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abstract: Geographic range margins offer testing grounds for limits
to adaptation. If range limits are concordant with niche limits, range
expansions require the evolution of new phenotypes that can main-
tain populations beyond current range margins. However, many spe-
cies’ range margins appear static over time, suggesting limits on the
ability of marginal populations to evolve appropriate phenotypes. A
potential explanation is the swamping gene flow hypothesis, which
posits that asymmetrical gene flow from large, well-adapted central
populations prevents marginal populations from locally adapting. We
present an empirical framework for combining gene flow, environ-
ment, and fitness-related phenotypes to infer the potential for mal-
adaptation, and we demonstrate its application using the scarlet mon-
keyflower Mimulus cardinalis. We grew individuals sampled from
populations on a latitudinal transect under varied temperatures and
determined the phenotypic deviation (PD), the mismatch between
phenotype and local environment. We inferred gene flow among
populations and predicted that populations receiving the most tem-
perature- or latitude-weighted immigration would show the greatest
PD and that these populations were likely marginal. We found asym-
metrical gene flow from central to marginal populations. Populations
with more latitude-weighted immigration had significantly greater
PD but were not necessarily marginal. Gene flow may limit local
adaptation in this species, but swamping gene flow is unlikely to
explain its northern range limit.

Keywords: adaptation, geographic range, population genetics, range
limits, relative growth rate.

Introduction

The geographic ranges of some species span continents
while others are limited to only a handful of locations, yet
every species has a geographic distribution that is circum-
scribed by range boundaries. Explaining why individuals
occur at a species’ geographic range margin yet do not
persist only a short distance beyond the margin is an im-
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portant and long-standing problem in evolutionary ecol-
ogy (Mayr 1963; Antonovics 1976). In some cases, present-
day range limits may be transient fronts that arise as a
result of dispersal limitation and temporal environmental
variation (Katinas and Crisci 2008; Paul and Tonsor 2008;
Svenning et al. 2008; Paul et al. 2009). In other cases,
range boundaries appear to be at ecological equilibrium
and reflect persistent niche limitation. For example, ex-
periments that translocate individuals beyond range
boundaries show that many species cannot survive or re-
produce beyond their ranges (Clausen et al. 1948; Angert
and Schemske 2005; Geber and Eckhart 2005; Griffith and
Watson 2006). Range boundaries are frequently associated
with limiting abiotic variables such as temperature (Root
1988; Cumming 2002), biotic factors such as competitors
(Terborgh and Weske 1975; Bullock et al. 2000), or com-
plex interactions between biotic and abiotic variables
(Randall 1982; Taniguchi and Nakano 2000). However,
even a mechanistic understanding of the relationship be-
tween environmental variables, fitness, and distribution
does not fully explain the apparent stasis of some popu-
lations at range margins over evolutionary time. If a species
is maladapted to conditions beyond its range margin, why
do phenotypes that would permit range expansion fail to
evolve? Range margins provide a unique and tractable
venue to explore the larger problem of understanding what
factors limit adaptation (Bridle and Vines 2007).

A strong theoretical tradition has led to the exploration
of different mechanisms that can create evolutionarily sta-
ble range limits, at least under idealized conditions (Holt
and Keitt 2005; Sexton et al. 2009; Holt and Barfield 2011).
First, ecological dynamics may pose long-term evolution-
ary constraints on marginal populations. For example, re-
source competition along environmental gradients can fa-
vor specialization to different segments of a resource
spectrum and hence restrict the ranges of competitors
(Price and Kirkpatrick 2009; Price et al. 2011). Also,
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extinction-recolonization dynamics in a metapopulation
system may periodically reset the clock on local adaptation
to the range margin (Holt and Keitt 2000). Another class
of hypotheses focuses on genetic variation (Antonovics
1976; Blows and Hoffman 2005; Eckert et al. 2008; Kawecki
2008). Marginal populations may lack genetic variation in
traits that are under selection at the range margin for a
number of reasons, including depletion by persistent
strong selection, genetic bottlenecks at the margin, founder
events during range expansion, and inbreeding in small
peripheral populations. Further, marginal populations may
harbor moderate genetic variation at neutral genetic mark-
ers or for particular phenotypic traits yet lack multivariate
genetic variation in dimensions that are necessary for range
expansion (Bradshaw 1991; Blows and Hoffman 2005).

Here we focus on another class of models that we will
broadly refer to as the swamping gene flow hypothesis
(Haldane 1956; Kirkpatrick and Barton 1997; Holt et al.
2005). In the context of range limits, this hypothesis is
exemplified by the model outlined by Kirkpatrick and Bar-
ton (1997), in which gene flow from large, well-adapted
central populations restricts the ability of marginal pop-
ulations to locally adapt and, hence, expand beyond a
species’ current geographic range limit. This basic model
has subsequently been modified and expanded to incor-
porate competitive interactions (Case and Taper 2000),
variation in genetic variance among populations (Barton
2001), the influence of dispersal barriers (Barton 2001;
Goldberg and Lande 2007), and changes in genetic vari-
ation over time (Alleaume-Benharira et al. 2006). These
models begin with an environmental gradient that affects
fitness. Local demography is linked to selection such that
mismatch between phenotypes and local environmental
conditions depresses local abundance. When environmen-
tal gradients are sufficiently steep or dispersal is sufficiently
high, gene flow from large and well-adapted central pop-
ulations introduces maladaptive alleles into edge popu-
lations and pushes edge populations away from local fit-
ness optima until populations are so maladapted that they
are unable to persist. Similar outcomes are predicted by
models of evolution between discrete source (e.g., range
center) and sink (e.g., range margin) habitat patches (Holt
et al. 2005; Holt and Barfield 2011). Key to these models
is the impact of swamping gene flow on local demography,
whereby the influx of maladapted genotypes results in
marginal sink populations that have negative population
growth rates and low effective population sizes. Thus, mar-
ginal populations might be susceptible to losing genetic
variation to genetic drift (Vucetich and Waite 2003) and
becoming genetically differentiated as a result of random
sampling (due to extinction and recolonization events
[Lennon et al. 1997; Holt and Keitt 2005]). On the con-
trary, gene flow may actually facilitate local adaption and

increase the fitness of marginal populations, if these pop-
ulations are genetically depauperate (Holt and Gomulkie-
wicz 1997; Barton 2001; Holt 2003; Holt et al. 2004; Al-
leaume-Benharira et al. 2006). The main assumptions of
the swamping gene flow hypothesis of range limits are that
(1) a species occupies a gradient of environmental con-
ditions from the range center to the margin, with (2) a
concomitant selection gradient that favors clinal pheno-
typic differentiation from the range center to the margin,
and there is (3) persistent asymmetrical gene flow from
central to marginal populations. While sound in theory,
the swamping gene flow hypothesis of range limits has
seldom been tested empirically, and the realism of
the proposed mechanism can be difficult to envision for
wide-ranging species with fragmented and idiosyncratic
distributions.

