
The University of San Francisco
USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center

Environmental Science College of Arts and Sciences

1997

Detecting Fire and Grazing Patterns in Tallgrass
Prairie Using Spectral Mixture Analysis
Carol A. Wessman

C Ann Bateson

Tracy Benning
University of San Francisco, tlbenning@usfca.edu

Follow this and additional works at: http://repository.usfca.edu/envs

Part of the Environmental Sciences Commons

This Article is brought to you for free and open access by the College of Arts and Sciences at USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center. It has been accepted for inclusion in Environmental Science by an authorized administrator of USF Scholarship: a digital repository @
Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

Recommended Citation
Carol A. Wessman, C. Ann Bateson, and Tracy L. Benning 1997. DETECTING FIRE AND GRAZING PATTERNS IN TALLGRASS
PRAIRIE USING SPECTRAL MIXTURE ANALYSIS. Ecological Applications 7:493–511.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of San Francisco

https://core.ac.uk/display/216979313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fenvs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fenvs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/envs?utm_source=repository.usfca.edu%2Fenvs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/artsci?utm_source=repository.usfca.edu%2Fenvs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/envs?utm_source=repository.usfca.edu%2Fenvs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=repository.usfca.edu%2Fenvs%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@usfca.edu


493

Ecological Applications, 7(2), 1997, pp. 493–511
q 1997 by the Ecological Society of America

DETECTING FIRE AND GRAZING PATTERNS IN TALLGRASS PRAIRIE
USING SPECTRAL MIXTURE ANALYSIS

CAROL A. WESSMAN,1,2 C. ANN BATESON,2 AND TRACY L. BENNING3

1Environmental, Population and Organismic Biology, University of Colorado, Boulder, Colorado 80309-0216 USA
2Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder,

Colorado 80309-0216 USA
3Department of Biological Sciences, Stanford University, Stanford, California 94305 USA

Abstract. Global grasslands are typically under management practices (such as fire
and grazing) that alter nutrient cycling, ecosystem composition, and distribution of organic
matter from the unmanaged condition. We evaluated landscape-level response to fire and
grazing treatments in the Konza Tallgrass Prairie Research Natural Area, Kansas, using
spectral mixture analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data
acquired 31 August 1990. Spectral mixture analysis derives the fractional abundances of
spectrally unique components in the landscape. The reflectance spectra of these components
are called endmembers. Endmember fractions values were compared against ground values
of live biomass, current standing dead biomass, and litter for 12 watersheds. Analysis of
variance (ANOVA) was performed on 37 watersheds with known burning and grazing
histories for each of the remote sensing variables. Seven endmembers were selected from
the AVIRIS data using a manual endmember selection method: nonphotosynthetic vege-
tation (NPV), soil, rock, shade, and three green vegetation endmembers (GV1, GV2, and
GV3). Each vegetation endmember correlated differently to biomass measurements and
revealed unique relationships to management treatments. From regressions, ANOVAs, and
image analysis, these three endmembers were inferred to represent canopy vertical structure
or leaf area index (LAI), greenness, and fractional cover of grass, respectively. There was
a stronger relationship between the sum of GV1 and GV3 fractions and live grass biomass
values than there was with the (unsummed) individual fractions. In an ANOVA, the sum
separated both burn and grazing treatments as well as the treatment interaction. The NPV
fraction was strongly correlated with ground measurements of litter and standing dead
biomass, and significantly separated burn treatments. The soil fraction differentiated grazing
treatments, and analysis of the soil fraction image revealed a spatial coherence of grazing
patterns along drainages. Similar analyses were perfomed on the Normalized Difference
Vegetation Index (NDVI), a commonly used two-band index computed from red and near-
infrared reflectance. NDVI, shown in previous studies to estimate the fraction of photo-
synthetically active radiation absorbed by green vegetation (FPAR), was a poor indicator
of canopy biomass, but it successfully separated fire treatments.

Broad-scale assessment of the state and structure of managed grassland systems requires
the identification of several indicator variables. Spectral mixture analysis, unlike NDVI,
not only separated treatments but also allowed for the identification of five remotely sensible
factors affected by the management treatments, namely, vertical structure, percentage cover
or patchiness, greenness, and distribution of soil and litter.

Key words: biomass; fire frequency; grasslands; grazing; Konza Tallgrass Prairie; litter; NDVI;
non-linear mixing; nonphotosynthetic vegetation; principal component analysis; remote sensing; spec-
tral mixture analysis.

INTRODUCTION

Large-scale flux estimates of biosphere–atmosphere
interactions require that attributes of ecosystem phys-
iology and structure be measured from remote sensing
platforms. Ground measurements give a limited as-
sessment of spatial and temporal variability, whereas
remotely sensed observations can assist extrapolations
to larger scales and better constrain simulated regional
and global flux calculations when used to initialize eco-

Manuscript received 4 December 1995; accepted 27 Feb-
ruary 1996; final version received 1 April 1996.

system models. However, measurements of fundamen-
tal vegetation attributes that have been considered in
remote sensing science, in particular photosynthetic ca-
pacity through estimation of the fraction of photosyn-
thetically active radiation absorbed by green vegetation
(FPAR; e.g., Sellers 1985, Bartlett et al. 1990, Sellers
et al. 1992), may not apply generally across ecosystems
due to variation in physiological response to resource
availability and other potentially limiting factors
(Chapin et al. 1987, Schimel et al. 1991). This does
not negate the power and generality of remote sensing
observations for ecosystem science, but rather stresses
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the points that (1) these observations must be well un-
derstood to better constrain the ecological variables
they measure and (2) a range of remotely sensed vari-
ables must be explored to address the large-scale in-
fluence of ecosystem properties such as carbon–nitro-
gen allocation and decomposition in biosphere–atmo-
sphere interactions.

Due to the apparent simplicity of their structure and
physiology, grasslands have been the subject of many
remote sensing studies aimed at understanding vege-
tation reflectance properties and their significance to
plant and ecosystem processes (e.g., Sellers et al. 1988,
Burke et al. 1991, Dyer et al. 1991, Turner et al. 1992,
Paruelo et al. 1993, Lauenroth and Paruelo 1995). How-
ever, management practices typical in most grasslands
(such as burning and grazing) regulate nutrient cycling,
ecosystem composition, and distribution of organic
matter in ways that deviate from undisturbed systems
(Dyer et al. 1991, Hobbs et al. 1991). In addition, most
grasslands are in climatic regions with a high degree
of seasonal variability that can lead to frequent alter-
ations in ecosystem resource dynamics and the super-
imposition of management practices adds further vari-
ation in resources over time. This transient nature of
resource availability in both managed and unmanaged
grasslands results in a complexity of ecosystem struc-
ture and functioning that can confound estimates of
grassland system properties (Seastedt and Knapp
1993). For example, both fire and, to some extent, graz-
ing increase the amount of PAR available to photo-
synthesizing vegetation through reduction of standing
and fallen litter, resulting in increased photosynthetic
capacity (Knapp 1984, Knapp and Seastedt 1986).
However in times of drought, the presence of a detrital
layer in ungrazed, unburned tallgrass prairie reduces
the negative effects on net primary production and flux-
es of energy and carbon dioxide that would otherwise
be experienced in grazed or burned grasslands (Knapp
et al. 1993). Further, grazing may alter patterns in
aboveground vs. belowground carbon allocation and
enhance plant-available nitrogen (Holland and Detling
1990, Dyer et al. 1991), whereas frequent fires may
induce nitrogen limitation through a combination of
increased belowground production and higher carbon-
to-nitrogen ratios in plant material (Risser and Parton
1982, Seastedt et al. 1991, Benning 1993, Ojima et al.
1994).

