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THE EVOLUTION OF... 
Edited by Abe Shenitzer and John Stillwell 

The Continuum Problem 
John Stillwell 

1. INTRODUCTION. In 1900, Hilbert made Cantot's continuum problem number 
one on his list of mathematical problems for the twentieth century. In 2000 it no longer 
ranked so highly, not being among the Clay Millennium Prize Problems, for example. 
Indeed, some mathematicians are under the impression that the continuum problem 
has been settled, perhaps because of the following statement by Paul Cohen in 1985: 

My personal view is that I regard the present solution of the problem as very satisfactory. 
I think that it is the only possible solution. It gives a feeling for what is possible and what's 
impossible, and in that sense I feel that one should be very satisfied. There are further prob- 
lems, but they are fairly technical ones. If I were a betting man, I'd bet no one is going to come 
up with any other kind of solution. 

(Interview with Don Albers and Constance Reid, July 1985) 

However, set theory has developed enormously since the time of Cohen's great 
results in the 1960s. Hugh Woodin [7] has recently written an update that explains why 
the cardinality of the continuum should still be pursued, and why the answer expected 
by Cantor is probably wrong. Woodin's work is highly technical, but it grows out of 
classical themes in the study of the continuum. The present article is a modest attempt 
to describe these themes, and how they have influenced set theorists today. 

2. DISCRETE AND CONTINUOUS. Since ancient times, mathematicians have re- 
alized that it is difficult to reconcile the continuous with the discrete. We understand 
counting 1, 2, 3, . . . up to arbitrarily large numbers, but do we also understand moving 
from 0 to 1 through the continuum of points between them? Around 450 BCE, Zeno 
thought not, because continuous motion involves infinity in an essential way. As he 
put it in his paradox of the dichotomy: 

There is no motion because that which is moved must arrive at the middle (of its course) before 
it arrives at the end. 

(Aristotle, Physics, Book VI, Ch. 9) 

We know of Zeno's ideas only through Aristotle, who is trying to debunk them, but 
presumably the idea here is that before arriving at the end one must get halfway, and 
before that quarterway, and so on, hence continuous motion involves the completion of 
infinitely many acts. 

The completed infinite was taboo for the ancients, and indeed for most mathemati- 
cians until the late nineteenth century. After all, isn't an infinite process one that goes 
on forever, and hence remains incomplete? If we agree, then the continuum must re- 
main a hazy mystery, about which we can say almost nothing. Perhaps individual 
points can be known, and indeed by 350 BCE Eudoxus had reached essentially the 
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modem view that any point is uniquely determined by its position relative to the ratio- 
nal points. But the secret of continuity remains out of reach, as long as we reject the 
completed totality of points. 

In 1858, Dedekind felt "overpowering dissatisfaction" with this situation, and re- 
solved to "secure a real definition of the essence of continuity." He tells us that he 
succeeded on November 24, 1858, and in doing so he made the first real advance in 
our understanding of the continuum since Eudoxus. 

For the modem mathematician, Dedekind's construction of the real number contin- 
uum R is profoundly simple: take the set Q of rationals, and define the irrationals to 
be the gaps in Q (or "cuts" as they are often called). That is, an irrational is a partition 
of Q into two sets, QL and Qu, such that 

* each member of QL is less than all members of Qu, 
* QL has no greatest member, Qu has no least member. 

Thus each individual irrational is determined by its position in the rationals, as for 
Eudoxus, but now we consider the totality R of rationals and irrationals, and we see 
that it has no gaps, by construction. 

This definition of the continuum could not be more convincing, but it makes an 
irrevocable commitment to completed infinite sets: each point is determined by a set 
of rationals (say, the set QL), and R itself is a set of such sets. Perhaps we can avoid 
viewing QL as a completed infinity, since it may be a set we can step through discretely 
like 1, 2, 3, .. ., but there is no way to do this for R. This is where the modern struggle 
with the cont-inuum begins, with Cantor in the 1 870s. 

3. COUNTABLE AND UNCOUNTABLE. The countable infinite sets are those that 
can be ordered (or "listed") in such a way that each element has only finitely many 
predecessors. The prototype example is the set N of natural numbers, whose natural 
ordering is such a list: 

0, 1,2,3,4,5,6,7,8,9, 10, 11, 12, 139 .... 