One challenge of studying the effects of swamping gene
flow in natural populations is quantifying the impact of
gene flow on the phenotypes, absolute fitness, and local
adaptation of recipient populations. Ideally, we could con-
struct an adaptive landscape that displays the topography
of fitness as a function of phenotypes. In the context of
geographic range limits, we want to see how this adaptive
landscape changes with environment (e.g., from the center
to the edge). Then, given a series of adaptive landscapes
from the center to the range edge, we could determine
which phenotypes are optimal in a particular environment,
where a local population is relative to the optimum phe-
notype (fig. 1A), and whether the degree of mismatch
between the optimum phenotype and the local phenotype
is influenced by gene flow. In the absence of knowledge
of a true fitness landscape, one approach is to quantify
some metric of phenotypes in common garden environ-
ments and then relate population-level phenotypes to local
(population-specific) environmental conditions. The de-
gree of mismatch between phenotypes and environment,
which we term the phenotypic deviation (PD), can be
interpreted as a metric of potential maladaptation (fig. 1B).
As such, we may expect populations that receive more gene
flow to show greater phenotypic deviation from the local
phenotypic optimum. We can use a measure of the local
environment, such as a growing season temperature, as a
surrogate for the true unknown optima, and we expect
the populations that receive more maladaptive gene flow
to show greater phenotypic deviation from the local en-
vironmental measure. However, even if a population re-
ceives substantial gene flow from another population, it
does not necessarily mean that maladaptive alleles are be-
ing introduced into the recipient population. Not all gene
flow is equivalent, since there should be a greater prob-
ability of introducing maladaptive alleles if gene-exchang-
ing populations differ markedly in their selective regimes
and expected phenotypic optima. Hence, gene flow from
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Figure 1: Model depicting the relationship between realized phenotypes and their expected phenotypic optima, based on an unknown
(true) fitness landscape. A, Realized phenotypes may not perfectly match optimal phenotypes in a particular environment, and this mismatch
may increase toward the range margin. B, Expected relationship between a local environmental optimum and the realized phenotypic
optimum, if phenotype-environment mismatch increases toward the range margin. The difference between these two metrics is the phenotypic
deviation.

donor populations that are physically or environmentally
distant from recipient populations might introduce mal-
adaptive genotypes to recipient populations, and the far-
ther away a donor population is (in terms of spatial or
environmental distance), the more likely that these pop-
ulations might include maladaptive alleles that would be
unfit in the recipient population. Thus, populations with
a greater influx of environmentally or spatially distant mi-
grants should have greater phenotypic mismatch to local
environments. Considering geographic ranges, if mal-
adaptive gene flow is important, we expect phenotypic
clines of shallower slope than the environmental gradient
across the geographic range, with an increasing mismatch
between phenotypes and local environmental conditions
moving toward the range margin (fig. 1B).

Here, we demonstrate how to employ the framework
described above to investigate the swamping gene flow
hypothesis of range limits by examining the relationship
between gene flow and phenotypic deviation across a geo-
graphic range. We examined the northern geographic
range limit of the perennial herb Mimulus cardinalis (Phyr-
maceae). We integrated genetic, phenotypic, and climate
data from 13 populations spanning a latitudinal gradient
that encompasses the northern half of the known geo-
graphic range of M. cardinalis. Our genetic data consist of
DNA sequences from six nuclear intronic loci sampled
from a total of ∼120 individuals, collected from each pop-

ulation along our latitudinal sampling gradient. We used
haplotype frequencies to calculate population-level genetic
diversity, differentiation and rates of contemporary gene
flow, and sequence data to infer rates of historical gene
flow under a coalescent framework. We calculated the de-
gree of genetic differentiation among populations and
regions using FST values and an analysis of molecular var-
iance (AMOVA) and examined the relationship between
genetic and geographic distances (isolation by distance;
[IBD]). Given the demonstrated importance of tempera-
ture to the growth and reproduction of M. cardinalis
(Decker 1958; Hiesey et al. 1971; Angert 2006; Angert et
al. 2008), we focused our phenotypic investigation on
growth responses to temperature. We propagated clones
from 12 of these populations and exposed them to varied
temperature regimes to estimate the temperature for max-
imum growth. We then calculated the degree of mismatch
between estimates of local growing season temperature and
growth phenotype for a given population. To incorporate
environmental differences among populations into gene
flow estimates, we weighted the migration estimates on
the basis of the difference between donor and recipient
populations in their latitude or temperature. We made the
following predictions: (1) historical and contemporary
rates of gene flow are asymmetrically biased from central
(southern) to marginal (northern) populations; (2) tem-
perature optima for growth decrease with latitude, yet not
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Figure 2: Mimulus cardinalis range map (modified from Hiesey et
al. 1971) showing range center zone (defined as the center 50% of
the known latitudinal range) and sampling locations. Individuals of
M. cardinalis from Sacramento were used only in genetic analyses.
Individuals from San Joaquin and Cosumnes were used only in some
genetic analyses because of small sample size.

as rapidly as environmental temperature decreases with
latitude across the geographic range of M. cardinalis;
hence, (3) phenotypic deviation increases with latitude
from the center to the margin of the range, and (4) rates
of latitude-weighted immigration and temperature-
weighted immigration explain variation in phenotypic de-
viation across the geographic range. Finally, if marginal
populations do represent chronic sink populations, we ex-
pect that (5) population genetic diversity metrics will de-
crease from the range center to the range margin (with
increasing latitude).

Methods

Study System

Mimulus cardinalis is a perennial herb that grows along
seeps and stream banks from southern Oregon to northern
Baja California and from coastal California east to the
Sierra Nevada Mountains (Hiesey et al. 1971; Hickman
1993; fig. 2). Although herbarium records of M. cardinalis
are present in the southwestern United States and central
Mexico, these disjunct populations have crossing barriers
with Californian populations and cluster into well-sup-
ported sister clades (Hiesey et al. 1971; Beardsley et al.
2003). In California, M. cardinalis occurs from sea level
to 2,400 m (Hickman 1993), although the elevation limits
of the species decrease with increasing latitude (Ramsey
et al. 2003).

