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Evolution of cooperation through the heterogeneity of random networks

Stephen Devlin' and Thomas Treloar”
"Mathematics Department, University of San Francisco2130 Fulton Street, San Francisco, California 94117, USA
>Mathematics Department, Hillsdale College33 East College Street, Hillsdale, Michigan 49242, USA
(Received 5 August 2008; published 21 January 2009)

We use the standardized variance (v,) of the degree distribution of a random network as an analytic measure
of its heterogeneity. We show that v, accurately predicts, quantitatively, the success of cooperators in an
evolutionary prisoner’s dilemma. Moreover, we show how the generating functional expression for v, suggests
an intrinsic interpretation for the heterogeneity of the network that helps explain local mechanisms through
which cooperators thrive in heterogeneous populations. Finally, we give a simple relationship between vy, the
cooperation level, and the epidemic threshold of a random network that reveals an appealing connection

between epidemic disease models and the evolutionary prisoner’s dilemma.

DOI: 10.1103/PhysRevE.79.016107

I. INTRODUCTION

The versatility of the prisoner’s dilemma (PD) as a rel-
evant paradigm for interdisciplinary problems involving the
study of conflict and cooperation has led to a vast body of
research [1-6]. Indeed, the PD has become a standard tool in
biology, economics, the social sciences, physics, and math-
ematics in which to study cooperation phenomena [1-7]. A
great deal of recent attention has focused on a deepening
understanding, via the evolutionary PD, of how and why
cooperative behavior can emerge, thrive, and even dominate
in certain frameworks despite a clear temptation for indi-
viduals to maximize their own fitness by acting selfishly
[2-5,7].

In its simplest form, the PD pits two agents against each
other. Agents simultaneously choose between two strategies:
C for cooperate and D for defect. The essence of the game is
captured in the payoffs associated with the four possible
states. Setting b>1>0=a, PD payoffs are distributed ac-
cording to the normalized symmetric matrix (where payoffs
go to the row-player):

C|D

Cl1]a

D|b]|O0
(1)

It is clear from the payoff inequalities that a rational (self-
interested) agent choosing independently has no incentive to
play C. Indeed, the Nash equilibrium predicts that both
agents will defect. The dilemma arises from the inefficiency
of the equilibrium: both players could benefit (i.e., enjoy
higher payoffs than at equilibrium) via mutual cooperation
[3].

The PD has been further studied in the setting of evolu-
tionary replicator dynamics. In this context, a strategy
spreads in a population according to its fitness and the re-
peated interactions between agents are assumed to be random
and well mixed—any agent is equally likely to interact with
any other agent in the population. In such a setting, coopera-
tion vanishes over time and the (evolutionarily stable) equi-
librium rests with all agents defecting [3].

1539-3755/2009/79(1)/016107(8)

016107-1

PACS number(s): 89.75.Hc, 87.23.Kg, 02.50.Le, 89.75.Fb

Abandoning the well-mixed scenario led to important ad-
vances. In the seminal work of Nowak and May [8], agents
playing an evolutionary PD were placed at vertices in a lat-
tice, with interactions limited to neighbors (vertices con-
nected by edges). It was found that a nontrivial population of
cooperators could become evolutionarily stable over some
game parameter values.

This work led to the recognition that agent-agent interac-
tions could be better modeled by introducing topological
constraints on a population in the form of a graph, with ver-
tices representing agents and edges indicating a relationship
along which an interaction can take place. The subsequent
result that spatial structure could drive cooperation in the
evolutionary PD sparked intense study of the effects of var-
ied network topologies on cooperation phenomena.

More recently [9-17], considerable attention has been
given to the (discrete replicator) dynamics of an evolutionary
PD on a network. Of particular interest is the now well-
established result that so-called scale-free distributions
(where the degrees of vertices follow a power-law distribu-
tion) greatly benefit cooperation in the PD, as well as vari-
ants like the snowdrift game. In fact, cooperation can domi-
nate on the network over all parameter values of the game on
certain networks such as the Barbdsi-Albert scale-free net-
work generated via growth and preferential attachment [10].

