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Abstract 

 Outmigration is an important life stage for Chinook salmon (Oncorhynchus tshawytscha) 

survival in the Sacramento River, and yet our understanding of their behavior and needs during 

this time is limited.  To gain a better understanding of their survival and movement rates during 

outmigration, late fall run Chinook salmon smolts were tracked using acoustic telemetry 

techniques.  Habitat features were measured and quantified throughout the study area to evaluate 

how Chinook salmon respond to key levee features including shade, instream woody material, 

and aquatic vegetation.  The overall average movement speed through the entire study area was 

0.77 m/s with an overall survival of 86%.  Based on multiple linear regressions, vegetation was 

found to have the largest effect on speed with fish slowing down with increased vegetation 

cover.  Shade, river mile, and velocity also had significant effects on movement speeds, but 

instream woody material was not significant.  The result for woody material was surprising since 

it was anticipated to have a large impact on movement speeds.  A positive correlation was found 

between faster fish movement speeds and higher survival.  No evidence of diel movement 

patterns was found after releasing the fish.  These finding can help managers create sites better 

designed to help Chinook salmon in the Sacramento River system.  Results from this paper 

indicate that the type of woody material being installed might not be appropriate for this life 

stage of salmon. 

 

Introduction 

 Many North American species of salmon have suffered population declines over the last 

century (Hubley et al. 2008, Welch et al. 2008, Perry et al. 2009, Dempson et al. 2011, Martins et 

al. 2011, Drenner et al. 2012)  Chinook salmon (Oncorhynchus tshawytscha) populations in the 
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Sacramento River have been particularly impacted.  Currently, all four of the Evolutionarily 

Significant Units (ESU) of Chinook salmon in the Sacramento River are listed under the State 

and/or Federal Endangered Species Act.  The winter-run ESU is State and Federally listed as 

endangered, the spring-run ESU is State and Federally listed as threatened, and the fall and late-

fall run ESU’s are Federally listed as a Species of Concern (California Department of Fish and 

Wildlife 2013). 

 Return rates of Chinook salmon in the Sacramento River used to number in the millions, 

but by 1970, the number of returning individuals dropped to around 4,000 (Newman & Rice 

2002).  Outmigration is an important life stage for salmon and survival rates during this stage 

greatly impacts the adult return rates (Healey 1991, Newman & Rice 2002, Perry et al. 2009, 

Michel et al. 2012).  As juvenile salmon migrate through the Sacramento River and its 

tributaries, their survival drops dramatically from factors such as predator encounters and water 

diversions in a highly modified river system that tends to lack complex habitat structure (Perry et 

al. 2009).  Chinook in the Sacramento River have many routes that they can take during 

migration.  Our understanding of these routes is limited and has been the focus of several recent 

studies.  Evidence seems to indicate that some routes have better survival rates than others 

(Newman & Rice 2002, Limm & Marchetti 2009, Perry et al. 2009, Michel et al.  2012).  Perry 

et al (2009) found survival to be highest for fish that remained in the Sacramento River and 

lower for fish that migrated through slough and bypasses in the interior of the Delta. The health 

and survival rates of outmigrating salmon cohorts can greatly affect adult return rates a few years 

later.   

 Juvenile salmon have been found to have better growth and survival rates in off-channel 

routes and floodplains (Sommer et al. 2001, Limm & Marchetti 2009), likely because these areas 
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tend to have optimal temperatures and slower moving water which may provide less predator 

interactions, more access to food, and better growth rates that improve salmon health prior to 

reaching the ocean (Sommer et al. 2001, Limm & Marchetti 2009).  Larger smolts typically have 

greater survival rates upon reaching the ocean as well as during migration, compounding effects 

from the outmigration period (Zabel & Williams 2002).   

