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A TESTING BASED EXTRACTION ALGORITHM FOR

IDENTIFYING SIGNIFICANT COMMUNITIES IN NETWORKS1

By James D. Wilson, Simi Wang, Peter J. Mucha2,

Shankar Bhamidi and Andrew B. Nobel

University of North Carolina at Chapel Hill

A common and important problem arising in the study of net-
works is how to divide the vertices of a given network into one or
more groups, called communities, in such a way that vertices of the
same community are more interconnected than vertices belonging to
different ones. We propose and investigate a testing based commu-
nity detection procedure called Extraction of Statistically Significant
Communities (ESSC). The ESSC procedure is based on p-values for
the strength of connection between a single vertex and a set of ver-
tices under a reference distribution derived from a conditional con-
figuration network model. The procedure automatically selects both
the number of communities in the network and their size. Moreover,
ESSC can handle overlapping communities and, unlike the major-
ity of existing methods, identifies “background” vertices that do not
belong to a well-defined community. The method has only one pa-
rameter, which controls the stringency of the hypothesis tests. We in-
vestigate the performance and potential use of ESSC and compare it
with a number of existing methods, through a validation study using
four real network data sets. In addition, we carry out a simulation
study to assess the effectiveness of ESSC in networks with various
types of community structure, including networks with overlapping
communities and those with background vertices. These results sug-
gest that ESSC is an effective exploratory tool for the discovery of
relevant community structure in complex network systems. Data and
software are available at http://www.unc.edu/~jameswd/research.
html.
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1. Introduction. The study of networks has been motivated by, and
made significant contributions to, the modeling and understanding of com-
plex systems. Networks are used to model the relational structure between
individual units of an observed system. In the network setting, vertices rep-
resent the units of the system and edges are placed between vertices that are
related in some way. Network-based models have been used in a variety of
disciplines: in biology to model protein-protein and gene–gene interactions;
in sociology to model friendship and information flow among a group of in-
dividuals; and in neuroscience to model the relationship between the organi-
zation and function of the brain. In many of these applications, the vertices
of the network under study can naturally be subdivided into communities.
Informally, a community is a group of vertices that are more connected to
each other than they are to the remainder of the network. More rigorous
definitions quantify this notion of differential connection in different ways.
Figure 1 illustrates a network with three disjoint communities.

The problem of dividing the vertices of a given network into well-defined
communities is known as community detection. Community detection has
become increasingly popular, as communities have been found to identify
important and useful features of many complex systems. Community detec-
tion has been studied by researchers in a variety of fields, including statistics,
the social sciences, computer science, physics and applied mathematics, and
a diverse set of community detection algorithms have been developed [see
Fortunato (2010), Porter, Onnela and Mucha (2009) for reviews].

Existing community detection methods capture different types of commu-
nity structure. The simplest community structure, and the one most com-
monly studied, is a hard partitioning, in which each vertex of the network is
assigned to one and only one community, and the collection of communities
together form a partition of the network [e.g., Newman and Girvan (2004),
Ng, Jordan and Weiss (2002), Snijders and Nowicki (1997)]. Another class
of community structure allows overlapping communities [see Xie, Kelley and
Szymanski (2011) for a recent review], in which the collection of communities
together form a cover of the network. Broadly speaking, most community
detection methods produce one of these types of structures.

Fig. 1. A simple network with three distinct communities.
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Community detection has been successful in understanding a wide va-
riety of complex systems. In addition to the numerous examples cited in
the aforementioned reviews, community detection methods have recently
been profitably applied to protein interaction networks [Lewis et al. (2010)],
functional brain activity [Bassett et al. (2011)], social media [Papadopou-
los et al. (2012)] and mobile phone data [Muhammad and Van Laerhoven
(2013)], as well as social groups [Greene, Doyle and Cunningham (2010),
Miritello, Moro and Lara (2011), Onnela et al. (2011)].

The majority of existing community detection methods make the assump-
tion that every vertex within an observed network belongs to at least one
community. Though many networks can be appropriately divided into a par-
tition (or cover) of communities, some large and heterogeneous networks do
not fit into this framework. For example, consider the Enron email network
from Leskovec et al. (2009) where edges represent the email correspondence
(sent or received) between email accounts in 2001. The network contains
many (on the order of 10K) email accounts outside of Enron and relatively
few (on the order of 1K) email accounts from employees at Enron. The
outside email accounts, many of which are spam email accounts, are not
preferentially attached to any group of employees and thereby do not be-
long to a well-defined community. From this example and several others that
we investigate in Section 4, we will see that many real networks contain ver-
tices that do not have strong connections to any community. Informally, we
call vertices that are not preferentially connected to any community back-
ground vertices, as they act as a background against which more standard
community structures may be detected.

In networks where background vertices are present, partitioning and cov-
ering methods typically assign them to more tightly connected communities.
To illustrate this, we generated a 500 node toy network with a single commu-
nity of size 50, whose vertices are linked independently with probability 0.5;
the remaining vertices are background and are linked to all vertices in the
network independently with probability 0.05. We ran two popular detection
methods—the modularity based algorithm of Newman and Girvan (2004)
and the normalized Spectral algorithm of Ng, Jordan and Weiss (2002)—
and found two disjoint communities. We considered the community that
most closely matched the true embedded community and found, as shown
in Figure 2, that both methods included many background vertices.

Also shown in Figure 2 is the result of applying the ESSC method in-
troduced in this paper. ESSC accurately identifies the embedded commu-
nity and the background, and separates one from the other. Although there
are methods in multivariate clustering to capture background [Ester et al.
(1996), Hinneburg and Keim (1998)], only a few recent papers, for example,
Zhao, Levina and Zhu (2011), Lancichinetti et al. (2011), consider back-
ground in the context of community detection.
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Fig. 2. (A) A toy network that contains one significantly connected community—colored
in black—and many sparsely connected background vertices. (B) The partition given by
the GenLouvain modularity optimization method. (C) The partition given by normalized
Spectral clustering. (D) The extracted community found by the proposed method ESSC,
which separates and distinguishes the embedded community from the background.

In this paper we propose and study a testing based community detec-
tion algorithm, called Extraction of Statistically Significant Communities
(ESSC), that is capable of identifying both background vertices and overlap-
ping communities. The core of the algorithm is an iterative search procedure
that identifies statistically stable communities. In particular, the search pro-
cedure uses tail probabilities derived from a stochastic configuration model
based on the observed network in order to assess the strength of the connec-
tion between a single vertex and a candidate community. Updating of the
candidate community is carried out using ideas from multiple testing and
false discovery rate control.

The only free parameter in the ESSC algorithm is a false discovery rate
threshold that is used in the update step of the iterative search procedure.
The number of detected communities, their overlap (if any) and the size of
the background are handled automatically, without user input. In practice,
the output of ESSC is not overly sensitive to the threshold parameter; see
the Appendix D for more details.

1.1. Notation. For ease of discussion throughout the remainder of this
paper, we first introduce some notation. Let G = (V,E) be an undirected
multigraph with vertex set V = [n] = {1, . . . , n} and edge multiset E contain-
ing all (unordered) pairs {i, j} such that there is an edge between vertices
i and j in G, allowing repetitions for multiple edges. Let d(u) denote the
degree of a vertex u, and let d= {d(1), . . . , d(n)} denote the degree sequence
of G. Let B ⊂ [n] denote a subset of vertices in G. Indices on B are simply
used for specification throughout. Write Π for a partition of the vertex set
[n] (Π =B1 ∪B2∪ · · · ∪Bk, k ≥ 1). In many cases, detection methods seek a
partition (or cover) through optimizing a specified quality or score function,
which we will denote as S(·). It is important to note that the score may
be global, in which case S(·) measures the quality of an entire partition, or
local, in which case S(·) measures the quality of a potential community. We
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will use Go to denote an observed graph and Ĝ for a stochastic model on
the vertex set [n].

1.2. Related work. There is an extensive literature on the development
and analysis of community detection methods. In this section we give an
overview of this literature. For recent surveys describing community detec-
tion methods, see Fortunato (2010), Porter, Onnela and Mucha (2009) or
Goldenberg et al. (2010). In Section 3 we describe in more detail the methods
to which we compare ESSC.

Many of the earliest community detection methods approach network
clustering from a graph-theoretic standpoint. Relying on a prespecified inte-
ger k, these methods seek the partition of k communities that minimize the
number of edges between communities. The optimal partition of this crite-
rion is known as the partition of min-cut and max-flow [Goldberg and Tarjan
(1988)], where the cut of a community specifies the number of edges from
the community to the rest of the network. Unfortunately, min-cut methods
often result in many singleton communities. To address this issue, the cut
of a community can be normalized by either the community size, resulting
in the ratio-cut criterion [Wei and Cheng (1989)], or by the total degree of
the community, giving the normalized-cut criterion [Shi and Malik (2000)].
When k > 2, the task of finding the partition that satisfies any of these cut
criterions is NP-hard. Spectral clustering methods [Krzakala et al. (2013),
Ng, Jordan and Weiss (2002)] find an approximate solution to the norm-cut
criterion by appealing to spectral properties of the graph Laplacian. Spectral
clustering methods can be applied to either nonnetwork multivariate data
or directly to relational network data.

