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Effective field theory program for conformal quantum anomalies
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The emergence of conformal states is established for any problem involving a domain of scales where the
long-range SO�2,1� conformally invariant interaction is applicable. Whenever a clear-cut separation of ultra-
violet and infrared cutoffs is in place, this renormalization mechanism is capable of producing binding in the
strong-coupling regime. A realization of this phenomenon, in the form of dipole-bound anions, is discussed.

DOI: 10.1103/PhysRevA.72.032107 PACS number�s�: 11.30.Er, 11.10.Gh, 11.10.St, 31.15.�p

I. INTRODUCTION

The renormalization program �1� provides an insightful
framework for the description of physical scales within a
given problem. This assumes that the characteristic dimen-
sional scales are sufficiently separated, as required by effec-
tive field theory �1,2�. Moreover, symmetry considerations
usually furnish further analytical control over what contrib-
uting factors might be relevant for the hierarchy of scales. In
addition to the well-known examples in high-energy physics
and condensed matter physics, an effective renormalization
of a system in molecular physics was introduced in Ref. �3�,
where a symmetry-centered approach was developed for the
formation of dipole-bound anions by electron capture. In the
relevant domain of scales, the dominant physics—governed
by an inverse square potential �4�—takes a scale-invariant
form known as conformal quantum mechanics.

The central purpose of this paper is to develop an effec-
tive field theory program for the quantum anomaly of Ref.
�3�. Specifically, we address the role played by additional
degrees of freedom—for example, the rotational ones in the
molecular case. In this manner, we extensively use recent
work on the renormalization and anomalous symmetry
breaking of conformal quantum mechanics �5�. As a conse-
quence, we will establish the following results.

�i� The conformal analysis is robust and fairly insensitive
to the ultraviolet and infrared physics.

�ii� The effective field approach—centered on renormal-
ization techniques—sheds light, e.g., on the properties of
dipole-bound anions; this is in sharp contrast with the state-
ments of Ref. �6�.

�iii� The origin of a critical dipole moment for binding
can be directly traced to the conformal interaction.

In short, the predictions of the conformal framework of
Ref. �3� are not significantly altered by the inclusion of ad-
ditional degrees of freedom. Moreover, a similar analysis can
be applied to other problems for which the conformal quan-
tum anomaly is relevant, for example, for the Efimov effect
�7�.

II. CONFORMAL QUANTUM MECHANICS
AND DIPOLE-BOUND STATES

In this section, we start by summarizing the results of Ref.
�3� for dipole-bound states in the language of effective field

theory �5�. As we will see in the next section, the effective
field approach also provides the natural connection between
this work and the standard results of rotationally adiabatic
theory �8–10�.

A. Conformal physics of dipole-bound states

The dominant part of the electron-molecule interaction
can be described with a point dipole—the electron does not
significantly probe radial scales smaller than the size a of the
molecule. Then, in three spatial dimensions, the associated
anisotropic Hamiltonian reads

H =
p2

2me
−

g

r2cos� , �1�

in which the coupling g can be recast into a dimensionless
form �=2meg /�2. Under time reparametrizations, this sys-
tem displays an SO�2,1� conformal symmetry, whose break-
ing at the quantum-mechanical level can be interpreted as a
quantum anomaly. As a first step, introducing separation of
variables: ��r ,��=u�r����� /r in spherical coordinates.
This leads to a scale-invariant radial equation

d2u�r�
dr2 + �k2 +

����
r2 �u�r� = 0 �2�

coupled to a scale-independent angular operator equation

Â������� = �������� , �3�

where the eigenvalue ������ plays the role of a separation
constant and

Â��� = − l2 + � cos� , �4�

with l being the relative orbital angular momentum of the
electron about the molecule. The problem defined by the
equations above is completely characterized by the solutions
of conformal quantum mechanics.

B. Radial conformal quantum mechanics

Conformal quantum mechanics applies to the description
of the radial problem. All the properties and conclusions dis-
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cussed herein rely on the existence of a domain of scales in
which the dominant physics is scale invariant. A symmetry-
centered analysis in the relevant conformally invariant do-
main shows that the theory retains the SO�2,1� symmetry at
the quantum level when �	1/4, with �=1/4 being a critical
point of the conformal framework. The existence of a con-
formal critical point

��*� � ����*�� = 1/4 �5�

is the crucial ingredient that explains the experimental fact
that electron binding by molecular anions only occurs for
dipole moments greater than a critical value p�*� �3�.