The distinguishing characteristic of power-law distribu-
tions is that they are “heterogeneous;” the connectivity of
individual agents varies widely across the network [18-20].
Many factors ultimately influence the complex dynamics of
an evolutionary game on such networks, but it is well-
established that heterogeneity in particular enhances the abil-
ity of cooperators to survive and thrive. While progress has
been made in understanding the particulars of these complex
dynamics [9], many questions remain.

This paper studies a quantifiable measure of heterogeneity
that accords well with cooperation phenomena in the sense
that more heterogeneity corresponds to more cooperation in
an evolutionary PD in an explicit and predictable way. Also,
a further explanation as to the mechanisms through which
heterogeneity fosters enhanced cooperation is given. A pri-
mary focus, therefore, is on the influence of the degree dis-
tribution of a network on cooperation phenomena, which is
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addressed using generating functions associated to random
graphs.

A simple, quantifiable measure of heterogeneity on a net-
work with no degree-degree correlations is the standardized
variance (v,). This value is easily computed from the degree
distribution and can be compared across networks with vary-
ing average degree: a particularly nice property not shared by
some alternative measures of heterogeneity [15]. Monte
Carlo simulations are used to confirm that v, is an excellent
predictor of average cooperation (appropriately weighted) in
the evolutionary PD on the network.

Moreover, standardized variance can be interpreted, using
generating functions on random graphs, in terms of the rela-
tionship between the average number of interactions of the
agents in the population and the average number of interac-
tions of neighboring agents in the population. This interpre-
tation gives an intrinsic explanation of those properties that
are critical for enhanced cooperation in a network.

Finally, v,, is shown to be closely related to the network’s
epidemic threshold. A simple and intuitive functional rela-
tionship between average network cooperation in the PD and
the epidemic threshold of the network is given, relating two
important frameworks in the study of complex systems.

II. PRELIMINARIES

A network, N, is an undirected graph consisting of verti-
ces and edges connecting vertices. A network is not permit-
ted loops (edges connecting a vertex to itself), nor multiple
edges (more than one edge connecting any pair of vertices).
The degree of a vertex is defined to be the number of edges
that emanate from that vertex.

Let X be the random variable that assigns to a vertex in
the network the degree of that vertex. Let p, denote the prob-
ability that X takes the value k, i.e., p; is the probability that
a random vertex has degree k, with & in the set of all possible
vertex degrees. The probability generating function for X
(i.e., for the degrees of randomly chosen vertices) is defined
to be

G(x)= X pirt.
k>0

Averaging over the probability distribution gives the average
degree of vertices in a network:

G'(1)= 2 kpy=(k).

k>0

The correspondence between graphs and degree generat-
ing functions is many-to-one: distinct graphs can and do
share the same generating function. In this paper, we con-
sider networks with a fixed generating function, but that are
random in all other respects. That is, given a fixed degree
distribution, the collection of all graphs that share this distri-
bution is considered and networks chosen uniformly at ran-
dom from this collection are studied. Consequently, results
gleaned from generating functions represent an average over
the collection of all random networks sharing that fixed de-
gree distribution [21]. This assumption implies that the net-
works considered are completely determined by their degree
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distribution. There are no correlations between the degrees of
vertices sharing an edge: the probability that a degree j ver-
tex is connected to a degree k vertex is independent of k and
the correlation coefficient of the degrees of vertices at the
ends of edges is zero. It is worth noting that while this inde-
pendence assumption gives a degree-degree correlation coef-
ficient of zero, it is not the case that a correlation coefficient
of zero implies independence.