Another class of community detection methods seek community structure
by comparing the observed network Go = ([n],Eo) with an unstructured

stochastic network on the same vertex set Ĝnull = ([n], Ênull). A stochastic

network Ĝnull describes the probabilities of edge connection between all pairs
of vertices in [n] given that each pair was connected at random. Detection
methods of this class seek the partition of Go whose clustering most deviates
from what is expected under Ĝnull. Modularity methods [see, e.g., Blondel
et al. (2008), Clauset, Newman and Moore (2004), Newman (2006), Mucha
et al. (2010)] are a popular subset of this class. Modularity methods seek the
partition whose communities’ fraction of observed edges are furthest from
the fraction of edges expected under Ĝnull, that is, the partition Π that
maximizes

Smod(Π) =
1

2|Eo|

k∑

ℓ=1

( ∑

i,j∈Bℓ

I({i, j} ∈Eo)− γE

( ∑

i,j∈Bℓ

I({i, j} ∈ Ênull)

))
,

where γ > 0 is a resolution parameter that controls the size of discovered
communities. In many cases, γ is treated as one, however, this parameter



6 WILSON ET AL.

can be tuned in a data-driven fashion. There are many choices for a refer-
ence stochastic network. For instance, in the case of the Newman–Girvan
modularity [Newman and Girvan (2004)], Ĝnull is specified as the configu-
ration model [Molloy and Reed (1995)] under which the degree sequence of

Go is maintained. In this case E(
∑

i,j∈Bℓ
I({i, j} ∈ Ênull)) is do(i)do(j)/2|Eo|.

Our proposed method ESSC also relies upon the configuration model as a
reference stochastic network.

An alternative class of community detection methods estimate the com-
munity structure of a network by fitting a structured stochastic network
Ĝstruct = ([n], Êstruct) to the observed data Go. Here, Ĝstruct describes ran-
dom assignments of edges conditional on stochastic community (or block)

structure on the vertex set [n]. Formally, Ĝstruct is a parametric model whose
parameters describe the community labels of each vertex and potentially
the topological properties of the network (e.g., the degree distribution of
the network). Given an observed network Go and a prespecified integer k,
a structured network (with parameters Θ) is fit to Go by maximizing the
likelihood function describing Θ: L(Θ|Go, k). A recent review of structured
network models is provided by Goldenberg et al. (2010). One of the most
popular network models of this type is the stochastic block model [Holland,
Laskey and Leinhardt (1983), Snijders and Nowicki (1997), Nowicki and Sni-
jders (2001)]. Under this model, vertices are assigned labels taking values in
{1, . . . , k} according to probabilities π = (π1, . . . , πk). Conditional on the ver-
tex labels, edge probabilities are given by a k×k symmetric matrix P where
the i, jth entry of P gives the probability of an edge between community i
and j. Block models are fit to Go by maximizing the corresponding likeli-
hood L(Θ = (P, π)|Go, k). Other examples of structured stochastic networks
include latent variable models [Hoff, Raftery and Handcock (2002), Hand-
cock, Raftery and Tantrum (2007)] and mixed membership models which
are flexible to overlapping communities [Airoldi et al. (2008), Ball, Karrer
and Newman (2011)].

Recently, there has been significant progress in the development of fast
and efficient algorithms for fitting stochastic block models. The authors of
Decelle et al. (2011) describe an algorithm that estimates block structure
of a degree-corrected block model in time linear in the number of vertices.
Their algorithm is based on a powerful heuristic of belief propagation from
statistical physics. See, for example, Mézard and Montanari (2009) for a
survey level treatment of belief propagation and a variety of applications.
In the context of sparse stochastic block models, these techniques have been
shown to be near optimal in estimating the underlying communities [Krza-
kala et al. (2013)], at least in the balanced regime where both communities
are of equal size. A sublinear algorithm based on the pseudo-likelihood of the
sparse block model is described in Amini et al. (2013) wherein block labels
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are shown to be consistent in the size of network. Finally, recent nonpara-
metric representations of the block model through dense graph limits, or
graphons [Airoldi, Costa and Chan (2013)] and network histograms [Olhede
and Wolfe (2013)] provide promising new directions for the understanding
and estimation of block models.

Another subclass of community detection methods are the so-called ex-
traction techniques where communities are extracted one at a time [Zhao,
Levina and Zhu (2011), Lancichinetti et al. (2011)]. Rather than search for
an optimal partition or cover, these extraction methods seek the strongest
connected community sequentially. Extraction methods do not force all ver-
tices to be placed in a community and thereby are flexible to loosely con-
nected background vertices. ESSC is an extraction method that utilizes the
reference distribution of the connectivity of a community based on the con-
ditional configuration model.

There are two main approaches currently used to assess the statistical sig-
nificance of communities in networks. The first approach, like ESSC, builds
upon statistical principles based on features of the observed network itself.
The second approach is permutation based in that the significance of com-
munity structure is determined based on the results of a prescribed method
on many bootstrapped samples of the observed network [see, e.g., Clauset,
Moore and Newman (2008), Rosvall and Bergstrom (2010)]. Many theoreti-
cal questions remain open for these types of methods, including convergence
of bootstrapped samples of networks.

1.3. Organization of the paper. The remainder of this paper is organized
as follows. Section 2 is devoted to a detailed description of our proposed
algorithm for extraction of statistically significant communities (ESSC), in-
cluding motivation and a description of the reference distribution gener-
ated from the configuration model. In Section 1.2 we discuss the competing
methods that we use to validate our algorithm in both numerical and real
network studies. In Section 4 we apply the ESSC algorithm to four real-
world networks. These results provide solid evidence that ESSC performs
well in practice, is competitive with (and in some cases arguably superior
to) several leading community detection methods, and is effective in captur-
ing background vertices. In Section 5 we propose a test bed of benchmark
networks for assessing the performance of detection methods specifically on
networks with background vertices. To the best of our knowledge, this is the
first set of benchmarks proposed for networks of this type. We show that
ESSC outperforms existing methods on these background benchmarks. We
also show that ESSC performs competitively on standard (nonbackground)
benchmark networks with both nonoverlapping and overlapping community
structures. We end with a discussion of our work and avenues for future
research.
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2. The ESSC algorithm.

2.1. Conditional configuration model. Let Go be an observed, undirected
network having n vertices. Though many networks of interest will be simple,
Go may contain self-loops or multiple edges. Assume without loss of gen-
erality that Go has vertex set V = [n] = {1,2, . . . , n}. The edge multiset Eo

of Go contains all (unordered) pairs {i, j} such that i, j ∈ [n] and there is a
link between vertices i and j in Go, with repetitions for multiple edges. Let
do(u) denote the degree of a vertex u, that is, the number of edges incident
on u, and let do = {do(1), . . . , do(n)} denote the degree sequence of Go.

The starting point for our analysis is a stochastic network model that
is derived from the degree sequence do of Go, specifically, the configuration
model associated with do, which we denote by CM(do) [Bender and Canfield
(1978), Bollobás (1979), Molloy and Reed (1995)]. The configuration model
CM(do) is a probability measure on the family of multigraphs with vertex
set [n] and degree sequence do that reflects, within the constraints of the
degree sequence, a random assignment of edges between vertices.

The configuration model CM(do) has a simple generative form. Initially,
each vertex u ∈ [n] is assigned do(u) “stubs,” which act as half-edges. At the
next stage, two stubs are chosen uniformly at random and connected to form
an edge; this procedure is repeated independently until all stubs have been
connected. Let Ĝ = ([n], Ê) denote the random network generated by this

procedure. Note that Ĝ may contain self loops and multiple edges between
vertices, even if the given network G is simple.

The configuration model CM(do) is capable of capturing and preserving
strongly heterogeneous degree distributions often encountered in real net-
work data sets. Importantly, all edge probabilities in the configuration null
model are determined solely by the degree sequence do of an observed graph.
As a result, fitting a configuration model does not rely on simulation, rather,
estimation only requires the degree sequence of a single observed graph.

Under the configuration model CM(do) there are no preferential connec-
tions between vertices, beyond what is dictated by their degrees. As such,
CM(do) provides a reference measure against which we may assess the sta-
tistical significance of the connections between two sets of vertices in the
observed network Go: the more the observed number of cross-edges deviates
from the expected number under the model, the greater the significance of
the connection between the vertex sets. Let the observed network Go and
the random network Ĝ be as above. Given a vertex u ∈ [n] and vertex set
B ⊆ [n], let

do(u :B) =
∑

v∈B

∑

e∈Eo

I(e= {u, v})
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denote the number of edges between u and some vertex in B in Go. Define
d̂(u : B) as the corresponding number of edges in Ĝ. Note that d̂(u : B) is
a random variable taking values in the set {0,1, . . . , do(u)}, and that do(u :

B) = d̂(u : B) = do(u) when B = [n] is the full vertex set. We now state

a theorem describing asymptotics for the random variable d̂(u : B) in the
configuration model which will form the basis of the algorithm. Recall that
the total variation distance between two probability mass functions p :=
{p(i)}i≥0 and q := {q(i)}i≥0 on the space of natural numbers N is defined by

dTV(p,q) :=
1

2

∞∑

i=0

|p(i)− q(i)|.

