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abstract: Explaining the diversity in geographic range sizes among
species is a central goal of ecological and evolutionary studies. We
tested species age as an explanation of range size variation within a
group of understory shrubs in the Neotropics (Psychotria subgenus
Psychotria, Rubiaceae). We distinguish between range occupancy (fill-
ing an occupied area) and range extent (maximum distances dis-
persed). We used Bayesian relaxed-clock dating of molecular se-
quence data to estimate the relative age of species, and we used species
distribution modeling to predict species’ potential ranges. If the range
sizes of species are limited by time for dispersal, we hypothesize that
older species should have (1) larger realized range occupancies and
realized range extents than younger species, (2) filled a greater pro-
portion of their potential range occupancies, and (3) colonized a
greater proportion of their potential range extents. We found (1) a
significant but weak positive relationship between species age versus
both realized range occupancy and realized range extent, (2) no
relationship between species age and filling of potential range oc-
cupancies, but (3) that older species had colonized a significantly
greater proportion of their potential range extents than younger spe-
cies. Our results indicate that a time-for-dispersal effect can limit
the extent of ranges of species but not necessarily their occupancies.

Keywords: dispersal limitation, divergence time, geographic range,
phylogeny, species age, Neotropical.

Introduction

Even among closely related species, geographic range size
can vary over many orders of magnitude (Brown et al.
1996; Gaston 2003). Understanding what factors best ex-
plain variation in geographic range size among species is
a central question at the interface of ecology and evolution.
Range expansions are driven by dispersal, so variation in

* Corresponding author. Present address: Department of Biology, Colorado

State University, Fort Collins, Colorado 80523; e-mail: johnrpaul@gmail.com.

Am. Nat. 2009. Vol. 173, pp. 188–199. � 2009 by The University of Chicago.
0003-0147/2009/17302-50438$15.00. All rights reserved.
DOI: 10.1086/595762

dispersal ability has been predicted to explain much of the
variation in range sizes among species (Hanski et al. 1993;
Gaston 2003), with a general expectation that species with
superior dispersal abilities attain larger range sizes more
quickly (Hanski et al. 1993; Brown et al. 1996). Despite
the perceived importance of dispersal, only limited em-
pirical evidence supports this conjecture, and a recent re-
view even suggests that dispersal ability may not be par-
ticularly important in driving range size variation in many
species (Lester et al. 2007). Dispersal ability, however, is
only one side of the coin, because dispersal that expands
a species’ range is not an instantaneous process; the time
available for dispersal can also play a central role in ex-
plaining range size variation. For example, even a species
with very poor dispersal abilities may attain a large geo-
graphic range size given sufficient time. Similarly, species
that show little variation in dispersal ability may have dras-
tically different range sizes simply because the time that
has been available for dispersal differs among the species.
Hence, when attempting to explain the variation in range
size among species, time may be a critical limiting factor,
particularly if the species of interest show no obvious dif-
ferences in their dispersal potentials.

Temporal dispersal limitation, although not explicitly
stated as such, forms the underpinning of theory that pre-
dicts a positive relationship between species age and range
size (e.g., Willis 1922). If species start with small popu-
lation sizes and restricted geographic ranges, many of those
with restricted geographic ranges could simply be young
species. This was one of the key predictions of Willis’s age
and area hypothesis (1922), and a similar prediction is
made by Hubbell’s neutral theory (2001), a dispersal-
assembly theory. The premise is simple and built on three
key assumptions: (1) new species have restricted geo-
graphic ranges, (2) species with small geographic ranges
are extinction prone (and thus most young species never
attain either older ages or larger ranges), and (3) species
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Time for Dispersal and Geographic Ranges 189