Ecosystem responses to single or combined man-
agement strategies in concert with natural fluctuations
in resource availability may be difficult to interpret
from ground observations alone, but may result in land-
scape level ‘‘integrated’’ effects detectable through re-
mote sensing analyses. Yet, because of the complex
nature of disturbed systems, single factor measure-
ments (e.g., the FPAR associated with the Normalized
Difference Vegetation Index [NDVI]) may be insuffi-
cient to adequately characterize the ecosystem state and
condition. Other analytical tools based on remote sens-

ing should be explored with the aim of capturing vari-
ation of temporal and spatial response to management
practices. These, in turn, can contribute to regional and
global estimates of biosphere fluxes by helping to ad-
dress the significant portion of the earth’s surface man-
aged by humans.

In this paper, we show how linear spectral mixture
analysis (LSMA) can be applied to a multispectral im-
age of the Konza Prairie Research Area to detect in-
dicators of burning and grazing treatments. Multispec-
tral satellite or airborne imagery consists of reflectance
values measured across a number of spectral bands of
various widths depending on the sensor type. Each data
acquisition is an image of the landscape with a reflec-
tance curve or spectrum associated with each picture
unit or pixel. Pixels that are completely covered by one
ground material may have a reflectance spectrum that
can be identified as the spectral signature of that ma-
terial. Vegetation, for example, can be spectrally dis-
tinguished from senescent vegetation, soil, and rock by
chlorophyll’s absorption of red wavelengths and by
high reflectance of near-infrared (NIR) wavelengths
due to leaf and canopy structure (Gates et al. 1965).
Often, however, a pixel from a remotely sensed image
does not consist of a single material but is a mixture
of materials such as vegetation, soil, and senescent veg-
etation. In this case, its spectrum is the integration by
the sensor of the reflectance of several spectrally dis-
tinct ground components.

LSMA, which models each spectrum as a mixture of
the spectral responses of a finite number of ground
components, is used for the analysis of heterogeneous
land surfaces. The component spectra used in the model
are called endmembers. Because LSMA computes the
fractional coverage of each endmember within each
pixel, it reveals the horizontal distribution of ground
materials in the landscape. In addition, endmembers
may be selected so that LSMA also reveals aspects of
the vertical structure such as leaf area index (LAI),
biomass, and background.

Vertical structure influences spectral reflectance
through non-linear mixing that occurs when light
comes in contact with more than one ground component
before it is reflected back to the sensor (see Fig. 1).
For example, part of the light striking a leaf may be
transmitted through the leaf and reflected from a bright
soil back through the leaf and on to the sensor. The
effect of this interaction of the light with both the leaf
and the bright soil produces a spectrum different from
that of a leaf against a dark soil background (Roberts
1991). Hence, in a vegetated landscape with a patch-
work of variable soil brightnesses occurring at the scale
of the pixel or greater, more than one vegetation end-
member may be needed to accurately compute fractions
of vegetation. Also, multiple leaf layers increase the
NIR reflectance because NIR radiation is scattered
among the layers (Borel and Gerstl 1994, Yoder and
Waring 1994). A vegetation endmember with a high



May 1997 495REMOTE SENSING OF MANAGED GRASSLANDS

FIG. 1. Illustration of linear and non-linear mixing: (a) linear mixing occurs when the sensor integrates light reflected
from more than one source such as soil and leaves, (b) non-linear mixing occurs when light is multiply scattered; that is,
the light hits more than one surface before being reflected back to the sensor. In this figure, the light is transmitted through
the vegetation canopy, strikes the soil, and is then reflected back to the sensor. These effects impart to the soil reflectance
signature a resemblance to the spectral signature of green vegetation (Huete 1989).

NIR plateau should have large fractions in those pixels
consisting mainly of dense vegetation; these fractions
should be correlated with LAI, which becomes a can-
opy attribute detectable by LSMA.

Many applications of LSMA have drawn on libraries
of laboratory- or field-acquired spectra to develop sets
of endmembers (e.g., Smith et al. 1990, Gamon et al.
1993, Roberts et al. 1993, Smith et al. 1994, Adams et
al. 1995). Alternatively, a manual endmember selection
method (Bateson and Curtiss 1996) has been designed
to derive from the image data endmembers whose
shapes are influenced by significant non-linear mixing
and other factors determining the spectral responses
recorded in the dataset. With the derived set of end-
members, the LSMA model can be inverted to produce
a suite of variables (i.e., endmember fractions). In this
paper, each variable was considered as an indicator of
ecosystem response to management practices in the
Konza prairie.

We also included NDVI in our analysis of the Konza
landscape because it is a familiar tool often used by
ecologists in vegetation studies based on remotely
sensed data. Simple two-band spectral vegetation in-
dices such as NDVI exploit differences in canopy re-
flectance in red and near-infrared wavebands to distin-
guish vegetation from other landscape components.
NDVI is a near-linear indicator of PAR interception by
the canopy; however, it is a less reliable predictor of
structural properties such as LAI and biomass (Sellers

1985, 1987). Recent studies demonstrate a response to
chlorophyll concentration independent of LAI (Yoder
and Waring 1994) and to green standing biomass when
percentage of non-green tissue is removed from the
calculations (Gamon et al. 1995). Non-green standing
biomass, plant canopy geometry, percentage cover, and
variation in background can all influence NDVI’s sen-
sitivity to biomass and LAI (e.g., Jackson et al. 1979,
Huete et al. 1985, Jackson and Pinter 1986, Huete and
Jackson 1987). Because NDVI responds to a complex
of structural and functional factors, it was anticipated
that conflicting influences at the Konza site could un-
dermine NDVI’s tracking of watershed features most
indicative of burning and grazing. Moreover, it was not
expected that NDVI would clearly track changes in
graminoid biomass because there are trees in some of
the watersheds (especially, the grazed watersheds) and
NDVI responds to trees as well as grass. On the other
hand, LSMA has an advantage over single indices such
as NDVI because endmembers may be selected to sep-
arate and individually track radiative processes and fac-
tors contributing to a spectrum and indicative of canopy
condition (e.g., LAI and chlorophyll concentration).

The goal of this paper is to show that grazing and
fire treatments in the tallgrass prairie of the Konza Re-
search Area result in landscape scale characteristics
both indicative of grassland condition and detectable
through remote sensing analysis. Ultimately, remotely
sensed indicators of the state of managed grasslands
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FIG. 2. Map of the Konza Prairie Research Natural Area,
Kansas, showing burn and grazing treatments. This map iden-
tifies the watersheds described throughout this paper.

can be used to support simulations of grassland dy-
namics for predictive capability. For example, quan-
tification of the abundance of live vegetation can con-
strain simulations of a system’s potential to acquire
resources through photosynthesis and nutrient uptake
and to lose water by transpiration. Measurements of
dead vegetation or litter cover can constrain decom-
position calculations; leaf and stem litter represent ma-
jor inputs of energy and resources to animals and de-
composers.

