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Abstract 

 Finite phosphate rock ore reserves are estimated to be exhausted in 100 to 150 

years.  Phosphate rock ore is the single global source material for phosphorus fertilizer 

production.  Once these reserves are gone, agricultural production will be negatively 

impacted.  There are currently no alternative phosphorus resources.  However, 

phosphorus concentrations present in human excrement traveling through domestic 

wastewater treatment facilities is being disposed of directly to the environment, often 

resulting in pollution problems.  Recovering phosphorus from wastewater with struvite 

precipitation systems at wastewater treatment plants can alleviate future phosphorus 

scarcities.  Evaluation of phosphorus recovery through struvite precipitation at 

wastewater treatment plants and a determination of the ability for the recovered material 

to serve as an adequate phosphate rock ore substitute are discussed in the following 

paper. 
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Introduction 

Phosphorus is an important limiting growth nutrient, essential for the 

development of life on the planet, and particularly important to food production.  

Biologically, phosphorus assists with energy transport between cells; without phosphorus 

life cannot exist (Smil 2000).   A phosphorus deficiency results in stunted growth of 

plants, animals, humans and bacteria (Keyzer 2010).  Phosphorus is obtained from 

mineral rock sources via strip mining operations or natural weathering (Ragnarsdottir et 

al. 2011).  The majority of raw non-renewable phosphate rock mineral used to create 

phosphorus is located in large reserves in Morocco, China and the United States (Rhodes 

2013).  These reserves are estimated to be exhausted within the next 100-150 years 

(Rhodes 2013; Keyzer 2010; Shu et al. 2006).  As phosphorus resources become 

increasingly scarce in the natural environment, its’ cost will increase dramatically; there 

are currently no synthetic or chemical substitutes for phosphorus (Childers et al. 2011).  

The majority of mined phosphate rock is processed into phosphorus fertilizer for global 

food production.  Without fertilizer derived from phosphate rock we could not supply 

enough food for our current (or future) population.  

Prior to the Sanitation Revolution of the 19th and 20th centuries, organic 

phosphorus was returned to agricultural fields in the form of manure, both human and 

animal.  This old system of direct application of human wastes to agricultural fields 

perpetuated a circular organic phosphorus cycle.  The Sanitation Revolution introduced 

centralized wastewater treatment systems as a way to prevent disease outbreak from 

human wastes in expanding and increasingly dense urban areas, turning the circular 

phosphorus cycle into a linear system.  In this new system, phosphorus rich effluent from 

wastewater plants discharged directly into aquatic ecosystems, bypassing land application 

entirely.  Shortly after the Sanitation Revolution, the Green Revolution industrialized 

agriculture with the use of artificial nitrogen and inorganic phosphate rock fertilizers, 

dramatically increasing food production.  The main technological advancement of the 

Green Revolution was the development of nitrogen fixation methods from inert materials 

naturally present in the atmosphere (Gorman 2013).   
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Prior to the development of the Haber-Bosch nitrogen synthesizing process of 

1913, nitrogen was removed from soils during crop harvests and was returned to the soil 

by nitrogen fixing plants.  Farmers rotated crops in their fields to maintain adequate 

nitrogen levels or intermingled nitrogen-fixing plants with their crops (Gorman 2013).   

The bacteriological process of returning nitrogen to soils is slow, inconvenient, and 

limited food production capacities since a single crop could not be grown year after year.  

Artificial nitrogen creation promoted exponential increase in food, because nitrogen 

inputs were no longer restricted.  However, healthy plant development requires elemental 

inputs of nitrogen (N), potassium (K) and phosphorus (P) (Keyzer 2010).  Nitrogen 

encourages plant biomass growth, phosphorus aids in root and flower development while 

potassium is important for overall plant health.  High nitrogen fertilizer inputs stimulate 

fast plant growth but ultimately leave the plant weak and susceptible to disease, because 

other nutrients are deficient.  A balance of NPK nutrient inputs is important for overall 

healthy plant development, whichever nutrient is present among NPK in the smallest 

quantity limits the development of the plant and is hence the limiting growth nutrient 

(Thomas 1929).  As nitrogen production increased with the Green Revolution, inputs of 

potassium and phosphorus were also increased to keep pace.  The Haber-Bosch process 

created a large source of manufactured nitrogen; however inorganic phosphate rock 

sources remained the only source of phosphorus fertilizers (Ashley et al. 2011; Childers 

et al. 2011).  The combination of the Sanitation Revolution and Green Revolution 

resulted in the present-day situation of a human-altered linear phosphorus cycle and an 

associated rapid depletion of natural phosphate rock (Ashley et al. 2011). 

The lack of alternative sources for phosphate rock inputs in agriculture production 

limits the earth’s carrying capacity by restricting food production.  Without phosphorus 

fertilizer alternatives we face dwindling reserves of phosphate rock.  Recycling 

phosphorus from waste streams is a possible alternative source for phosphorus fertilizers.  

Struvite precipitation, an emerging technology in domestic wastewater treatment, is a 

potential source for recycling and resource recovery (Cordell et al. 2009).  Struvite 

precipitation recovers phosphorus from anaerobic digester supernatants and solids 

dewatering reject waters at wastewater treatment facilities, producing slow-release 

phosphorus fertilizer pellets for use in agriculture (Rahman et al. 2014).  This process not 



3

only recycles phosphorus, reducing our reliance upon limited non-renewable phosphate 

rock reserves, it also reduces the amount of phosphorus that would otherwise be released 

into aquatic ecosystems via wastewater treatment system discharges.  Phosphorus rich 

effluent from wastewater treatment facilities contributes to eutrophication and harmful 

algal blooms that currently threaten our aquatic environments.  

This Master’s Project aims to determine the feasibility of utilizing struvite 

precipitation to recycle phosphorus from domestic wastewater to be used as a sustainable 

alternative resource for phosphorus fertilizer production.    

Phosphorus Overview 

History of Phosphorus 

Discovery 

 German alchemist Henning Brandt first discovered the mineral in 1669 during his 

search for the elusive Philosopher’s Stone, a substance that was rumored to turn all 

metals to gold and produce the elixir of life to support human immortality (Ashley et al. 

2011).  Brandt was able to isolate phosphorus, at the time an unknown substance, through 

the distillation of large quantities of human urine.  The discovery of phosphorus was 

announced in 1695, and after subsequent scientists successfully repeated Brandt’s 

experiments, the element was fully recognized in 1795 (Ashley et al. 2011).   

Beneficial Uses 

 Phosphorus had initially been used for various medicinal purposes in the 18th 

century.  However, it was soon discovered that this element was well suited for match 

head production, due to its flammable reactivity with oxygen.  White phosphorus is 

highly reactive, has the propensity to instantly combust when exposed to oxygen, and 

upon ignition it produces a toxic gas (Ashley et al. 2011).  Due to the minerals’ explosive 

properties it’s utility expanded to militarization.  Phosphorus was engineered into 

incendiary devices, smoke screens tracer bullets, and nerve gas introduced during World 

War II (Ashley et al. 2011; Rhodes 2013).   
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Prior to Brandt’s discovery human civilizations had been utilizing phosphorus in 

agriculture for thousands of years.  Farmers intuitively understood the link between crop 

production and phosphorus, even when they were unaware of the element itself.  

Evidence of farms found in archeological excavations, from early Chinese civilizations 

5000 years ago to the Roman Empires, demonstrate humans recycling phosphorus by 

applying animal and human wastes to agricultural fields for increased food production 

(Ashley et al. 2011).  Agricultural production began simply.  Crops yielded food; soils 

provided nutrients required for plant to grow.  Phosphorus is absorbed by crops during 

plant development and is permanently removed from soils during crop harvesting.  After 

years of food production, natural soil phosphorus levels began to decrease.  To sustain 

food production farmers began augmenting low soil phosphorus levels with animal and 

human waste.  With population increases in urban areas during the 18th and 19th centuries, 

existing levels of food production became inadequate to supply demands.  Agriculture 

was pushed away from cities, and it became arduous to continue the tradition of 

transporting human wastes to fields.  Because farmers could not longer obtain traditional 

phosphorus supplies, the agriculture industry turned to an alternative source of 

phosphorus: guano.  Guano is composed of bird droppings that have compounded over 

millions of years, it is found in islands off the Peruvian coast and in the South Pacific 

(Cordell et al. 2009).  However, these sources were consumed by the end of the 19th 

century resulting in another phosphorus crisis.   

In 1840, German chemist Justus Von Liebig identified the relationship between 

plant growth and phosphorus. Liebig’s Mineral Theory, now referred to as Liebig’s Law, 

scientifically explains the environmental nutrient (i.e. nitrogen, phosphorus and 

potassium) exchange and recycling between living and decomposing organisms (Cordell 

et al. 2009).  Liebig determined that absorption rates of these important macronutrients 

must occur in balanced quantities in order for plants to reach their maximum growth 

capacity.  In the case of these important macronutrients (i.e., nitrogen, phosphorus and 

potassium) a deficiency of any one component within soils result in stunted plant 

development (Thomas 1929).  Phosphorus, nitrogen and potassium were recognized as 

essential nutrients for food production, in response to Liebig’s work; nitrogen could be 

manufactured but phosphorus must be mined.  
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Processing inorganic phosphate rock sources to mineral phosphorus fertilizer 

began in the late 19th century.  The product was an ordinary superphosphate (OSP), 

containing greater concentrations of phosphorus than manure (Cordell et al. 2009). Figure 

1 illustrates the boom in phosphate rock fertilizer production upon the understanding of 

its importance for agricultural production.  Manures have been used as phosphorus 

fertilizer throughout human civilization; human excreta have also been utilized, but on 

such a small scale that it is minimal in terms of total fertilizer use.  Shown in Figure 1 are 

the small amounts of guano used from 1820 to the 1930s with use tapering off as supplies 

were depleted.  Phosphate rock use increases after 1945, the time of the Green 

Revolution, since then phosphate rock has been the preferred phosphorus material for 

agriculture fertilizer production.   

 

FIGURE 1.  HISTORICAL GLOBAL PHOSPHORUS USE BASED ON RESOURCE TYPE FROM 

1800 TO 2000, TAKEN FROM (Cordell et al. 2009). 

Phosphate rock mining for fertilizer production increased by a factor of ten from 

1954 to 2012 to match increases in global food demands for the growing world 

population.  World population growth, shown in Figure 2, illustrates the dramatic increase 

of world human populations from 3.02 billion in 1960 to a projected height of 7.5 billion 
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rock production, linked to the Green Revolution, is an important component that has lead 

to human populations reaching these unprecedented levels (Ashley et al. 2011; Childers 

et al. 2011). 

Phosphorus Cycle 

Natural Biochemical Cycle 

 Plants can only utilize phosphorus in inorganic form, as a phosphate molecule 

(PO4) (USEPA 2012; Rhodes 2013).  Organic phosphorus is an inorganic phosphorus 

compound combined with a carbon-based molecule (USEPA 2012; Rhodes 2013).  Both 

inorganic and organic phosphorus exist in particulate and dissolved forms in aquatic 

environments.  Aquatic plants absorb the soluble inorganic material while marine fauna 

consume the organic forms as well as aquatic plants to obtain phosphorus nutrients to 

facilitate growth.  As plants and animals die, the phosphorus present in their tissues 

returns to sediments or soils in organic form where bacterial processes convert the 

organic phosphorus into inorganic phosphorus minerals (USEPA 2012).  Phosphorus is 

geologically bound in rock as an inorganic mineral and released naturally through 

chemical weatherization from wind and rain erosion.  Wind and rain transport dissolved 

and particulate, inorganic and organic phosphorus to waterways and oceans.  Particulate 

inorganic and organic phosphorus settle and become sediments whereas dissolved 

inorganic and organic phosphorus are consumed by marine flora and fauna or are 

transported downstream (Rhodes 2013; USEPA 2012).  Oceanic inorganic phosphorus 

sediments are pushed to the Earth’s surface via tectonic uplift, with the result that 

inorganic mineralized phosphorus is bound in rock once again.  A schematic 

representation of the phosphorus cycle is shown below, in Figure 3.  The timescale of the 

phosphorus cycle transitioning between land and oceans is 107 to 108 years, much longer 

than the timescale of human life (Smil 2000).  Mineralized inorganic phosphorus found 

on the Earth’s surface today was formed 10 to 15 million years ago (Cordell et al. 2009).  

Superimposed on the global phosphorus cycle are numerous phosphorus cycles on 

smaller time scales.  On landmasses with freshwater systems not leading directly to the 

oceans, inorganic and organic phosphorus are transferred in smaller closed loop systems, 

operating on a shorter timescale of one month to one year, a timescale easily observable 
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from human perspective.  On land, inorganic mineral phosphorus from the soil is 

absorbed by plants and is used for biomass development; organic phosphorus is returned 

to the soil through decomposition of dead plants, and by microorganisms, shown in Figure 

3 (USEPA 2012).  Through natural chemical processing, decomposed matter is converted 

into an inorganic mineralized form that is once again available for plant uptake.  

 

FIGURE 3.  GLOBAL PHOSPHORUS CYCLE WITH ORANGE ARROWS REPRESENTING 

INORGANIC PHOSPHATES AND PURPLE ARROWS REPRESENTING ORGANIC 

PHOSPHATES, ADAPTED FROM SCHEMATIC IN (Post 2013). 

