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Knudsen cell mass spectrometric investigation of the B 2N molecule
G. Meloni, M. Sai Baba,a) and K. A. Gingerichb)

Department of Chemistry, Texas A&M University, P.O. Box 30012, College Station, Texas 77842-3012

~Received 7 August 2000; accepted 29 August 2000!

High-temperature Knudsen cell mass spectrometry has been used to study the equilibria involving
the B2N molecule over the Si–BN system. Thermal functions needed in the evaluation of the mass
spectrometric equilibrium data have been calculated from available experimental and theoretical
molecular parameters. The enthalpy changes for the reactions 2B(g)1Si2N(g)5B2N(g)
12Si(g), and BN(s)1B(g)5B2N(g) have been measured. The following atomization enthalpy,
DaH0

o , and enthalpy of formation,D fH298.15
o , in kJ mol21, of 1045.5618 and 551.3618 for the

B2N molecule have been determined from these reaction enthalpies. Atomization energies of similar
molecules have been compared and discussed. ©2000 American Institute of Physics.
@S0021-9606~00!01044-8#

INTRODUCTION

Boron–nitrogen clusters have been extensively investi-
gated because of their importance to gain a deeper insight in
boron nitride thin film formation through chemical vapor
deposition~CVD! and to understand the interactions between
the solid and gas phase during the thin film formation. This
is essential for improving the processes of deposition of bo-
ron nitride. In addition, boron–nitrogen clusters have re-
ceived attention recently because of the existence of
fullerenes analogues involving boron and nitrogen atoms.1,2

In fact boron nitride is a structural analog to carbon, exhib-
iting bond length, long-order parameters, and lattice con-
stants to be very similar to those of carbon.3,4

Boron nitride~BN! is a ceramic material mainly used as
surface coating. BN exists in several allotropic forms includ-
ing graphitelikea-BN, and diamondlikeb-BN. Theb form,
or cubic phase, has significant technological potential for
thin film application5 and rivals diamond in extreme hard-
ness. It also has a number of highly desirable mechanical,
thermal, electrical, and optical properties.4,5

Different techniques have been applied to study boron-
nitrogen containing molecules. Beckeret al.6,7 used laser
ionization mass spectrometry to study the formation of BnNm

1

clusters ions in a laser plasma. They observed that for
BnNn21

1 and BnNn22
1 cluster ions there is an alternating

abundance distribution with the higher intensities of the clus-
ter ions with the odd number of atoms. Andrews and co-
workers reacted boron and nitrogen atoms in nitrogen8 or
argon9 matrices. They identified BBNN, cyclic B2N, BNB,
NNBN, and BNBN from mixed isotopic patterns, and isoto-
pic shifts, using Fourier transform infrared spectroscopy and
ab initio calculations. Knightet al.10 used a laser vaporiza-
tion matrix isolation electron spin resonance~ESR! apparatus
to study the BNB radical. They found that BNB has an
X 2Su

1 ground electronic state with a linear centrosymmetric

structure. Roland and Wynne11 described photoionization
and photofragmentation of BxNy clusters generated by laser
vaporization of boron nitride followed by supersonic expan-
sion. Thompsonet al.12,13studied the infrared~IR! spectra of
reaction products of laser ablated boron atoms with ammo-
nia, during condensation with excess argon at 10 K. They
observed cyclic and symmetric linear B2N together with a
series of hydrogen–boron–nitrogen containing species. As-
mis et al.14–17 employed a negative ion tandem TOF~time-
of-flight! photoelectron spectrometer to determine adiabatic
detachment energies and vibrational frequencies for several
low-lying electronic states of BN, B2N, and B3N. In particu-
lar Asmis et al.16 found no evidence for a low-lying cyclic
isomer of B2N. They reassigned the matrix IR spectra of
Andrews and co-workers9,12,13 to theX 2Su

1 ground state of
linear B2N.

A large number of theoretical studies have been carried
out on BN,18–23 and polyatomic boron–nitrogen
clusters.16,24–31The main aim of the computations on boron–
nitrogen clusters was to optimize their structures, to calculate
the relative stability of different isomers, the vibrational fre-
quencies, the ionization energies and the electron affinities,
and to estimate the atomization energies.

