
The University of San Francisco
USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center

Business Analytics and Information Systems School of Management

10-2015

Using a Work System Metamodel and USDL to
Build a Bridge between Business Service Systems
and Service Computing
Steven Alter
University of San Francisco, alter@usfca.edu

Alistair Barros
Queensland University of Technology, alistair.barros@qut.edu.au

Follow this and additional works at: http://repository.usfca.edu/at

Part of the Computer and Systems Architecture Commons, Management Information Systems
Commons, Marketing Commons, and the Technology and Innovation Commons

This Article is brought to you for free and open access by the School of Management at USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center. It has been accepted for inclusion in Business Analytics and Information Systems by an authorized administrator of USF Scholarship:
a digital repository @ Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

Recommended Citation
Alter, S. and Barros, A. (2015) "Using a Work System Metamodel and USDL to Build a Bridge between Business Service Systems and
Service Computing," working paper.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of San Francisco

https://core.ac.uk/display/216980257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/at?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/management?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/at?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/638?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=repository.usfca.edu%2Fat%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@usfca.edu

(c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

USING A WORK SYSTEM METAMODEL AND USDL TO BUILD A BRIDGE

BETWEEN BUSINESS SERVICE SYSTEMS AND SERVICE COMPUTING

Abstract

This paper explores the support for more comprehensive modeling of service systems than

that possible through modeling methods developed through partial perspectives, with

uncertainties about their wider suitability and need for integration with other methods in this

domain. It responds to a Dual Call for Papers from INFORMS Service Science and IEEE

Transactions on Service Computing requesting contributions that address the barely explored

challenge of establishing links between business views of service systems and more technical

views from service computing. Competing definitions of service reveal that most business

views of service emphasize acts or outcomes produced for others, whereas a service

computing view emphasizes encapsulated functionalities that can be discovered and launched

by service consumers. This paper uses work system theory (WST) and a related work system

metamodel to represent a business view of service systems. It uses the Unified Service

Description Language (USDL 2.0) to represent a service computing view of service systems.

Application of the business view to the previously defined EU-Rent example illustrates how

successively more detailed business-oriented descriptions of a service situation reveal needs

for functionality that are well described by USDL. In other words, business service system

views and service computing views, as represented by WST and USDL respectively, serve

complementary purposes. WST supports modeling and analysis of business situations, while

USDL is the basis of detailed descriptions of services as encapsulated functionality.

Keywords: Service, service system, business service, service computing, work system

metamodel, USDL

1. The Challenge of Reconciling Contradictory Views of Service

There are fundamental contradictions between many characteristics of service as it is

generally perceived in the business and social world versus characteristics of service that are

required in the service computing world. In both worlds, service involves entities performing

activities for other entities. The contradictions appear when one looks just a bit deeper.

In the business and social world, common understandings, theories and research related

to service tend to view services as sociotechnical activities involving people who may or may

not use technologies as they try to facilitate beneficial outcomes for others. Automated

services such as telecommunications and automated search are evident in the business and

social world, but at first blush seem more like technical infrastructure and are not the first

examples that come to mind when most business people think about service. Views and

theories of service that are articulated by business researchers often include concepts such as

coproduction, value co-creation, customer experience, and awareness of customer needs,

desires, and emotions. Those concepts imply that providers and customers engage in

2 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

collaborative activities that typically involve mutual visibility, adaptation, and mutual

empathy between the provider and customer.

The world of service computing requires a totally different approach by treating services

as encapsulated functionalities that purposefully separate client entities from server entities.

Those functionalities are launched by messages in a predefined format, produce responses in a

predefined format, and are governed by explicit rules of engagement that determine which

client entities have the right to request service from which server entities. The concept of

encapsulated functionality minimizes the mutual visibility of the client and server. Server

entities have no awareness of the status, needs, likes, and desires of the client entity beyond

the specific information in a preformatted message that launches a service. Similarly, client

entities have no visibility of the specific activities through which a server executes services

except for pre-specified information in the server’s response message. The great benefit of

this approach is that it supports service representation in catalogues, programming

architectures and methods based on modularity, loose coupling, and high cohesion that

facilitate assembling computing systems from separate modules that can be defined and tested

individually and ideally can be configured dynamically as needed.

These contradictory views of service are a source of confusion about the content and

nature of service science and are a significant obstacle to meaningful conversation between

researchers coming from different research traditions. In the business and social world,

visibility and mutual empathy are viewed as commonplace and often expected as inherent in

high-quality service. The service computing world expects and requires exactly the opposite.

Goal and approach. This paper addresses a Dual Call for Papers (Goul et al. 2014, p. 1)

from INFORMS Service Science and IEEE Transactions on Service Computing that was

summarized in the abstract. This paper’s goal is to establish a bridge that overcomes the

seemingly irreconcilable differences between the business/social versus computing views of

service. It does this by demonstrating links between two representative sets of ideas. The

business/social view of service is represented by work system theory (WST) and a related

metamodel. The computing view of service is represented by the Unified Service Description

Language (USDL).

The conceptual core of this paper’s approach for establishing the bridge is treating

“degree of encapsulation” as a service design variable whose extremes are “no encapsulation”

(i.e., extensive visibility and direct collaboration by customers) and “total encapsulation” (no

visibility or collaboration beyond information in predefined messages). Intermediate points

between those two extremes involve combinations of collaborative activities and encapsulated

activities. The actual operation of today’s business world occurs primarily at those

intermediate points, with a strong trend in the direction of greater encapsulation. In other

words, the rhetoric of service in the business/social world seems to underemphasize the

widespread presence and significance of automation, while the vocabulary and operational

details of service in the computing world seem to underemphasize the importance of human

sensibilities and human-to-human interaction

Approach. Many modelling methods, techniques and languages have been proposed for

capturing information systems where value is derived largely from services, i.e. service

systems, through resources, processes, systems, partners, customers and interactions,. Many

of these methods, techniques and languages claim suitability for both business and IT aspects

of service systems, but generally are based on conceptions anchored in one aspect, and then

extend or adapt concepts from the other. Thus, the alignment and integration of

3 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

complementary concepts and methods targeting service systems remains a topic for

exploration.

This paper’s approach is to provide insights by summarizing two complementary

approaches to service, one from each tradition, and comparing their strengths, overlaps and

gaps. Specifically, it uses work system theory (WST) and a related work system metamodel to

represent business-oriented views of a sociotechnical service system. It uses the Unified

Service Description Language (USDL
1
) to represent a detailed, technical approach to

encapsulated functionality, which is one of the central concepts of service computing. Those

views are illustrated using a reference example from the standards organization OMG. The

example illustrates the complementarity between a business-oriented description of a

sociotechnical service system based on WST and the encapsulated functionalities that can be

described using a USDL specification. Different forms of possible integration between WST

and USDL will be explored.

Value. To the authors’ knowledge, this type of link between USDL and a business-

oriented view of a sociotechnical system has not been demonstrated previously in the

literature. Of particular value is the enhanced visibility of how to move from different levels

of description and analysis of sociotechnical service systems to detailed specifications of

service computing functionalities that can be encapsulated, discovered, and used in a very

wide range of situations.

Organization. This paper proceeds as follows. First, it cites competing definitions of

service from different disciplines and proposes that the definitions boil down to three basic

approaches, two of which fit best with a business view of service, while the other fits best

with a computing view of service. A summary of WST and the related work system

metamodel provides concepts for describing sociotechnical service systems and demonstrates

that most of those concepts also apply to totally automated systems. A summary of USDL

identifies its goals and core modules. A conceptual comparison between the complementary

views identifies areas of overlap and inconsistency. Application of work system concepts to

summarize an example from the Object Management Group (OMG) demonstrates how

increasingly detailed representations of a typical sociotechnical example reach a point where

encapsulated functionalities in the style of service computing play an obvious role. The same

sequence of representations demonstrates that totally encapsulated functionalities from service

computing do not provide faithful representations of sociotechnical service systems.