Prior to urbanization, human populations facilitated the local phosphorus cycle to 

aid in food production.  The relationship of humans, farming, human waste recycling, and 

phosphorus is shown in Figure 4.  Inorganic phosphorus in soil feed plants for biomass 

development; plants decompose and return organic phosphorus to the soils where 

decomposers convert the material into inorganic phosphorus.  Humans recycled their own 

organic phosphorus rich waste, as well as the waste from domesticated livestock directly 



onto their fields, boosting phosphorus levels within the soil

production.  

FIGURE 4.  PHOSPHORUS CYCLE ON L
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men were employed to empty these cesspools and transfer the phosphorus
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overflowing cesspools and aided in the spread of these contagious diseases.  One of the 

more famous outbreak events, documented by British Dr. John Snow in 1850s London 

and commonly referred to as the Broad Street Pump epidemic, spread cholera among 500 

people within 10 days.  In this situation a single cesspool, from a household with a sickly 

occupant, overflowed and contaminated a drinking water pump at the street corner of 

Broad and Cambridge in an affluent neighborhood (Ball 2008).  Using his own 

innovative disease investigation technique, Snow traced the origins of the disease back to 

the contaminated drinking water pump.  Snow’s work with the cholera outbreak directly 

connected epidemic diseases in urbanized areas with human sewage contaminating 

drinking water supplies.  Because of his discoveries, centralized wastewater treatment 

systems became the new, safer method for managing human wastes in urbanized areas. 

 Centralized wastewater systems developed in the mid-1800s consisted of a series 

of sewer pipes that collected food, soiled water, and human wastes and transported it to a 

single treatment facility on the outskirts of town to prevent human exposure to untreated 

sewage, and to halt the associated spread of diseases.  This network of pipes vastly 

improved public health; however, it re-routed phosphorus-rich human wastes that would 

have otherwise been collected for deposition on agriculture fields to treatment at 

centralized facilities and disposed of it to nearby waterways (Cordell et al. 2011).  These 

first generation centralized wastewater treatment systems were specifically designed to 

protect human health.  The impact of such facilities on the phosphorus cycle was not 

considered.   

Green Revolution 

 The Industrial Revolution of the 1900’s optimized manufacturing processes for 

the mass-production of goods.  After World War II, many military munitions 

manufacturing facilities were converted to mineral phosphate fertilizer production for 

worldwide agricultural use; military combustion products and phosphate fertilizer are 

both sourced from phosphate rock (Keyzer 2010).  The high phosphorus concentrations 

in the new fertilizers, sourced from inorganic phosphate mineral rock, increased 

agricultural production; however, their use also decreased the use of manure fertilizers.  

Once production of inorganic phosphate fertilizer began, demand quickly increased as 
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shown in Figure 5 around 1945.  The drop in fertilizer consumption in the early 1990s was 

caused by the global drop in grain demand, resulting in reduced crop production and 

therefore less use of phosphate rock fertilizers (USEPA; Van Kauwenbergh 2010). 

 

FIGURE 5.  CONSUMPTION RATES OF INORGANIC PHOSPHORIC FERTILIZER FROM 1900 
TO 2000, TAKEN FROM (Smil 2000) 

Resulting from the Green Revolution, agricultural production was able to meet food 

demands of an increasing human population as well as reduce global numbers of 

undernourished (Cordell et al. 2009).  Agriculture production was no longer dependent on 

manure fertilizer.  Instead, all necessary phosphorus was sourced from ancient mineral 

deposits in the form of mineral phosphate fertilizers. 

Current Issues 

 Although the Green Revolution fed the growing populace, it transformed the 

issues of providing adequate global food supplies to issues of compounding 

environmental degradation.  The Sanitation and Green Revolutions combined to produce 

a net benefit for the human population, but not for the planet.  Naik and Stenstrom’s 

(2012) comparison of disease mortality and access to centralized wastewater treatment 

systems across 39 countries demonstrated the benefits of centralized wastewater 

treatment facilities.  The study was based on comparisons of access to wastewater 

treatment, incidences of disease mortality, and improvement of the overall health of 

communities (Naik and Stenstrom 2012).  Naik and Stenstrom concluded that waterborne 

pathogenic disease outbreaks are dramatically reduced by centralized wastewater 

treatment facilities.  While these centralized wastewater treatment facilities did solve 



12 

important health problems for cities, their disposal practices of treated sewage to surface 

waters caused environmental pollution and damaged ecosystems. 

Consequences of engineering advancements of the Sanitation and Green 

Revolutions are becoming apparent.  Treated sewage effluent is rich in phosphorus, when 

this effluent reaches waterways it diminishes water quality, due to eutrophication 

processes (Puchongkawarin et al. 2014; Smil 2000; Díaz and Rosenberg 2011; Childers 

et al. 2011).  Sourcing phosphate fertilizers for agricultural production through phosphate 

rock mining also harms the environment, strip mining practices destroy entire ecosystems 

and toxic mine wastes contaminate the environment (Ragnarsdottir et al. 2011; Fuleihan 

2012; Cordell et al. 2009).  Phosphogypsum, a phosphate rock mine waste, contains a 

variety of elements including chromium, copper, cadmium, zinc, zirconium, lead, cobalt, 

rubidium, tin, barium, thorium, strontium, and uranium, making it a radioactive material. 

Phosphogypsum recyclability and reuse is regulated due to its radioactivity and must be 

disposed of following particular hazardous materials procedures (USEPA 2015).  Any 

reuse of the material is prohibited until it is no longer radioactive or until the radioactive 

materials have been removed (Keyzer 2010).   

The Green Revolution has caused preferential inorganic mineral phosphate 

fertilizer use over manure recycling and is stripping the world of its few mineral 

phosphate rock reserves, creating a dependence for agriculture production (Ashley et al. 

2011).  The new, human altered, phosphorus cycle is predominantly linear with minor 

phosphorus recycling through beneficial reuse of animal wastes, shown in Figure 6.  

Modern wastewater treatment plants are not usually designed to remove phosphorus.  

Some facilities are capable of removing phosphorus with microorganisms; these systems 

convert it to a solid form, and dispose of this solid phosphorus-rich material into landfills.  

The two grams of phosphorus excreted by each person daily travels straight through 

wastewater treatment facilities directly into the environment (Rhodes 2013).  Of the 

organic phosphorus material entering wastewater treatment plants 10% exits the facility 

with the treated waters to be disposed of in surface waters, and the remaining 90% leaves 

the treatment process bound to solid material that is disposed of at landfills (Petzet and 

Cornel 2011; Dana Cordell and White 2013).  The disposal of phosphorus-rich solid 
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environment for plant growth and human use.

FIGURE 6.  HUMAN IMPACTED PHOSPH

Current methods of sewage collection and treatment have

the phosphorus cycle.  Modern treatment facilities have solved serious public health 
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permanently removes large amounts of phosphorus available in the 

environment for plant growth and human use. 

UMAN IMPACTED PHOSPHORUS FLOW, MODERN PHOSPHORUS CY

Current methods of sewage collection and treatment have resulted in a break in 

the phosphorus cycle.  Modern treatment facilities have solved serious public health 

issues, but this has been at an environmental cost.  Phosphorus is no longer returned to 

and our mineral phosphate reserves are dwindling.  This altered system has 

transferred the human health risk to an environment risk, culminating in previously 

environmental complications.  Effluent discharges from wastewater 

removes large amounts of phosphorus available in the 
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treatment plants utilized receiving surface water systems to carry away and dilute the 

material, however as cities and their wastewater volumes grew receiving waterways 

could no longer handle the treated effluent flows.  Larger treated sewage flows exceeded 

the nutrient carrying capacities of these waterways resulting in an overabundance of 

nutrients, leading to eutrophication problems.  Concurrently, freshwater consumption 

increased with rising population levels reducing volumes of receiving waters.  Receiving 

waters, already overloaded with nutrients from treated wastewater inputs, strained under 

the pressure of diluting treated wastewaters and providing drinking water (Rhodes 2013; 

Dubrovsky et al. 2010). 

Eutrophication 

When excessive inputs of phosphorus nutrients enter waterways phytoplankton 

populations explode.  As phytomass populations exceed the carrying capacity of the 

waterway, by consuming all available dissolved oxygen, the organisms can no longer 

reproduce and die (Helmes et al. 2012; Rhodes 2013).  The decomposing material creates 

a hypoxic environment by absorbing the remaining dissolved oxygen, effectively 

preventing any other plant or animal activity.  This process of eutrophication changes 

aquatic environments; through reductions in water clarity, odor problems, reductions in 

fish populations and adversely impacting near coastal ecosystems (Smil 2000; Díaz and 

Rosenberg 2011).  

Wastewater treatment facility effluent discharges to surface waters increase 

phosphorus loading rates to surface waters resulting in the aforementioned eutrophication 

problems (Seviour et al. 2003).  Limiting or removing phosphorus from wastewater plant 

effluents is one method to reduce eutrophication problems (Lee et al. 2007).  Engineering 

solutions have been incorporated in second-generation wastewater treatment facilities to 

mitigate excessive nutrient loading to receiving waters with more sophisticated and 

complex treatment methods: activated sludge treatment, Enhanced Biological Phosphorus 

Removal (EBPR), Biological Nutrient Removal (BNR), and Membrane Bioreactor 

(MBR) processes.  These second generation facilities are designed to combat widespread 

stream, lake and near-coastal eutrophication issues and protect drinking water sources 

(Ashley et al. 2011).   
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Peak Phosphorus 

Availability 

 Mineral phosphate rock mining first began in 1851 Norway; in the United States 

mining began in North Carolina in the late 1860s.  A higher quality reserve was found 

and exploited in Florida 1888.  This Florida reserve is now the dominant mineral 

phosphate rock source in the United States.  Extensive reserves in Morocco and Western 

Sahara were discovered in 1914; phosphate rock production began in these areas 1921 

(Smil 2000).  Today, a total of 30 countries produce phosphate rock with the top 12 

producers serving 95% of global demand, the top three producing 66%, and the United 

States alone serving 33% of the world’s demand (Smil 2000).  Active reserves are 

estimated to last only 100 to 150 more years (Keyzer 2010; Rhodes 2013).  However, 

these estimates may not be accurate.  Global sources are predominantly supplied from a 

few select large producers (e.g., China, Morocco and the United States).  These large 

producers have the ability to manipulate their reserve estimates (Edixhoven et al. 2013). 

As shown in Figure 7, the distribution of the estimated 67 billion tons of global phosphate 

reserves are concentrated in Morocco and Western Sahara with the largest reserve 

cornering 74% of the market and estimated in-situ amounts of 50 billion tons, China 

reports reserves totaling 3.7 billion tons, and the United States estimates 1.1 billion tons.   
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High-grade phosphate rock is less costly to obtain and process.  Low-grade and ultra low-

grade deposits have decreased phosphorus concentrations, increased contaminant 

concentrations, and require increased extraction efforts and costs.  The current market 

price of phosphate rock is high enough for extraction of low-grade phosphate rock to be 

competitive with high-grade sourced material, but does require higher capital investments 

for mining and processing.  The remaining ultra low-grade sources are prohibitively 

expensive to recover, due primarily to their inaccessible location. 

TABLE 1.  ESTIMATED GLOBAL MINERAL PHOSPHATE ROCK RESERVE AMOUNTS 

MEASURED IN BILLIONS OF TONS, COMPILED FROM 2008 DATA PRESENTED IN 

(Ragnarsdottir et al. 2011) 

Deposit Type Phosphorus Rock,          

(Billion Tons) 

Accessibility 

High-grade 16 Easy to mine 

Low-grade 25 Possible to extract 

Ultra low-grade 50 Difficult and expensive to 
recover 

Sum of Known Reserves 93  

An estimated six trillion tons of phosphate rock deposits are located on the ocean floor.  

These ocean reserves are difficult to extract and come with potentially high 

environmental risks.  They are likely to be contaminated with arsenic, cadmium, 

chromium, mercury, lead, uranium and vanadium (Smil 2000).  All of these potential 

contaminants are known to cause serious health hazards.  Contaminant removal would be 

costly, require high-energy inputs, and have waste disposal issues.   

Current Uses 

 Agricultural production has increased fourfold since the Green Revolution in the 

mid-1900s, resulting in a corresponding increase in global phosphorus extraction 

(Childers et al. 2011).  United States phosphorus consumers used 28.1 million tons of 

fertilizer in 2014. Only 15 to 30% of phosphorus applied to a crop is absorbed by plants; 

large amounts of phosphorus fertilizer is wasted in agricultural runoff (Childers et al. 

2011; Jasinski 2015).  Excess phosphorus in agriculture runoff makes its way into aquatic 

environments, causing extensive eutrophication problems (Cordell et al. 2009).  Nutrient 
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runoff into the Mississippi River has contributed to eutrophication of the Gulf of Mexico 

and a resulting 5,052 square mile dead zone (NOAA and EPA 2014).  Extraction, 

production and consumption of phosphorus fertilizers generate hazardous waste, carbon 

emissions and aquatic pollution (Ragnarsdottir et al. 2011; Childers et al. 2011; Fuleihan 

2012; Cordell et al. 2011).  More than 200 million tons of phosphogypsum, a phosphorus 

fertilizer production byproduct, is produced annually and is stored on land due to its 

radioactive nature, yet a few countries dispose of it directly into oceans (Fuleihan 2012; 

Cordell et al. 2009).  Of the 200 million tons produced annually, only 15% is recycled or 

reused by agriculture and cement industries. 