Theorem 1. Let {do,n}n≥1 be the degree sequences of an observed se-
quence of graphs {Gn

o }n≥1, where Gn
o is a graph with vertex set [n] and edge

set Eo,n. Let {Ĝ
n}n≥1 be the corresponding random graphs on [n] constructed

via the configuration model. Let Fn be the empirical distribution of do,n. As-
sume that there exists a cumulative distribution function F on [0,∞) with
0<µ :=

∫
R+ xdF (x)<∞ such that

Fn
w

−→ F(2.1)

and ∫

R+

xdFn(x)→ µ.(2.2)

Fix k ≥ 1. For each n≥ 1, let u= un ∈ [n] be a vertex with degree do,n(u) = k

and let B =B(n)⊆ [n] be a set of vertices. Then the random variable d̂n(u :
B) is approximately Binomial(k, pn(B)) in the sense that

dTV(d̂n(u :B),Bin(k, pn(B)))→ 0,

as n→∞. Here

pn(B) =

∑
v∈B do,n(v)∑
w∈[n] do,n(w)

=
1

2|Eo,n|

∑

v∈B

do,n(v),(2.3)

where |Eo,n| is the total number of edges in the graph.

A precise proof of this fact is given in the Appendix A. In light of the fact
that the configuration model CM(do) does not contain preferential connec-
tions between vertices, the probabilities

p(u :B) = P (d̂(u :B)≥ do(u :B))(2.4)

can be used to assess the strength of connection between a vertex u and a set
of vertices B ⊆ [n]. In particular, small values of p(u :B) indicate that there
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are more edges between u and B than expected under the configuration
model.

If we regard do(u : B) as the observed value of a test statistic that is

distributed as d̂(u :B) under the null model CM(do), then p(u :B) has the
form of a p-value for testing the hypothesis that u is not strongly associated
with B.

This testing interpretation of p(u :B) plays a role in the iterative search
procedure that underlies the ESSC method (see below). However, we note
that the testing point of view is informal, as the null model CM(do) itself
depends on the observed network Go through its degree distribution.

In general, the exact value of the probability p(u : B) in (2.4) may be
difficult to obtain. In practice, the ESSC procedure approximates p(u : B)
by P (XB ≥ do(u : B)), where XB has a Binomial(d(u), p(B)) distribution
appealing to the result of Theorem 1.

2.2. Description of the ESSC algorithm. The core of the ESSC algorithm
is an iterative deterministic procedure (Community-Search) that searches
for robust, statistically significant communities. Beginning with an initial
set B0 of vertices that acts as a seed, the procedure successively refines and
updates B0 using (the binomial approximation of) the probabilities (2.4)
until it reaches a fixed point, that is, a vertex set that is unchanged under
updating. The final vertex set identified by the search procedure is a detected
community.

The Community-Search procedure is applied repeatedly, using an adap-
tively chosen sequence of seed vertices, until it returns an empty community
with no nodes. The resulting collection C of detected communities (omitting
repetitions) constitutes the output of the algorithm. The seed set B0 for the
initial run of the search procedure is the vertex of highest degree and all of
the vertices adjacent to it. In subsequent runs of the search procedure the
seed set B0 is the vertex of highest degree not contained in any previously
detected community and all the vertices adjacent to it, regardless of whether
the latter lie in a previously detected community or not.

To simplify what follows, let C1, . . . ,CK be the distinct detected commu-
nities of Go in C. The background of Go is defined to be the set of vertices
that do not belong to any detected communities:

C∗ =Background(Go :C) = [n]
∖ K⋃

k=1

Ck.(2.5)

In principle, the number K of detected communities can range from zero
to n. Importantly, K is not fixed in advance, but is adaptively determined
by the ESSC algorithm. The identification of detected communities by the
Community-Search procedure allows communities to overlap. As with the
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number of discovered communities, K, the presence and extent of overlap is
automatic; no prior specification of overlap specific parameters are required.

The updates of the Community-Search procedure bear further discussion.
Consider an ideal setting in which, for each vertex u and vertex set B we can
determine, in an unambiguous way, whether or not u is strongly connected
to B in Go. Informally, a set of vertices B is a community if the vertices
u ∈B have a strong connection with vertices in B, while the vertices u ∈Bc

do not. Equivalently, B is a community if and only if it is a fixed point of
the update rule

S(A) = {u ∈ [n] such that u is strongly connected with A}

that identifies the vertices having a strong connection with a set of vertices
A⊆ [n]. Formally, we may regard S(·) as a map from the power set of [n] to
itself. A vertex set B is a fixed point of S(·) if S(B) =B. In order to find
a fixed point of the update rule S(·), we apply the rule repeatedly, starting
from a seed set of vertices B0, until a fixed point is obtained. The eventual
termination (and success) of this simple procedure is assured, as the power
set of [n] is finite. By the exhaustive or selective considering of appropriate
seed sets we can effectively explore the space of fixed points of S(·), and
thereby identify communities in Go.

The choice of a seed set Bo for the Community-Search procedure requires
further discussion. As currently implemented, we choose Bo as the neigh-
borhood of the highest degree vertex among the vertices lying outside cur-
rently extracted communities. Consider the following situation, as pointed
out by a referee, where one has two disconnected clusters C,C ′ such that
C contains no inherent community structure, for example, an Erdős–Rényi
random graph, and C ′ contains strong community structure, for example,
a well-differentiated stochastic block model. If the maximal degree of C is
larger than C ′, then ESSC could fail to find the community structure in
C ′. To address the above situation, one can run the Community-Search pro-
cedure in parallel across all vertex neighborhoods. In this case, the final
communities are the collection of uniquely extracted vertex sets. We found
that the situation above did not arise in any of the applications or simula-
tions that we investigate in this paper.

In practice, we make use of the probabilities {p(u :B) :u∈ [n]} to measure
the strength of the connection between u ∈ [n] and B relative to the reference
distribution CM(d). In particular, we regard p(u :B) informally as a p-value
for testing the null hypothesis HB

u that u is not preferentially connected to
B. Then the task of identifying the vertices u preferentially connected to
B amounts to rejecting a subset of the hypotheses {HB

u :u ∈ [n]}. This is
accomplished in steps 4 and 5 of the Community-Search procedure, where we
make use of an adaptive method of Benjamini and Hochberg [Benjamini and
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Hochberg (1995)] to reject a subset of the hypotheses. The rejection method
ensures that the expected number of falsely rejected hypotheses divided by
the total number of rejected hypotheses (the so-called false discovery rate)
is at most α [see Benjamini and Hochberg (1995) for more details]. A default
false discovery rate threshold α of 5% is common in many applications, and
we adopt this value here. Pseudo-code for the Community-Search procedure
and ESSC algorithm is shown below.

Community-Search Procedure

Given: Graph Go = ([n],Eo); significance level α ∈ (0,1).
Input : Seed set B0 ⊆ [n].
Initialize: t :=−1, B−1 =∅.
Loop (Update): Until Bt+1 =Bt

1. t := t+1.
2. Compute p(u :Bt) for each u ∈ [n].
3. Order the n vertices of Go so that p(u1 :Bt)≤ · · · ≤ p(un :Bt).
4. Let k ≥ 0 be the largest integer such that p(uk :B)≤ (k/n)α.
5. Update Bt+1 := {u1, . . . , uk}.

Return: Fixed point community Bt.

ESSC Algorithm

Input : Graph Go = ([n],Eo); significance level α ∈ (0,1).
Initialize: V = [n], C :=∅.
Loop:

Let u ∈ V be the smallest (in case of ties) vertex with maximal
degree.
Define seed set B0 := {u} ∪ {v ∈ [n] :{u, v} ∈Eo}.
Obtain detected community C := Community-Search(B0) from
search procedure.
If C 6=∅ then

Update C := C ∪ {C}.
Update V := V \C.
Repeat Loop.

Otherwise (if C =∅), terminate the procedure.
Return: Family C of detected communities.

3. Competing methods. Here we describe the set of community detec-
tion methods that we use for validation and comparison with ESSC. We
implement a variety of established detection methods all of which have pub-
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licly available code. We note that we do not compare ESSC with the recently
developed fast block model algorithms from Decelle et al. (2011), Airoldi,
Costa and Chan (2013) and Krzakala et al. (2013); such comparisons would
be interesting for future work. The parameter settings for each algorithm
are described in the Appendix C.

GenLouvain: The GenLouvain method of Jutla, Jeub and Mucha
(2011/2012) is a modularity-based method that employs an agglomerative
optimization algorithm to search for the partition that maximizes the score
in (1.2). The algorithm is composed of two stages that are repeated itera-
tively until a local optimum is reached. In the first, each vertex is assigned
to its own distinct community. Then for each vertex u (of community Bu),
the neighbors of u are sequentially added to Bu if the addition results in a
positive change in modularity. This procedure is repeated for all vertices in
the network until no positive change in modularity is possible. In the second
stage of the algorithm, the communities found in the first stage are treated
as the new vertex set and passed back to the first stage of the algorithm
where two communities are treated as neighboring if they share at least one
edge between them. Throughout the remainder of this paper, we specify
Ĝnull as the configuration model so that GenLouvain is set to optimize the
Newman–Girvan modularity [Newman and Girvan (2004)]. As a result, the
Louvain methods of Blondel et al. (2008) and GenLouvain can be used in-
terchangeably (notably, however, the GenLouvain code does not exploit all
possible efficiencies for this null model).