Reflections on the example lead to conclusions about whether and how it is possible to link

business/social views of service systems and service computing views of such systems.

Comment about terminology. This paper discusses the relationship between a business-

oriented view of sociotechnical service systems based on WST and a service computing-

oriented view based on USDL. USDL was designed to cover totally automated service

systems that operate in networked environments and also to capture the sociotechnical service

systems context. This paper’s initial sections use work system, service system, and business

service system to refer to sociotechnical systems from the business perspective inherent in

WST. The rest of the paper recognizes that those systems can be described using USDL, but

1 The paper uses USDL 2.0 given the core concepts of service concepts established through this version of the

language. Developments to USDL beyond this version have focused on the incorporation of an Open Linked Data, which is

not relevant for the analysis of this paper.

4 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

that USDL and related languages and tools focus primarily on service computing rather than

on describing work systems and service systems from a business viewpoint.

2. Competing Definitions of Service

Table 1 shows typical definitions of service from different disciplines including

marketing, production management, economics, IT management, and computer science.

(Most were cited in Alter, 2012a). These definitions are classified into three general portrayals

of services as indicated in the first column. Some definitions focus more on acts performed by

service providers, some focus more on outcomes perceived by customers, and others focus

more on encapsulated functionalities that can be discovered when needed and then used after

being triggered by a request or precondition.

Portrayal Definition

acts “an act or performance that one party can offer to another that is essentially

intangible and does not result in the ownership of anything.” (Kotler and

Keller , 2006, p. 402)

acts “intangible activities customized to the individual request of known

clients.” (Pine and Gilmore , 1999, p.8)

acts situations in which “the customer provides significant inputs into the

production process.” (Sampson and Froehle, 2006, p. 331)

acts “value-creating support to another party’s practices“ Grönroos (2011, p.

285)

acts the “application of skills and knowledge (operant resources) for the benefit

of another party” (Vargo and Lusch, 2008, p. 6)

outcomes “a time-perishable, intangible experience performed for a customer acting

in the role of a co-producer.” (Fitzsimmons and Fitzsimmons, 2006, p.4)

outcomes “a change in the condition of a person, or a good belonging to some

economic entity, brought about ... [by] some other economic entity, with

the approval of the first person or economic entity.” (Hill, 1977, p. 318)

outcomes “an essentially intangible set of benefits provided by one party to another.”

(Clerc and Niessink, 2004, p. 104)

outcomes “A means of delivering value to Customers by facilitating Outcomes

Customers want to achieve without the ownership of specific Costs and

Risks.” (ITIL, 2011, p. 66)

encapsulated

functionality

A service “is generally implemented as a course-grained, discoverable

[business and/or] software entity that exists as a single instance and

interacts with applications and other services through a loosely coupled

(often asynchronous), message-based communication model.” (Brown et

al., 2005) …. “The component that consumes business services offered by

another business component is oblivious to how the provider created the

business service.” (Cherbakov et al., 2005)

encapsulated

functionality

“Services constitute encapsulated and exposed functionality drawing from

core artifacts, e.g., those related to business processes, applications,

objects, and resources ...” (Oberle et al, 2013, p. 158) ... A service can be

manual, semi automated and fully automated, or abstract.” (p. 164)

Table 1. Past definitions of service, clustered as three portrayals of service

5 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

The three portrayals of service in the first column of Table 1 suggest three related

candidates for the definition of service:

1) A service is an act performed to produce outcomes for the benefit of others.

2) A service is an outcome produced for the benefit of others.

3) A service is an encapsulated functionality that produces outcomes for the benefit of

others after being triggered by a request or precondition.

This paper assumes that the first definition of service is simplest and most natural in

everyday business situations, such as providing food services, gardening services, or police

services. It encompasses the other two definitions because production of outcomes for others

requires activities. The second definition applies most directly to controlled, contract-driven

situations, such as IT services performed under service level agreements. The third applies

most directly to delegated production of precisely defined outcomes by human or automated

agents that will produce those outcomes independently, with no oversight or visibility for the

requesting entity. It describes service computing by explicitly treating a service as an

encapsulated functionality that performs activities triggered by a request or precondition.

3. Service Systems as Work Systems

The desired integration between the business and service computing view needs to be

achieved at the level of service systems, not just the definition of service. Service systems are

organizational systems whose operational parts, notably services, relate directly or indirectly

to organizational phenomenon. As such, services, business processes, organisational actors

and resources, IT systems etc., should be traceable across systems, operations and strategy.

This section explains how work system theory (WST) leads to a work system metamodel that

is equally applicable to business service systems because business service systems are work

systems, an idea suggested as a “fresh approach in the IS field” by Alter (2010).

Definition of work system. A work system is a system in which human participants

and/or machines perform processes and activities using information, technology, and other

resources to produce product/services for internal or external customers. (Product/service will

be defined below). Enterprises that grow beyond an improvised start-up phase consist of

multiple work systems. Typical business enterprises contain work systems that procure

materials from suppliers, produce products, deliver products, find customers, create financial

reports, hire employees, coordinate work across departments, and perform other functions.

Almost all of those work systems include totally automated subsystems whose work is

performed by software. Those subsystems are also work systems because the definition of

work system covers both sociotechnical and totally automated work systems. Some work

systems cross organizations, e.g., supply chains or other interorganizational systems.

The approach to work systems discussed here results from a long term attempt to develop

a systems analysis method that typical business professionals could use to understand systems

in organizations in whatever way would be most useful for them. That effort developed the

work system method (WSM), which has been used by many hundreds of MBA and Executive

MBA students in the United Stated, China, India, Vietnam, and possibly elsewhere (Alter,

2013, Truex et al., 2010). Various versions of WSM that have been used in different settings

all focus on identifying a problem or opportunity, summarizing the “as is” work system,

analyzing the situation, and recommending a proposed, “to be” work system

6 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

Difference between work systems in general and service systems in general. All

service systems in organizations are work systems because they satisfy the above definition of

work system. Almost all work systems in organizations are also service systems because they

exist to produce outcomes for the benefit of others within the same enterprise or outside of the

enterprise, such as external customers. The rare exceptions in organizational settings are work

systems that produce outcomes for the sole benefit of their participants, e.g., a salesperson’s

creation and maintenance of a personal shadow system for keeping track of customer

information that is not recorded in the organization’s CRM system. This paper treats the terms

work system and service systems as synonyms since work systems that are not service

systems are unimportant for its purposes. The term work system will be used more often in

reference to past research about work systems and work system theory (WST) and in

reference to a work system metamodel. The term service system is used more often in relation

to research specifically about service and service systems.

Work system theory. A work system metamodel will play a central role in this paper’s

explanation of the bridge between business service systems and service computing. That

metamodel is one of a number of extensions of work system theory (WST), the theory

underlying WSM. WST consists of three components that will not be discussed in detail here

but have been discussed elsewhere (e.g., Alter, 2013; 2015).

1) the definition of work system,

2) the work system framework, which identifies nine elements of a basic management

understanding of a work system.

3) the work system life cycle model, which represents iterations through which work

systems evolve over time via a combination of planned and unplanned change.

3.1 Work System Metamodel

Figure 1 is the fifth of a series of work system metamodels (e.g., Alter, 2012b) that

outline more detailed views of a work system than are provided by the definition of work

system (above) or by the work system framework (Alter, 2013, p. 78). The latter framework

represents a basic, business-oriented understanding of a work system in terms of nine

elements: customers, product/services produced, processes and activities, participants,

information, technologies, environment, infrastructure, and strategies. The work system

framework is useful for summarizing a work system and achieving mutual understanding of

its scope and nature, but is less effective for detailed description and analysis. The more

complete and rigorous metamodel supports more detailed description and deeper analysis

without requiring specialized IT or computer science concepts and notations. The metamodel

is equally applicable to service systems because service systems are work systems, as

explained earlier. A note at the bottom of Figure 1 notes that the one-page representation

hides many attributes of each entity type. The metamodel’s users would consider and apply

hidden attributes while defining the problem or opportunity, evaluating the “as is” work

system, and justifying proposed changes that would appear in the “to be” work system.

