
The University of San Francisco
USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center

Environmental Science College of Arts and Sciences

2006

Factors Controlling Structural and Floristic
Variation of Riparian Zones in a Mountainous
Landscape of the Western United States
A G. Merrill

Tracy Benning
University of San Francisco, tlbenning@usfca.edu

J A. Fites

Follow this and additional works at: http://repository.usfca.edu/envs

Part of the Environmental Sciences Commons

This Article is brought to you for free and open access by the College of Arts and Sciences at USF Scholarship: a digital repository @ Gleeson Library |
Geschke Center. It has been accepted for inclusion in Environmental Science by an authorized administrator of USF Scholarship: a digital repository @
Gleeson Library | Geschke Center. For more information, please contact repository@usfca.edu.

Recommended Citation
A.G. Merrill, T.L. Benning, and J.A. Fites. Factors Controlling Structural and Floristic Variation of Riparian Zones in a Mountainous
Landscape of the Western United States. Western North American Naturalist 66(2):137-154. 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of San Francisco

https://core.ac.uk/display/216979311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fenvs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu?utm_source=repository.usfca.edu%2Fenvs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/envs?utm_source=repository.usfca.edu%2Fenvs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/artsci?utm_source=repository.usfca.edu%2Fenvs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.usfca.edu/envs?utm_source=repository.usfca.edu%2Fenvs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=repository.usfca.edu%2Fenvs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@usfca.edu


It has long been recognized that riparian
zones perform important services, including
improvement of surface and groundwater qual-
ity, provision of high quality habitat, reduction
of flood risk and erosion, and increased stabi-
lization of banks. Growing appreciation of the
importance of riparian zones and other wet-
lands has resulted in dramatically increased
expenditures for protection and restoration of
these systems. For example, The CALFED Bay–
Delta Program (CALFED Bay–Delta Program
1999) has approved approximately $254 million
for wetland and watershed restoration projects
within the California Bay Delta watershed. In
2003 the Lake Tahoe Restoration Act was signed
into law; this act authorized federal expendi-
tures of up to $300 million to fund a 10-year,
$908-million Environmental Improvement Pro-

gram at Lake Tahoe, which includes extensive
watershed restoration projects. In spite of this
public attention and expenditure, a watershed-
to-landscape-scale understanding of the fac-
tors driving variation in the composition and
dynamics of riparian ecosystems is lacking.
Understanding how riparian systems differ
structurally and functionally in the landscape
and what factors control this variation would
improve our ability to predict effects of human
activities on services that riparian ecosystems
provide.

We use hierarchy theory to organize ob-
served variation in the physical and vegetative
characteristics of riparian zones in a mountain
landscape. Hierarchy theory postulates that
landscapes are composed of entities organized
as nested units (O’Neill et al. 1986, 1989). The
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ABSTRACT.—We examined landscape patterns in the physical conditions and vegetative composition of montane
riparian zones to identify their most important sources of variation. Information on plant species cover and on physical
characteristics that occur at coarse, medium, and fine scales was collected for 144 riparian plots located throughout the
Lake Tahoe Basin, which straddles the California-Nevada border in the western United States. Constrained and uncon-
strained ordination analyses were used to identify the most important correlates of physical form and plant species com-
position. Through multivariate analysis of environmental variables (principal components analysis), vegetation data
(detrended correspondence analysis), and the combined relationship between the environmental and vegetation data
(canonical correspondence analysis), we consistently found that the greatest variation occurred along a gradient of
decreasing valley width, decreasing stream sinuosity, and increasing stream slope. Although surface characteristics
reflected a 2nd important source of variation in physical conditions, plant species distribution was not strongly correlated
with riparian surface conditions. Strong correlations among physical variables that occur at different scales, such as be-
tween valley form and geofluvial surface and between geofluvial surface and surface conditions, support the use of a
physically based hierarchical framework for organizing riparian zones within the landscape. Such a hierarchical frame-
work would be useful for interpreting patterns in riparian structure and process at different scales and could be applied
to riparian zones in other mountain landscapes of the western United States and elsewhere. Moreover, our finding that
riparian plant species composition is most strongly correlated with environmental variables that occur at coarse to mod-
erate scales, most of which can be derived from existing data, supports the idea that modeling montane riparian community
distribution using topographic and remotely sensed data could be useful; however, a large degree of species variation,
unexplained by the variables we collected, indicates that other variables, perhaps disturbance regime, should be included
in such a venture.
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behavior of units at one given level of the hier-
archy is controlled by environmental con-
straints imposed by units at a scale above and
by the biotic potential of the system’s compo-
nents at a scale below (O’Neill et al. 1989).
Hierarchy theory has been applied to explain
the distribution of terrestrial ecosystem types
(Albert et al. 1986) and to develop models that
predict variation in ecosystem function and
processes, including response to disturbance
and biogeochemical cycling (Zak et al. 1986,
Host et al. 1987, Wu and Loucks 1995, Palik et
al. 2000, Sauchyn 2001).

Although the concept of hierarchy theory
might be generally applicable, the elements
within a hierarchy likely vary among landscapes.
Different types of landscapes have character-
istic sets of physical features that control vari-
ation in their associated riparian zones (Malan-
son 1993). For example, the valley of the lower
Mississippi has very low topographic relief
and abundant water. In this landscape floristic
variation tracks subtle shifts in topography
that alter the extent and duration of flooding
and the chemistry of sites within the riparian
zone (Trettin et al. 1994). Less subtle shifts in
landscape characteristics control the riparian
environment in mountainous regions. In the
mountains, differences in coarse-scale variables
such as orographic weather patterns, parent
material type, and effects of glaciation can occur
within a landscape and within a 1000-km2

watershed.
These coarse-scale factors constrain several

finer scale factors related to the montane ripar-
ian environment. For example, climate, geol-
ogy, and glacial and tectonic histories of a sur-
rounding watershed shape the valley width and
gradient (Mount 1995, Tabacchi et al. 1998).
Therefore, valley shape should be highly cor-
related to these coarse-scale variables. Geoflu-
vial surfaces formed within the valley floor are
dependent, in part, on the coarser scale vari-
able of valley shape (Tabacchi et al. 1998). For
example, slumping and scouring floods that
occur in narrow, steep valleys leave behind
denuded banks and narrow, ephemeral flood-
plains. In contrast, meanders in a wide valley
floor dissipate the stream’s energy laterally,
resulting in a complex transverse profile of
wide floodplains, point bars, and terraces. These
observations led us to expect certain valley
shapes to be correlated with frequency of par-
ticular sets of geofluvial surfaces.