Since any member of the set is reached in a finite number of steps (each step being 
addition of 1), there is no need to imagine infinitely many steps actually being com- 
pleted. One is free to regard a countable set as potentially, but not actually, infinite. 
This is the only type of infinity considered to exist by the ancient Greeks, and also by 
other eminent mathematicians such as Gauss. 

With a little ingenuity, many other useful infinite sets can be "counted," and hence 
made acceptable by these strict standards of mathematical existence. They include the 
integers 

0, 1, -1,2, -2,3, -3,4, -4,5, -5,6, -6, ..., 

the positive rationals 

_ 2 1 3 2 1 4 3 2 1 5 4 3 2 1_ 

1' 1'929 19'29'39 19'29'39'49 19'29'39'49'59'. 

(the rule here being to list fractions for which numerator and denominator have sum 2 
first, then those for which the sum is 3, then those for which the sum is 4, etc.), and all 
the rationals 

1 1 2 2 1 1 3 3 2 2 1 1 
09 - 9 - - - 9- _- - 9 _ -9 _9 -9 _9 _9. . 
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A more sophisticated example, pointed out by Cantor (1874), is the set of alge- 
braic numbers. Each algebraic number is the root of a polynomial equation a,x' + 
an1x n-1 + ? + alx + ao = 0 with integer coefficients, to which Cantor assigned 
the "height" n I + Ian I + Ianl + ? . ?+ Ia I ? lao 1. There are only finitely many equa- 
tions with a given height and, of course, only finitely many roots of a given polynomial 
equation. Hence a listing of the algebraic numbers may be derived from a listing of 
equations according to increasing height. 

These examples show that the concept of a countably infinite set is of wide scope, 
perhaps wide enough to raise the hope that any infinity is countable and hence merely 
"potentially" infinite. Cantor himself appears to have believed that he could prove R 
to be countable, and was taken aback when he discovered otherwise in late 1873. His 
first reaction was to draw the positive conclusion that here was a new proof that not all 
numbers are algebraic, and this was how he first presented uncountability to the world, 
in 1874. 

Of course, it was not long before the uncountability of R was recognized as funda- 
mental, and its importance was reflected in at least three different proofs. 

Any countable set has gaps (Cantor 1874). 
Given a list of real numbers xo, xl, X2, x3,.. ., Cantor sifts through them to find a 

"gap": members of the list ao < a, < a2 < ... < b2 < b, < bo with no xi between 
the aj and bk. Thus he generalizes the known gaps in known countable sets (such as 

VX in the rationals). 
* Any countable set has measure zero (Harnack 1885). 

Given a list of real numbers x0, x1, X2, x3, .. ., Harnack covers xi by an interval of 
length s/2i+1, thus covering the whole set {xO, X1, x2, x3, ... . by a set of total length 
less than s. Since the line R has infinite length, the numbers x0, X1, x2, x3, ... make 
up "almost none" of DR. 

* Any countable set can be diagonalized (Cantor 1891). 
Given (say) decimal expansions of real numbers x0, xl, X2, X3, . .., Cantor con- 

structs a number x different from each xi by making x unequal to xi at the i th decimal 
place (taking care to avoid an x with two different decimal expansions). 

The first proof of uncountability looks back to Dedekind's definition of the irra- 
tionals as the gaps in the rationals. It reveals a pleasant harmony between modem and 
ancient senses of the word "complete": if ER is complete in the sense of having no gaps, 
then we must accept it as a completed infinity, because it is not countable. The sec- 
ond and third proofs look forward to two of the most important themes in set theory: 
measurability and the diagonal argument, both of which generalize to larger sets. 

In particular, the diagonal argument immediately generalizes to show that any set X 
is smaller than its power set P(X) (the set of all subsets of X). Instead of decimal 
expansions, one considers characteristic functions of subsets of X and, if there is a 
subset Sx of X paired with each x in X, diagonalization gives the set S = {x : x , 
Sx} , different from each subset Sx at the element x. Thus X has more subsets S than 
elements x. 