 Unfortunately, the Sacramento River salmon have been largely cut off from floodplain 

and off-channel habitat due to levees, dams, and diversions.  The channelized levee system of the 

Sacramento River began in the late 1800’s.  By 1968, the State Flood Control levees were 

finalized (James & Singer 2008).  The narrow system with hardened banks promotes erosion 

which eventually requires more riprap to repair weakened sections of levees.  While riprap is 

generally thought of as having a negative impact on fish habitat, it has also been found to have 

some benefits for certain juvenile salmonid species, but not all salmonid life stages 

(Schmetterling et al. 2001; Fischenich 2003).  For example, hardening banks can improve water 

quality by reducing erosion and sediment loads or provide habitat for aquatic invertebrates that 

fish rely on as food sources (Fischenich 2003) The scale of impact from riprap or the 

successfulness of restoration attempts is highly affected by the size of the project (Fischenich 

2003, Bernhardt & Palmer 2011).  If a small area in a large river is riprapped, it is not likely to 

have much impact on the system as a whole.  However, when the majority of a system is 

riprapped, similar to the Sacramento River, the impacts can be profound, and small restoration 

project might be less impactful.  

 Riprapped streams tend to lack woody debris (Lassettre & Harris 2001, Schmetterling et 

al. 2001).  Hardened banks halt channel migration and reduce the input of new IWM such as 

fallen trees which provide food and cover for salmonids, and their hardened banks don’t easily 
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recruit snags (Lassettre & Harris 2001, Schmetterling et al. 2001).  Since 2001, repairs in the 

area that is the focus of this paper have incorporated placement of anchored IWM on riprapped 

sites to mitigate for the loss of naturally occurring woody debris recruitment (NMFS 2008, 

USFWS 2008). The effectiveness of these mitigation measures is not clear due to their 

patchwork nature of their locations and the large scale of the Sacramento River.  Over time as 

more sites with installed IWM are built, their overall effectiveness might increase as a larger area 

of banks become covered with IWM.  This will increase the complexity of riprapped banks.  

 Since conditions in most years only allow juvenile salmon access to the mainstem of the 

river above the delta, this study takes a fine-scale look at a section of the lower Sacramento River 

where the U.S. Army Corps of Engineers (USACE) has constructed numerous levee repairs, 

which incorporated habitat structures for juvenile salmon on the levee banks to provide more 

natural features with the intent of improving juvenile salmon survival (USACE 2012).  Many of 

these repairs were implemented under the Sacramento River Bank Protection Project (SRBPP), 

which has been an ongoing project since its authorization in the 1960’s and has a project area 

encompassing more than 1,300 miles (2092 km) of levee (USACE 2012).  Repair designs along 

the Sacramento River typically include some combination of rock, riparian vegetation consisting 

of live cuttings, grasses, and woody plants, anchored instream woody material (IWM), and either 

a sloping bank or riparian bench.  This study used acoustically tagged juvenile hatchery late fall 

run Chinook salmon to analyze change in outmigration speeds and survival through a stretch of 

the Sacramento River.   The movement and survival rates were then compared to existing habitat 

features to determine how much of the change in speed and survival can be explained by 

shoreline environmental features, river flow, or average river velocity. 

Study Site 
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The Sacramento River is the largest of California’s rivers.  It flows from its headwaters at 

the McCloud River to the San Francisco Bay with an average annual runoff of 27 billion cubic 

meters (Domagalski et al. 2000). The analysis in this study focused on an approximately 30 mile 

(48 km) stretch of the Sacramento River from Knights Landing at approximately river mile (RM) 

93 (river km (rkm) 245) to Sacramento, California at approximately RM 62 (rkm 193) (Figure 

1).  This section of the river is constrained from levees and unable to meander.  It contains 

variable habitats and several USACE repair sites of various ages and types.  Some sections are 

more naturalized with eroding banks sloughing off into the river.  The majority of this reach in 

covered with riprap or other rock armoring such as cobble or concrete rubble. 

The upper reach of the study area is fairly narrow and somewhat sinuous.  About mid-

way through the study area (near RM 80; rkm223), the Feather River joins the Sacramento River, 

and the river becomes slightly wider with less naturalized banks and more docks and marinas as 

it approaches the city of Sacramento.  The river is widest at the end of the study area.  The 

average flows through the study area during the study period (December 2012 – March 2013) 

ranged from approximately 22,000 cfs (623 cms) to 12,000 cfs (340 cms) (DWR 2013).  There 

was one peak flow event during the study period.  It occurred after the first release and flows had 

significantly decreased by the second release, therefore the peak flow event was not captured in 

any of the analysis for this study (Figure 2).   