Supply and Demand 

President Roosevelt, in the 1938 Presidential address to the US Congress, strongly 

emphasized the importance of phosphorous to the American people.  Roosevelt 

expounded phosphorus is necessary to ensure the security of food production, public 

health, and national economic security.  With the president’s encouragement and 

technological advancements of the Green Revolution, crop production, phosphorus 

fertilizer use, and human population all increased by 50% in a matter of 30 years 

(Childers et al. 2011).  Current per capita use of global phosphate rock breaks down to 20 

grams per day to supply adequate dietary needs (Sverdrup and Ragnarsdottir 2011).  The 

growth in phosphate rock production worldwide from 1978 to 2012 is shown in Figure 8.  

Phosphorus (PO4) concentrations within the mined phosphate rock demonstrate a similar, 

slightly muted increase.  Phosphorus concentrations by weight divided by the weight of 

mined phosphate rock represents the concentration of phosphorus present in each ton of 

mined phosphate rock.  The percent concentration variations over the years demonstrate 

that while production and volumes of phosphorus (PO4) present in the mined rock have 

increased, the actual concentration over time as dropped by one percent globally in the 

34-year time span.  Research of mined phosphate rock quality within the United States 

also reflects a decrease in phosphorus content, from 15% in the 1970s to less than 13% in 

1996 (Rhodes 2013). 
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ORLD PRODUCTION OF PHOSPHATE ROCK FROM 1978 TO 2012
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Phosphorus fertilizer demand is expected to continue to increase by 2.5 to 3% per 

year over the next five years (Rhodes 2013).  At this rate of consumption, phosphate rock 

reserves will only last another 100 to 150 years; this estimate includes use of all grades of 

phosphate rock.  Consumption of only the high-grade materials would result in resource 

exhaustion in 50 years, followed by 75 to 100 years of extraction and production of lower 

quality materials with increasing levels of environmental impacts (Cooper et al. 2011).  

A few countries, Morocco, China and the United States, control global phosphate 

rock reserves.  With China’s drastic reduction on exportation, only the United States and 

Morocco are left to meet global demand; US reserves are expected to be exhausted in as 

little as 30 years.  Some countries have enough resources within their borders to sustain 

their own consumption rates; other countries (e.g. Western Europe and India) are wholly 

dependent upon imports from the two remaining major producers (Cordell et al. 2009).  

Nearly 220 million tons of phosphate rock is produced and traded globally each year 

(Jasinski 2015). 

Drivers of Phosphorus Recovery 

Pollution Prevention 

 Since the 1950s about 25% of the total mined phosphate rock has been lost to 

landfills and water bodies, a total value of 63.5 billion megatons (Mt) permanently 

removed from micro-phosphorus cycle on land (Childers et al. 2011; Cordell et al. 2009).  

This has not only negatively impacted agriculture through permanently lost agricultural 

inputs; it has caused environmental damage as well.  The problems of eutrophication in 

waterways is estimated to cost $2.2 billion in annual economic losses due to degraded 

environmental services (e.g. drinking water quality and recreation) (Childers et al. 2011; 

Dodds et al. 2009).  Eutrophic waters emanate foul odors, introduce harmful toxins to 

surface waters, and cause an unappetizing taste resulting in decreased water quality, and 

human and animal health.  Fish kills stemming from decreased dissolved oxygen levels 

and presence of toxins in eutrophic waters decreases biodiversity as well as halt 

commercial and recreational fishing.  Reduced water clarity and odor problems from 

eutrophic algal blooms decrease property values in the surrounding area (Dodds et al. 

2009). 
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 Processing and refining mined phosphate rock into usable fertilizers adds to 

fossil-fuel energy consumption, carbon dioxide emission rates, and hazardous by-product 

problems (Cordell et al. 2009).  Strip mining procedures use large amounts of fossil-fuel 

energy, resulting in large carbon dioxide emissions that are linked to global climate 

changes.  Mining creates hazardous waste materials and destroys pristine land.  Closing 

the phosphorus cycle will help restore our natural environment.  The initial capital 

investments required for phosphorus recycling would be miniscule compared to the 

estimated economic savings associated with recovering damaged environmental services 

(Childers et al. 2011). 

Agriculture Fertilizer Security 

 Today’s agricultural production is entirely dependent on phosphorus fertilizer 

inputs.  The agriculture industry would decline in productivity without phosphate rock 

fertilizers; experience a reduction in crop yield resulting in decreasing revenues. Research 

and development into phosphorus recovery and recycling offers a potential solution.  

Phosphorus resource recovery would reduce humanities’ dependence upon finite 

phosphate rock resources and ensure food security (Ashley et al. 2011).  Elevation in cost 

of phosphorus fertilizer reduces the ability for farmers to purchase fertilizer, creating a 

negative cycle.  Small farmers do not have the income to purchase increasingly expensive 

fertilizers, yet without the fertilizer inputs crop yields drop further and reduce small 

farmers’ income.  Development of phosphorus recovery systems for local communities 

can prevent the negative downward spiral of small farmers, stop rising phosphate rock 

fertilizer prices, increase local economies, food security and community health (Cordell 

et al. 2009; Cordell et al. 2011). 

Phosphorus and Domestic Wastewater 

Phosphorus in Wastewater 

 For every one million people, five tons of phosphorus is delivered to wastewater 

treatment facilities (Rhodes 2013).  Traditional wastewater treatment processes do not 

remove phosphorus; concentrations of total phosphorus in treatment plant effluents range 

from 10 to 25 mg/L (Rhodes 2013).  Phosphorus leaving the facility is either dissolved in 
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effluent waters or bound to sediments and treated with solid materials (Puchongkawarin 

et al. 2014; Rhodes 2013).  Phosphorus in wastewater comes from detergents, food 

additives, food wastes and human excreta, amounting to roughly two grams of total 

phosphorus per capita a day (Verstraete et al. 2009; Rahman et al. 2014; Cornel and 

Schaum 2009; Rhodes 2013).  

 Traditional wastewater treatment facilities are designed to remove suspended 

solids, nitrogen, and organic material and yet are unable to remove enough phosphorus 

from influent sewage water to ensure environmental protection during effluent 

discharges.  Phosphorus enters and exits wastewater treatment plants with 100% of the 

material entering into the environment.  Phosphorus flows through traditional wastewater 

treatment systems appears in Figure 9; 10% of phosphorus leaves with treated water into 

the aquatic environment; 90% of phosphorus attaches to solids within the system, and 

leaves through biosolid production, as beneficial soil amendments or as landfill disposal 

(Petzet and Cornel 2011; Cordell and White 2013). 

 

FIGURE 9.  FLOW CHART OF PHOSPHORUS THROUGH A WASTEWATER TREATMENT 

PLANT UTILIZING CHEMICAL PRECIPITATION REMOVAL TECHNIQUES, ADAPTED FROM 

AN EXAMPLE PRESENTED IN (Petzet and Cornel 2011). 

 



23 

Phosphorus rich effluents cause environmental degradation and health concerns, 

but can also negatively impacts the facilities themselves.  Concentrations of phosphorus 

dissolved in wastewater reduce treatment plant operation efficiencies.  Phosphorus 

combines with other materials present in wastewater, such as ammonia, creating a 

mineral buildup within piping infrastructure.  This nuisance material, struvite, can only 

be removed with physical force, not by chemical destabilization.  Without rigorous 

infrastructure inspection and constant removal of struvite, a wastewater treatment plant’s 

capacity and treatment capabilities decrease (De-Bashan and Bashan 2004). 

Traditional Phosphorus Removal 

 Wastewater is by nature heterogeneous material.  This makes isolating and 

removing particular components difficult (Verstraete et al. 2009).  Chemical 

sedimentation treatment process can be placed at the final stage of a wastewater treatment 

plant to remove organic phosphorus from the treated waters.  Additions of phosphate 

binding chemical compounds like lime, aluminum sulfate (alum) or ferric chloride are 

used to remove phosphorus through chemical sedimentation.  The sediment materials are 

transferred to the solids treatment systems within the plant to be removed with biosolid 

production (Elliott and Taylor 2014; Lee et al. 2007).  However, biosolids with high 

levels of phosphorous and chemicals are becoming an environmental concern when 

utilized as soil amendments.  The chemicals used to remove phosphorus from wastewater 

comprises of heavy metals and salts, materials that are prohibited for use in soil 

amendments (Smil 2000; De-Bashan and Bashan 2004; Koch et al. 2003; Ashley et al.  

2011).   

On average, a single person in the United States produces two grams of 

phosphorus per day.  Of the 318.9 million people living in the United States, 75% are 

residing in homes connected to municipal sewers inputting 32 billion gallons of sewage 

per day into centralized wastewater treatment plants.  Within this sewage influent is 

approximately 950 thousand pounds of phosphorus, of that roughly 850 thousand pounds 

leave the treatment plant through the solids removal process to be disposed in landfills or 

soil augmentation. 
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 Enhanced biological phosphorus removal (EBPR) systems, developed 30 years 

ago, are the closest treatments for removal of phosphorus during wastewater treatment 

(Seviour et al. 2003).  The EBPR system consists of four main treatment stages: 

pretreatment, primary treatment, secondary treatment, and solids handling.  The initial 

pretreatment of raw wastewater entering a facility involves removing coarse and 

nonorganic material from the wastewater stream, such as rocks, eggshells, garbage and 

hair.  Wastewaters flow to the primary treatment phase where solid material is removed 

through settling.  Secondary treatment consists of biological treatment processes.  This 

section of the facility houses microorganisms that are used to oxidize remaining organic 

material in the water and convert it to a form that is easier to remove.  The process train 

of the plant branches into two paths after secondary treatment; one continues water 

treatment and the other performs solids handling and removal operations (Kerri et al. 

2008).   

 Within an EBPR system, microorganisms in secondary treatment metabolize and 

store phosphorus in cellular structures, converting the soluble phosphorus into larger 

solids that can be removed from the liquid stream (Acelas et al. 2014).  It is essential for 

wastewater treatment facilities to remove phosphorus from the treated waters for 

regulatory compliance.  A balance of microorganisms to incoming sewage flows is 

maintained to optimize treatment processes.  As the microorganism populations reach a 

predetermined amount, based on food-to-mass ratio calculations, they are removed or 

‘wasted’ from the secondary treatment phase.  The removed material, sludge, proceeds to 

the solids handling and removal stage at the facility prior to final disposal (Kerri et al. 

2008).   

EBPR facilities utilize anaerobic digesters to break down sludge material.  In 

temperature controlled and oxygen deficient environments of anaerobic digesters, acid-

forming bacteria consume organic material present in the sludge to produce organic acids 

and carbon dioxide gases.  A second group of bacteria, gas formers, break down the 

organic acid and produce methane and carbon dioxide gases.  Materials within digesters 

are gently mixed to provide optimal contact with bacteria.  As the gentle mixing does not 

provide large amounts of vertical agitation, digesters stratify.  The typical stratification 
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pattern within anaerobic digesters is shown in Figure 10.  Fresh sludge, pulled from the 

secondary treatment processes, is pumped into the bottom of digesters.  In fluid zones of 

digesters, the upper third of the digester, bacteria consume organic materials and produce 

biogases.  The gasses accumulate in the top dome of digesters and is either funneled to a 

gas-flaring device or collected for electricity generation.  The upper sections of the fluid 

zone comprise of supernatant, a concentrated liquid that gravitationally separates from 

the sludge and bacteria.  The supernatant is steadily pumped out and returned to the head 

of the wastewater treatment train to undergo treatment again.  Digested sludge removed 

from the bottom portion of digesters is sent to dewatering systems to convert the digested 

sludge to biosolids before final disposal.  After processing through an anaerobic digester, 

about 50% of the incoming organic material is been destroyed through bacterial activity 

(Kerri et al. 2008).   

 

FIGURE 10.  DIAGRAM OF A TYPICAL ANAEROBIC DIGESTER AT AN EBPR 

WASTEWATER TREATMENT PLANT, ADAPTED FROM DIAGRAM IN (Abedeen 2010). 
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It has been found during anaerobic digester treatment about 80% of phosphorus removed 

earlier in secondary biological treatment is released back into a liquid form and becomes 

part of the supernatant (Liao et al. 2003; Munch and Barr 2001; Xavier et al. 2014; Pastor 

et al. 2008).  The high levels of phosphorus concentrated in the small flows of 

supernatant from digesters, relative to average raw sewage influent flows, can cause an 

upset or shock to the treatment system due to nutrient overloading (Kerri et al. 2008; 

Acelas et al. 2014; Elliott and Taylor 2014).   

 Treated sludge removed from anaerobic digesters is pumped to the final stage of 

solids handling sludge dewatering processes.  Dewatering processes feed the digested 

sludge through a mechanical dewatering system, either a vacuum filter, pressure filter, 

centrifuge, or belt filter press.  These systems reduce the moisture content of digested 

sludge by 60 to 80%, leaving a ‘cake’ ranging from 20 to 40% solid composition (Kerri 

et al. 2007).  This cake material is referred to as biosolids and is either beneficially reused 

as soil amendments in agricultural production or is deposited at landfills as alternative 

cover material, dependent upon chemical compositions (Cordell et al. 2011).  The liquids 

removed during the dewatering phase are combined with the removed supernatant flows 

from the anaerobic digesters to form reject water that is returned to beginning of the 

treatment plant. 