The geofluvial surface itself is a product of
local hydrologic flows and sediment transport.
Particle size in riparian alluvial soils can be
affected by the energy of water flow that de-
posited the sediment; similarly, flood frequency
and intensity can affect riparian soil particle
size. Soils in riparian areas subject to frequent
scouring or depositional disturbance are young
and have little to no structure. Riparian soils
in broad, depositional valleys will vary in rela-
tion to the history of the meander pattern of
the river (Hawk and Zobel 1974). Thus, the
well-developed riparian soils are likely to be
those in the retired terraces of wide, alluvial
valleys. In addition, the elevation above stream
level at which these surfaces form limits the
type and amount of subsequent deposition and
removal. Thus, the geofluvial surface influ-
ences and is expected to be correlated with
soil texture and development (Knighton 1984,
Osterkamp and Hupp 1984). These relation-
ships among coarse-scale (e.g., parent material,
climate, and geomorphic regime) and finer scale
characteristics (e.g., soil characteristics, geoflu-
vial surface, channel form, and local hydrology)
are generally accepted in the current riparian
literature as the primary controls over riparian
structure (Malanson 1993, Tabacchi et al. 1998).
We collected data on these variables and tested
for correlations among them to see if such a
hierarchy of control over riparian structure
and composition could be demonstrated in a
mountain landscape. Specifically, we hypothe-
sized that, in the mountain landscape of the
Lake Tahoe Basin, factors that occur at coarse
(10-km2), stream-reach (100-m2), and site (1-m2)
scales correlate to riparian structure and spe-
cies composition.

We also expected to find that the distribution
of riparian plant species is correlated to the
same set of variables that define the greatest
degree of physical variation among riparian
zones. Other researchers have demonstrated
strong correlations between abiotic and biotic
components of riparian systems (Wistendahl
1958, Sigafoos 1961, Hawk and Zobel 1974,
Hupp and Osterkamp 1985, Harris 1988). Hupp
and Osterkamp (1985) reported a significant
correlation between geofluvial surface and spe-
cific riparian vegetation for riparian habitats in
the southeastern United States. The authors
attribute this correlation to species-specific
flood tolerances, differences in geofluvial sur-
face flood frequency, and flood duration (see

138 WESTERN NORTH AMERICAN NATURALIST [Volume 66



also Auble et al. 1994). Hupp (1992) later added
to this interpretation by linking stream-reach-
scale processes of erosion and deposition to
riparian plant community composition. Thus,
studies from the southeastern United States
highlighted the importance of geofluvial sur-
faces and attendant variations in soil texture
and hydrology in affecting plant community
composition. In California, Stromberg and
Patten (1990) focused on the effects of stream
flow on riparian vegetation in the Sierra Nevada.
This work indicated that correlations between
changes in stream flow and shifts in plant com-
position are due to differential seedling growth
and survival in response to variation in sub-
strates. In the eastern Sierra Nevada, Harris
(1988) found that riparian vegetation along 10
mountain streams was significantly correlated
to geomorphic forms when nested within a
broader pattern of valley type. Friedman et al.
(1996) reported that flood history and post-
flood succession are the most important fac-
tors influencing the distribution of riparian
plant species. Thus, previous studies in the
American West point to the importance of val-
ley form, geofluvial surface, and hydrologic pro-
cesses as correlates to the distribution of ripar-
ian plant species.

Our objectives were to (1) identify factors
that explain the greatest variation in the physi-
cal structure of riparian zones in a mountain
landscape, (2) characterize variation in riparian
plant species composition, (3) identify physical
factors that correlate to the greatest variation
in floristic composition, and (4) describe a hier-
archical framework that accounts for riparian
zone structure and floristic composition. For this
project, we defined the riparian zone broadly
to include the retired terraces as well as gravel
bars along the valley bottom. However, we only
included seasonally or less frequently flooded
wetlands and terraces associated with lotic
systems; permanently flooded wetlands were
not included. We conducted this research in
the mountainous landscape of the Lake Tahoe
Basin (LTB) in the western United States be-
cause LTB provides a wide range of variation
in coarse- as well as fine-scale variables within
a distinct and relatively compact area. Issues
related to watershed and wetland restoration
are also extremely important in LTB, and this
research was performed in hopes of providing
needed baseline data for restoration and con-
servation projects in the area.

METHODS

Study Area

Lake Tahoe is an alpine ultra-oligotrophic
lake with 63 tributaries; its watershed encom-
passes 2 distinct climatic zones. Located at the
crest of the Sierra Nevada (39°N, 120°W), the
800-km2 watershed straddles the California-
Nevada border and ranges from 1898 m to
3050 m above mean sea level. The mountain
climate has short, dry summers and long, cold
winters during which most (>70%) of the annual
precipitation falls. The western slopes of the
LTB receive relatively large amounts of pre-
cipitation, ranging from 75 cm ⋅ yr–1 to 200 cm
⋅ yr–1, compared to the eastern slopes, which
receive an average of 40 cm ⋅ yr–1. Summer
(May–September) temperatures at lake level
average 29.4°C, while winter (October–April)
temperatures average 17.6°C (NCDC 2000).
Lake Tahoe Basin includes 4 major types of
bedrock geology: granite, volcanic rock, glaci-
ated till and alluvium, and lake deposits (Fig. 1;
Bailey 1974). The LTB covers 4 major vegeta-
tion zones including montane, upper montane,
subalpine, and alpine vegetation (USDA For-
est Service 1991). In this study we included
only riparian areas within the montane and
upper montane zones. We sampled the least
disturbed riparian wetlands (as defined below)
to provide information on intact ecosystem
structure and composition.