The metamodel reinterprets elements of the work system framework in a more detailed

way. For example, information becomes informational entity, technology is divided into tools

and automated agents, activities are performed by three types of actors, and so on. This latest

version of the metamodel was designed to trace links from provider resources to value for

customers, thereby addressing common issues in marketing and service science that are

beyond the current scope. Representation decisions in the metamodel try to maximize

7 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

understandability while revealing likely omissions from evaluation, analysis, or design

processes. Starting at the top, the metamodel says the following:

 Enterprises and value constellations consist of work systems.

 A work system is treated as a provider work system, in contrast with a customer work

system in which value for customer is realized.

Work

System

Customer

Work System

Business

Process

Work System

Activity

Value for

Customer

Product/Service

From Activity

Resource

Actor Role

Automated

Agent

Customer

Participant

Non-Customer

Participant

< performs (0..*) < performs (0..*) < performs (0..*)

 ParticipantTool

Informational

 Entity

Other

Resource

Guideline, Rule,

or Structure

Precondition

Transaction

Record

Plan or

Forecast

Other

Information

Trigger

Technological

Entity

Generalization: A “is a kind of ” B Composition: B consists of one or more A’s

A B A B

A affects > B

BA

Note: Many elements in the conceptual model have goals, attributes, performance indicators, and related principles, patterns,

and generalizations that do not fit into a one page representation, and that must be included in more detailed explanations.

used by (1 ...*) >

< contains (0 ...*)

contains (2 ...*) >

contains (1 ...*) >

produces (1 ...*) >

performed by (1..*) >

< used as (0 ...*)

Physical

Entity

Time

has (0 ...*) >

creates (1 ...*) >

Skill/ Capability

Motive

Performance Metric

Knowledge/ Expertise

Resource from

the Environment

Resource from

Shared Infrastructure

Goal

Document

Organizational

Culture

Laws, Standards,

Regulations, Policies

Other Env.

Resource Shared Human

Resource

Shared Technical

Resource
Shared Informational

Resource

Strategy

< uses (1…*)

performed by (1..*) >

Other

Work System

interacts with (0 ...*) >< interacts with (0 ...*)

Customer

perceives (1 ...*) >

Product/Service

Offering
contributes to (0 ...*) >

performs (0..*) >

Role in Customer

Work System

< (1 ...*) received by, used by, or facilitates

contains (1 ...*) >

Enterprise Strategy

Department Strategy

Work System Strategy

Image

Conversation

Message

Video

Enterprise

consists of (1 ...*) >

Value

Constellation

 < consists of (1 ...*)

Service Level

Agreement

governed by (0 ...*) >

Commitment

Figure 1. Work system metamodel (Alter, 2015)

8 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

 Work systems always contain at least one work system activity and may contain one or

more business processes if some of the work system activities are sufficiently interrelated

and sequential enough to be considered a process

 Work system activities use resources to produce one or more product/services from

activity that may be used as resources for subsequent work system activities and/or may

contribute to a product/service offering for customers. Thus, a particular product/service

from activity produced by a work system activity may be invisible to customers. In

addition, a particular product/service offering may combine a number of product/services

from activity in a way that is relevant to a customer but may not be relevant to internal

work system activities that customers do not perceive. Note: the term product/service is

used to bypass debates about differences between products and services that are reflected in

some of the definitions of service in Table 1 but are not important for the current purposes.

 Customer work systems create value for customers by using product/service offerings

produced by the (provider) work system.

 Resources used by a work system activity may include human resources (participants),

informational resources, technological resources, and other resources, each of which

have a number of specific types that are included in the metamodel to minimize the

likelihood that they will be overlooked in an analysis.

 Work system activities are performed by actor roles that can be performed by three types

of entities, noncustomer participants, customer participants, and automated agents.

Automated agents are machines or software entities that perform tasks autonomously once

launched. They are encapsulated functionalities (the third definition of service noted

earlier). Automated agents often move to the foreground as work systems are decomposed

during analysis and design. This is the central transition point between focusing on

sociotechnical business service systems and service computing systems.

 The outcome of work system activities that use human resources (participants) depends

on the knowledge/expertise, skills/capabilities, performance metrics, motives, and other

characteristics of those participants.

 The technological resources used in a work system activity may include tools that are

used directly by participants (e.g., a person driving a truck) or automated agents that

perform work autonomously after being launched (e.g., a search engine).

 Informational resources used in a work system activity may include types of

informational entities such as transaction records, plans, forecasts, commitments,

goals, rules, structures, documents, video, images, messages, and even conversations.

 Other resources that may be used in a work system activity include physical entities,

time, resources from the environment such as organizational culture, laws, standards,

regulations, and policies, and resources from shared infrastructure that include shared

human resources, shared informational resources, and shared technical resources.

Thus, shared technical resources are viewed as separate from technological entities that

are dedicated to the work system itself.

 Both the (provider) work system and customer work system may interact with other

work systems in ways that may have positive and/or negative impacts on either work

system. Interactions with other work systems may involve direct or indirect dependencies

and intentional, unintentional, or totally accidental effects.

9 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

The analysis and design of a business service system focuses initially on visible,

sociotechnical business processes and activities. Some service computing activities become

visible when sociotechnical service systems are decomposed into subsystems. For example,

the analysis of a medical diagnosis and treatment system starting with activities of medical

personnel and patients may also look at automated agents that come to the foreground, such as

software that suggests times for patient visits or identifies potential drug interactions. Further

decomposition reveals more basic service computing activities such as data transfer, data

retrieval, and data display. Thus, the metamodel provides a path for creating and analyzing

situation-specific models that combine activities of human participants and activities of

automated agents. The trend to automate previously manual tasks increases the significance of

combining human and automated activities in the same models.

4. USDL as a Way to Represent Services as Encapulated Functionalities

This paper’s goal is to build a bridge between business service systems and service

computing. The previous section covered a business service system viewpoint expressed

through the work system metamodel in Figure 1.

This section explains the Unified Service Description Language (USDL), which this

paper uses to represent a service computing viewpoint. USDL is a recent development from

the service computing community that builds on the service computing view that services are

encapsulated functionalities. USDL was developed to describe services along the full

continuum from purely human/professional services to totally automated services performed

by computers (Oberle et al., 2013). The following overview of USDL is quite brief, but

provides sufficient background for visualizing the benefits of a bridge between a business

service system viewpoint and a service computing viewpoint.

4.1 Background on USDL

USDL was “developed across several research institutes and publicly funded projects

across Europe and Australia ... as part of a standardization push.” It was “built and evaluated

in a collaborative and interdisciplinary way where more than a dozen researchers” brought

expertise in computer science, security, service level agreements, business economics, and

law. USDL was designed for applicability to a wide range of services such as “purely

human/professional (e.g., project management and consultancy), transactional (e.g., purchase

order requisition), informational (e.g., spatial and demography look-ups),” and so on. “Use

cases from the corporate world provided insights into topics such as cost center ownership

and provisioning, dependencies in complex business and IT landscapes,” structuring service

bundles, and the “need to extend beyond service providers to intermediaries and outsourced

players such as brokers aggregators, and channel partners.” (Oberle et al., 2013, p. 156)

The view of services in USDL is quite different from views of service in marketing,

strategy, and operations management. Those literatures view services as some combination of

the first two definitions mentioned earlier (basically, acts for others and creation of outcomes

for others). The definitions in Table 1 also illustrate that well articulated viewpoints within

those two definitions also call for particular embellishments such as necessarily involving

coproduction, customization or responses to requests, value co-creation, or service as a form

of economic exchange. In contrast, USDL views service in relation to the third definition,

services as encapsulated functionalities. The range of such services mentioned in the previous

paragraph was quite broad, going from purely human/professional services through totally

automated services that are largely invisible to customers. Thus, while service computing is

10 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

fundamentally about computing, USDL also covers non-computing situations in which

functionality is encapsulated, such as the process outsourcing example in extension #3 above.