Sample Collection

We collected leaf tissue and seeds from a latitudinal gra-
dient from the southern Sierra Nevada Mountains to the
Willamette Valley of Oregon (table 1; fig. 2). The latitu-
dinal range center point lies between 36.876�N and
37.487�N, depending on the method of calculation (table
A1 [app. A–F are available in a zip file in the online edition
of the American Naturalist]). Because, biologically, the
range center encompasses a set of populations nested in
a particular region, we defined populations within the cen-
tral 50% of the range as central and populations in the
northern 25% of the latitudinal range as marginal. The
northernmost population of record is at 44.052�N, al-
though we were unable to locate plants at or beyond this
locality in July 2007 and June 2010. The sampling transect
began just south of the range center point and ended near
the northernmost recorded population. The 13 locations
used in this article represent 13 river drainages encom-
passed by our sampling transect (fig. 2). Leaf tissue was
collected from 5–20 individuals in each population, with
a minimum distance of ∼2 m between individuals to avoid
collecting multiple ramets of the same genet. We collected

3–5 young leaves in small plastic bags with ∼0.25 g silica
gel. When possible, we also collected fruits from the same
individuals and stored the fruits in paper coin envelopes.
Seeds were grown in the greenhouses at Colorado State
University for phenotypic measurements, described below.
We also collected leaf material for DNA extraction from
some greenhouse-reared plants whose mothers were not
already represented in leaf tissue collections, using the
same silica gel protocol as above, in populations where we
could not find sufficient quality or quantity of leaf
material.

Genetic Data

DNA Extraction, Amplification, and Sequencing. We ex-
tracted DNA following the protocol of Alexander et al.
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Table 1: Data for Mimulus cardinalis populations

N

Population Latitude (�N) Longitude (�W) Elevation (m) July Tmax (�C) Genotypic Phenotypica

Kaweah 36.521 �118.894 465 37.1 7 7
San Joaquin 37.359 �119.345 1,141 31.4 2 9
Tuolumne 37.815 �119.866 1,320 29.1 13 11
Stanislaus 38.245 �120.266 1,269 29.1 10 9
Cosumnes 38.680 �120.417 1,350 30.4 2 9
American 39.122 �120.492 1,490 26.2 10 9
Yuba 39.394 �121.083 425 33.5 10 8
Feather 40.000 �121.270 620 31.6 10 9
Sacramento 40.734 �122.073 342 35.4 7 0
Klamath 41.665 �123.113 614 29.5 10 8
Rogue 42.055 �123.164 689 25.5 7 6
Umpqua 43.375 �122.957 323 27.9 9 11
Willamette 43.649 �123.084 256 26.3 10 10

a Used for cloning.

(2007), which uses a reciprocating saw and steel beads to
pulverize leaf tissue and silica columns to recover DNA
before elution in 10 mM Tris solution. We amplified 10
exon-primed, intron-crossing nuclear loci using primer
sequences developed for Mimulus lewisii and prescreened
for polymorphism in M. cardinalis by T. Bradshaw (Uni-
versity of Washington). Of these 10 loci, we chose six loci
that consistently amplified across all our sample popula-
tions and that yielded high quality and consistent chro-
matograms. The six loci varied in length from 319 to 540
base pairs (table 1) and are found on four different linkage
groups, putatively four out of eight chromosomes (linkage
group; GenBank accession numbers): MlSTS5073 (5;
JN161706–JN161815), MlSTS5164 (7; JN161165–
JN161272), MlSTS5334 (1; JN161273–JN161376),
MlSTS5525 (6; JN161377–JN161486), MlSTS5536 (5;
JN161487–JN161596), MlSTS5551 (7; JN161597–
JN161705). Primer sequences and further information on
these markers are available at the MIMULUS project Web
site (http://www.mimulusevolution.org).

All polymerase chain reaction (PCR) was conducted us-
ing two Eppendorf Mastercycler EP thermocyclers (Ep-
pendorf North America, Westbury, NY). Reactions con-
sisted of 15.4 mL double-distilled H2O, 2.0 mL 10# buffer
(New England Biolabs [NEB], Ipswich, MA), 1.0 mL bovine
serum albumin (NEB), 0.20 mL deoxyribonucleotide tri-
phosphate (10 mM; Integrated DNA Technologies [IDT],
Coralville, IA), 0.2 mL forward primer (0.10 uM; IDT), 0.2
mL reverse primer (0.10 uM; IDT), 0.04 mL Taq polymerase
(NEB), and 1.00 mL template DNA in a final volume of
20 mL. The basic thermocycler protocol was 1 cycle of
94.0�C for 3 min, followed by 10 cycles of 30 s at 94.0�C,
30 s at 62.0�C, and 45 s at 72.0� C, with a step down of
1�C for each step (62.0�–52.0�C), followed by 30 steps of

30 s at 94.0�C, 30 s at 48.0�C, and 45 s at 72.0�C. Protocols
were modified when necessary to improve amplification
from specific individuals for specific loci. PCR products
were visualized on 1.0% agarose gels using GelRed (Bio-
tium, Hayward, CA) and a ultraviolet light in a BioRad
Universal Hood II (BioRad, Hercules, CA). Successful PCR
products were cleaned using a basic exonuclease I–shrimp
alkaline phosphatase protocol and sent to the DNA Se-
quencing Facility at the University of Chicago Cancer Re-
search Center, which uses ABI 3730XL and 3130 DNA
sequencers. We ordered forward reads of all sequences,
and the vast majority yielded high-quality, unambiguous
chromatograms. We ordered reverse reads of sequences
that did not have high-quality chromatograms (∼5% of
all sequences) or had heterozygous indels (∼5% of all se-
quences). We also resequenced 24 reads from new PCR
amplifications in order to check the reliability of our initial
reads (∼4% of sequences for each locus). Our estimated
error rate on a per nucleotide basis was !0.001%.

Sequence Data Preparation. We aligned DNA sequences
using the MUSCLE algorithm in the program Geneious
(ver. 4.8; Drummond et al. 2009). Alignments were
straightforward, with very few indels. To call heterozygous
states, we used the sequencing chromatograms to assign
International Union of Pure and Applied Chemistry am-
biguity codes to any sites with clear double peaks. All
polymorphic alignment columns were manually inspected
and edited to make sure the site was truly polymorphic
and that all heterozygous sites were properly coded. If a
site was deemed ambiguous after inspection (e.g., if the
potential heterozygote signal peak was not sufficiently
higher than neighboring background noise), the site was
coded as N. Final alignments were imported into DnaSP
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(Librado and Rozas 2009) to phase diploid sequences into
haploid sequences, using the module Phase (ver. 2.1; Ste-
phens et al. 2001).