with large geographic ranges are buffered from extinction
(Johnson 1998; Payne and Finnegan 2007). When these
assumptions are met, there is a general expectation that,
on average, young species will have smaller ranges than
old species (Paul and Tonsor 2008). The majority of studies
of the age and area relationship have simply tested whether
there is a positive linear relationship between some metric
of species age and range size (although other species age
and range size relationships, such as a unimodal one, may
be expected; see Webb and Gaston 2000). These tests have
been largely equivocal (Jones et al. 2005). Evidence of a
positive relationship between species age and range size
has been found for some mollusk species (Jablonski 1987;
Miller 1997), but only early in their evolutionary history,
after which time ranges appear to stabilize in size. In Ce-
nozoic mollusks, species occupancy of fossil assemblages
(the proportion of collections in which a species is present)
shows a hump-shaped distribution, with species attaining
their maximum occupancies for a brief time in the ap-
proximate middle of their species lifetimes (Foote et al.
2007). Studies on large diverse groups of taxa, such as
across New World bird species (Gaston and Blackburn
1997) or mammals or carnivores (Jones et al. 2005), find
no consistent relationship between species age and range
size. These tests used taxa in which the species have diverse
and broadly different ecological niches. When species with
more similar ecological requirements have been compared,
for example, in six clades of birds (Webb and Gaston
2000), the relationship between species age and range size
is variable and clade specific. In the case of the Sylvia
warblers (Böhning-Gaese et al. 2006), age is a significant
factor explaining variation in range size (although age was
strongly correlated with dispersal ability). Likewise, Paul
and Tonsor (2008) examined a genus of ecologically similar
tropical plants (Piper) and found that species age explained
25% of the variation in range size in this group, with young
species having smaller ranges than old species.

Two important components have been missing from
previous tests of age and area. The first is accounting for
the fact that all species have limitations as to where their
populations can be expected to persist because of each
species’ specific physiological and ecological requirements.
As a result, previous tests of age and area have not ac-
counted for one major potential driver of range size var-
iation, the ecological tolerances of species. Better tests
would evaluate the area that a species could occupy given
its ecological constraints (termed its potential range; Gas-
ton 1994b, 2003) relative to its realized range (current
observed range). The ratio of the realized range (R) to the
potential range (P) can be used to assess to what degree
species occupy their potential ranges (“range filling”; Gas-
ton 2003; Svenning and Skov 2004). Species distribution
modeling (i.e., Elith et al. 2006) provides a method to

estimate the potential range of a given species (in the
absence of dispersal limitation) on the basis of a set of
biologically relevant variables and georeferenced records
of presence localities.

The second component that has not been adequately
addressed in previous studies is that both realized and
potential range sizes can be measured in two general ways,
as the area of occupancy (the number of locations with a
presence record for a species) or as the extent of occurrence
(the maximum linear distance between locations with a
presence record for a species; Gaston 1994a). Although
these measures can be correlated, they can also be decou-
pled (Gaston 1994a). For many applications of range size
data, such as studies regarding conservation biology, the
area of occupancy is the preferred measure because it gives
a better idea of where specifically on the landscape a species
is likely to be found. Only area of occupancy measures
have been used for previous tests of age and area (e.g.,
Webb and Gaston 2000; Jones et al. 2005). However, if
the predictions of age and area are viewed as a result of
the process of temporal dispersal limitation, then an extent
of occurrence measure may be more appropriate. The time
available for dispersal could limit how far a species has
colonized into its potential range but have little impact on
its occupancy within its range. For example, a species that
is a poor competitor but that has superior dispersal abilities
could have a large range extent but only limited occupancy
within its range. Interestingly, the only study to date in-
corporating species age as a factor in range filling (Schurr
et al. 2007) found no evidence of an effect on the area of
occupancy of potential ranges in South African Proteaceae
species (extent of occurrence was not measured).

To address these two limitations of previous studies, we
developed range size metrics that specifically incorporate
species’ potential ranges as well as areas of occupancy and
the extent of occurrence measures. We define species’ re-
alized range occupancy (RO) as the number of occupied
locations (e.g., grid cells) and the realized range extent
(RE) as the maximum linear distance between the locations
of records of occurrence. Potential range occupancy (PO)
and potential range extent (PE) are defined in the same
way as realized ranges, except modeled potential locations
are used (fig. 1). We define the degree to which species
occupy their potential ranges as the ratio of realized range
occupancy to potential range occupancy (range occupancy
ratio, ), and we define the degree to which they haveR /PO O

colonized their potential range extents as the ratio of re-
alized range extent to potential range extent (range extent
ratio, ).R /PE E

