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Magnetic multilayers: Quasiclassical transport via the Kubo formula 
Horatio E. Camblong and Peter M. Levy 
Department of Physics, New York Uniwzrsity, Neu York, New York 10003 

A real-space quantum approach, based on the Kubo formula, is used to describe the 
quasickassical transport behavior of metallic multilayers. We emphasize the differences between 
the cases of current in the plane of the layers, for which size effects play a dominant role and 
current perpendicular to the planes, for which we provide several proofs that the so-called series 
resistor model holds for all length scales. 

Giant magnetoresistance (GMR) in magnetic multi- 
layers has created a great deal of excitement following its 
discovery in 1988,’ due to its potential technological appli- 
cations. It is generally agreed upon that this giant effect is 
not an ordinary galvanomagnetic effect (electron’s dynam- 
ics), but it is due to the reorientation of antiferromagnet- 
ically coupled magnetic layers under the action of an ex- 
ternal magnetic field. Spin-dependent scattering has been 
proposed as the basic underlying mechanism for the short- 
circuit effect that yields the observed GMR,’ and several 
transport theories have been used to analyze the ensuing 
transport properties: (i) the quasiclassical (or Boltzmann) 
approach;” (ii) the reciprocal space quantum approachY3 
which extracts linear response coefficients from a model 
Hamiltonian with the Kubo formula in reciprocal space; 
(iii) the real-space quantum approach, which uses the 
Kubo formula in real space.&’ 

Actually, the correct quantum-statistical calculation of 
linear transport properties, based on the Kubo formula, 
singles out quantum approaches (ii) and (iii) as more fun- 
damental. However, the quasiclassical approach has been 
extensively used due to its simplicity, and because it seems 
to account for most of the observed features. We have 
recently obtained a real space solutionsS6 of the quantum 
model first presented in Ref. 3, which is closely related to 
the solution based on the Boltzmann equation, and which 
relies upon a straight.forward generalization of Kohn and 
Luttinger’s impurity averages7 to multilayers. Moreover, 
we have shown that, for the characteristic parameters of 
metallic multilayers, an essentially quasiclassical behavior 
arises, and that the treatment of interfaces, in its simplest 
form, requires angle-dependent coherent transmission co- 
efficients. 

In this paper we will further explore the connection 
between our real-space quantum approach and the Boltz- 
mann approach, and we will apply our results to two ge- 
ometries: current in the plane of the layers (CIP), and 
current perpendicular to the plane of the layers (CPP). 

Our real space approach is based on a one-electron 
Hamiltonian with random impurity potentials. As the im- 
purity average restores in-plane translational invariance, it 
is most convenient to work in t.he mixed [k/l ,z> represen- 
tation. From the Dyson equstion, the one-particle propa- 
gator 3 (2,~‘) satisfies 

[d; - 1% &-‘f <+x’Q) y(- . )=&z-z’), 

where z is the growth direction, 

k(z)=[fP+ik~/z(z)]‘~ (21 

is a complex wave number for propagation along the z axis, 
E= [kg-- L$ I’/’ and kll are the effective z and in-plane 
components of the conduction electron’s momentum, and 
Z(z) is the local mean free path, which is related to the 
strength of the local scattering or imaginary part of the 
self-energy: 

A(z) = -1m 1 (z) CC l/l(z). 1 1 (3) 

In Refs. 5 and 6 we have solved Eq. ( 1) in each layer and 
matched the Green’s functions of neighboring layers. In 
this paper we rederive the same result by solving Eq. ( 1) 
globally within a WKB approximation, that is, for small 
changes [ Akl in k(z): [ Ak ( (FcF, which amounts to the 
quasiclassical limit I/Z(z) (k,; then 

(4) 

(5) 

i(z,Z& -exp[iJ::‘dzk(.-)] 

z& exp Zlz-z’ ) -f +(z,z~) , 
I 1 

where t = k,/& and 

#(z,z’)= l: g a 11 ciz”A(z”), (6) 

with z< (z> ) being the smaller (larger) of z and 2. 
Equation (6) defines a symmetric two-point fun&ion that 
gives the decay in the one-particle propagator in terms of 
the average scattering between the two given points. 

