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Generalized Helmholtz–Kirchhoff Model for Two-Dimensional Distributed Vortex
Motion∗

Raymond Nagem†, Guido Sandri†, David Uminsky‡, and C. Eugene Wayne‡

Abstract. The two-dimensional Navier–Stokes equations are rewritten as a system of coupled nonlinear ordi-
nary differential equations. These equations describe the evolution of the moments of an expansion
of the vorticity with respect to Hermite functions and of the centers of vorticity concentrations. We
prove the convergence of this expansion and show that in the zero viscosity and zero core size limit
we formally recover the Helmholtz–Kirchhoff model for the evolution of point vortices. The present
expansion systematically incorporates the effects of both viscosity and finite vortex core size. We
also show that a low-order truncation of our expansion leads to the representation of the flow as a
system of interacting Gaussian (i.e., Oseen) vortices, which previous experimental work has shown
to be an accurate approximation to many important physical flows [P. Meunier, S. Le Dizès, and
T. Leweke, C. R. Phys., 6 (2005), pp. 431–450].
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1. Introduction. In this paper we represent solutions of the two-dimensional Navier–
Stokes equations as a system of interacting vortices. This expansion, which generalizes the
Helmholtz–Kirchhoff model of interacting point vortices in an inviscid fluid, systematically
incorporates the effects of both vorticity and finite vortex core size. Furthermore, we give
conditions which guarantee the convergence of our expansion. Incompressible viscous flow has
two standard analytic representations: a formulation in terms of the primitive velocity and
pressure variables, and a formulation in terms of the velocity and vorticity variables [8]. The
velocity-vorticity representation has particular advantages when boundaries are unimportant,
since vorticity cannot be created or destroyed in the interior of a fluid. The vorticity field can
also be directly related to physically observed flow structures such as line and ring vortices.

In two space dimensions, the vorticity field has the additional advantage of reducing to
a scalar. An early representation of two-dimensional flow in terms of moving point vortices
was developed by Kirchhoff [5] and by Von Helmholtz [17]. The point vortex model has been
studied extensively—a thorough review of the model and recent developments is provided in
the monograph by Newton [13]. While the Helmholtz–Kirchhoff point vortex model captures
many of the basic physical phenomena observed in two-dimensional rotational flows, experi-
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ments with even relatively simple vortex configurations exhibit complications far beyond the
point vortex predictions [11]. Additionally, the classical point vortex model neglects the effects
of viscosity. However, these experiments also reinforce the idea that in many circumstances
the fluid flow may be well approximated by a collection of interacting vortices, albeit vortices
with finite core size, subject to the effects of viscosity. Earlier work to introduce a finite
core size model for Euler’s equations was done in [9]. In this paper the vortex patches that
are modeled are described as disjoint piecewise-constant elliptical finite-area vortex regions
(FAVORs). In this model, higher spatial moments of the ellipse are allowed to evolve under
the flow. The moment model is truncated to second order, and the corotating vortex example
is analyzed. Later in [10] the authors generalize the spatial moment model found in [9] by
incorporating weak Newtonian viscosity to derive equations of motions for two like signed
vortices.

Other recent studies of the interaction of viscous vortices can be found in [1, 2, 6, 7, 11,
16]. The main focus of most of these papers is the merger of two like signed vortices. A
metastable state is found before merger which consists of two rotating near-circular vortices.
More recently, it has been conjectured that in a two-vortex system the profiles relax to a pair of
Gaussian vortices before merging [7]. An alternative method for incorporating viscous effects
was proposed in [1] by adding a random forcing term to the ODEs which describe the motion
of the vortex centers. Thus, it is of interest to extend and generalize the Helmholtz–Kirchhoff
point vortex model to a model that incorporates nonzero vortex core size and viscous effects
while retaining its basic form. Such an extension is the goal of this paper.

The governing equations for the velocity (u) and pressure (p) variables are

∂u
∂t

+ (u · ∇)u = −∇p

ρ
+ νΔu,(1)

∇ · u = 0,(2)

where ρ is the fluid density and ν is the kinematic viscosity. Taking the curl of (1) and (2)
gives

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = νΔω,(3)

ω = ∇× u, ∇ · ω = 0,(4)

which are the governing equations for the velocity-vorticity variables. For two-dimensional
flows, the vorticity vector ω is perpendicular to the plane of the flow, and the third term on
the left-hand side of (3) vanishes. The condition ∇·ω = 0 is identically satisfied, and (3) then
reduces to the single scalar equation:

(5)
∂ω

∂t
+ (u · ∇)ω = νΔω,

where ω is the single nonzero component of the vorticity. A drawback of the formulation
in (5) is that the velocity of the fluid is still present in the equation. However, assuming that
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the vorticity field is sufficiently localized, the velocity vector can be computed in terms of the
vorticity ω by the Biot–Savart law

(6) u(x) =
1
2π

∫
R2

(x − y)⊥

|x− y|2 ω(y)dy,

where for a two-vector z = (z1, z2), z⊥ = (−z2, z1).
In this paper we use (5) and (6) to develop a vorticity representation of two-dimensional

viscous flow. Our representation is based on a decomposition of the vorticity field into a set
of moving distributed vortices. Differential equations are derived for the motion of the vortex
centers and for the time evolution of the vortex distributions. The evolution of each individual
vortex is represented as an expansion with respect to a sequence of Hermite functions. Such
expansions have proven useful in theoretical studies of two-dimensional fluid flows [3, 4] and
the leading-order term in this expansion is precisely the Gaussian vortex (i.e., Oseen vortex
[15, 14]) whose utility as an approximation for vortex interaction was shown in [11]. We
show that the coefficients in this expansion satisfy a system of ODEs whose coefficients can
be explicitly represented in terms of a fixed, computable kernel function. We also prove the
convergence of this expansion. It is shown that our representation reduces in the appropriate
limit to the Helmholtz–Kirchhoff model and allows at the same time arbitrarily complex
evolution and interaction of the moving vortices.