Nature of services. Fundamentally, services as described by USDL “constitute

encapsulated and exposed functionality, drawing from core artifacts, e.g., those related to

business processes, applications, objects, and resources. ... Whereas business process

activities are said to be orchestrated across collaborating resources, service capabilities are

delivered to consumers by providers. ... They provide functionality aimed at delivering value

to consumers in terms of expected outcomes, subject to delivery constraints, e.g., availability,

pricing, copyright or disclaimers. In doing so, they alleviate consumers with ownership of

resources, costs or risks. Services involve active parts, for example, operations or actions,

exposed to consumers, often referred to as capabilities.” (p. 158)

4.2 Nine Modules of USDL

As described in Oberle et al. (2013, pp. 164-173), USDL contains nine modules, each of

which will be mentioned very briefly to summarize each module’s purpose and identify some

of the concepts within each module, thereby providing a further indication of content that

might not be obvious from the name of the module.

1) The Service Module establishes the essential structure of a service and links to the

other eight modules, thereby encapsulating “functionality from prior instrumental artifacts on

a business or technical level.” For example, ServiceBundle, allows services to be grouped

without any execution relationship; CompositeService combines services with an execution

relationship such as ordering of steps, unordered steps, or data dependency. Other components

include ServiceVariant, NetworkProvisionedEntity, Resource, and Dependency.

2) The Participants Module “captures the organizational actors that are important for the

provisioning, delivery and consumption of a service” (p. 168). The participant Role covers

service owners, service providers, stakeholders, intermediaries, and end consumers.

3) The Functional Module “allows the capture of service functionality at an abstract

level, anywhere along the human to automation continuum. USDL “supports the capture of

service functionality in different layers, for different levels of concern (white-box, gray-box

and black-box).” A Function (or service Capability) may feature one or more input and

output Parameters, as well as one or more Faults (related to exceptions). A function has

preconditions and produces post-conditions (effects). Two types of resources are defined for a

function, namely those used in performing (utilizedResources), e.g., tools or organizational

roles, and those manipulated (affectedResources), e.g., business objects.” (p. 168)

4) The Interaction Module captures “behavioral aspects of services concern[ing] how

involved participants interact with the service.” An Interaction “models an act of

communication between the consumer of the service and one or more other participants that

have responsibility in delivery.” A Phase holds the sequence of Interactions and requires as

preconditions, and yields as post-conditions, a set of Milestones. (p. 169).

5) The Technical Module “serves the semantic association between technical interface

description and elements of USDL.” (p. 170). It supports both operation- based and resource-

based interfaces. It supports a link to “interface description artifacts” such as WSDL files.

6) The Pricing Module covers the charging for services “as mutually understood by

those who own or deliver services and those who consume them.” The hierarchical structure

for service pricing includes PricePlans, PriceComponents, PriceLevels, PriceAdjustments,

and other practical aspects of charging for services (p. 171).

11 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

7) The Service Level Module “provides the glue between abstractly specified service

level issues in other USDL.” It includes concepts such as ServiceLevel, GuaranteedState,

GuaranteedAction, ObligatedParty, and ServiceLevelProfile. (p. 172)

8) The Legal Module “addresses the need for legal certainty in compliance and service

networks and in trading services on marketplaces,” covering issues such as liability, privacy,

and copyright by using concepts such as UsageRight and UsageType (p. 172).

9) The Foundation Module “factorizes common parts of the remaining modules as a

consistent continuation of modularization.” All other modules depend on it as a reference for

one or more of its elements such as AbstractDescription and NaturalPerson (p. 173).

5. Comparing Business Service Systems and Encapsulated Functionalities

The previous sections summarized the work system metamodel and USDL as

representative examples of the ideas in business service systems and service computing. This

section uses those ideas to compare business service systems with service systems that are

encapsulated functionalities. The comparison is between “business service systems” and

“service systems as encapsulated functionalities,” rather than service computing per se. The

comparison is stated that way because the work system metamodel can be used to describe

encapsulated functionalities, just as USDL can be used to describe business service systems

that have no human participants. Thus, the insights come from comparing ideas underlying

the two representative examples rather than from the details of the specific examples. Table 2

summarizes the comparison, aspects of which will be explained further. The next section will

use an example to show how the comparison plays out in practice.

Topic Business Service Systems Service systems as encapsulated

functionalities

Default

assumption

Business service systems are usually viewed

as sociotechnical systems with human

participants.

Service systems are totally automated and

have no human participants.

Range of

possible

application

Business service systems can be totally

automated because they can take the form of

automated agents that are work systems on

their own right, according to the metamodel.

Thus, business service systems can be used

for work planning and coordination

applications.

USDL was designed specifically to permit

encapsulated functionalities that have human

participants. The only limitation is that the

client does not participate in service activities

and has no direct visibility of how the work is

done. Thus, USDL supports systems

applications such as service interfacing,

cataloguing and match-making.

Degree of

encapsulation

This may range from very low encapsulation

to total encapsulation. The degree of

encapsulation is smaller to the extent to

which customers participate in work system

activities and/or have visibility of how the

activities are performed for them.

This view requires total encapsulation.

Customers are not participants and have no

visibility beyond any information passed to

them by the server.

Treatment of

coproduction

and value co-

creation

Allowed, and often assumed, but not

required because a business service system

may be totally automated. This touches on

debates that are beyond this paper’s scope

concerning whether value is always co-

created (Vargo and Lusch, 2008) or whether

value co-creation is optional (Grönroos,

2011).

Not allowed due to the requirement of total

encapsulation.

12 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

Customer By default, a work system’s customer is

generally assumed to be a person, group of

people, or organization. The customer for

and automated agent (which the metamodel

treats as work systems on its own right)

could be a person or another automated

entity.

As with business service systems, the

customer for totally automated or only

partially automated functionalities could be

people or other encapsulated functionalities.

Pivotal artifact “Product/service offering” represents the

artifacts that are produced for customers (of

the work system, who may be internal

customers within a firm or external

customers).

There are three types of pivotal artifacts:

* Service interface exposing service functions

* Message sent to the service system by the

client to launch the service.

* Responses returned from the service system

to the client and/or outcomes produced by the

service system.

Customer

responsibilities

1) Customers participate directly in many

business service systems.

2) Customers are responsible for cooperating

with and not interfering with service

providers

3) Customers are responsible for creating

value for themselves

1) Customers must define and express service

requests consistent with established formats

and contracts.

2) Customers must maintain a means of

receiving responses from the service system.

3) Customers are responsible for creating

value for themselves.

Service

interactions

Service interactions occur wherever customer

participants and noncustomer participants

play actor roles in the same work system

activity. Some service systems rely heavily

on service interactions and others have few

service interactions

Service interactions occur only through

messages passed between a customer (client)

or a customer’s work system and the service

system that executes the desired work.

Customer

experience

Customer experiences start during any co-

production that occurs and extends to

customer work systems that receive a

provider work system’s product/service

offerings and use them to facilitate value for

customers.

There is no customer experience of specific

totally encapsulated services that are launched

by other automated services. The customer

experience for totally encapsulated services

that are launched by human customers

involves the initial contracting for the service,

the specification of the request, and the use of

the response. The customer experience cannot

include involvement in the service system

activities or visibility of how the activities are

performed (other than any related reporting

that is part of service system’s pre-defined

response).

Service level

agreement

Having a formal service level agreement is

optional. Many business service systems

have informal commitments to exert best

efforts.

Having a formal service level agreement is

optional. Outsourcing arrangements usually

have some type of service level agreement.

Subsystem

traceability

Work systems can contain other work

systems. The metamodel handles that using

the entity type automated agent, which is a

type of actor role for performing an activity.

Automated agents are work systems on their

own right.