Infomap: The Infomap method of Rosvall and Bergstrom (2008) is a flow-
based method that seeks the partition that optimally compresses the infor-
mation of a random walk through the network. In particular, the optimal
partition minimizes the quality function known as the Map Equation [Ros-
vall, Axelsson and Bergstrom (2009)], which measures the description length
of the random walk. The method employs the same greedy search algorithm
as Louvain [Blondel et al. (2008)], refining the results through simulated
annealing.

Spectral : Given a prespecified integer k, the Spectral method of Ng, Jor-
dan and Weiss (2002) seeks the partition that best separates the k smallest
eigenvectors of the graph Laplacian. Specifically, the k smallest eigenvectors
of the graph Laplacian are stacked to form the n× k eigenvector matrix X
and k-means clustering is applied to the normalized rows of X . Vertices are
then assigned to communities according to the results of k-means. We note
that there are proposed heuristics for choosing k. For example, the algo-
rithm in Krzakala et al. (2013) does not require one to specify the number
of communities in advance and uses the number of real eigenvalues out-
side a certain disk in the complex plane as a starting estimate. Throughout
the manuscript, however, we choose k based on characteristics of the data
investigated.
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ZLZ : The method of Zhao, Levina and Zhu (2011), which we informally
call ZLZ, is an extraction method that searches for communities one at
a time based on a local graph-theoretic criterion. In each extraction, ZLZ
employs the Tabu search algorithm [Glover (1989)] to find the community B
that maximizes the difference of within-community edge density and outer
edge density:

|B||Bc|
∑

i,j∈[n]

(
Ai,jI(i ∈B, j ∈B)

|B|2
−

Ai,jI(i ∈B, j ∈Bc)

|B‖Bc|

)
,(3.1)

where |B| denotes the number of vertices in B and Ai,j is the i,jth entry of
the adjacency matrix associated with the observed graph. Once a community
is extracted, the vertices of the community are removed from the network
and the procedure is repeated until a prespecified number of disjoint com-
munities are found. By following a similar technique described in Bickel and
Chen (2009), the authors show that under a degree-corrected block model,
the estimated labels resulting from maximizing (3.1) are consistent as the
size of the network tends to infinity [see Zhao, Levina and Zhu (2012) for
more details].

OSLOM : The OSLOM method [Lancichinetti et al. (2011)] is an inferen-
tial extraction method that compares the local connectivity of a community
with what is expected under the configuration model. Given a fixed collec-
tion of vertices B, the method first calculates the probability of all external
vertices having at least as many edges as it has shared with the collection.
These probabilities are then resampled from the observed distribution. The
order statistics of the resampled probabilities are used to decide which ver-
tices should be added to B; a vertex is added whenever the cumulative
distribution function of its order statistic falls below a preset threshold α.
Vertices are iteratively added and taken away from B in a stepwise fashion
according to the above procedure. This extraction procedure is run across a
random set of initializing communities and the final set of communities are
pruned based on a pairwise comparison of overlap.

There are a few similarities between ESSC and these described competing
methods. For instance OSLOM and GenLouvain both specify the configura-
tion model as a reference network model to which candidate communities are
compared. Both ZLZ and OSLOM are extraction methods, like ESSC, that
do not require all vertices to belong to a community. The ESSC method uses
the parametric distribution that approximates local connectivity of vertices
and a candidate community. Since the configuration model can be estimated
using only the observed graph, the probabilities in (2.3) have a closed form
which can be computed analytically. On the other hand, OSLOM relies upon
a bootstrapped sample of networks for determining the significance of a com-
munity. Whereas both OSLOM and ESSC are based on inferential statistical
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Table 1

A summary of the detection methods we consider in our simulation and application
study. From left to right, we list the type of community structure that each method can
handle and the parameters required as input for each algorithm. Listed free parameters
include the following: k, the number of communities; α, the significance level; N , the

number of iterations; and γ, a resolution parameter

Community structure Free parameters

Method Disjoint Overlapping Background k α N γ

ESSC X X X X

OSLOM X X X X X

ZLZ X X X X

GenLouvain X X

Infomap X X X

Spectral X X X

techniques, Infomap, Spectral, ZLZ and GenLouvain use network summaries
directly. Unlike several of these mentioned methods, ESSC requires no spec-
ification of the number of communities and only relies upon one parameter
which guides the false discovery rate. We summarize the features of ESSC
and these competing methods in Table 1.

4. Real network analysis study. Existing community detection methods
differ widely in their underlying criteria, as well as the algorithms they use to
identify communities that satisfy these criteria. As such, we assess the per-
formance of ESSC by comparing it with several existing methods—OSLOM,
ZLZ, GenLouvain, Infomap, Spectral and k-means—on both a collection of
real-world networks as well as an extensive collection of simulation bench-
marks.

We first applied ESSC to four real networks of various size and density: the
Caltech Facebook network [Traud et al. (2011)], the political blog network
[Adamic and Glance (2005)], the personal Facebook network of the first
author and the Enron email network [Leskovec et al. (2009)]. We summarize
the network structures in Table 2 and visualize them in Figure 3.

Table 2

Summary statistics of the four networks that we analyze

Network Number of vertices Number of edges

Caltech 762 16,651
Political blog 1222 16,714
Personal Facebook 561 8375
Enron email 36,691 293,307
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Fig. 3. Real networks analyzed in the paper. (A) The Caltech Facebook network of 2005
colored by dormitory residence. (B) The 2005 political blog network colored by political
affiliation. (C) The personal Facebook network of the first author colored by location in
which he met each individual. (D) The Enron email network. Each graph is drawn with
the Force Atlas 2 layout using Gephi software.

On the first two networks, we compare quantitative features of the com-
munities of each method, including size, number of communities, extent of
overlap and extent of background. Moreover, we evaluate the ability of each
method to capture specific features of these two complex networks through
a formal classification study. We describe the precise settings of all tun-
ing parameters for each of the detection algorithms in the Appendix C.
All methods were run on a 4 GB RAM, 2.8 GHz dual processor personal
computer.

4.1. Caltech Facebook network. The Caltech Facebook network of Traud
et al. (2011) represents the friendship relations of a group of undergraduate
students at the California Institute of Technology on a single day in Septem-
ber, 2005. An edge is present between two individuals if they are friends on
Facebook. In addition to friendship relations, several demographic features
are available for each student, including dormitory residence, college ma-
jor, year of entry, high school and gender. A summary of these features is
given in Table 3. This data set provides a natural benchmark for community
detection methods due to the possible association of community structure
with one or more demographic features. Previous studies have found that
this network displays community structure closely matching the dormitory
residence of the individuals [Traud et al. (2011)]. We illustrate the network
according to residence in Figure 3(A).

4.1.1. Quantitative comparison. We first compare the communities de-
tected by each method based on quantitative summaries of the communities
themselves: the number and size of the communities; the overlap present;
and the number of background vertices found. A summary of the findings is
given in Table 4. ESSC took 1.584 seconds to run on this network.
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Table 3

A summary of the features associated with the individuals in the Caltech Facebook
network. From left to right, k is the number of unique categories, pm is the proportion of
missing data, m is the minimum size of any unique category, and M is the maximum

size of any unique category

Feature k pm m M

Dormitory 8 0.2205 44 98
Year 15 0.1457 1 173
Major 30 0.0984 1 88
High school 498 0.1693 1 3
Gender 2 0.0827 227 472

We note that the ZLZ, k-means and Spectral methods require prior spec-
ification of the number of discovered communities. Based on the ESSC and
GenLouvain results, we ran each of these methods with seven and eight
detected communities. We show the size distributions of the detected com-
munities for each method in Figure 4, and find that the size distribution is
broadly similar across the ESSC, ZLZ, GenLouvain and Spectral methods.
Infomap found many (NC = 18) small communities, including several com-
munities of size three or fewer. At both k = 7 and 8, k-means found one
large community as well as many small similarly sized communities. Inter-

Table 4

A summary of the detection methods run on the Caltech Facebook network. From left to
right, NC is the number of communities detected, S is the average size of the

communities, σ̂S is the standard deviation of the community size, M is the average
number of communities to which nonbackground vertices belong, Dsig is the average
degree of the vertices in a community, DB is the average degree of the background

vertices, PB is the proportion of background vertices, and Ê is the mean classification
error associated with the dormitory feature of the individuals. *Methods were set to find

7 and 8 communities, based on the number of communities detected by ESSC and
GenLouvain. —: represents repeated values

Method NC S σ̂S M Dsig DB PB Ê

ESSC 7 78.57 16.03 1.034 55.75 15.81 0.3018 0.0925
OSLOM 18 86.78 63.25 1.085 50.30 6.18 0.1496 0.2011
ZLZ* 7 62.14 41.97 1 64.08 16.60 0.4291 0.5346
ZLZ* 8 58 40.58 – 62.44 14.53 0.3911 0.5323
GenLouvain 8 95.25 35.75 – 43.70 NA NA 0.2576
Infomap 18 42.33 46.23 – – – – 0.8132
Spectral* 7 108.86 72.77 – – – – 0.4865
Spectral* 8 95.25 61.52 – – – – 0.4512
k-means* 7 108.86 126.51 – – – – 0.4242
k-means* 8 95.25 118.35 – – – – 0.4327
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Fig. 4. The size distributions of communities from each detection method when run on
the Caltech network.

estingly, GenLouvain also produced an eighth community of size twenty-one,
all of whose vertices were part of the background vertex set determined by
ESSC. No method found significant overlap among the detected commu-
nities. The average number of communities to which each vertex belonged
ranged from 1 to 1.085. Each of the methods capable of detecting back-
ground (ESSC, OSLOM and ZLZ) designated more than 15% of the total
network as background, and vertices contained within communities had av-
erage degree nearly three times that of background vertices. This suggests,
as expected, that the background vertices are less connected to other vertices
in the network.

