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Cooperation in an evolutionary prisoner’s dilemma on networks with degree-degree correlations
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We study the effects of degree-degree correlations on the success of cooperation in an evolutionary prison-
er’s dilemma played on a random network. When degree-degree correlations are not present, the standardized
variance of the network’s degree distribution has been shown to be an accurate analytical measure of network
heterogeneity that can be used to predict the success of cooperation. In this paper, we use a local-mechanism
interpretation of standardized variance to give a generalization to graphs with degree-degree correlations. Two
distinct mechanisms are shown to influence cooperation levels on these types of networks. The first is an
intrinsic measurement of base-line heterogeneity coming from the network’s degree distribution. The second is
the increase in heterogeneity coming from the degree-degree correlations present in the network. A strong
linear relationship is found between these two parameters and the average cooperation level in an evolutionary
prisoner’s dilemma on a network.

DOI: 10.1103/PhysRevE.80.026105 PACS number�s�: 89.75.Hc, 87.23.Kg, 02.50.Le, 89.75.Fb

I. INTRODUCTION

Agent-based game theoretical methods have become
widely used tools in biology, social sciences, physics, and
mathematics �1�. Such models are particularly appropriate in
studying the dynamics of conflict and cooperation between
individuals, making them especially relevant in all areas of
biology, where an agent’s fitness often depends on others
with whom he interacts �2�. Recently, evolutionary models
that deviate from traditional well-mixed population assump-
tions have become particularly prominent because of their
ability to exhibit realistic behavior that is unsustainable in
the well-mixed setting. The paradigm here is the prisoner’s
dilemma �PD�, which is widely identified in many real-world
situations �1–6�, but where traditional game theoretical pre-
dictions often fail to accord with empirical behavior.

In the simplest form of the two-player PD, agents inde-
pendently choose cooperation �C� or defection �D�. Payoffs
are associated with the four possible game states according
to the symmetric matrix �where payoffs go to the row player�

C D

C R S

D T P

. �1�

Payoffs satisfy T�R� P�S, from which it follows that a
rational self-interested agent has no motivation to play C: the
payoffs for the D strategy strictly dominate those for the C
strategy regardless of the coplayer’s choice. The result is a
Nash equilibrium where both players defect, the dilemma
arising from the inefficiency of this equilibrium: both players
would fare better with mutual cooperation �4�.

Following the common practice begun in �7�, payoffs are
normalized by taking R=1 and P=S=0, so that the game
depends only on the temptation to defect T=b�1. In the
evolutionary version of the PD, interactions are repeated and
agents update strategies based on their relative success. In
the well-studied case of a fully mixed population, with strat-
egy updating determined by the replicator dynamics, coop-
eration is quickly eradicated from the population �4�. Conse-

quently, the dilemma persists and an explanation of how and
why cooperation emerges in nature remains a fundamental
cross-disciplinary problem. It is worth noting here that the
repeated PD further requires that payoffs satisfy T+S�2R.
Without this additional condition, full cooperation is no
longer Pareto optimal as players can collectively obtain
higher payoffs by alternating their individual strategies be-
tween C and D. With normalizations, the added condition is
1�b�2.

Dropping the assumption of a well-mixed population,
considerable attention has been focused on the discrete rep-
licator dynamics of an evolutionary PD played on a network
�7–25�. Vertices represent agents and edges represent contact
information. Strategy updating depends on the success of an
individual relative only to the success of that individual’s
neighborhood of contacts as specified by the network.

In this framework, the evolutionary dynamics are strik-
ingly different. Nowak and May �7� famously showed that
cooperation was sustainable on a lattice for certain game
parameter values, paving the way for wide ranging investi-
gations of the particular role played by the network topology
on cooperation levels �7–15,22,23�. Recently, the sizable im-
pact of scale-free networks on cooperation phenomena has
been widely reported, and it has been shown that these net-
works are particularly hospitable to cooperators. In fact, co-
operation can become the dominant strategy on a scale-free
network even when the temptation to defect is very high
�9,11�. In light of these findings, network heterogeneity has
emerged as a key factor in the potential success of coopera-
tors. Heterogeneity is widely understood to mean that the
network contains considerable diversity in the numbers of
agents’ contacts, resulting in a degree distribution that is sig-
nificantly “spread out” and includes large vertices or “hubs.”
Recent work has shown that mitigating the role played by
these large vertices, through either payoff normalization �16�
or participation costs �15�, can dramatically reduce the suc-
cess of cooperators, solidifying the notion of heterogeneity
as a necessary ingredient in network cooperation. Even no-
tions of heterogeneity that do not pertain to the static net-
work itself have been shown effective in promoting coopera-
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tion in the PD. Recent studies include the roles played by
social diversity �17,18�, coevolution in the form of the ability
of successful agents to reshape contact neighborhoods �19�,
and different teaching capacities among distinguished agents
in the network �20�. For a survey of the research in the field,
see �8�.