Service systems provide interfaces of system

components, which in principle can be

contained in, or linked to, larger systems.

 Table 2. Comparison of business service systems and service systems viewed as

encapsulated functionalities

It is useful to add several points to the comparison in Table 2.

Human and non-human customers. Both business and computing views of service

involve doing something for another entity. In business service systems the customer or client

13 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

is usually a person, group of people, or organization, but especially in the decomposition of a

larger service system there may be subsystems in which a person needs to respond to an

automated agent. In those cases, the customer might be viewed as the automated agent that

requested the response from the person. Conversely, in totally encapsulated service systems

that might be defined by USDL, the client may be a person who requested something or may

be another totally encapsulated service system that requested something. Thus, both views of

services in Table 2 may have human and/or non-human customers.

Product/services. Use of the term product/service bypasses debates about distinctions

between products and services that are tangential when analyzing operational systems. in

business service systems, product/services are produced through work system activities that

contribute directly or indirectly to the service system’s product/service offerings for its

customers. The same can be said about an encapsulated functionality since the response that it

produces can be viewed as a product/service offering for its human or computerized customer.

Types of processes. A business service system may contain one or more business

processes but must contain at least one activity. That distinction allows the metamodel to

cover a full range of business process possibilities in service systems, including the following:

 largely unstructured creative processes (such as many design or artistic processes) that

might use tools but have no pre-specified sequence and may involve extensive iteration.

 semistructured knowledge processes (such as medical diagnosis or legal analysis) that use

tools and procedural knowledge but may involve situationally determined iterations.

 workflow processes (such as reimbursement processing) with a prescribed sequence but

whose individual steps are treated as black box subroutines whose details are unknown.

 highly structured processes (such as pharmaceutical and semiconductor manufacturing)

where conformity with both workflow sequence and the details of each step are essential.

The general assumption for service computing is that each service is defined rigorously in

terms of its inputs, processing, and outputs, although the processing may be subcontracted to

other services that presumably also are defined with similar rigor As noted in Table 2, that

general assumption seems most natural in relation to totally computerized service systems, but

also can apply to sociotechnical service systems that are totally encapsulated, such as when

specific tasks are outsourced from one organization to another without any visibility for the

customer about how the outsourced activities are performed.

Co-production and value co-creation. Some definitions of service in Table 1 imply that

service necessarily involves co-production by providers and customers. The metamodel says

that co-production occurs in any work system activity whose actor roles include customer

participants and noncustomer participants. In relation to value co-creation, Vargo and Lusch

(2008) says that value is always created in service. Grönroos (2011) says that value co-

creation is optional. The metamodel says that customer work systems create value for

customers, thereby clarifying that value co-creation occurs where activities in the customer’s

value creating work system coincide with work system activities within the provider's work

system.

14 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

6. Example Illustrating the Metamodel as a Path to Service Computing

This section uses the “EU-Rent” example to illustrate how the metamodel can outline a

model of a specific situation that includes both typical business service activities and totally

automated service computing activities. This example summarizes the operation of a car

rental company, including renting the car, picking up the car, dropping off the car, ending the

rental, and accepting payment. OMG (the Object Management Group, an industry consortium

that deals with enterprise integration, portability, and interoperability issues) used it to

illustrate aspects of its products such as Semantics of Business Vocabulary and Business

Rules (SBVR) (OMG, 2013). The nature of the EU-Rent scenario is apparent from the

following excerpt: “EU-Rent is a company that rents cars to persons, operating from

geographically dispersed branches. The cars of EU-Rent are divided in car types (brands and

models); for every car type there is a particular rental tariff per day. A car may be rented by

a reservation in advance or by a ‘walk-in’ customer on the day of renting. A rental contract

specifies the start and end dates of the rental, the cartype one wishes, the branch where the

rental starts,” (Op’t Land & Dietz, 2012).

We approach this example by considering six levels of service description. The first two

levels provide little detail but are useful beginnings of a basic understanding of a service

system. Tables 3 and 4 illustrate how work system ideas support a richer understanding that

focuses on business issues and largely shies away from technology and technical description.

The fifth and sixth levels go into detail about how encapsulated services operate. Visualizing

the six levels is useful in recognizing the transition point where business-oriented work

system ideas begin to lose traction and service computing concepts necessarily take over.

Level 1: a phrase or sentence. The simplest way to describe a service is with a phrase

that states what is being done for whom. Examples include teaching a class for MBA students,

manufacturing a house for a family, and renting a car to a customer. In each case, the phrase is

consistent with the first definition of service (acts for others), has implications related to the

second definition (outcomes for others), but says nothing about encapsulated functionality.

While this level might seem trivial, it proved useful to MBA and Executive MBA students by

clarifying that the primary topic is a work system rather than the software it uses.

Level 2: a set of activities. Listing a set of activities provides a view of a service that

says more than a level 1 phrase, but still provides too little information to support an analysis.

Simple examples are the sections of Tables 3 and 4 that list activities. Graphical

representations provide a richer way to represent activities, as is apparent from widespread

use of flow charts, swim lane diagrams, and service blueprinting. WSM treats graphical

techniques as optional when identifying a problem or opportunity, summarizing the “as is”

work system, analyzing the situation, and recommending a proposed, “to be” work system. In

some cases graphical representations are unnecessary. In others, they are extremely helpful.

Level 3: a work system snapshot. Table 3 summarizes the example using a tool from

WSM called a work system snapshot (Alter, 2013, p. 86). Covering no more than one page,

this type of summary is useful for clarifying the scope the work system or service system

being analyzed or designed. Its goal is to help in clarifying a work system’s scope by

identifying the main participants, activities, product/services produced, customers, and

important information and technology. While useful for summarizing the “as is” and “to be”

work systems, this type of summary is still quite limited because it does not attempt to reveal

15 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

important details such as which activities use specific information and what triggers the

occurrence of each activity.

Customers Products/ Services

 Renter

 Driver

For customers:
 Rental of car consistent with rental contract

For providers:
 Payment for rental

Major Processes and Activities

 Renting agent starts rental through interaction with renter.

 Driver picks up the car.

 Driver drops off the car.

 Drop-off agent ends the rental.

 Renter pays for rental.

Participants Information Technologies

 Renting agent

 Renter

 Driver

 Drop-off agent

 Availability of cars at pick-up location

 Rental contract (arrangement for payment,

pick-up branch, drop-off branch, start date, end

date, type of car, tariff, driver’s driver license,

arrangement for fuel in gas tank upon drop-off

 Condition of car upon drop-off

 (not

specified)

Table 3. Work system snapshot of EU-Rent scenario (Alter, 2014)

Activity Actor

Roles

Information

used

Information

captured,

created,

updated, or

deleted

Trigger Pre-

conditions

Business rules Post-

conditions

Renting

agent
starts
rental by

interacting

with

renter.

 Renting

agent

 Renter

 Availability of

cars

 Credit card or

other payment
capability

 Driver license
of driver

 Rental

contract

 Renter’s

request for
rental

 Driver has

valid driver
license

 Rent only if the

driver has a
valid driver

thus, it would
be possible

license.

 Car rented

and
available

for driver’s
use

Driver

picks up
the car.

 Driver Rental contract Car picked up Car rented,
available

for driver’s

use

 Car rented
available

for driver’s

use

 Can leave
location only if

rental

agreement
exists.

Departure of

driver from
EU Rent

pick-up
location

Driver

drops off
the car.

 Driver Location of
drop-off site

 Driver is
ready to

drop-off

the car.

 Driver is
ready to

drop-off

the car.

 Drop off the car
at a branch of

EU Rent, not

elsewhere.

 Car
returned to

EU Rent.

Drop-off

agent
ends the
rental.

 Drop-off

agent

 Rental contract

 Condition of
car

 Drop-off date,

time, place

 Mileage

driven

 Car’s

condition

 Car

dropped off

 Car

dropped off

 Valid

rental
contract

 Adjust charges

based on rental
contract.

 Rental

terminated.