Sampling Design and 
Field Procedures

We collected data on 27 environmental vari-
ables that occur at coarse (10-km2), stream-reach
(100-m2), and plot (1-m2) scales; and we recorded
percent cover for 203 plant species (Table 1)
associated with 144 riparian plots (50 m2) in
21 subwatersheds in LTB. These plots are well
distributed among physiographic regions (Table
2, Fig. 1). To include a range of coarse-scale
environmental variables hypothesized to affect
riparian zone structure, we divided the LTB
into 15 physiographic regions based on differ-
ences in climate, parent material, extent of glaci-
ation, and, as an additional proxy for climate,
upland vegetation zone (Table 2). We merged
geographic information system (GIS) layers con-
taining information on climate, parent material,
geomorphic history, and upland vegetation to
create a 10-composite-layer, 1:24,000-scale map
with over 200 stream-intersecting polygons
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that averaged 33 ha in area. These polygons
were numbered and categorized according to
their physiographic region. Working with USDA
Forest Service employees, we identified acces-
sible areas that had not been subjected to major
disturbances (e.g., fire or logging) in the past
50 years. At the end of this process we had a
minimum of 10 polygons for each physiographic
type for a total of 187 polygons. We visited each
of these polygons over 2 field seasons but had
to omit many polygons from our sample pool
due to disturbance (e.g., fire, development, etc.).
Within 84 polygons, we selected stream reaches
suitable for sampling based on 3 criteria: (1) no
obvious evidence of recent human disturbance,
(2) riparian vegetation representative of the
reach or adjacent reaches, and (3) >15 m hori-
zontal distance from a road and >300 m below
any road crossing. Each plot was 50 m2; plot
shape varied to accommodate the irregular

shapes of the fluvial surfaces. At each site data
was collected for the abiotic and biotic charac-
teristics listed in Table 1. Our field procedures
were adapted from those of Region 4 and
Region 5 of the USDA Forest Service (Allen
1987, Weixelman et al. 1996).

Each plot position and elevation was re-
corded on 1:24,000 topographic maps by trian-
gulating compass sitings and landforms ob-
served on aerial photographs. At each plot we
checked the accuracy of geomorphic zone
assignments (Bailey 1974) by examining rock
outcrops at or near the site. Similarly, we field-
checked the upland vegetation zone assignment
by examining species composition of the sur-
rounding uplands. In addition, we paced the
width of each valley and recorded whether the
valley was V-shaped (constrained) or flat-bot-
tomed (unconstrained). Slope, aspect, stream
flow direction, and gradient were measured
using a compass and clinometer. For each plot
we recorded the texture of the top 10 cm of soil
using the ball and ribbon technique (Brady
1984) and recorded whether soil had high,
medium, or low organic content according to
the extent of dark-staining material found in
the samples. We made visual estimates of abso-
lute litter cover to the nearest 1% when there
was <10% cover and to the nearest 5% when
litter cover was >10%. Mean litter depth was
calculated from 4 randomly placed measure-
ments per plot. Similarly, we made visual esti-
mates of the absolute percent cover of sand,
gravel, cobbles, and boulders within each plot
and along the stream bottom at each associ-
ated 20-m stream reach. The geofluvial surface
of each plot was categorized as 1 of the follow-
ing: terrace, bank, or floodplain. Terraces were
the inactive floodplain (Schumm 1977), whereas
floodplains were areas within the active channel
and included the “active floodplain” (Schumm
1977) and gravel and cobble bars that lay with-
in the bank-full channel (Williams 1978).

Regardless of current water levels, we de-
fined channel extent according to its bank-full
or 2.7-year flood level (Williams 1978). We
measured channel depth and width at 4 cross
sections along the associated reach and recorded
the mean values. We also measured flood-prone
width, defined as the width of the stream chan-
nel with water levels at twice bank-full. We
used the average of the vertical and horizontal
distance of 4 points to the stream edge (bank-
full channel) as measures of distance to channel
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TABLE 1. Data on abiotic and biotic characteristics col-
lected at 3 scales. 

Spatial scale Variables

Coarse (10 km2) Parent material
Mean annual precipitation
Upland vegetation zone
Flow direction
Glaciation history

Reach (100 m2) Valley width
Valley shape
Channel sinuosity 
Valley gradient
Elevation
Channel bottom material
Bank-full width
Bank-full depth
Flood-prone width

Plot (1 m2) Fluvial surface
Distance to channel edge 
Community width
Slope of plot
Aspect of plot
Average plot elevation above bank-full
Rock/gravel cover
Cobble/boulder cover
Bare ground cover
Litter cover
Litter thickness
Surface soil texture (upper 10 cm)
Surface soil organic matter content

Plot Vegetative Percent cover in upper and lower 
Characteristics canopies

Total cover by plant functional group
Percent cover of each species present



edge and elevation above bank-full. Commu-
nity width was defined as the width of area sup-
porting consistent plant species composition
perpendicular to the stream. Stream sinuosity
was calculated as the quotient of stream length
over valley length (Mount 1995) as measured
on 15-minute topographic maps. We visually
estimated absolute cover for all live vascular
plant species to the nearest 1% for species with
<10% cover and to the nearest 5% for species
with >10% total cover. We obtained mean
annual precipitation data from the Oregon 
Climate Service and PRISM Services (1997a,
1997b).