When a random edge is chosen from the network, it is
more likely to lead to a higher degree vertex. The probability
that a random edge leads to a vertex of degree k is propor-
tional to k. Therefore, if Y is the random variable taking
values in the set of possible degrees of vertices reached along
edges, then the generating function for Y is given by

Siokp*  xG'(x)
T(x) = =——.
Zi=okpr  G'(1)

When a vertex is chosen at random, and then a randomly
chosen edge emanating from that vertex is followed, a neigh-
bor is reached. Making use of the independence assumption
for degree-degree correlations, it follows that the generating
function for the degree of randomly chosen neighbors is also
given by T(x), and the average degree of these neighbors is

S okpr _ (k%)
Zisokpr (k)

It is important to note that the average degree of neighbors is
always greater than or equal to the average degree of the
vertices in the network, with equality only when all vertices
on the network have the same degree. From now on T'(1) is
referred to as the average degree of neighbors in the net-
work. In the following, the configuration model algorithm of
[28] is used to generate random uncorrelated networks con-
sistent with a fixed degree distribution.

T'(1)= 2)

III. NETWORKS AND HETEROGENEITY

Let NV be a network with degree generating function G(x)
associated to the degree random variable X. Consider the
variance of X:

Var[X] = (k%) - (k)?,

where (k) is the expected value of X? and (k) is the expected
value of X. It follows that

2 kpe=(k)=G'(1)
k
and

> Bp=(=G"()T'(1).
k
Therefore
Var[X]=G'()T'(1)-G'(1)*=G'(D[T'(1) - G'(1)].

The variance of the degree distribution is the average degree
of a randomly chosen vertex multiplied by the difference
between the average degree of a randomly chosen neighbor
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and the average degree of a randomly chosen vertex.
In order to arrive at a unitless numerical measure of het-
erogeneity, variance is normalized by dividing by

(ky*=G'(1)*.
This gives the standardized variance (v,,) of X:

A=W T()-G'(1)
BETRE TG

Standardized variance will be used as the numerical mea-
sure of the heterogeneity of the network. As a result, hetero-
geneity has the interpretation of giving the difference be-
tween the average size of a neighbor and the average size of
a vertex in relation to the average size of a vertex. In this
way, v, is like a Z score, giving the number of “average
degrees” between a random vertex and his neighbor. Stan-
dardized variance has been recognized as a measure of net-
work heterogeneity in the context of network effects on epi-
demiology [22], a connection that will be discussed later.

In order to explore the relationship between v, and coop-
eration in an evolutionary PD, networks with varying de-
grees of heterogeneity are required. To this end, two families
of networks are considered.

The first family is generated using the algorithm in [24]
that interpolates between the Barbasi-Albert model [18,19]
and Erdds-Rényi random graphs [25-27]. The Barbdsi-
Albert (BA) model gives rise to heterogeneous networks,
while Erdés-Rényi (ER) random graphs are far more homo-
geneous. Each member of this family of networks will have
M vertices, average degree 2m, and will be determined by a
single scalable parameter « between 0 and 1.

The BA-ER family of graphs is constructed starting from
a complete graph on n vertices. A new vertex is chosen from
the remaining set of all M —n, unconnected vertices. The
new vertex has m edges to attach in the following way: with
probability «, the vertex connects to any of the M—1 net-
work vertices with a uniform probability and, with probabil-
ity 1 —a, the edge attaches to an existing network vertex with
probability proportional to the current degree of the existing
vertex (i.e., by preferential attachment). The procedure is re-
peated m times for a particular vertex, once for each edge.

When «a=0, this algorithm becomes the Barbisi-Albert
growth and preferential attachment algorithm of [18], and the
resulting network has a degree distribution that follows a
power law, p;,~ # When a=1, an Erdés-Rényi (ER) random
network with Poisson degree distribution is obtained. For O
<a<1, the graph is a hybrid of the two with intermediate
heterogeneity.

Networks generated in this way (with a<1), however,
are not random in that the degree of a random vertex and a
random neighbor are not independent. Therefore, after a net-
work is generated, it is distilled down to its degree distribu-
tion by throwing away all specific contact information. The
configuration model algorithm [28] is used to reconfigure a
random network consistent with the specified degree distri-
bution. In the configuration model, vertices are generated
with stubs emanating from them which will become the ends
of edges. The number of stubs is determined by the degree

(3)

PHYSICAL REVIEW E 79, 016107 (2009)

304 T T

2.0}

0.5
0.0¢

-o-2m=4

N 6 I -=2m=6

4 ——2m=8

07““\‘“‘\““\““\““\““\
20 25 30 35 40 45 50

S

FIG. 1. Standardized variation, v, as a function of the param-
eter « for the By, ., family of networks (a), and as a function of the
tail parameter s for the Z,,, ; family (b).

distribution. Edges are then formed by randomly connecting
stubs to form complete edges until all stubs are used, result-
ing in a random network with the given degree distribution.