Renter
pays for
rental.

 Renter Rental contract

 Return time,

date, location

 Car’s condition

 Drop-off date
and time

 Car’s
condition

 End of the
rental

 Valid
rental

contract

 End of
rental

 Renter pays
based on tariff

from rental

contract.

 Fulfillment
of renter’s

part of

rental
contract.

Table 4. Summary of the EU-Rent scenario using entity types from the metamodel

Level 4: a tabular summary based on the work system metamodel. Table 4 uses

selected entity types in the metamodel to summarize the EU-Rent situation in more detail. It

16 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

identifies familiar activities involved in renting a car. Actor roles appear in the second

column. Information appears in two columns: information used, and information captured,

created, updated, or deleted. Table 4 includes informational entities that are essential for

integrating business service and service computing views of a specific service system, e.g.,

triggers, preconditions, business rules, and post-conditions

The metamodel can be used as the basis of many other tabular representations of different

aspects of a work system, such as different types of information used by specific activities, or

activities that use a particular informational entity or type of informational entity. The general

form of Table 4 can also be used in hierarchical representations by decomposing a work

system into subsystems. For example, each activity in Table 4 can be treated as a separate

work system containing many smaller activities, each of which creates and uses certain

information, has certain preconditions and triggers, and so on.

Level 5: encapsulated functionalities used by the work system. The usefulness of a

level 4 work system description hits a limit when many of the activities are performed by

automated agents that operate in network environments and may be selected dynamically

based on conditions far removed from the work system’s primary business logic. While

automated agents in the metamodel are work systems on their own right, using the metamodel

to represent such situations would be unnecessarily inconvenient because the metamodel is at

the wrong level of generality. Many generic issues must be dealt with in a world of

encapsulated functionalities that are discovered, selected, and executed through networks.

This is where the metamodel should link to a service description language or other approach

designed specifically to deal with the breadth and complexity of such situations, as will

become apparent in the next several sections.

Level 6: services described as executable code. This last level is about programming

methods and is beyond the current scope.

6.1 Extending the Example to Illustrate Links between Business Service Systems and

Service Computing

The transition from the fourth level of service description to the fifth level is the point

where a business service system perspective becomes difficult to use and necessarily links

with a service computing perspective. This can be visualized through three fundamentally

different extensions of the situation summarized in Table 4.

Extension #1: License checking software. Assume that the renting agent’s interaction

with the renter includes using “license checking” software that searches databases to check

the driver license’s validity. The renting agent launches a search process that may invoke

many automated subprocesses and may cross many enterprise boundaries. The software is an

automated agent (an encapsulated functionality) that operates autonomously once launched. It

is triggered by a specified, formatted input from an actor role that has the right to use the

software; it invokes a cascade of other software entities through pre-defined formats and

contracts, ultimately producing a response for the renting agent.

Adding the step “check validity of driver license” to Table 4 will augment the original

business service system description with an activity that relies totally and visibly on service

computing. Since the automated agent is a work system, the format of Table 4 can be used to

specify its operation as a set of activities performed by other automated agents. Such

17 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

specifications are far from the interests or competence of typical business professionals. IT

professionals should complete the specification, ideally using tools designed for that purpose.

Extension #2: Use of workflow software. Assume that EU-Rent decides to use BPM

workflow software with an “enactment service” that “takes care of control and execution”

(van der Aalst 2013, pp. 15, 17). The enactment service would initiate and track activities

performed by human participants and by automated agents. Inclusion of the workflow

software in the business service system could be represented by revising descriptions of

activities performed by EU-Rent agents. Each activity would be initiated by the enactment

service and then would be performed by the agent, after which the workflow software would

control storage of data and status changes. The enactment service would be treated as a

separate automated work system that operates continually, looking for conditions that require

it to initiate action or record results. Thus, the enactment service would operate continually as

a ubiquitous work system (within EU-Rent’s rental operations), whereas the license checking

software would operate only when initiated by a human agent.

Extension #3: Process outsourcing. Recognizing customer complaints about long lines

at its office, EU-Rent hires an outsourcing firm called Rental-Services, Inc. (RSI) to perform

skilled work previously done by rental agents at each site. When a customer arrives at a rental

site, a low-skilled EU-Rent employee performs a one minute customer qualification step

(What is your name? Do you have a reservation? Do you have a credit card?) and leads the

customer to a video kiosk that enables rental interactions with an RSI agent at an RSI call

center that can handle several hundred customers from different EU-Rent offices at the same

time. The contract between EU-Rent and RSI specifies rental procedures in great detail.

In extension #3 RSI provides an encapsulated functionality (the third portrayal of service

in Table 1) that receives a request from a customer at an EU-Rent site, performs required

interactions with the customer, and returns a message back to an on-site EU-Rent employee

about the resolution of the rental request, either identifying the car that has been rented or

providing the reason why the rental request must be declined. From EU-Rent’s viewpoint, the

first step in Table 4 would expand into three steps: 1) EU-Rent agent performs initial

customer qualification activity. 2) RSI creates the rental contract through interactions with the

customer. 3) EU-Rent agent completes rental interaction by providing keys or providing a

printed reason for declining the rental. The second of those three steps can be viewed as either

a) a separate work system in which an RSI agent interacts with a customer at an EU-Rent

facility or b) a service in which an RSI agent interacts with a customer at an EU-Rent facility.

These views are almost identical on the surface but require extensive technical knowledge for

completing the specification in either case.

6.2 Encapsulation of Functionality as the Point of Transition

The three extensions all highlight encapsulation of functionality as a point of transition

between a business service system description and a description of a type of service that

delivers results upon request while hiding its operational details from the business service

system view.

 License checking extension. The agent enters a request that the license checking

service answers. The service provides encapsulated functionality that is beyond the

scope of a typical business professional’s concern. A business professional wants to

know that a correct answer is produced, but has little skill, knowledge or interest

related to encapsulated functionalities that produce that answer.

18 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

 Workflow extension. The enactment service represents encapsulated functionality

that operates in the background to initiate and track activities.

 Process outsourcing. The outsourcing vendor’s employees perform rental services for

customers at local offices. This service is an encapsulated functionality because it

operates on request and returns one or more pre-specified types of responses.

In all three cases, the functionality is accessed through a network and might be executed

anywhere. Those execution details are beyond the scope of typical business concerns,

assuming that the functionality has been specified correctly, tested thoroughly, selected as

preferable to other functionalities for the activity at hand, and provided by the enterprise itself

or by a trusted supplier. In relation to describing or documenting the larger business service

system, it makes sense to treat the encapsulated functionality as a black box, whereby

activities within the business service system only need to access the encapsulated

functionality, to provide information it needs, and to receive results it produces.

In three cases the encapsulated functionality might be described using the work system

metamodel since all of the encapsulated services can be viewed as services systems (and

hence work systems). The first two extensions involved totally automated service systems

while the third extension was a totally encapsulated sociotechnical service system. In all of

the cases, the functionality was encapsulated in a way that separated it from other functions in

the EU-Rent work system and allowed it to be initiated on demand and executed elsewhere.

An expanded version of all three examples could have included additional interactions

between people at the rental site and the encapsulated functionality. That would only require

that the encapsulated functionality would control subordinate functionalities that took care of

specific tasks using information obtained through interaction with people at the rental site.

6.3 Could USDL Model the EU-Rent Example?

It would be possible to use USDL to model the EU-Rent example if the EU-Rent service

system could be viewed as an encapsulated functionality. All three previously mentioned

extensions of the EU Rent example were presented as services in this sense, i.e., as

encapsulated functionalities that provide responses after being triggered by requests. The

assumption that the entire EU-Rent example can be viewed this way is a bit less convincing

because it was presented as a work system whose core, its business process, was revealed and

elaborated instead of being treated as a black box functionality that executes upon request. On

the other hand, the explanation of USDL in Oberle et al. (2013) included Road Transport and

Ocean Export examples. Those examples might be represented as business processes, thereby

implying that at least in principle, it would be possible to use USDL to model the EU-Rent

example. If those examples could be modeled using the nine USDL modules mentioned

above, it should be possible to model the EU-Rent example in a similar way.