In the present paper we concentrate on the mathematical formulation of the generalized
Helmholtz–Kirchhoff model. In future work we will explore the predictions of this model both
numerically and analytically in a number of different physical settings.

2. The “multivortex” expansion. In this section we separate the solution of the vorticity
equation into N components and derive separate evolution equations for each component.
From a physical point of view this decomposition will be most useful when each of the com-
ponents corresponds to a localized region of vorticity (e.g., a vortex) well separated from the
other lumps, but the mathematical development described below is well defined without re-
gard to these physical considerations. However, with this application in mind, we will often
refer to each of the components as a “vortex.”

Consider the initial value problem for the two-dimensional vorticity equation

∂ω

∂t
= νΔω − u · ∇ω,

ω = ω(x, t), x ∈ R
2, t > 0,(7)

ω(x, 0) = ω0(x),

where u is the velocity field associated with the vorticity field ω. We begin by decomposing
the initial vorticity distribution by writing

(8) ω0(x) =
N∑

j=1

ωj
0(x).

Of course, this decomposition is not unique—even the number of pieces, N , into which we
decompose the vorticity is up to us to choose. In general the choice we make will be moti-
vated by physical considerations; however, for the development below, all we require of the
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decomposition is that the total vorticity of each vortex be nonzero, i.e.,

(9) mj =
∫

R2

ωj
0(x)dx �= 0, j = 1, . . . , N.

If (9) is satisfied we define xj
0 by

(10)
∫

R2

(x − xj
0)ω

j
0(x)dx = 0,

or equivalently,

(11) xj
0 =

1
mj

∫
R2

xωj
0(x)dx.

We now write the vorticity for t > 0 as

(12) ω(x, t) =
N∑

j=1

ωj(x− xj(t); t)

and the velocity field as

(13) u(x, t) =
N∑

j=1

uj(x − xj(t); t),

where uj(y, t) is the velocity field associated with ωj(y, t) by the Biot–Savart law. Of course
we still have to define the equations of motion for ωj(y, t) and xj(t).

The centers of the vorticity regions, xj(t), and the vorticity regions themselves evolve via
a coupled system of ordinary-partial differential equations constructed so that in the limit of
zero viscosity and when the different components of the vorticity happen to be point vortices
(i.e., Dirac-delta functions) we recover the Helmholtz–Kirchhoff point vortex equations. If we
take the partial derivative of (12) and use the equation satisfied by the vorticity, we find

∂tω(x, t) =
N∑

j=1

∂tω
j(s − sj(t), t) −

N∑
j=1

ẋj(t) · ∇ωj(x− xj(t), t)(14)

=
N∑

j=1

νΔωj(x − xj(t), t) −
N∑

j=1

(
N∑

�=1

u�(x − x�(t), t)

)
· ∇ωj(x − xj(t), t).

Given this equation, it is natural to define ωj as the solution of

∂ωj

∂t
(x − xj(t), t) = νΔωj(x − xj(t), t) −

(
N∑

�=1

u�(x − x�(t), t)

)
· ∇ωj(x− xj(t), t)

+ ẋj(t) · ∇ωj(x − xj(t), t), j = 1, . . . , N.(15)
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To close this system of equations we must specify how the centers of vorticity xj(t) evolve.
We impose the condition that the first moment of each vorticity region must vanish at every
time t > 0; i.e., we require that

(16)
∫

R2

(x − xj(t))ωj(x − xj(t), t)dx = 0 for all t > 0, j = 1, . . . , N.

(Note that this equation really contains two conditions, one for each component of x−x�(t).)
We impose this condition to fix the evolution of xj(t) because Gallay and Wayne have recently
shown [3] that if one considers the evolution of general solutions of (7), the solution will ap-
proach an Oseen vortex, and the rate of the approach will be faster if the vorticity distribution
has first moment equal to zero. Solutions of (7) preserve the first moment, and hence if the
initial conditions have first moment equal to zero, the solution will have first moment zero for
all time. The equations (15) no longer preserve the first moment, and thus we impose this
condition for all time, which then defines the motion of the center of vorticity.

Note that if we change variables in (16) to z = x− xj(t), we find

(17)
∫

R2

zωj(z, t)dz = 0.

Since this equation holds for all t > 0, we can differentiate both sides with respect to t to
obtain

(18)
∫

R2

z∂tω
j(z, t)dz = 0.

Using (15), we can insert the formula for ∂tω
j into this integral, and we obtain

ν

∫
R2

zΔωj(z, t)dz −
∫

R2

z

(
N∑

�=1

u�(z + xj(t) − x�(t), t)

)
· ∇ωj(z, t)dz

+
∫

R2

z
(
ẋj(t) · ∇ωj(z, t)

)
dz = 0.(19)

We first note that if we integrate twice by parts, we have

(20)
∫

R2

zΔωj(z, t)dz = 0.

Next if we take the nth component and integrate by parts, we find

(21)
∫

R2

zn
(
ẋj(t) · ∇ωj(z, t)

)
dz =

2∑
m=1

ẋj
m(t)

∫
R2

zn∂zmω
j(z, t)dz = −mjẋj

n(t),

where mj =
∫

R2 ω
j(z, t)dz and n = 1, 2.

Remark 2.1. Note that (15) does preserve the total integral (“mass”) of the solution, so
this definition of mj is consistent with (9).
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Finally, recalling that the velocity field is incompressible, we can rewrite

(
N∑

�=1

u�(z + xj(t) − x�(t), t)

)
· ∇ωj(z, t) = ∇ ·

(
N∑

�=1

u�(z + xj(t) − x�(t), t)ωj(z, t)

)
,

and so, again considering the nth component and integrating by parts, we have

∫
R2

zn

(
N∑

�=1

u�(z + xj(t) − x�(t), t)

)
· ∇ωj(z, t)dz(22)

= −
∫

R2

(
N∑

�=1

u�
n(z + xj(t) − x�(t), t)

)
ωj(z, t)dz.