Via this algorithm, networks with 10% vertices are
generated that are distinguished by two parameters: 2m
(average degree) and «, with 2me{4,6,8} and
a {0.0,0.10,0.20,0.40,0.60,0.80,1.00}. Finally, for each
pair of parameter choices, three distinct graphs are generated
and labeled a, b, and c, respectively, from three independent
instances of the algorithm, followed by a configuration
model on the resulting degree distributions.

This gives a total of 63 different graphs identified by three
parameters. The graphs are denoted: B,,, ,,; with

2m e {4,6,8},

a € {0.00,0.10,0.20,0.40,0.60,0.80,1.00},
and
[ €{a,b,c}.

Figure 1(a) shows the standardized variance of B,,, ,; as a
function of « for each average degree, 2m € {4,6,8}, aver-
aged over the three networks, [ € {a,b,c}. (The actual ana-
lytical value of vy, for each individual network appears be-
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low.) Figure 1 illustrates the expected result that standardized
variance, and thus heterogeneity, decreases as « increases.
Consider the interpretation of standardized variance, vy,
from Eq. (3) given in terms of the average degree of ran-
domly chosen neighbors and the average degree of randomly
chosen vertices in the network. For a fixed average vertex
degree, as « decreases, the average size of neighbors in-
creases. In the following section, this increase in the size of
the average neighbor with respect to the size of the average
degree will be discussed in detail in terms of its effects on
cooperation phenomena on the network.

The second family of networks is generated with degree
distributions that follow power laws that can be adjusted to
allow for varied tail exponents, including those below the tail
3 seen in networks generated from the BA algorithm. Let N
denote the maximum possible vertex degree allowed in the
network and let 2m be the desired average degree. A degree
sequence is generated using the Zipf-Mandelbrot distribu-
tion. The Zipf-Mandelbrot distribution has probability mass
function:

1
fk,N.q.s) = —————, (4)
HN,q,s(k + C])
where Hy s=2ﬁm$~ The exponent s gives the power law

for the distribution and ¢ is chosen to ensure that the network
has the correct average degree.

As above, networks with 10* vertices are generated with
average degree 2m €{4,6,8}. For each 2m, we consider
power laws determined by s € {2.25,2.5,2.75,3,3.5,5,10}.
The summation in Eq. (4) starts at m to ensure that the mini-
mum degree of a vertex is half the average degree in keeping
with the BA-ER family of networks considered above. The
maximum possible vertex degree is capped, for all networks
in this family, by taking N=600. The degree sequence is
generated from the cumulative distribution function F asso-
ciated to f by determining, for each k=1,2,...,10 000, the
point in the domain of F that maps to ﬁ in the image of
F. The configuration model is again used to generate a ran-
dom network with the specific degree distribution. For each
choice of 2m and s, three distinct graphs are generated for a
total of 63 networks denoted Z,,, ,;, with 2m and s as above,
and [ e{a,b,c}.

Figure 1(b) shows the standardized variance of Z,,, ;; as a
function of s for each average degree 2m e {4,6,8}, aver-
aged over the three distinct graphs generated, given by
le{a,b,c}. Note that the standardized variance, and thus
heterogeneity, decreases as s=2.25 increases. That is, het-
erogeneity decreases as the tail of the distribution becomes
smaller. Referring to Eq. (3), as s decreases to 2.25 and av-
erage degree is fixed, the average size of a neighbor in-
creases. Actual v, appears for all networks below.

IV. RESULTS AND DISCUSSION

The standard version of the evolutionary prisoner’s di-
lemma on a network [9,10] is studied on the above networks
with 10* vertices. Following common practice, payoffs are
normalized so that in the notation of the payoff matrix (1),

PHYSICAL REVIEW E 79, 016107 (2009)

b=1+r and a=0. This means that the game depends on the
single parameter b=1+r, and where the cost-to-benefit ratio
r runs between 0 and 1 in increments of 0.05.

