF, and EnKF1LOC relative
to KF, i.e.,

Figure 5. RMSE of state given by CSKF, EnKF, and EnKF1LOC and KF for 41 assimilation steps. Number in parentheses indicates number of
bases used.
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1. The total prior variance (trace of the prior covariance) at step 0,

SD15
traceðR̂1j0Þ2traceðRKFÞ

traceðRKFÞ
(29)

2. The total posterior variance (trace of the posterior covariance) at tenth time step,

SD25
traceðR̂10j10Þ2traceðRKFÞ

traceðRKFÞ
(30)

3. The Frobenius norm of the posterior covariance at tenth time step,

SD35
jjR̂10j102RKF jjF
jjRKF jjF

(31)

4. The Frobenius norm of the Kalman gain at tenth time step,

SD45
jjK2KKF jjF
jjKKF jjF

(32)

Figure 6 shows how the four performance metrics change with an increasing rank N for both CSKF and
EnKF. The plot of SD1 (Figure 6a) shows that the initial rank-N approximation of the initial covariance matrix
R given by all methods is exactly the same, as we generated EnKF realizations using the minimum second-
order exact sampling (see supporting information S1.2). Figure 6a (SD1) shows that for both methods a rank
of N 5 100 results in 5% underestimation in the total prior variance, which is reduced to 3% by increasing
the rank to N 5 500. However, as shown in Figure 6b (SD2), after assimilating the same 10 data sets, the
underestimation increases to around 30% for N 5 100. The underestimation by EnKF is bigger than by CSKF,
especially for a small rank, e.g., N 5 50, in which case the EnKF underestimates the posterior variance of KF
by 50%. Variance underestimation is often observed when a small ensemble is used to assimilate a large
amount of data. To reduce this effect and improve filter stability, EnKF applications typically use a larger
ensemble size or localization techniques. In our implementation of EnKF1LOC, the variance was indeed
boosted.

Figures 6c and 6d show that the CSKF reproduces the posterior covariance and the Kalman gain more accu-
rately than the EnKF given the same rank N, as indicated by a smaller value of SD3 and SD4. For example,
the SD4 value for CSKF with N 5 100 is less than 1%, while for EnKF the value is around 10%, which suggests
that the CSKF with 100 bases captures 99% of the Frobenius norm of the Kalman gain, while EnKF captures
less than 90%. Most importantly, these results illustrate that the CSKF can achieve the same accuracy with a
smaller rank compared to EnKF. In this specific case, the CSKF with N 5 50 gives a relative error of 0.01 in
the posterior covariance, while to reach the same accuracy EnKF needs at least N 5 300 (Figure 6c). This is
consistent with the theoretical basis of the CSKF, which performs a low-rank approximation based on singu-
lar value decomposition; as a result, the CSKF has spectral convergence to the KF, rather than statistical con-
vergence, which is the case for the EnKF.

The rank N and the compression ratio that can be used in low-rank methods are closely related to the char-
acteristics of the problem considered (i.e., smoothness) and the corresponding covariance structures. Gener-
ally, low-frequency components of the covariance spectrum are sufficient to capture only main features of
the error covariance; finer details can be obtained by adding more high-frequency components. The slower
the eigenspectrum decays, the more high-frequency components it has, and the larger rank N is required
for a reasonably accurate low-rank approximation. For example, the initial prior covariance used in case A
has an eigenspectrum that decays slowly compared to a more typical smooth case where the state is not
expected to have sharp features (Figure 7). It can be seen that for the same index (200), in the smooth case
(i.e., case B), the eigenvalues drop by 15 orders of magnitude, while for the nonsmooth case (i.e., case A),
they drop by 5 orders of magnitude. In order to capture the sharp edge of the CO2 front of case A, in
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addition to using a nonsmooth kernel, the rank N used was also larger than what is typically used in the
EnKF literature (300 versus typically used 100).