Thus, if we combine (20), (21), and (22), we see that (19) reduces to the system of ODEs
for the centers of the vorticity distributions,

(23)
dxj

n

dt
(t) =

1
mj

N∑
�=1

∫
R2

(
u�

n(z + xj(t) − x�(t), t)ωj(z, t)
)

dz,

supplemented by the initial conditions (10), while the N components of the vorticity evolve
according to the PDEs (15) with initial conditions

(24) ωj(z, 0) = ωj
0(z + xj

0),

obtained by combining (8) and (12).
Remark 2.2. Consider (23) in the limit in which the components ωj are all point vortices,

i.e., ωj(z, t) = mjδ(z), with δ(z) the Dirac-delta function. Recall that the velocity field asso-
ciated with such a point vortex is

U j(z, t) = mj n× z
||z||2 ,

where n is the unit normal vector to the plane. Then if we ignore the (singular) term with
� = j in the sum on the right-hand side of (23), we find

(25)
dxj

dt
(t) =

N∑
�=1; � �=j

m�n× (xj(t) − x�(t))
||xj(t) − x�(t)||2 .

These, of course, are just Helmholtz–Kirchhoff equations for the inviscid motion of a system of
point vortices. Thus, our expansion can be regarded as a generalization of this approximation,
which allows for both nonzero viscosity and vortices of finite size. To justify omitting the term
with � = j on the right-hand side of (25) we note that if we approximate the delta function
with a narrow Gaussian vorticity distribution, and uj by the corresponding velocity field, this
term will vanish by symmetry.
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3. The moment expansion: Case of a single center. In this section we introduce another
idea—an expansion of the vorticity in terms of Hermite functions. Then, in the next section
we will combine the Hermite expansion with the multivortex expansion of the previous section.

The moment expansion is an expansion of the solution of the vorticity equation in terms
of Hermite functions. Define

(26) φ00(x, t;λ) =
1
πλ2

e−|x|2/λ2
,

where λ2 = λ2
0 + 4νt. Three simple facts that we will use repeatedly are the following:

(i) ∂tφ00 = νΔφ00.
(ii)

∫
R2 φ00(x, t;λ)dx = 1 for all t ≥ 0.

(iii) Finally, and crucially for what follows, the vorticity function ω(x, t) = αφ00(x, t) is
an exact solution (called the Oseen, or Lamb, vortex) of the two-dimensional vorticity
equation for all values of α.

Note that we will often suppress the dependence of φ00 on λ when there is no fear of confusion.
We now define the Hermite functions of order (k1, k2) by

(27) φk1,k2(x, t;λ) = Dk1
x1
Dk2

x2
φ00(x, t;λ)

and the corresponding moment expansion of a function by

(28) ω(x, t) =
∞∑

k1,k2=0

M [k1, k2; t]φk1,k2(x, t;λ).

We define the Hermite polynomials via their generating function:

(29) Hn1,n2(z;λ) =

(
Dn1

t1 D
n2
t2 e

(
2t·z−|t|2

λ2

))∣∣∣∣∣
t=0

.

Note that the “standard” Hermite polynomials correspond to taking λ = 1.
Then using the standard orthogonality relationship for the Hermite polynomials,

(30)
∫

R2

Hn1,n2(z; 1)Hm1,m2(z; 1)e
−z2

dz = π2n1+n2(n1!)(n2!)δn1,m1δn2,m2 ,

we see that the coefficients in the expansion (28) are defined by the projection operators:

(31) M [k1, k2; t] = (Pk1,k2ω)(t) =
(−1)k1+k2λ2(k1+k2)

2k1+k2(k1!)(k2!)

∫
R2

Hk1,k2(z;λ)ω(z, t)dz.

Note that if the function ω(x, t) in (28) is the vorticity field of some fluid, the linearity of
the Biot–Savart law implies that we can expand the associated velocity field as

(32) V(x, t) =
∞∑

k1,k2=0

M [k1, k2; t]Vk1,k2(x, t;λ),
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where

(33) Vk1,k2(x, t;λ) = Dk1
x1
Dk2

x2
V00(x, t;λ)

and V00(x, t;λ) is the velocity field associated with the Gaussian vorticity distribution φ00—
explicitly we have

(34) V00(x, t;λ) =
1
2π

(−x2, x1)
|x|2

(
1 − e−|x|2/λ2

)
.

3.1. Convergence of the moment expansion. In this subsection we derive a criterion for
the convergence of the moment expansion derived above, and we show that if this criterion is
satisfied for t = 0, then it is satisfied for all subsequent times t > 0.

Our convergence criterion is based on the observation that the Hermite functions φk1,k2(x, t;λ)
are, for any value of t, the eigenfunctions of the linear operator

(35) Lλψ =
1
4
λ2Δψ +

1
2
∇ · (xψ).

This fact can be verified by direct computation and is related to the fact that Lλ can be
transformed into the Hamiltonian quantum mechanical harmonic oscillator.

The Gaussian function φ00 plays a crucial role in the convergence proof, and its dependence
on the parameter λ is particularly important in this discussion, so for this subsection only we
will define

φ00(x, t;λ) = Φλ(x, t)

to emphasize this dependence.
If one now proceeds as in Lemma 4.7 of [4], one can prove the following.
Proposition 3.1. The operator Lλ is self-adjoint in the Hilbert space

Xλ = {f ∈ L2(R2) | Φ−1/2
λ f ∈ L2(R2)}

with inner product (f, g)λ =
∫

R2 Φ−1
λ fgdx.

An immediate corollary of this proposition and the general theory of self-adjoint operators
is the following.

Corollary 3.2. The eigenfunctions of Lλ form a complete orthogonal set in the Hilbert
space Xλ.

As a corollary of this result and the observation that the eigenfunctions of Lλ are precisely
our Hermite functions {φk1,k2}, we have finally the next claim.