 

Methods 

In order to monitor salmon migration speed and survival, acoustically tagged, hatchery 

raised, late-full run Chinook salmon smolts from the Coleman National Fish Hatchery in 
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Anderson, CA were released in the Sacramento River from December 2012 to March 2013 and 

used as surrogates for wild Chinook salmon smolts (Table 1).  

Array  

Our study used Vemco 180 kHz VR2W receivers to monitor fish survival and movement; 

in order to stabilize receivers within the flow of the river, receivers were attached to large 

mounts consisting of rebar and heavy weights.  The receivers were attached to the custom 

mounts using hose clamps and zip ties to reduce any vibration or noise interference.  Cable was 

attached to the bottom of the mounts for retrieval then secured to the shore.  The receivers were 

deployed at 11 migration timing stations (MS) in the mainstem of the Sacramento River (Figure 

1, Table 2) that consisted of two to five receivers to create an acoustic gate with a high likelihood 

of detecting tagged fish.  The station at Knights Landing Bridge (KLB) was the only one with 

two receivers due to the narrow channel.  Most stations consisted of four receivers positioned 

near the banks in a box pattern.  Areas below the Feather River used an additional fifth receiver 

in the center of the river to improve detection probability. 

We focused our monitoring on the area between the release site at approximately RM 93 

(rkm 245) and MS 11 at RM 62 (rkm 193) to match with available hydraulic modeling and 

environmental data.  Additionally, there are several SRBPP sites in this area with installed 

habitat features that are the focus of this study.  The linear distance between the release and MS 

11 is approximately 179,000 feet (54,559 m).  KLB served as the first migration timing station 

for the array.  A station called MS 0 was installed after the second release of fish to provide 

additional information about how the fish behave just after release.  MS 0 was located between 

the release site and KLB, near RM 92 (rkm 239).  Since this station was not available for all 
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releases, it was only used to gain insight on the initial movement of the salmon just after release 

and was not used in statistical analysis. 

Tagging and Release  

Juvenile hatchery raised Chinook salmon from the Coleman National Fish Hatchery were 

tagged with Vemco 180 kHz V5 tags which weigh 0.65 g. The tags are cylindrical with a length 

of 12 mm and a diameter of 5 mm; they last approximately 55 days after activation.  A total of 

617 fish weighing between 9 and 88 g (26 g average) and with a total length between 93 and 193 

mm (133 mm average) were tagged.  Fish size was limited by the size and weight of the tag to 

not overburden the fish or cause behavioral changes from excessive weight.  Fish were 

anesthetized using Finquel MS-222 prior to tagging.  After tagging, fish were held in recovery 

tanks overnight and transported from the hatchery in Anderson, California, to the release site just 

above Knights Landing, California.   

Fish were released in six separate groups of approximately 100 fish (Table 2).  The six 

releases occurred on five separate days between December 2012 and March 2013.  Release 

groups were limited to 100 fish to reduce the possibility of tag collisions, which occur when too 

many tags are transmitting at the same time.  When this happens, the receivers can miss signals 

and tags might not be recorded when they are within range of the receiver.   

Twenty four hours after tagging, the fish were loaded into five or six coolers, each 

containing 15 to 20 fish.  Once at the release site, the coolers were slowly tempered with river 

water to acclimate the fish to the river conditions.  The fish were released when the water 

temperature within a cooler was within 0.5°C of the river temperature, one cooler at a time in 20 

minute intervals over 2 hours to further reduce tag collisions when the fish migrated through the 

array. 
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In order to evaluate potential differences in diurnal vs. nocturnal movement, the final 

release was split into two groups, with paired day and night releases which both occurred on the 

same day. Release 5b was released during the day at a similar time to other release groups, and 

5c was released around midnight.   

 

 

Environmental Data 

Average river flows for the entire study area during the study period come from three 

Department of Water Resources (DWR) California Data Exchange Center (CDEC) stations in or 

around the study area (DWR 2013) (Figure 2).  CDEC station Sacramento River at Wilkins 

Slough is located approximately 26 river miles (42 rkm) upstream of the study area, Sacramento 

River at Verona is located in the array between MS 7 and 8, and Sacramento River at Freeport is 

located approximately 12 miles (19 km) downstream from the study area in a tidally influenced 

part of the river.   