Conformal quantum mechanics is singular for �
1/4,
but can be rescued by the use of renormalization, which
yields conformal bound states with energies En=E0 exp�
−2�n /��, where n is a positive integer, E0 is the arbitrary
ground-state energy, and the conformal parameter � is de-
rived from the coupling according to the rule �5�

� =�� −
1

4
. �6�

The specific value of the characteristic scale E0 defined by
the conformal tower of states is sensitive to the ultraviolet
physics and cannot be predicted by a renormalization ap-
proach alone. However, the scale E0 is not relevant in the
determination of the relative values of bound-state energies,
as exhibited by the geometric scaling

En�

En
= exp�−

2��n� − n�
�

� , �7�

which is a remnant of the original scale invariance. In par-
ticular, the geometric ratio e−2�/� of adjacent energy levels
has a universal form that is independent of the cutoff and
impervious to the ultraviolet physics . Finally, the conformal
states are characterized by normalized radial wave functions
of the form

u�r� = �2 sinh����
��

�rKi��r� , �8�

where Ki��z� is the Macdonald function of imaginary index
�11�. This is the function whose properties guarantee the uni-
versal geometric scaling �7�. In addition, the same function
leads to an estimate of the characteristic radial size of the
electron probability distribution, given by −1, with relative
ratios n /n�=e��n�−n�/� exhibiting a similar kind of univer-
sal geometric scaling.

In short, the generic properties of conformal quantum me-
chanics determine the nature of the bound states of molecular
anions and are parametrized by the possible values of the
conformal parameter �. In turn, � is described, from Eq.
�6�, in terms of the effective coupling �=�2+1/4, which is
completely determined by the angular dependence of the in-
teraction, through the eigenvalue equation �3�. This is the
problem to which we now turn.

C. Angular eigenvalue equation

The angular problem for an anisotropic conformal inter-
action is given by Eq. �3�, whose secular-determinant form
D�� ,���det M�� ,��=0 involves the infinite matrix
M�� ,��=−A���+�1, with 1 being the identity matrix. In par-
ticular, in the angular momentum basis 	l ,m
, the matrix el-
ements �lm	M�� ,��	l�m�
=�mm�Mll��� ,� ;m� are diagonal
with respect to m, with tridiagonal blocks

Mll���,�;m� = �l�l + 1� + ���ll� − ��Nl�m��l,l�−1 + �l ↔ l��� ,

�9�

where Nl�m�=���l+1�2−m2� / ��2l+1��2l+3��. As a result,
the secular determinant takes the factorized form D�� ,��
=�mDm�� ,�� and the eigenvalues are given by the roots of
the reduced determinants Dm�� ,���det�Mll��� ,� ;m��=0,
for all integer values of m. At this purely conformal level, for
every m, the roots �h,m can be arranged in a decreasing se-
quence: �0,m
�1,m
�2,m
¯, with h=0, 1,…, and com-
pared against the condition for conformal criticality: �
=��*�=1/4. Equation �9� implies the following trends: � is a
monotonic function with respect to both � and m, increasing
with � and decreasing with m. In particular, for any finite
dipole moment p �i.e., finite ��, there exist only a finite num-
ber of supercritical values of �; in turn, for each �, there is
an infinite tower of conformal states—possibly limited by
the onset of nonconformal physics for long-distance scales.
Hence the conformal bound states are completely character-
ized by the set of quantum numbers �n ,h ,m�, in which the
subset �h ,m� determines �h,m, while n labels the ordering of
the conformal tower or geometric scaling. The existence of
these states in the “supercritical regime” yields anomalous
breaking of the SO�2,1� commutator algebra �5�.

An important related question is: for the largest root �0,0,
what is the value ��*� that generates a conformal critical
point? By setting �0,0=��*�=1/4, the “principal conformal
critical coupling” becomes �conf

�*� �1.279 whence the required
critical dipole moment is p�*�= p0��*��1.625 D �3,12,13�.
Likewise, for each of the other roots �h,m, the criticality con-
dition �h,m=��*�=1/4 defines additional, increasingly larger

values �h,m
�*� of the critical dipole moment. Each of these

represents the onset of a new tower of conformal states of the
form �7�. The sequence of critical values of the dipole mo-
ment includes �0,0

�*� �1.279; �0,1
�*� �7.58;… . However, the ex-

perimentally observed bound states �14,15� appear to be lim-
ited to the highest root �0,0 because of the characteristic
order of magnitude of the molecular dipole moments realized
in nature.