4.1.2. Community features. One motivation for community detection
methods is their ability to find communities of vertices that represent inter-
esting, but possibly unavailable, features of the system under study. Here,
we explore the ability of each method to capture the demographic features
of the Caltech network. To do this, we measure the extent to which the
demographic features “cluster” within communities. Typical pair counting
measures do not work well here, as the detected communities may overlap
and may not cover the entire network. Also, pair counting measures treat
the features as a “ground truth” partition of the network, whereas the true
structure of a network is often more complex [Yang and Leskovec (2012),
Lee and Cunningham (2013)]. As an alternative, we address the connection
between communities and features through the problem of classification [see,
e.g., Shabalin et al. (2009), Hastie, Tibshirani and Friedman (2001)]: for each
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vertex, we treat its community identification as a predictor and its demo-
graphic features as a discrete response that we wish to predict. We describe
our approach in more detail.

Suppose that a detection method divides the vertices of the network into
K communities plus background. Then the n × K matrix X = [xi,j] de-
fined by

xi,j =

{
1, if vertex i belongs to community j,

0, otherwise,

represents the detected community structure of the network. For a given
demographic feature α taking L-values, let yαi ∈ [L] be the value of α in
sample i. We ignore samples for which the value of feature α is not available.
Treating the ith row of the matrix X as a K-variate predictor for yαi , we
use the Adaboost classification method [Freund and Schapire (1997)] with
tree classifiers to construct a prediction rule φ :{0,1}K → [L].

To evaluate each method, we first randomly divide the n samples into ten
equally sized subgroups. Then by setting aside one subgroup as a test set,
we train the classifier on the remaining subgroups and predict the features
of the test set. By subsequently treating each subgroup as a test set in this
way, we calculate the misclassification error associated with each test. We
report the average misclassification error Ê for each method as a means of
comparison and report the results in Table 4. The distribution of errors is
shown in Figure 5. Values of Ê near zero suggest that the detected commu-

Fig. 5. The misclassification error of each method based on the ten-fold classification
study performed on the Caltech network. The community containment of each individual
was used to classify his/her dormitory residence. For each test, an Adaboost classifier was
used for comparison.
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nity structure captures the clustering of the selected feature. We consider
the dormitory residence of the network, as this feature has been shown to
be most representative of the community structure in past studies [Traud,
Mucha and Porter (2012)]. From Figure 5, we see that ESSC has the lowest
misclassification error among competing methods in this classification study.
These results suggest that the detected communities of ESSC best match
the dormitory residence of the Caltech network.

4.2. Political blog network. The political blog network of Adamic and
Glance (2005) represents the hyperlink structure of 1222 political blogs in
2005 near the time of the 2004 U.S. election. Undirected edges connect two
blogs that have at least one hyperlink between them. The blogs were pre-
classified according to political affiliation by the authors in Adamic and
Glance (2005). These authors, as well as those of Newman (2006), observed
that blogs of a similar political affiliation tend to link to one another much
more often than to blogs of the opposite affiliation. We show a force directed
layout of this network colored by political affiliation in Figure 3(B).

4.2.1. Quantitative comparison. We first compare the communities de-
tected by each method based on their quantitative characteristics. The re-
sults are summarized in Table 5. ESSC took 2.012 seconds to run on this
network.

Both the ESSC algorithm and GenLouvain found two large communities
of similar size. Interestingly, Infomap found thirty-six communities, thirty-
four of which contained fewer than 25 vertices. Roughly 95% of the vertices in
these smaller communities of Infomap were contained in the background ver-
tices of ESSC. Neither ESSC nor OSLOM found significant overlap among

Table 5

A summary of the detection methods run on the Political blog network. The statistics
shown here are the same as those in Table 4. *We set k to 2 to match the results of
GenLouvain and ESSC. **We chose k as 10 so that at least 50 percent of the vertices

were placed in a community

Method NC S σ̂S M Dsig DB PB Ê

ESSC 2 448.50 75.66 1 36.322 2.577 0.2651 0.0201
OSLOM 11 87.58 79.48 1.110 33.749 5.342 0.225 0.0306
ZLZ** 10 60.00 37.69 1 35.50 2.50 0.506 0.1341
GenLouvain 2 611.00 72.12 – 27.36 NA 0 0.0475
Infomap 36 33.94 125.74 – – – – 0.0532
Spectral* 2 611.00 858.43 – – – – 0.3821
k-means* 2 611.00 613.77 – – – – 0.2856
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the communities, reflecting the tendency of the political bloggers to com-
municate with like-minded individuals: as noted by the authors of Adamic
and Glance (2005), “divided they blog.”

ESSC, OSLOM and ZLZ each assigned over twenty percent of the ver-
tices to background. The pairwise Jaccard score of these background sets is
greater than 0.67 in each case. The background vertices of all three extrac-
tion methods had mean degree six times smaller than vertices within com-
munities, suggesting the presence of sparsely connected background vertices
in this network.

4.2.2. Political affiliation. We now evaluate the extent to which the po-
litical affiliation of the blogs “cluster” by conducting the same classification
study detailed in Section 4.1.2. We report the mean proportion of misclas-
sified labels Ê in Table 5. ESSC, OSLOM, GenLouvain and Infomap all
maintained classification errors below 10%, suggesting that political affili-
ation is captured by the network’s community structure quite well. ESSC
had the lowest misclassification error in this study, keeping an error be-
low 4% across all tests. We look deeper into the strength of connection of
the background vertices to the true political affiliations. Interestingly, these
vertices were still preferentially attached to their true affiliation, however,
their associated p-values were typically greater than 0.10, indicating weak
affiliation.

4.3. Personal Facebook network. The personal Facebook network gives
friendship structure of the first author’s friends on Facebook. In addition,
each individual is labeled according to the time period during which he or
she met the first author. This data set, as well as the labels, is provided
in the supplemental file [Wilson (2014)]. This network is shown, colored by
label, in Figure 3(C).

The understanding of human social interactions has been improved through
the analysis of large available social networks like Facebook [Lee and Cun-
ningham (2013), Traud et al. (2011), Traud, Mucha and Porter (2012)].
Typically, these networks capture the social activity of individuals of a sin-
gle location. For example, the Facebook network analyzed in Section 4.1
reflects the friendships of individuals specifically from the California Insti-
tute of Technology. The personal Facebook network provides one view of
how individuals from different schools and locations interact given that they
all have one friend in common.

We ran ESSC on the network (running time about 1 second) and found 7
communities with sizes varying from 10 to 157; see Table 6. Approximately
18% of the nodes in the network were distinguished as background. The mean
degree of the vertices belonging to a community (Dsig ≈ 33) was about seven
times that of the background (DB ≈ 5). Of the vertices that were contained
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Table 6

Features of the personal Facebook network as well as the results of ESSC. On the left, we
list the labels of the individuals according to location and the size of each group. On the
right, we list the detected communities and background as well as their corresponding size

True features ESSC results

Label Size Community Size

Acquaintance 80 1 43
A 62 2 107
B 94 3 75
C 150 4 157
D 147 5 53
E 3 6 26
F 3 7 10
G 22 Background 101 (18.0%)

in a community, the average membership was very close to 1, suggesting
little overlap between communities.

To understand how the location feature of the individuals cluster, we in-
vestigate the composition of each label according to detected community in
Figure 6 and find several interesting results. The individuals from locations
A, B, C, D and G all tend to cluster according to the detected communi-
ties. For instance, 79% of the individuals from location A were contained in
community 5. Similarly, 60% or more of the individuals from locations B,
C, D and G also belong to a single community in each case. Groups A, B,
C and D represent the schools that the author attended from high school to
final graduate school and make up nearly 81% of the total network. Groups

Fig. 6. A bar plot showing the clustering of locations A–G and Acquaintances of the
personal Facebook network. For each location label, we show the percentage of individu-
als from that location that were contained in each detected community. Communities are
labeled 1–7 and Back. represents the background vertices.
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E and F are not captured well by the communities, however, this is ex-
pected due to the small size of these locations (n= 3 in both cases). Finally,
the most highly represented group among the background distinguished by
ESSC were acquaintances—individuals met through other friends, events or
conferences. These results suggest that friendships in this network cluster
are based on location and that the acquaintances of the author are not well
connected to his remaining friends.