In particular, for an N-layered system, it. is convenient 
to introduce the notation of Refs. 5 and 6: layers will be 
labeled by the subscript j (with j= l,...,N) and denoted by 
~j= rZj-. r,zJ, and their thicknesses and local mean free 
paths will be aj=zj-Zj-1, and Zjy respectively. Also, de- 
fining ttj= (Z-2j-t )/ctj [for z in 2’j), one can introduce 
the following notation: $(z,z’) =4x/( Uj,Uj’), for ZEY~ 
and Z’EkBjr. Then, in the quasiclassical limit k,O l/lr, 

#jsj’(uj,Ujf)=Aj>Uj> -Ajcuj< fajc,j:= -1, (7) 

where j < ( j > ) is the smaller (larger) ofj and j’, Aj=aJ 
lj, and 

jb-1 

aj<.j> -t= C Aj* 
j=j< 
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As discussed in Refs. 5 and 6, the corresponding Green’s 
function provides a good description of the transport be- 
havior of metallic multilayers for which the total length L 
is large compared with the mean free paths. In particular, 
it describes its local transport behavior everywhere except 
near external boundaries, and its global transport behavior, 
which consists in the dependence of the conductance with 
respect to the different length scales Uj and Z,> namely, the 
size effects. 

The ensuing linear transport theory is obtained by us- 
ing the real-space Kubo formula. We will only consider 
experiments with a uniform external electric field, in which 
case the induced internal field remains uniform in the plane 
of the layers (due to in-plane translational invariance). 
Then, only two independent two-point conductivities are 
required: ,‘I ) (z,z’ ) = o-J kll = O,z;ki = 0,~’ ) for current 
perpendicular to the plane of the layers (CPP), and 
&I ‘(z,z’) = a,,(k,, = O,z;ki = 0,~‘) for current in the 
plane of the layers (CIP) . Then, the Kubo formula yieIds 

o(ll ‘(z,z’)=~~~*[$~z,r’~]--El[~~z,z’~]) 

and 

(8) 

c/l ‘(z$)=~E&J(z,zI)], (9) 

where $(z,z’) is given by Eqs. (6) and (7), CD is the ratio 
between the local conductivity at,,(z) and the local mean 
free path Z(z) of any layer [or, more precisely, CD=&/ 
(~ztu~), with r-t being the density of conduction electrons], 
and E,*(x) is the exponential integral function of order n. 

These results are in complete agreement with those 
obt.ained by solving the linearized Boltzmann equation in 
the relaxation time approximation, 

v*Vg(v,z~ + 
af co) g~=(-e,( --&aqz), (10) 

where f(v,z) =J”(ek) +g(v,z) is the quasiclassical distri- 
bution function, and p(e) is the equilibrium distribution 
function, which at low temperatures satisfies the equation 
8fco)/dek= --a( eF-ek). It is convenient to rescale the 
distribution function according to gCv,z) ccI NEF 
- ek) k’ * ) (ZJ) ) where t = uF/ ] vZ ] has the same meaning as 
before, and * refers to the sign of the z component of the 
velocity the quasiclassical electrons. Then, calculation of 
the current density by integration of the velocity in recip- 
rocal space allows a comparison with the current in the 
Kubo approach: 

h(“)(z t) a , J 
dz’t t dkz’) 12>,,1 ,c=+/tEW, (11) 

1, 

where I + (I-) is the interval to the left (right) of point z, 
.&(z,z’) is the density of states operator A(E) =i[Gret(e) 
-GadV(e)] in the mixed (kll ,z) representation6 and the 
integrand is subject to a “quasiclassical average” over a 
distance of the order of kF *. Equation ( 11) admits a very 
simple physical interpretation: the present value of the dis- 
tribution function for an electron reflects its past history, 

described in terms of quasiclassical trajectories (on the left 
for k,>O, and on the right. for k,<O); this is precisely the 
content of the Chambers formula,s which for multilayers 
reads 

J i J 

sz 
h’qz(s),t] cc ds’v*E[z(S’)]exp - - S< 

(12) 
where s is the length along the quasiclassical electron’s 
trajectory and s < (s > ) is the smaller (larger) of s and s’. 
Equation ( 12) yields two-point conductivit.ies identical to 
Eqs. (8) and (9), because dz”=ds”/t [see Eq. (6)]. 