Even if this application of USDL were possible, the desirability of modeling the EU-Rent

example using USDL is questionable. Tables 3 and 4 demonstrated that is easy to apply WST

and the work system metamodel for modeling the EU-Rent example, at least through the first

four levels. On the other hand, just the brief description of the nine modules in USDL

illustrates that modeling even those first four levels using USDL would require detailed

knowledge of various concepts and modules in USDL. This could be attempted only by

professional IT architects or software developers who had been trained on USDL or who were

able to read technical manuals to learn it themselves. Using USDL would be far beyond the

interest or capability of typical business professionals, many of whom would have little

difficulty producing something like Tables 3 or 4 after a small amount of explanation. In

19 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

addition, USDL was designed to support detailed descriptions of interactions, technical

decisions, pricing, and legal issues that are need to be documented at some point, but that are

beyond the scope of descriptions that are used for obtaining a basic understanding of a service

system.

7. Implications for Establishing a Bridge between a Business Service System

Viewpoint and a Service Computing Viewpoint

This paper’s previous sections used WST (and a work system metamodel) as a proxy for

a business service system viewpoint and USDL as a proxy for the service computing

viewpoint. This section uses those proxies to explore implications for addressing the question

in the Dual Call for Papers and establishing a bridge between the two viewpoints.

 7.1 Partial Overlap of WST and USDL

Concepts and terminology in WST and USDL overlap to some extent, but their purposes

diverge. WST’s primary purpose is to support understanding and modeling of sociotechnical

work systems and service systems, while USDL was designed to support a business-to-

computational view of an encapsulated functionality that it calls a service. WST is more

comprehensive since it covers both services in the USDL sense and other business

functionality. USDL focuses only on detailed description of services. Also, USDL is designed

to articulate technical implementation considerations, whereas WST reflects a business,

management or user perspective and treats technical implementation as beyond its scope

Value generating activity. While an exhaustive comparison of the work system

metamodel and USDL is beyond this paper’s scope, each embraces a pivotal concept related

to value-generating activity that can be used to accentuate commonalities and differences

between the approaches. For the work system metamodel, activities within the provider work

system produce product/services that contribute directly or indirectly to product/service

offerings for customers. When performed by human participants rather than automated agents,

those activities generate outcomes that depend on knowledge/expertise, skills/capabilities,

performance metrics and motives. Activities use various types of informational, technological,

human, and other resources that are identified in the metamodel. These different concepts,

directly or indirectly related to a work system activity, demonstrate the richness of business

service systems phenomena that the work system metamodel supports.

In USDL, services are containers for value-generating activities. They capture relations

across services (prescriptive relations or compositional structures or descriptive relations or

dependency constraints) among other broader associations (e.g. pricing policy). Services

fundamentally provide capabilities, which are abstractions of computational operations,

having inputs and outputs with data elements of arbitrary nesting, faults, preconditions and

postconditions. Capabilities manipulate computational resources such as business objects in

application systems or utilize resources such as organizational roles or tools. Capabilities can

be exposed through technical interfaces and can be used to support interactions with

consumers (customers). Collectively, these are concepts relevant to the service computing.

Thus, WST and USDL overlap on their respective concepts of value-generating activities,

i.e., work system activities for WST and service capabilities for USDL. An additional overlap

across the two metamodels is the resources that are used when human participants or

automated agents perform activities.

20 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

7.2 Practicalities

As demonstrated through earlier examples, use of the work system metamodel hits a limit

when many of the activities are performed by encapsulated functionalities that can be

described in great depth using USDL. It is possible to describe encapsulated functionalities

using the work system metamodel, but USDL is a much better approach because it is designed

specifically to handle that type of situation.

The metamodel was designed to cover typical business systems and to organize ideas that

are easily understood by business practitioners. It was not designed to handle topics and

issues that are essential when dealing with encapsulated functionalities, such as: operational

sufficiency of functions available through a service (input/output document messages,

pre/post condition rules expressed against data elements and references for exception

handling); composition and artifactual (resource) dependencies of multiple functionalities;

interaction protocols for consumer access to functions; pricing of service capability use

subject to automated pricing models; legal aspects of accessing and operating functionalities,

and so on. A great deal of research has gone into approaches for dealing with these issues.

At least in principle USDL could be used for modeling work systems like the EU-Rent

example even though the complexity and rigor of USDL is relevant mainly to software

developers. Based on cognitive load theory (Sweller, 1994), a high level of formality may be

counterproductive for business professionals trying to understand work systems at the first

four levels of description. CLT says that intrinsic cognitive load is related to the inherent

nature of the material, whereas extraneous cognitive load is related to how the material is

presented. The type of WST-based representation in the first four levels has very low

extraneous cognitive load because it is based on familiar ideas and does not require use of

overly precise concepts that are difficult for most people to understand.

8. Approaches for Moving Forward

Based on the foregoing observations, we see four possible approaches for bridging the

two viewpoints whose characteristics are summarized in Table 5. The first of the four

approaches (complementarity) is based directly on the example presented earlier. The second

approach (WST front end to USDL) probably has the greatest potential. The other two

approaches are mentioned for completeness but do not seem as likely to lead to significant

progress.

 WST and work system

metamodel

USDL

Usability by business professionals High

Low

Precision and rigor Low - moderate

High

Focus on general business structure and

performance issues

High Low

Focus on service-specific topics such as pricing,

legal, and service level agreements

Low High

Applicability for internally directed and externally

directed systems

High High, even though designed for

externally directed services

Cognitive load Relatively low Much higher

Table 5. Comparison of WST approach and USDL approach

21 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

Complementarity. With this approach, the business service system viewpoint expressed

by WST or a similar set of concepts is used through the first four layers, thereby providing

clarity about the nature, scope, and general operation of the business service system. At that

point, technical experts use business process modeling tools such as BPMN for defining

business logic in detail and USDL or something similar for specifying details of encapsulated

functionalities that are invoked by specific process steps. As implied by Table 5, the general

logic of this approach is to avoid pretending that one approach solves all problems, and

instead to mix tools and methods in ways that address different issues effectively and do not

try to force one approach on all topics and issues. This approach requires conscious separation

between using WST and the work system metamodel versus using USDL. Nothing prevents

iteration, however because it is always possible to improve the work system model and then

update the USDL models.

WST front end to USDL. Business services can be described in a way that allows

describing their functional aspects through WST and their non-functional aspects such as

pricing, legal and technical infrastructure in USDL. With this approach, the functional

description of business services would not be forced into an encapsulated approach that is

more suitable for technical services. Business service activities and interactions would be

described through WST activities, while strict interaction protocols (document exchange

sequences which are important for certain applications e.g. B2B domains like transportation

management) could be described using an encapsulated view of the service. Thus, USDL

would play a purely cataloguing purpose for non-functional and basic functional aspects.

Technical services would be described through USDL and traceable to a work systems

context captured in a metamodel based on WST. The description of services would become

more harmonious across WST and USDL, with the USDL part providing strictly encapsulated

services that are aligned to a work systems context.

The process outsourcing example mentioned earlier as extension #3 is a relevant

example. Without something like a WST-based model, it is likely that a process outsourcing

model based totally on USDL would omit important issues. For example, using USDL would

lead technical experts to focus on the encapsulation of functionality, whereas business

professionals probably would be concerned about having proper visibility about how the

outsourced work was being done, especially if they view outsourcing as a way to improve

business performance rather than a way to “export a mess.” Thinking of the outsourced work

as part of a larger business service system (i.e., not an encapsulated functionality) would shine

more attention on the customer’s responsibility in making sure that the work actually was

done well by the outsourcing provider.