Proposition 3.3. Suppose that

‖f‖2
λ =

∫
R2

Φ−1
λ (x)|f(x)|2dx <∞;

then the expansion
f(x) =

∑
k1,k2

M [k1, k2]φk1,k2(x)
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converges with respect to the norm on the Hilbert space Xλ.
Thus, the following criterion guarantees that the expansion (28) for the vorticity converges:

(36)
∫

R2

Φ−1
λ (x)(ω(x, t))2dx <∞.

The main result of this subsection is the following theorem, which proves that if our initial
vorticity distribution satisfies (36) for some λ = λ0, then the solution of the vorticity equation
with that initial condition will satisfy (36) for all time t with λ =

√
4νt+ λ2

0, and hence
as a corollary if the initial vorticity distribution satisfies (36), then our moment expansion
converges for all times t.

Theorem 3.4. Define the weighted enstrophy function

E(t) =
∫

R2

Φ−1
λ (x)(ω(x, t))2dx.

If the initial vorticity distribution ω0 is such that E(0) < ∞ for some λ0, and ω0 is bounded
(in the L∞ norm), then E(t) is finite for all times t > 0.

Proof. The idea of the proof is to derive a differential inequality for E(t) which guarantees
that if E(0) is finite, then E(t) will be finite for all t. Differentiating E(t), we obtain

dE
dt

(t) =
4ν
λ2

E(t) − 4ν
λ4

∫
R2

|x|2Φ−1
λ (x)(ω(x, t))2dx

+ 2
∫

R2

Φ−1
λ (x)ω(x, t)∂tω(x, t)dx

=
4ν
λ2

E(t) − 4ν
λ4

∫
R2

|x|2Φ−1
λ (x)(ω(x, t))2dx(37)

+ 2
∫

R2

Φ−1
λ (x)ω(x, t) (νΔω − u · ∇ω) dx.

We now consider the last term in (37). First note that upon integration by parts we have

(38) 2
∫

R2

Φ−1
λ (x)ω(x, t) (νΔω(x, t)) dx = −2ν

∫
R2

Φ−1
λ (x)

(
|∇ω|2 +

2
λ2
ωx · ∇ω

)
dx.

The right-hand side of the expression in (38) can again be broken up into two pieces, and the
second can be bounded by

(39) 2ν
∫

R2

Φ−1
λ (x)

(
2
λ2
ωx · ∇ω

)
dx ≤ ν

∫
R2

Φ−1
λ (x)|∇ω|2dx +

4ν
λ4

∫
R2

Φ−1
λ

(
x2ω2

)
dx.

Finally, we bound the last term in (37), which comes from the nonlinear term in the
vorticity equation. In this estimate we use the fact (see [3, Lemma 2.1]) that the L∞ norm
of the velocity field u can be bounded by a constant times the sum of the L1 and L∞ norms
of the vorticity field—i.e., by C(‖ω‖L1(R2) + ‖ω‖L∞(R2)). This observation, combined with
the fact that ‖ω(·, t)‖Lp(R2) ≤ ‖ω0‖Lp(R2), which is a consequence of the maximum principle,
implies that

‖u(·, t)‖L∞(R2) ≤ C(‖ω0‖L1(R2) + ‖ω0‖L∞(R2))
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and hence that

2
∫

R2

Φ−1
λ (x)ω(x, t) (u · ∇ω) dx ≤ 2C(ω0)

∫
R2

Φ−1
λ (x)|ω(x, t)||∇ω|dx(40)

≤ 4C(ω0)
ν

∫
R2

Φ−1
λ (x)(ω(x, t))2dx + ν

∫
R2

Φ−1
λ (x)|∇ω|2dx.

If we now combine the inequalities in (38), (39), and (40) with the expression for dE
dt

in (37), we obtain

(41)
dE
dt

(t) ≤
(

4C(ω0)
ν

+
4ν
λ2

)
E(t),

from which we see immediately that if E(0) is bounded, E(t) remains bounded for all
time.

3.2. Differential equations for the moments. Assuming that the function ω(z, t) is a
solution of (7), we can derive differential equations satisfied by the moments M [k1, k2, t]
in (28). Surprisingly the expressions for the coefficients in these expansions are quite simple
and explicit.

If we differentiate (28) and assume that ω is a solution of the two-dimensional vorticity
equation, we obtain

∂tω =
∞∑

k1,k2=0

dM [k1, k2; t]
dt

φk1,k2(x, t;λ) +
∞∑

k1,k2=0

M [k1, k2; t]∂tφk1,k2(x, t;λ)

=
∞∑

k1,k2=0

M [k1, k2; t] (νΔφk1,k2(x, t;λ))(42)

−
⎛
⎝ ∞∑

�1,�2=0

M [�1, �2; t]V�1,�2(x, t;λ)

⎞
⎠ · ∇

⎛
⎝ ∞∑

k1,k2=0

M [k1, k2; t]φk1,k2(x, t;λ)

⎞
⎠ .

From the first of the “simple facts” we stated about φ00, we see that the last term on
the first line cancels the middle line, and hence if we apply the projection operators defined
in (31), we are left with the system of ODEs for the moments,

dM [k1, k2; t]
dt

= −Pk1,k2

⎡
⎣
⎛
⎝ ∞∑

�1,�2=0

M [�1, �2; t]V�1,�2(x, t;λ)

⎞
⎠(43)

· ∇
⎛
⎝ ∞∑

m1,m2=0

M [m1,m2; t]φm1,m2(x, t;λ)

⎞
⎠
⎤
⎦ .

The somewhat surprising fact which, in our opinion, makes the preceding straightforward
calculations interesting is that the projection on the right-hand side of (43) can be computed
explicitly in terms of the derivatives of a relatively simple function.
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We now explain how this is done. First recall that

(44) φm1,m2(x, t;λ) = Dm1
x1
Dm2

x2
φ00(x, λ), V�1,�2(x, t;λ) = D�1

x1
D�2

x2
V00(x, λ).