We tested the general hypothesis of a positive relation-
ship between species age and these four metrics of geo-
graphic range size: (1) realized range occupancy (RO), (2)
realized range extent (RE), (3) range occupancy ratio
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190 The American Naturalist

Figure 1: Measuring species’ predicted and realized range occupancy and range extent. A, Potential distribution is modeled using a maximum
entropy approach. B, High probability areas are extracted. C, Potential range occupancy (PO; number of pixels predicted to be occupied). D, Potential
range extent (PE; maximum linear extent between predicted occupied pixels, shown by red line) are measured. For realized ranges, only steps C
and D are used, with the realized range occupancy (RO) given by the number of occupied pixels (collection records) and the realized range extent
(RE) given by the maximum linear extent between collections.

( ), and (4) range extent ratio ( ). We examinedR /P R /PO O E E

the impact of temporal dispersal limitation on range size
variation in a clade of closely related, ecologically similar
species of tropical understory shrubs in the genus Psy-
chotria (Rubiaceae). We predicted that older species have
greater realized range occupancies and extents, greater
range occupancy ratios, and greater range extent ratios.
We used species distribution modeling (using Maxent;
Phillips et al. 2006) to estimate the potential ranges of
species and Bayesian relaxed-clock dating (with uncorre-
lated rates as implemented in BEAST; Drummond and
Rambaut 2007) to estimate the “tip ages” (sensu Roy and
Goldberg 2007) of species. We focused on species in one
clade within Psychotria (subgenus Psychotria) in one bio-
geographic region (Mesoamerica) that has been well col-
lected and in which the taxonomic work has been recently
updated (C. M. Taylor, unpublished manuscript). Meso-
american Psychotria subgenus Psychotria is a valuable
model group because the species therein vary by over three
orders of magnitude in their range sizes, yet they appear
to be broadly ecologically similar.

Methods

Study Taxa

Psychotria (Rubiaceae) is one of the most speciose angio-
sperm genera, consisting of approximately 1,600 species

(Hamilton 1989). Psychotria species are primarily found
pantropically in wet to seasonal forests, with a few species
occupying dryer habitats. Psychotria species vary markedly
in both their range sizes and local abundances (J. Paul,
unpublished data), and they make up a significant pro-
portion of species and stems in the understories of many
tropical forests (Gentry 1990). The majority of Psychotria
species are similar in their general growth forms (small
trees and shrubs), most are obligate outcrossing species
pollinated by insects (e.g., Stone 1995), and the seeds of
most are dispersed by frugivorous birds (e.g., Loiselle et
al. 1995). Molecular phylogenetic work by Nepokroeff et
al. (1999) and Andersson (2002) has largely confirmed the
systematic relationships outlined by Taylor (1996). There
are 78 recognized Psychotria subgenus Psychotria taxa in
Mesoamerica (C. M. Taylor, unpublished manuscript). In
this article, we use Psychotria to refer to Psychotria sub-
genus Psychotria.

Realized and Potential Geographic Range Estimates

Collection Records. We used the Missouri Botanical Gar-
den’s (MBG) Tropicos database of collection records
(http://www.tropicos.org) to estimate the range sizes of
species. We queried the database on September 9, 2006,
to find all collection records of the Mesoamerican Psy-
chotria subgenus Psychotria species (including records
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from South America). Species determinations in Psycho-
tria, like many Rubiaceae taxa, can be challenging. All
species determinations at MBG have been made or checked
by one of us (C.M.T.), thus affording a high degree of
consistency to the species identifications. Furthermore,
MBG has one of the largest and most extensive collections
of Rubiaceae from Mesoamerica. Therefore, we chose to
limit our geographic estimates to the MBG database in
order to preserve the consistency of the species
identifications.