4. SETS OF CONTINUUM CARDINALITY. The concept of "size" for sets, im- 
plicit in the previous examples where one set was said to be "smaller" than another, 
is formalized by means of one-to-one mappings. Cantor said that sets A and B have 
the same cardinality or cardinal number, symbolized by writing IA I = I B I, if there is 
a bijection of A onto B. Thus all countably infinite sets have the cardinality of N, by 
definition, and Cantor called this cardinality No. 
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One also writes AAI < IBI if there is an injection of A into B, and JAI < IBI if 
A I B I but JA I : B I. A convenient theorem (Cantor-Schroeder-Bernstein) states 

that, if I A I < I B I and I B I < I A l, then I A l = I B I, thus avoiding explicit constructions of 
many bijections. To show that A and B have the same cardinality it is enough to map A 
one-to-one into B and B one-to-one into A. Thanks to the Cantor-Schroeder-Bernstein 
theorem, it is easy to show that all the following sets have the same cardinality as R: 

* Any interval-open, half-open, or closed 
* The interval [0, 1) (which we view as the set of binary expansions) 
* The set 2N of infinite sequences of Os and Is 

For this reason, the cardinality of R is denoted by 2'0. We also see that No < 2'0, since 
there is an obvious injection of N into R, but no injection in the opposite direction, by 
the uncountability of DR. If we interpret each infinite sequence of Os and Is as the 
characteristic function of a subset of N, then we see that 2'0 is also the cardinality of 
the set P(N) of subsets of N. 

Now any infinite sequence a of Os and Is can be split into a pair (ao, a1) of such 
sequences, consisting of its even and odd places. Conversely, a can be reconstructed 
from the pair (ao, a1). This gives the result discovered by Cantor in 1877, which led 
him to exclaim "I see it, but I don't believe it": the plane R2 has the same cardinality 
as the line ER. 

More generally, one can split a into three, four, ..., or even infinitely many se- 
quences (to get infinitely many, split into the subsequences of places with 1, 2, 3, . . . 
prime factors). This shows that the following sets also have the same cardinality as R: 

* 22 IR3, .. . , R', where R' denotes the set of sequences (xO, xl, X3, .. .) of sequences 
of real numbers 

* The set of continuous functions ER -D R (because each such function is determined 
by its values f (r) on the countably many rational points r, i.e., by an element of 1R'9) 

However, the general diagonal argument shows that IR has more subsets than ele- 
ments, so none of the sets just mentioned is as large as the set P(IR) of all subsets of ER, 
or the set of all real functions, both of which have cardinality 22 ?. Nevertheless, the 
ubiquity of the cardinality 2'0 among uncountable sets of reals led Cantor to conjec- 
ture in 1878 that it was the cardinality of any uncountable subset of ER. This was the 
first version of the continuum hypothesis. 

Weak continuum hypothesis (Cantor 1878). Any uncountable set of real numbers 
has cardinality 2'0. 

5. UNCOUNTABLE ORDINALS. In 1883, Cantor found another approach to un- 
countability, more intricate than the power set operation, but also more delicate, be- 
cause it gives the smallest uncountable set. He generalized the idea of counting into 
the infinite, obtaining the sequence of ordinal numbers 

0, 1,2,3, ...,o,o+ 1,co+2, ..., co2,co 2+ 1,co 2+2,. 

Cantor operated on the intuitive principles that 

* 0 is the least ordinal, 
* any ordinal a has a unique successor a + 1, 
* any set S of ordinals has a least upper bound. 
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In the 1920s, von Neumann formalized these principles by defining 

* 0 = {} (the empty set), 
* a?1 = U {al} (which implies that n + 1 = {0, 1, 2, ...,n} for finite n), 

* lub S = U,s (which implies that o) = {0, 1, 2, .. .1). 

Ordinal numbers are well-ordered by the membership relation e, that is, they are lin- 
early ordered and any set of them has an e-least member. And they measure all well- 
orderings, in the sense that any well-ordered set is isomorphic to a unique ordinal. 