Government Regulations 

 Surface water pollution and increased incidents of eutrophication within national 

waters due to anthropogenic nutrient sources led to the formulation of the Federal Water 

Pollution Control Act (i.e., Clean Water Act) of 1972.  Total phosphorus concentrations 

as low as 100 µg/L provide sufficient phosphorus to encourage eutrophication within 

surface waters (Rhodes 2013).  The Clean Water Act set up framework to impose nutrient 

limits on discharged effluents from wastewater treatment plants (Smil 2000; Koch et al. 

2003).  Research conducted by the U.S. Geological Survey (USGS) demonstrate 

waterways impacted by total phosphorus pollution are often found downstream from 

wastewater treatment plant effluent discharge sites (Dubrovsky et al. 2010; Seviour et al. 

2003).  The federal government has since recommended discharges into surface waters 

entering lakes to not exceed 0.05 mg/L of phosphorus and 0.1 mg/L for disposal into 
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flowing waters (Litke 1999).  Starting in 2011 the EPA, under the Clean Water Act, is 

working with states and stakeholders to set up frameworks to monitor phosphorus levels 

in water and develop numeric criteria standards for water effluent discharges from 

industrial facilities, including wastewater treatment plants.  The federal government has 

determined, based on the different circumstances of each state, that states should design 

and implement their own phosphorus nutrient limits that will suit their specific set of 

circumstances and desired goals to solve aquatic phosphorus pollution issues within their 

borders (Stoner 2011). 

 In 1994 the U.S. Environmental Protection Agency (EPA) conducted a State 

Nutrient Water Quality Standards survey to develop a report on how the Clean Water Act 

has altered discharge practices of wastewater treatment plants within the country.  The 

survey concluded 21 states did not have any water quality standards for phosphorus, 

many rely upon narrative regulations, and 10 states have chosen to adopt EPA discharge 

criteria (EPA 1998).  The map of the United States shown in Figure 11 is colored to 

indicate the number of states that have imposed phosphorus discharge limitations upon 

wastewater treatment facilities; darker shades of green have the highest number of 

limitations and white indicates no phosphorus discharge limitations.  As of 1999, 19 

states did not have regulated limitations; 15 states had one to ten facilities with 

phosphorus discharge limits; 9 states had eleven to fifty regulated facilities; 5 states had 

fifty-one to one hundred; and 2 states had limited more than one hundred wastewater 

treatment plants. 
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FIGURE 11.  NUMBER OF WASTEWATER TREATMENT PLANTS WITH PHOSPHORUS 

LIMITS AS OF 1999.  ALASKA AND HAWAII DO NOT HAVE ANY IMPOSED LIMITATIONS, 
GRAPHIC TAKEN FROM (Litke 1999). 

Through the Clean Water Act, the EPA issues permits for wastewater treatment 

facilities to operate.  Every wastewater plant operating within the United States must 

have an active, EPA issued National Pollutant Discharge Elimination System (NPDES) 

permit.  An NPDES is a point-source control measure used to protect the national waters 

of the United States by regulating quantities of pollutants discharged from water and 

wastewater treatment facilities.  Shown in Table 2, the EPA permitted 15,558 wastewater 

treatment facilities for NPDES permits in 2014.  This value is not indicative of the 

number of facilities currently in operation but instead tells the number of new facilities 

and renewed permits.  Of the permits issued in 2014 2,942 facilities were required to 

monitor effluent discharges for phosphorus and 1,796 wastewater treatment facilities had 

permits with defined phosphorus limitations. 
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TABLE 2.  NPDES PERMITS FROM THE FEDERAL GOVERNMENT IN 2014 FOR 

WASTEWATER TREATMENT FACILITIES RELATING TO PHOSPHORUS DISCHARGES, RAW 

DATA OBTAINED FROM (EPA 2014) 

NPDES Permits Number of facilities 

Permitted 15,558 

Permitted with Permit Data 4,738 

Reported with Phosphorus Monitoring 

Requirements 

2,942 

Permitted with Phosphorus Monitoring 

Requirements and Defined Effluent Limits 

1,796 

 

Data presented in Table 3 show the breakdown of how much phosphorus was actually 

discharged from permitted facilities in 2014.  The average reported discharge amount 

present in effluent water was 238 mg/L, with a total average of 18,729 pounds throughout 

reporting facilities and a combined discharge total for all facilities being almost 89 

million pounds.  A few facilities reported extreme phosphorus discharges reported of 

4,493,211mg/L and volumes in excess of 4 million pounds. 

TABLE 3.  AVERAGE REPORTED PHOSPHORUS DISCHARGES FROM NPDES PERMITTED 

WASTEWATER TREATMENT PLANTS THROUGHOUT THE COUNTRY IN 2014, RAW DATA 

OBTAINED FROM (EPA 2014). 

Reported Phosphorus 

Discharges in 2014 

Average throughout 

reporting facilities 

Maximum reported 

Phosphorus Concentration 

(mg/L) 

238 4,493,211 

Amount Discharged (lbs) 18,729 4,209,340 

Total Discharges (lbs) 88,735,637  
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 Recommended aqueous effluent discharge limitations have had a significant 

impact upon wastewater treatment plant biosolid management programs (Elliott and 

Taylor 2014).  These restrictions have caused facilities to switch from disposing 

phosphorus in effluent waters to a solid phosphorus disposal method included with 

biosolids treatments.  Incorporating chemical precipitation has had the intended result of 

reduced effluent aqueous phosphorus discharges into the environment, but has 

unintentionally resulted in biosolids with high phosphorus concentrations along with 

elevated metal salt levels (Elliott and Taylor 2014; Seviour et al. 2003).  Concerns have 

been raised about phosphorus leaching from biosolids produced by facilities employing 

chemical precipitation techniques (Elliott et al. 2005; Elliott et al. 2002(1); Elliott et al. 

2002).  If regulations are created restricting beneficial reuse of these biosolids as soil 

amendments, a new issue arises of proper disposal of this material.  Phosphorus level 

standards for animal manures applied to agricultural fields already exist.  Currently, 

nutrient standards are under review to create new regional numerical limits for 

phosphorus levels in biosolids based upon protecting ecoregions (Litke 1999). 

Importance of Phosphorus Removal 

Environmental Impacts 

 Eutrophic waters caused by nutrient overloading from wastewater effluent 

discharges reduces water clarity and threatens the beneficial reuse of the waters (Smil 

2000; Dodds et al. 2009).  These negatively impacted aquatic environments often result 

in fish kills and changes in specie diversity (Smil 2000; Dodds et al. 2009).  In near 

coastal ocean environments, high concentrations of phosphorus also prevent the 

development of corals (Smil 2000).  High phosphorus concentrations in treated effluents 

from wastewater facilities pose greater threats to aquatic environments than total 

phosphorus runoffs from agriculture fields from phosphate rock fertilizer application 

(Millier and Hooda 2011; Howell 2010).  Studies in the United Kingdom define healthy 

levels of phosphorus in rivers to be between 0.002 mg/L and 0.1 mg/L.  These same 

studies repeatedly measured levels of 0.14 to 0.35 mg/L downstream of wastewater 

treatment discharge points (Howell 2010).  Wastewater treatment plant effluents are 

clearly a large part of phosphorus pollution problems in waterways (Seviour et al. 2003).  



The 1999 National Water-Resources Investigatio

wastewater treatment plants d

aquatic environments annually 

demonstrates the extent of phosphorus

States, measured in 2004.  In streams

nutrient loadings and 35,301 miles were impaired because of wastewater treatment plant 

discharges.  Lakes and ponds had negative impacts caused by nutrient loading rates along 

1,952,386 miles and 583,211 miles of impairment linked directly to wastewater plant 

discharges.  Bays and estuaries were impacted to a smaller extent with 1,047 miles 

impaired by nutrient loadings

wastewater treatment plant discharges.

FIGURE 12.  MILES OF IMPAIRED WAT

AND PHOSPHORUS) AND WASTEWATER TREAT

RAW DATA MEASURED IN 2004

1

10

100

1000

10000

100000

1000000

10000000

Nutrients

WWTP Discharges

M
il
e
s 
o
f 
Im

p
a
ct
e
d
 W

a
te
w
a
y
s

(l
o
g
a
ri
th

m
ic
 s
ca

le
) 

31 

Resources Investigation Report conducted by USGS found

wastewater treatment plants discharge a total of 260,000 metric tons of phosphorus into 

aquatic environments annually (Litke 1999).  The bar graph shown in Figure 

demonstrates the extent of phosphorus impacts on aquatic environments in the United 

In streams, 38,632 miles were adversely impacted by high 

nutrient loadings and 35,301 miles were impaired because of wastewater treatment plant 

ischarges.  Lakes and ponds had negative impacts caused by nutrient loading rates along 

1,952,386 miles and 583,211 miles of impairment linked directly to wastewater plant 

discharges.  Bays and estuaries were impacted to a smaller extent with 1,047 miles 

mpaired by nutrient loadings from agricultural runoff and 2,487 miles impaired from 

wastewater treatment plant discharges. 

ILES OF IMPAIRED WATERWAYS CAUSED BY NUTRIENTS (NITROGEN 

AND WASTEWATER TREATMENT PLANT EFFLUENT DISCHARGES

2004 FROM (EPA 2009). 

Streams Lakes and 
Ponds

Bays and 
Estuaries

38632 1952386 1047

35301 583211 2487

n Report conducted by USGS found 

tons of phosphorus into 

Figure 12 

in the United 

38,632 miles were adversely impacted by high 

nutrient loadings and 35,301 miles were impaired because of wastewater treatment plant 

ischarges.  Lakes and ponds had negative impacts caused by nutrient loading rates along 

1,952,386 miles and 583,211 miles of impairment linked directly to wastewater plant 

discharges.  Bays and estuaries were impacted to a smaller extent with 1,047 miles 

and 2,487 miles impaired from 

 

NITROGEN 

DISCHARGES, 

Bays and 



32 

Struvite Precipitation in Wastewater Treatment 

Process Overview 

Struvite Formation within Wastewater Treatment Plants  

 Reject water flows in EBPR systems, accounting for only two percent of facility 

influent flows, have high concentrations of ammonia and phosphorus.  This is caused by 

the bacteriological treatment occurring within anaerobic digesters, with phosphorus 

concentrations raging from 260 to 500 mg/L (Elliott and Taylor 2014; Yang et al. 2009).  

These nutrients recirculate within wastewater treatment systems and are removed at slow 

rates, each time the reject water undergoes phosphorus removal in secondary EBPR 

systems it is re-released to liquid form during anaerobic digestion (Munch and Barr 2001; 

Forrest et al. 2008). 

 Struvite (magnesium ammonium phosphate, MgNH4PO4), is a white crystalline 

mineral compound which forms under conditions of elemental supersaturation within 

liquid.  This is common in reject waters of wastewater treatment plants (Doyle et al. 

2003; Rahaman et al. 2014; Acelas et al. 2014; Korchef et al. 2011; Bergmans et al. 

2014).  When magnesium (Mg2+), ammonium (NH4+) and phosphate (PO3-
4) 

concentrations exceed solubility levels, supersaturation occurs and minerals combine and 

precipitate into solid form (Wu and Bishop 2004).  The reject water removal system, by 

design, constricts flows resulting in partial pressure reduction that removes dissolved 

carbon dioxide and results in an increase in pH (Battistoni et al. 1997; Fattah et al. 2010; 

Barak and Stafford 2006).  Increased pH levels in reject waters provide optimal 

conditions for struvite precipitation (Wu and Bishop 2004; Barak and Stafford 2006).  

Zones of increased agitation, such as in pipe bends or pump impellers, also provide 

opportune conditions for natural struvite formation (Xavier et al. 2014).  The chemical 

conditions for struvite precipitation at varying levels of water pH are shown in Figure 13.  

The solubility of struvite is pH dependent, remaining in liquid form at low pH levels and 

precipitating into solid forms at high pH levels (Wu and Bishop 2004).   
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FIGURE 13.  SOLUBILITY CONDITIONS FOR STRUVITE DEPENDENT UPON 

CONCENTRATIONS OF MAGNESIUM, AMMONIUM, PHOSPHATE AND PH LEVELS, TAKEN 

FROM (Wu and Bishop 2004). 

Wastewater pH levels typically range from 6.0 to 8.0 and struvite precipitates around pH 

12.6, as shown in the following speciation equations: 

 

[1]NH
4+ ⇔ NH 3(aq)+ H

3 :9.3pH

[2]H 3PO4 ⇔ H 2PO4

− + H
+ :2.1pH

[3]H 2PO4

− ⇔ HPO4

2− + H + : 7.2 pH

[4]HPO4

2− ⇔ PO4

3− + H
+ :12.3pH

[5]MgOH
+
⇔ Mg

2+
+OH

− : 2.56 pH

[6]MgNH 4PO4 ⋅6H 2O ⇔ Mg
2+
+ NH 4

+
+ PO4

3−
+ 6H 2O :12.6 pH

  

EQUATION 1.  STRUVITE SPECIATION EQUATIONS ADAPTED FROM EQUATIONS 

PRESENTED IN (Wu and Bishop 2004). 

Lowering the partial pressure of aqueous reject waters, during passage through pipe 

bends, pump impellers and screens, from 0.5 atm to 0.05 atm results in a release of 

dissolved carbon dioxide and consequently increases pH levels from 7.0 to 8.0 increasing 

the chance of struvite precipitation (Fattah et al. 2010).   