Species Distribution Modeling. To model the potential geo-
graphic range sizes of species, we used the program Maxent
3.1.2 (Phillips et al. 2006). Species distribution modeling
uses presence-only data and a set of environmental vari-
ables to predict the probability of a species’ occurrence
across a landscape. Maxent uses a maximum entropy ap-
proach to species distribution modeling (Phillips et al.
2004), and it has been shown to perform better than many
other species distribution modeling programs (Elith et al.
2006), particularly for species with a small number of
collection records (Hernandez et al. 2006; Pearson et al.
2007). For each species, georeferenced collection records
were input in Maxent along with 20 environmental var-
iables (from the WorldClim database, http://
www.worldclim.org; see app. A in the online edition of
the American Naturalist for the list). We also ran analyses
with a reduced number of environmental variables (11)
to account for potential overfitting of relationships by
Maxent (Peterson et al. 2007). Analyses were first run using
70% training and 30% testing data to assess model per-
formance. The analyses were then run with all collections
used for training to project species’ potential distributions.
The results of these projections were used to calculate the
potential range size measures. Details on our species dis-
tribution modeling are presented in appendix A, and the
number of collection records used and model assessment
statistics are presented in appendix B.

Geographic Range Size Estimates. Range occupancy, for the
RO and analyses, was calculated as the number ofR /PO O

occupied (or predicted to be occupied) grid cells (fig. 1).
Range extent, for the RE and analyses, was calculatedR /PE E

as Feret’s diameter in ImageJ (Rasband 1997), that is, the
largest distance between two occupied (or predicted to be
occupied) grid cells (fig. 1). We calculated RO and RE for
all species and and for all species with suf-R /P R /PO O E E

ficient collection records (≥6 unique collection localities).
Details of our methods used to assess range sizes are pre-
sented in appendix A.

Molecular Methods

We used both field-collected samples and herbarium sheets
as the basis for our DNA extractions. Leaf samples for
DNA extraction (stored in 15-mL centrifuge tubes with
silica gel) and corresponding voucher specimens were col-
lected in 2005 in Costa Rica. Vouchers were field identified
by J.R.P., and C.M.T. and J.R.P. made final determinations
of the specimens at MBG. Vouchers were deposited at
MBG, the Carnegie Museum of Natural History Herbar-
ium (CM), and the Universidad de Costa Rica Herbarium
(USJ). To sequence many of the rare and endemic Psy-
chotria species for which collecting was unfeasible, spec-
imens of 73 of the 78 recognized taxa of Mesoamerican
Psychotria subgenus Psychotria were loaned from MBG to
C.M. at CM. We extracted DNA from leaf material. Some
specimens yielded only highly degraded DNA, resulting in
partial or missing sequence data for some species (table
C1 in the online edition of the American Naturalist). We
used nuclear ribosomal internal transcribed spacer se-
quences (ITS) and chloroplast psbA-trnH intron sequences
for phylogenetic inference. The ITS locus is one of the
most extensively used loci for species-level phylogenetic
work in angiosperms (Mort et al. 2007). We also used the
chloroplast intron psbA-trnH to attain an estimate of phy-
logenetic relationships within Psychotria from plastid
DNA. This intron was tested in three species of Hetero-
psychotria by Kress et al. (2005), and it showed consid-
erable variation at the species level. Details of laboratory
techniques and protocols and justification of our molec-
ular marker choices are provided in appendix A.

Phylogenetic Inference and Divergence Time Estimation

We used a Bayesian relaxed-clock approach as imple-
mented in the program BEAST v. 1.4.8 (Drummond and
Rambaut 2007) to concurrently estimate the phylogenetic
relationships of species and their divergence times (Renner
2005; Drummond et al. 2006). Details of alternative phy-
logenetic methods that we used to analyze the data are
presented in appendix A. For our purposes, relative ages
of species are sufficient, but we used fossil evidence to
guide a prior distribution on the root age of the tree in
order to make the ages more easily interpretable. Details
of our calibration of absolute ages using fossil data are
presented in appendix A. We included Hawaiian Psychotria
species in our analyses (Nepokroeff et al. 2003), and we
used the crown age of these species to assess the plausibility
of our absolute age estimates. The outgroup species and
non-Mesoamerican Psychotria subgenus Psychotria species
used in this study (including GenBank accession numbers)
are listed in table D1 in the online edition of the American
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Table 1: Prior parameter values for the Bayesian ITS-psbA relaxed-clock analysis

Parameter Distribution
Lower
bound

Upper
bound

Root height Gamma 39.7a 58.9a

GTR substitutions Uniform 0 100
Gamma shape Uniform 0 100
Proportion of invariant sites Uniform 0 1
Lognormal relaxed-clock mean Uniform 0 100
Lognormal relaxed-clock standard deviation Uniform 0 10
Yule speciation process birth rate Uniform 0 1�6

Mean rate of evolution across tree Uniform … …
Variation in rate of evolution across tree Uniform … …
Covariation in lineage-ancestral lineage rates Uniform … …

a Lower and upper 2.5% quantiles of distribution.