In continuation of our recent investigations on small ni-
trogen containing group 13 and 14 clusters,32–37 we em-
ployed the Knudsen cell mass spectrometric method to per-
form the first equilibrium study on B2N and to determine its
atomization energy and enthalpy of formation. A preliminary
value for the atomization energy of B2N has previously been
reported.32

THEORETICAL INVESTIGATIONS

Ab initio calculations were carried out utilizing the
GAUSSIAN 98program package38 in order to gain information
about the ionization energy~IE!, electron affinity~EA!, and
atomization enthalpy (DaH0

o) of the ground state of B2N.
The calculations were performed at the density-functional
level of theory using the Becke three-parameter exchange
functional with the Lee, Yang, and Parr correlational func-
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tional ~B3LYP!. The basis set employed for this study was a
correlated consistent polarized valence triple-zeta basis set,
cc-pVTZ.

From the calculations the lowest lying2Su
1 electronic

state is found to have the linear symmetric structure in agree-
ment with experimental10,15,16and theoretical9,10,16,24,25litera-
ture data. This result is also in agreement with experimental
and theoretical results for similar molecules, Si2N,39,40 and
Al2N,37,41 which too have linear symmetric structures as the
most stable ground-state geometry.

The vibrational frequencies for the three vibrational nor-
mal modes, the optimized bond lengths, and the physical
chemical properties, corrected for the zero-point energies
~ZPE!, of theX 2Su

1 state for B2N are listed in Table I, and
compared with available experimental and theoretical values.
The calculated EA of B2N at the B3LYP/cc-pVTZ level of
theory is about 7% lower than the experimental value of
(3.09860.005) eV.16

In order to support our computations, we calculated the
bond distances, vibrational frequencies, electron affinity, ion-
ization energy, and atomization enthalpy for the Si2N mol-
ecule at the same level of theory used for B2N, and com-
pared them with available experimental and theoretical
values. The results are reported in Table I. Our computed
silicon–nitrogen bond distance practically coincides with the
experimental value of (1.639560.0014) Å by Brugh and
Moorse.40 The computed IE of 6.34 eV of Si2N agrees with
the value of (6.660.5) eV obtained from the linear extrapo-
lation method by Gingerichet al.34

Asmis et al.16 measured the symmetric and antisymmet-
ric vibrational modes of B2N by anion photoelectron spec-

troscopy. The calculated symmetric stretching mode agrees
with the experimental value of 1143 cm21 at all levels of
theory used, B3LYP/cc-pVTZ, Gaussian 1~G1!, and
CCSD~T!/aug-cc-pVTZ, but the calculations of the asym-
metric stretching mode,n3 , failed in reproducing the experi-
mental value of 855 cm21. This problem has been explained
by a distortion along the asymmetric stretch coordinate
yielding a wave function which is oversimplified and leading
to an artifactual structure on the potential energy surface.16

The surprisingly low experimental value ofn3 has been at-
tributed to Herzberg–Teller coupling between theX 2Su

1 and
the low-lying A 2Sg

1 excited state.16

EXPERIMENT

The mass spectrometer and experimental procedures
used for this work have been described previously.42 The
sample of semiconductor grade silicon powder and Si3N4 of
99.9% purity was contained in a boron nitride Knudsen cell,
which was inserted into a graphite cell having a molybdenum
lid. The molybdenum lid intended to minimize the formation
of disilicon carbide, Si2C, and the overlap of its isotope with
those of Si2N. The Si3N4 had decomposed almost completely
in the temperature range of present measurements, and the
boron nitride served as the source of nitrogen. The liquid
silicon also served as a catalyst for the equilibration of BN
with the nitrogen containing species,43 since BN has a low-
vaporization coefficient lower than 631023.44

The Knudsen cell was heated by radiation from a tung-
sten coil resistor and the temperatures were measured with a
calibrated Leeds and Northrup optical pyrometer focused

TABLE I. Comparison between our calculations and the experimental molecular parameters, electron affinity
~EA!, ionization energy~IE!, and atomization enthalpy (DaH0

o) of the X 2Su
1 B2N molecule and of the

X 2Pg Si2N molecule.