Reject water piping systems are a source of constant maintenance problems for 

treatment facilities due to struvite scaling.  Struvite deposits are characteristically cement-

like and removal of the material from wastewater treatment plant infrastructure is costly, 
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laborious and disrupts treatment efforts.  Struvite scaling results in operational 

inefficiencies, reduced flow capacities in piping and is very difficult to remove (Forrest et 

al. 2008; Doyle et al. 2003).  Current methods of removal include acid washing, use of 

expensive glass-lined pipes and removal with chisels (Forrest et al. 2008; Doyle et al. 

2003).  However, these solutions are only temporary and benefits are quickly nullified as 

struvite deposition continues to develop and disrupt facility operations.   

Struvite scale inside the digester sludge pipeline at the Hyperion Wastewater 

Treatment Plant in Los Angeles caused a pipe diameter reduction of 50% after only one 

year of operation (Jaffer et al. 2002).  Optimal physical and chemical conditions for 

struvite precipitation in reject water-piping systems from solids dewatering processes and 

anaerobic digesters often result in large precipitated struvite volumes that completely 

close pipes within a matter of months, as experienced at the Penggol Pigwaste Plant in 

Singapore (Mohajit et al. 1989).  The Sacramento Regional Wastewater Treatment Plant 

in California had to replace 3.5 miles of pipe after failed struvite scaling removal 

attempts (Doyle et al. 2003) 

Phosphorus Recovery and Recycling Through Struvite Precipitation 

 Struvite is 9.8% magnesium, 7.3% ammonium, 38.8% phosphate, and 44.1% 

water and other organic compounds (Mohajit et al. 1989).  Research has demonstrated 

struvite can be recovered at rates of 80 to 90% from reject waters through struvite 

precipitation processes (Shu et al. 2006; Geerts et al. 2015; Xavier et al. 2014; Korchef et 

al. 2011; Forrest et al. 2008; Petzet and Cornel 2011; Chanan et al. 2013).  Total 

phosphorus recovery efficiency rates of these systems range anywhere from 50 to 80% 

and also reduce ammonia concentrations by 29% (Shu et al. 2006; Xavier et al. 2014).  

Processing reject waters through struvite precipitation systems reduces nutrient impacts 

upon wastewater treatment plants from reject water addition to influent flows, reduces 

struvite scaling issues in infrastructure and allows precipitation to occur in a controlled 

environment (Xavier et al. 2014; Bergmans et al. 2014). 

 Struvite precipitation processes involve a struvite crystallizer reactor.  The 

diagram in Figure 14 illustrates how these reactors operate in reverse gravitational flows 

by pumping reject waters from anaerobic digesters and solids dewatering machinery into 
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the bottom of a struvite crystallizer reactor (Cullen et al. 2013; Britton et al. 2005; Fattah 

et al. 2010; Rahaman et al. 2014).  The upward flow through increasingly larger reactor 

chambers allows struvite crystals to separate by density and size.  The smallest particles 

(prills) remain in the uppermost reactor until enough minerals accumulate, increasing the 

size and density to drop the prill down into the smaller reactor chamber below.  From the 

top down, each reactor zone has a reduced liquid detention time.  The largest diameter 

zone at the top of the structure has the smallest struvite particles with the longest 

detention time to allow for crystal growth (Cullen et al. 2013).  The largest prills present 

in the lowest and smallest reactor chamber are removed, dried and bagged.   

 

FIGURE 14.  STRUVITE CRYSTALLIZER PROCESS DIAGRAM, ADAPTED FROM 

SCHEMATIC PRESENTED IN (Hanzen and Sawyer 2010). 

Precipitation of struvite requires a molar ratio of 1:1:1 of magnesium, ammonium 

and phosphate.  Reject waters provide adequate amounts of ammonium and phosphate, 

but are low in magnesium concentrations.  Therefore, magnesium additions are necessary 

for struvite crystal formation (Chanan et al. 2013; Bergmans et al. 2014; Xavier et al. 
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2014; Munch and Barr 2001; Acelas et al. 2014).  As mentioned earlier and shown in 

Figure 13 and Equation 1, struvite precipitates at higher pH levels.  Supernatants and reject 

water pH levels are often too low for struvite formation; therefore pH levels must be 

raised (Barak and Stafford 2006; Bergmans et al. 2014; Rahaman et al. 2014).  Within a 

crystallizer reactor pH levels are increased with additions of caustic chemicals, often in 

the form of sodium hydroxide (Britton et al. 2005; Bergmans et al. 2014; Rahaman et al. 

2014; Xavier et al. 2014). 

Systems in Operation 

Pilot-Scale Studies 

Lulu Island Wastewater Treatment Plant 

 Pilot-scale studies have demonstrated phosphorus recovery rates through struvite 

precipitation at high enough levels to warrant investment in full-scale facilities.  The 

University of British Columbia in Canada designed and built a pilot project at the Lulu 

Island Wastewater Treatment Plant in 2006 to predict struvite precipitation levels through 

saturation index calculations and to identify factors effecting struvite crystallization in 

fluidized bed reactors (Bhuiyan et al. 2008).  Struvite crystals formed within the 

experimental reactor had molecular structures confirmed as struvite by x-ray diffraction 

analysis (XRD).  Researchers found the harvested struvite pellets were 98.0±1.0% pure 

struvite and ranged in size from 0.5 to 3.5 mm.  The average composition of the reject 

waters being fed to the fluidized reactor over the two-month experiment period was 76.3 

mg/L phosphate, 757.4 mg/L ammonia and 12.31 mg/L magnesium (Bhuiyan et al. 

2008).  Performance of the pilot-scale phosphorus recovery reactor removal efficiency 

was calculated comparing the difference of phosphorus concentrations in influent and 

effluent liquids.  With magnesium additions and pH levels controlled at 8.0-8.2, the pilot-

scale operation removed 75 to 85% phosphate material from incoming reject water flows 

(Bhuiyan et al. 2008). 

Oxley Creek Wastewater Treatment Plant 

 A pilot-scale study of the Unitika Ltd. Phosnix struvite precipitation process was 

undertaken to determine the feasibility for full-scale operation at the Oxley Creek 

Wastewater Treatment Plant in Australia.  The results showed that the process achieved 
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an organic phosphate removal of 94% from reject water influent flows averaging 61 

mg/L phosphorus (Munch and Barr 2001).  Magnesium hydroxide was added to the 

influent liquid to stimulate struvite precipitation and pH levels were maintained around 

8.5.  Produced struvite pellets were 90% by weight pure struvite, confirmed with X-ray 

diffraction (XRD) analysis.  Crystal development was influenced by influent phosphorus 

concentrations and particle detention time within the reactor.  High influent phosphorus 

concentrations, >200 mg/L, resulted in crystal growth rates around 0.173 mm/d.  Low 

phosphorus concentrations, ranging from 34 to 100 mg/L, had reduced crystal growth 

rates of 0.061 mm/d (Munch and Barr 2001).  Influent phosphorus concentrations were 

artificially maintained through dilution with clean water at 90 mg/L in the reactor in order 

to maintain experimentally optimal growth rates during pilot testing.  The pilot-scale 

reactor produced 320 g of struvite pellets per day at an average influent flow rate of 266 

gal/d.  The resulting product 12.4% inorganic phosphorus, 9.1% magnesium, 5.1% 

nitrogen and 39% water; it also contained cadmium, lead and mercury in levels below 

legal limits in Australia, allowing it to be sold as a slow-release fertilizer (Munch and 

Barr 2001).  A wastewater treatment plant with average daily reject water flow rates of 

114 thousand gal/d can theoretically produce 0.137 metric tons of struvite each day.  

Research into marketability of this fertilizer product in Australia denotes a retail price of 

$300-400 Aus./ton ($193-330 US/ton), meaning Oxley Creek Wastewater Treatment 

Plant could generate a $15,001.50-25,002.50 Aus./yr ($9,650.97-16,501.65 US/yr) 

(Munch and Barr 2001). 

Full-Scale Struvite Recovery Facilities 

With such promising results from numerous pilot-scale studies, struvite 

precipitation has transitioned from research and development to full-scale operational 

processes in wastewater treatment facilities throughout the world.  The leading global 

wastewater phosphorus recovery company is Canadian-based Ostara.  Their patented 

Pearl® Process recovers phosphorus and nitrogen from wastewater treatment plants to 

produce their Crystal Green® fertilizer.  The produced fertilizer pellets, needing no 

further processing than that achieved with the Pearl® fluidized reactor, are marketed as 

slow-release fertilizers made by struvite precipitation.  This inorganic phosphate fertilizer 

is registered for agricultural use in 34 US states, the United Kingdom, Canada and the 
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European Union (Cullen et al. 2013).  Processing reject waters from wastewater treatment 

plants through their Pearl® fluidized reactor systems has an average struvite recovery rate 

of 85% phosphorus and 15% ammonia (Cullen et al. 2013).  Unitika Ltd. of Japan 

performs similar work and sells a slow-release fertilizer marketed as Green MAP II that 

is widely used locally (Munch and Barr 2001; Liao et al. 2003).  Phosphorus recovery via 

struvite precipitation reactors reduces maintenance at wastewater treatment plants by 

removing struvite buildup on infrastructure, reduces nutrient loading on the facility, 

stabilizes sewage treatment processes and generates a profit through sale of slow-release 

fertilizers (Cullen et al. 2013; Koch et al. 2003). 

Saskatoon Wastewater Treatment Plant 

 Phosphorus concentrations in biosolids increased at the Saskatoon Wastewater 

Treatment Plant after a biological phosphorus removal (BPR) system upgrade in 1996.  

The system upgrade was designed to comply with an updated operations permit requiring 

treated secondary effluent waters to contain a maximum of 0.2 mg/L phosphorus (Ostara 

2013a).  The facility was able to control the majority of struvite scaling that developed 

after the system upgrade with a rigorous maintenance program.  However, in 2010 the 7.5 

mile pipe transporting digested sludge to a drying lagoon became choked off, bringing 

operations to a stand-still.  Traditional struvite scale removal methods of chemical 

flushing to clean the pipeline failed, and the facility ended up having to replace the pipe 

(Ostara 2013a).  To prevent reoccurrences of this debilitating event, facility managers 

invested in another upgrade to solve the struvite-scaling problem.  By adding an Ostara 

Pearl® struvite precipitation reactor the facility began producing 457 tons of slow-release 

fertilizer sold throughout Canada and the United States.  The facility experienced 

multiple benefits from the latest upgrade: a new revenue stream from sale of produced 

fertilizer; a reduction in struvite buildup; lower maintenance and labor costs associated 

with struvite scaling management; a reduction in nutrient loading on the plant allowing 

for increased treatment efficiencies, and a reduction in chemical usage for struvite scaling 

removal (Ostara 2013a).  Installation of one Pearl® reactor capable of treating 1.3 million 

gallons per day (MGD) of reject waters removed 158 kg/d of phosphorus at an efficiency 

rate of 66% and 72 kg/d of nitrogen with an efficiency rate of 11% (Ostara 2013a). 
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Nine Springs Wastewater Treatment Plant 

 The Nine Springs Wastewater Treatment Plant in Madison, Wisconsin, a BNR 

facility with gas harvesting for cogeneration of electricity, struggled with struvite scaling 

in the digester and dewatering machinery of the solids treatment processes.  Traditional 

and costly struvite management attempts, of utilizing glass-lined piping and ferric dosing, 

failed to solve the problem (Ostara 2014).  The added chemicals from ferric dosing exited 

the facility with produced biosolids and resulted in leaching issues when beneficially 

reused in land applications, exacerbating water pollution issues in the region.  To combat 

the struvite problems and maintain liquid effluent phosphorus discharge limits of 0.03 

mg/L, the Nine Springs facility installed two Ostara Pearl® reactors with total reject water 

treatment capacities of 1.8 MGD (Ostara 2014).  The fluidized bed struvite precipitation 

reactors remove 949 lb/d of phosphorus and 429 lb/d nitrogen with annual struvite 

fertilizer production of 1,375 tons.  The upgrade also accomplished reductions in nutrient 

loading rates to the plant by treating reject waters, reduced chemical usage for solids 

treatment thereby saving money and creating a new source of income (Ostara 2014). 

Slough Sewage Treatment Works 

 The BNR 15MDG capacity Slough Sewage Treatment Works along the Thames 

River in Berkshire, UK spent £200,000/yr (~$298,832 US) to remove nuisance struvite 

formations within the facility’s infrastructure (Ostara 2013b).  Over concern of chemical 

dependence and cost, facility managers looked into alternative systems to meet the same 

ends of struvite control and phosphorus removal at reduced operational costs.  After 

installation of a single Ostara Pearl® reactor the facility experienced: reductions in 

chemical dosing, increased facility performance by increased capacities due to struvite 

scale removal, and the new ability to beneficially reuse biosolids due to the reduced 

phosphorus concentrations which now met regulation standards for land application.  

Reactor operations remove 55 kg/d of phosphorus, 25 kg/d of nitrogen and produce 160 

ton/yr of struvite fertilizer product (Ostara 2013b). 