Statistical Analysis

We used principal component analysis (PCA)
to identify those environmental variables re-
sponsible for the greatest amount of variation
in the physical characteristics of the 144 ripar-
ian plots. Detrended correspondence analysis
(DCA) was used to identify major patterns in
plant composition within LTB riparian zones.
To simplify interpretation we organized the veg-
etation into indicator species groups, composed
of commonly co-occurring plant species. Two-
Way-INdicator-SPecies-ANalysis (TWINSPAN)
—a polythetic, divisive clustering technique—
was used to identify these groups (Hill 1979).
Through stepwise multiple regression we iden-
tified those environmental variables that ex-
plained the greatest variation in plant species
distribution summarized in DCA axes 1 and 2.
Canonical Correspondence Analysis (CCA) con-
strains ordination of plant species data through
linear regression of environmental variables.
CCA was employed to further assess the rela-
tionship between environmental variables and
plant species distribution (Palmer 1993). CCA

was also used as a method, 2nd to DCA, for
identifying environmental variables that were
most highly correlated to the distribution of
riparian plant species. By comparing the DCA
and CCA matrices, we could identify variation
occurring in the species matrix that is not well
explained by the environmental variables mea-
sured. Thus, we applied all 3 ordination tech-
niques to (1) identify the greatest sources of
physical variation and thereby define the im-
portant components in the proposed physical
hierarchy (PCA); (2) identify variation in plant
species composition independent of physical
variables measured to illustrate the degree of
plant variation captured by measured variables
(DCA); and (3) quantify correlations between
plant species composition and the physical
variables measured to assess the link between
vegetation and the physical variables included
in the proposed hierarchy (CCA).

We used Monte Carlo permutation tests
(Jongman et al. 1995) to test for significance of
the first 3 CCA axes and the species-environ-
ment scores. To test for the species-environment
relationship, plot numbers associated with the
environment variables were randomized prior
to ordination. The species-environment correla-
tions and axes eigenvalues were then calcu-
lated based on this semi-randomized set. The
process was repeated 100 times to estimate
the likelihood of obtaining the same axis eigen-
values and species-environment scores calcu-
lated from the original nonrandomized data.
Manly (1992) provides further discussion of
these procedures.

To identify environmental variables that ex-
plain the greatest amount of variation in the
species-environment relationship, we used a
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TABLE 2. Distribution of 144 riparian plots according to physiographic variables.

Montane Upper Montane____________________ ___________________
Geomorphology Weta Dryb Wet Dry Totals

Alluvium 8 6 — — 14
Lake deposits 12 — — — 12
Glacial till 13 4 16 — 33
Glaciated granitics — — 16 — 16
Streamcut granitics 4 9 4 13 30
Glaciated volcanics — — 19 — 19
Streamcut volcanics 10 5 — 5 20

TOTALS 47 24 55 18 144
a“Wet” includes most of the south- and half of the north-shore watersheds as well as watershed on the western shore of Lake Tahoe where mean annual precipita- 
tion (MAP) exceeds 81 cm.
b“Dry” includes most of the eastern shore of the LTB where MAP is <81 cm.



semiautomated procedure in the CANOCO
software (ter Braak 1988) called “forward selec-
tion.” Forward selection is similar to stepwise
regression in that a series of canonical corre-
spondence analyses are performed as environ-
mental variables are added one at a time. The
user selects the 1st variable and then adds
variables to subsequent analyses based on the
increase in goodness of fit of the multiple
regression. Since the input order of the envi-
ronmental variables can affect the increase in
goodness of fit, we altered the input sequence
10 times to ensure that we identified a consis-
tent set of the most strongly correlated vari-
ables. See Draper and Smith (1981) for further
discussion of forward selection. Additionally,
as a 1st step in exploring the efficacy of devel-
oping a GIS-based model to predict the distri-
bution of riparian plant communities, we wanted
to assess the strength of the relationship be-
tween site species composition and environ-
mental variables that could be gathered re-
motely. Using the Monte Carlo CCA permuta-
tion procedure, we estimated the strength of
the correlation between plant species compo-
sition and variables that were or easily could
be remotely acquired (i.e., parent material, gla-
ciation history, elevation, valley width and shape,
and stream flow direction and gradient).

Hierarchically, landscape elements are con-
strained by environmental factors that occur at
coarser spatial scales (O’Neill et al. 1986). If
this is the case, then landscape elements should
be correlated to factors that constrain them.
Environmental variables were grouped into
those that vary at coarse (10-km2), stream-reach
(100-m2), and plot (1-m2) scales (Table 1). We
tested for significant correlations between vari-
ables across and within scales using the coeffi-
cient of determination (r2). To eliminate spuri-
ous correlations due to “data snooping” (Neter
et al. 1985), the significance of each correlation
was determined using the stringent Bonferonni
pairwise testing procedure (P ≤ 0.10; Neter et
al. 1985). Several variables, including channel
width and stream gradient, were log-trans-
formed to meet assumptions of normality.
Environmental variables were then standard-
ized so that they shared equal means and unit
variance prior to subsequent statistical analyses.
One from any pair of variables with a Pear-
son’s correlation coefficient of ≥0.75 was re-
moved from the database to minimize the

effects of multicollinearity. Three variables
met this condition: bank-full depth and width
were highly correlated as well as flood-prone
width and bank-full width. As a result, bank-
full depth and flood-prone width were excluded
from further analyses.

Prior to analysis, we lumped into 1 group
several sedge species that were difficult to dis-
tinguish in the field and that favored similar
site conditions; this group included Carex het-
eroneura, C. lentiuclaris var. lipocarpa, C.
abrupta, C. bolanderi, C. fracta, C. nervina, and
C. nebraskensis. Similarly, we lumped several
co-occurring willow species, including East-
wood (Salix eastwoodiae), grayleaf (S. orestra),
Jepson’s (S. jepsonii), Geyer’s (S. geyeriana), and
narrow-leaf (S. exigua) willows with the most
common shrub species of the group, Lemon’s
willow (S. lemmonii). Other willows that favor
different site conditions, such as Scouler’s wil-
low (S. scouleriana) and shining willow (S.
lucida), were kept separate.

In the dynamic riparian landscape, the occur-
rence of long-lived upland overstory tree spe-
cies can reflect past site conditions that differ
dramatically from current ones (Carleton et al.
1985, La Roi et al. 1988). Therefore, long-lived
upland tree species were excluded from corre-
spondence analyses. We accepted the default
settings in TWINSPAN, including pseudo-
species cut levels. We accepted splits in the 2-
way output tables where eigenvalues were 
>0.200. Stochasticity in clustering of plots
through TWINSPAN analysis has been related
to effects of infrequently occurring species
(Tausch et al. 1995). To avoid this problem,
species occurring in fewer than 3 sites were
excluded from TWINSPAN analysis. We used
the following software packages to perform
these statistical analyses: S-PLUS 4.5 (Insight-
ful Corporation 2001), TWINSPAN (Hill 1979),
CANOCO (ter Braak 1988), and PC-ORD 4.17
(McCune and Mefford 1999).