Method/Basis set
r X-N

a

~X5B or Si! n1
b n2 n3 EAc IE DaH0

o d

B2N molecule
B3LYP/cc-pVTZ 1.313 1195 125 1326 2.885 10.67 1102
G1e 1.327 1183 153 2392 3.34 8.65 1050
MP4~SDTQ!/6-31G* f 1.338
CCSD~T!/aug-cc-pVTZg 1.328 1143 85 i1320 3.139
APESh 1143 855 3.098
KC-MSi 9.7 1046
Si2N molecule
B3LYP/cc-pVTZ 1.638 615 223 1066 0.914 6.34 974
CCSD~T!/cc-pVTZj 1.644 614 187 917
R2PISk 1.640 ,8.51
KC-MSl 6.6 1011

aThe bond lengths are in Å.
bn1 is the symmetric stretching (sg), n3 the antisymmetric stretching (su), and n2 the bending vibrational
mode, in cm21.

cEA and IE are in eV.
dDaH0

o is in kJ mol21.
eG1 is for GAUSSIAN 1 theory, see Ref. 25.
fReference 10.
gReference 16.
hAPES is for anion photoelectron spectroscopy, see Ref. 16.
iKC-MS is for Knudsen cell mass spectrometry~present investigation!.
jReference 39.
kR2PI is for resonant two-photon ionization spectroscopy, see Ref. 40.
lReference 34.
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onto a black body hole at the bottom of the graphite cell.
Appropriate window and prism corrections were applied.
The ions were produced with ionizing electrons and electron
emission current of 12 eV and 10 mA, respectively. The
acceleration voltage used was 4.5 kV and the electron mul-
tiplier was operated at23 kV.

The ions pertinent to the present investigation were B1,
Si1, Si2N

1, and B2N
1. The ions were identified by their

mass-to-charge ratio, isotopic abundance, and ionization ef-
ficiency curves. At each measurement a movable slit was
interposed into the molecular beam to distinguish between
ions produced from species in the beam and from residual
gases with the same mass-to-charge ratio in the ionization
region of the mass spectrometer. The electron impact energy
was calibrated against the first ionization energy of B~8.296
eV!45 and Si~8.149 eV!.45 The appearance potential of (9.7
60.5) eV was measured for B2N by the linear extrapolation
method. The measured appearance potential is 9% lower
than our computed value of 10.67 eV~see Table I!, and 12%
higher than the G1 value of 8.65 eV.25

The ion current data of the species pertinent to this in-
vestigation are listed in Table II. In the case of B2N the ion
intensities at mass 35 were measured due to better signal-to-
noise ratio; for all other species the maximum intensity peaks
were recorded. The ion intensity of Si2N

1 in Table II has
been corrected for a small contribution due to Si2C; the
maximum correction was 10% atm/e570.

RESULTS AND DISCUSSION

For the determination of the enthalpy of formation,
D fH0

o , and the enthalpy of atomization,DaH0
o , of B2N, the

enthalpy changes of the following reactions:

2B~g!1Si2N~g!5B2N~g!12Si~g!, ~1!

BN~s!1B~g!5B2N~g!, ~2!

were evaluated according to the third-law method, using the
relationD rH0

o52RT ln Kp2TD@(GT
o2H0

o)/T#.
The Gibbs energy functions, (GT

o2H0
o)/T (GEF0), and

the heat content functions,HT
o2H0

o (HCF0), needed in the
evaluation of the reactions enthalpies were taken from litera-
ture for B(g),46 Si(g) ~Ref. 46, Vol. 2!, BN(s),46 and
Si2N(g).34 Those for B2N(g) were computed according to
statistical thermodynamic procedures, using the rigid-rotator

harmonic-oscillator approximation47 and the molecular con-
stants computed at the CCSD~T!/aug-cc-pVTZ level of
theory by Asmiset al.,16 bond distance of 1.328 Å and bend-
ing vibrational mode of 85 cm21 for which there are no
experimental values. These values have been preferred to
those calculated at the B3LYP/cc-pVTZ level of theory be-
cause of the higher level of theory used. For the asymmetric
and symmetric vibrational frequencies the experimental val-
ues of 855 and 1143 cm21, respectively, were used.16 The
A 2Sg

1 excited state with the transition energy (Te) of 6330
cm21 ~Ref. 16! was also considered. Table III lists the ther-
mal functions of B2N.

Reactions~1! and ~2! are pressure independent, there-
fore, the measured ion intensities listed in Table II were uti-
lized directly to calculate the equilibrium constant of the
reactions~1! and ~2!, after correcting them for the isotopic
abundance and ionization cross sections. For the multiplier
gains cancellation of mass and molecular effects was as-
sumed. The isotopic abundance of the atomic species was
taken from Kiser,48 and those of the molecular species were
calculated from the isotopic abundance of the constituent
elements. The relative ionization cross section used,s, in
10216cm2, were taken from experimental values reported in
the literature, except for B, where a calculated value was
used: B, 0.72;49 Si, 3.34;50 N, 0.05;51 Si2N, 5.69 as 0.75
3(2sSi1sN); B2N, 1.12 as 0.753(2sB1sN).