Average water velocity for each reach between stations was derived from the Adaptive 

Hydraulics (AdH) model (Saltus 2014).  The model contains several river variables including 

average velocity values at 5 m
2
 intervals.  The model covered the entire study area from Knights 

Landing to the Interstate 5 bridge just above Sacramento.  River gauges and ADCP data from 

Knights Landing, Fremont Weir and Verona were used to calibrate the model (Threadgill 2014). 

Shoreline habitat data for shade, vegetation and IWM in the study area were quantified 

using the USACE Revetment Database, which contains continuous GIS data for the Sacramento 

River from river mile 0 (rkm 0) at Collinsville to river mile 194 (rkm 312) at Chico Landing 

(USACE 2007).  Data were collected by visual surveys from the water or shoreline by a team of 
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three surveyors.  Data were recorded between 2003 and 2007 for features at the mean summer 

water level and were grouped by bank type (e.g., natural, revetment, etc.).  Surveyed bank 

lengths were not equal since bank type was used to break up surveyed segments.  GPS 

equipment was used in the field to accurately document surveyed bank lengths (USACE 2007).  

For SRBPP sites built after 2007, additional surveys were conducted, and that information was 

added to the Revetment Database.  For this study, only data on vegetation, IWM, and shade were 

used since they are the primary features installed along repair sites for salmonid habitat.  Each 

segment surveyed was assigned a categorical value of percent cover for each habitat feature.  For 

example, IWM for a segment was recorded as either 0%, 1-10%, 11-50% or >50% (USACE 

2007).  For the purpose of this analysis, data from the Revetment Database were converted to an 

index by taking the median of each of the habitat feature categories, and multiplying it by the 

total amount of that category in the study area.  Each reach (area between stations) was then 

assigned an index value for each habitat type.   

Analysis 

Survival within each segment, as well as through the entire array, was determined using 

the Cormack-Jolly-Seiber model for mark and recapture type analyses (Cormack 1964, Jolly 

1965, Seiber 1965).  A one-way analysis of variance (ANOVA) with the Holm’s sequential 

Bonferroni correction was used to determine differences in survival between reaches (Holm 

1979).  

Migration speeds within individual sections were determined by using the last detection 

time for an individual from the prior station and the first detection time from the preceding 

station.  Speeds for all fish in each release were averaged together to provide the migration speed 

for each reach as well as the overall array.  Any fish that showed upstream movement were 
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considered mortalities and removed from the analysis. A one-way ANOVA with the Holm’s 

sequential Bonferroni correction was used to determine differences in average migration speed 

between reaches (Holm 1979).  A paired t-test was used to determine differences in movement 

rates between the day and night release groups (release 5 and 5N). 

Simple and multiple linear regressions were used to determine relationships between 

migration speed and survival between stations and the environmental variables, including percent 

cover of vegetation, shade, IWM, river mile, and river velocity.  Simple regressions were 

conducted first to determine significance of each individual habitat category with all release 

groups analyzed together (Average Speed= α*Environmental Index + β).  All variables that were 

significant in the individual simple regressions were included in the final model.   

All analysis was done using R (R Core Team 2014).  Release groups were included in the 

analysis as replicates.   

 

Results 

 Average velocity magnitudes for the reaches ranged from 0.06 m/s to 0.3 m/s based on 

results from the AdH.  Vegetation index values decreased somewhat downstream (Figure 3).  

Shade and IWM index values were strongly correlated with each other (r=0.85) and also 

decreased slightly downstream (Figure 3).  In general, the study area had more habitat features in 

the upper reaches and these decreased downstream. 

The SRA and vegetation indices, river mile, reach velocity, and release group were all 

significant correlated with migration speed (Figure 6).  Those variables were included in the final 

model relating migration speed to habitat features (Average Speedi=βø+β1(SRA Index)+β2(Veg 

Index)+ β3(River Mile)+ β4(Average Reach Velocity)+ β5(Release Group)+ εi).  The IWM 
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index was not found to be a significant predictor of speed and therefore was not included in the 

final model. 