Rock Creek Advanced Wastewater Treatment Facility 

The Tualatin River Watershed in Oregon covers 712 square miles, encompassing 

a variety of ecosystems including plains lands, forests, mountains, agricultural areas and 
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dense urban centers.  Five tributaries drain into the Tualatin River and are each protected 

as sensitive ecosystems (Tualatin River Watershed Council 2015).  The 35MGD BNR 

Rock Creek Advanced Wastewater Treatment Facility, situated within this protected 

region, must maintain secondary effluent discharge phosphorus rates of 0.1 mg/L (Ostara 

2012).  In 2011 two Ostara Pearl® reactors were installed to save ratepayer costs by 

recovering and selling phosphorus from biosolid production instead of expending 

resources to dispose of it as a waste product.  The installed systems treat 0.6MGD of 

reject water, remove 605 lb-P/d, 891 mg-NH4/d, 275 lb-N/d and produces 875 ton/yr of 

struvite fertilizer (Ostara 2012).  This dramatically reduced struvite buildup, lowering 

maintenance costs.  Reject water nutrient loading was also dramatically reduced, 

improving facility efficiency.  Additional savings were realized from the reduction in 

chemical usage, lower produced biosolids, and disposal costs.  Moreover, the phosphorus 

concentrations in the produced biosolids have also decreased (Ostara 2012). 

Durham Advanced Wastewater Treatment Plant 

 Durham Advanced Wastewater Treatment Plant operated by Clean Water 

Services in Tigard, Oregon is a 20MGD capacity EBNR facility with a secondary effluent 

phosphorus discharge limit of 0.1 mg/L to surface waters (Ostara 2009).  A facility 

upgrade including the addition of three Ostara Pearl® reactors came online in spring of 

2009 with a total reject water treatment capacity of 0.45MGD.  The reactors remove 450 

lb-P/d, 1,025 mg-NH4/d, 165 lb-N/d and produce 475 tons/yr of struvite fertilizer (Ostara 

2009).  Facility operation improvements resulting from reactor installations include: 

reduced metal salt additions for chemical phosphorus removal, phosphorus biosolid 

concentration reductions, and reduced nutrient loading by treating reject waters (Ostara 

2009). 

Nansemond Wastewater Treatment Plant 

 Hampton Roads Sanitation District’s BNR Nansemond Wastewater Treatment 

Plant in Suffolk, Virginia discharges secondary effluent into the James River, which 

drains into the environmentally sensitive and protected Chesapeake Bay.  The Sanitation 

District set company goals to reduce nutrient loading into Chesapeake Bay to protect the 

delicate aquatic environment.  In order to meet these new goals the Nansemond facility 
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needed to reduce the composition of its effluent discharge to total nitrogen levels of 8 

mg/L and total phosphorus to 1 mg/L (Ostara 2010a).  Ostara reactors were determined to 

be the key to allow Nansemond to meet the new company goals.  Three Pearl® reactors 

were installed, capable of treating 1.5MGD of reject water, remove 500 lb-P/d, 475 mg-

NH4/d, 166 lb-N/d, and produce 430 tons of struvite fertilizer annually (Ostara 2010a).  

Reject water loading rates to the facility have been reduced, metal salt additions for 

chemical phosphorus removal processes decreased, and biosolid phosphorus 

concentrations have declined.   

York Wastewater Treatment Plant 

 The York Wastewater Treatment Plant in York, Pennsylvania, a 20MDG BRN 

facility, discharges secondary effluents into Codorus Creek, which also feeds Chesapeake 

Bay.  This facility must maintain effluent phosphorus levels at 0.8 mg/L to protect the 

sensitive Chesapeake Bay environment (Ostara 2010b).  Prior to installing two Ostara 

Pearl® reactors the facility annually spent $400,000 to control nuisance struvite formation 

within facility infrastructure (Ostara 2010b).  Once the reactors began operating, struvite 

buildup and associated maintenance expenses decreased, nutrient loading rates from 

reject waters declined, metal salt use for chemical phosphorus removal decreased, 

biosolid phosphorus concentrations decreased, and nutrient loading to Codorus Creek 

from secondary effluent discharges were reduced.  The Pearl® reactors remove 282 lb-

P/d, 635 mg-NH4/d, 128 lb-N/d from reject waters and produce 400 tons of struvite 

fertilizers annually (Ostara 2010b). 

International Wastewater Treatment Facilities 

 A full-scale struvite recovery system in Fulkuoka, Japan removes 80% of 

phosphorus with sewage influent phosphorus concentrations of 245 mg/L (Mavinic et al. 

2007).  Another facility at the Shimane Prefecture Lake Shinji East Clean Center of Japan 

achieves 90% phosphorus removal efficiencies through struvite precipitation systems and 

has a treatment capacity of 1.3MGD (Mavinic et al. 2007).  Trevison Municipal 

Wastewater Treatment Plant in Italy also operates a full-scale struvite recovery system 

with total phosphorus removal rates averaging 54% of influent reject water flow 

concentrations (Mavinic et al. 2007). 
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Benefits 

Wastewater Industry 

 Incorporating struvite precipitation phosphorus recovery systems to wastewater 

treatment can reduce chemical usages required for chemical phosphorus removal systems 

as well as those used to combat struvite scaling problems (Batstone et al. 2014; Molinos-

Senante et al. 2011; Case Study: Slough 2013; Chanan et al. 2013; Petzet and Cornel 

2011; Hao et al. 2013; Koch et al. 2003; Shu et al. 2006; Marchi et al. 2015; Bergmans et 

al. 2014).  Researchers estimate cost savings achieved with struvite precipitation 

processes range from $500 to $2500 for every 260 thousand gallons of wastewater 

treated; these savings are associated with reduced maintenance and materials used to 

remove struvite scaling problems (Chanan et al. 2013).  Struvite scaling problems cause 

reduced hydraulic pumping capacities for impacted equipment and if not addressed will 

result in equipment failure (Koch et al. 2003).  Traditional struvite scale removal often 

causes prolonged downtime for sections of the treatment process, reducing treatment 

capabilities of plants.  Recovering phosphorus with struvite precipitation equipment 

alleviates these issues (Shu et al. 2006; Marchi et al. 2015). 

 Struvite fluidized bed reactors precipitate phosphorus before solids dewatering 

processes and divert it from biosolids production.  Reduced phosphorus concentrations in 

sludge and biosolids reduce produced volumes, anywhere from two to eight percent 

(Chanan et al. 2013).  Smaller volumes of produced biosolids decrease transportation 

costs to landfills or agricultural sites (Chanan et al. 2013; De-Bashan and Bashan 2004; 

Marchi et al. 2015; Koch et al. 2003; Bergmans et al. 2014; Forrest et al. 2008; Shu et al. 

2006).  Precipitating 1 kg/d of struvite can reduce biosolid disposal volumes enough to 

reduce utilized landfills space by 0.000063 m2 (Shu et al. 2006).  At current population 

levels global struvite fertilizer production from wastewater treatment plants could amount 

to 3.114 Mt, saving 198,000 m2 (~49 acres) of landfill space (Shu et al. 2006; Andreev et 

al. 2013).  Lower phosphorus concentrations in produced biosolids also allows the 

material to be beneficially reused more; lowered phosphorus concentrations often meet 

the requirements imposed upon materials applied to agricultural fields (Molinos-Senante 

et al. 2011; De-Bashan and Bashan 2004).   
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 While struvite recovery systems target phosphorus removal from reject waters, 

the chemical precipitation process requires a combination of elements.  For struvite 

crystals to form within a fluidized bed reactor there must be a balance of phosphorus, 

magnesium and ammonium of 1:1:1 (Chanan et al. 2013; Xavier et al. 2014; Bergmans et 

al. 2014; Munch and Barr 2001; Acelas et al. 2014).  Magnesium concentrations in 

wastewater are too low for struvite precipitation and are therefore added through 

chemical inputs.  Necessary ammonium concentrations already exist within wastewater 

and is also removed during struvite formation, removal rates of ammonium have been 

recorded as high as 50% from reject water influent flows to reactors (Koch et al. 2003). 

Phosphorus Production for Industry 

 Recovered phosphorus from wastewater facilities, in the form of slow-release 

struvite pellet fertilizers, can be sold to agriculture production operations as substitutes 

for traditional phosphate rock fertilizers (Chanan et al. 2013; Koch et al. 2003).  As a 

fertilizer product, struvite pellets have demonstrated lower contaminant and impurity 

concentrations compared to phosphate rock fertilizers (Forrest et al. 2008).  Phosphate 

rock ores often contain toxic heavy metals and radionuclides, whereas struvite pellets are 

free of pathogens, heavy metals and radioactive compounds (Muster et al. 2013).  

Struvite pellets have also demonstrated equivalency, and occasionally superior 

performance, to phosphate rock fertilizers for delivering inorganic phosphorus to plants 

(Barak and Stafford 2006).  Experiments comparing struvite fertilizer (MAP) efficiency 

to diammonium phosphate (DAP), the popular phosphate rock fertilizer, demonstrate an 

application of 36 mg-MAP-P/kg fertilizer results in an equivalent plant biomass growth 

as an application of 42 mg-DAP-P/kg (Barak and Stafford 2006).  The resulting struvite 

fertilizer efficiency rate is 117% over diammonium phosphate fertilizer (Barak and 

Stafford 2006). 

Limitations 

Costs 

 Wastewater treatment plant upgrades that include struvite recovery systems are 

not possible for every facility.  EBPR and BNR facilities with anaerobic digesters are 

perfect for these recovery systems.  However, Bardenpho aeration systems and MBR 
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plants do not have digesters with reject water byproducts and therefore cannot 

accommodate struvite recovery systems.  Facility upgrades must be economically sound 

to garner management approval and necessary capital investments.  While struvite 

recovery facilities do produce revenue streams, the return on investment (ROI) is 

upwards of five years for a 14.5MGD facility (Shu et al. 2006; Jaffer et al. 2002).  

Struvite fertilizer is also more expensive to produce than phosphate rock fertilizers, $140 

to $160 USD per ton for struvite fertilizers compared to $40 to $50 USD per ton for 

phosphate rock fertilizers (Forrest et al. 2008).  However, in cases where market prices of 

phosphate rock fertilizers are high, it may be economical to recover struvite from 

wastewater treatment plants; Japan sells struvite fertilizer pellets for $250 US/ton (Forrest 

et al. 2008; Munch and Barr 2001).  Struvite recovery systems provide important 

sustainability implications by reducing phosphorus fertilizer reliance upon non-renewable 

limited phosphate rock reserves.  However, societal concerns over opportunity costs may 

hinder wastewater treatment plant upgrades.  The public may not be interested in 

investing in upgrades for wastewater treatment plants, regardless of the reduced aquatic 

pollution it provides, over investments into public education or health care (Hu et al. 

2012). 

 Struvite pellets as fertilizer sales cover only one third of the annual chemical 

inputs, not including other operational costs, of a fluidized bed reactor system (Jaffer et 

al. 2002).  Magnesium input costs average $330US per ton of struvite produced (Munch 

and Barr 2001).  However, cost savings are achieved through avoidance of struvite 

scaling issues.  Minimizing struvite scale decreases pumping, operational, pipe 

replacement, and labor costs (Jaffer et al. 2002).  Table 4 lists some of the monetary 

inputs and outflows relating to installation and operation of struvite recovery systems 

analyzed at the Wastewater Treatment Plant in Leuven, Belgium. 
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TABLE 4.  POSITIVE AND NEGATIVE MONETARY FLOWS RELATED TO STRUVITE 

RECOVERY SYSTEM INSTALLATION AND OPERATION AT WASTEWATER TREATMENT 

PLANTS, TAKEN FROM (Geerts et al. 2015). 

Positive Monetary Flows Connected to Struvite Recovery  

Sales price of struvite 

Reduced aeration cost for nitrogen removal (reduction via feedback flows of reject waters) 

Reduced cost for carbon source for phosphorus removal (reduction via feedback flow od reject waters) 

Reduced maintenance cost for clogged pipes 

Lower sludge disposal cost due to improved dewaterability 

Reduced polymer use in the dewatering process 

Negative Monetary Flows Connected to Struvite Recovery 

Installation investment 

Investment in chemical storage and dosing of caustic and magnesium (to allow for bulk delivery and thus 
reduce chemical-dosing costs) 

Operation man-hours 

Operation magnesium and caustic consumption 

Maintenance 

Monetary Flows Not Considered with Struvite Recovery 

Research costs and pilot-scale testing 

Fixed costs for digestion, dewatering and drying 

Possible benefits attributed to lower cadmium and uranium content in the struvite fertilizers as compared to 
natural phosphate ore 

Benefits related to a lower phosphorus content in dried biosolids 

Based on the analysis performed at the Wastewater Treatment Plant in Leuven, Belgium, 

the facility would have an ROI of 10 years with the sale of struvite currently priced at 

€530/ton ($637US/ton) (Geerts et al. 2015).  Installation of a struvite recovery facility 

demonstrates positive economic returns when maintenance costs and environmental 

benefits are taken into account (Barak and Stafford 2006). 

Chemical Inputs 

 Struvite crystal formation requires molar ratios of 1:1:1 of magnesium, nitrogen 

and phosphorus (Koch et al. 2003).  Phosphorus and nitrogen are present in wastewater at 

sufficient concentrations.  However, magnesium concentrations are too low for struvite 
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precipitation and must therefore be added.  pH levels must also be adjusted to optimal 

ranges for struvite crystallization, see Error! Reference source not found.Figure 14 and 

Equation 1.  The reject water itself has an average pH of 7.0 and high alkalinity (Wu and 

Bishop 2004; Jaffer et al. 2002).  Alkaline waters resist pH adjustments and necessitate 

large inputs of pH raising caustic chemicals to reach pH breakpoints, such as sodium 

hydroxide or magnesium hydroxide (Jaffer et al. 2002; Bhuiyan et al. 2008).  