it should be noticed that the main reason for the equiv- 
alence between the quantum and quasiclassical ap- 
proaches, Eq. (I I), is the validity of the approximation 
kFwIz>I-‘.6 

There are two limiting cases for which Eqs. (g), (9) 
have a simple form:” (i) local limit, when lj<aj for all 
layers; and (ii) self-averaging limit, when li%ai for all iay- 
ers. In both cases the two-point conductivities resemble 
those of a homogeneous medium, but with different mean 
free paths: the local mean free path l(z), and the self- 
averaging mean free path 1, defined via 

1 1 -=- 
1 L J 

(13) 

where L is the total length of the sample. Equation (13) 
can be obtained directly from Eq. (6) and it yields the 
average reciprocal mean free path, (proportional to the 
average scattering in the medium). 

Let us now consider the global or measurable conduc- 
tivitiw which can be calculated with 

(I/L) J-ds j(z) 1 
%P = E =z JJ dz dz’ c+Ii ‘(qz’), (143 

for the CJP case (as the electric field is uniform), and 

(l/L) Jdz E(z) 
PUT = j 

(15) 

for the CPP case (as the current density is constant). 
For the CIP case, let us consider a periodic multilayer, 

namely, a superlattice. For an M-component superlattice 
extending along the whole z axis, the global CIP conduc- 
tivity is given by 

3cLJ c ‘(1. -I.,)2 Q”=%r-~ Julio JcJ J() J,a dt( s-i) 

$( (e-ta”i.z ~~,,,~...t-/-e -‘ai., k i.j- +**-.-I f 1 (16) 

where T = 2’ ;rZ I a,,, is the period, A = I;’ $?, Aj,, and 
C’ indicates a restricted sum over fundamental period in- 
dices. We can interpret the limiting cases of Eq. ( 16) in 
terms of the r&stor network analogy. In the local limit the 
different layers behave like classical or mac.roscopic resis- 
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tom with local conductivity (+l~K(z) =CrJ(z) (or arnc,i that E(z) cc l/l(z), it follows that the CPP resistivity, Eq. 
= C,,l$, and can be added in parallel for CIP: oclr= aFar (15>, is just given by the self-averaging mean free path, 
= C&,,, with that is, 

Ipar= 
I 

-dzl(~)/L= Cajlj/L. 
i 

Instead, in the self-averaging limit they are effectively 
added in series, that is, (T~~~=~~~.=C&., with 

ocpp = CL+= as, , (19) 

which is solely determined by the average scattering in the 
medium. Therefore, the CPP resistivity is self-averaging 
and given by the series resistor model, not just for the local 
and self-averaging limiting cases, but for all length scales. 
This is the result that had been predicted by Zhang,” and 
that has been found to be consistent wit.h experimental 
results.’ ’ 

Is&L= x [Uj/(Llj)] =I-’ i 
(notice that, by definition, the self-averaging mean free 
path is identical to the series mean free path); this can be 
v&tied with the identity 

l-&&&=-- I: r 
I: .b i0 

UjrjUji (Ij, - lji> ‘/( T21joiji) ] * 

In generaI, Eq. ( 16) interpolates the CIP conductivity be- 
tween two very different limiting cases, thus yielding very 
noticeable size effects. 

Un the other hand, for CPP, the equation of continuity 
implies that aj/&=O, and the internal elect.ric field is the 
solution E(z) of the integral equation 

. 
jz &'cT(Z,Z')E(Z'), 

J 
(17) 

for constant current densityj. Now we set out to prove the 
following statement: The electric field distribution E(z) 
which solves the integral Ey. ( 17) is inversely proportional 
ta the local mean free path; that is, j=q,,(z)E(z). In 
effect, the replacement E(z) a l/l(z) converts Eq. ( 17) 
into an identity, because [see Eqs. (6) and (9)] 

sdz’&exp[ -tJy &]=2, (18) 

which is valid for multilayers of length L much larger than 
the local mean free path l(z). Alternatively, one could just 
try the replacement L@/dz--0 in the Boltzmann equation, 
yielding an actual solution if E(z) a l/Z(z). With the result 

In conclusion, we have clarified the connection existing 
between the Kubo and Boltzmann approaches for metallic 
multilayers, discussed size effects for CIP, and obtained the 
remarkable result that for CPP the series resistor model 
holds for all length scales. 
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