In our analysis, endmember fractions computed by
LSMA and the NDVI values were compared through
linear regression to biomass measurements collected
by the Long-Term Ecological Research Program at the
Konza. Response to the management treatments has
been assessed through these annual measurements of
net primary production (e.g., Towne and Owensby
1984, Abrams et al. 1986, Hobbs et al. 1991, Vinton
et al. 1993). In an extension of the LSMA and NDVI
analyses to the rest of the Konza Prairie for which there
are no ground data, we perform ANOVAs to ascertain
the sensitivity of each endmember and NDVI to treat-
ment types.

MATERIALS AND METHODS

The study site

This study was conducted at Konza Prairie Research
Natural Area, a 3487-ha tract of tallgrass prairie located

10 km south of Manhattan, Kansas (39839 N, 96839 W;
Fig. 2). This site was established in 1970 to study the
effects of fire and fire frequency on tallgrass prairie
ecosystems and became a member of the U.S. National
Science Foundation’s Long-Term Ecological Research
Network (LTER) in 1980. Subsequently, grazing by
native herbivores (bison) as well as cattle has been
added to the experimental design. Vegetation in this
area is dominated by warm season C4 grasses such as
big bluestem (Andropogon gerardii Vitman), little
bluestem (Andropogon scoparius Michx.) and Indian-
grass (Sorghastrum nutans (L.) Nash.). A more detailed
description of vegetation composition is available in
Hulbert (1988). Rainfall for the area averages 83 cm/yr,
of which ø75% occurs in the growing season from
April through September; mean January temperature is
22.78C and mean July temperature is 26.68C (Brown
and Bark 1971, Bark 1987).

The soil at the Konza Prairie is a silty clay loam
(Udic haplustoll) with color ranging from dark gray
when dry to almost black when moist. Depth is, on
average, ø1 m to bedrock (Hayes and Seastedt 1987);
however, topoedaphic features are particularly impor-
tant at the Konza due to their complex nature. Konza
Prairie is located in the Flint Hills region of north-
eastern Kansas. Topographic position is believed to be
significant because of the juxtaposition of layers of
impermeable shale and fractured limestone resulting in
a ‘‘stair step’’ appearance, which at any given point
may contain a number of different soil types and
depths, although all are considered mollisols (Jantz et
al. 1975). Consequently, many of the upland slopes and
hilltops contain exposed limestone overlaid by a sparse
grass canopy.

Konza Prairie is managed as a watershed level fire
frequency experiment with replicated watershed units
under a variety of mid-April prescribed burning re-
gimes ranging from annual, 2-yr, 4-yr, and 10-yr in-
tervals to long-term unburned sites. Burned watersheds
are dominated by grass species and are spatially more
uniform than other watershed types. Unburned water-
sheds have abundant surface litter and may have more
non-grass species since succession is not suppressed
by fire. Grazed watersheds are likely to have the great-
est spatial variability due to selective grazing, tram-
pling, and nutrient input by cattle (Hobbs et al. 1991).
Burning of a grazed watershed reduces the landscape
to uniform, pre-grazed conditions.

Ground sampling

Estimates of peak foliar biomass (excluding trees)
were obtained between 6 and 20 September from wa-
tersheds being studied as a part of the LTER program
(e.g., Briggs et al. 1989). The time period from mid-
August to mid-September usually represents peak
growing season prior to onset of senescence. For each
watershed, 20–40 replicate plots of area 0.1 m2 were
clipped to bare soil: 10–20 plots were from a lowland
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TABLE 1. Biomass data (in grams per square meter of ground surface) collected in 1990 as part of the Konza Prairie LTER
project. Data represent means 6 1 SE. Watersheds are described in Fig. 2; year of the last burn is in parentheses.

Watersheds

Landscape component

Grasses Forbs Standing dead Litter Total live‡ Total biomass‡

20A
(1980) 188.6 6 22.6 47.8 6 6.9 23.6 6 2.8 743.2 6 56.5 236.3 6 23.5 260.0 6 25.9

20B
(unburned) 187.3 6 16.7 50.2 6 5.25 92.5 6 10.4 676.3 6 37.9 237.5 6 17.4 330.0 6 23.55

1A
(1990) 352.8 6 23.6 45.9 6 5.6 72.0 6 5.2 0 6 0 399.0 6 24.31 470.7 6 28.4

1C
(1990) 293.0 6 21.0 40.6 6 4.8 147.7 6 8.15 0 6 0 333.6 6 19.8 481.3 6 25.3

1D
(1990) 364.3 6 29.5 25.0 6 3.6 127.3 6 8.0 0 6 0 389.35 6 29.3 516.6 6 36.1

2D
(1990) 244.1 6 19.4 23.2 6 4.5 128.9 6 10.9 0 6 0 267.3 6 19.1 396.2 6 19.9

4B
(1987) 154.1 6 13.6 42.15 6 3.9 84.2 6 5.8 477.08 6 29.3 196.25 6 13.0 280.53 6 15.6

N20B†
(1980) 197.4 6 14.7 44.3 6 5.4 75.8 6 5.9 577.1 6 35.5 241.7 6 14.8 317.51 6 18.6

N1A
(1990) 186.8 6 16.25 45.76 6 7.6 150.5 6 15.25 0 6 0 232.6 6 17.2 383.1 6 27.5

N1B†
(1990) 423.05 6 31.9 19.9 6 4.0 209.1 6 11.97 0 6 0 442.9 6 30.9 652.0 6 38.6

N4D†
(1988) 234.55 6 17.0 46.95 6 4.3 88.85 6 8.4 317.9 6 19.0 281.5 6 16.35 370.4 6 20.7

N20A†
(1990) 137.3 6 13.0 51.1 6 7.6 105.3 6 9.35 0 6 0 188.4 6 14.0 293.7 6 19.1

† Grazed after 1990.
‡ Total live represents grasses plus forbs; total biomass represents total live plus standing dead.

area and 10–20 were from an upland area. All clippings
were hand-sorted into four categories: graminoids
(grasses and sedges), forbs (herbaceous dicots with,
occasionally, a small woody plant component), current
dead (standing litter from current growing season), and
litter (litter layer from previous growing seasons). For
watershed level estimates of these parameters, data
from all samples were combined and averaged (equally
weighted for uplands and lowlands, although the actual
watershed portion may have been different). The gra-
minoids dominate the total live green biomass and are
referred to as the ‘‘green’’ component throughout this
paper. We also consider categories of total live (grasses
and forbs) and total biomass (total live and current
dead; Table 1).

Image processing and analysis

Imagery from the U.S. National Aeronautics and
Space Administration’s (NASA) Airborne Visible/In-
frared Imaging Spectrometer (AVIRIS) was acquired
over the Konza Prairie Research Natural Area on 31
August 1990 at 1730 Greenwich Mean Time (1130 lo-
cal time). AVIRIS measures the total upwelling radi-
ance from 400 to 2500 nm through 224 channels and
is flown at an altitude of 20 km for a nominal spatial
resolution of 20 m and a swath width of 11 km (Vane
et al. 1993). Observed radiance values were reduced
to apparent surface reflectance using a solar and at-
mospheric model (ATmospheric REMoval Model
[ATREM]; Gao et al. 1993).