III. ROTATIONAL DEGREES OF FREEDOM
OF DIPOLE-BOUND ANIONS

We now turn, through an appropriate length-scale hierar-
chy, to a derivation of the connection between the approach
of Refs. �6,8–10� and the conformal treatment of Ref. �3�.

A. Rotationally adiabatic theory

In the rotationally adiabatic theory �9�, the pseudopoten-
tial
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V�r� = −
�2

2me

�„�;F�r�…
r2 G�r� �10�

for the radial electron wave function is an eigenvalue of the
reduced Hamiltonian

Ĥ = −
�2

2me

Â„�;F�r�…
r2 G�r� , �11�

and the radial function G�r� can be selected by comparison
with different expressions used in the literature �6,8–10�. In
particular, the lowest eigenvalue gives the standard adiabatic
potential: �adiab�r��V�r�. In addition, the nontrivial part of
the effective Hamiltonian of Eq. �11� arises from the adia-
batic approximation for the rotational motion of the mol-
ecule, which provides the operator �6,9,10�

Â„�;F�r�… = − F�r�l2 + � cos� , �12�

where the function F�r� has the form F�r�=1+ �r /rB�2, in
which the length scale

rB =� �2

2meB
�13�

is associated with the rotator constant B=�2 /2I �with I being
the moment of inertia�. Simple inspection shows that

Â(� ;F�r�) is a generalization of Â���, in which the replace-
ment l2→F�r�l2 is made; therefore their angular operator
structures are identical. Using again the orbital angular mo-
mentum basis 	l ,m
 of the electron, the eigenvalue �

���� ;F� of Â�� ;F� can be found from the secular equation

Dm„�,�;F�r�… � det�Mll�„�,�;m;F�r�…� = 0, �14�

where M(� ,� ;F�r�)=−A(� ;F�r�)+�1, so that
Mll�(� ,� ;m ;F�r�) is obtained from Eq. �9� by the replace-
ments l�l+1�→ l�l+1�F�r� and �→� in the diagonal terms.
Therefore the eigenvalues arising from Eq. �14� can be la-
beled just as those derived from the conformal secular
determinant: �h,m. In particular, the largest one, �0,0,
leads to the standard adiabatic potential �adiab�r�
=−�2�0,0(� ;F�r�)G�r� / �2mer

2� in Eq. �10�.

B. Separation of scales: Renormalization theory

The current reformulation of the rotationally adiabatic
theory permits a direct comparison with the results of the
conformal framework, to which it reduces by the use of ef-
fective field theory arguments. The reason for this lies in
that, in a renormalization treatment, the phenomenological
factor G�r� merely amounts to an ultraviolet regulator—only
needed for distances r�a, where a is the size of the mol-
ecule. In other words, the details of the position dependence
of G�r� are of secondary importance because G�r��1 for r
�a and the conformal potential effectively dominates the
relevant physics. Consequently, the only significant addition
to the conformal framework appears to be the inclusion of
rotational degrees of freedom via the function F�r�. How-
ever, a careful analysis of Eq. �14� shows that the conclu-

sions from the conformal framework are not substantially
altered. The fundamental concept that underlies this surpris-
ing result—and which makes our construction successful—is
the clear-cut separation of scales. This is the essential as-
sumption that underlies renormalization theory �1�, as de-
scribed in the effective field theory language �2�. Specifi-
cally, the two characteristic length scales for the molecular
anions are �i� a scale of the order of the molecular size a; and
�ii� the rotational scale rB of Eq. �13�, whose size can be
gleaned from IMa2, with M being the mass of the mol-
ecule. Then, the scale hierarchy

rB �M

me
a � a �15�

shows that LUVa, and LIRrB play the role of “ultraviolet”
and “infrared” scales, respectively. Moreover, Eq. �15� pro-
vides a justification for the adiabatic approximation used in
Refs. �6,8,9�; remarkably, this approximation is just a state-
ment about length scales within an effective-field-theory de-
scription of molecular physics �16�. Thus the conformal
treatment constitutes a satisfactory framework for the phys-
ics of dipole-bound molecular anions. This description can
be further justified by introducing a systematic reduction
procedure. First, the dependence of V�r� for r�rB plays a
secondary role for the problem of criticality. This can be
rigorously established by an asymptotic analysis of the de-
terminant �14�. Most importantly, the existence of a critical
value and the ensuing bound states follow from the relevant
scales r�rB: criticality does not originate in the infrared
sector. Second, the critical dipole moment arises from the
ultraviolet boundary and can be established by a renormal-
ization framework. Therefore the dominant physics can be
extracted by considering the intermediate scales, with a�r
�rB. In that range, F�r��1 and ��� ;F� in Eq. �14� can be
replaced by a constant �������� ;1�. Thus, in this “scale
window,” the adiabatic potential approximately reduces to a
long-range conformal potential V�r�=−�2� / �2mer