Analysis of Genetic Structure. We tested for deviations from
Hardy-Weinberg equilibrium using 1,000 permutations in
the program Arlequin (ver. 3.5; Excoffier et al. 2005). Al-
though we found occasional departures in certain locus
by population combinations (14 out of 83 tests), there was
no consistent evidence that certain loci or populations
persistently deviated from Hardy-Weinberg equilibrium
(table B1).

Haplotype frequencies were used to calculate FST in Ar-
lequin (Excoffier et al. 2005). To test for range-wide genetic
differentiation, we used an AMOVA, implemented in the
program Arlequin (Excoffier et al. 2005). We included a
regional term to group populations into central (within
the center 50% of the latitudinal range of M. cardinalis)
and marginal (north of the defined center; for further
explanation, see table A1). We also tested for IBD using
a Mantel test of log10(genetic distance, FST) versus
log10(geographic distance, great circle distance), using the
IBD Web Service (Jensen et al. 2005).

Analysis of DNA Polymorphism. To test the prediction of
a reduction in genetic diversity from the range center to
the range margin, we calculated the number of segregating
sites (S) and nucleotide diversity (p) for sequences of each
locus, grouped by population (sampling location) in
DnaSP. We averaged these values across loci to obtain over-
all estimates. To assess the distribution of private haplo-
types and measure haplotype richness among populations,
we used the program ADZE (Allelic Diversity Analyzer;
Szpiech et al. 2008), which uses rarefaction to account for
variation in sample sizes among populations. We used re-
gression to test for molecular diversity by latitude
relationships.

Estimating Contemporary Migration Rates. We used the
program BayesAss� (ver. 1.3; Wilson and Rannala 2003)
to estimate rates of migration over the past few generations
to test the prediction of asymmetrical gene flow from cen-
tral to marginal populations. BayesAss is a Bayesian clus-
tering algorithm that uses Markov chain Monte Carlo
(MCMC) sampling to make inferences about levels of mi-
gration and population inbreeding using diploid neutral
genetic markers. We used our haplotype frequency data
set to infer a migration matrix among 11 of our putative
populations (all populations with genotypic ; tableN ≥ 7
1). We used the following settings: number of iterations,
5,000,000; sampling frequency, 2,000; length of burn-in,
999,999; d allele, 0.15; d migration, 0.15; d F, 0.15. BayesAss
is one of few programs that can infer asymmetrical mi-

gration rates. However, some BayesAss runs can have poor
MCMC sampling, where values get stuck near the bounds
of the priors (Faubet et al. 2007). Hence, following the
protocol suggested by Faubet et al. (2007), we ran BayesAss
10 times under identical conditions but with different ran-
dom number seeds. We then calculated the Bayesian de-
viance of the assignments and used the run with the lowest
Bayesian deviance for further analyses (Faubet et al. 2007).
We determined whether MCMC chains had reached a sta-
ble state by examining the changes in log-likelihood values
across iterations.

Estimating Historical Migration Rates. We used the pro-
gram Migrate-N (ver. 3.1.6; Beerli and Felsenstein 1999)
to estimate historical rates of migration and genetic di-
versity (v values) to test the prediction of asymmetrical
gene flow from central to marginal populations. Migrate-
N is a coalescent genealogy sampler that uses MCMC sam-
pling under a likelihood or Bayesian framework to infer
rates and direction of historical migration events (Beerli
and Felsenstein 1999, 2001) and allows for asymmetrical
migration. We ran extensive testing runs with Migrate-N
to test various search parameters, prior distributions, chain
lengths, and replicates. We inferred a migration matrix
among 11 of our putative populations (all populations
with ; table 1). We used the Bayesian implementationN ≥ 7
of Migrate-N and the following parameters: wide uniform
priors on v (0.0 minimum and 0.1 maximum) and mi-
gration (M, mutation-scaled migration; 0.0 minimum and

maximum); slice sampling proposal distributions45 # 10
for both genealogies and demographic parameters; a single
long cold chain with steps burn-in, and nine62 # 10
heated chains; recorded steps, sampling every 10045 # 10
steps, for a total of post-burn-in visited states (per65 # 10
locus). We assessed whether individual locus MCMC
chains had reached a stationary distribution by visualizing
the parameter values in the program Tracer (Rambaut and
Drummond 2007) and in R (R Development Core Team
2008). We calculated the migrants per generation (4nm)
by multiplying the mean M by the recipient population’s
estimated mean v value for a given population pair.

Assessing Asymmetrical Migration. To determine whether
net gene flow was asymmetrically biased from the range
center to the range margin (from south to north), we
conducted permutation tests in R (R Development Core
Team 2008). We calculated the mean difference in migra-
tion for each population pair and then permuted the mi-
gration estimates ( times) to build a null distri-51 # 10
bution of expected differences in migration rates between
population pairs. This expected distribution was used to
assess significance of our observed estimates. Migration
values are percentage of migrant ancestry (contemporary
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rates, BayesAss) or migrants per generation (4nm, histor-
ical rates, Migrate-N) from population x to population y,
and vice versa.

Phenotypic Data

Plant Propagation. In April 2009, field-collected seeds
from seven to 26 maternal plants per population were
planted in 3-inch pots containing Fafard Super-Fine Ger-
minating Mix (Conrad Fafard, Agawam, MA) in green-
houses at Colorado State University. Greenhouse temper-
atures averaged 24�/20�C during the day/night, with a
16L : 8D photoperiod. In September 2009, plants were
transferred to 1-gallon pots and apical meristems were
pruned to encourage branching. In November 2009, when
plants had grown sufficiently large to allow for cuttings to
be taken weekly, we selected seven to 10 of the largest,
healthiest plants per population for assessment of growth
responses to temperature. We estimated genotypic growth
response curves by creating up to 28 vegetative clones of
each genotype. Up to four clones per genotype were placed
for 1 week in each of seven different temperature regimes
(15�/0�, 20�/5�, 25�/10�, 30�/15�, 35�/20�, 40�/25�, and 45�/
30�C), each replicated twice in two identical growth cham-
bers (Percival LT-105, Percival, Perry, IA). Up to two cut-
tings per plant were made each week beginning in No-
vember, resulting in a series of sequential growth chamber
runs that ended in April 2010. In total, we made 2,432
clones. For additional details on cloning methods and
growth chamber conditions, see Angert et al. (2011).