RESULTS

Variation in Structure 
of Riparian Zone

We used PCA to identify those environmen-
tal variables that explained the greatest degree
of variation in physical characteristics of the
riparian sites. The 2 first axes explain >30% of
the variability among 144 riparian plots (Fig.
2). A combination of coarse- and reach-scale
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variables were most highly correlated with axis
1, which captured 17.2% of the overall varia-
tion in site data. Axis 1 defined a gradient of de-
creasing valley width and stream sinuosity and
increasing stream gradient (Fig. 2). Plot-scale
variables associated with surface conditions
were more closely correlated to axis 2 (14.0%
of variance). This 2nd axis ordinated plots
along a gradient of coarse, rocky surfaces asso-
ciated with banks and floodplains to rich,
loamy surface soil conditions associated with
terraces.

To develop an hierarchical framework that
could account for the variation observed, we
examined correlations among physical variables

across scales. We will discuss correlations among
physical variables (Table 3) based on the scale
groupings (coarse, 10 km2; reach, 100 m2; and
site, 1 m2). In the LTB we found that many
characteristics that vary at the reach scale were
strongly correlated to parent material and
glaciation history, both of which varied at the
coarse scale (Table 3). For example, stream
reaches in glacial till, outwash, and lake deposits
tended to occur in wider valleys than reaches
in other parent material types. Similarly, stream
sinuosity and channel width, factors that vary
at the reach scale, were positively correlated to
glacial till (Table 3). To some extent these cor-
relations can be attributed to the occurrence 
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Fig. 2. Principle components analysis of environmental variables. The first 2 axes explain over 30% of the variation in
physical structure of LTB riparian zones. The codes used are defined as follows: %Bare = percent bare ground; %Clay
= percent clay in surface soil; %Litter = percent litter cover; %OM = percent organic matter in surface soil; %Silt =
percent silt in surface soil; Backchannel = geofluvial surface is a back channel; Bank = geofluvial surface is a stream
bank; Channel bedrock = percent of channel in reach that is bedrock; Channel boulder= percent of channel in reach
that is boulder; Channel cobble = percent of channel in reach that is cobble; Channel fine = percent of channel that is
finer than sand; Channel gravel = percent of channel that is gravel; Channel sand = percent of channel that is sand;
Coarse = percent of course material in soil (>1 inch); Community width = width of riparian plant community; Eleva-
tion = elevation of site above mean sea level; Elevation above stream = number of cm site is above bank full; Flood-
plain = geofluvial surface is a floodplain; Floweast = direction of streamflow (bearing broken into “eastness” and
“northness”; see methods); Flownorth = direction of streamflow; Glaciated = stream reach is in glaciated valley; Gran-
ite = parent material is granitic; Litter thickness = thickness of litter in site; Precipitation = average annual precipita-
tion; Riparian bedrock = percent of riparian plot that is bedrock; Riparian boulder = percent of riparian plot that is
boulder; Riparian cobble = percent of riparian plot that is cobble; Riparian gravel = percent of riparian plot that is
gravel; Sinuosity = sinuosity of stream reach; Stream depth = average depth of stream channel at bank-full; Stream gra-
dient = average gradient of reach; Stream width = average stream width at bank-full; Terrace = geofluvial surface is a
terrace; Till = parent material is glacial till; Valley width = width of valley associated with stream reach and riparian
plot; Volcanic = parent material is volcanic; V-shape = valley shape is V-shaped (as opposed to flat-bottomed).



of glacial till and outwash at lower elevations
where the depositional portions of the tribu-
tary streams occur. However, controlling for
differences in precipitation (e.g., climate) and
elevation, stream valleys in glacial till were sig-
nificantly wider (adj-R2 = 0.31, n = 144, P <
0.001) and of shallower grade (adj-R2 = 0.14,
n = 144, P < 0.001) than valleys in nontill par-
ent material. Therefore, part of the correlations
between glacial till, sinuosity, stream width, and
valley width may be due to the direct effects
of glacial till on valley form and sinuosity. In
contrast to glacial till, granitic and volcanic
parent materials were similarly distributed in
the upper and lower portions of the water-
sheds of LTB. Differences in valley form of areas
with granitic versus volcanic parent material
were significant (Table 3). Analysis of covari-
ance (ANCOVA) of the 52 sites that occur in
stream-cut (versus glaciated) valleys, in which
granitic and volcanic parent material were
compared with precipitation (as a measure of
climate) as a covariate, showed that stream-
cut granitic valleys tend to be steeper than
stream-cut volcanics (adj-R2 = 0.25, n = 52, P
= 0.0004). Analysis of variance (ANOVA) of
these 52 sites showed that granitic valleys tend
to be narrower (adj-R2 = 0.12, n = 52, P =
0.008) and are more often V-shaped (adj-R2 =
0.31, n = 52, P < 0.001) than are stream-cut
volcanic valleys. Among glaciated areas on the
western shore, stream reaches in granitic parent
material were less sinuous than ones in glaci-
ated volcanics (adj-R2 = 0.25, n= 83, P < 0.001).

A few significant correlations were also found
between parent material (a coarse-scale vari-
able) and surface soil characteristics (plot-scale
variables). For example, riparian areas in gran-
ite tend to have higher boulder cover than areas
in volcanic parent material (Rank sums nonpara-
metric group comparisons followed by post
hoc Nemeny’s test, n = 144, P < 0.0001). Soil
silt and clay content were significantly higher
in areas of volcanic parent material than in
areas on granitic or till parent material (1-way
ANOVAs followed by post hoc Tukey’s HSD
test, n =144, P < 0.01). We found no signifi-
cant differences in the frequency of geofluvial
surfaces among types of parent material (using
a contingency table and chi-square test).