In order to avoid confusing the two sets of derivatives we will rewrite these formulas as

φm1,m2(x, t;λ) = (Dm1
a1
Dm2

a2
φ00(x + a, λ))|a=0,(45)

V�1,�2(x, t;λ) = (D�1
b1
D�2

b2
V00(x + b, λ))|b=0.

Inserting these formulas into the right-hand side of (43) and using the formula for the projec-
tion operator Pk1,k2 in terms of the integration against a Hermite polynomial, we obtain

dM
dt

[k1, k2, t] = −(−1)(k1+k2)λ2(k1+k2)

2k1+k2(k1!)(k2!)

∑
�1,�2

∑
m1,m2

M [�1, �2, t]M [m1,m2, t]

×
∫

R2

Hk1,k2(x)(Dm1
x1
Dm2

x2
V00(x;λ)) · ∇x(D�1

x1
D�2

x2
φ00(x;λ))dx

= −(−1)(k1+k2)λ2(k1+k2)

2k1+k2(k1!)(k2!)

∑
�1,�2

∑
m1,m2

M [�1, �2, t]M [m1,m2, t]

×Dk1
t1 D

k2
t2 D

m1
b1
Dm2

b2
D�1

a1
D�2

a2
∇a(46)

·
(∫

R2

e
(−t21−t22+2t1x1+2t2x2)

λ2 V00(x + b;λ)φ00(x + a;λ)dx
)∣∣∣∣

t=0,a=0,b=0

.

The last equality in this expression results from rewriting the Hermite polynomial Hk1,k2 in
terms of its generating function.

The last step in deriving the equations for the moments is to evaluate the integral in the
last line of (46). The key step in this evaluation is to recall that for these incompressible flows
the velocity field can be written in terms of the derivatives of the stream function and that
the Laplacian of the stream function is minus the vorticity. Thus, we can write

(47) V00(x + b;λ) = −∇∗
b(Δb)−1φ00(x + b),

where ∇∗
bf = (∂x2f,−∂x1f).

Inserting this into the integral in (46), we find∫
R2

e
(−t21−t22+2t1x1+2t2x2)

λ2 V00(x + b;λ)φ00(x + a;λ)dx(48)

= −∇∗
b(Δb)−1

∫
R2

e
(−t21−t22+2t1x1+2t2x2)

λ2 φ00(x + b;λ)φ00(x + a;λ)dx.

Now note that all three factors in the integrand are Gaussians, and thus the integral can be
evaluated explicitly, and we find∫

R2

e
(−t21−t22+2t1x1+2t2x2)

λ2 φ00(x + b;λ)φ00(x + a;λ)dx(49)

=
1

2πλ2
e−

1
2λ2 (a2

1+a2
2−2a1b1+b21−2a2b2+b22+2a1t1+2b1t1+t21+2a2t2+2b2t2+t22).
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We next compute the expression

(50) −∇∗
b(Δb)−1 1

2πλ2
e−

1
2λ2 (a2

1+a2
2−2a1b1+b21−2a2b2+b22+2a1t1+2b1t1+t21+2a2t2+2b2t2+t22).

Recall that, given a vorticity field ω, −(Δ)−1ω is the associated stream function and −∇∗(Δ)−1ω
the velocity field associated with ω. Since the inverse Laplacian and derivatives in (50) act
only on the b-dependent parts of the expression, we need to evaluate

−∇∗
b(Δb)−1 1

2πλ2
e−

1
2λ2 (−2a1b1+b21−2a2b2+b22+2b1t1+2b2t2)(51)

= −e 1
2λ2 ((t1−a1)2+(t2−a2)2)∇∗

b(Δb)−1 1
2πλ2

e−
1

2λ2 ((b1+(t1−a1))2+(b2+(t2−a2))2).

However,

−∇∗
b(Δb)−1 1

πλ2
e−

1
2λ2 ((b1+(t1−a1))2+(b2+(t2−a2))2)

is just the velocity field associated with a Gaussian vorticity distribution (i.e., an Oseen vortex)
centered at the point −((t1 − a1), (t2 − a2)) which we know explicitly. Hence, the expression
on the right-hand side of (48) has the explicit representation

1
2π
e−

2
λ2 (t1a1+t2a2) (−(b2 + (t2 − a2)), (b1 + (t1 − a1)))

(b1 + (t1 − a1))2 + (b2 + (t2 − a2))2
(52)

×
(
1 − e−

1
2λ2 ((b1+(t1−a1))2+(b2+(t2−a2))2)

)
.

If we now return to (46), we see that in order to compute the coefficients in the moment
equations we need to evaluate the divergence of this last expression with respect to a, which
gives

K(a1, a2, b1, b2, t1, t2;λ) =
1
πλ2

e−
2

λ2 (t1a1+t2a2)

×
( −a2 t1 + b2 t1 + a1 t2 − b1 t2

((b1 + (t1 − a1))2 + (b2 + (t2 − a2))2)

)(
1 − e−

1
2λ2 ((b1+(t1−a1))2+(b2+(t2−a2))2)

)
.

Returning to (46), we finally conclude that
(53)
dM
dt

[k1, k2, t] = −(−1)(k1+k2)λ2(k1+k2)

2k1+k2(k1!)(k2!)

∑
�1,�2

∑
m1,m2

Γ[k1, k2; �1, �2,m1,m2;λ]M [�1, �2, t]M [m1,m2, t],

where

Γ[k1, k2; �1, �2,m1,m2;λ](54)

= Dk1
t1 D

k2
t2 D

m1
b1
Dm2

b2
D�1

a1
D�2

a2
K(a1, a2, b1, b2, t1, t2;λ)|t=0, a=0, b=0.