In �21�, the authors introduced a refined measure of net-
work heterogeneity called standardized variance, denoted �st.
An advantage of �st is that it gives a quantification of net-
work heterogeneity that allows for comparisons of networks
with different degree distributions and even different average
degrees. Moreover, standardized variance has a convenient
description in terms of the generating functions associated
with the network’s degree distribution. Through generating
functions, �st interprets heterogeneity as a relationship be-
tween the number of connections of an average agent in the
network and the number of connections of an average neigh-
bor in the network. This quantification of heterogeneity gives
additional insight into the mechanisms by which the network
topology promotes cooperation. Focusing on the relative size
difference between an average neighbor and an average
agent uncovers a linear relationship between the average co-
operation level in the population and a functional form of �st
that is closely related to the network’s epidemic threshold
�26,27�. Once heterogeneity is quantified, it can be used to
accurately predict cooperation levels on the networks in
question.

The results in �21�, however, hold on networks with speci-
fied degree distributions, but which are otherwise entirely
random. In particular, the probability that a vertex of degree
k has a neighbor of degree j is independent of k. It has been
shown that many real-world networks fail to exhibit such
independence �28�. In particular, correlations between the de-
grees of vertices at either end of an edge in the network are
present in the widely studied cases of networks with power-
law degree distributions generated by growth and preferen-
tial attachment �29–31�.

In this paper, we consider an analog of standardized vari-
ance for networks with degree-degree correlations, including
those generated by growth and preferential attachment.
Building on the methods in �21�, we develop a generalized
notion of heterogeneity called correlated standardized vari-
ance, denoted �c, and apply it to the study of cooperation
phenomena. If two networks have the same degree distribu-
tion, they might appear as equally heterogeneous. However,
�c allows one to quantify the additional heterogeneity present
in a correlated network coming from degree-degree correla-
tions. That such correlations can have considerable impact
on cooperation has been seen in �9� and is further evident in
what follows. Moreover, it is shown that cooperation de-
pends on correlated standardized variance in a way analo-
gous to the results in �21�. The methods used facilitate com-
parisons across networks with varied degree distributions,
heterogeneity, and average degrees. Finally, we also isolate
the contributions of both �st and �c to the success of coop-
eration on a network, helping to quantify and to clarify the
relationship between these network parameters, and in par-
ticular, helping to isolate the specific role played by degree-
degree correlations in the evolutionary dynamics on the net-
work.

II. GENERATING FUNCTIONS AND NETWORK
HETEROGENEITY

A network N is an undirected graph of vertices connected
by edges, in which neither loops nor multiple edges are al-
lowed. Let X be the random variable that takes values in the
set of possible degrees of vertices in the network. Following
�32�, let pk be the probability that a random vertex in the
network has degree k; i.e., pk is the probability that X takes
the value k. The probability generating function for the dis-
tribution of X is then given by

G�x� = �
k�0

pkx
k.

It follows that G�1�=1 and that G��1�= �k� is the average
degree of the vertices in the network.

While G�x� captures the degree distribution of the net-
work, all other specific contact information is ignored. Con-
sequently, G�x� can be thought of as representing a network
chosen uniformly at random from the collection of all net-
works sharing the specified degree distribution.

Next, consider the distribution of degrees of vertices
reached by choosing a random edge in the network. Let Y
denote the associated random variable. A random edge is k
times more likely to lead to a vertex of degree k than a vertex
of degree of 1. The probability generating function of de-
grees of vertices reached along randomly chosen edges is
therefore given by

T�x� =

�
k�0

kpkx
k

�
k�0

kpk
=

1

G��1� �
k�0

kpkx
k =

xG��x�
G��1�

. �2�

Finally, the notion of a randomly chosen neighbor in the
network is defined as follows. First, a vertex is selected at
random from the network followed by a randomly chosen
edge emanating from the vertex. The degree distribution of
vertices reached in this manner is the distribution of a ran-
domly chosen neighbor. If the random variables X and Y are
independent, then the distribution of randomly chosen neigh-
bors is the same as the distribution of Y and so has a prob-
ability generating function T�x�. In this case the average de-
gree of a random neighbor is given by T��1�.