Naturalist. The pairwise node ages found in ITS-only and
combined ITS-psbA analyses were strongly correlated
( ), so we took a total evidence approach usingr p 0.96
the analyses on the combined ITS-psbA data set (including
all taxa with some missing data) for our age estimates. See
appendix A for a further discussion of using a combined
or partitioned data set. Analyses including missing data
can be robust, and at times they can help to break up long
branches that would exist without including taxa with only
partial data (Wiens 2006). A summary of the priors and
model parameters for the BEAST analyses is given in table
1. We used the combined results of three independent runs
(see app. A) to determine the maximum clade credibility
tree (MCC tree; the tree that maximizes the product of
clade probabilities). This tree and its divergence time es-
timates were used for all further analyses. We defined spe-
cies age as time since divergence from its sister taxon in
our data set. For consistency, in cases where two sequences
of a given species did not group together, we always used
the older divergence time estimate for a given species as
the species’ age.

Statistical Analysis

We performed least squares linear regression analyses and
one-way ANOVAs using SAS 8.2 (SAS Institute 2001). Var-
iables were checked for normality using the SAS protocol
univariate and transformed as necessary to meet the as-
sumptions of regression and ANOVA. Phylogenetic anal-
yses revealed a strongly supported basal divergence within
our study clade that was relevant to interpretation of the
results. As a result, we conducted range size analyses on
both the total set of species (termed all species) and the
two clades separately (termed clades 1 and 2). Regression
was used to examine relationships between species age and
RO, RE, , and , as well as between species ageR /P R /PO O E E

and the morphological characters of fruit volume and

plant height (estimated from descriptions of flora). We
used ANOVA to compare means of RO, RE, , ,R /P R /PO O E E

fruit volume, plant height, species age, median latitudinal
position, elevation range, and elevation midpoint between
species in clades 1 and 2. To assess whether modeling
species with few collection records was biasing our results,
we also reran significant species age and range-size ratio
regressions after eliminating all species with col-N ! 20
lection records.

Results

Phylogenetic Relationships and Divergence Times

Mesoamerican Psychotria species have primarily diversified
in the last 16 million years (Ma; fig. 2), with most lineages
diversifying within the last 12 Ma. The crown age of the
Hawaiian Psychotria species is estimated to be 9.76 Ma
(95% highest posterior density [HPD], 5.72–14.08). The
Bayesian MCC tree had a highly supported split of Meso-
american Psychotria subgenus Psychotria species into two
distinct clades (labeled clades 1 and 2; fig. 2). These clades
had not been identified previously on the basis of any
morphological, biogeographic, or ecological characters,
but they were also recovered in parsimony and maximum
likelihood searches of the full ITS and ITS-psbA data sets
(results not shown). Our analysis estimates the divergence
of these two clades at 15.13 Ma (95% HPD, 10.21–20.28
Ma) with a posterior probability of 0.99. Clade 1 includes
28 taxa and clade 2 includes 34 taxa.

Species Age and Geographic Range Size Metrics

When we analyzed all species, we found a significant, pos-
itive relationship between both species age and RO

( , , ; fig. 3A) and species age2R p 0.07 P p .03 df p 64
and RE ( , , ; fig. 3B). Using 202R p 0.08 P p .02 df p 64
environmental layers for the modeling of species distri-
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Figure 2: Bayesian relaxed-clock ITS-psbA maximum clade credibility circle chronogram. Scale gives time in millions of years. Light gray branches,
clade 1; dark gray branches, clade 2 (see text for explanation).

butions, we found no significant relationship between spe-
cies age and (fig. 3C), but we did find a significant,R /PO O

positive relationship between species age and R /PE E

( , , ; fig. 3D). When analyzing2R p 0.17 P ! .01 df p 48
clades 1 and 2 separately, there was a significant, positive
relationship between species age and for clade 1R /PE E

( , , ; fig. 3E) but not for clade2R p 0.28 P p .02 df p 20
2 (fig. 3F). Neither clade had significant relationships be-
tween species age and RO, RE, or . Using 11 envi-R /PO O

ronmental layers for modeling species distributions did
not change these results, nor did excluding species with
few collection records (see app. E in the online edition of
the American Naturalist for results of these analyses).