2�. Retrac-
ing the previous steps, this reduction establishes the Hamil-
tonian �1�, whose conformal symmetry is reminiscent of the
corresponding description in high-energy physics �17�: at
sufficiently small distances the problem becomes scale in-
variant. Finally, when a length scale of the order a is
reached, “new physics” emerges and a more detailed treat-
ment is in order—for which a specific form of the factor G�r�
would be needed.

IV. GENERALIZED CONFORMAL FRAMEWORK:
PREDICTIONS AND NATURE OF THE CORRECTIONS

The length-scale analysis leads to a noteworthy adjust-
ment to the previous results: the restriction of the conformal
tower of bound states to the relevant range of scales. This is
due to the fact that the dominant physics is described by a
“conformal window” limited by the characteristic scales LUV
and LIR, which act as ultraviolet and infrared cutoffs �5�. The
existence of an ultraviolet boundary is directly involved in
the renormalization process and drives the fundamental prop-
erties of the renormalized conformal framework. By contrast,
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as shown in Ref. �5�, the infrared boundary only restricts the
range of the dominant physics.

Most importantly, there are a number of predictions aris-
ing from this generalized conformal framework, which—
with appropriate refinements—could be tested experimen-
tally and compared against results from alternative
approaches. We will illustrate these results by considering
the dominant sector of the theory in the subspace Sm=0�l
=0,1� of quantum numbers l=0 and l=1 for the secular
determinant �14� with m=0, in which �0,0=−F+�F2+�2 /3
�9�.

The first prediction arises directly from the existence of a
conformal domain, which implies that the number of confor-
mal bound states undergoes a cutoff process leading to a
finite value Nconf. It turns out that the approximate number

Nconf 
�

�
ln� LIR

LUV
� , �16�

which is predicted from renormalization, is also in good
agreement with known bound-state estimates �18,19�. For
typical values of the parameters involved, the logarithmic
nature of Nconf yields the generally accepted result that
dipole-bound molecular anions sustain only one or two
bound states. Therefore, in contrast with the claims of Ref.
�6�, our approach shows that the presence of a conformal
domain is the actual cause for the existence of bound states
and of the critical dipole moment.

The second important prediction of the generalized renor-
malization framework consists of corrections to the critical
value ��*�. Within the effective-field reduction, as a zeroth-
order approximation, Eq. �14� �with F�r��1� provides the
required critical dimensionless dipole moment �conf

�*� , which is
purely conformal in nature. Broadly speaking, when a dipole
moment is sufficiently different from the critical value, the
predictions of the conformal framework are remarkably ac-
curate. However, very near criticality, �0 and 0; this
is due to the fact that the condition of criticality amounts to
the emergence of a ground state from the continuum. The
corresponding enlarged characteristic size of the ground-state
conformal wave function links the relevant scales and cor-
rections are unavoidable in the presence of an infrared cutoff.
One possible way of dealing with this is through a perturba-
tive evaluation of ��*� at the level of Eq. �14�; nevertheless,
because of the extremely long range of the wave function
�8�, one would have to consider all orders of perturbation
theory and carry out infinite resummations. An alternative,
more direct estimate can be established from the emergence
of the first bound state,

N = Nconf + � = 1, �17�

where �=�IR+�UV is the partial contribution of the infrared
and ultraviolet sectors to the number of states. The criticality
condition �17�, combined with Eq. �16�, can then be used to
evaluate the conformal parameter �gs of the critical ground-
state wave function; the fact that �gs is small but finite is due
to the self-consistent restriction of the theory in the infrared.
Thus the fractional correction to the critical dipole value

� �
��*�

�conf
�*� − 1 �18�

can be computed from the secular equation �14�, by means of
Eq. �6�, in which �=1/4 for the purely conformal theory,
while �̃=�gs

2 +1/4 for the theory with an infrared cutoff, so
that

�� = �̃ −
1

4
= �gs

2 = 4�2�1 − ��2�ln� rB

a
�2�−2

. �19�

In particular, in the restriction of the theory to the dominant
subspace Sm=0�l=0,1�, the quantity � in Eq. �18� becomes