A round of play consists of all agents playing a pure strat-
egy in a single PD game against all neighbors, with neighbor
defined as any vertex with which the agent shares an edge.
Agents collect and record their cumulative payoff each round
and evolution is implemented according to the discrete ana-
log of the replicator dynamics [3,9]. An agent updates strat-
egy by choosing a random neighbor for payoff comparison.
If agent v has degree k, and accumulated payoff 7, and
chooses neighbor w having degree k,, and payoff T,, then v
adopts the strategy of w with probability P,_,,,, where

_ maX{O’(Tw _ Tv)}
T b maxdk,, k)

Thus an agent is more likely to be persuaded to change
strategy when comparing with a more successful neighbor.
Natural selection is reflected in the fact that fitter strategies
are more likely to spread, and in the well-mixed population
limit, simulation results converge to those of the traditional
replicator dynamics.

Once each agent updates strategy, the process continues
with another round of play and updating. Simulations pro-
ceed as follows. Starting from a random initial configuration,
the system evolves for 10* rounds of play, which is called a
series. The average frequency of cooperators over the last
1000 rounds of a series is called the series mean. On each
network, 100 series are run, each starting from a random
initial configuration with cooperation probability of 0.5. Fi-
nally, the equilibrium frequency of the cooperators is taken
to be the average of the 100 series means.

Figures 2 and 3 show equilibrium levels of cooperators as
a function of the game parameter b=1+r for a sample of the
graphs discussed above. These result are expected and agree
with the well-established results seen in Refs. [10,14] on the
BA-ER family of networks with degree correlations, as co-
operation largely increases as « approaches zero within a
fixed average degree.

For fixed average degree 2m, the Z,, ;, family also be-
haves in an intuitive fashion with respect to cooperation; the
larger the tail (smaller s), the more “spread out” the degree
distribution and, generally speaking, the more cooperation
prevails on the network. In the following, we use the results
of the previous sections to make explicit the dependence of
cooperation on network heterogeneity as defined by v,,.

In order to aggregate simulation results for a given net-
work N, a weighted average of cooperation levels on A is
taken over all game parameter values. To reward networks
that foster large scale cooperation despite strong temptation
toward defection, the equilibrium cooperation level at game
parameter b=1+r is weighted by the cost-to-benefit ratio, r,
of cooperation. The choice of r as a weight is natural since
one can choose game payoffs in a variety of qualitatively
equivalent ways consistent with Eq. (1), all of which share
the intrinsic parameter r. Moreover, since game payoffs in
actual observed PD situations are notoriously difficult to pin-
point, an averaging process is appropriate.
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FIG. 2. (Color online) Equilibrium cooperation level as a func-
tion of the game parameter b=1+r for the B,, (a) and Bg, (b)
families of networks.

For each network N, let ¢ w.r denote the equilibrium co-
operation level at PD parameter b=1+r. Let ¢ be the global
average cooperation on the network over all r values:

_ Do<r<iCNy
CN=—a .
Zo<r<t?
The sums are taken over all cost-to-benefit ratios r in incre-
ments of 0.05. This gives a single quantitative measure of the
global success of cooperators on the network, ¢, where the
heterogeneity of A is given by vy \-

To each network N hosting an evolutionary PD is there-
fore associated an ordered pair consisting of heterogeneity of
N and global average cooperation on N:

N = (v anC)-

Figure 4 shows a plot of these ordered pairs for each of
the networks considered above [29]. The plot shows the ex-
istence of a strong positive functional relationship between
standardized variation, v;, and average cooperation on a net-
work. The precise relationship between v, and average co-
operation on a network is below.

In the literature, the effectiveness of heterogeneity as a
conduit for cooperation on a network is often attributed to
vertices of varying degree playing a disproportionate number
of games each round, with particular attention given to the
global role played by large vertices [9], also called hubs.