4.4. Enron email network. The Enron email network from Leskovec et al.
(2009) is a large (36,691 vertices), sparse network in which each vertex repre-
sents a unique email address. An undirected edge connects any two addresses
if at least one email message has been sent from one address to the other.
At least one vertex of each edge corresponds to the email address of an
employee of the Enron corporation. The network is shown in Figure 3(D).
We ran ESSC on the network with α= 0.05. ESSC took approximately 10
minutes to run on this network.

Importantly, the network includes Enron employees as well as advertising
agencies and spam sites outside Enron. As such, we expect there to be many
background vertices representing spam and advertisement email addresses.
On applying ESSC to the network, we indeed find an abundance of back-
ground vertices—nearly 83% (30,454 vertices) of the network. The average
degree of the vertices within a community is nearly twelve times that of
the background vertices. ESSC found 8 communities with average size of
1239 and standard deviation 450. The average membership of the vertices
that were contained within a community was 1.409, indicating a moderate
amount of overlap of communities.

5. Simulation study. In this section we evaluate the performance of ESSC
on simulated networks with three primary types of community structure: (1)
communities that partition the network; (2) communities that overlap and
cover the network; and (3) disjoint communities plus background.

Networks of the first two types have been well studied, and there are sev-
eral existing simulation benchmarks for these structures [Girvan and New-
man (2002), Lancichinetti and Fortunato (2009a, 2009b)]. We make use of
the Lancichinetti, Fortunato and Radicchi (LFR) benchmark from
Lancichinetti and Fortunato (2009a, 2009b) in order to assess the perfor-
mance of ESSC and other methods on networks of the first two types. Our
principal reason for using the LFR simulation benchmark is its flexibility, as
well as the fact that the power-law degree distribution it employs is represen-
tative of the degree of heterogeneity present in many real networks [Barabási
and Albert (1999)]. ESSC performs well on these standard nonoverlapping
and overlapping benchmarks, and is in fact competitive with the other detec-
tion methods in these settings. We evaluate the results on these benchmarks
in the Appendix B.
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Relatively little attention has been paid to networks with background
vertices, and we are not aware of a simulation benchmark for networks of
this sort. We therefore propose a flexible simulation benchmark for networks
with background that extends the LFR benchmark, and use it to compare
ESSC with competing methods.

In the remainder of the section, we first describe the LFR benchmarks
of Lancichinetti and Fortunato (2009a, 2009b) and then show how these
benchmarks can be extended to networks with background. We assess the
performance of ESSC and other competing methods on networks with back-
ground using our proposed benchmark.

5.1. The LFR benchmark. The LFR benchmarks of Lancichinetti and
Fortunato (2009a, 2009b) include a number of parameters that govern the
community structure of the simulated network; a list is given in Table 7.
The edge density of the simulated network is controlled through the size n
of the network and the mean degree D. For example, sparse networks are
represented by benchmarks with large n and small D. The degree distribu-
tion of simulated networks follows a power law with exponent τ1. Lower and
upper limits of the degree distribution are set to maintain an average degree
D among vertices in the network. The distribution of community sizes in the
LFR benchmark follows a power law with exponent τ2. The size range [s1, s2]
sets lower and upper limits on the size of communities in the network. Con-
sider a vertex u and its community C. Then u shares a fraction µ of its edges
with vertices outside of C while the remaining 1− µ of its edges are shared
with vertices within C. Thus, the mixing parameter µ controls the extent
to which communities mix, with communities becoming less distinguishable
as µ increases. Finally, in the LFR benchmark with overlap, the parame-
ter ρ ∈ (0,1) is the proportion of vertices that are contained in exactly two

Table 7

Description of the free parameters available with the LFR benchmark networks

Parameter Description

n Size of the network
µ ∈ (0,1) Mixing parameter: the proportion of external

community degree for each vertex
τ1 Power-law exponent for degree distribution of network
τ2 Power-law exponent for size distribution of communities in network

D Mean degree
[s1, s2] Size range of each community: s1 = lower limit

s2 = upper limit
ρ ∈ (0,1) Proportion of vertices contained in two communities

(used in overlapping benchmark only)
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communities, and therefore controls the extent of overlap. If u belongs to
two communities in the overlapping LFR benchmark, then µ represents the
proportion of edges of u that fall outside all these communities.

5.2. Background benchmarks. To assess detection methods on networks
with background, we propose three principled test bed simulations: (1) a
network with no communities (and therefore all vertices are background);
(2) a network with a single embedded community; and (3) a network with
disjoint communities and background. In what follows, we first describe how
to simulate each type of network and then discuss the results for each type.

Networks with no community structure: It is important to measure the
extent to which a detection method correctly identifies the lack of community
structure when none is present. We construct such background networks by
using two random network models: the Erdős–Rényi model of Erdős and
Rényi (1960) where all vertices are linked with equal probability, and the
configuration model of Molloy and Reed (1995) where vertices are linked
according to a prescribed degree sequence as discussed in Section 2.

For each of these models, we vary the size n and mean degree D in order
to control the edge density of the generated network. In particular, for con-
figuration random networks, we specify that the degree sequence follows a
power law with degree τ1 and average degree D.

Single embedded community : We consider networks that contain a single
embedded community and many background vertices. To construct such
networks, we use a variant of the stochastic two block model of Snijders and
Nowicki (1997), that has a simple generative procedure. First, vertices are
placed randomly and independently in two blocks, C1 and C2, according to
the probabilities π1 and π2 = 1− π1. An edge is included between a pair of
distinct vertices u ∈Ci and v ∈Cj with probability Pi,j , independently from
pair to pair.

To construct a network of size n with a single embedded community
C1 and background C2, we generate a stochastic two block model using
π = {π,1− π} with π ∈ (0,1) and P= {Pi,j : 1≤ i, j ≤ 2} given by

P= θ

(
κ 1
1 1

)
.

Here κ > 1 controls the inner community edge probability, and θ < 1 controls
the average degree of the network. Modifying π controls for the size of the
embedded community. The parameters θ and n can be modified to control
the edge density of the network. By generating a network of fixed size and
mean degree, one can assess the sensitivity of a detection method by running
the method across a range of π. We note that Zhao, Levina and Zhu (2011)
used a similar benchmark network to assess the performance of their own
detection algorithm.
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Disjoint communities and background : As a third benchmark test set, we
simulate a network with background and degree heterogeneities. To do so,
we propose combining the LFR benchmark described in Section 5.1 with
the block structure described above. We construct this network in two steps
using the same parameters as the LFR benchmark described in Table 7.
First, we independently and randomly assign vertices to one of two blocks
C1 and C2 according to probabilities π = {π,1−π}. We place edges between
vertices in block C1 according to the disjoint LFR benchmark with parame-
ters Θ= (τ1, τ2, n ·π,µ,D ·π, [s1, s2]). The remaining vertices, corresponding
to C2, are connected to all vertices with equal probability P2 :=D(1− π).
Thus, our benchmark is constructed as a stochastic 2 block model described
by π and

P=

(
PLFR P2

P2 P2

)
,

where PLFR denotes the edge probabilities between vertices in C1 derived
from the LFR random network. The resulting network has average degree D.
On average, a fraction π of the vertices exhibit community structure follow-
ing the LFR disjoint benchmark, while the remaining vertices are connected
to each other and to vertices in the first block in an Erdős–Rényi like fashion.
This new benchmark is flexible and can be used to assess the performance
of any community detection method for networks with background.

5.3. Results. Networks with no community structure: We generated both
Erdős–Rényi and configuration model random graphs with 1000 vertices,
with average degree D ranging from 10 to 100 in increments of 10. The
degree sequence of the vertices in the configuration network follow a power-
law distribution with degree τ1 = 2. For each value of D, we generate 30
random graphs, with edge probabilities determined by the value of D. In
each of the simulations, ESSC assigned all nodes to background, as desired.

Single embedded community : We generated networks of size 2000, and set
κ to 10, so that the edge probability within the single community is ten
times that of the background. We selected values of θ to generate networks
with average degree D of 30, 40 and 50. For each value of D, we generated
networks with embedded communities of size π ∗ 2000 for π ranging from
0.01 to 0.3.

For each set of parameters, we generated 30 network realizations and
gave these as input to ESSC, Spectral, ZLZ and OSLOM. We set Spectral
to partition the network into two communities and set ZLZ to extract one
community, thereby giving both of the methods an advantage over the other
methods considered.

In order to measure the ability of each method to find the true single em-
bedded community, we used the maximum Jaccard Match score of the de-
tected communities. In detail, we measured the Jaccard score between each
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Fig. 7. The results for networks with a single embedded community. Shown are the first,
second and third quartile of the maximum Jaccard Match of each method over 30 realiza-
tions across values of π. *Spectral and ZLZ were given the true number of communities:
Spectral was set to partition the network into two communities, while ZLZ was set to
extract 1 community.

detected community and the true embedded community and reported the
maximum of these values for each simulation. Results are shown in Figure 7.

