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THE EVOLUTION OF ... 
Edited by Abe Shenitzer and John Stillwell 

Modular Miracles 
John Stillwell 

Over the last 20 years, the modular function has become widely known through its 
miraculous intervention in two great mathematical achievements: the proof of Fermat's 
last theorem and the "moonshine" of the monster simple group. In both cases, the 
modular function appears where no one expected it, and it bridges a chasm between 
seemingly unrelated fields. It is probably fair to say that, in these two cases, we do not 
yet fully understand how the modular magic works. 

However, it can at least be said that these are not the first modular miracles. Ever 
since its discovery, in the early 19th century, the modular function has been an engine 
for spectacular and unexpected results. Now that things modular are back in the news, 
it is a good time to recall some of the modular miracles of the 19th century. They help 
us see the recent results in some perspective, and encourage us to believe that there is 
a lot more to be learned. 

THE MODULAR FUNCTION j. Modular functions may be defined as meromor- 
phic functions on the upper half plane with the periodicity of the modular tessellation 
shown in Figure 1. When the half plane is interpreted as the hyperbolic plane, the black 
and white tiles of the tessellation are congruent triangles with one vertex at infinity, and 
the whole tessellation is generated by reflections in the sides of any one of them. 

It follows that a modular function is determined by its values on any one tile of the 
tessellation, the other values being obtained by reflection in the sides of the tile. The 
values on a tile can be defined by mapping the tile conformally onto the upper half 
plane, and they in turn are completely determined by the images of the three vertices. 

0 1 2 I 

6 S 4 7 1 5 7 2 7 5 B 1 7 4 5 6 

Figure 1. The modular tessellation 
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This idea was used by Dedekind (1877) to define the classical modular function j 
by the unique conformal map 

white region -+ half plane 

which sends i, e7ri13, oo to 0, 1, oo respectively [3]. 
The periodicity of j can be described algebraically by saying that 

j(r) = (ar +b) 

for any a, b, c, d E Z with ad - bc = 1. The transformations 

at +b 

c- +d 

carry any particular black and white region to any other. These transformations are 
generated by the two simple transformations -r v-+ -r + 1 and -r 1-? -1 / -r, so the latter 
transformations also define the periodicity of j. 

Because of its periodicity under r -? -r + 1, j has a Fourier series, that is, an ex- 
pansion in powers of q = e2 .T This expansion happens to be 

j () = q-I + 744 + 196884q + 21493760q2 + 

Neither the tessellation definition nor the expansion in powers of q is close to the 
original definition of j, which comes from the theory of elliptic functions, as we ex- 
plain below. We began with the geometric definition because it is probably the simplest 
to grasp, though it hides some difficulties (among them the Riemann mapping theo- 
rem, which ensures the existence of a conformal map of any simply-connected region 
onto the half plane). The definition of j as a mapping also yields the most famous ap- 
plication of the modular function to analysis-Picard's proof that any entire function 
omits at most one complex value. We do not go further into Picard's theorem, because 
it can be found in most complex analysis books; Picard's beautiful proof is presented 
in [1, p. 307]. 

For a thorough treatment of j and its history, including most of the topics discussed 
in this article, McKean and Moll's book [8] is warmly recommended. 

THE QUINTIC MIRACLE. The general quintic equation can be solved by j. This 
result was proved by Hermite in 1858 [5]. It was not completely out of the blue, be- 
cause Galois had pointed out a quintic equation related to j in 1832, and Kronecker 
had similar ideas about the same time as Hermite. Nevertheless, it is a startling result, 
and it remains so even when its antecedents are pointed out. 

Hermite compared his solution of the quintic by j to the solution of the cubic equa- 
tion that takes advantage of the "angle-tripling" equation 

4 cos3 0 - 3 cos 0 = cos 30 

satisfied by the cosine function. One transforms the general cubic equation into the 
special form 

4x 3- 3x = c, 

and then sets x = cos 0, where c = cos 30. 
There are analogous modular equations satisfied by j, and it turns out that the 

general quintic equation can be transformed to the quintic modular equation. 
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Where Do Modular Equations Come From? The function j is not the only function 
with the periodicity of the modular tessellation, but it is simplest in the sense that all 
other such functions are rational functions of j. The first of them to be encountered, 
and the origin of the name "modular", was modulus k2 in the elliptic integral 

I dt 

f (1 -t2)(1 - k2t2) 

A thought-provoking result about such integrals was Fagnano's 1718 formula for dou- 
bling the arc length of the lemniscate: 

fX dt y dt 2x 1-X4 
2] Jo where Y = 1 + 

which gives a polynomial equation between x and y: 

y2(1 + X4)2 = 4X2(1 - X4). 