Most plot- and reach-scale variables were
not correlated; however, we did find that geo-
fluvial surface was correlated to valley shape

and width, as well as to channel sinuosity (Table
3). The frequency of banks without associated
terrace increases with increasing stream gradi-
ent, and terraces are more common among
higher sinuosity and lower gradient reaches in
flat-bottomed valleys. In addition we found
that the amount of riparian area covered by
boulders increased with increasing valley gra-
dient and decreased with decreasing elevation
and increasing valley width (Table 3). Other
expected correlations were found among plot-
scale variables, particularly variables related
to geofluvial surface and surface soil charac-
teristics. Boulders are more frequent on banks
than in terraces or floodplains, whereas gravel
is a more common surface material in flood-
plains than in terraces or banks. Terraces were
correlated with more fertile soils: organic matter
content, percent silt and clay in soil, and litter
cover were higher in terraces than in soils of
other geofluvial surfaces.

Variation in Riparian 
Zone Vegetation

We used TWINSPAN to delineate 5 groups
of frequently co-occurring species (Table 4).
Groups were named by the genera of the
group’s most characteristic species. Detrended
correspondence analysis (DCA) was used to
confirm the distinctness of these species groups
(Fig. 3). Both DCA axis lengths were >4 stan-
dard deviations (Table 5); therefore, sites on
either end of both axes had few to no species
in common (Jongman et al. 1995). The 5 remain-
ing groups occupy unique and distinct regions
of the DCA ordination space. Axis 1 most clear-
ly separates groups 1 and 5. The plant com-
munity with the most negative axis 1 scores
was represented by the Ribes-Rubus group
(group 1) and was dominated by shrubs and
the small understory tree Scouler’s willow. On
the other end of this axis was the Sidalcea-
Hordeum group (group 5), which represents a
community dominated by grasses and herbs.
The Salix-Carex group (group 4), dominated
by sedges, willow, and a few herbs, was most
clearly distinguished from the rest with nega-
tive axis 2 scores. Grasses and herbs that pre-
fer mesic to dry-mesic conditions had more
positive axis 2 scores (Fig. 3). Species in the
Veratrum-Poa group (group 3) were common
in sparsely to moderately forested meadows
adjacent to the unforested meadows of the
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Sidalcea-Hordeum group (group 5). Species of
the Mimulus-Athyrium group (group 2) occurred
on shady stream banks and floodplains of small
streams.

We identified those environmental variables
with significant simple correlations with the
DCA scores for each DCA axis using Pearson’s
correlation (r). Through stepwise multiple re-
gression analysis we selected the significantly
correlated environmental variables that most
efficiently explained variation in each set of
axis scores (Table 5). Seven variables explained
47% of the variation in axis 1 scores; 6 vari-
ables explained 33% of the variation in axis 2
scores. To better compare these results with
those from the PCA, we plotted the Pearson’s
r values between each variable and axes 1 and

2 and overlaid them (Fig. 3). Like PCA axis 1,
the DCA axis 1 reflected a gradient of sites
that range from terraces along wide, sinuous
valleys to banks along narrow, steep valleys.
However, parent material and glaciation his-
tory were not significantly correlated with the
DCA axis 1, as they were with PCA axis 1.
DCA axis 2 is less similar to PCA axis 2: soil
texture variables, which are important corre-
lates of PCA axis 2, were not correlated with
DCA axis 2.

Correlations between Riparian 
Vegetation and the 

Physical Environment

We used canonical correspondence analysis
(CCA) to explore direct correlations between
the occurrence of plant species and environ-
mental factors. Axes 1 and 2 reflect high species-
environment correlations (raxis 1 = 0.875, raxis 2
= 0.847; Table 6). Monte Carlo permutation
tests (100 permutations; Jongman et al. 1995)
show that all 3 axes were significant at P ≤
0.01 (see Table 6). However, the first 3 CCA
axes only explained 9.9% of the total variation
in species data. Monte Carlo tests indicated
that species-environment relationships reflected
in the first 2 canonical ordinations were signif-
icant (P ≤ 0.04 for axes 1, 2, and 3; Table 6).
Through forward selection we identified 10
environmental variables that explained the
greatest percentage of species variation among
the 144 sites. These variables were (in order of
importance) community width, channel sinu-
osity, stream flow direction, parent material,
channel width, elevation of riparian surface
above stream level, geofluvial surface, eleva-
tion, soil texture, and average annual precipi-
tation. Together these variables explained 95%
of species variation covered by the full set of
environmental variables. A CCA biplot of the
144 sites is presented in Fig. 4. Like the first
PCA and DCA axes, CCA axis 1 (eigenvalue =
0.433) ordinates the plots along a gradient of
riparian areas in wide valleys, with winding,
shallowly sloped streams and rich soils, to
areas along steep, bouldery reaches in narrow,
V-shaped valleys. CCA axis 2 reflects a more
muddled gradient of both valley form and soil
characteristics (eigenvalue = 0.313).

Finally, we estimated the strength of fit be-
tween vegetation and remotely collected vari-
ables (parent material, glaciation history, ele-
vation, valley width and shape, and stream flow

148 WESTERN NORTH AMERICAN NATURALIST [Volume 66

TABLE 4. Plant composition of species groups.

Group Species

(1) RIBES-RUBUS

Mountain maple Acer glabrum ssp. torreyi
Sierra currant Ribes nevadense
Scouler’s willow Salix scouleriana
Creeping snowberry Symphoricarpos mollis
Bracken fern Pteridium aquilinum
Western thimbleberry Rubus parviflorus

(2) MIMULUS-ATHYRIUM

Alpine lily Lilium parvum
Bittercress Cardamine cordifolia
Violet spp. Viola spp.
Lady fern Athyrium filix-femina
Goose grass Galium aparine
Bishop’s cap Mitella breweri
Mannagrass Glyceria elata
Musk monkey flower Mimulus moschatus
Cow parsnip Heracleum lanatum

(3) VERATRUM-POA

Kentucky bluegrass Poa pratensis
Corn lily Veratrum californicum
Lodgepole pine Pinus contorta
Mountain gooseberry Ribes montigenum
Black cottonwood Populus balsamifera
Oniongrass Melica harfordii
Cinquefoil Potentilla glandulosa

(4) SALIX-CAREX

Sedge Carex nebrascensis
Lemon’s willow Salix lemmonii
Sedge Carex nervina
Large-leaved lupine Lupinus polyphyllus

(5) SIDALCEA-HORDEUM

Blue wild rye Elymus glaucus
Meadow barley Hordeum brachyantherum
Long-leaved clover Trifolium longipes
Checkerbloom Sidalcea oregana
Willow herb Epilobium glaberrimum
Western buttercup Ranunculus occidentalis
Aster Aster occidentalis



direction and gradient) using the Monte Carlo
permutation procedure for CCA. Monte Carlo
simulations of CCA using only these environ-
mental variables showed that the species-envi-
ronment relationship was highly significant (P
= 0.02, 0.01, and 0.01 for axis 1, 2, and 3,
respectively; Table 6).