Because instrumental noise may significantly affect

the directions of the eigenvectors from a principal com-
ponent analysis (PCA) of remotely sensed data (used
in spectral mixture analysis), a noise reduction method
(the Minimum Noise Fraction [MNF] transform; Green
et al. 1988) was applied to the AVIRIS imagery prior
to the PCA. The MNF transform scales the data so that
noise is isotropic with unit variance in all directions;
under this condition, noise is not a factor in determining
directions of maximum variance (i.e., the PCA eigen-
vectors). After a PCA, component images of the MNF-
transformed data show decreasing quality with increas-
ing component number. In particular, any component
image representing a direction of unit variance consists
entirely of noise. Noisier component images can be
removed from the transformed data and the data trans-
formed back into the space of the original AVIRIS
bands to obtain a noise-reduced data set.

Computation of NDVI and linear spectral mixture
analysis (LSMA) were both performed on the ATREM-
corrected and noise-reduced AVIRIS imagery. The
NDVI image was constructed using the equation NDVI
5 (NIR 2 R)/(NIR 1 R), where R is the red reflectance
at band 29 (675 nm) and NIR the reflectance at band
50 (844 nm).

LSMA of the Konza image interpreted each spectrum
of the AVIRIS image as a mixture or linear combination
of a finite number of endmembers with non-negative
abundances summing to 1. For each endmember, an
image was constructed consisting of the abundances or
fractions of that endmember in the pixels of the AVIRIS
image.



498 CAROL A. WESSMAN ET AL. Ecological Applications
Vol. 7, No. 2

The endmembers used to unmix the AVIRIS image
were derived from the spectra of all pixels in the 12
watersheds with a manual endmember selection method
(MESM; for a complete description see Bateson and
Curtiss 1996). The MESM first computes the mean
spectrum of all spectra used in the selection. A com-
puter display allows the user to interactively select end-
members by adding to this mean multiples of the PCA
eigenvectors that account for most of the variance in
the spectra. Therefore, because the endmembers are
derived from the variance structure of the data, the
shape of each selected endmember can be influenced
not only by the spectral signatures of specific ground
materials (e.g., vegetation, soil, rock, and nonphoto-
synthetic vegetation [NPV]) but also by other factors
affecting the signal received by the sensor (e.g., mul-
tiple scattering of radiation between surface materials
such as vegetation, soil, and bark; atmospheric scat-
tering; shading; and illumination geometry). In this
study, we chose the MESM over library-based methods
of endmember selection (e.g., Smith et al. 1990) be-
cause the MESM does not require access to a large
spectral library or, alternatively, extensive field work
to assemble a collection of field endmembers ade-
quately representing the radiative processes and factors
affecting the spectral data.

Many unmixing studies have used three to five end-
members (e.g., shade, soil, green vegetation, often
NPV, and perhaps rock) to analyze remotely sensed
scenes (Gamon et al. 1993, Roberts et al. 1993, Smith
et al. 1994, Adams et al. 1995). In that mathematical
framework, the significant spectral influences men-
tioned may be relegated to the residuals of the model.
Such a predetermined model is inadequate for our goal
to discern remotely sensed factors indicative of burn
and grazing management practices, since some of those
factors may be lost to the residuals and hence would
not be identifiable in terms of the endmembers. In fact,
we include in this paper a principal components re-
gression that strongly suggests that six eigenvectors
and, hence, seven endmembers (Bateson and Curtiss
1996) are needed to obtain an endmember the fractions
of which are significantly correlated with graminoid
biomass measured in the field.

Statistical analysis

To determine if the field biomass values discrimi-
nated between the treatments, t tests were performed.
Also, endmember fractions and NDVI values for the
pixels of each of the watersheds were extracted from
the corresponding images. Averages for each watershed
were computed and regressed against corresponding
ground values. Regression analyses and scatterplots
were accomplished with the Interactive Data Language
(IDL; RSI, Boulder, Colorado).

Principal component regressions were performed for
subsets of the eigenvectors to examine the hypothesis
that seven endmembers are needed to discern remotely

sensed indicators of grazing and burning management
practices. For this analysis, the average spectrum of
each watershed was computed and corrected with the
mean of all spectra used in the endmember selection.
Eigenvector scores were next determined for each
mean-corrected watershed spectrum. For each selection
of endmembers and each endmember in the selection,
there is a linear equation for computing concentrations
from the eigenvector scores. Hence, a principal com-
ponent linear regression involving a subset of the ei-
genvectors and the field graminoid biomass values pro-
duces an upper bound on the correlation coefficients
(relating abundance fractions and field graminoid bio-
mass values) obtainable with any set of endmembers
constructed from the eigenvectors in the subset. Re-
gressions between eigenvector scores and field values
were performed with IDL.

In order to assess quantitatively the ability of end-
member abundances and the NDVI to distinguish be-
tween burn and grazing treatments on a larger subset
of the image than the 12 watersheds (only two of these
watersheds were grazed in 1990), we performed several
ANOVAs on an expanded subset of 37 watersheds with
known burning and grazing histories (Benning 1993).
Of these watersheds, five were grazed by bison at the
time of the overflight. The two factors of grazing and
burning were considered in the ANOVAs. The grazing
factor has two levels: grazed and ungrazed. The burn
factor can have four levels based on the burning treat-
ment for the year of the overflight (1990) and on the
time period between burnings. These levels are (1) UB:
unburned in 1990 (n 5 22); (2) B1: burned in 1990
and 1989 (n 5 7); (3) B2: burned in 1990 and 1988 (n
5 3); and (4) B4: burned in 1990 and 1986 (n 5 5).

A two-way classification with all levels of each fac-
tor leaves too few samples in some of the categories
(e.g., no watershed is in the grazed B2 category). To
minimize this imbalance, we performed two ANOVAs:
(1) a one-way ANOVA with the four-level burn factor
and (2) a two-way ANOVA with the two-level grazing
factor and a two-level burn factor distinguishing be-
tween burned and unburned watersheds. The last design
also included interactions between burning and grazing
treatments. ANOVA tests were conducted with the sta-
tistical package S1 (MathSci, Seattle, Washington).

RESULTS

MNF transform

Fig. 3 shows the first, sixth, and seventh eigenimages
of a subset of the forward MNF transformed Konza
image. This subset includes our study sites. Since there
is spatial information within the Konza research area
in the sixth eigenimage but not in the seventh, we re-
moved all but the first six eigenbands from the forward
MNF transformed cube and applied the inverse MNF
transform to obtain relatively noise-free imagery. This
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imagery has six dimensions and, hence, by theory
(Bateson and Curtiss 1996), seven endmembers.

Field data

Initial t tests on all the field data, including the 12
sampled watersheds, resulted in insignificant relation-
ships for all but litter and current dead categories. Due
to the lack of unburned, grazed watersheds, the grazing
treatment was underrepresented and a second set of t
tests was performed with grazed watersheds removed.
Among all ungrazed watersheds, every category of bio-
mass was found to significantly separate among burn
treatments (Table 2).