Survival through the study area was generally high; by the end of the array at Sacramento 

approximately 86% of all tagged fish survived through the 48 km stretch of river.  The first 

release had the lowest overall survival rate of 69%, while release two had the highest with 97% 

survival.  In addition, survival between reaches was fairly consistent, with no significant 

differences in survival between reaches based on ANOVA.  Survivorship between individual 

reaches was very high, usually greater than 98% with decreasing survival in the lower reaches 

(Figure 7).  

Average speed for all release groups by station varied from 0.39 m/s to 1.07 m/s with an 

overall average of 0.77 m/s (Figure 4 and Figure 5).  There was a consistent peak in speed at MS 

4, RM 85 (rkm 232) on all sampling dates.  The AdH model shows a strong hydraulic feature in 

that location that is associated with high water velocities.  A smaller peak in speed occurred at 

MS 7, just before the Feather River confluence.  This second peak developed as the season 

progressed indicating a seasonal change in flows in that area, while the peak at MS 4 remained 

fairly consistent.  A possible explanation could be a backwater effect from the Feather River that 

decreases later in the season.  The ANOVA results show significant differences in movement 

speed between several reaches.  As mentioned previously, speed inMS 4 was the most different, 

followed closely by MS 3.  MS 7, though visibly different was not found to be significantly 

different from any other station.  Speed in the upper stations were significantly different from 

speeds at the end of the array at MS 11.  Additionally, there was a positive relationship between 

faster moving fish and higher survival rates (r=0.34) (Figure 8). 
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Initial rates of movement between the release site and the first station at KLB for all 

releases were found to be much slower than throughout the rest of the array.  The initial 

movement speeds averaged 0.19 m/s and were significantly lower than the average movement 

speed through the rest of the array, which averaged  0.39 m/s through the slowest reach and 0.77 

m/s overall.  Migration rates were not found to differ significantly between the day and night 

release groups when tested during the last release on March 27, 2013 (P=0.53).   

Vegetation had a significant slowing effect on migration speed (P<0.0001) and the 

largest effect size.  While less significant than the vegetation, shaded area (P=0.007) and reach 

velocity (P=0.005) were found to increase migration speed slightly.  Reach velocity has the 

second greatest effect size after vegetation.  IWM was dropped from the final model due to 

colinearity with the shade variable.  IWM also was not found to have a significant effect on 

speed when analyzed individually (P=0.07) (Figure 6). 

In the final model, the river mile variable, or location in the river, had a significant effect 

on speed (P<0.0001).  The relationship was negative, indicating the fish slow down as the move 

downstream.  As fish moved lower in the system where the river gets wider and shallower, their 

average speed decreased.  They also move into a more tidally influenced zone which can be seen 

on the hydrograph (Figure 2)  Flows downstream fluctuate with the tides which may be 

contributing to the reduction in speed. 

 

Discussion and Conclusion 

Habitat features were not as influential as expected 

Habitat features were not found to have a large effect on fish movement or survival.  

Some amount of variation in movement rates was attributable to habitat features but not to a 
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great extent.  These results were unexpected, especially for IWM which has been documented to 

be a key habitat attribute by providing cover and food resources for fish in healthy riverine 

systems. (Lassettre & Harris 2001, Schmetterling et al. 2001, Zanjac et al. 2013).  A key reason 

smolts might not be responding to the installed habitat features is scale.  The SRBPP sites with 

installed habitat features are located in patches along the river.  The lack of influence of IWM in 

this study could be due to the small size of wood at repair sites given the size of the Sacramento 

River.  The anchored wood can break down and lose some of the intricate structure that typically 

provides cover for small fish.  Additionally, the IWM is usually installed at the mean winter 

water line.  Therefore it is not inundated unless flows are relatively high.  This study was 

conducted during the second year of a drought in the area, and the system experienced relatively 

low winter flows.  Lastly, the smolts in this study might be too large or too focused on migrating 

to use the structures for cover.  An updated shoreline survey documenting existing habitat 

features in finer detail might help answer some of these questions in future studies.  