PHYSICAL REVIEW E 79, 016107 (2009)
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FIG. 3. (Color online) Equilibrium cooperation level as a func-
tion of the game parameter b=1+r for the Z, ; family (a) and Zg
family (b) of networks.

These hubs, by the nature of the PD and the updating
scheme, eventually become influential cooperators who can
spread cooperation to their many neighbors.

In addition, formula (3), derived by generating functions,
suggests a more subtle local mechanism at work. By focus-
ing attention on the difference between average degree of
vertices and average degree of neighbors, one realizes that a
strong cooperator is the only stable agent in the game. For
example, while weak cooperators and weak defectors are
both susceptible to strategy shifts, compare the position of a
strong cooperator to a strong defector. In this context strong

1.0 !
e B,
L | |
0.8 o g .| ™y
< , 4 * Bo
§ 061 .‘.ﬁo'@‘ : A Z()
o [ o, v B
3 0.4 ,é:g ’ Zs
o Zg
ozis o g,
00 L 1 PR 1 1 %
0 1 2 3 4 5 6
Vst

FIG. 4. (Color online) Average cooperation as a function
of v.
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means that the payoff of a vertex is relatively large given its
total degree. By the nature of the payoff matrix, both agents
must have a large number of cooperating neighbors relative
to their total degree. When a neighbor is chosen for payoff
comparison, the neighbor is likely to be a cooperator.

For networks with a large standardized variance, formula
(3) indicates that, on average, the degree of a neighbor will
be significantly larger than the degree of a vertex. A coop-
erator comparing payoff to a cooperator leads to no strategy
change. However, the strong defector is in the tenuous posi-
tion of comparing payoff to a cooperating vertex with, sta-
tistically, a significantly higher connectivity. The result will
more often be a switch in strategy and a gain for cooperators.
This is not to say that strong cooperators are impervious to
strategy shifts—it has been shown that most vertices will
spend some time employing both game strategies [14]—but
on average, strong cooperators are less vulnerable while
strong defectors are more so.

To emphasize this dynamic, several networks are included
with relatively large heterogeneity given by v, but relatively
small maximum vertex degree. These networks are con-
structed in the same manner as Z series with average degree
4, with the exception that the degree distribution is then trun-
cated. Included are three networks with maximum degree 50
and v,=2.18, and two with maximum degree 60 and v,
=2.558, which are labeled Zj. Despite the lack of large
hubs, these networks show cooperation levels consistent with
trends formed by the existing nontruncated data.

It has been a widely observed phenomenon that increased
average degree usually hinders cooperation. This becomes
clear in the denominator of vy, in formula (3). If the average
degree of the vertices on the network increases without a
significant increase in the average degree of the neighbors on
the network, then the v, will decrease leading to less coop-
eration on the network. On the other hand, an increase in v,
and therefore cooperation, is not precluded by an increase in
average degree, but rather requires an appropriately large
increase in the size of an average neighbor.

In order to make the relationship between v, and average
cooperation in Fig. 4 precise, we note a connection between
v,, and epidemic disease spread on networks. The epidemic
threshold A\, of a disease on a network is the critical disease
infectivity below which an epidemic outbreak of the disease
on the network is not possible. The lower the epidemic
threshold of the network, therefore, the easier it is for a dis-
ease to spread, and for a nontrivial fraction of the population
to become infected. If the network is uncorrelated, then the
epidemic threshold is given by [23]

(k)
T (5)

It follows from Eq. (2) that )\c:%. Intuitively, the data
shows that cooperation also spreads more successfully on
networks with a lower epidemic threshold.

Figure 5 is a plot showing average weighted cooperation
as a function of the epidemic threshold of the network ..
The relationship is clear: average cooperation increases lin-
early by average degree as epidemic threshold decreases.

PHYSICAL REVIEW E 79, 016107 (2009)
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FIG. 5. (Color online) Average cooperation as a function of the
network’s epidemic threshold A..