NDVI image

Topography of the Konza Prairie, particularly as it
affects water and nutrient availability and, hence, chlo-
rophyll concentrations (Schimel et al. 1991), appears
to drive the NDVI values (Fig. 4a). High NDVI values
mainly occur over the vegetation along King’s Creek
(e.g., in Fig. 4a compare watersheds K4A with K4B,
which are labeled in Fig. 2), Shane’s Creek (see wa-
tersheds SA and SB), and in the lowlands, whereas the
ridge tops with low NDVI values are a darker grey.
Differentiation between burning treatments of the wa-
tersheds is muted; e.g., there are only subtle changes
in image values along the alternating sequence of
burned and unburned watersheds in the lower left cor-
ner of the research area (watersheds 20A, 1A, 2A, 1B,
4C, and 4D). Nevertheless, a two-way ANOVA (Table
3) performed on the enlarged set of 37 watersheds re-
vealed that NDVI values detected significant (P 5
0.00002) differences between burned and unburned wa-
tersheds in that set. No differences were detected be-
tween grazed and ungrazed watersheds (P 5 0.09).
However, there is a significant interaction (P 5 0.02)
between grazing and burning, which may be seen in
Table 4, where there is a detectable difference between
predicted mean NDVI values for burned and unburned
watersheds that have not been grazed and almost no
difference for burned and unburned treatments on
grazed watersheds; that is, the difference between
burned and unburned treatments is not as distinct on
grazed watersheds.

NDVI did not have a significant correlation with gra-
minoid biomass (R 5 0.51, P 5 0.088) in the 12 wa-
tersheds comprising the study sites (Table 5, Fig. 5).
The lack of correlation between NDVI and graminoid
biomass may be explained by the presence of trees,
particularly in the watersheds that are crossed by
branches of King’s Creek. At a scale of 20 m, these
trees affect the signal received by the sensor and, thus,
the computation of NDVI. However, they are not in-
cluded in the sampling scheme for the ground mea-
surements.

Endmembers

The seven endmembers constructed with the MESM
are shown in Fig. 6 and identified as NPV, green veg-

etation 1 (GV1), shade, soil, rock, green vegetation 2
(GV2), and green vegetation 3 (GV3), in order of se-
lection.

Three vegetation endmembers

The contribution of vegetation to the spectral signal
recorded by the AVIRIS instrument was attributed to
varying abundances of three vegetation endmembers.
The first of these endmembers, GV1, produced a frac-
tion image (Fig. 4b) similar to the NDVI image in that
it very sharply emphasizes topography with high frac-
tional abundances in the lowlands, which have tall
grasses, shrubs, and occasional trees, and in the riparian
forests following Shane’s and King’s creeks. The ridge
tops have smaller GV1 fractions following the sparser
production in these drier areas.

In addition to following topography, GV1’s fraction
image, unlike the NDVI image, clearly separates fire
treatments. For example, note the strong delineation of
the sequence of watersheds 20A, 1A, 2A, 1B, 4C, and
4D along the lower left boundary of the research area
in GV1’s fraction image as compared to the NDVI im-
age. Particularly noticeable is the distinct boundary
between unburned watershed 4B and burned watershed
1B in the GV1 image. This boundary is faint in the
NDVI image. Compared to GV1 fractions, the NDVI
overestimated vegetation in the unburned watershed
4B, perhaps because of the bright litter background.

In both a one-way and two-way ANOVA (Tables 3
and 6) of the 37 watersheds, the GV1 fractions differ-
entiated very significantly (P 5 0.0000001) between
burned and unburned watersheds, although t tests did
not reveal significant differences between burning lev-
els (annual, 2-yr, 4-yr, unburned). In the two-way ANO-
VA, GV1 did not significantly (F 5 2.16, P 5 0.15)
separate grazed from ungrazed treatments. Moreover,
GV1 fractions were not significantly correlated with
ground measurements of graminoid biomass (R 5 0.31,
P 5 0.33, in Table 5) collected in all 12 watersheds.
As with NDVI, the poor regression is probably due to
GV1’s sensitivity to trees, which are not included in
the ground sampling.

The GV2 fraction image is also dominated by to-
pography and the riparian vegetation. GV2 has a neg-
ative correlation with ground graminoid biomass (Table
5) and does not distinguish between burn treatments in
either one- and two-way ANOVA (Tables 3 and 6).
However, it separates the grazing treatments very well
(P 5 0.0009 in Table 3), grazed watersheds having
higher GV2 values than those in ungrazed watersheds
(see Table 4). If we add together the GV1 and GV2
fraction images, we obtain an image (Fig. 7a) more
similar to the NDVI image than either the GV1 or GV2
image alone. In this image, topography is emphasized
and detection of burn history is faint.

The third vegetation endmember (GV3) has the high-
est correlation with the graminoid biomass (R 5 0.69,
P 5 0.01 in Table 5 and Fig. 5) and surpasses the GV2
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Fig. 3. The (a) first, (b) sixth, and (c) sev-
enth component images from the forward Min-
imum Noise Fraction (MNF) transformed cube.
Since image quality decreases with increasing
component number, noise was removed from the
data by discarding all but the first six images.

TABLE 2. Results of t test, including probabilities (Pr), com-
paring averages for field biomass categories on unburned
and burned watersheds. Only the 10 ungrazed watersheds
of Table 1 are considered; t tests are two-sided with as-
sumption of equal variances and df 5 8 in all cases. Neg-
ative values of t occur when the average of burned water-
sheds exceeds average of unburned watersheds.

Landscape component t value Pr(t)

Grass 24.29 0.0027
Forbs 2.87 0.021
Current dead 22.52 0.036
Litter 7.43 0.0001
Total live 23.85 0.0049
Biomass 24.15 0.0032

in its differentiation of grazing treatments (P 5
0.00005 in Table 3). Unlike GV2, GV3 fractions are
higher in ungrazed than in grazed watersheds (as in
N20A, N1A, N2A, N4c in the middle left portion of
the image in Fig. 4d). Burned treatments are not sep-
arated by GV3 (Table 3). Note that unlike the GV1
fraction image, the long-term unburned watersheds
20B and 20D are not distinguishable from their neigh-
bors in the GV3 image.

The best detection of grasses in this AVIRIS image
was achieved with the sum of GV1 and GV3 fractions
(Fig. 7b). This is reflected in the correlation between
GV1 plus GV3 and graminoid biomass, (R 5 0.74, P
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FIG. 4. NDVI and three Green Vegetation (GV) fractional abundance images: (a) NDVI, (b) GV1 (LAI), (c) GV2
(greenness), and (d) GV3 (grass cover). Abundance fractions and NDVI values are high in bright areas of the images.

5 0.01) in Table 5 and Fig. 5. In a two-way ANOVA
(Table 3), the sum was highly significant in detecting
burn treatments (F 5 37.65, P 5 0.000006) and grazing
patterns (F 5 15.34, P 5 0.0004). There were also
significant interactions (F 5 13.80, P 5 0.0007) be-
tween the two treatments. The GV1 plus GV3 fraction
combines GV1’s discrimination of burned from un-
burned watersheds with GV3’s response to grass cover.
Note that the trees in riparian forests are not empha-
sized in the image itself and most grazed and unburned
watersheds are clearly darker than burned watersheds,

with the exception of the cattle grazed watersheds on
the right hand side.

Nonphotosynthetic vegetation

Of all the images derived in the analysis (NDVI in-
cluded), the NPV image (Fig. 8a) shows the most strik-
ing delineation of the watersheds. The NPV endmem-
ber is responding to the sharp contrast between the
presence of litter in the unburned watersheds and its
absence in the burned watersheds. For example, notice
in the NPV image the clear discrimination of burned



502 CAROL A. WESSMAN ET AL. Ecological Applications
Vol. 7, No. 2

TABLE 3. ANOVA results including probabilities (Pr), for
the two-factor model (Burn and Grazing) with interactions.
Burn has two levels: burned and unburned. Grazing also
has two levels: grazed and ungrazed.