The finite ordinals are just the natural numbers, and their least upper bound is the 
first infinite ordinal co. The countable ordinals co, co + 1, co + 2, . .. , co 2, . . . form a 
huge collection that Cantor called the second number class. This class is closed under 
successor and countable unions, but nevertheless it is a set, and hence it has a least 
upper bound, called o,. Clearly, co is the least uncountable ordinal, and its cardinality 
is called Nl. This led Cantor to strengthen the continuum hypothesis as follows: 

Strong continuum hypothesis (Cantor 1883). 2'0 = Nl. 

6. THE AXIOM OF CHOICE. The strong continuum hypothesis is more appealing 
than the weak continuum hypothesis, but also less plausible, because it implies that R 
can be well-ordered. Given a one-to-one correspondence between the reals and the 
countable ordinals, the reals are well-ordered by (the order of) their corresponding 
ordinals. 

Cantor in fact believed that any set can be well-ordered, but no such ordering is 
known for R. Well-ordering of a set S implies, among other things, that there is a 
choice function for subsets of S, that is, a function f such that f (X) belongs to X for 
each nonempty subset X of S. Namely, we can take f (X) to be the least member of X, 
according to the well-ordering of S. Conversely, a choice function for the subsets of S 
can be used to well-order S. 

This well-ordering theorem was first proved by Zermelo in 1904, and was con- 
troversial, but today it is seen as an "obvious" transfinite induction. Just as ordinary 
induction is based on the fact that any natural number can be reached from 0 by the 
successor operation, transfinite induction is based on the fact that any ordinal can be 
reached by the successor and least upper bound operations. 

Given a choice function f for subsets of S, one transfinitely lists the members 

So, S1, S2, ... , sc, ... of S as follows: 

so= f(S), 

sl = f (S - {so}), 

S= f (S - {s. a < /3), 

This process assigns ordinal subscripts to members of S "indefinitely" in the following 
sense: as long as the subset of S that has been assigned ordinals, {s,, : a < ,8}, is not 
all of S, we can assign an ordinal to at least one more member of S. It follows that all 
members of S are assigned ordinals, and S is thereby well-ordered. 
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Zermelo's assumption of a choice function is called the axiom of choice (AC), be- 
cause it has no proof from other axioms of set theory. Most mathematicians accept 
Zermelo's axiom, because of the greater regularity it affords in many parts of math- 
ematics. In particular, it is generally assumed that R can be well-ordered, and hence 
its cardinality is one of the alephs N, I , 3, ... obtained by iterating the above con- 
struction of ti. However, the axiom of choice (and hence also the strong continuum 
hypothesis) has consequences that make IR look irregular in some respects. In partic- 
ular, it implies that some subsets of IR are not measurable. 

7. MEASURE. Since the continuum hypothesis makes a claim about all uncountable 
sets of reals, it is natural to explore these sets and see the extent to which they can be 
proved to have cardinality 2'0. Cantor made a start on this project, showing that all 
uncountable closed sets have cardinality 2`0. More progress was made around 1900 
by the French school of analysts headed by Borel, Baire, and Lebesgue. They needed 
a large class of sets to satisfy the demands of integration theory. 

The traditional Riemann integral ff1' f (x) dx is defined for all f that are continuous 
on [a, b], but it fails to be defined for most discontinuous functions, even for f that 
are monotonic limits of continuous functions f,. The problem is that the traditional 
concept of area measure is not general enough to give a meaning to the "area under 
the graph of f," even when f is a limit of continuous functions f,. 

In 1898 Borel extended the concept of measure to all subsets of R' that result from 
open sets by the operations of taking complements and forming countable unions. 
These are now known as the Borel sets, and each of them is assigned a unique measure 
by the following rules: 

* The measure of a Cartesian product of open intervals is the product of the lengths of 
the intervals. (More generally, congruent sets have the same measure.) 

* If A C B, and A and B have measures ,u(A) and ,A(B), then the measure A (A - B) 
of A - B is given by 

p(A - B) = p(A) - p(B). 