This is analogous to the doubling formula for the arcsine integral, 

dtfy dt /J 2 
I/ 
*gp = 

I/ ,1t 
where y = 2x 

1X, 

which in turn is just a restatement of the double angle formula 

sin20 = 2sin0cos0 = 2sin0 /1 - sin20, 

and the polynomial relation 

y2 =4x2(1 -x2) 

between y = sin 20 and x = sin 0. This analogy with circular functions led to great 
interest in n-tupling (and later, multiplication by complex numbers, or "complex mul- 
tiplication") of elliptic integrals and to computation of the corresponding polynomial 
equations. When the value of the integral is regarded as a function of the modulus, the 
equations obtained are called modular equations. 

Modular equations were a popular topic with many leading mathematicians of the 
early 19th century-Legendre, Gauss, Abel, Jacobi, Galois-and the results of Galois 
were particularly tantalising. Galois left only some cryptic remarks about the equations 
for multiplication by 5, 7, and 11 (implying that they yield equations of degrees 5, 7, 
and 1 1) in the letter he wrote to Chevalier just before his death. It was several decades 
before these remarks were really understood, and Hermite's 1858 paper was both a 
step towards understanding Galois, and a step beyond him. 

THE QUADRATIC MIRACLE. Kronecker (1857) discovered that j detects the 
class number of Q(-D) for an imaginary quadratic integer -/=D [7]. This result is 
to my mind even more startling than the solution of the quintic, because class numbers 
are a deeper topic, which mathematicians did not begin to grasp until the 1830s. 

In 1832 Gauss studied the Gaussian integers a + ib, where a, b E Z and i = , 
and showed that they have unique prime factorisation or class number 1. (The termi- 
nology goes back to the older language of quadratic forms, where the equivalent fact in 
this case is that all forms ax2 + bxy + cy2 with b2 - 4ac = -4 are in the same "class" 
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as x2 + y2.) Soon afterwards, mathematicians noticed examples, such as the quadratic 
integers a + b/-5, where prime factorisation is not unique because the class number 
is > 1. (In this case the class number is 2, and the two classes of forms are repre- 
sented by x2 + 5y2 and 2x2 + 2xy + 3y2.) In 1839, Dirichlet introduced the powerful 
analytic method of Dirichlet series to determine the class number of the integers of a 
quadratic field Q(/ -D), but it was a complete surprise when Kronecker showed that 
j could do the same job. 

He showed that, for any integer T in the quadratic field Q( >/-D), j (T) is an alge- 
braic integer whose degree is the class number of Q( -D). 

For example, the Gaussian integers are the integers of the field Q(i) with D = 
1, and it turns out that j(i) = 123-an ordinary integer, as we expect because Q(i) 
has class number 1. A second example, which happens to be the largest D for which 
Q (N/-D) has class number 1, is where D = 163. Gauss also found this example, and 
the class number 1 is confirmed by the ordinary integer value 

j((1 + -163)72) = (-640320)3. 

Finally, an example with class number 2 is Q( -5), and indeed 

j((1 + -15)/2) = (-191025 + 85995 V5)/2, 

which is an integer of degree 2. (The existence of "integers" with denominator 2 is a 
quirk of certain quadratic fields that the reader may take on trust here.) 

Kronecker's result is difficult to explain in a short article, but we can give the fol- 
lowing hint. What the quadratic integers have in common with elliptic functions is an 
underlying lattice L in the plane C-a set of points at the corners of a tessellation 
of the plane by identical parallelograms. An elliptic function f has two periods co1 
and 602, which have different directions in C and hence generate the lattice of periods 
{mco1 + nco2: m, n E Z}, at each point of which f takes the same value. In a quadratic 
field Q(/ -D) the set (9 of integers is a lattice, either 

n /--D ht 
{m + n -D: m, n E } or | + : m, n E Z with same parity, 

and more generally so is any ideal of (9-a set of integers closed under addition and 
under multiplication by any a E (9. The algebraic significance of ideals is that (9 has 
unique prime factorisation if and only if every ideal of (9 is principal-that is, equal 
to a(9 for some a E (-and a principal ideal a(9 is geometrically significant because 
it has the same shape as ( (being the result of magnifying ( by Ia I and rotating by 
arg a). 

The modular function is pertinent to both elliptic functions and quadratic integers 
because j is really a function of lattice shapes. The idea of lattice shape may be illus- 
trated by the lattice of periods {mco1 + nWo2: m, n E Z}. The points of this lattice occur 
at the corners of the tessellation of the plane by parallelograms shown in Figure 2. 