Thus, we have succeeded in rewriting the two-dimensional vorticity equation as a system of
ODEs with simple, quadratic nonlinear terms whose coefficients can be evaluated in terms of
derivatives of a single explicit function. Furthermore, we have given a sufficient condition on
the initial vorticity distribution to guarantee that the expansion of the vorticity generated by
the solution of these ODEs converges for all time.
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4. The moment expansion for several vortex centers. In this section we extend the
Hermite moment expansion of the previous section to the case in which there are two or
more centers of vorticity by combining this expansion with the multivortex representation of
section 2. For simplicity of exposition we limit the discussion here to the case of two vortices,
but the expansion can be extended to any finite number of vortices.

The basic idea is just to consider (15) for the evolution of each vortex and then expand
each of the functions ωj in Hermite moments as in the previous section. Thus, we define

(55) ωj(z, t) =
∞∑

k1,k2=0

M j [k1, k2; t]φk1,k2(z, t;λ)

for j = 1, 2. We make a similar expansion for the velocity field in terms of the functions
V�1,�2 and insert the expansions into (15). Letting z = x−xj(t) and recalling that ∂tφk1,k1 =
νΔφk1,k2, we obtain

dM j[k1, k2; t]
dt

= −Pk1,k2

⎡
⎣
⎛
⎝ 2∑

j′=1

∞∑
�1,�2=0

M j′ [�1, �2; t]V�1,�2(z + sj,j′, t;λ)

⎞
⎠(56)

· ∇
⎛
⎝ ∞∑

m1,m2=0

M j [m1,m2; t]φm1,m2(z, t;λ)

⎞
⎠
⎤
⎦

+ Pk1,k2

⎡
⎣ẋj(t) · ∇

⎛
⎝ ∞∑

m1,m2=0

M j[m1,m2; t]φm1,m2(z, t;λ)

⎞
⎠
⎤
⎦ ,

where sj,j′ = xj′(t)−xj(t). For the first projection term we proceed as in the previous section,
and using (46), we finally conclude that the first term is equal to

−(−1)(k1+k2)λ2(k1+k2)

2k1+k2(k1!)(k2!)

2∑
j′=1

∑
�1,�2

∑
m1,m2

Γj,j′[k1, k2; �1, �2,m1,m2; sj,j′ , λ]

×M j[�1, �2, t]M j′ [m1,m2, t],

where

Γj,j′[k1, k2; �1, �2,m1,m2; sj,j′, λ](57)

= Dk1
t1 D

k2
t2 D

m1
b1
Dm2

b2
D�1

a1
D�2

a2
Kmulti(a1, a2, b1, b2, t1, t2; sj,j′ , λ)|t=0, a=0,b=0

and

Kmulti(a1, a2, b1, b2, t1, t2; s, λ)(58)

= ∇a ·
(∫

R2

e
(−t21−t22+2t1x1+2t2x2)

λ2 V00(x − s + b;λ)φ00(x + a;λ)dx
)
.
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Remark 4.1. Note that, comparing (57) with the calculation leading up to (53), we see that
Kmulti can be written in terms of the expression for K via the simple formula

Kmulti(a1, a2, b1, b2, t1, t2; s1, s2, λ) = K(a1, a2, b1 − s1, b2 − s2, t1, t2;λ).

The second projection term in (56) can be reduced to

(59) ẋj
1(t)M

j [k1 − 1, k2, t] + ẋj
2(t)M

j [k1, k2 − 1, t];

thus we can combine the above equations to write

dM j

dt
[k1, k2, t] = −(−1)(k1+k2)λ2(k1+k2)

2k1+k2(k1!)(k2!)

2∑
j′=1

∑
�1,�2

∑
m1,m2

Γj,j′[k1, k2; �1, �2,m1,m2; sj,j′ , λ]

×M j [�1, �2, t]M j′ [m1,m2, t](60)

+ ẋj
1(t)M

j [k1 − 1, k2, t] + ẋj
2(t)M

j [k1, k2 − 1, t].

We now derive a similar expansion for the evolution of the centers of each vortex. We
begin with (23),

dxj

dt
(t) =

1
mj

N∑
j′=1

∫
R2

(
u�(z + xj(t) − xj′(t), t)ωj(z, t)

)
dz.

(Recall that this is really a pair of equations, one for each component of xj.) Now insert the
moment expansion of uj′ and ωj into this expression, to obtain

(61)
dxj

dt
(t) =

N∑
j′=1

∑
�1,�2

∑
m1,m2

M j[�1, �2, t]M j′ [m1,m2, t]
∫

R2

V�1,�2(z − sj,j′, t)φ�1,�2(z, t)dz,

where, as before, sj,j′ = xj′(t) − xj(t). The integral of the velocity and vorticity can be
evaluated just as in the preceding section, and we find

(62)
dxj

dt
(t) =

N∑
j′=1

∑
�1,�2

∑
m1,m2

Ξj,j′[�1, �2,m1,m2; sj,j′, λ]M j [�1, �2, t]M j′ [m1,m2, t],

where in this case the coefficients Ξj,j′[�1, �2,m1,m2; sj,j′ , λ] are given by the expression

Ξj,j′[�1, �2,m1,m2; s, λ](63)

=
1
2π
Dm1

b1
Dm2

b2
D�1

a1
D�2

a2

(
(−(b2 − s2 − a2), (b1 − s1 − a1))
(b2 − s2 − a2)2 + (b1 − s1 − a1)2

×
(
1 − e−

1
2λ2 ((b2−s2−a2)2+(b1−s1−a1)2)

))∣∣∣∣
a=0,b=0

.

Remark 4.2. Equations (62) and (63) could be expressed in terms of Cartesian tensors.
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4.1. Convergence of multivortex expansion. We note that it is easy to extend our pre-
vious result on the convergence of the moment expansion to the multivortex expansion. To
do so, we change variables to recenter each vortex at the origin. Thus if we let

ωj(x− xj(t), t) = wj(x, t), uj(x − xj(t), t) = vj(x, t),

then (15) becomes

∂wj

∂t
(x, t) = νΔwj(x, t) −

(
N∑

�=1

v�(x − x�(t) + xj(t), t)

)
· ∇wj(x, t),

for j = 1, . . . , N .
We are now ready to state our result.
Theorem 4.3. Define

Ej(t) =
∫
R2

Φ−1
λ (x)wj(x, t)2dx.