* If B = Ao U A1 U A2 U ... is a disjoint union of sets with measures ,uL(Ao), ,ut(A1), 
,u (AA, ...,respectively, then 

M(B) = A(Ao) + A(Ai) + A(A2) + 

The Borel sets obviously include all open sets (as countable unions of products of 
intervals), and all closed sets (as complements of open sets), but they extend much 
further than this. There is a natural hierarchy of Borel sets with co, levels: the bottom 
level consists of the open and closed sets, and level ,B comprises all countable unions 
of sets from levels below /B, for any countable ordinal ,P. Using a diagonal argument, 
Lebesgue proved in 1905 that, for each countable ordinal /B, there are Borel sets at 
level ,B that do not occur at lower levels. 

Thus the complexity of Borel sets strictly increases for 0w steps, extending measur- 
ability to sets far beyond the open and closed sets. The Lebesgue measurable sets go 
a little farther, by assigning measure zero to arbitrary subsets of Borel sets of measure 
zero. The corresponding Lebesgue integral extends integrability to a class of functions 
far larger than the class of continuous functions. Moreover, the Lebesgue integrable 
functions have better closure properties, such as closure under monotonic convergence. 

The Borel sets also satisfy the weak continuum hypothesis. That is, any uncountable 
Borel set has cardinality 2'0. This was proved in 1915 by Aleksandrov, a member of 

March 2002] THE EVOLUTION OF. .. 291 

This content downloaded from 138.202.189.11 on Thu, 11 Jun 2015 21:14:43 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Luzin's group in Moscow that studied the works of the French school and extended 
their ideas far beyond the Borel sets. 

In his 1905 paper, Lebesgue casually claimed another closure property of the Borel 
sets: namely, that the orthogonal projection of a Borel set is also Borel. In 1916, 
Luzin's student Suslin found a counterexample to this claim, and thus showed that 
the projection operation leads to a larger class of sets. The sets generated from the 
Borel sets by projection (and complementation, since the projection of a projection is 
obviously a projection) are now called the projective sets, and they form a hierarchy 
of length co. Level 1 consists of the projections of Borel sets (called analytic sets) and 
their complements, while level n + 1 consists of projections of sets at level n, and the 
complements of these projections. 

In 1917, Luzin proved that analytic sets are measurable, and that they satisfy the 
weak continuum hypothesis. However, he was not able to extend this result farther into 
the projective hierarchy, and by 1925 he was ready to make a remarkable prophecy: 

One does not know, and one will never know, whether the projection of the complement of an 
analytic set (supposed uncountable) has the cardinality of the continuum, ... nor whether it is 
measurable. 

(Luzin in Comptes rendus Acad. Sci. Paris 180 (1925), p. 1818) 

Why was Luzin so pessimistic about determining cardinality and measurability? Well, 
it was already known that the axiom of choice implies the existence of nonmeasurable 
sets. This was proved by Vitali in 1905, and Vitali's nonmeasurable set N is definable 
very simply from a choice function for subsets of R. 

One defines an equivalence relation - on R by x - y X x - y is rational, and 
lets N be a set with exactly one member from each --equivalence class. If the ele- 
ments of N are all chosen from [0, 1], then it is easy to see that the circle R mod 1 
is the disjoint union of countably many translates of N (by rational numbers). If N is 
measurable, then all its translates have the same Lebesgue measure A(N) as N, and 
both of the assumptions ,A(N) = 0 and ,A(N) > 0 lead to contradictions. 

The unknown element in this construction is, to be sure, the choice function that 
takes one element from each --equivalence class. The axiom of choice says that such 
a function exists, but gives no information about it. However, we know that a well- 
ordering of IR immediately gives a choice function, hence the complexity of the non- 
measurable set N is essentially the same as that of a well-ordering of R, if such a thing 
exists. (In particular, if 2'0 = 1, then ER has a well-ordering of length o,, and there is 
a nonmeasurable set of about the same complexity as this well-ordering. This is why 
we said, in the previous section, that the strong continuum hypothesis makes ER look 
irregular in some respects.) 

Luzin evidently suspected that well-orderings of ER could lie at a low level in the 
projective hierarchy, bringing with them nonmeasurable sets at the same level. He was 
on the right track, but set theory could not progress farther in this direction until it 
acquired new tools from mathematical logic. 