WST-based model of USDL. Since the work system metamodel treats automated agents

as encapsulated functionalities, at least in principle it is possible to create work system models

of all of the modules within USDL. The resulting work system descriptions would view the

nine components of USDL as separate work systems that could be incorporated into or

parameterized for a particular WST-based model of a business situation. Proceeding in this

direction would basically be an exploratory research project to see how far the metamodel

could be extended. Notice that this would be a process-oriented model, not an UML model.

USDL refinement of a work system model. USDL was designed to incorporate both

totally automated and sociotechnical service systems that can be encapsulated. The possibility

of modeling sociotechnical systems implies that USDL might be used to model some of the

22 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

types of sociotechnical work systems that WST and the work system metamodel were

designed to model. The qualification “some of the types” reflects the limitation that

encapsulation is not possible in many sociotechnical service systems in which customers have

significant responsibilities, or co-produce the outcome or where there are aspirations of "value

co-creation." The latter situations are important focal point in the service discourse in general

management.

9. Conclusion

This paper’s goal was to use a work system metamodel and USDL to build a bridge

between business service systems and service computing systems. That would be a step

toward the type of transdisciplinary research suggested by the Dual Call for Papers from

INFORMS Service Science and IEEE Transactions on Service Computing. This paper started

by identifying three portrayals of service. It treated business service systems as work systems,

implying the relevance of a work system metamodel that it used as the basis of a path toward

combining business service activities and service computing within a single model of a

service system. It identified six levels for describing a service system and explained why a

work system approach was more appropriate for business-oriented description and analysis up

to the fourth level. USDL provides a much more appropriate basis for the fifth and six levels

in situations where it is important to describe and analyze encapsulated functionalities that

operate through networks.

A fundamental distinction related to views of service. The work system metamodel

and USDL cover some of the same conceptual territory and overlap in various ways, but there

is a key distinction based on different fundamental views of what service is about. The work

system metamodel is based implicitly on the first definition of service that was mentioned at

the outset, an act performed to produce outcomes for the benefit of others. With that implicit

definition, the work system metamodel can accommodate the other views of service, i.e.,

services as outcomes and services as functional entities such as web services. The metamodel

expresses the outcome of activities as a “product/service offering” because that is the outcome

that a customer expects, receives, and experiences. Any clearly bounded work system also can

be viewed as an encapsulated functionality that produces particular product/services for

customers. However, the fact that customers may be work system participants makes it more

difficult to assure any particular outcome due to customer-related factors and various

exogeneous factors, both of which are beyond a provider’s control.

It is possible that practicalities related to nature and spirit will impose fundamental limits

on reconciling sociotechnical service systems and service computing systems. Service

computing systems are totally automated. The components were created by people but do not

exhibit human agency, human variability, and human frailties when executing pre-defined

activities. Sociotechnical systems are quite different. The four types of business processes

mentioned in the comparison of the business service view and encapsulated functionalities

view are a reminder that many activities with human participants are inherently creative or

knowledge-intensive and do not call for a high degree of pre-defined, tightly controlled

structure. In addition, research related to adaptations, workarounds, and emergent change all

start from real world observations of obstacle- or insight-related non-conformance or

deviations from existing patterns of activity.

Need for interfaces between business and technical views. Difficulties in

communication between business and technical professionals have been a long-standing

23 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

problem that has been discussed for decades under a variety of headings ranging from user

participation and project risk factors to digital divides and business/IT alignment. This paper’s

discussion of the six levels for describing a service system and of the transition between

specifications that need more of a business orientation versus those that need more of a

technical orientation could lead to better tools and methods.

Despite those practical issues, the effort to articulate areas of greater integration between

business service systems and service computing systems could yield substantial benefits.

Many existing business service systems probably would perform more efficiently and

effectively if they could incorporate more of the spirit of service computing. The attempt to

reconcile business service systems and service computing systems could yield important

benefits for sociotechnical service systems by providing better integration of human creativity

and judgment with machine stability and repeatability.

References

Alter S (2010). Viewing Systems as Services: A Fresh Approach in the IS Field,

Communications of the Association for Information Systems. 26(11): 195-224.

Alter S (2012a). Challenges for Service Science, Journal of Information Technology Theory

and Application. 13(2): 22 -37.

Alter S (2012b) Metamodel for Service Analysis and Design Based on an Operational View

of Service and Service Systems, Service Science. 4(3): 218-235.

Alter S (2013). Work System Theory: Overview of Core Concepts, Extensions, and Challenges

for the Future, Journal of the Association for Information Systems. 14 (2): 72-121.

Alter S (2014) Potentially Valuable Overlaps between Work System Theory, DEMO, and

Enterprise Engineering, IEEE Conference on Business Informatics, Geneva.

Alter S (2015) Work System Theory as a Platform: Response to a Research Perspective by

Niederman and March, Journal of the Association for Information Systems, in press.

Brown AW, Delbaere M, Eeles P, Johnston S, Weaver R (2005). Realizing service-oriented

solutions with the IBM rational software development platform, IBM Systems Journal.

44(4): 727–752.

Cherbakov L, Galambos G, Harishankar R, Kalyana S, Rackham G (2005). Impact of service

orientation at the business level, IBM Systems Journal. 44(4): 653–668.

Clerc V, Niessink F (2004). IT Service CMM: A Pocket Guide, van Haren Publishing.

Fitzsimmons, JA, Fitzsimmons MJ (2006). Service Management, 5th ed. New York, NY:

McGraw-Hill

Grönroos C (2011). Value creation in service logic: A critical analysis, Marketing Theory,

11(3).: 279-301.

Hill TP (1977). On goods and services, The Review of Income and Wealth. 23: 315-338.

ITIL (2011). ITIL Glossary and abbreviations: English, available from http://www.itil-

officialsite.com/InternationalActivities/ITILGlossaries_2.aspx , viewed on Oct. 25, 2014.

Kotler P, Keller K (2006). Marketing Management, 12th ed., Upper Saddle River, NJ:

Prentice Hall.

Oberle D, Barros A, Kylau U, Heinzl S (2013). A unified description language for human to

automated services. Information systems. 38(1): 155-181

.OMG (2013). Semantics of Business Vocabulary and Business Rules (SBVR), v1.2.

http://www.omg.org/spec/SBVR/1.2/ viewed on Oct. 25, 2014.

http://www.itil-officialsite.com/InternationalActivities/ITILGlossaries_2.aspx
http://www.itil-officialsite.com/InternationalActivities/ITILGlossaries_2.aspx
http://www.omg.org/spec/SBVR/1.2/

24 (c) 2015 Steven Alter and Alistair Barros. Draft. Comments welcomed.

Op’t Land Ml Dietz JL (2012). Benefits of enterprise ontology in governing complex

enterprise transformations,. In Advances in Enterprise Engineering VI (pp. 77-92).

Springer Berlin Heidelberg.

Pine BJl Gilmore JH (1999). The Experience Economy: Work Is Theater and Every Business

a Stage, Cambridge: Harvard Business School Press,

Sampson SE, Froehle CM (2006). Foundations and Implications of a Proposed Unified

Services Theory, Production and Operations Management. 15(2): 329-343.

Sweller J (1994). Cognitive load theory, learning difficulty, and instructional design, Learning

and instruction. 4(4): 295-312
Truex D. Alter S. Long C (2010) Systems Analysis for Everyone Else: Empowering Business

Professionals through a Systems Analysis Method that Fits Their Needs, Proceedings of ECIS.

van der Aalst WMP (2013) Business Process Management: A Comprehensive Survey. ISRN

Software Engineering 2013:1-37

Vargo SL. Lusch RF (2008). Service-dominant logic: continuing the evolution, Journal of the

Academy of Marketing Science. 36: 1-10.

	The University of San Francisco
	USF Scholarship: a digital repository @ Gleeson Library | Geschke Center
	10-2015

	Using a Work System Metamodel and USDL to Build a Bridge between Business Service Systems and Service Computing
	Steven Alter
	Alistair Barros
	Recommended Citation

	tmp.1449183442.pdf.4DfUb