Additionally, it is believed that smolts respond to hydraulic cues during migration.  For 

example, salmon smolts tend to wait for high pulse flow events prior to beginning downstream 

migration (del Rosario 2013).  They tend to use hydraulic cues to find suitable habitat, such as 

velocity and strain (Nestler et al. 2012).  It is possible that the size of the repair sites is too small 

to offer slower velocities for foraging, and cover habitat is too small in a system as large as the 

Sacramento River.  Therefore the hydraulic cues may be missed as fish migrate in the higher 

velocity channel. Background noise and hydraulics of the river could cause these sites to be 

bypassed.  The smolts could be moving with river currents that do not interact with the shoreline 

features.  This is something that should be considered when planning restoration projects along 



[15] 

 

the Sacramento River.  Larger features may be needed to provide suitable refuge for migrating 

juvenile salmon. 

Similar to other studies, we observed a pattern of decreasing movement speed as fish 

moved closer to the delta. (Michel et al. 2012).  This could be due to lower flows in these areas 

and increasing tidal effects closer to the delta.  Several studies have also found flow to be a key 

factor affecting outmigrating salmon in multiple river systems (Giorgi et al. 1997, Newman & 

Rice 2002, Petrosky & Schaller 2010, Smith et al. 2002).  Lower flows in this area also may 

make it easier for smolts to access habitat features on the banks.     

 

Faster Fish Survived Better 

Overall, movement speed was fairly high through the study area.  Other studies in the 

area observed similar rates of movement around 0.50 m/s (Michel et al. 2012), which was within 

our observed range of 0.39 to 0.77 m/s.  This could be due to higher flows and water velocities 

through our particular study boundaries, as fish migration was strongly correlated with water 

velocity (Figure 6).  For example, the bend between MS 3 and MS 4, at River Mile 85.6 (rkm 

232), had some of the highest velocities in the array, and fish speeds were consistently fastest 

there, close to or greater than 1 m/s.  This particular hydraulic feature tends to push fish away 

from the installed habitat features at RM 85.6 (rkm 232) (Sandstrom et al., 2012) 

Previous studies have shown that fish exposed to floodplains and other habitats with 

adequate nutrients and feeding opportunities tend to have higher survival rates.  Contrary to 

those findings, our study indicated that fish that migrated faster survived better (Figure 8).  A 

study focused on steelhead in the Puget Sound also found higher survival rates among faster 

moving fish (Goetz et al. 2015).  The pattern of faster fish surviving better indicates that for this 
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section of the Sacramento River, exposure time might be the most important factor for predation 

rather than distance traveled (Anderson et al. 2005).   

 

Lack of Diel Movement Patterns 

Studies have documented diel migration patterns for Chinook through the Sacramento 

River (Chapman et al. 2012, Michel et al 2012, Zanjac et al. 2013).  While our study did not find 

a significant difference in the migration patterns of the fish released at night versus the fish 

release during the day on March 27, 2013, we did observe a pattern of holding prior to 

movement after the fish are introduced to the river.  The daytime releases appeared to hold 

somewhere soon after being released, and then begin their migration after sunset.  All release 

groups took approximately 4 hours to travel from the release site to Knights Landing Bridge.  

The average movement speed for all releases across the entire study area was 0.77 m/s with a 

minimum average reach speed of 0.39 m/s.  However, movement speed from the release site to 

the first station at the Knights Landing bridge was approximately 0.19 m/s, indicating a lag prior 

to migrating.  The day and night release group had the same average speed getting to Knights 

Landing Bridge, 0.21 m/s.  This indicates that the smolts in our study seem to be waiting for a 

cue other than nightfall to begin migration.  It is possible that 4 hours is the time the salmon need 

to acclimate to their new surroundings before deciding to begin migration. 

Two potential limitations of this study are the use of hatchery fish as surrogates for wild 

fish and the database used to quantify shoreline features.  While hatchery fish provide a reliable 

source of fish to meet the needed sample size requirements, they can have significant behavioral 

differences from wild fish.  Studies have found difference in size, survival, migration speed and 

timing, and other behavioral differences between hatchery raised and wild salmonids (Wessel et 
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al. 2006, Thériault et al. 2009, Jackson & Brown 2011). However, hatchery raised fish are 

commonly used in similar studies and therefore still a valuable tool for analyzing salmon 

responses during migration.  Additionally, the USACE Revetment database was the best 

available source of comprehensive environmental data for the study area.  Unfortunately, this 

database was created in 2007 and is several years old. However, we feel that the data were still 

reliable because they were collected at a very broad scale, and a visual comparison against 

current satellite images showed the data to be similar to current conditions.  Updated 

environmental data could improve future studies in the area.  