Image variable df F value Pr(F)

NDVI
Burn 1 32.42 0.0000238
Grazing 1 3.04 0.09
Burn : Grazing 1 6.39 0.02

GV1
Burn 1 111.43 0.0000001
Grazing 1 2.16 0.15
Burn : Grazing 1 5.90 0.02

GV2
Burn 1 3.42 0.07
Grazing 1 13.25 0.0009
Burn : Grazing 1 2.73 0.10

GV3
Burn 1 0.56 0.46
Grazing 1 21.96 0.000046
Burn : Grazing 1 6.17 0.018

GV1 1 GV3
Burn 1 37.65 0.000006
Grazing 1 15.34 0.0004
Burn : Grazing 1 13.80 0.0007

NPV
Burn 1 104.88 0.0000001
Grazing 1 5.01 0.03
Burn : Grazing 1 6.94 0.01

Soil
Burn 1 1.15 0.29
Grazing 1 14.88 0.0005
Burn : Grazing 1 6.69 0.014

Note: Error df 5 33.

TABLE 4. Table of predicted mean values for NDVI and each
endmember fraction in watersheds that have been: burned
and ungrazed, unburned and ungrazed, burned and grazed,
unburned and grazed. These values are the fitted values
from the two-way ANOVA in Table 3.

Image variable

Treatment

Burned,
ungrazed

Unburned,
ungrazed

Burned,
grazed

Unburned,
grazed

NDVI 0.73 0.69 0.70 0.70
GV1 0.126 0.091 0.123 0.11
GV2 0.10 0.09 0.12 0.14
GV3 0.42 0.41 0.36 0.39
GV1 1 GV3 0.55 0.50 0.48 0.50
NPV 0.058 0.094 0.058 0.069
Soil 0.09 0.09 0.13 0.10

and unburned watersheds along the lower left boundary
of the research area and the clear separation between
the burned and unburned areas that are separated by a
fence in watershed K20A. Moreover, the bright strips
flanking Interstate 70 consist of mowed grasses that
have dried by late August (T. R. Seastedt, personal
communication). The NPV fractions have highly sig-
nificant correlations (R 5 0.89, P 5 0.0001 in Table 5
and Fig. 5) with the sum of field litter and standing
dead. In a two-way ANOVA, the fractions produced a
very significant discrimination between burned and un-
burned watersheds (F 5 105, P 5 0.0000001 in Table
3).

Soil

The soil image (Fig. 8b) shows the highest concen-
tration of soil along some of the ridge tops and around
the creek, particularly in the grazed watersheds. Note,
for example, high soil concentrations in watersheds
N20A and N1A. Cattle and bison paths to the water
likely account for the exposed soil around the creek.
In a two-way ANOVA, soil discriminated significantly
(F 5 14.88, P 5 0.0005 in Table 3) between grazed
and ungrazed watersheds.

Rock

The rock fractional abundance image (Fig. 8c) high-
lights some ridge tops and the central plateau above
King’s creek. Ridges frequently have shallow rocky
soils and occasionally Permian limestone and shale
strata are exposed on steep-sided hills. Two rock out-
croppings may be seen in the lower right hand corner
outside of the research area. Overall, however, this end-
member does not differentiate between burning and
grazing treatments. Its spatial distribution in the image
is fairly uniform over the research area, consistent with
the common geology across watershed units (see Jantz
et al. 1975).

Shade

The shade endmember fraction image (Fig. 8d) picks
up shade around the trees in riparian forests. It high-
lights the unburned watersheds in the lower half of the
research area, probably because of shadowing in the
complex of litter and green grass.

Color composite image

The color composite image in Fig. 9 displays the
relation between grass, soil, and litter fractions in the
Konza Prairie. Subpixel mixing is easier to discern in
this image than in the gray scale fraction images. Sub-
pixel variation in vegetation and soil fractions is par-
ticularly evident in some of the grazed watersheds such
as N20A and N1A. The unburned watersheds (20A and
2A, for example) are mixtures of litter and vegetation.

Eigenvector analysis

Table 7 shows the correlation coefficients and sig-
nificances obtained when principal component regres-
sions were performed to test the sensitivity of eigen-
vector directions to the 12 graminoid biomass values
(see Methods for full description). Among the six ei-
genvectors used in the selection of endmembers and
analysis, the sixth eigenvector was the most sensitive
(R 5 20.67, P 5 0.02) to changes in biomass. High
biomass values were associated with watersheds whose
average spectra have large negative scores in the di-



May 1997 503REMOTE SENSING OF MANAGED GRASSLANDS

TABLE 5. Pearson’s correlation coefficient (R values) measuring the relationship between field biomass measurements and
appropriate endmember fractions and NDVI. Significance of each R value appears in parentheses.

Image
variable

Landscape component

Green
vegetation Forbs Current dead Litter Total live Biomass

Litter and
current dead

NDVI 0.51
(0.088)

20.70
(0.011)

0.27
(0.39)

20.45
(0.14)

0.47
(0.13)

0.45
(0.14)

20.45
(0.14)

GV1 0.31
(0.33)

20.27
(0.39)

0.21
(0.50)

20.64
(0.02)

0.30
(0.34)

0.31
(0.33)

20.68
(0.02)

GV2 20.39
(0.21)

0.35
(0.27)

20.45
(0.14)

0.05
(0.88)

20.37
(0.23)

20.46
(0.13)

20.02
(0.94)

GV3 0.69
(0.01)

20.60
(0.04)

0.10
(0.76)

20.17
(0.61)

0.67
(0.02)

0.53
(0.08)

20.17
(0.60)

GV1 1 GV3 0.74
(0.01)

20.64
(0.02)

0.19
(0.55)

20.46
(0.13)

0.71
(0.01)

0.60
(0.04)

20.48
(0.11)

NPV 20.42
(0.17)

0.46
(0.13)

20.40
(0.20)

0.86
(0.00)

20.40
(0.20)

20.46
(0.14)

0.89
(0.00)

FIG. 5. Scatter plots and regression lines for appropriate ground measurements vs. NDVI and selected endmember fractions
averaged over each of 12 watersheds. Unburned 5 M, burned 5 n; grazed watersheds have filled symbols.

rection of the sixth eigenvector. Note from Table 8 that
GV3 is the only vegetation endmember with a negative
score for the sixth eigenvector.

The correlation coefficient of 0.68 obtained with the
scores of the first four eigenvectors in Table 7 implies
that no matter which four endmembers are selected
from the space spanned by those eigenvectors, a mul-
tiple regression of their fractions against field grass
biomass values would never produce a correlation co-
efficient exceeding 0.68. Moreover, it may not be pos-
sible to find meaningful endmembers whose fractions
attain this limit. In fact, because no eigenvector had
scores significantly correlated with grass in this re-
gression, we cannot reject the hypothesis that a cor-

relation coefficient of 0.68 is due to chance in a re-
gression that uses four variables to predict 12 samples.
If we only used the last two eigenvectors for endmem-
ber selection and unmixing, that upper limit on the
correlation coefficient is increased to 0.90 with both
sets of eigenvector scores significant in the regression.