From Figure 7, we see that ESSC is able to find, with Match ≈ 1, single
embedded communities even when the community is as small as 4% of the to-
tal network. As the size of embedded community increases, the performance
of each method improves, eventually reaching near optimal performance. In
the case of small embedded communities (π < 0.05), ESSC and ZLZ perform
similarly, with ESSC having a slight advantage. Finally, ESSC and all other
methods improve as the average degree of the network increases. Across all
simulations, we note that OSLOM did not find more than two nontrivial
communities.

Disjoint communities and background : We simulated networks of size n=
2000 with π = 1/2, so that half of the vertices were background and the
other half belonged to disjoint communities generated according to the LFR
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benchmark. Networks were generated with average degree D = 30, 40 and 50,
with community sizes in the range [s1, s2] = [20,100]. Degree distributions
were generated according to a power law with degree exponent τ1 = 2 and
community size distributions were generated according to a power law with
degree exponent τ2 = 1. For each value of D, networks were generated with
mixing parameter µ ranging between 0.1 and 0.8 in increments of 0.1. For
each set of parameters 30 network realizations were generated and then
passed as input to ESSC, Spectral, ZLZ, OSLOM and Infomap. As before,
the Spectral and ZLZ were run using the true number of communities. The
generalized normalized mutual information (NMI) was used to measure the
concordance of the detected communities and the true communities with
background vertices treated as a single community. NMI is an information
theoretic tool that can measure the similarity between two partitions as well
as between two covers of a network. For more information on this similarity
measure, refer to Lancichinetti, Fortunato and Kertész (2009). Results are
shown in Figure 8.

Figure 8 tells us several interesting things about the performance of ESSC
and other detection methods on complex networks with background. First,
we see that ESSC performs well (NMI ≈ 1) across a range of mixing param-
eters µ from 0.1 to 0.5. After µ= 0.6, ESSC finds no significant communities
and, hence, the performance falls at this point. Infomap competes favorably
with ESSC up until µ= 0.3, at which point Infomap places all vertices in the
same community. Interestingly, OSLOM has a peak of performance around
µ = 0.6. This appears to hinge on the fact that the method measures the
strength of a community through assuming that vertices outside a commu-
nity are close to the connectivity of the vertex of the community that has
the lowest connectivity for the specified community. Highly mixed commu-
nities tend to favor this similarity, giving OSLOM an advantage in these
cases. Importantly, ESSC performs nearly as well on networks of disjoint
communities with background vertices as it does on these types of networks
without background (see the Appendix B for nonbackground simulations).
On the other hand, the remaining methods tend to, on average, perform
much worse when background vertices are introduced.

6. Discussion. The identification of communities of tightly connected
vertices in networks has proven to be an important tool in the exploratory
analysis and study of a variety of complex connected systems. In this paper
we introduced a means to measure the statistical significance of connection
between a single vertex and any collection of vertices in undirected networks
through a reference distribution derived from the properties of the condi-
tional configuration model. We introduced and evaluated a testing based
community detection method, ESSC, which identifies statistically signifi-
cant communities through the use of p-values derived from this reference
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Fig. 8. The results for networks with LFR and background features. Shown are the first,
second and third quartile match of each method over 30 realizations across values of µ.
The degree distribution of the significant community structure follows a power law with
exponent τ1 = 2 with average degree D specified in each figure. *Here, Spectral and ZLZ
were given the true number of communities.

distribution. This method automatically chooses the number of communi-
ties and relies only upon one parameter which guides the false discovery rate
of discovered communities.

The ESSC extraction technique directly addresses the importance of iden-
tifying background vertices within a network that need not necessarily be
assigned to identified communities. Given the heterogeneities of vertex roles
in most real-world network data, identifying background nodes is an im-
portant aspect of community detection. Methods which identify background
vertices can help prevent the noise associated with their connections from
polluting the otherwise significant features among and between communi-
ties.

We evaluated ESSC and a number of competing community detection
methods using a variety of quantitative and network-specific validation mea-
sures. We have shown that ESSC is able to capture features of network data
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that are relevant to the modeled complex system. For instance, in the Caltech
network study we found that ESSC identified communities closely match-
ing the dormitory residence of its individuals; similarly, in the political blog
study ESSC identified communities matching the political affiliation of the
bloggers in the network. Importantly, ESSC identified a moderate amount
of background for each analyzed network in this paper, suggesting potential
benefits to distinguishing background in a network.

Finally, through a series of simulations we have shown that ESSC is able
to successfully capture both overlapping and disjoint community structure,
as well as community structure in networks with background. In the former
scenario, ESSC is competitive with many modern detection methods, while
in the latter we find that ESSC outperforms competing methods.

The development of ESSC relied on undirected, unweighted networks,
however, this can be extended to networks of different structures, including
directed, multilayer and time-varying networks. Understanding the statisti-
cal significance of communities in each of these more complex network struc-
tures requires both theoretical and methodological work, providing avenues
for future research. This includes comparing ESSC to the various stochas-
tic block model fitting algorithms and other permutation-based statistical
methods that have been recently developed over the past few years. Fur-
thermore, understanding the consistency properties of the ESSC algorithm
is an interesting question of independent interest which will require recently
developed probabilistic tools.

APPENDIX A: APPROXIMATE DISTRIBUTION OF D̂(U :B)

Here we state and prove Theorem 1 which gives the approximate law of
d̂n(u : B) on which our algorithm is based in the large network limit. The
result is specific to the conditional configuration model, which we use as a
null network model in order to find significant community structure.

Proof of Theorem 1. Equation (2.2) implies that for the number of
edges Eo,n one has

∫

R

xdFn(x) =

∞∑

k=0

k
Nk(n)

n
= 2

|Eo,n|

n
∼ µ,

where Nk(n) is the number of vertices of degree k. Thus, |Eo,n| ∼ nµ/2.

Now to understand the distribution of d̂n(u : B), namely, the number of
connections of vertex u to the subset B in CM(do,n), we use the fact that for
constructing the configuration model, one can start at any vertex and start
sequentially attaching the half-edges of that vertex at random to available
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half-edges. We start with the fixed vertex u and decide the half-edges paired
to the do,n(u) := k half-edges of vertex u. Write A1 for the event that the
first half-edge of vertex v connects to the set B and write r1(B) for the
probability of this event. Then,

r1(B) =

∑
v∈B do,n(v)

[
∑

v∈[n] do,n(v)]− 1
=

∑
v∈B do,n(v)

2|Eo,n| − 1
.(A.1)

Now if each half-stub sampled with replacement from the stubs correspond-
ing to set B, then d̂n(u : B) would exactly correspond to a Binomial dis-
tribution. The main issue to understand is the effect of sampling without
replacement from the half-stubs of B, namely, once a half-stub of B is used
by u, it cannot be reused. In general, for 1≤ i≤ k, let Ai denote the event
that half-edge i connects to the set B and write ri(B) for the conditional
probability of Ai conditional on the outcomes of the first i− 1 choices. For
i= 2, we claim that uniformly on all outcomes for the first edge, this condi-
tional probability can be bounded as

[
∑

v∈B do,n(v)]− 1

2|Eo,n| − 2
≤ r2(B)≤

∑
v∈B do,n(v)

2|Eo,n| − 2
.(A.2)

The lower bound arises if the first half-edge of v connected to a half-edge of
B, while the upper bound arises if the first half-edge does not connect to a
half-edge emanating from B. Arguing analogously for 1≤ i≤ k, we find that
the conditional probability ri(B) that the ith half-edge of vertex v connects
to B is bounded (uniformly on all choices of the first i− 1 edges) as

[
∑

v∈B do,n(v)]− (i− 1)

2|Eo,n| − i
≤ ri(B)≤

∑
v∈B do,n(v)

2|Eo,n| − i
.(A.3)

Recall that pn(B) =
∑

v∈B do,n(v)/2|Eo,n|. Since |Eo,n| ∼ nµ/2, using (A.3),
we have

sup
1≤i≤k

|ri(B)− pn(B)| ≤ 3
k

2|Eo,n|
+O

((
k

2|Eo,n|

)2)
→ 0(A.4)

as n→∞.
Now note that the random variable of interest d̂n(u :B) can be expressed

as

d̂n(u :B) =

k∑

i=1

1{Ai}.

Equation (A.4) implies that

dTV(d̂n(u :B),Bin(k, pn(B)))→ 0 as n→∞.