Potential Explanatory Differences between
Clade 1 and Clade 2

Species in clade 1 and clade 2 did not significantly differ
in their average stature, fruit volume, elevation range size,
elevation range midpoint, or average RO, RE, PO, PE,

, or values (table 2). The median latitude forR /P R /PO O E E

realized range occupancies of species in clade 1 was sig-
nificantly more southern than it was for species in clade
2 (8�2�24� vs. 12�56�60�; , ). Species inF p 11.61 P p .001
clade 1 were marginally significantly older (back-trans-
formed mean p 2.68, ) than species in cladeSD p 2.55
2 (mean p 1.77, ; , ,SD p 2.08 F p 3.52 df p 1, 54 P p
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Figure 3: Relationship between species age and range size metrics in Psychotria subgenus Psychotria species in Mesoamerica. A, Regression of species
age and realized range occupancy for all species (RO; , , , ). B, Regression of species age and realized2y p 0.4625x � 1.4269 R p 0.07 P p .03 df p 64
range extent for all species (RE; , , , ). C, Regression of species age and range occupancy ratio for2y p 0.5217x � 1.4485 R p 0.08 P p .02 df p 64
all species ( ; , , , ). D, Regression of species age and range extent ratio for all species ( ;2R /P y p 0.0318x � 0.3194 R p 0.01 P p .59 df p 48 R /PO O E E

, , , ). E, Regression of species age and range extent ratio for clade 1 species ( ;2y p 0.3332x � 0.4191 R p 0.17 P ! .01 df p 48 R /P y p 0.4245x �E E

, , , ). F, Regression of species age and range extent ratio for clade 2 species ( ; ,2 20.3226 R p 0.28 P p .02 df p 20 R /P y p 0.1117x � 0.5013 R pE E

, , ).0.0189 P p .51 df p 24
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Table 2: One-way ANOVA results for morphological and geographic character
comparisons between clades 1 and 2

Variable, source df SS MS F Pr 1 F R2

Fruit volume:a

Model 1 .26 .26 3.41 .07 .06
Error 53 3.99 .17

Plant stature:a

Model 1 .10 .10 1.09 .30 .02
Error 55 4.85 .09

Elevation range:
Model 1 429,773.70 429,773.70 .97 .33 .02
Error 55 24,475,047.35 445,000.86

Elevation midpoint:
Model 1 3,558.74 3,558.74 .01 .90 .00
Error 55 13,080,075.47 237,819.55

Latitude midpoint:
Model 1 359.79 359.79 11.61 .001 .17
Error 57 1,795.39 31.50

RO:a

Model 1 .08 .08 .18 .67 .00
Error 60 26.08 .44

RE:a

Model 1 .09 .09 .18 .67 .00
Error 60 28.59 .48

PO:a

Model 1 .08 .08 .50 .48 .01
Error 44 6.87 .16

PE:a

Model 1 .02 .02 2.00 .16 .04
Error 44 .47 .01

RO/PO:b

Model 1 .07 .07 3.47 .07 .07
Error 44 .88 .02

RE/PE:b

Model 1 .03 .03 .35 .56 .01
Error 44 3.52 .08

a Analyses of log-transformed data.
b Analyses of arcsine-square-root-transformed data.

). Within clade 2, older species had significantly.065
smaller fruit volume ( , , ) than2R p 0.27 P p .003 df p 30
did young species. No significant relationships with age
were found in clade 1 for fruit volume or stature.