4.2. Case B1: Nonlinear, Single-Variable Estimation
In case B1, CO2 saturation is estimated every 10 days using 45 pressure measurements at the injection well,
45 water mass flow rate measured at the extraction well, and 25 uniformly distributed saturation measure-
ments to cover the region away from the wells, assuming a uniform initial saturation close to zero (s 5 0.07

or sT 5 21). The true saturation field is a non-
zero transformed Gaussian field. Snapshots
of the true CO2 saturation simulated using
TOUGH2 are shown every 10 days until 50
days in Figure 8a. For this case, we used
CSKF with a rank of 50, which corresponds to
a compression ratio of m=N 5 2025=50. The
first 50 DCT bases reproduce 99% of the vari-
ability of the initial covariance (assumed
Gaussian, equation (28)) and are therefore
expected to provide accurate estimates. The
same data assimilation problem is solved
using EnKF and EnKF1LOC with an initial
ensemble consisting of 51 realizations
sampled from the same Gaussian distribu-
tion using the minimum second-order exact
sampling approach (supporting information

Figure 7. Eigenspectrum of the initial prior covariance R0 used in case A
(nonsmooth, equation (25)) and case B (smooth, equation (28)).
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Figure 6. Convergence analysis for case A. (a) SD1: semilog plot of difference in total prior variance (traceðR0j0Þ, negative values indicate
underestimation in variance); (b) SD2: semilog plot of difference in the total posterior variance (traceðR10j10Þ) at tenth time step; (c) SD3:
log-log plot of errors in the Frobenius norm of the posterior covariance (R10j10); and (d) SD4: log-log plot of errors in the Frobenius norm of
Kalman gain K. All metrics measure errors relative to KF.
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S1.2). The mean of the 51 realizations is used as the initial guess of the saturation. For a valid comparison,
the initial rank-N-approximated covariances given by CSKF, EnKF, and EnKF1LOC are kept the same.

The conditional mean and standard deviation given by CSKF, EnKF, and EnKF1LOC for case B1 are shown
in Figures 8a and 8b, respectively. All methods are able to capture the most pronounced features of the
CO2 plume, i.e., the three high saturation spots. As mentioned previously, the corrections made by CSKF are
a linear combination of the 50 low-frequency DCT bases and are therefore expected to provide images that
are smoother than the true saturation. Similarly, the corrections made by EnKF and EnKF1LOC are expected
to be smooth as they are generated from realizations that are sampled from the rank-N approximation of
the covariance which only contains low-frequency components. Spurious corrections can be identified in
the EnKF solution starting from the first time step (i.e., tenth day), which are partially corrected through
localization as more data are assimilated (see EnKF1LOC results). Overall, all methods result in similar esti-
mation at the final assimilation step, even though intermediate results were different.

Figure 8b compares the conditional standard deviation (STD) given by CSKF, EnKF, and EnKF1LOC. The sat-
uration standard deviation given by CSKF indicates a low uncertainty at measurement locations, in particu-
lar at the 25 sampling locations of saturation and on the right boundary where the water flux is measured,
as expected. Moreover, over time, the uncertainty decreases gradually in the area where the CO2 flows. In

Figure 8. Case B1 solution given by CSKF, EnKF, and EnKF1LOC with N 5 50: (a) true CO2 saturation and its posterior mean given by each
method. (b) Posterior standard deviation (*measured in transformed saturation domain). The sampling locations of saturation are marked
by circles.
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contrast, EnKF experiences a significant reduction in uncertainty after 10 days. This reduction is observed
everywhere except at a few locations that have a high STD. This is consistent with our observation in case A
where for a small N, EnKF tends to show a fast decay in the posterior variance after a few data assimilation
steps (Figure 6b). Standard deviations given by EnKF1LOC (third row of Figure 6b) show that localization
boosts the STD of EnKF, which displays a pattern similar to CSKF in the first few steps. However, as more
data are assimilated, EnKF1LOC displays random features that are not consistent with the location of the
measurements. Even though for this nonlinear case, the results cannot be compared to the true variance
because of the prohibitive computational cost of KF, the CSKF gives uncertainty estimates that behave as
predicted, indicating that the method is less prone to low-rank approximation errors than the EnKF. Local-
ization does boost the variance of EnKF as expected, but it does not significantly alter its spatial
distribution.