Following �21�, the variance of the degree distribution is a
natural first measure of network heterogeneity,

var�X� = �k2� − �k�2,

where �k� denotes the expected value of X and �k2� denotes
the expected value of X2. Since

�k� = �
k

kpk = G��1� ,

�k2� = �
k

k2pk = G��1�T��1� ,

it follows that

var�X� = G��1�T��1� − G��1�2 = G��1��T��1� − G��1�� .

Using the interpretations of T��1� and G��1� given above, the
variance is the difference between the sizes of a randomly
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chosen neighbor and a randomly chosen vertex in the net-
work, multiplied by the average network degree. In order to
obtain a unitless measure of network heterogeneity, the vari-
ance is normalized by G��1�2 to give the uncorrelated stan-
dardized variance

�st =
T��1� − G��1�

G��1�
. �3�

In the context of a particular network, therefore, �st is the
difference between the average numbers of contacts of a ran-
domly chosen neighbor and of contacts of a randomly chosen
vertex, relative to the average number of contacts of a ran-
domly chosen vertex. In �21�, �st and its variants were used
to study uncorrelated network heterogeneity and its effects
on cooperation phenomena in an evolutionary PD.

Next, the assumption that X and Y are independent ran-
dom variables is dropped. Consequently, T�x� no longer
needs to be the probability generating function for the distri-
bution of degrees of randomly chosen neighbors in the net-
work. Indeed, if the degree of a vertex reached along an edge
emanating from a degree k vertex depends on k, we say that
the network exhibits degree-degree correlations. However,
Eq. �3� suggests a generalization of �st in the presence of
such correlations provided that the actual average degree of a
randomly chosen neighbor can be computed.

Consider, therefore, a network exhibiting degree-degree
correlations. The probability that an edge leads from a degree
k vertex to a degree j vertex is now determined by the con-
ditional probability distribution �qkj	. The network’s nearest-
neighbor function �23,26,33� is given by

knn�k� = �
j

jqkj . �4�

The probability of choosing a vertex of degree k followed by
an edge leading to a vertex of degree j is

pkqkj . �5�

Write ERN for the average degree of a randomly chosen
neighbor in the �correlated� network. Summing over the net-
work degree by degree, and using the probabilities in Eq. �5�,
gives

ERN = �
k,j

jpkqkj = �
k

pkknn�k� . �6�

Therefore, the average degree of a neighbor is the weighted
average of the nearest-neighbor function knn, with the value
knn�k� weighted by pk. In the absence of degree-degree cor-
relations, pkqkj =

jpj

�k� , and it follows that

ERN = knn�k� = T��1� .

A correlated extension of standardized variance is now
possible. Define �c to be the difference between the average
degrees of a randomly chosen neighbor and randomly chosen
vertex in the network, normalized by average network de-
gree. It follows that

�c =
ERN − �k�

�k�
. �7�

On an uncorrelated network, such as the one constructed
from a degree distribution using the configuration model
�34�, Eq. �7� reduces to Eq. �3�, and correlated standardized
variance agrees with uncorrelated standardized variance: �c
=�st.

It is worth noting that ERN, knn, and �c can be understood
in the context of the generating function formalism. With
�pk	 and �qjk	 as above, one can consider a generating func-
tion in two variables as follows:

F�x,y� = �
k,j�0

pkqjkx
kyj .

Clearly F�x ,1�=G�x�, the probability generating function for
the degree distribution as given above. On the other hand,
the probability generating function for the degrees of neigh-
bors of a randomly chosen vertex is given by F�1,y�. If the
degree random variable X, and the neighbor random variable
Y, are independent, then F�1,y�=T�y� and F�x ,y�
=G�x�T�y�. If, on the other hand, X and Y are not indepen-
dent, then the probability generation function F�1,y� need
not agree with T�y�. One can check easily that

ERN = �
k

pkknn�k� = Fy�1,1� ,

where Fy is the partial derivative of F�x ,y� with respect to y.