These regression results suggest that the last two
eigenvectors are needed to find reasonable endmembers
with fractions adequately correlated with grass bio-
mass. To prevent the loss of spectral information in-
dicative of grazing and burning treatments, our analysis
should include not only the eigenvectors tracking grass-
es (the fifth and sixth eigenvectors) but also the first
four eigenvectors, because they individually account
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Fig. 6. Seven endmembers derived with the manual end-
member selection method from the MNF noise-reduced 1990
AVIRIS cube of the Konza Prairie Natural Research Area.
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TABLE 6. ANOVA results, including probabilities (Pr), for
the one-factor model (Burn), where Burn has four levels.
(df 5 3 in all cases.)

Image variable F value Pr(F)

NDVI 9.87 0.00009
GV1 31.38 0.000001
GV2 1.16 0.34
GV3 0.19 0.90
GV1 1 GV3 7.18 0.0008
NPV 26.12 0.000001
Soil 0.47 0.71

Note: Error df 5 33.

FIG. 7. Images constructed from endmember abundances and identified with landscape components: (a) GV1 plus GV2
(note highlighting of trees in riparian areas), and (b) GV1 plus GV3 (grass biomass).

for more of the variance in the data than either the fifth
or sixth eigenvector. Hence, although many unmixing
studies have used only three to five endmembers (Ga-
mon et al. 1993, Roberts et al. 1993, Smith et al. 1994,
Adams et al. 1995), six dimensions and, thus, seven
endmembers were needed to analyze responses to graz-
ing and burning in the Konza research area at the time
of the 1990 August overflight.

DISCUSSION

As expected, burning significantly changed the dis-
tribution of ground materials from the undisturbed state
as illustrated by significant separation of burn treat-
ments by all categories of ground biomass measure-
ments on 10 watersheds. (Two burned, grazed water-
sheds were excluded because field values were not
available for any unburned, grazed watersheds.) With
litter removal, graminoids produced significantly more
mass and stature in response to increased PAR and
warmer soils in burned watersheds (Knapp 1984, 1985,

Knapp and Seastedt 1986). Depending on the burn fre-
quency, nitrogen availability may also have increased
(Ojima et al. 1994). Fire enhanced growth so that cur-
rent standing dead biomass on recently burned water-
sheds exceeded that on unburned (Table 1). In contrast,
C3 forbs and grasses were more abundant in unburned
areas due in part to their early establishment in the
absence of burning.

NDVI was unresponsive to fluctuations in biomass
across burned and unburned watersheds, shown by its
correlation with measured graminoid biomass (Table
5). Because the NDVI has generally performed better
in relationships with FPAR than with biomass (Hatfield
et al. 1984, Sellers 1985, 1987, Asrar et al. 1986, Bart-
lett et al. 1990), the NDVI’s insignificant relationship
with total aboveground biomass values was expected.
Even the distinction of green biomass did not signifi-
cantly improve the relationships, as it did in a field
study reported by Gamon et al. (1995), possibly be-
cause the mixed landscape composition at the pixel
scale has a far stronger influence than at the canopy
scale measured in ground studies. Alternatively, the
presence of trees in several of the watersheds inflate
NDVI values and, because they were not included in
ground estimates of biomass, disturb the relationship
with the grass.

Although NDVI does not track biomass changes in
the restricted set of 12 watersheds, the ANOVA indi-
cates a significant sensitivity to other factors differ-
entiating burned from unburned treatments. However,
GV1 has a much stronger discrimination of burn treat-
ments, possibly because NDVI responds to a variety
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FIG. 8. Background fractional abundance images: (a) nonphotosynthetic vegetation (NPV), (b) soil, (c) rock, and (d)
shade.

of factors such as LAI, chlorophyll concentrations, and
FPAR and these factors may not covary positively with
each other across burning treatments. The NDVI im-
age’s strong resemblance to the GV1 plus GV2 image
suggests that NDVI responds to more factors than does
GV1 or GV2 singly.

NDVI does not significantly separate grazed from
ungrazed watersheds, again possibly because many of
the grazed watersheds are along the creeks and include
trees, which inflate the NDVI values at the pixel scale.
The significant interaction between grazing and burn
treatments detected by NDVI in the ANOVA may be

due to the fact that NDVI values for burned and un-
burned grazed watersheds are close to each other be-
cause of the influence of trees in those watersheds on
NDVI.

Leaf area (GV1), greenness (GV2), and fractional
cover (GV3) were three vegetation attributes at the
landscape scale that could be distinguished through
LSMA across treated watersheds.

GV1’s fractions responded consistently to changes
in LAI throughout the image. In grazed watersheds
(e.g., N20A in Fig. 4b), the GV1 fraction image has
small values in those regions of the watershed devoid
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FIG. 9. Red-green-blue color composite based on endmember fractions. Red, nonphotosynthetic vegetation (NPV); green,
grass (GV1 plus GV3); and blue, soil.

TABLE 7. Pearson’s correlation coefficient (R) for the relationship between ground measures
of graminoid biomass and subsets of eigenvector (Eig) scores. The columns represent ei-
genvector subsets and each entry is the significance of the eigenvector (if relevant) in the
regression.

Eig1
R 5

20.63

Eig2
R 5
0.22

Eig3
R 5
0.25

Eig4
R 5

20.39

Eig5
R 5
0.11

Eig6
R 5

20.67

All Eig
R 5
0.92

Eig1–4
R 5
0.68

Eig5–6
R 5
0.91

Eig1 0.03 0.97 0.13
Eig2 0.49 0.77 0.89
Eig3 0.44 0.62 0.97
Eig4 0.22 0.85 0.47
Eig5 0.73 0.12 0.0018
Eig6 0.02 0.05 0.0001
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TABLE 8. Eigenvector scores for the seven selected endmembers.

Image
variable Eig1 Eig2 Eig3 Eig4 Eig5 Eig6

GV1 2384 2225 217 2247 230 36
GV2 304 354 139 182 2137 207
GV3 2234 627 250 24 221 238
NPV 4412 2076 2859 2182 112 81
Soil 743 21567 177 2102 2130 29
Rock 5034 2762 1027 2037 814 454
Shade 22730 23299 142 142 51 27

of trees. The burned areas, which consist predomi-
nantly of taller C4 grasses, exhibited larger GV1 frac-
tions than the unburned areas where vegetation growth
was constrained by the litter layer (Knapp and Seastedt
1986, Knapp et al. 1993). The high NIR plateau of the
GV1 endmember was a response to LAI, since NIR
reflectance increases (up to saturation) with increasing
leaf layers. Although deciduous trees may have a lower
NIR plateau when measured at the canopy level rather
than the leaf or branch level (e.g., Williams 1991), the
GV1 endmember continued tracking LAI across
changes in architecture, i.e., herbs to trees. If shad-
owing is a major reason for decreased NIR reflectance
at the canopy level, as suggested in Williams (1991),
the removal of shadowing and shade through a shade
endmember would explain large GV1 fraction values
associated with the trees. Like NDVI, GV1 fractions
had a low correlation with ground-measured biomass
values probably because of sensitivity to trees.