The "shape" of a parallelogram is captured by the number o = (02/601, because 
1o1 is the ratio 16021 /IWI I of the side lengths and arg ( = arg c02- arg (01 is the angle 
between the sides. However, this parallelogram is just one of infinitely many that define 
the same lattice. Another is shown in Figure 3. 

The shape of the basic parallelogram is now 

02 + W01 1 

(1 
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(020 

Figure 2. Parallelograms generated by Wi and (02 

- /~~~~~~2 + )1 

Figure 3. Parallelograms generated by wl and W2 + WI 

so the lattice shape is represented equally well by a) + 1. It turns out that, for each a) 
representing the shape of a lattice L, the number (aco + b)/(cco + d) also represents 
the shape of L, provided a, b, c, d E Z and ad - bc = 1. A lattice shape is therefore 
a whole class of numbers, of the form 

acoi +b 
for some a) 

cco + d 

where a, b, c, d E Z and ad - bc = 1. 
This brings us to the reason for saying that j is a function of lattice shapes: as 

mentioned at the beginning, j has the property that 

(a+b\ 
cCO + d) 

for any a, b, c, d E Z with ad - bc = 1. Thus j takes the same value at each number 
in a lattice shape. In other words, j is well defined on lattice shapes. 

Now the properties of an elliptic function are largely controlled by the shape of 
its period lattice, and the properties of a quadratic field Q(/ -D) are controlled by 
the shapes of its ideals. In particular, it turns out that Q(/ -D) has unique prime 
factorisation if and only if all its ideals have the same shape. This is why j can have 
something to say about unique prime factorisation in quadratic fields-it is an echo of 
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what j says about the so-called "complex multiplication" of period lattices-though 
the way j says it is still pretty amazing. 

The equation satisfied by j ( -D) happens to be another modular equation, which 
factorises into terms like x - j ( -D), and the number of factors is the number of 
different lattice shapes in the integers of Q(/ -D) 

THE NUMERICAL MIRACLE. Hermite (1859) noticed a curious numerical con- 
sequence of Kronecker's theorem on the values of j (-): 

e 63 = 262537412640768744, 

(an integer!) correct to 12 decimal places [6]. 
This little known discovery of Hermite was exploited by Martin Gardner in an 

amusing hoax edition of his column in Scientific American. On 1 April 1975 Gard- 
ner announced-among several other "sensational discoveries that have somehow or 
another escaped public attention"-that 

e163 = 262537412640768744 exactly. (1) 

He gave the announcement an extra coat of varnish by claiming that it settled a conjec- 
ture of Ramanujan, supposedly made in a paper of 1914. The paper cited by Gardner 
does indeed discuss near integers of the form e, but without claiming that they 
could be integers, and without mentioning e` 163. Still, in the pocket calculator days 
of 1975, it was pretty hard to decide whether e 163 is an integer or not. 

Its true value, as Hermite and Ramanujan knew, is the integer in (1) minus a very 
tiny number (< 10-12). 

In fact, putting r = (1 + -163)/2 in q = e2i7rt gives the tiny 

q = e i7r-7-J 163 
-e-3 16-3 

and putting this q in 

j (r) = q-I + 744 + 196884q + 21493760q2 + 

gives 

j((l + /-163)/2) = -e7 163 + 744 - tiny number, 

and therefore 

e163 = integer - tiny number. 

THE ORIGIN OF MOONSHINE. "Moonshine" is a theory linking j to the monster 
simple group M[, and it has its origin in an apparent coincidence observed by McKay 
in 1977: The coefficient 196884 in the Fourier expansion of j is 1 plus the dimension 
of the smallest nontrivial representation of M. 

Actually, several other coincidences were discovered around the same time, and are 
listed in [2]. But nonetheless moonshine could hardly have been discovered without 
knowing the Fourier expansion of j, so one would like to know who discovered the 
coefficient 196884. Hermite 1859 actually has the incorrect expansion 

j (r) = q-1 + 744 + 196880q + , 
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though the error does not affect his result that e' 163 is an integer to 12 decimal places. 
As far as I know, the first correct expansion as far as the coefficient 196884 was 

given by Weber in 1891 [9, p. 248]. Was this the first glimpse of moonshine? Or did 
Hermite also see 196884, but write it down incorrectly? I am inclined to vote for Her- 
mite because his 1859 paper contains another series that later became part of moon- 
shine [2, p. 334]: 

q-I + 104 + 4372q + 96256q2 +... 

and in this series Hermite got all the digits right. 
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