Figures 9a and 9b plot the relative estimation error of the saturation field and a measure of data misfit
against time, as given by equations (33) and (34), respectively:

SD55jjs2struejj=jjstruejj (33)

SD65ðytrue2hðsÞÞT R21ðytrue2hðsÞÞ (34)

Figure 9a shows that the estimation accuracy and data misfit of CSKF, EnKF, and EnKF1LOC are improved pro-
gressively as more data are assimilated. The CSKF gives a consistently smaller data misfit (Figure 9b) among
all methods. As shown by the EnKF1LOC results, localization improves the estimation accuracy of EnKF. Over-
all, these results from case B1 suggest that all three methods can give a good estimate of CO2 saturation using
a high compression ratio m=N 5 2025=50, but CSKF gives more useful uncertainty estimates.

4.3. Case B2: Nonlinear Multiple Variables
In case B2, both saturations and pressures are estimated simultaneously (Figure 10). For this case, we com-
pared CSKF to the standard EnKF only, as it was found from case B1, that localization improves the

Figure 9. Case B1. (a) SD5: RMSE error in CO2 saturation. (b) SD6: data misfit over time.
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magnitude but not the spatial structure of the uncertainty estimates. Note that in comparison to case B1,
case B2 uses an augmented covariance matrix, which is compressed differently by CSKF (equation (20)) and
EnKF (equation (5) in supporting information 1.1). CSKF adopts a flexible block low-rank representation that
allows to compress saturation and pressure using different bases. This allows us to take advantage of the
fact that the pressure field changes smoothly in respond to the injection due to its diffusion dominated
nature compared to the CO2 saturation that has a hyperbolic nature, and changes abruptly over time and
space. Based on this observation, we use more bases to capture the changes in saturation and fewer bases
for the pressure. Figure 10 shows the CSKF results with 40 bases compressing the saturation covariance and
10 bases compressing the pressure covariance, which are compared to the EnKF results with 51 realizations
such that the computational cost is the same between the two methods. A high compression ratio
(m=N 5 4050=50) is selected here in order to avoid evaluations of the expensive forward simulations. Both
methods require a total of N 1 1 5 51 calls of the forward model TOUGH2. Starting with the same initial
guess, both CSKF and EnKF can track the evolving CO2 saturation and pressure with reasonable accuracy
and they give similar conditional mean with EnKF performing slightly better by the final step (the fiftieth
day), consistent with case B1. It can be observed that the CSKF estimates the pressure accurately even with
a small number of bases (m=N 5 2025=10). In comparison, saturation is more difficult to capture
(m=N 5 2025=40). Using the same number of basis for both variables would have been a waste of computa-
tional resources. This is avoided with the CSKF covariance compression scheme, which makes it possible to
allocate more resources to estimate saturation instead of pressure given a limited computational budget.

Figure 11a shows the Kalman gain that represents the sensitivity of the saturation state estimate to the
fourth saturation measurement, located on the left boundary at each step. The saturation measured at a

Figure 10. Case B2: true and estimated saturation and pressure every 10 days. (a) True saturations and pressures, (b) CSKF estimates
(N 5 50, 40 DCT basis for saturation and 10 DCT basis for pressure) and (c) EnKF estimates (N 5 50, 51 realizations). The sampling locations
of saturation are marked using circles.
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point directly constraints the saturation value at this location and those within a small distance and should
have no effect on the saturation values beyond a certain distance. Both CSKF and EnKF capture the localized
high sensitivity zone around the saturation measurement location. However, spurious correlations are
observed for both methods, an effect that results from low-rank approximation, which is more pronounced
in EnKF than in CSKF (same with case A). This leads to deteriorated estimates of uncertainty, as shown in
Figures 11b and 11c, where the standard deviation of pressure and saturation are plotted every 10 days.
The saturation standard deviation given by CSKF has similar characteristics compared to case B1 (Figure 8b)
and the pressure standard deviation indicates lower uncertainty around the monitoring wells located on
the left and right boundary. However, the EnKF with the same rank N cannot produce meaningful uncer-
tainty estimates.