GV2’s relationship to greenness was supported by
its distinctive spectral signature, which displays
marked green reflectance and red absorbance, and by
its highly significant separation of grazing treatments.
GV2 values range from low values in ungrazed water-
sheds to high values in grazed watersheds. Removal of
biomass through grazing results in higher concentra-
tions of nitrogen in remaining aboveground tissues
(Dyer et al. 1991). Equating GV1 with LAI and GV2
with greenness explains the resemblance between the
GV1 plus GV2 image and NDVI’s image.

GV3’s significant correlation with graminoid bio-
mass and its lack of response to trees in the image
confirms it as a measure of grass. For these reasons,
GV3 is identified as the grass endmember, and as such,
measures grass cover. GV3 fractions separate grazed
from ungrazed treatments with high significance, but
unlike the GV2 fractions, GV3 fractions were larger in
the ungrazed than grazed watersheds. Moderate levels
of grazing create a patchy landscape through selective
feeding patterns (Hobbs et al. 1991, Vinton et al. 1993);
thus GV3 fractions were lower for grazed areas and
higher for the continuous cover of ungrazed water-
sheds.

Theoretically, green vegetation fractions relate to
areal greenness and not directly to biomass volume.
Graminoid biomass had a stronger correlation with
GV1 plus GV3 fractions (R 5 0.74) than with GV3

fractions alone (R 5 0.69), probably because the com-
bination of LAI (GV1) and cover (GV3) brought the
estimates closer to a volume measurement. For the
same reason, GV1 plus GV3 significantly discriminated
all treatment effects and their interactions at the wa-
tershed scale, although GV3 did not discriminate be-
tween burning treatments.

If we consider the interpretation of GV1 as LAI and
GV3 as grass cover to be valid, the image analysis
substantiates ground studies and implies that landscape
effects are carried over from the smaller scales and are
detectable from remote sensors. LAI is most signifi-
cantly affected by burn treatments, as burning sub-
stantially changes initial and subsequent growing con-
ditions in the microclimate, vegetation composition,
and nutrient cycling (Old 1969, Kucera 1981, Risser
and Parton 1982, Knapp 1984, 1985, Ojima et al. 1990,
Collins 1992, Knapp et al. 1993). Grazing will also
affect LAI through biomass removal; however, in this
analysis, the high values of trees present in grazed wa-
tersheds compensated for lowered grass LAI in the
overall watershed means. Variation in fractional cover
is created through grazing, leading from relatively con-
tinuous cover in any non-grazed area to significant
patchiness in grazed areas.

The interaction of these two variables with respect
to mixed treatment practices may be a result of the
burning–grazing chronology. Burning in the spring re-
sets the landscape from any prior condition to one of
homogeneous, continuous cover. Subsequent grazing
results in a discontinuous canopy. Moreover, Vinton et
al. (1993) recently found that grazed patches were larg-
er in more frequently burned watersheds than in less
frequently burned areas of the Konza Prairie. Overall,
the combination of the burning–grazing sequence cre-
ates the lowest cover of grass, followed by an un-
burned–ungrazed condition, as shown in Figs. 4 and 7.
In the latter condition, lower production of grass can
be expected due to accumulated litter and its influence
on germination and growth. Burned, ungrazed treat-
ments resulted in highest values for the LAI–fractional
cover combination, followed by unburned, grazed treat-
ments. In other words, optimum cover conditions ap-
pear to be created by single treatments, either grazed
or burned, through their respective methods of remov-
ing or reducing litter buildup.

Because litter distribution (NPV) and soil exposure
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are descriptive of treatment response, the fractional
abundances of the soil and NPV endmembers were ad-
ditional discriminators of burning and grazing. In some
studies (Roberts 1991, Roberts et al. 1993), it has been
difficult to unmix an image with both soil and NPV
endmembers without obtaining an NPV fraction image
that displays the high frequency spatial variability as-
sociated with noise from endmember mimics (Sabol et
al. 1992). (Mimics occur when an endmember is almost
a linear combination of the other endmembers or when
an endmember cannot be differentiated from another
endmember because of low spectral resolution.) With
manual selection of endmembers, an NPV endmember,
in fact, gives the sharpest delineation of the watersheds
(Fig. 8a). The lignin–cellulose absorption feature at
1720 nm (Elvidge 1990, Wessman 1990, Gao and Goetz
1994) in the NPV endmember (Fig. 6) together with
the strong correlation of its fractions with dead vege-
tation biomass (litter and current), identified it as a non-
photosynthetic vegetation spectrum. This feature is not
present in the soil endmember and, in general, is less
apparent in live vegetation due to the influence of water.
(It is the distinctive chlorophyll feature that separates
photosynthesizing vegetation from its background.)

Litter is a definitive characteristic of unburned areas,
although values are somewhat suppressed when graz-
ing occurs to reduce biomass accumulation (Hofstede
et al. 1995). The projected mean NPV fractions from
the two-way ANOVA show the same pattern (Table 3).
In addition, the lowest values for the NPV fractions
occur in burned areas with or without grazing present.
The soil image distinguishes grazing treatments since
soil exposure is created by the activities of grazers
(Hofstede et al. 1995, Collins and Benning 1996; see
also Table 3 for soil’s significant separation of grazed
from ungrazed treatments).

The color composite of GV1 plus GV3, NPV, and
soil best shows the patchiness of the variables across
the landscape (Fig. 9), particularly within grazed wa-
tersheds where soil and grass fractions vary most. This
variation within components is neither captured in wa-
tershed averages, as in the comparisons with ground
measured biomass, nor is it captured well by the NDVI.
Single-value indices such as the NDVI may not capture
the variation in landscape composition and it is such
variation that will decrease NDVI’s utility when con-
ditions are changing, both spatially and temporally.

CONCLUSION

Patchiness, LAI, greenness, graminoid biomass, and
soil and litter distribution are six remotely sensible
landscape attributes of grasslands affected by grazing
and fire management practices. With sub-pixel sepa-
ration of important landscape components, spectral
mixture analysis produced a suite of variables in one-
to-one correspondence with these attributes. Because
a complex of factors (LAI, greenness, FPAR) and land-
scape components (e.g., soil, litter, trees as well as

grass) influence a single NDVI value, NDVI does not
discriminate the treatments as well as the endmember
fractions.

There were several characteristics of this study that
were necessary for its success. First, the MNF noise
reduction method produced cleaner data, increasing the
number of relatively noise-free eigenvectors from four
to six. As we showed, six eigenvectors are needed to
obtain an endmember that discriminates grass from
trees. Second, the manual selection of endmembers al-
lowed us to construct from these eigenvectors seven
endmembers to use in the mixture model. Finally, the
use of high spectral resolution data enabled the dis-
crimination between the NPV and other background
endmembers based on lignin–cellulose absorption fea-
tures only present in the litter. These landscape com-
ponents have not typically been discriminated in broad-
band imagery such as Landsat Thematic Mapper.

Primary production of ecosystems may be reduced
as a result of management practices or by local vari-
ation in the availability of other resources. The re-
sponse to disturbance is likely to be expressed in a
number of factors ranging from functional (e.g., FPAR)
to structural characteristics (e.g., LAI, patchiness) of
the landscape. A single-index remote sensing approach
to the broad-scale assessment of these systems is in-
adequate. Spectral mixture analysis tracks indicator
variables of managed grassland systems that reflect the
current structure and state of the system. These vari-
ables can be used to set the conditions for numerical
simulations of grassland dynamics, with implications
for large-scale studies of disturbances, biogeochemical
cycling, and future management procedures.
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