If the initial vorticity distribution ω0 ≡∑N
�=1 ω

�(x−x�(0), 0) is such that Ej(0) <∞ for some
λ0 and for all j = 1, 2, . . . , N , and if ω0 is bounded (in the L∞ norm), then each Ej(t) is finite
for all times t > 0.

Proof. We use the same idea as in the single vortex case and differentiate Ej(t):

dE i

dt
(t) =

4ν
λ2

E i(t) − 4ν
λ4

∫
R2

|x|2Φ−1
λ (x)wi(x)2dx

+ 2
∫

R2

Φ−1
λ (x)wi(x, t)∂tw

i(x, t)dx

=
4ν
λ2

E i(t) − 4ν
λ4

∫
R2

|x|2Φ−1
λ (x)wi(x)2dx

+ 2
∫

R2

Φ−1
λ wi

(
νΔwi −

(
N∑

�=1

v�(x − x�(t) + xj(t), t)

)
· ∇wi

)
dx.

From here the proof proceeds identically to the proof of Theorem 3.4 except we must examine
the nonlinear term that comes from the vorticity equation a bit more closely. In general, it is
unknown whether wj(·, t) satisfies a maximum principle, but since

(∑N
�=1 v�(x−x�(t)+xj(t),

t)
)

= u, the solution to (1), it does satisfy a maximum principle. Hence, as in subsection 3.1,
we can bound the L∞ norm of

∑N
�=1 v�(x− x�(t) + xj(t), t) by a constant depending only on

the initial vorticity distribution. Hence we proceed to bound the integral

∫
R2

Φ−1
λ wi

((
N∑

�=1

v�(x− x�(t) + xj(t), t)

)
· ∇wi

)
dx ≤ 2C(ω0)

∫
R2

Φ−1
λ |wi||∇wi|dx,

and thus the rest of the bounds are the same. Again, putting everything together, we arrive
at

(64)
dE i

dt
(t) ≤

(
4ν
λ2

+
4C(ω0)
ν

)
E i(t).
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4.2. Interaction of Gaussian vortices. The experimental and numerical work of [11] has
shown that widely separated regions of vorticity can be well approximated by Gaussians for
long periods of time. This corresponds to truncating our expansions for the vorticity so that
they contain only a single term. In this subsection we analyze the equations that result from
this truncation. This approximation can be viewed as a generalization of the Helmholtz–
Kirchhoff approximation in which we include the effects of vorticity and finite core size to
lowest order. We show that the total vorticity of each of the vortices is constant, while the
centers of vorticity evolve along either straight lines or circles.

Remark 4.4. It should be noted here that the effect of truncating our expansion after one
term allows for only viscosity as the driving force in vortex merger. Allowing more terms in
the expansion introduces convective forces.

If we start with two Gaussian distributions for our initial vorticity with the same value of
λ0, and truncate the equations of motion for the moments so that all terms containing higher-
order moments are omitted, then we can conclude that the two vortices travel along circular
or straight line orbits around the “center of vorticity.” Moreover, the leading coefficients
M j[0, 0 : t] of the expansions are constant. To be precise, we let

ω1(x, t) = M1[0, 0; t]φ0,0(x− x1(t), t;λ),(65)

ω2(x, t) = M2[0, 0; t]φ0,0(x− x2(t), t;λ).(66)

Let us also write si,j = xj(t) − xi(t); then using (56)–(58), we first calculate the evolution of
M1(0, 0 : t):

dM1

dt
[0, 0; t] = −M1[0, 0; t]2K(0, 0, 0, 0, 0, 0, λ)

−M1[0, 0; t]M2[0, 0; t]Kmulti(0, 0, 0, 0, 0, 0, s1,2 , λ)
= 0,

since K(0, 0, 0, 0, 0, 0, λ) = 0 and Kmulti(0, 0, 0, 0, 0, s1,2 , λ) = 0, respectively. The calculation
for M2[0, 0; t] is the same. Thus the evolutions of the coefficients of leading order are constant.

Remark 4.5. The fact that M1[0, 0; t] is constant in time is not a consequence of the trunca-
tion of the moment equations to first order. One can show that the equations of (14) conserve
the zeroth moment of ωj, independent of any truncation.

More interesting, though, is the calculation for the evolution of xj(t), the centers of these
vortices. Again if we denote xj = (xj

1, x
j
2), then the evolution for each component as defined

by (23) can be written as

(67)
dxj

i

dt
=

1
M j [0, 0, t]

∫
V k

i (y − s1,2, t)ωj(y, t)dy.

Now using (47) to evaluate V k
i (y − s1,2, t), equation (67) yields the following equations for
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each xj
i , j = 1, 2, and i = 1, 2:

ẋ1
1 = −M

2

2π

(
e
− (x1

1−x2
1)2+(x1

2−x2
2)2

2λ(t)2 − 1
)

(x1
2 − x2

2)

(x1
1 − x2

1)2 + (x1
2 − x2

2)2
,

ẋ1
2 = −M

2

2π

(
e
− (x1

1−x2
1)2+(x1

2−x2
2)2

2λ(t)2 − 1
)

(−x1
1 + x2

1)

(x1
1 − x2

1)2 + (x1
2 − x2

2)2
,

ẋ2
1 =

M1

2π

(
e
− (x1

1−x2
1)2+(x1

2−x2
2)2

2λ(t)2 − 1
)

(x1
2 − x2

2)

(x1
1 − x2

1)2 + (x1
2 − x2

2)2
,

ẋ2
2 =

M1

2π

(
e
− (x1

1−x2
1)2+(x1

2−x2
2)2

2λ(t)2 − 1
)

(−x1
1 + x2

1)

(x1
1 − x2

1)2 + (x1
2 − x2

2)2
,

(68)

where M j ≡M j [0, 0, t] is constant and represents the total vorticity of the jth vortex.
Remark 4.6. If the vortices have different λ(t) values, say λ1(t) and λ2(t), then one just

needs to replace the 2λ(t)2 with λ1(t)2 + λ2(t)2 in the exponential to arrive at the correct
system.