8. GODEL AND COHEN. The two great Godel theorems from 1931, the first and 
second incompleteness theorems, owe their existence to the diagonal argument, and 
hence are directly inspired by set theory. Indeed, the "incompleteness" to which the 
first theorem refers is analogous to the incompleteness of countable sets of reals. 

To see why, notice that the "diagonal number" x different from the given numbers 
x0, xl, x2, ... can actually be computed from them. To be specific, we could set 
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n 1 if the nth digit of xn is not 1, 
n 2 otherwise. 

If the list xO, xl, x2, ... is computable, in the sense that the ith digit of xj is a com- 
putable function of i and j, then x is also computable, in the sense that its nth digit is a 
computable function of n. It follows that there is no computable list of all computable 
real numbers. This result has implications for axiom systems, because an axiom sys- 
tem is supposed to produce a computable list of theorems. It means that no consistent 
axiom system can produce a complete list of theorems of the form "program n defines 
a computable real number," for the output of such an axiom system could be diagonal- 
ized to produce a (program for) a new computable real. (An inconsistent system can 
produce all these theorems, but only because it proves everything!) 

The argument just given is not the same as G6del's-it is somewhat informal and 
in fact closer to an argument discovered by Post in 1921 but not published until twenty 
years later-but it contains the same essential idea. Godel could not speak about com- 
putable real numbers because in 1931 computability did not have a mathematical def- 
inition. However, it does now (since Turing in 1936), and we can assume that any 
axiom system for set theory is capable of expressing it. We therefore have: 

Giidel's first incompleteness theorem. For any consistent axiom system E for set 
theory, there is a true sentence -c about real numbers not proved by E. 

The second theorem is more subtle, but it follows from the first by examining the 
role of the assumption that E is consistent. This assumption can itself be expressed in 
the language of E, as a sentence Con(E). But Con(E) cannot be proved, as it turns out 
that this would yield the unprovable Godel sentence -r. Thus we have: 

Godel's second incompleteness theorem. If E is a consistent, sufficiently strong ax- 
iom system for set theory, then Con(E) is not provable in E. 

The phrase "sufficiently strong" here means strong enough to express and prove 
the basic properties of computation; in particular, E is able to express the relation of 
provability. Quite weak systems, even fragments of number theory, are able to do this 
and it is certainly true of standard systems of set theory, which are supposed to express 
all mathematical concepts. 

Godel's theorems tell us that, even if these systems can express all concepts, they 
cannot prove all facts-there are "gaps" in what they can prove, corresponding to the 
"gaps"9 in countable sets of reals. However, there seems to be a difference between the 
gaps in number theory and the gaps in set theory. No one expects the classical conjec- 
tures of number theory, such as the twin prime conjecture, to be true but unprovable. 
All known true but unprovable sentences of number theory originate in logic, as sen- 
tences equivalent to Con(E) or the like. In contrast, the unprovable sentences of set 
theory include those of utmost interest: the axiom of choice, the continuum hypothe- 
sis, and the existence of nonmeasurable sets. 

The first step towards revealing the gaps in set theory was taken by Godel in 1938, 
for the now-standard ZF (Zermelo-Fraenkel) axiom system. He showed that certain 
sentences could not be disproved: 

Giidel's consistency theorems. It is consistent with the ZF axioms to assume the ax- 
iom of choice, the continuum hypothesis, and the existence of nonmeasurable sets at 
level 2 in the projective hierarchy. 
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The method by which G6del proved these results was by modelling the ZF axioms 
by what he called the constructible sets. These are roughly the sets that have "names" 
when the language of ZF is enlarged by names for the ordinals. It follows easily that 
the universe of constructible sets satisfies the axioms of ZF, and that it is well-ordered, 
since the collection of "names" inherits a well-ordering (rather like alphabetical order- 
ing) from the ordering of the ordinals. A more subtle proof shows that all constructible 
reals have names involving only countable ordinals, and hence that there are only N, 
of them, so the continuum hypothesis is true in the constructible sets. Finally, the well- 
ordering of constructible reals turns out to be a level 2 projective set, and this gives 
nonmeasurable sets at the same level. 