5. Conclusions

In this paper, we present the generalized compressed state Kalman filter (CSKF), a new efficient algorithm
for large-scale nonlinear state estimation problems. The CSKF reduces the computational requirements of

Figure 11. Case B2: for each method and every 10 days: (a) Kalman gain corresponding to fourth saturation measurement on the left
boundary. (b) Standard deviation of saturation (*measured in the transformed saturation domain). (c) Standard deviation of pressure.
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the state estimation significantly, by decreasing the number of evaluations of the forward model and by
taking advantage of fast linear algebra techniques. Furthermore, it is straightforward to implement as it can
be combined with any forward model in a black-box fashion, with no need for explicit Jacobian computa-
tions. Our method belongs to the category of low-rank approximation methods for the Kalman filter, featur-
ing a smart compression scheme appropriate to the characteristics of the covariance, and offers an
alternative to ensemble-based low-rank methods.

The CSKF was first validated for a simple linear case and its performance was compared to the KF and the
EnKF with and without localization. It was shown that the CSKF accurately reproduced the Kalman gain and
state estimates of KF with a small number of bases and gave high quality uncertainty quantification. Com-
pared to the EnKF, for this simple case, the CSKF provides slightly better results for the mean. The covari-
ance was underestimated by both CSKF and EnKF, more so by EnKF. Adding localization to EnKF can boost
the variance but does not necessarily improve the quality of uncertainty analysis. We also performed a con-
vergence analysis and investigated the effect of the compression ratio (i.e., the number of unknowns versus
the rank) on the results; our results indicate that the lower the rank (and therefore the higher the compres-
sion), the higher the chance for overcorrection, an effect appears to be more pronounced for the EnKF than
for the CSKF.

The CSKF was then evaluated for a CO2 monitoring case, which is a more complex, nonlinear problem
governed by multiphase physics. The CSKF was shown to perform equally well to the EnKF in terms
of the estimated mean. However, large discrepancies were observed between the two methods in the
computed posterior variance. In particular, the CSKF provided robust Kalman gain and uncertainty esti-
mates that did not degrade as more data were assimilated, as opposed to drastic variance reductions
predicted by the EnKF indicating potential ensemble collapse and inaccurate Kalman gain calculations.
Localization was able to boost the variance, however, it introduced bias into the Kalman gain and the
uncertainty estimate with spatial structures that were not consistent with the measurement locations
and had spurious features. This finding was corroborated by the results of a second CO2 monitoring
case, where two different types of state variables were estimated through state augmentation. Overall,
for the specific cases investigated here, it appears that for the same compression ratio, and therefore
the same computational cost, the CSKF gives equally good results for the mean estimate compared to
EnKF, but more reliable uncertainty estimates, being less subject to spurious correlations and excessive
variance reduction.

With the spectrum-based compression scheme of CSKF, significant compression and computational savings
are possible. This was also shown in our convergence analysis, which showed that the CSKF requires smaller
rank, i.e., fewer forward simulations to reach the same accuracy of EnKF. Furthermore, the CSKF does not
require further adjustments or optimization, while localization is necessary for EnKF. In the latter case, the
decision of how to localize involves ad hoc choices and tuning, which makes the method less robust than
CSKF. The CSKF only requires the decision on the type and the number of bases used, which can be made
based on the variability and smoothness inherent to the physical problem.