We now state the main result of this section.
Theorem 4.7. System (68) admits only circular or straight-line trajectories.
Proof. Away from rest points our system (68) can be transformed into

∂x1
2

∂x1
1

=
−x1

1 + x2
1

x1
2 − x2

2

,

∂x2
2

∂x2
1

=
−x1

1 + x2
1

x1
2 − x2

2

,

∂x1
2

∂x2
2

= −M
2

M1
,

∂x1
1

∂x2
1

= −M
2

M1
.

(69)

Integrating out the bottom two equations, we get

x1
2 = −M

2

M1
(x2

2 + k2),

x1
1 = −M

2

M1
(x2

1 + k1).
(70)

First let us assume that M2 �= −M1. Then plugging back into the first two equations
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of (69), we arrive at

∂x1
2

∂x1
1

=

(
−1 − M2

M1

)
x1

1 − k1(
1 + M2

M1

)
x1

2 − k2

= −x
1
1 − k̃1

x1
2 − k̃2

,

∂x2
2

∂x2
1

=

(
1 + M2

M1

)
x2

1 − M2

M1k1(
−1 − M2

M1

)
x1

2 − M2

M1k2

= −x
1
1 − k̂1

x1
2 − k̂2

(71)

for appropriate constants k̃1, k̃2, k̂1, k̂2. Thus we integrate again and get

(x1
2(t) − k̃2)2 + (x1

1(t) − k̃1)2 = C1,

(x2
2(t) − k̂2)2 + (x2

1(t) − k̂1)2 = C2.
(72)

If M2 = −M1, then we have equal but opposite size vortices, and (68) becomes

∂x1
2

∂x1
1

= −k2
k1
,

∂x2
2

∂x2
1

= −k2
k1
,

(73)

which gives us straight-line solutions with slope −k2
k1 , as desired.

If we now consider the case of equal total vorticity for the two vortices (M2 = M1 ≡M),
the classical point vortex result is that the vortices will rotate around the center of vorticity
at a constant frequency, 2M

2πD2 , where D is the distance between the vortex centers. We will
now compute the viscous and finite core size effects on the frequency of rotation predicted
by our model. For simplicity we will center the vortices at the origin and place them on the
circle of radius r. We apply the polar change of variables,

(74) xi
1 = r cos(θi), xi

2 = r sin(θi), i = 1, 2;

then, using the fact that our vortices are out of phase by π, we can compute that

(x1
1 − x2

1) = r cos(θ1) − r cos(θ2) = 2r cos(θ1),(75)

(x1
2 − x2

2) = r sin(θ1) − r sin(θ2) = 2r sin(θ1),(76)

and thus we arrive at the expression for the frequency of rotation

(77) Ω =
M

4πr2

(
1 − e

−2r2

λ(t)2

)
.

Since λ(t)2 = λ2
0 + 4νt we notice three things: the first is that viscosity, ν, slows the

frequency of rotation down and, second, in the formal limit as ν → 0 and λ2
0 → 0 we recover

the constant frequency, 2M
2πD2 , which is what the Helmholtz–Kirchhoff model for the rotation

of two point vortices predicts. The third property we notice is that the frequency predicted
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“Typical” frequency of rotation for two localized vortices
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Figure 1. Here we plot both the frequency of rotation predicted by single vortex expansion up to quadrupole
order (dashed) and the frequency predicted by two vortex expansions truncated to leading order (solid). The
parameter values used are ν = .01, M = 1, r = 1, and λ0 = .01.

by (77) is different than Ω = M
4πr2 (1− e−4r2/λ(t)2), which is obtained by naively computing the

velocity field of each Gaussian vortex in the center of the other vortex.
With this calculation we may now compare the results of expanding a two-Gaussian initial

distribution as a single vortex or as two independent vortices. In [12] a two-Gaussian initial
distribution at a distance of 2r apart with core size λ0, each with mass M , is approximated
by a single vortex expansion using (28). The authors truncate the expansion to a quadrupole
moment (n = 2) and calculate the frequency of rotation to be

(78) Ω =
M

8π

[
1

2νt
ln
(

1 +
4νt
r2

)
− λ2

0

r4
1

1 + 4νt/r2

]
.

This equation is directly comparable to (77). Notice that both equations for frequency of
rotation indicate slowing of rotation over time, albeit at different rates. In addition, both
equations recover the Helmholtz–Kirchhoff approximation of 2M

2πD2 in the limit as ν → 0 and
λ0 → 0. In fact, in the sufficiently localized regime, r � λ0, both equations have similar
initial frequencies and remain close asymptotically. A typical example is shown in Figure 1.

5. Conclusions. In this paper we have derived a system of ODEs whose solutions give a
representation of solutions of the two-dimensional vorticity equation in terms of a system of
interacting vortices. We have also derived a sufficient condition on the initial vorticity distri-
bution which guarantees that this representation in terms of interacting vortices is equivalent
to the original solution of the two-dimensional vorticity equation. This model generalizes
the classical Helmholtz–Kirchhoff model of interacting, inviscid, point vortices to include the
effects of both finite core size and viscosity. A given initial vorticity distribution may be
represented in various ways by our model. As an example, we have considered the predicted
frequency of rotation by representing a spinning vortex as a pair of interacting Gaussian vor-
tices versus a single vortex but including higher-order moments. While the predictions of the
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two approaches were similar in this example, we expect that in general the preferred approach
will be governed by the details of the initial conditions.
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