G6del believed that the axiom of choice and the continuum hypothesis are in fact 
neither provable nor disprovable from the ZF axioms, but he was unable to show this 
much. His suspicions were finally confirmed by Cohen in 1963: 

Cohen's independence theorems. The axiom of choice and the continuum hypothesis 
are not provable in ZE 

To show this, Cohen introduced a powerful new method he called "forcing," which 
takes a small model of ZF and adds elements in such a way that the axioms remain sat- 
isfied, but other specific sentences are violated. In particular, he showed that it is pos- 
sible to simultaneously satisfy the Zermelo-Fraenkel axioms and the axiom of choice, 
and admit almost any value for 2'0. For example, the values N2, N3, and N,,+, are all 
possible, so the continuum hypothesis can be violated in many different ways. 

Taken together, the results of Godel and Cohen show that set theory is highly in- 
complete, because it does not answer some of the most natural questions about sets. 
As early as 1947, G6del anticipated this situation: 

One may on good reason suspect that the role of the continuum problem in set theory will be 
this, that it will eventually lead to the discovery of new axioms which will make it possible to 
disprove Cantor's conjecture. 

(American Mathematical Monthly, 54 (1947), p. 524) 

And Cohen initially had a similar view [2, p. 151]: 

A point of view which the author feels may eventually come to be accepted is that CH [the 
continuum hypothesis] is obviously false.... N, is the set of countable ordinals and this is 
merely a special and the simplest way of generating a higher cardinal.... The set C [the 
continuum] is, in contrast, generated by a totally new and powerful principle, namely the 
Power Set Axiom. 

As we saw at the beginning of this article, Cohen felt more satisfied with the situation 
after another twenty years, and was content to leave the continuum in limbo. However, 
by this time the search for new axioms was well under way. 

9. LARGE CARDINAL AXIOMS. The ZF axioms for set theory state roughly that 

* Nis a set, 
* sets result from certain other operations, the most important of which are power 

(taking all subsets of a set) and replacement (taking the range of a function whose 
domain is a set). 

Because of this, ZF can be modelled by any set that contains N and is closed under 
power and replacement. Such sets are called strongly inaccessible, and it is not hard 
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to believe they exist, if one believes in the axioms of ZF. However, strongly inacces- 
sible sets cannot be proved (by ZF) to exist, since by G6del's second incompleteness 
theorem their existence implies Con(ZF). 

Thus the existence of strongly inaccessible sets is a new axiom, of a type called an 
axiom of infinity, or large cardinal axiom, because it claims there is a set larger than 
any that can be proved to exist by the other axioms of ZF. Many other large cardinal 
axioms have now been studied, and the size of the corresponding cardinals nicely 
measures the strength of the conclusions one can draw from their existence. Typically, 
one proves that 

Con(ZF + axiom A) X Con(ZF + axiom B) 

-the consistency of ZF + B relative to the consistency of ZF + A. If the converse is 
also proved, then one has equiconsistency of ZF + A and ZF + B. 

For example, there is an interesting interplay between measurability assumptions 
and certain large cardinal axioms. 

We know from Vitali's example that not all sets of reals can be Lebesgue measur- 
able if the axiom of choice holds; however, if we drop translation invariance (keeping 
only countable additivity), the conflict with the axiom of choice disappears. We can as- 
sume that all sets of reals are measurable in this weaker sense, but the continuum then 
becomes very large-much larger than the smallest strongly inaccessible set. This was 
discovered by Ulam in 1930, and the cardinals whose subsets are all measurable are 
now called measurable cardinals. Thus 

Con(ZF + axiom of choice + "a measurable cardinal exists") 

= Con(ZF + axiom of choice + "a strong inaccessible exists"). 

If we drop the axiom of choice, on the other hand, Solovay showed in 1970 that it is 
consistent to assume that all sets of reals are Lebesgue measurable, provided we also 
assume Con(ZF + axiom of choice + "a strong inaccessible cardinal exists"). In fact, 
ZF + "all sets of reals are Lebesgue measurable" is equiconsistent with ZF + axiom 
of choice + "a strong inaccessible exists," because in 1984 Shelah proved the opposite 
direction of Solovay's relative consistency result. 