Discussion

Species Age and Geographic Range Size Metrics

Our results provide evidence of a positive relationship be-
tween species age and various measures of range size, sup-
porting the central prediction of the age and area hy-
pothesis. The strength of this relationship, while
significant, was weak when either RO or RE were used for
the analyses, explaining only a small fraction of the var-
iances in range sizes. When we took into account species’

potential ranges, the explanatory power of species age dou-
bled in the analysis (explaining 17% of the variance),R /PE E

but there was no relationship with . Because someR /PO O

species had too few collections to accurately model po-
tential ranges, the analyses using potential ranges had
smaller samples sizes and less power. This may explain
why the weak relationship found between species age and
RO was not recovered in the analysis or, alternatively,R /PO O

it suggests that range occupancy may not be influenced
by species age as much as range extent. In contrast, the
importance of accounting for potential range extent was
clear, because the relationship with species age wasR /PE E

stronger despite the smaller sample size. We know of only
one other study that has looked for a relationship between
species age and the occupancy of species’ potential ranges.
Schurr et al. (2007) found that species age had no effect
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on the proportion of species’ potential ranges that were
filled in a clade of South African Proteaceae (equivalent
to our metric, but no range extent metric was ex-R /PO O

amined). They argue that processes acting on ecological
timescales are largely responsible for the degree that species
fill their potential ranges.

Our results suggest that time for dispersal may be an
important factor limiting how far individuals disperse and
colonize within species’ potential ranges, but that it may
not limit the density of occupancy of a geographic area
when colonizing populations have been established. In a
45-year experiment in Belgium (van der Veken et al. 2007),
transplanted populations of the forest herb Hyacinthoides
non-scripta (Hyacinthaceae) have remained established but
have grown very slowly. As a result, much of this species’
potential range may remain unoccupied, despite the per-
sistence of small populations far from the source popu-
lation. The geographic spread of this slowly dispersing
forest herb may exhibit properties similar to Psychotria
species, which are primarily dispersed by understory birds
(Nepokroeff et al. 2003). Rare long-distance dispersal
events could establish distant populations intermittently,
with species that have more time for dispersal (older spe-
cies) colonizing farther into their potential ranges. But if
average population spread is slow, these species will fail
to occupy large portions of their potential ranges. Another
study, however, did find a relationship between the time
for immigration since glacial retreat and the occupancy of
species’ ranges (Svenning et al. 2008). Alternatively, the
lack of a relationship between species age and range oc-
cupancy may be driven by the difficulty of accurately es-
timating occupancy from collection records. Accurate es-
timates of occupancy likely require intensive collecting
throughout the range of a species, and uneven sampling
among species may introduce considerable variance into
comparative analyses.

Species Age Estimates and Potential Explanatory
Differences between Clade 1 and Clade 2

Mesoamerican Psychotria subgenus Psychotria species con-
sist of two well-supported clades that diverged in approx-
imately the last 15 Ma. Although these two clades have
not been identified previously on the basis of their mor-
phology or ecology, the genetic data clearly indicate they
have had separate evolutionary trajectories. Clade 1 species
had significantly more southern ranges and were on av-
erage older than clade 2 species. The species in these two
clades did not differ in their average realized range oc-
cupancies or extents or in their average range occupancy
or extent ratios. Furthermore, species in the two clades
did not differ in the average sizes of their elevation ranges

(minimum to maximum difference) or in their average
elevation midpoint. It is striking that two groups of species
that are so superficially similar could be so divergent in
the impact of species age on their current range size dis-
tributions. Species age explained over one-quarter of the
variance in range extent ratio ( ) of clade 1 species,R /PE E

but was not significant in clade 2. The morphological char-
acter examined that was directly related to dispersal, fruit
volume, also did not differ significantly between the clades.
However, within clade 2, younger species had significantly
larger fruits than older species. Interestingly, clade 2 species
did not show a significant relationship between species age
and . This could indicate that younger species in cladeR /PE E

2 have, on average, greater dispersal ability, and as a result
they have been able to colonize farther into their potential
range extents than expected if dispersal ability were a neu-
tral character within the clade. Additional evidence would
need to be garnered to address this hypothesis, but it is
interesting to note that, for species with animal-dispersed
seeds, larger fruit size can correlate with seed dispersal by
larger-bodied frugivores (Wheelwright 1985; Jordano
1995), who often have larger home ranges and greater
average dispersal distances (Howe and Smallwood 1982;
Holbrook and Smith 2000).