Temperature Response Curves. The following size mea-
surements were taken on each clone before and after ex-
posure to the growth chamber temperature regime: length
of primary stem, number of secondary stems, length of
an average secondary stem, number of rhizome sprouts,
and length of an average rhizome sprout. From these mea-
surements we estimated total stem length at each time
point as the sum of primary, secondary, and rhizome
lengths. We then calculated relative growth rate (RGR) as
the change in total stem length per initial total stem length
per day. Before conducting statistical analyses, we exam-
ined the effect of rooting status on RGR. Because RGR
was often negative for unrooted cuttings, we excluded
these individuals from analysis ( ).N p 429

Following Angilletta et al. (2006), we compared the fit
of several candidate functions that could describe relative
growth rate as a function of temperature, including several
that would permit asymmetrical skew. For all populations,
the symmetrical Gaussian function had the lowest Akaike
Information Criterion (AIC) value (Angert et al. 2011)
and is the basis of all subsequent analyses reported here.
Analyses were conducted using the nls function in R. We

used genotypic means (mean RGR across clones of each
genotype at each temperature) rather than individual
clones as data lines to avoid pseudoreplication. We defined
the temperature optimum of relative growth rate (RGR
Topt) as the temperature where the first derivative of the
Gaussian function equaled 0. Note that RGR Topt is our
metric for the phenotype realized by each population; it
is not necessarily equivalent to the adaptive optimum for
that location. To test for a phenotypic cline, we regressed
RGR Topt versus latitude. We permuted data lines among
populations randomly without replacement, maintaining
observed sample sizes per temperature and population, to
determine the likelihood of obtaining a phenotypic cline
of at least the same magnitude as the observed cline.

Climate Data

Climate data were extracted for each collection locality
(table 1) using the ClimateWNA program, which uses dig-
ital elevation models to downscale monthly data at

arcmin resolution from PRISM (Daly 2006) for2.5 # 2.5
the period 1961–1990 (described in detail in Wang et al.
2006). Although many calculated and derived climatic pa-
rameters are available, we focus here on one that we se-
lected a priori for relating to temperature response curves:
maximum temperature during the peak month of the
growing season, July (July Tmax). We chose to use a max-
imum temperature because we modeled the growth cham-
ber temperature regimes by their maximum temperatures
(e.g., the RGR data from the 40�/25�C regime were fit to
a temperature of 40�C). However, because climatic param-
eters were highly correlated, other temperature metrics—
such as average temperatures and temperatures from dif-
ferent months—yielded qualitatively similar patterns. To
test our second prediction that phenotypic clines are shal-
lower than environmental gradients, we performed an
ANCOVA using the lm function in R (R Development
Core Team 2008). We tested for a significant difference in
the slope of temperature versus latitude between the phe-
notypic and environmental data sets. We compared sup-
port for the full four-parameter model (two slopes and
two intercepts) to all possible reduced models, using the
AIC.

Integration of Genetic, Phenotypic, and Climate Data

To integrate phenotypic and climatic data with the genetic
data and test whether swamping gene flow pushes pop-
ulation phenotypes away from local temperature optima,
our approach was to relate the temperature response phe-
notype of each population to the magnitude and source
of gene flow from populations occupying different climatic
regimes. As an estimate of the potential mismatch between
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Table 2: AMOVA results

Sources of variation df
Sum of
squares

Variance
components

Variation
(%)

Among groups 1 15.45 .04 2.19
Among populations within groups 11 104.86 .47 23.54
Within populations 215 317.91 1.48 74.28

Total 227 438.22 1.99

phenotype and environment, we defined phenotypic de-
viation as the difference between RGR Topt and July Tmax.
This metric assumes that environmental temperature is a
reasonable proxy for the adaptive optimum for that lo-
cation because selection on temperature response phe-
notypes is correlated with environmental temperature, an
assumption that is supported by prior physiological ecol-
ogy (Decker 1958; Hiesey et al. 1971; Angert 2006) and
experimental evolution (Angert et al. 2008) in this system.
We calculated two estimates of weighted immigration, lat-
itude-weighted immigration (LWI) and temperature-
weighted immigration (TWI). For each donor-recipient
population pair, we multiplied the immigration estimate
from donor to recipient by the difference in latitude (LWI)
or July maximum temperature (TWI) between the two
populations. A net immigration value for each recipient
population was then calculated as the sum of all distance-
or temperature-weighted immigration estimates from all
possible donors (e.g., ). LWI is positive

i
LWI p � LWIj irj

when net immigration into a focal population is from the
north and negative when net immigration is from the
south; an LWI of zero would indicate that immigration
from the north exactly balances that from the south. Be-
cause we calculated TWI also as donor minus recipient
habitat temperatures, the directionality of TWI is inverse
to that of LWI: TWI is positive when net immigration is
from hotter localities and negative when net immigration
is from cooler localities. Because our data collection points
fall along a latitudinal transect, there is an opportunity for
bias in the LWI and TWI metrics. For example, the third
most southern population (Tuolumne) can potentially re-
ceive migrants from nine populations to its north but only
two populations to its south, so even random data will
likely produce a net influx of migrants from the north. To
account for this bias, we developed standardized metrics
for LWI and TWI (LWIstd, TWIstd) using permutations to
make null distributions of expected LWI and TWI values
(LWIexp, TWIexp). We permuted the migration estimates
among populations (LWIobs, TWIobs), randomly shuffling
the relationship between latitude and the migration matrix.
For each population, we calculated the standardized LWI
as ; the sameLWI p (LWI � LWI )/stdev(LWI )std obs exp exp

equation was used for standardized TWI, replacing LWI

with TWI observed and expected values. This approach
was inspired by phylogenetic structure metrics that ac-
count for species richness (Webb 2000). These standard-
ized metrics correct for bias in our sampling design while
making the weighted metrics comparable among popu-
lations; these are the values we report in our results. For
comparison of recent versus long-term effects of gene flow,
we calculated LWI and TWI using gene flow estimates from
BayesAss and Migrate-N and related both types of esti-
mates to PD.