Another important consequence of measurable cardinals was proved by Scott in 
1960: if there is a measurable cardinal, then not every set is constructible. This puts 
measurable cardinals in conflict with the concept of constructibility used by Godel 
to prove the consistency of the continuum hypothesis; however, measurable cardinals 
do not contradict the continuum hypothesis itself. Many models are now known to 
satisfy the continuum hypothesis, and it appears that no large cardinal axiom alone 
will contradict it. 

Nevertheless, there is another way in which large cardinal axioms can illuminate 
the continuum hypothesis, and this is the subject of our last section. 

10. DETERMINACY. A new direction in the study of sets of reals was initiated by 
Polish mathematicians in the 1920s-though for a long time it remained little known 
and was not considered important-the theory of infinite games. In 1925 Steinhaus as- 
sociated a 2-person game GA with each set A contained in the unit interval as follows. 
Players I and II alternately choose binary digits of a real number x, for w) steps. At the 
end of play, I wins if x lies in A; otherwise II wins. If one of the players has a winning 
strategy for this game, then the set A is called determined. 

For example, the set A of irrational numbers in [0, 1] is a determined set, because 
player I can always win by playing a nonperiodic sequence of digits, for instance, 
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This is a winning strategy because the real number x produced has a nonperiodic 
binary expansion, and hence is irrational, no matter what digits II inserts between the 
successive digits of I's sequence. 

However, not all sets A of reals are determined, at least if we assume the axiom 
of choice. A counterexample was found by Banach and Mazur, also in 1925. In fact, 
until the 1970s, very few sets were known to be determined, and the concept of de- 
terminacy was kept alive only by connections with other concepts of set theory. To 
formalize these connections, Steinhaus and Mycielski in 1962 proposed the axiom of 
determinacy (AD): every set of reals is determined. 

Set theorists find AD hard to believe, since it contradicts the axiom of choice. But 
it does not appear to contradict the ZF axioms, and its consequences are spectacular. 
In 1964 Mycielski proved that 

* AD X every set of reals is Lebesgue measurable; 
* AD X the weak continuum hypothesis. 

Moreover, if one rejects determinacy of all sets of reals, one can restore the axiom of 
choice and still derive Lebesgue measurability and the weak continuum hypothesis for 
large classes of sets. For example, if one assumes projective determinacy-that every 
projective set is determined-then every projective set is Lebesgue measurable, and 
every uncountable projective set has cardinality 2'0. To many set theorists, this gives 
the best of both worlds; a well-behaved projective world, and the axiom of choice 
everywhere. A burning question of the 1970s and 1980s was therefore: How reasonable 
is projective determinacy? 

Before the 1970s, determinacy was known only for the first few levels of the Borel 
hierarchy. In 1975, D. A. Martin made a remarkable breakthrough by proving deter- 
minacy for all Borel sets. His proof used the full resources of ZF, but not any large 
cardinal assumptions. Proving determinacy for larger classes of sets (or, at least, the 
consistency of assuming determinacy for these classes) does depend on large cardinal 
axioms, and the larger the class, the larger the cardinal required. 

Already in 1970, Martin had proved determinacy for analytic sets assuming the 
existence of a measurable cardinal, and in 1987 he, Steel, and Woodin established the 
large cardinal strength of projective determinacy: it is equivalent to the existence of 
certain large cardinals now called Woodin cardinals. These cardinals are larger than 
measurable cardinals, though not as large as some others that have been considered. 
Their definition may be found in Kanamori [4], along with the story of large cardinals 
in general. 

None of these results settle the continuum hypothesis, but they change the face of 
set theory by suggesting new axioms, such as projective determinacy. Woodin has now 
written a 900-page book (and he has more books on the way!) explaining how these 
new axioms may be expected to fill the glaring gaps in the theory of real numbers, so 
that only G6del sentences and consistency statements remain unprovable. In particular, 
the new axioms imply that 2'0= -2, hence that the continuum hypothesis is false. 

Modern set theory is a highly intricate subject, and no doubt it will be a long time 
before working mathematicians are prepared to accept new axioms, especially when 
the axioms cannot even be properly described in an article of this size. However, it 
seems to me that all mathematicians should be curious about these developments, and 
I urge readers to take the next step, which is to read Woodin's own introduction to his 
program in [7]. 
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