III. NETWORKS AND EVOLUTIONARY GAMES

Consider an evolutionary PD with payoffs as in Eq. �1�.
From the perspective of a defector, the cost of mutual coop-
eration is T−R. Additionally, the benefit paid out by a coop-
erator to a defector is R−S. Therefore, the PD has a cost-to-
benefit ratio given by T−R

R−S . When game payoffs are
normalized as in the discussion following Eq. �1�, so that
P=S=0, R=1, and T=b, it follows that the cost-to-benefit
ratio is r, with b=1+r and 0�r�1.

Now suppose that agents occupy the vertices of the net-
work. A single round of play consists of each agent engaging
in a two-player PD with all of his immediate neighbors. Dur-
ing a round of play, agents maintain a pure strategy, exclu-
sively playing one of either cooperate �C� or defect �D�, in
all interactions. Payoffs from each instance of the game ac-
cumulate through the round.

Following a round of play, the evolution is implemented
using a discrete analog of the replicator dynamics �4,8�. Sup-
pose that vertex v has accumulated a payoff of Tv during the
round. Vertex v then updates his strategy by randomly choos-
ing one from among all his neighbors for a payoff compari-
son. If vertex w with accumulated payoff Tw is chosen, then
v adopts the strategy of w with probability Pv→w, where

Pv→w =
max�0,Tw − Tv	

bkmax
�8�

and where kmax is the larger of the degrees of the vertices v
and w.

Equation �8� is meant to mimic natural selection, where fit
strategies are more likely to spread while less fit strategies
die out. This widely studied updating rule �7,9,12,13,22,23�
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models strong selection, where fitness in the form of game
payoffs is the principal driver of the evolution. For alterna-
tive models, including weak selection, see �35,36�.

Simulations on a fixed network are carried out as follows.
Define a series to be 104 rounds of playing and updating. The
series mean is then the average fraction of cooperators over
the last 1000 rounds of the series. One hundred series are
run, each starting from a random initial configuration where
the probability of an agent cooperating is 0.5. The equilib-
rium cooperation level on the network is taken to be the
average of the 100 series means. For each network, the equi-
librium cooperation level is computed for all values corre-
sponding to a proper repeated PD, 1.05�b�2, in the incre-
ment of 0.05.

In order to study the effects of network properties on evo-
lutionary games, a diverse sample of networks—with vary-
ing heterogeneity and the presence and the absence of
correlations—is required. To that end, consider a single pa-
rameter family of networks generated by an algorithm pro-
posed in �37�. The algorithm interpolates between the
Barabási-Albert �BA� model �30,31� and the Erdős-Rényi
�ER� random graphs �38–40�. The BA model gives rise to
heterogeneous networks, while the ER random graphs are
essentially homogeneous. Each member of this family of net-
works will have N vertices, average degree of 2m, and will
be determined by a single scalable parameter � between 0
and 1.

The BA-ER family of networks is constructed by starting
from a complete graph on n0 vertices. A new vertex is chosen
from the remaining set of all N−n0 unconnected vertices.
The new vertex has m edges to attach in the following way:
with probability �, the vertex connects to any of the existing
N−1 network vertices with a uniform probability. With prob-
ability 1−�, the edge attaches to an existing network vertex
with probability proportional to the current degree of the
vertex �i.e., by preferential attachment�. The procedure is re-
peated m times for a particular vertex; that is, once for each
edge.

When �=0, the Barabási-Albert growth and preferential
attachment algorithm of �30� is obtained, and the resulting
network has a degree distribution that follows a power law,
with pk
 1

k3 . When �=1, an Erdős-Rényi random network
with Poisson degree distribution is generated. For 0���1,
the graph is a hybrid of the two with intermediate heteroge-
neity.

Using this algorithm, networks with 104 vertices are
generated. For each choice of parameters 2m �average
degree� and �, with 2m� �4,6	 and �
� �0.00,0.05,0.10,0.20,0.30,0.40,0.60,1.00	, four distinct
networks are generated and labeled a, b, c, and d, respec-
tively, from four independent instances of the algorithm. This
gives a total of 64 graphs, denoted B2m,�,l, with 2m and � as
above, and l� �a ,b ,c ,d	.

Next, each B2m,�,l is distilled down to its degree distribu-
tion by throwing away all other specific contact information.
A new graph is then reconstructed from the degree distribu-
tion using the configuration model of �34�. The result is a
random network consistent with the specified degree distri-
bution. This generates 64 additional networks denoted
CB2m,�,l with 2m, �, and l as above.