Robustness of Results

Our crown age estimates of ∼10 Ma (95% confidence in-
terval [CI], 5.6–14.1 Ma) for the Hawaiian Psychotria spe-
cies indicate that species ages may predate the present
islands, and they suggest that our absolute age estimates
are plausible. The absolute ages estimated here are less
important than the ages relative to one another in terms
of the comparative tests for which we used them. Our
geographic range estimates are conservative in that we
limited our data to collections where we have confidence
in the species identifications. We also concentrated on
Mesoamerica as a biogeographic region because of the
relatively high collection intensity for a tropical genus like
Psychotria. Our predicted range sizes took into account
many environmental variables; however, the inclusion of
other types of data such as edaphic factors would likely
strengthen the predictions. Furthermore, our study did not
include data on species interactions, a dimension that is
missing from most studies that use ecological niche mod-
eling (Phillips et al. 2006). Clearly, biotic interactions can
limit species’ distributions, and the incorporation of maps
of other species’ presences and absences, if geographically
accurate data could be amassed, could refine the estimates
we make of potential geographic distributions. However,
similar to our age estimates, these sources of error should
not be biased in their placement or magnitude among
species.
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Other Factors Impacting Species Age and
Range Size Relationships

Ultimately, the utility of species age as a predictor of range
size rests on the assumption that various ecological and
evolutionary processes (Gaston 1998) do not obscure the
simple pattern predicted if species start with small range
sizes, are prone to extinction, and transform their ranges
at a relatively equal rate (e.g., Hubbell 2001, 2003; Hubbell
and Lake 2003). A general positive age and area relation-
ship may not be found if young species attain large geo-
graphic range sizes quickly or if old species maintain small
geographic range sizes. For example, old species that once
had large range sizes could decline in range size by failing
to adapt to changing environmental or ecological condi-
tions (Murray and Hose 2005). On the other hand, the
process of speciation could generate young species that
start their existence with large ranges. Because speciation
is predicted to split range sizes under many models of
geographic speciation, new species that are derived from
ancestral species with large ranges have some probability
of starting their existence with a large range size. This
probability will relate to the nature of the geographic spe-
ciation event for a given species, specifically how asym-
metrical it is (e.g., Waldron 2007). In clades where asym-
metrical range splitting at speciation is commonplace, the
set of new species would include species starting with both
relatively large and small range sizes (Paul and Tonsor
2008). However, as demonstrated in the analysis of

and particularly for clade 1 species, species age clearlyR /PE E

impacts range extents of these species. The results of our
study, in conjunction with an analysis of age and area in
Neotropical Piper species (Paul and Tonsor 2008), suggest
that the impact of species age may be particularly notice-
able in species that have limited dispersal abilities and
relatively homogeneous habitats. Indeed, it was on the
tropical island of Ceylon (now Sri Lanka) that Willis first
made his observations leading to the age and area hy-
pothesis. Despite observations of tropical flora providing
inspiration for the hypothesis, Psychotria and Piper are the
only two tropical plant genera in which the age and area
hypothesis has been tested. Notably, both support Willis’s
conjecture.

Conclusions

In summary, species age can be a significant predictor of
range size variation in plant species. Our results indicate
that a time-for-dispersal effect may limit the extent, but
not necessarily the occupancy, of species’ potential ranges.
Although range expansions can occur rapidly in some cases
(e.g., Clark et al. 1998), our results demonstrate that time
can be a limiting factor to dispersal, a result also found

for forest plant species in Europe (Svenning et al. 2008).
Time may be an important factor limiting the range sizes
of many groups of species, particularly among taxa that
have limited dispersal potential. We expect that the effects
of species age on range size variation will be as clade spe-
cific as we found here and as has been demonstrated else-
where (Webb and Gaston 2000). Future studies that in-
tegrate phylogenetic analyses, species distribution
modeling, and ecological data will provide rich insight into
the factors that drive the variation in abundance and dis-
tribution of species.
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