The fact that the trends in average cooperation as a func-
tion of A, are degree dependent is not at all surprising in light
of Eq. (5). The epidemic threshold depends only on the av-
erage degree of a neighbor, 7'(1), and the size of an average
vertex is irrelevant. In the evolutionary PD, however, the
average size of the vertex is relevant as it is an indicator of
the strength of the vertex in relation to the neighbor, and
hence, of the susceptibility of the vertex to become “in-
fected” by cooperation. For example, if a network N has
average neighbor 7'(1)=20, then the epidemic threshold is
A.=0.05 regardless of average vertex size. However, in a
network with average degree G'(1)=4, a neighbor is consid-
erably stronger than in a network with average degree
G'(1)=8. In the former case, the average neighbor is five
times the size of the average vertex whereas in the latter, an
average neighbor is only 2.5 times the size of an average
vertex. Therefore multiplying the epidemic threshold A\, by
the average network degree gives a universal parameter that
can be compared across networks of varying average degree.

It follows easily from Egs. (3) and (5) that

(6)

In Fig. 6, average cooperation is plotted as a function of
(k)N =1 +1vd,' The result is a striking, but now not unexpected,
linear relationship. Average network cooperation depends
linearly on the ratio of average vertex degree to average
neighbor degree, a quantity that is simply the network’s epi-
demic threshold adjusted by the network’s average degree.
Moreover, both quantities are simple functional variants of
standardized variance, v,,. The linear correlation between ¢,
and (k)y\. is particularly strong, with correlation coeffi-
cient r=0.981 (r?=0.962). While cooperation in an evolu-
tionary PD on a network and susceptibility of the network to
epidemic outbreaks is an intuitive connection [30], this is an
instance of such a relationship in a simple, quantifiable way.

It is also interesting to consider the possible reasons for
fluctuations in Fig. 6. The first is finite size effects. All net-
works considered here have maximum vertex size capped at
600 to minimize such effects on the dynamics. However, in a
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FIG. 6. (Color online) Average cooperation as a function of

1

(kY\.=1;,-- In addition, the figure shows the linear regression line

y=(=1.0074x+0.9322).

network of 10* vertices, a vertex of degree 600 reaches
nearly 6% of the network’s total vertices. If a network has
several very large vertices, likely interconnected, unforseen
impacts on the dynamics are certainly possible. Relaxing the
cap on maximum vertex size for networks with wide tails
(and many large vertices) does seem to have a negative im-
pact on cooperation.

The second explanation for deviations from the regression
line, especially in graphs with wide tails, is the possible pres-
ence of small scale correlations between the degrees of ver-
tices at either end of an edge. Despite the use of the configu-
ration model, it is possible for local contact information to
result in correlations that can impact the dynamics.

V. CONCLUSIONS

We have used standardized variance to measure heteroge-
neity in networks that are maximally random with a fixed

PHYSICAL REVIEW E 79, 016107 (2009)

degree distribution. By studying an evolutionary PD on these
networks for a wide class of degree distributions with vary-
ing levels of heterogeneity, we have shown that v, is a pow-
erful indicator of the success of global cooperation in the
evolutionary PD. This result is particularly striking given the
simplicity of v, and the complexity of the dynamics being
studied. The ease of calculation of v, and the ability to
compare v, across networks with different average degrees
and distributions provides a strong case for v, as a reason-
able quantification of the network heterogeneity concept for
random networks. Moreover, the expression for v, coming
from the generating functions associated to the network, as a
strength of neighbor relationship between average degrees of
vertices and neighbors, gives valuable insight into the
mechanisms that contribute to enhanced cooperation. This
interpretation and the methods used in this paper can be gen-
eralized to yield analogous concepts for networks where
degree-degree correlations are present. That similar results
might hold for evolutionary games on these networks is a
promising direction for future work.

Standardized variation provides a possible pathway for
understanding the connection between cooperation phenom-
ena and epidemic spread of diseases, two fields that are in-
tuitively related and share as foundational the study of com-
plex networks. The relationship between v,, and cooperation
leads directly to a connection between network cooperation
and the epidemic threshold of the network. That connection,
pictured in Fig. 6, is particularly interesting and indicates a
deep relationship between the dynamics of the two systems
that can be further explored.
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