The final result, for each choice of parameter triple
2m ,� , l, is a pair of networks B2m,�,l and CB2m,�,l. The
former has potential degree-degree correlations introduced
by the growth and the preferential attachment component of
the generating algorithm, while the latter is maximally ran-
dom aside from its fixed degree distribution and has the
property that correlations between vertex degrees at either
end of a random edge are negligible. As a result, for ��1, a
network B2m,�,l will exhibit a nonconstant nearest-neighbor
function knn and a correlated standard variance �c larger than
the uncorrelated �st of its configuration model pair CB2m,�,l
�whose knn function is essentially constant�. This is summa-
rized in Fig. 1.

Simulation results are given in Fig. 2 for the evolutionary
PD described above on a sample of networks under consid-
eration. As expected, cooperation is more successful on het-
erogeneous networks, and cooperation levels decrease more
rapidly as a function of the game parameter b on homoge-
neous networks, which is consistent with results in
�8,9,11–13,22�. Furthermore, cooperation is clearly enhanced
by the presence of degree-degree correlations: cooperators
perform better on the correlated realization of a fixed degree
distribution than on the uncorrelated version of that same
distribution, a phenomenon noticed in �9�.

For example, consider the graphs B4,0,a and CB4,0,a in Fig.
2�a�. Both share the same degree distribution and are there-
fore equally heterogeneous as measured by Eq. �3�: �st
=2.80. However, cooperators are significantly more success-
ful on the B4,0,a network with degree-degree correlations.
These correlations are evident in �c: using Eq. �7�, B4,0,a has
�c=3.375, while B4,0,a has �c=�st=2.80. Similarly, Fig. 2�b�
shows cooperators on networks with degree-degree correla-
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FIG. 1. �Color online� Plot of �c �squares� and �st �circles� for
each value of �. Networks with an average degree of 4 are shown in
�a� and those with an average degree of 6 are shown in �b�. Each
data point represents an average over all four networks with fixed �.
Insets show, in each case, the difference �c−�st as a function of �.
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tions outperforming cooperators on uncorrelated networks.
Note that even small-scale correlations give a notable boost
to cooperators. For instance, considering B6,0.2,a and CB6,0.2,a,
�c=0.902 while �st=0.821, for a difference of only 0.081.
However, Fig. 2�b� clearly shows that cooperation is more
successful on B6,0.2,a.

To obtain a single numerical measure of the success of
cooperators in the evolutionary PD on a network, coopera-
tion levels are averaged over the game parameters �21�. Spe-
cifically, write b=1+r, where r is the cost-to-benefit ratio of
cooperation and 0.05�r�1. Let cN,r be the equilibrium co-
operation level in the evolutionary PD on N with game pa-
rameter b=1+r. The global average cooperation c̄N on N is
then defined to be the weighted average

c̄N =

�
0.05�r�1

rcN,r

�
0.05�r�1

r
,

with sums taken over 0.05�r�1 in the increment of 0.05.
Weighing cN,r by r amounts to rewarding a network more
when it can sustain cooperation despite hosting a game that
is inherently hostile to cooperators. Further, the cost-to-
benefit ratio is a natural choice of weight since games that
differ by a constant factor in the payoffs will share the same
cost-to-benefit ratio r. Moreover, regardless of the choice of
payoffs consistent with the repeated PD, the cost-to-benefit
ratio gives a natural parameter in the interval �0,1� associated
with the game. However, r is simply a choice of weight, and
alternative choices such as b, or no weight at all, give similar
results in what follows as well as in �21�. We note that the
regression line in �21� is most natural, however, in the sense

that the absolute values of the coefficients in the linear re-
gression are closest to 1 when r is used as the weight.

Before proceeding, we recall previous studies on the role
played by degree-degree correlations in the evolutionary PD.
In �41�, this question was addressed in the context of scale-
free networks. The starting point in that study was a BA
network with a small Newman correlation coefficient �NCC�
�42�. From there, the network was subjected to a reshuffling
algorithm that decreased �increased� the NCC by linking big
vertices to other small �big� vertices, and the effects on co-
operation were documented. However, as pointed out in �23�
and shown above, BA networks are not uncorrelated despite
having small NCC �the nearest-neighbor function knn�k� is
not constant�. Thus, the reshuffling algorithm adds degree-
degree correlations to an already correlated network, making
it difficult to isolate the effects of correlations on coopera-
tion. This issue was taken up in �23� and further studied there
in the context of networks with monotonic nearest-neighbor
functions, but the question of correlation effects in networks
generated by growth and preferential attachment mecha-
nisms was left open. In the following, we clarify the role
played by degree-degree correlations in this case and, more
generally, by quantifying their effect on network heterogene-
ity and interpreting that role as a local mechanism involving
agents and their neighbors as in �21�.