DISCUSSION

Through multivariate analysis of environ-
mental variables (PCA), vegetation data (DCA),

and the combined relationship between the
environment and vegetation data (CCA), we
consistently found that the greatest amount of
variation in riparian physical structure and
floristic composition occurs along a gradient of
decreasing valley width, decreasing stream sin-
uosity, and increasing stream slope (see axis 1 in
Figs. 2, 3, and 4). Thus, the same set of variables
appear to control the greatest amount of varia-
tion in both the physical and vegetative char-
acteristics of montane riparian zones. Our find-
ings support those of Harris (1988), who found
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Fig. 3. Scatterplot of indicator species groups along DCA axes 1 and 2 shown with scatterplot of environmental vari-
ables. Environmental variables are plotted as Pearson’s correlation (r) with sample DCA axes values. Scales for indicator
species and environmental variables are different to minimize overlap for clear reading. The environmental variables are
plotted on scale of –0.3 to +0.3, whereas the species scores are plotted on a scale of –1.0 to +1.0 

TABLE 5. Summary of correlations (absolute values of Pearson’s r) between DCA axes and environmental variables.

Axis 1a Axis 2b
_______________________________________ _______________________________________
Environmental variables abs r Environmental variables abs r

Sinuosity 0.26 Riparian gravel 0.13
Bank 0.25 Glaciated 0.12
Stream gradient 0.21 Litter thickness 0.10
Terrace 0.20 Terrace 0.10
V-shape 0.19 Granitic parent material 0.09
Transport 0.19 Precipitation 0.09
Channel width 0.17 Riparian cobble 0.09
Valley width 0.15 Transport 0.08
Ripiarian boulder 0.15 Sinuosity 0.08
Community width 0.15 Litter 0.06
aEigenvalue = 0.57, segment length = 4.662.
bEigenvalue = 0.44, segment length = 4.483.



that riparian vegetation was correlated to valley-
bottom shape in the eastern Sierra Nevada.
Although surface variables (e.g., gravel cover,
litter thickness, soil organic matter content, and
percent bare ground) are also an important
source of variation in the physical composition
of the riparian zones, they did not emerge as
important correlates to plant species distribu-
tion. Instead, the 2nd DCA and CCA axes pre-
sent more muddled gradients related to pre-
cipitation, parent material, and surface condi-
tions. The differences among the 2nd axes show
that there is a gradient in surface conditions
not reflected in the vegetation. This difference
offers the interesting interpretation that ripar-
ian plant species distribution might be less
controlled by surface conditions than by other,
broader scale factors. Since the 2nd DCA and
CCA ordination axes were poorly correlated
with a clear environmental gradient and actu-
ally from one another, it is likely that some
indirectly or altogether unmeasured variable(s),
such as disturbance regime or seasonal ground
water levels, have an important fine-tuning
effect on riparian plant species distribution.

Correlations between Riparian 
Vegetation and the 

Physical Environment

As stated above, variables associated with
stream valley form (channel sinuosity, channel
width, and parent material) explain the great-
est amount of variation in plant species distri-
bution (Figs. 3, 4). Valley form incorporates
several variables that are likely to directly
affect plant establishment and survival. These
include insolation and temperature; distur-

bance type and frequency; and depth to, and
seasonal shifts in, the groundwater table. Thus,
species that require full sun are found in wide,
flat valleys (e.g., the Sidalcea-Hordeum group).
Species that are shade-tolerant but have high
water requirements are found in V-shaped val-
leys close to the water’s edge or on mid- and
upper banks in areas that receive the highest
precipitation in the LTB (e.g., the Mimulus-
Athyrium group).

Given results from past studies, our findings
that plant species distribution was not highly
correlated with surface conditions were some-
what surprising. For example, Sollers (1974)
reports that in the lower 50 miles of Wissa-
hickion Creek, riparian vegetation patterns
correlated with surface soil type, which in
turn was correlated with site channel dynamics.
However, our survey differs from that of Sollers
and of many others because we incorporated
the full length of streams in our study and
included the source and transport as well as
the depositional reaches. Thus, large differences
in light, temperature, and disturbance regime
associated with watershed position could have
overwhelmed effects due to differences in sur-
face conditions. In addition riparian areas sub-
ject to frequent scouring (rather than deposition)
might select for opportunistic species capable
of germinating and growing quickly or species
capable of withstanding scouring floods, rather
than selecting for species that are superior com-
petitors under specific soil and site conditions
(e.g., Grime 1988). Finally, we did not measure
soil conditions at depth (below 10 cm), and
variables such as rooting depth and depth to
saturation (or signs thereof) have been reported
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TABLE 6. Results of canonical correspondence analysis.

Analysis Axis 1 Axis 2 Axis 3

ALL ENVIRONMENTAL VARIABLES INCLUDED

Eigenvalues 0.433 0.313 0.285
Species-environment Pearson correlation 0.875 0.847 0.874

Monte Carlo tests (P-values)
Eigenvalue of axes 0.010 0.010 0.010
Species-environment correlation 0.040 0.040 0.010

ONLY VALLEY FORM VARIABLES INCLUDED WITH SPECIES DATAa

Eigenvalues 0.291 0.249 0.175
Species-environment Pearson correlation 0.757 0.811 0.742

Monte Carlo tests (P-values)
Eigenvalue of axes 0.010 0.010 0.010
Species-environment correlation 0.020 0.010 0.010

aValley form variables include variables that could be collected in a GIS without site visits: parent material, glaciatial history, elevation, valley width, valley shape, 
stream flow direction, and stream gradient.



as important indicators of plant species com-
position in meadows of the Great Basin (Weixel-
man et al. 1997).