This study provided a more detailed look at Chinook movement through a relatively 

small reach of the Sacramento River.  While habitat features do appear to be of some value to 

migrating salmon, they are not as influential as anticipated.  Two additional years of data in this 

area are currently being collected by the USACE and could provide further insight into habitat 

use by migrating salmon.  Larger habitat features placed lower on the river banks might provide 

a better migratory corridor for salmon smolts in large rivers. 
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Tables and Figures 

 

Table 1.  The summary of the release groups, including release dates, sample size and average weights 

and lengths. 

Release 

Group 

Release 

Date Sample Size 

Mean Weight 

(g) 

Standard 

Deviation 

Mean Length 

(mm) 

Standard 

Deviation 

Release 1 12/20/2012 95 22.55 ± 14.68 123.06 ± 20.62 

Release 2 1/10/2013 100 23.36 ± 8.61 129.50 ± 15.19 

Release 3 1/30/2013 100 26.11 ± 9.64 133.42 ± 15.46 

Release 4 3/6/2013 100 25.32 ± 9.04 131.30 ± 14.21 

Release 5 3/27/2013 108 29.96 ± 11.54 141.31 ± 16.93 

Release 5N 3/27/2013 104 28.44 ± 10.13 139.34 ± 15.51 

 

 

 

Table 2.  The migration timing station identification numbers and approximate corresponding 

Sacramento River location. 

 

 

 

 

 

 

 

 

 

 

 

 

Station 

ID 

Approximate 

River Mile 

Approximate 

River Kilometer 

Release 93 245 

KLB 90 239 

MS 1 88 237 

MS 2 87 234 

MS 3 86 233 

MS 4 85.5 232 

MS 5 85 231 

MS 6 82 226 

MS 7 81 224 

MS 8 77 217 

MS 9 73.5 213 

MS 10 70 208 

MS 11 62 193 
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Table 3.  Summary of the multiple regression model used to evaluate the relative influence of habitat 

features on migrating juvenile Chinook salmon speed in the Sacramento River. 

 

Coefficient Std. Error t-Statistic Probability R
2

Adjusted R
2

Shade Index 0.1600 0.0576 2.78 7.40E-03 **

Veg Index -0.8181 0.1581 -5.18 3.18E-06 ***

Velocity 0.2245 0.0784 2.87 0.0059 **

River Mile 0.0151 0.0013 12.02 2.00E-16 ***

Release 1 0.1929 0.1661 1.16 0.2506

Release 2 0.1844 0.1574 1.17 0.2464

Release 3 0.2248 0.1570 1.43 0.1579

Release 4 0.1227 0.1530 0.80 0.4261

Release 5 0.2203 0.1533 1.44 0.1561

Release 5N 0.2047 0.1533 1.34 0.1870 0.9932 0.992
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Figure 1. The study area of the Sacramento River, Knights Landing to Sacramento, California. 
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Figure 2. Hydrograph showing the average flows during the study period from Wilkins Slough (above the 

study area), Verona (near MS 7) and Freeport (after the study area in a tidally influenced zone) 

monitoring gauges.  Each vertical line represents a release group.  (Source: DWR 2013) 
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Figure 3.  Habitat index value for vegetation, shade, and IWM by Sacramento River mile. 
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Figure 4.  The reach specific average movement speed by river mile of migrating juvenile Chinook 

salmon in the Sacramento River, separated by release groups. 
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Figure 5. Boxplot showing the average juvenile Chinook migration speed by migration station in the 

Sacramento River. 
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Figure 6.  Linear regressions for average juvenile Chinook salmon migration speed by each habitat 

variable analyzed, including  river mile, shade, IWM, average river velocity, and vegetation. 
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Average Survival by Migration Station 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Boxplot showing the average juvenile Chinook salmon survival rate by migration station in the 

Sacramento River. 
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Survival as a Function of Migration Speed 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Migrating juvenile Chinook salmon survival as a function of migration speed (r=0.33, P<0.0001) 
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