IV. RESULTS AND DISCUSSION

Each network N has an associated ordered pair ��c,N , c̄N�.
In Fig. 3�a� �Fig. 3�b�� these ordered pairs are plotted for the
CB2m,�,l �B2m,�,l� networks, for all possible triples 2m ,� , l.
Both plots show a strong positive correlation between �c,N
and c̄N: increased heterogeneity, quantified by �c, leads to an
increased cooperation �43�. However, when the two plots are
combined in Fig. 3�c�, cooperation levels seen on correlated
networks are significantly higher than those expected on un-
correlated networks with the same heterogeneity. This dis-
crepancy is explored below.

The precise relationship between average cooperation and
standardized variance �st in the case of the uncorrelated
CB2m,� networks �Fig. 3�a�� was determined in �21,44�. Re-
call that an uncorrelated network’s epidemic threshold
�26,27,33� is defined to be

� =
�k�
�k2�

.

Intuitively, an epidemic outbreak of a disease is possible if
the probability the disease propagates along a contact edge
from an infected agent to a susceptible agent is larger than �.
Equation �2� implies that �= 1

T��1� . Let �st= �k��. That is, �st

is the network’s epidemic threshold scaled by its average
degree. It follows from Eq. �3� that

�st =
G��1�
T��1�

=
1

1 + �st
. �9�

This connection between evolutionary games on networks
and epidemic outbreaks has been discussed, in different con-
texts, in �45,46�.
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FIG. 2. �Color online� Equilibrium cooperation level as a func-
tion of the game parameter b=1+r. Panel �a� shows results on four
networks with an average degree of 4: B4,0.0,a and B4,0.2,a have �
=0.0 and �=0.2, respectively, and have degree-degree correlations
�denoted �=0.0c and �=0.2c in the legend�. Conversely, CB4,0.0,a

and CB4,0.2,a also have �=0.0 and �=0.2 but are uncorrelated �de-
noted �=0.0uc and �=0.2uc in the legend�. Panel �b� gives results
for the corresponding networks with an average degree of 6.
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Figure 4 �circles� show c̄N plotted as a function of �st for
the uncorrelated CB2m,� networks and recovers the results of
�21�: there is a strong linear correlation between global av-
erage cooperation and �st. Using an analogy whereby coop-
eration �or defection� propagates on the network like a dis-
ease, and considering that the susceptibility of an agent
depends on his fitness relative to the fitness of his neighbor
as in Eq. �8�, the dependence of cooperation on the expres-
sion in Eq. �9� is intuitive. The network’s epidemic threshold

� is the reciprocal of average degree of a random neighbor
and, when scaled by the average degree of a random vertex
�k�, predicts the success of cooperation on the network.

It is natural, therefore, to consider the analogous situation
on the correlated B2m,� networks. Replacing �st and T��1�
with their correlated counterparts �c and ERN, define

�c =
�k�
ERN

=
1

1 + �c
. �10�

Of course, if the network is uncorrelated then �c=�st.
Figure 4 �squares� shows a plot of average cooperation as a
function of �c for the correlated B2m,� networks. Just as in
the uncorrelated case, there is a linear dependence of average
cooperation on �c. The fit of the data to the correlated re-
gression line is quite strong with r2=0.982 �compared with
r2=0.985 for the regression on the uncorrelated network
data�.

Given the interpretation of
�st

�k� as the epidemic threshold
of an uncorrelated random network, and the similarity in the
behavior of the evolutionary PD dynamics in the uncorre-
lated and correlated cases,

�c

�k� can be thought of as a candi-
date for a generalized notion of an epidemic threshold of a
correlated network.

Figure 4 also reveals more clearly the dissonance between
the correlated and the uncorrelated cases seen in Fig. 3�c�.
While average cooperation is indeed linear in �c ��st� on the
correlated �uncorrelated� networks, the data sets for the cor-
related networks and the uncorrelated networks lie on dis-
tinct regression lines.