The first 3 CCA axes explained one-tenth
(9.9%) of the variation in species composition
in the 144 riparian plots (Table 6). This value
is low compared to other studies in upland areas
where CCA axes captured 15%–25% of varia-
tion in site species composition (e.g., Brown et
al. 1993, Rydgren 1996). To some extent this
low correlation could result from a high degree
of stochasticity that affects plant species distri-
bution in riparian environments, or it could be
due to the small plot size used in this study.
However, dissimilarities between scatterplots
of the constrained (CCA) and unconstrained
(DCA) ordination scores indicate that some
important environmental variables might have
been missing from the constrained ordination.
In particular, measurements of flooding distur-
bance regime and water availability might have
increased the amount of variation captured by
CCA axes. In many bottomland systems, riparian
plant species distribution has been correlated
to groundwater levels and flood frequency and
duration (Hack and Goodlett 1960, Sigafoos
1961, Hupp 1992). These factors have also been
cited as major correlates with riparian sediment
moisture and texture (Hack 1957, Osterkamp
and Hupp 1984). Although several variables we

measured might be correlated to disturbance
regime and water availability (e.g., elevation
above bank-full, channel width, elevation, and
geofluvial surface), the distribution of vegeta-
tion in relation to response and recovery from
disturbance might be more clearly revealed
through direct measures of disturbance history
(Sprugal 1991, Hobbs and Huenneke 1992) and
stream power (Bendix 1994) than through the
variables measured herein. Other abiotic char-
acteristics not included in this study, such as
measures of rooting depth, soil chemistry, and
subsurface hydrology, might also provide impor-
tant, direct measures of factors controlling plant
species distribution (Weixelman et al. 1997).

Our results demonstrate that plant species
composition in the LTB riparian zones can
vary from areas dominated by shrubs to areas
dominated by grasses and herbs to areas occu-
pied primarily by willows, sedges, and herbs.
The broad range in species composition re-
flected in the DCA axes (>4.0 standard devia-
tions) could result in large differences in biotic
potentials, and therefore ecosystem processes,
among sites. Thus, the combination of floristic
and structural variation summarized along the
1st PCA and DCA ordination axes are likely to
reflect an associated diversity of ecosystem
processes. Ecosystem processes likely to be
correlated to variation described in the first 2
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Fig. 4. Canonical correspondence analysis biplot of 144 plots in LTB (◆). Positions of environmental variables with
correlations to axes that are greater than 0.20 are also shown with (●).



axes include sediment and nutrient dynamics,
and dispersion and support of diverse plant and
animal species.

Hierarchy Theory and 
Scales of Control over 

Riparian Structure

In this study we found strong correlations
among physical variables at different scales;
these results support the concept that the phys-
ical structure of montane riparian systems is
constrained by a spatial hierarchy of landscape
elements. Barnes et al. (1982), who worked in
uplands, and Kovalchik (1987), who worked in
riparian zones, both suggest using coarse-scale
differences in climate and parent material to
hierarchically organize landscapes for ecosystem
classification. Kovalchik (1987) further suggests
organizing areas homogeneous in climate and
parent material into subsidiary units based on
differences in valley form. Tabacchi et al. (1998)
summarized much of the theory and literature
on riparian and watershed ecology when they
stated that bedrock geology, geomorphic fea-
tures, soil characteristics, climate, and hydro-
logic regime are the primary factors influenc-
ing formation of the riparian zone. Results from
our work support current theory on factors
that control riparian development. For exam-
ple, strong correlations between parent material
and valley form suggest that parent material
affects valley shape and gradient. At a finer scale
in the hierarchy, geofluvial surface and surface
soil texture are highly correlated; these corre-
lations support the interpretation that geoflu-
vial surface constrains soil formation and com-
position. We found significant correlations that
suggest a link between valley form and geoflu-
vial surface. In particular, banks without associ-
ated terraces were the most common surface
type along steep, narrow stream valleys; and
terrace frequency increased in wider, low-gradi-
ent reaches. These correlations suggest that a
hierarchy of physical factors control the abiotic
structure of LTB riparian zones. According to
this scheme, parent material and glaciation
history constrain the width, shape, and gradi-
ent of stream valleys; and stream-valley form
effects the distribution of geofluvial surfaces.
In turn, geofluvial surface constrains surface
conditions (Fig. 5).

Results from this research indicate that vari-
ation in riparian plant composition is con-
strained by the 1st several layers of this hierar-

chy where coarse-scale, abiotic constraints are
predicted to dominate (e.g., CCA axis 1; also
see Fig. 5). The effects of physical constraints
on plant species composition weakens at spa-
tial scales finer than the geofluvial surface. In
the montane landscape, large differences in
valley shape (valley form, gradient, sinuosity)
effect large differences in site insolation and
disturbance regime. It seems likely that the
dominance of these coarse- to moderate-scale
variables on plant community composition over
the finer scale variables related to site surface
conditions reflects the overwhelming impor-
tance of light and disturbance regime on mon-
tane riparian community composition. These
results suggest that it might be useful to use
these coarse- to moderate-scale data to model
the distribution of montane riparian ecosystem
types; however, the large amount of variation
in plant species composition that was unex-
plained by the variables collected indicate that
other variables, such as disturbance regime,
might be necessary to make such models truly
informative.
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Fig. 5. Proposed hierarchy of constraints for the physical
structure and plant species composition of riparian zones
in LTB. Physical variables that occur at the upper levels of
the hierarchy have greater influence on plant species
composition than finer scale variables, such as surface
conditions. The figure also indicates that both physical
structure and biotic components of the riparian zone can
constrain ecological processes.
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