This completes the proof. �
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APPENDIX B: SIMULATIONS ON DISJOINT AND OVERLAPPING
COMMUNITY BENCHMARKS

Disjoint communities: LFR benchmarks of size 2000 were simulated with
two ranges of community size, [10,50] (small, S) and [20,100] (big, B), where

the community sizes were derived from a power-law distribution with expo-
nent τ2 = 1 and with average degree D equal to 30, 40 or 50 with degrees
deriving from a power-law distribution with exponent τ1 = 2. For each value

of D, networks were generated with values of µ ranging from 0.1 to 0.8 in
increments of 0.1. Thirty realizations were generated from each set of pa-
rameters, and the resulting networks were input to the ESSC, GenLouvain,
Infomap, OSLOM and Spectral methods. For Spectral, the parameter k was

set to the true number of communities, thereby providing Spectral with an
advantage over the other methods considered. Normalized mutual informa-
tion (NMI) [Lancichinetti and Fortunato (2009b)] was used as a measure of

performance for all methods. The results are summarized in Figure 9.
ESSC performs well (NMI ≈ 1) for all simulations with mixing parameter

µ≤ 0.6. In networks with small communities ([10,50]), ESSC finds no signif-
icant communities for extreme values of µ (≥ 0.7). In networks with larger

communities ([20,100]), ESSC identifies underlying structure when µ= 0.7,
and performs particularly well for dense networks (D = 40,50). These re-
sults suggests that, when communities are weakly defined, ESSC performs

better when the underlying communities are large. Overall, ESSC, OSLOM
and Infomap performed ideally when µ≤ 0.6.

Overlapping communities: LFR benchmarks of size 2000 were simulated

with two ranges of community size, [10,50] (small, S) and [20,100] (big,
B), with size distribution following a power law with exponent τ2 = 1 and
with average degree D equal to 30, 40 or 50 where the degree distribution
follows a power law with exponent τ1 = 2. For each value of D, networks

were generated with values of ρ ranging from 0.1 to 0.8 in increments of 0.1.
The mixing parameter µ was set to 0.3. Thirty realizations were generated
from each set of parameters and then input to ESSC and OSLOM. Once

again, the generalized NMI was used to evaluate the similarity between the
detected communities and the true cover. The results are summarized in
Figure 10.

From Figure 10, we first notice that ESSC performs competitively with

OSLOM in detecting overlapping community structure across all ρ. In net-
works with small communities (size in [10,50]), the performance of ESSC
improves as the density of the network increases. We also see that ESSC

improves when the size of the communities increases as observed by com-
paring the left and right panels of the ESSC results in Figure 10. This agrees
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Fig. 9. The results on the LFR disjoint benchmarks. Shown are the first, second and
third quartile match of each method over 30 realizations across values of µ. The degree
distribution follows a power law with exponent τ1 = 2 with average degree specified in each
plot. *Here, Spectral was given the true number of communities.
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Fig. 10. The results on the LFR overlapping benchmarks. Shown are the first, second and
third quartile match of each method over 30 realizations across values of ρ at fixed µ= 0.3
for both small [30–50] and big [50–100] communities. The degree distribution follows a
power law with exponent τ1 = 2 with average degree specified by the color of each line.

with our observation in the disjoint community study suggesting that ESSC
prefers networks with larger communities.

APPENDIX C: PARAMETER SETTINGS OF
DETECTION METHODS

We now describe the exact parameter settings as well as the code used for
all detection methods throughout our real network analysis and simulation
studies in Sections 4–5:

• ESSC : We use the MATLAB implementation of the algorithm provided
by the authors at http://www.unc.edu/~jameswd/research.html. We
set α to be 0.05 for all real data sets and simulated networks except for
the Caltech Facebook network where we set α to be 0.01.

• OSLOM : We use the C++ implementation available at http://www.

oslom.org/software.htm. For each study we use the default settings

http://www.unc.edu/~jameswd/research.html
http://www.oslom.org/software.htm
http://www.oslom.org/software.htm
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under an unweighted undirected network with no hierarchy. The p-value
threshold is by default set at 0.1. A random seed is used for its random
number generator.

• Infomap: We use the C++ implementation available at http://www.
mapequation.org/code.html. For each study we use the default settings
of the algorithm for an undirected network. We use a random positive
integer as the seed and run 500 attempts of the algorithm to partition the
network.

• k-means: We use the MATLAB implementation of the algorithm that
is available for current MATLAB software. In each study we choose k
according to the network as described throughout the text. We ran the
algorithm over 500 iterations and used a random seed for initialization.

• Spectral clustering : We use the MATLAB implementation of the normal-
ized Spectral Clustering algorithm. We choose k according to the network
as described in the text. Again, we ran the algorithm over 500 iterations
and used a random seed for initialization.

• GenLouvain: We use the MATLAB implementation of the generalized ver-
sion of Louvain (GenLouvain) from Jutla, Jeub and Mucha (2011/2012).
For the real network analysis, we run the algorithm across a range of res-
olution parameters, γ ranging from 0.1 to 1.0 (in increments of 0.1). For
each γ, we look at the number of communities of the resulting partition
and choose γ to be the first value for which the size is stable in terms
of being constant across neighboring values of γ. In doing so, we chose
γ = 0.8 for the Caltech Facebook network and γ = 0.3 for the political
blog network. In the simulation study, we use the randomized version of
GenLouvain (available on the same website) and choose the partition of
the highest modularity across 30 repetitions. In each run, we use the de-
fault resolution parameter γ = 1. We use a random seed for each run of
the algorithm.

• ZLZ : We use the R implementation provided to us by the author Yunpeng
Zhao. We run the tabu search part of the algorithm 1000 iterations for
each run. We choose k according to the network as described in our report.
The normalized default score from Zhao, Levina and Zhu (2011) was used
as the objective function to which the algorithm was run to optimize.
A random seed was set for initialization.

APPENDIX D: ON THE EFFECTS OF α

As discussed in the main paper, α is the only tunable parameter of the
ESSC algorithm. The value of α controls the level for which communities are
declared statistically signficant. To get an idea of how sensitive the algorithm
is to this parameter, we run the algorithm on the first two analyzed data

http://www.mapequation.org/code.html\
http://www.mapequation.org/code.html\
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Table 8

A summary of the communities detected by ESSC across a range of values of α when run
on the Caltech Facebook network. These statistics are the same as those presented in

Section 4

α NC S σ̂S M Din Dout PB

0.01 7 78.57 16.03 1.03 55.76 15.81 0.30
0.02 7 80.29 15.52 1.04 55.52 14.97 0.29
0.03 7 82.43 15.05 1.05 55.14 14.41 0.28
0.04 6 86.67 12.40 1.02 56.34 17.98 0.33
0.05 6 94.33 14.02 1.07 55.25 17.33 0.30
0.06 6 95.67 14.12 1.07 54.92 17.26 0.30
0.07 6 97.33 14.99 1.07 54.58 16.04 0.28
0.08 6 98.17 14.93 1.07 54.16 16.93 0.28
0.09 8 110.63 22.61 1.28 52.38 7.42 0.19
0.10 8 117.13 31.02 1.36 51.95 9.50 0.19

sets—the Caltech Facebook network and the political blog network—with

values of α between 0.01 and 0.10. We summarize the detected communities

using the statistics of Section 4. A summary of results are provided in Tables

8 and 10. The match of the identified communities with those discussed in

the main text are given in Tables 9 and 11. Further, we assess the similarity

of the background vertices from each setting using the Jaccard score. The

match and statistics are shown below. In general, these statistics suggest

Table 9

The Jaccard score of the background vertices
distinguished at each value of α when compared to the

background vertices found with α= 0.01. These
analyses are done on the Caltech Facebook presented

in Section 4

α Jaccard score

0.01 1.00
0.02 0.9652
0.03 0.9304
0.04 0.8015
0.05 0.7303
0.06 0.7116
0.07 0.6985
0.08 0.7011
0.09 0.5907
0.10 0.6085
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Table 10

A summary of the communities detected by ESSC across a range of values of α when run
on the political blog network. These statistics are the same as those presented in Section 4

α NC S σ̂S M Din Dout PB

0.01 2 394.5 54.45 1.00 40.51 3.40 0.35
0.02 2 406.5 67.18 1.00 39.47 3.27 0.33
0.03 2 420.0 53.74 1.00 38.40 3.07 0.31
0.04 2 423.5 57.28 1.00 38.14 3.00 0.31
0.05 2 448.5 75.66 1.00 36.30 2.58 0.27
0.06 2 449.5 75.66 1.00 36.27 2.45 0.26
0.07 2 431.0 46.67 1.00 37.60 2.84 0.29
0.08 3 528.3 146.92 1.30 27.37 24 0.01
0.09 2 449.5 72.83 1.00 36.24 2.54 0.26
0.10 3 323.67 249.93 1.02 34.39 2.56 0.22

that the communities detected by the ESSC algorithm are robust in the
sense that they are not sensitive to the choice of α.
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improvement of the paper. We would like to thank Mason Porter for sharing
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like to thank Yunpeng Zhao for contributing his code for the ZLZ extraction
algorithm.

Table 11

The Jaccard score of the background vertices
distinguished at each value of α when compared
to the background vertices found with α= 0.05.
These analyses are done on the political blog

network of Section 4

α Jaccard score

0.01 0.7483
0.02 0.7922
0.03 0.8433
0.04 0.8590
0.05 1.00
0.06 0.9938
0.07 0.8843
0.08 0.0062
0.09 0.9877
0.10 0.8277
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SUPPLEMENTARY MATERIAL

Supplemental personal Facebook data set

(DOI: 10.1214/14-AOAS760SUPP; .zip). We provide the personal Facebook
data set as well as anonymized labels used in the analysis in Section 4.3 of
the manuscript.
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