The literature values for the enthalpies of formation,
D fH0

o , in kJ mol21, used to obtain the final values for
the enthalpy of formation and atomization of B2N were:
559.965.0,46 445.768.0,46 2248.161.0,46 351.6614.8,34

and 470.860.1,52 for B(g), Si(g), BN(s), Si2N(g), and
N(g), respectively. From theD rH0

o values, see Table II, and

TABLE II. Measured relative ion currents, in A, over the Si–BN system, and third-law values, in kJ mol21, of theD rH0
o andDaH0

o of B2N.

T ~K!

Ion intensities
D rH0

o

Reaction~1! DaH0
o

D rH0
o

Reaction~2! DaH0
oB1 Si2N

1 Si1 B2N
1

2066 1.10E212 2.70E212 2.04E210 5.30E215 235.72 1046.3 238.2 1040.6
2082 1.55E212 3.80E212 2.75E210 9.54E215 238.71 1049.3 235.7 1043.1
2119 1.88E212 8.20E212 3.12E210 2.10E214 237.36 1047.9 229.4 1049.4
2146 2.32E212 1.27E212 1.87E210 1.68E214 241.33 1051.9 240.0 1038.8
2095 8.71E213 3.43E213 9.30E211 2.88E215 242.28 1052.8 248.0 1030.8
2052 8.69E213 2.94E213 6.10E211 3.87E215 234.81 1045.4 237.9 1040.9
2135 1.92E212 6.65E213 1.12E210 1.91E214 243.11 1054.0 233.1 1045.7

239.163.3a 1049.763.3 237.565.9 1041.365.9

aThe error terms are standard deviations.

TABLE III. The Gibbs energy functions, (GT
o2H0

o)/T (GEF0), in
J K21 mol21, and the heat content functions,HT

o2H0
o (HCF0), in kJ mol21,

for the B2N molecule.

Species

Temperature~K!

298.15 1400 1600 1800 2000 2200

B2N 2GEF0 201.8 277.4 284.7 291.3 297.3 302.7
HCF0 12.91 76.51 88.87 101.4 114.0 126.7

8997J. Chem. Phys., Vol. 113, No. 20, 22 November 2000 The B2N molecule



these auxiliary literature data the respectiveD fH0
o andDaH0

o

were derived, using the following relations: for reaction
~1!, D fH0

o(B2N,g)5D rH0
o22D fH0

o(Si,g)12D fH0
o(B,g)

1D fH0
o(Si2N,g) and DaH0

o(B2N,g)52D fH0
o(B,g)

1D fH0
o(N,g)2D fH0

o(B2N,g); for reaction ~2!,
D fH0

o(B2N,g)5D rH0
o1D fH0

o(B,g)1D fH0
o(BN,s).

By giving the same weight to both reactions employed in
the present investigation, we obtain the values, in kJ mol21:
1045.5618, 1051.4618, 545.2618, and 551.3618 for
DaH0

o , DaH298.15
o , D fH0

o , andD fH298.15
o of B2N(g), respec-

tively. Here the uncertainties are the overall errors obtained
as discussed by Schmudeet al.53

Our computedDaH0
o(B2N,g) value of 1102 kJ mol21 is

about 5% higher than the experimental value, and the scaled
CCD1STD~CCD!/6-31G* value of 1109 kJ mol21 ~Ref. 24!
is about 6% higher than our experimental value. The G1
DaH0

o(B2N,g) value of 1050 kJ mol21 ~Ref. 25! is in good
agreement with our experimental value.

It is interesting to compare the thermodynamic stability
of similar molecules. The atomization energy, in kJ mol21, of
B2N, B2C,46 B2O,25 Al2N,37 Al2C,54 Al2O

46 are: 1045618,
1060630, 121168, 783615, 852642, and 1050620, re-
spectively. TheDaH0

o of Al2C was estimated by Gurvich
et al.54 from the relative abundance of Al2C

1 observed by
Chupkaet al.55 For B2O the theoretical value based on the
G1 method has been used since no reliable experimental
value is available.

The thermodynamic stability of the B2–X and Al2–X
type molecules~X5N, C, and O! increases with the replace-
ment of N by C and C by O, B2O and Al2O being the most
stable. B2N and B2C, as well as Al2N and Al2C, have com-
parable stability.
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