For large �c, and therefore small �c, the average coopera-
tion levels seen on the two families of networks are quite
similar. These networks correspond to larger values of � and
are closer to the ER random graph model where degree-
degree correlations are minimal. Therefore, the effects of
degree-degree correlations on cooperation on these networks
are small. Small values of �c, and therefore large �c, corre-
spond to networks with smaller � for which the preferential
attachment algorithm of the BA model is prominent. This
leads to significant degree-degree correlations and a disassor-
tative network where smaller vertices tend to have larger
neighbors. While �c measures the increased heterogeneity,
interpreted as size difference between an average vertex and
his neighbor, due to these correlations, Fig. 4 shows that the
correlations provide an additional enhancement to coopera-
tion beyond that expected if �c �and therefore network het-
erogeneity as defined above� were the sole indicator of net-
work cooperation. Network heterogeneity coming from
degree-degree correlations has a disproportionate effect on
network cooperation.

Consider, therefore, two distinct mechanisms contributing
to the success of cooperation on a network. The first is a
functional form of the standardized variance of the degree
distribution, namely, �st=

G��1�
T��1� and provides a base-line level

of success for cooperation on a network �21�. The second is
the increase in network heterogeneity contributed by degree-
degree correlations, quantified by 	=�st−�c= G��1�

T��1� − G��1�
ERN

,
and provides a correction to this base line.
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FIG. 3. �Color online� Cooperation versus �c in �a� the uncorre-
lated and the �b� correlated cases. Panel �c� shows �a� and �b�
simultaneously.
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Figure 5 shows the full data set, as well as the plane
resulting from a two-variable linear regression on 	 and �st.
The regression equation is

c̄ = 0.982 + 3.006	 − 1.088�st. �11�

The uncorrelated data lies along the original regression
line given in �21� and shown in Fig. 4 �circles� and is ob-
tained by taking 	=0 in Eq. �11�. The line is pictured in Fig.
5 as well. Cooperation is at its lowest for this data set, af-
firming the notion of �st giving a base line for network co-
operation.

For 	�0, the marginal benefit to cooperators coming
from degree-degree correlations moves the cooperation level
up along the plane as determined by Eq. �11�. The regression
line fitting the squares in Fig. 4 is also visible in Fig. 5 and
lies on the plane given in Eq. �11�. The fit of the data set to
the regression plane in Eq. �11� is excellent, with r2=0.979.

A closer look at 	 provides additional perspective

	 = �st − �c =
G��1�
T��1�

−
G��1�
ERN

=
G��1��ERN − T��1��

T��1�ERN

=
G��1�
ERN

�ERN − T��1�
T��1� � .

That is, 	, the contribution of degree-degree correlations
to the heterogeneity of the network, can be thought of as the
product of two terms. The first term is intrinsic to the net-
work: the ratio of average degree of a randomly chosen ver-
tex to average degree of a randomly chosen neighbor. The

second term,
ERN−T��1�

T��1� , is extrinsic. It measures the distance,
in the sense of average degree of a neighbor, between the
network and a generic random network sharing the same
degree distribution �cf. Eq. �3��. The generic random network
case is achieved, for example, using the configuration model,
where ERN=T��1�. Figure 5 shows that 	 positively contrib-
utes to the success of cooperation on the network and Eq.
�11� quantifies that contribution.

V. CONCLUSIONS

In this paper, we have generalized methods used in �21� to
give analytical measures of heterogeneity for networks with
degree-degree correlations such as Barabási-Albert scale-free
networks generated via growth and preferential attachment.
Using these methods, we studied an evolutionary prisoner’s
dilemma on correlated networks and found two appropriate
parameters that measure network heterogeneity.

The first parameter is a base-line heterogeneity measure
due to the underlying degree distribution of the network.
This parameter is given by a functional form of standardized
variance and is related to the epidemic threshold in the un-
correlated network case. This could give insight into an ap-
propriate measure of the epidemic threshold on correlated
networks. The second parameter is a measure of the added
contribution to network heterogeneity coming from degree-
degree correlations, as compared to a generic uncorrelated
network with the same underlying degree distribution.

Extending the results in �21�, we have shown the exis-
tence of a strong linear correlation between these two param-
eters and the average cooperation level in an evolutionary
prisoner’s dilemma on a network. These results help to both
quantify and clarify the influence of degree-degree correla-
tions on cooperation phenomena in an evolutionary PD on a
network.
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