Adding to the efficiency of our method is its ability to adapt the compression scheme to cases where more
than one type of state variables are estimated simultaneously; the method allows more compression for
smoothly varying variables like pressure and allocates more computational resources to less smooth state
variables, like CO2 saturation in our case. Therefore, an optimal choice of compression is possible based on
an understanding of the physics of each application, as the appropriate rank and potential computational
benefits depend on the nature and characteristics of each specific problem.

The computational efficiency of the CSKF has important implications for problems with large numbers of
unknowns, such as large-scale field studies that may extend over several kilometers and where the
unknowns may be in excess of 106 after discretization. In such cases, the major limitation of inversion tech-
niques is that due to cost/time constraints, domains are coarsely discretized to reduce the number of
unknowns, leading to inaccurate estimation with low resolution, in addition to increased errors in forward
simulations. The reduction in computational cost of data assimilation using the CSKF allows for finer discre-
tization, enabling the delineation of smaller-scale features.

From a CO2 storage and a contaminant hydrogeology perspective, the computational efficiency of our
method and its potential to detect fine-scale features are of great importance. Detecting such features at a
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reasonable computational cost could enable prevention of high-risk events, such as CO2 leakage through
fractures, preferential flow of contaminants through high permeability lenses, contaminant accumulation in
low permeability formations, as well as better estimation of reservoir and aquifer capacity, for CO2 storage,
managed aquifer recharge and other near-surface hydrogeological applications.

The CSKF provides a reliable and robust method to control the trade-off between the accuracy and the
computational cost of low-rank Kalman filtering for nonlinear estimation problems and is a practical alterna-
tive to conventional computationally intensive inversion techniques and ensemble-based compression
techniques. Despite the mathematical sophistication of the method, the method as presented here is well
suited for black-box use, where the user can apply the method for data assimilation without specialized
knowledge of inversion and statistics, and for any application, as long as the forward model is available.
Software is currently under development to make the algorithm available to the research community for
further comparison and evaluation for other applications. The method can be further extended for com-
bined parameter and state estimation, topics that will be pursued in future work.

Appendix A: Derivation of the Analysis Scheme of CSKF

Assume the prior covariance

Rk11jk5AFCkjk AFT 1AV AT (A1)

can be factorized as ACk11jk AT . Then, instead of computing Rk11|k explicitly, we only need to compute its
compressed form by

Ck11jk5ðAT AFÞCkjkðAT AFÞT 1V (A2)

with OðmÞ operations.

In the analysis step, the state at time step k 1 1 is updated using measurements at time step k 1 1:

xk11jk115xk11jk1Kðyk112hðxk11jkÞÞ (A3)

The Kalman gain, K, which is used to compute the correction made to the prior state xk11|k, is given by

RHHK T 5RHx (A4)

where RHH5HRk11jk HT 1R and RHx5HRk11jk . Use the relationship Rk11jk5ACk11jk AT , they can be computed
with OðmÞ instead of Oðm2Þ operations through

RHH5AHCk11jk AHT 1R (A5)

RHx5AHCk11jk AT (A6)

As suggested in Kitanidis [2015], K can be computed efficiently by solving the reduced system

RHHðK T AÞ5RHx A (A7)

Note that RHx A5AHCk11jk . First, X5K T A is computed by solving the system

AX5AHCk11jk (A8)

Then, the Kalman gain is given by

K5AX T (A9)

Appendix B: Scaling of Innovation Covariance

The innovation covariance HR̂HT 1R is used to compute Kalman gain,

K5R̂HT HR̂HT 1R
� �21

(B1)
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When the innovation covariance matrix is rank deficient, its inverse can be computed using truncated SVD.
However, when observation contains different units, the innovation matrix has to be scaled following

K5R̂HT U21T U21HR̂HT U21T 1I
� �†

U21 (B2)

before computing its pseudoinverse. The derivation is based on R 5 UUT. The innovation matrix here is
dimensionless.
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