Magnesium, being the smallest volume of the three elements necessary for struvite 

formation present in wastewater, is the limiting nutrient for struvite production (Jaffer et 

al. 2002; Bhuiyan et al. 2008).  Magnesium inputs must be optimized and maintained to 

ensure maximum struvite output from reactors.  Magnesium hydroxide (Mg(OH)2) and 

magnesium chloride (MgCl2) are the two most commonly used magnesium inputs for 

fluidized bed reactors (Jaffer et al. 2002; Munch and Barr 2001).  Each chemical behaves 

differently in the system; however, one does not appear to be better than the other 

concerning struvite production rates.  Magnesium chloride dissociates faster and enables 

shorter reaction times in mixing chambers, whereas magnesium hydroxide is cheaper and 

assists with pH increases (Jaffer et al. 2002; Munch and Barr 2001). 

 Research into alternatives to chemical inputs for pH adjustments and magnesium 

is on the rise as interest in struvite precipitation technologies increase.  A number of 

studies have proposed dissolved carbon dioxide (CO2) stripping during struvite 

precipitation to increases pH to levels optimal for crystal development (Fattah et al. 2008, 

2010; Battistoni et al. 1997; Hiroyuki and Toru 2003).  Bicarbonate present in wastewater 

liquids, formed during secondary aeration treatments, can dissociate into carbon dioxide 

and hydroxide.  Carbon dioxide releases to the atmosphere in gaseous form while the 

hydroxide aids in increasing aqueous pH, the chemical equation is shown below in 

Equation 2: 

HCO3

− →CO2 ↑ +OH −   

EQUATION 2.  CHEMICAL EQUATION OF BICARBONATE DISSOCIATING INTO CARBON 

DIOXIDE AND HYDROXIDE, TAKEN FROM (Fattah et al. 2008). 

Including air stripping techniques to remove carbon dioxide increases pH and in turn 

reduces caustic input requirements for struvite precipitation, saving money on chemical 
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and bulk storage units (Fattah et al. 2008; Battistoni et al. 1997).  An experiment 

performed on carbon dioxide stripping in struvite reactors demonstrated quantifiable cost 

savings on caustic chemical addition while still achieving struvite production volumes 

comparable to systems without CO2 strippers, results are shown in Table 5.  A struvite 

recovery system without air stripping processes, test run 1, used 1.23 kg/d of caustic 

additions and removed 2.44E-03 moles of phosphorus with a 90% removal rate, 5.73E-03 

moles of nitrogen at a 10% removal rate, and removed 2.19E-03 moles of magnesium at a 

66% removal rate.  Testing of air stripping techniques incorporated with struvite 

precipitation processes was conducted.  One system, used in test run 2, pulled air from 

external sources while the other system, test run 3, did not utilize external air sources.  

Test run 2 used 0.84 kg/d of caustic additions and removed 2.42E-03 moles of 

phosphorus with a 90% removal rate, 2.98E-03 moles of nitrogen at 5% removal rate, and 

removed 2.28E-03 moles of magnesium at a 75% removal rate.  Test run 3 used 0.91 kg/d 

of caustic additions and removed 1.55E-03 moles of phosphorus with a 90% removal 

rate, 7.66E-03 moles of nitrogen at 14.5% removal rate, and removed 1.13E-03 moles of 

magnesium at a 39% removal rate.   
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TABLE 5.  SUMMARY OF EXPERIMENTAL RESULTS COMPARING PHOSPHATE, AMMONIA 

AND MAGNESIUM REMOVAL RATES AND COST SAVINGS OF STRUVITE CRYSTALIZING 

SYSTEMS WITH AND WITHOUT CARBON DIOXIDE AIR STRIPPING, ADAPTED FROM 

(Fattah et al. 2008). 

 Without Strippers 

Run 1 

With Strippers 

Run 2� 

 

Run 3� 

Phosphate removal (%) 90 90 90 

Ammonium removal (%) 10 5 14.5 

Magnesium removal (%) 66 75 39 

Molar phosphate removal 2.44E-03 2.42E-03 1.55E-03 

Molar ammonium removal 5.73E-03 2.98E-03 7.66E-03 

Molar magnesium removal 2.19E-03 2.28E-03 1.13E-03 

Molar ratio (Mg:N:P) 0.9:2.3:1 0.9:1.2:1 0.7:4.9:1 

Caustic use (kg/d) 1.23 0.84 0.91 

Caustic savings (kg/d) -- 0.39 0.32 

Caustic savings (%) -- 32 26 

Current caustic savings� 

(US$/d) 
-- 0.82 0.65 

Annual savings at Lulu 
Island Wastewater 
Treatment Plant 

-- 9,965 8,168 

Annual savings at Annacis 
Wastewater Treatment 
Plant 

-- 44,518 36,350 

� Carbon dioxide stripper run with external air. 

� Carbon dioxide stripper run without external air. 

� Caustic cost USD 2.1/kg. 

Cost savings achieved with air stripping in Run 2 amounted to $0.39kg-US/d and 

$0.65kg-US/d.  Theoretically applying Run 2 savings to the Lulu Island Wastewater 

Treatment Plant in Richmond, BC, Canada could result in annual caustic savings of 

$9,965 (US), and Run 3 savings could amount to $8,168 (US).  Theoretically applying 

Run 2 savings to the Annacis Wastewater Treatment Plant in Vancouver, BC, Canada can 
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result in annual caustic savings of $44,518 (US), and Run 3 savings could amount to 

$36,350 (US).  In conclusion, carbon dioxide air stripping results in cost savings to a 

wastewater treatment plant employing struvite precipitation processes by increasing pH 

through chemistry instead of caustic chemical additions (Fattah et al. 2010, 2008). 

Product Marketability and Societal Acceptance 

As with marketing recycled water, there is an‘ick’ factor associated with materials 

recycled from wastewater streams.  Public perceptions need to be addressed when selling 

struvite pellets recovered from wastewater for agriculture production (Contreras et al. 

2013).  However, when phosphate rock fertilizers become scarce and prohibitively 

expensive, the public may be less concerned with struvite fertilizer sources and direct 

more attention to lower prices and sustainability of the product (Muster et al. 2013).  

Struvite fertilizer marketing can also rely on the important facts that it contains zero 

pathogens, heavy metals or radionuclides unlike phosphate rock ores (Muster et al. 2013).  

Research demonstrates struvite pellets provide equivalent plant biomass growth at lower 

fertilizer input rates compared to phosphate rock, the material is also slow-release 

enabling for further application reductions, passing along cost savings to agriculture 

producers (Barak and Stafford 2006). 

Struvite Precipitation to Produce Alternative Phosphorus  

Struvite Precipitation Product as Phosphate Rock Fertilizer Substitute 

Phosphate Rock Fertilizer Regulations 

Phosphate rock ore contains traces of contaminants such as arsenic (As), cadmium 

(Cd), zinc (Zn), lead (Pb), cobalt (Co), chromium (Cr), Copper (Cu), iron (Fe), 

molybdenum (Mo), nickel (Ni), and vanadium (V) (Molina et al. 2009).  Phosphorus 

fertilizers derived from phosphate rock ore used in agricultural operations also contain 

these trace contaminant elements to varying degrees, dependent on ore origins (Molina et 

al. 2009; Jiao et al. 2012; Chen et al. 2007).  Contaminants in phosphorus fertilizers 

added to agricultural fields compound and pose human health and environmental risks 

(Jiao et al. 2012; Chen et al. 2007; Molina et al. 2009).  During plant development these 

accumulated contaminants are absorbed from soils applied with phosphorus rock 
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fertilizers.  Plant matter containing these contaminants pass the material to humans 

through food consumption and may present harmful side effects (Jiao et al. 2012).  To 

mitigate potential environmental and health hazards, phosphorus fertilizers have 

maximum contaminant concentration restrictions connected to the concentration of 

phosphorus.  Higher phosphorus (as phosphorus pentoxide P2O5) concentrations can have 

higher levels of trace contaminants (Jiao et al. 2012; Chen et al. 2007).  Regulated 

contaminant limitations vary between countries is shown in Table 6.  Canada has the most 

restrictions for various trace contaminants: cadmium 20 mg/kg- P2O5, arsenic 75 mg/kg- 

P2O5, cobalt 150 mg/kg- P2O5, molybdenum 20 mg/kg- P2O5, nickel 180 mg/kg- P2O5, 

lead 500mg/kg- P2O5, and zinc limited to 1850 mg/kg- P2O5.  Some states in the United 

States limit contaminant concentrations; Texas restricts cadmium levels to 39 mg/kg- 

P2O5; California limits cadmium to 200 mg/kg- P2O5 and lead to 1000 mg/kg- P2O5.  

Cadmium is widely regulated throughout the world at varying degrees: Australia set 

limits to 300 mg/kg- P2O5, Austria at 275 mg/kg- P2O5, Belgium at 200 mg/kg- P2O5, 

Czech Republic at 50 mg/kg- P2O5, China at 8 mg/kg- P2O5, Denmark at 110 mg/kg- 

P2O5, Finland 50 mg/kg- P2O5, Germany 200 mg/kg- P2O5, Japan 340 mg/kg- P2O5, 

Netherlands 35 mg/kg- P2O5, New Zealand 280 mg/kg- P2O5, Norway 100 mg/kg- P2O5, 

Portugal 200 mg/kg- P2O5, and Sweden at 100 mg/kg- P2O5 (Molina et al. 2009). 
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TABLE 6.  REGULATORY TRACE CONTAMINANT CONCENTRATION LIMITS FOR 

PHOSPHATE ROCK FERTILIZERS ADAPTED FROM TABLE IN (Molina et al. 2009). 

Contaminant Country Concentration Limit 

 (mg/kg- P2O5) 

Cadmium Australia 300 

 Austria 275 

 Belgium 200 

 Czech Republic 50 

 China 8 

 Denmark 110 

 Finland 50 

 Germany 200 

 Japan 340 

 Netherlands 35 

 New Zealand 280 

 Norway 100 

 Portugal 200 

 Sweden 100 

 Canada 20 

 U.S.—Texas 39 

 U.S—California 200 

Arsenic Canada 75 

 U.S.—California 100 

Cobalt Canada 150 

Molybdenum Canada 20 

Nickel Canada 180 

Lead Canada 500 

 U.S.—California 1000 

Zinc Canada 1850 
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Phosphate Rock Fertilizer Products 

Phosphate rock based fertilizers come in various forms with different properties; 

rock phosphate is a low soluble material with an NPK ratio of 0-20-0; triple 

superphosphate is highly soluble with an NPK ratio of 0-46-0; diammonium phosphate 

dissolves to a slightly basic solution with an NPK ratio of 18-46-0; monoammonium 

phosphate dissolves into a slightly acidic solution with an NPK ratio of 11-52-0; 

ammonium polyphosphate is a slightly acidic liquid with an NPK ratio of 10-34-0; and 

ortho-superphosphate is a sulfuric acid with a 10% sulfur composition and an NPK ratio 

of 0-20-0 (Barrett and Arnall 2011; Robertson et al. 2012).  Monoammonium phosphate 

(NH4HPO4) is produced through a chemical reaction between ammonia (NH3) and 

phosphoric acid (H3PO4) composing of 10 to 12% nitrogen 48 to 61% P2O5, the inorganic 

phosphorus compound utilized by plants (International Plant Nutrition Institution 2010).  

Diammonium phosphate ((NH4)2HPO4), the preferred phosphorus fertilizer in the United 

States, is created by a chemical reaction between phosphoric acid and ammonia with a 

composition of 18% nitrogen and 46% P2O5 (International Plant Nutrition Institution 

2012).   