Results

Genetic Structure and Polymorphism
across the Geographic Range

We found significant population genetic structure based
on haplotype frequencies (AMOVA: ,F p 0.74 P !ST

), but we found no evidence of genetic differentiation.0001
between center and edge population groups (between-
group variation p 2.19%, ; table 2). Genetic dif-P p .11
ferentiation between particular population pairs was on
the whole quite strong (e.g., mean ,F p 0.25 SD pST

; table C1), leading to significant IBD ( ,0.11 Z p �118.62
, ).r p 0.24 P p .03

We found no significant relationships between latitude
and any of the molecular diversity metrics (segregating
sites S, , [quadratic]; nucleotide diver-2R p 0.33 P p .20
sity p, , [quadratic]; haplotype richness,2R p 0.35 P p .17

, [quadratic]; private haplotypes,2R p 0.24 P p .34
, [linear]; table 3). Mutation-scaled2R p 0.25 P p .12

population genetic diversity (v), as estimated by Migrate-
N, also did not vary with latitude ( , ;2R p 0.22 P p .16
table 3). The median v estimate for one population, Ka-
weah, was two orders of magnitude higher than all other
estimates. Unlike all other populations, the posterior dis-
tribution for Kaweah was not a unimodal curve (truncated
at 0) and hence did not have a clear central tendency. As
such, we excluded the v estimate for Kaweah (and asso-
ciated migration into this population) from subsequent
historical migration analyses (see “Discussion”).
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Figure 3: Support for prediction that relative growth rate (RGR) Topt

decreases more slowly with latitude than does July Tmax. Full
ANCOVA model yields a marginally significant shallower slope for
RGR Topt against latitude than for July Tmax (RGR Topt slope p �0.31,
July Tmax slope p �0.90, ; table F1 [app. A–F are availableP p .11
in a zip file in the online edition of the American Naturalist]). Re-
duced ANCOVA model assuming a common intercept yields a sig-
nificantly shallower slope for RGR Topt against latitude than for July
Tmax (RGR Topt slope p �0.57, July Tmax slope p �0.65, P p

; table E1). Other possible reduced models had substantially.002
higher AIC values and are not presented here (but see table E1).

Contemporary and Historical Migration Rates

On the basis of contemporary estimates of gene flow, most
population pairs shared relatively few migrants (!2%), but
some populations contributed as much as 22% to other
populations (e.g., American migration into Tuolumne; ta-
ble C2). Net gene flow was not asymmetrically biased
(mean migration north p 0.017, migration south p
0.021, ). Historical migration rates were moderateP p .54
among populations (4nm ranging from ∼10 to 38) and
had a significantly asymmetric bias to the north (mean
migration north p 22.29, migration south p 19.34,

; table C3).P p .01

Temperature Response Curves

Temperature response curves had a characteristic uni-
modal shape with a single temperature optimum for rel-
ative growth rate (RGR Topt; fig. D1). Although standard
errors around the estimates of RGR Topt were relatively
high, resulting in confidence intervals for RGR Topt that
were broadly overlapping, RGR Topt significantly declined
with increasing latitude ( , ,2b p �0.31 R p 0.74 P p

; fig. 3, open circles). Only nine of 10,000 random.0003
permutations had a more negative slope, indicating that
the inferred cline is highly unlikely to have arisen by
chance despite high sampling error that made pairwise
differences between populations undetectable. July Tmax

decreased rapidly with increasing latitude but with con-
siderable scatter ( , , ; fig. 3,2b p �0.90 R p 0.41 P p .03
solid circles). RGR Topt was only marginally related to July
Tmax ( , , ). ANCOVA suggested2b p 0.13 R p 0.26 P p .09
that July Tmax declined more rapidly with increasing lati-
tude than did RGR Topt (table E1).

Phenotypic Deviation and Latitude- and Temperature-
Weighted Immigration Clines

For both contemporary and historical gene flow estimates,
there was no significant relationship between standardized
latitude-weighted immigration (LWIstd) and latitude (con-
temporary, , ; historical, ,2 2R p 0.18 P p .22 R p 0.003

; fig. 4A, 4B). In contrast, contemporary stan-P p .90
dardized temperature-weighted immigration (TWIstd) var-
ied significantly with latitude; southern populations re-
ceived more migrants from populations from cooler
environments, while northern populations received more
migrants from populations from hotter environments
( , ; fig. 4C). Historical TWIstd did not2R p 0.46 P p .03
vary with latitude ( , ; fig. 4D).2R p 0.13 P p .33

Phenotypic deviation (PD) did not vary significantly
with latitude ( , ; fig. 5A). The influx of2R p 0.22 P p .18
contemporary latitude-weighted migrants (LWIstd) signif-

icantly explained PD across populations ( ,2R p 0.53
; fig. 5B), but the influx of historical migrants didP p .02

not ( , ; fig. 5C). In the contemporary2R p 0.18 P p .26
case, in populations where PD was positive (cooler RGR
Topt than the local environment), the net influx of latitude-
weighted migrants came from the north, while in popu-
lations where PD was negative (hotter RGR Topt than the
local environment), the net influx of migrants came from
the south. In contrast, TWIstd, both contemporary and
historical, did not significantly explain PD across popu-
lations (contemporary, , ; historical,2R p 0.03 P p .61

, ; fig. 5D, 5E).2R p 0.03 P p .67

Discussion

We illustrated a new approach for quantifying the effects
of swamping gene flow on phenotypes that relates the
degree of phenotypic-environment mismatch exhibited by
a given population to the amount of environmentally
weighted gene flow received by that population. This ap-

This content downloaded from 138.202.1.119 on Tue, 24 Feb 2015 15:27:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Gene Flow and Phenotypic Divergence S73

Figure 4: Relationship of standardized latitude-weighted immigration (LWIstd; top row) and standardized temperature-weighted immigration
(TWIstd; bottom row) versus latitude. Immigration estimates in left column are contemporary rates based on Bayesian assignment, and
estimates in right column are historical rates based on coalescent inference. Values of indicate net migration from the north,LWI 1 0std

and values of indicate net migration from the south; values of indicate net migration from populations with warmerLWI ! 0 TWI 1 0std std

environments, and values of indicate net migration from populations with cooler environments, on the basis of July maximumTWI ! 0std

temperature.

proach is a flexible and tractable way to estimate how gene
flow may be influencing phenotypes in populations ar-
rayed on an environmental gradient. By weighting migra-
tion by the latitudinal distance or temperature “distance”
from which migrants arrived, our method takes into ac-
count the greater potential for maladaptive genotypes to
be introduced to a given population, assuming that the
farther away a donor population is (in terms of spatial
distance or temperature difference), the more likely it is
that these populations include maladaptive alleles that
would be unfit in the recipient population. This approach
could be applied to any system in which field estimates
of gene flow can be inferred, relevant environmental pa-
rameters estimates are available, and the study organism
can be grown under controlled conditions to evaluate phe-
notypic responses to variation in the environmental var-
iable of interest. This approach requires that environmen-
tal variables relevant to fitness be used to weight the

distance of migrants and that reasonable estimates of gene
flow can be inferred.

Gene Flow and Phenotype-Environment Mismatch
in Mimulus cardinalis

In the plant species Mimulus cardinalis, we found evidence
of historical asymmetrical gene flow from central (south-
ern) to marginal (northern) populations, supporting one
of the predictions of the swamping gene flow hypothesis.
Net contemporary gene flow was not statistically asym-
metrical, but contemporary temperature-weighted immi-
gration (TWIstd) varied significantly with latitude, whereby
northern marginal populations received a net influx of
migrants from hotter environments. We also found that
the regional term in an AMOVA explained very little of
the overall genetic variance across the range, suggesting
that while genetic differentiation was moderately large
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Figure 5: Relationship of phenotypic deviation (PD) and latitude (A), standardized latitude-weighted immigration (LWIstd) based on
contemporary migration rates (B), LWIstd based on historical migration rates (C), standardized temperature-weighted immigration (TWIstd)
based on contemporary migration rates (D), and TWIstd based historical migration rates (E). Values of indicate that the relativePD 1 0
growth rate (RGR) temperature response optimum is cooler than the local environment, while values of indicate that the RGRPD ! 0
temperature response optimum is warmer than the local environment.

overall, gene flow could be keeping marginal and central
populations from becoming genetically distinct. Despite
these three lines of evidence, we did not find that marginal
populations were the ones that exhibited the greatest po-
tential for maladaptation to temperature extremes at their
site, as measured by phenotypic deviation.

We also found evidence that was not consistent with

the swamping gene flow framework. First, the average pop-
ulation genetic differentiation across the range was rather
large, suggesting that the total level of gene flow should
be small. Supporting this notion, the majority of contem-
porary pairwise gene flow estimates were typically low. For
contemporary estimates, most populations owe !1% of
their genotypes to recent migrants (within the last two
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generations). In contrast, our historical estimates of gene
flow suggest that most population pairs share on the order
of five migrants per generation (e.g., 4nm means ∼20).
These large numbers could indicate that ancestral poly-
morphism is upwardly biasing our historical migration
estimates. However, such a pattern could potentially be
explained by the annual migration of hummingbirds, the
principle pollinators of M. cardinalis. During migration,
hummingbirds travel long distances each night and feed
voraciously during the day (Phillips 1975), providing op-
portunity for the hummingbird migration to impact the
net flux of long-distance gene flow among M. cardinalis
populations. Second, we did not find a reduction in hap-
lotype richness, nucleotide diversity, number of private
haplotypes, or mutation-scaled diversity (v) with latitude
as predicted based on the assumption that swamping gene
flow would introduce a randomly sampled subset of ge-
netic diversity to northern populations. Finding no re-
duction in genetic diversity in marginal populations con-
trasts markedly with the results of Moeller et al. (2011),
who found significantly reduced genetic diversity in mar-
ginal populations of Clarkia xantiana. Finally, while we
did find that populations receiving the greatest influx of
distant migrants (high LWIstd) had temperature response
phenotypes that are farther from the local temperature
(high PD), there was no trend between PD and latitude.
Clinal variation in temperature response phenotype was
shallower than the environmental gradient in growing sea-
son temperature, suggesting that gene flow may indeed
homogenize phenotypes among populations. Taken to-
gether, these lines of evidence indicate that while gene flow
may be important in constraining the ability of some pop-
ulations to track optimal conditions, these populations are
not necessarily located only at the range margin.

Assumptions, Caveats, and Additional Approaches

This study has several strengths and weaknesses that
should be considered when interpreting these results. Our
phenotypic data focus on one key variable, relative growth
rate in response to temperature, but certainly other di-
mensions of the multivariate phenotype are relevant to
understanding fitness across the geographic range. Given
previous work that has implicated temperature as a po-
tentially important variable limiting growth and repro-
duction in M. cardinalis (Angert 2006; Angert et al. 2008),
this phenotype is a reasonable and relevant starting point
for investigating PD across the range. Estimates of tem-
perature optima for growth might be improved by using
inbred lines as genotypic replicates rather than vegetative
clones. We also made the assumption that July maximum
temperature was equivalent to the selective optimum
within each local environment. We were unable to account

for microhabitat differences among populations that may
mediate selection on temperature response phenotypes.
Likewise, variation in the phenology of local populations
could alter the selective regimes that different populations
may actually experience. However, preliminary examina-
tion of variation in phenology with latitude, based on the
reproductive status of herbarium collections as well as
flowering times in a greenhouse common garden, did not
reveal a strong relationship (A. L. Angert, unpublished
data), suggesting that phenological differences among pop-
ulations across the transect may not be particularly strong.

We used only a small subset of loci from the M. car-
dinalis genome to draw conclusions about the species as
a whole. Given recent advances in data collection and
analysis in the age of population genomics (Pool et al.
2010), a larger genetic data set would be an important
way to make more robust conclusions about migration,
population differentiation, and genetic diversity. Still, the
methods we employed to estimate migration rates from
genetic data have been shown to be robust in simulation
studies (e.g., Beerli 2004; although this simulation study
was based on a scenario with few populations and many
loci, the opposite of the situation presented here), and
both the Bayesian clustering method and the coalescent
genealogical sampler we used have the great advantage of
being flexible tools that can infer asymmetrical rates of
gene flow, compared with traditional FST-based metrics
that force the assumption of rate symmetry between pop-
ulation pairs. For the historical migration estimates, we
were attempting to infer a large number of parameters
(126) with six loci, likely pushing the limits of Migrate-
N. However, the majority of our migration estimates had
unimodal posterior distributions (but with wide credible
intervals), suggesting that the MCMC sampling of migra-
tion parameters had reached a stable distribution. How-
ever, estimates of v for one population, Kaweah, consis-
tently showed fairly flat posteriors with no indication of
a central tendency. This result suggests that Kaweah’s v