Average measurable trace contaminants present in monoammonium phosphates 

produced in the United States: arsenic ~11.5 mg/kg- P2O5, cadmium ~ 2.3 mg/kg- P2O5, 

cobalt ~1.8 mg/kg- P2O5, nickel ~1.9 mg/kg- P2O5, molybdenum ~11.5 mg/kg- P2O5, lead 

~6.5 mg/kg- P2O5, copper ~0.1 mg/kg- P2O5, chromium ~80 mg/kg- P2O5, manganese 

~135 mg/kg- P2O5, iron ~7000 mg/kg- P2O5, vanadium ~40 mg/kg- P2O5, and zinc ~30 

mg/kg- P2O5.  Average measurable trace contaminants present in monoammonium 

phosphates produced in Mexico: arsenic ~12.1 mg/kg- P2O5, cadmium ~ 4.3 mg/kg- P2O5, 

cobalt ~3.5 mg/kg- P2O5, nickel ~6 mg/kg- P2O5, molybdenum ~10 mg/kg- P2O5, lead 

~5.5 mg/kg- P2O5, copper ~0.15 mg/kg- P2O5, chromium ~85 mg/kg- P2O5, manganese 

~145 mg/kg- P2O5, iron ~9000 mg/kg- P2O5, vanadium ~50 mg/kg- P2O5, and zinc ~80 

mg/kg- P2O5.  Average measurable trace contaminants present in diammonium 

phosphates produced in the United States: arsenic ~13.5 mg/kg- P2O5, cadmium ~ 3 

mg/kg- P2O5, cobalt ~2.5 mg/kg- P2O5, nickel ~3 mg/kg- P2O5, molybdenum ~9 mg/kg- 

P2O5, lead ~8 mg/kg- P2O5, copper ~0.5 mg/kg- P2O5, chromium ~80 mg/kg- P2O5, 

manganese ~135 mg/kg- P2O5, iron ~7000 mg/kg- P2O5, vanadium ~35 mg/kg- P2O5, and 



zinc ~42 mg/kg- P2O5.  Average measurable trace contaminants present in diammonium 

phosphates produced in the Mexico: arsenic ~16 mg/kg

P2O5, cobalt ~3.5 mg/kg- P2O

lead ~9.8 mg/kg- P2O5, copper ~0.1

manganese ~115 mg/kg- P2O

and zinc ~39 mg/kg- P2O5 represented graphically in 

FIGURE 15.  CONCENTRATIONS BY WEI

PHOSPHATE ROCK FERTILIZERS FROM PHOSPHAT

STATES AND MEXICO, TAKEN FROM 

Phosphate rock fertilizers sold in

cadmium and lead contaminants.  European phosphate rock fertilizers contain 7.6 mg/kg
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Average measurable trace contaminants present in diammonium 

phosphates produced in the Mexico: arsenic ~16 mg/kg- P2O5, cadmium ~ 4.5 mg/kg

O5, nickel ~7 mg/kg- P2O5, molybdenum ~7 mg/kg

, copper ~0.1 mg/kg- P2O5, chromium ~98 mg/kg- P2O

O5, iron ~11000 mg/kg- P2O5, vanadium ~38 mg/kg

represented graphically in Figure 15 (Molina et al. 2009)

ONCENTRATIONS BY WEIGHT OF TRACE CONTAMINANTS PRESENTED IN 

LIZERS FROM PHOSPHATE ROCK RESERVES IN THE 

TAKEN FROM (Molina et al. 2009). 

Phosphate rock fertilizers sold in Europe, China and Chile have similar levels of arsenic, 

cadmium and lead contaminants.  European phosphate rock fertilizers contain 7.6 mg/kg

Average measurable trace contaminants present in diammonium 

cadmium ~ 4.5 mg/kg- 

mg/kg- P2O5, 

O5, 

, vanadium ~38 mg/kg- P2O5, 

(Molina et al. 2009).   

 

NANTS PRESENTED IN 

HE UNITED 

Europe, China and Chile have similar levels of arsenic, 

cadmium and lead contaminants.  European phosphate rock fertilizers contain 7.6 mg/kg- 
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P2O5 of arsenic, 7.4 mg/kg- P2O5 of cadmium, and 2.9 mg/kg- P2O5 of lead.  Phosphate 

rock fertilizers sold in China contain 13.5 mg/kg- P2O5 of arsenic, 2.6 mg/kg- P2O5 of 

cadmium, and 30.0 mg/kg- P2O5 of lead.  Phosphate rock fertilizers marketed in Chile 

have 15.1 mg/kg- P2O5 of arsenic, 12.3 mg/kg- P2O5 of cadmium, and 10.4 mg/kg- P2O5 

of lead as shown in Table 7. 

TABLE 7.  ARSENIC, CADMIUM AND LEAD AVERAGE CONCENTRATIONS BY WEIGHT OF 

PHOSPHATE ROCK OF FERTILIZERS SOLD IN EUROPE, CHINA AND CHILE ADAPTED 

FROM SIMILAR TABLE PRESENTED IN (Jiao et al. 2012). 

Region Concentration (mg/kg-P2O5) 

Arsenic (As)               Cadmium (Cd)               Lead (Pb) 

Europe 7.6 7.4 2.9 

China 13.5 2.6 30.0 

Chile 15.1 12.3 10.4 

 

Struvite Precipitation Fertilizer Products 

 Struvite crystals formed in reject water from pilot-scale treatment studies were 

96.2 to 97.5% pure struvite, measured at the Annacis, Lulu Island and City of Penticton 

wastewater treatment facilities (Britton et al. 2005; Mavinic et al. 2007).  Crystal 

formations contained trace amounts of calcium, iron, aluminum, potassium and carbon 

trioxide contaminants (Britton et al. 2005; Mavinic et al. 2007).  An Annacis facility 

pilot-project produced struvite with contaminant concentrations representing 5.03% by 

weight of the produced material (Mavinic et al. 2007).  Lulu Island wastewater treatment 

plant pilot-scale study produced struvite with smaller contaminant concentrations, at 

3.37% of the total weight (Mavinic et al. 2007).  The pilot-scale study performed at the 

Penticton facility demonstrated the lowest contaminant concentrations at 0.05% total 

weight (Britton et al. 2005).   

Environmental Benefits 

 Struvite fertilizer production and use can slow down the depletion of phosphate 

rock reserves.  Phosphate rock fertilizer use increases at an annual rate of 2.5%, limited 

global reserves cannot keep up with an indefinitely increasing demand (Barrett and 
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Arnall 2011; Rhodes 2013; Mo and Zhang 2013; Molinos-Senante et al. 2011).  

Phosphorus continuously enters wastewater streams from human excretions and recovery 

of the material, as a ready to use fertilizer product, provides a sustainable phosphorus 

fertilizer for agricultural industries (Koch et al. 2003).  Struvite fertilizer use may result 

in reductions for phosphate rock fertilizers causing a conservation of phosphate rock ore 

and resources used to process ores into fertilizer (Ostara 2009).  Decreased phosphate 

rock fertilizer demands would mean conservation of water and energy used for ore 

mining and processing along with subsequent reductions in greenhouse gas emissions 

(Mo and Zhang 2013; Ostara 2009).  Substituting 475 tons annually of phosphate rock 

fertilizer for struvite fertilizer can reduce greenhouse gas emissions by 4000 tons (Ostara 

2009).  It requires less energy, about 1/7th less, to produce struvite fertilizers versus 

phosphate rock fertilizers (Ostara 2012). 

 Unlike many phosphate rock fertilizers, struvite is not soluble in water (Molinos-

Senante et al. 2011).  The lack of solubility greatly reduces runoff from agricultural fields 

into nearby surface waters, thereby reducing eutrophication incidences (Molinos-Senante 

et al. 2011; Hao et al. 2013; De-Bashan and Bashan 2004).  Struvite recovery at 

wastewater treatment plants reduces phosphorus concentrations in produced biosolids, 

bringing it to a level compliant with land application regulations.  Instead of disposing of 

phosphorus rich biosolids at finite landfill sites, the material could be beneficially reused 

(Molinos-Senante et al. 2011; De-Bashan and Bashan 2004). 

Functionality of Product 

 The properties of struvite, insolubility and slow-release, allows it to be used as a 

high-grade slow-release agriculture fertilizer (Molinos-Senante et al. 2011; Hao et al. 

2013; Forrest et al. 2008; Shu et al. 2006; Pastor et al. 2008; Xavier et al. 2014; Uysal et 

al. 2010).  The slow release of phosphorus nutrients from struvite, in comparison to 

release rates of phosphate rock fertilizers, allow for longer contact time with plants 

providing more efficient delivery of phosphorus (Shu et al. 2006; Barak and Stafford 

2006).  Insolubility properties further extend contact times between fertilizer and plant 

roots as nutrients are not washed away with watering or rain (Shu et al. 2006).  A 

reduction in fertilizer application volume to agriculture fields for struvite fertilizer could 
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be observed, due to increased nutrient delivery efficiencies and reduction in material 

losses (Uysal et al. 2010; Barak and Stafford 2006; Bhuiyan et al. 2008; Munch and Barr 

2001).  Struvite also has less trace element composition, preventing soil degradation and 

ensuring food crop safety through reduced fertilizer contaminant additions (Bhuiyan et al. 

2008; Mavinic et al. 2007; Britton et al. 2005; Muster et al. 2013; Forrest et al. 2008).  

With a nutrient composition of 9.8% magnesium, 7.3% ammonium and 38.8% phosphate 

struvite provides a variety of nutrients essential for plant growth (Mohajit et al. 1989).  

Nitrogen (N), phosphorus (P) and potassium (K) are the major macronutrients involved in 

plant development, magnesium is also important for development as a micronutrient and 

is needed on a smaller scale.  In some instances, due to soil composition, magnesium 

fertilizer additions are required along with NPK for optimal plant growth, in these 

situations the benefits increase for struvite fertilizer as it already contains magnesium, 

phosphorus and nitrogen (Munch and Barr 2001). 

Potential Production Capabilities 

 Wastewater treatment plants throughout the world can produce a combined three 

megatons (three million metric tons) of phosphorus annually with struvite precipitation 

technologies (Childers et al. 2011; Dana Cordell, Drangert, and White 2009; Koppelaar 

and Weikard 2013; De-Bashan and Bashan 2004; Bradford-Hartke, Lant, and Leslie 

2012; Shu et al. 2006).  Pilot-scale testing supports this recovery estimation by 

recovering 90% of ortho-phosphate in domestic wastewater through struvite precipitation 

harvesting methods (Koch et al. 2003).  These recovery rates will increase as human 

populations grow; for every additional one billion people excrement rates will add 

another 0.38 million tons of phosphorus to wastewater treatment plants (Shu et al. 2006).  

As of May 2015 the world population level of 7.3 billion people excretes enough 

phosphorus, if recovered, would correlate to 3.114 megatons of struvite fertilizer 

produced annually.  Shown in Table 8 is the breakdown of phosphorus recovery rates for 

an increasing global human population.  Beginning with 6 billion people and a 

phosphorus recovery potential of 2.62 megatons, 7 billion people provide enough 

resources to recover 3 megatons, 3.38 megatons can be recovered from a population of 8 

billion, 3.76 megatons from 9 billion people, 4.14 megatons from 10 billion people and 
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4.52 megatons recoverable phosphorus from the 11 billion people predicted to be living 

on earth by 2100 (Andreev et al. 2013). 

TABLE 8.  HUMAN POPULATION INCREASES INCREASE AVAILABLE PHOSPHORUS IN 

WASTEWATER TO BE RECOVERED, ADAPTED FROM TABLE IN (Shu et al. 2006). 

Human Population 

(billion) 

Recovered P2O5 

(megaton) 

6 2.62 

7 3 

8 3.38 

9 3.76 

10 4.14 

11 4.52 

Conclusion 

 Current phosphorus removal systems are comprised of chemical precipitation 

techniques and EBPR treatment methods (Acelas et al. 2014; Bhuiyan, Mavinic, and 

Koch 2008; Shu et al. 2006).  Chemical precipitation involves adding ferrous elements to 

wastewater to combine with the dissolved phosphorus.  The chemically precipitated 

material adds to the volume of solids in the wastewater treatment system and is removed 

during solids treatment processes.  Biosolids with phosphorus and ferrous elements do 

not degrade easily in the natural environment and disposal is often restricted to landfill 

deposition (Shu et al. 2006; Uysal et al. 2010).  EBPR systems bind phosphorus to 

biosolids through microbial activity in secondary treatment, however phosphorus is re-

released into liquid form during anaerobic digestion (Acelas et al. 2014).  Phosphorus 

rich liquid from anaerobic digesters cycle back through the entire treatment facility as 

reject water (Liao et al. 2003; Munch and Barr 2001; Xavier et al. 2014; Pastor et al. 

2008). 

 Utilization of struvite precipitation at wastewater treatment facilities instead of 

chemical precipitation and combined with EBPR systems for phosphorus removal 
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recovers phosphorus in a solid form separate from biosolids production and can be used 

as a fertilizer product. 

Sustainable Phosphorus Future 

 Recovering phosphorus from domestic wastewater could supply three megatons 

of phosphate fertilizer annually, however this production alone cannot support current 

annual global needs of 25 Mt (Bradford-Hartke et al. 2012; Cordell and White 2013).  

Despite the inability of struvite fertilizer to fulfill global demands, it is important to 

invest in struvite precipitation treatments at wastewater treatment facilities.  The quality 

of phosphate rock ore used for fertilizers is degrading as natural reserves are rapidly 

depleted; the high-grade ore will be consumed leaving lower grade material for future 

needs (Sverdrup and Ragnarsdottir 2011).  Low quality ore increases processing costs 

due to higher contaminant concentrations.  As phosphate ore reserves dwindle a scarcity 

develops, further increasing phosphate fertilizer prices.  Even with technological 

advancements in ore processing and mining operations, the future is presented with a 

shortage of phosphorus that is essential for food production (Cordell and White 2013).  

As previously mentioned, struvite precipitation from domestic wastewater cannot 

fulfill the entirety of global demands, but combined with other reuse measures and 

production and use efficiency improvements of phosphate fertilizers, struvite can assist 

with creating a sustainable phosphorus future.  The graph in Figure 16 visually 

demonstrates a possible sustainable future for phosphorus, with phosphorus recovery and 

reuse from human excreta by employing technologies such as struvite precipitation as one 

of the components.  Phosphorus supplies can be augmented and substituted with material 

recovered from human excreta in domestic wastewater, animal manures, crop residues 

and food wastes.  Decreases in global consumption as well as increased efficiency in 

agriculture, food production, and mining and fertilizer production will also be necessary 

to ensure phosphorus resources for future generations. 
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FIGURE 16.  PROJECTED GLOBAL PHOSPHORUS DEMANDS WITH SUGGESTED SOURCE 

DIVERSIFICATION AND EFFICIENCY IMPROVEMENT TO GENERATE A SUSTAINABLE 

FUTURE FOR PHOSPHORUS, TAKEN FROM (Cordell and White 2013). 
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