estimate was unreliable, and hence we excluded migration
rates into Kaweah for our asymmetry and PD analyses
(since 4nm p mutation-scaled migration rate M multi-
plied by the receipt population’s v). Interestingly, Kaweah
is close to our estimate of the geographic range center yet
also represents the southern sampling boundary of our
latitudinal transect. There is a possibility that gene flow
from more southern, unsampled populations could be in-
fluencing the poor v estimates in Kaweah. Unsampled pop-
ulations could have detrimental effects on parameter es-
timates because Migrate-N assumes that all populations
exchanging migrants are sampled (Beerli 2004). Clearly,
such an assumption is difficult to meet for almost any
empirical study, yet this method has been widely used to
infer migration rates in natural populations.
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Future work on how gene flow and phenotypic diver-
gence impact the geographic range limits could take a
number of directions. First, an inherent assumption of this
study of scarlet monkeyflowers is that phenotypic re-
sponses to varying temperature regimes are under natural
selection, a conjecture supported by prior physiological
ecology (Decker 1958; Hiesey et al. 1971; Angert 2006)
and experimental evolution (Angert et al. 2008). Measur-
ing the strength and direction of assumed selection pres-
sures across populations will provide insight into the mag-
nitudes of gene flow and environmental distance that are
necessary to push local populations away from phenotypic
optima. Estimates of fitness in natural populations will
also aid interpretation of the potential maladaptive effects
of gene flow (e.g., Anderson and Geber 2010). Second,
including additional relevant phenotypic characters and
environmental variables in analyses such as those con-
ducted here may help elucidate how gene flow and phe-
notypic divergence are related across the geographic range
and provide insight into the degree of correlation among
different phenotypic characters that are simultaneously
under divergent selection pressures in central and marginal
populations. Third, experimental manipulation of gene
flow—implemented by crossing marginal populations with
pollen donors from various populations that differ in their
magnitude of differences in latitude, temperature, or other
relevant variables—would provide a powerful test of the
swamping gene flow hypothesis (Sexton et al. 2009;
Moeller et al. 2011). Offspring of these crosses could be
either reared in growth chamber conditions that mirror
marginal environmental profiles or transplanted directly
into the field to assess how gene flow impacts fitness. Fi-
nally, the inability of swamping gene flow to adequately
explain the northern geographic range limit in M. cardi-
nalis in this study suggests that other hypotheses may be
more plausible.

Consideration of Equilibrial and Nonequilibrial
Geographic Range Limits

This study, like most investigations of range limits, begins
with the underlying assumption that the edges of geo-
graphic ranges are concordant with niche limits. In other
words, the edge of a species’ geographic range is assumed
to represent a stable limit because conditions beyond the
limit are unsuitable for the phenotype of a given species.
This framework contrasts with a different approach to
understanding species distributions that has been taken by
researchers in the broad field of phylogeography (Avise
2000). Much phylogeography, particularly in northern
temperate regions, has focused on understanding geo-
graphic range expansions and contractions, often linking
these dynamics with glacial cycles or other major climate

events (e.g., Petit et al. 2002). Hence, phylogeographers
often assume that range edges are nonequilibrial bound-
aries and work to infer the direction and timing of the
expansion or contraction of species’ ranges, while evolu-
tionary ecologists assume that the range edges are equi-
librial boundaries, held in place through a balance of pro-
cesses, such as selection and gene flow. Distinguishing
between these contrasting hypotheses represents a fun-
damental challenge to the investigation of range limits.
Since we cannot observe how processes in the past have
shaped the current distribution of species, we must rely
on inferences from indirect methods, such as analyzing
the distribution and diversity of genetic polymorphisms.
Despite the potential power of genetic data to elucidate
past demographic events, similarities in both the under-
lying processes and the genetic outcomes of nonequilibrial
events such as range expansions and equilibrial processes
such as swamping gene flow make interpretations based
solely on genetic data difficult. For example, a recent range
expansion can leave genetic signatures that are very similar
to the expectations derived from the swamping gene flow
hypothesis, both of which can predict lower genetic di-
versity and increased genetic differentiation along range
margins. Inference of historical demographic parameters,
such as population growth rates and migration rates, might
provide an additional line of evidence to help distinguish
range limit hypotheses. Data from multiple loci (tens to
hundreds) will provide more robust estimates of demo-
graphic history (Carling and Brumfield 2007). Despite the
potential usefulness of historical demographic inferences
for an evolutionary ecology perspective on range limits,
using a coalescent framework has been largely absent from
range limit studies, although this work has begun (e.g.,
Moeller et al. 2011).

In this study, we made an effort to elucidate the potential
influence of historical events on M. cardinalis range limits
by inferring both contemporary and historical rates of gene
flow. If a recent historical event, such as a postglacial range
expansion, has played an important role in shaping the
current northern range margin in M. cardinalis, we may
expect discordant patterns between contemporary and his-
torical gene flow. We found that historical gene flow was
asymmetrical from south to north, which could be inter-
preted as evidence of a range expansion out of M. car-
dinalis’s putative ancestral range center in the southern
Sierra Nevada (Beardsley et al. 2003). However, we did
not detect lowered genetic diversity among northern mar-
ginal populations, as would be expected under such a sce-
nario. In contrast, contemporary gene flow was greatest
out of the northern reaches of the Sierra Nevada Range,
near the northern edge of the range center, as we defined
it. Interestingly, field surveys of population frequency
across the range do indicate that the highest concentration
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of populations is found in the north-central Sierra Nevada
Mountains, close to the epicenter of the estimated con-
temporary migration output (A. L. Angert and J. R. Paul,
unpublished data). Taken together, these results suggest
that the patterns of gene flow over evolutionary time and
in recent history may not be entirely concordant. It is
interesting that contemporary immigration explained phe-
notypic mismatch yet historical immigration did not. In
this system at least, relatively recent gene flow estimates
may be most pertinent to investigations of swamping gene
flow and understanding the impact of gene flow on
phenotypes.

Conclusions and Synthesis

The swamping gene flow hypothesis of range limits has
received considerable theoretical consideration, but em-
pirical support is scarce (Bridle et al. 2009; Moeller et al.
2011). Our study system—populations of the perennial
herb M. cardinalis distributed along a latitudinal gradi-
ent—meets the key assumptions of the swamping gene
flow hypothesis (environmental gradient, phenotypic
cline, asymmetrical gene flow), making this an appropriate
system to test this hypothesis. We developed a novel ap-
proach for using the relationship between phenotype-
environment mismatch and the degree of potentially mal-
adaptive gene flow to elucidate the impact of swamping
gene flow in natural populations. We found evidence sup-
porting the underlying mechanism of this hypothesis, mal-
adaptive gene flow creating phenotypic mismatch to local
conditions. However, phenotypic mismatch did not in-
crease from the center to the range margin in this study,
indicating that while maladaptive gene flow could hinder
local adaptation in this species, it does not appear to ex-
plain its northern geographic range limit. Our general ap-
proach can be easily applied to other natural systems where
the impact of gene flow on local adaptation is of interest.
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Flowering scarlet monkeyflower Mimulus cardinalis in the Sierra Nevada Mountains. Photograph by John Paul.
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