� = ��1 + 4��̃ − ����1 + 4
9 ��̃ − ��� − 1 �

20

9
��̃ − �� ,

�20�

where the approximate equality arises from the relatively
small values of ��̃−��, which are due to the separation of
scales. Consequently, Eqs. �19� and �20� imply that

� �
20

9
�gs

2 �
80�2

9
�1 − ��2�ln� rB

a
�2�−2

. �21�

As expected, this correction becomes more prominent for
decreasing values of I and increases the critical dipole from
its ideal conformal value. In addition, the fractional state
contribution � in the compensatory factor �1−�� can be de-
termined using standard estimates for the number of bound
states �19�. With these building blocks, Eq. �21� gives the
leading dependence of the critical value ��*� with respect to
the infrared scale through ln �, with �� I / �mea

2�=rB
2 /a2 be-

ing the dimensionless molecular moment of inertia. The
logarithmic dependence ln � is the trademark of the underly-
ing renormalization-induced physics and explains the slow
convergence of ��*� towards �conf

�*� . This analysis ultimately
shows that, even when rotational degrees of freedom are in-
cluded in the description of this problem, renormalization is
still responsible for the predicted values of p�*�, including:

�i� the existence of a critical value whose order of mag-
nitude is given by the conformal critical point �5�; and

�ii� the underlying physics of the logarithmic correction
�21�.
Most importantly, the results �16�–�21� are universal, i.e.,
model-independent, within the conformal framework.

In addition, we acknowledge the existence of model-
dependent corrections to this framework. For molecular di-
pole anions, these effects can be represented by means of a
pseudopotential comprised of electrostatic terms—described
by the multipole expansion—combined with many-body
contributions of two kinds: a polarization part and an ex-
change part due to the Pauli exclusion principle
�10,15,20–22�. The long-distance electrostatic and polariza-
tion terms do not substantially affect the rotational infrared
corrections to the purely conformal problem because their
coupling constants are proportional to a2 �with the relevant
rotational degrees of freedom being proportional to rB

2 , and
rB�a� �10,21�. The short-distance behavior, which contrib-
utes to the ultraviolet physics with a scale of the order of
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LUVa, involves electrostatic and exchange many-body ef-
fects �10,21�. In the case of the exchange effects, the char-
acteristic scale is determined by the overlap of orbitals asso-
ciated with tightly bound electrons, and the corresponding
repulsive core is highly dependent on the nature of the mo-
lecular species �23�, with �UV	0. This negative value par-
tially compensates the positive term �IR and favors the agree-
ment with the observed critical dipole moment in complex
molecular species. Consequently, the scale analysis confirms
the remarkable fact that the dipole-bound anionic state exists
primarily due to the conformal interaction �24�. One of the
simplest characterizations of these model-dependent correc-
tions is afforded by the dominant limiting infrared behavior
of the rotationally adiabatic theory of Ref. �9�, which yields
���IR��6�conf

�*� �1+�� /3�. With these assignments, intro-
ducing the parameters c= ���6�conf

�*� /3��−1−1�−1�0.498, A
=80�2L−2 / �9�c+1�2�, and L=ln �, the fractional correction
to the dipole moment becomes ����1+1/ �2cA��
−��1+1/ �2cA��2−1� /c; for example, for various values of
the dimensionless molecular moment of inertia: �=2�108,
�=2�106, and �=4�104, the corresponding fractional cor-
rections are, respectively, ��0.11, ��0.16, and ��0.26
�25�.

Finally, let us consider another universal prediction for an
experimental realization with at least two conformal bound
states �26�. For such a system, Eq. �7� yields the ratio
E1 /E0=exp�−2� /�� from which the relative value of the
dipole moment, compared to the critical dipole, is

�

��*� − 1 �
20

9
�2 =

80 �2

9
�ln�E1

E0
��−2

, �22�

which can be derived with the restriction to Sm=0�l=0,1�,
and supplemented by critical-diople corrections just as in Eq.
�21�. This “inversion” makes a simple prediction solely
based on conformal quantum mechanics and which can be
explicitly compared against the improved critical value �21�,
using the known dipole moment � for the given polar mol-
ecule. In essence, this is a test of the residual scale invariance
of the geometric scaling �7� of the conformal tower of states.

V. CONCLUSIONS

In conclusion, the central concept put forward in this pa-
per is the anomalous emergence of bound states via renor-

malization for a system with a conformally invariant domain
whose ultraviolet boundary dictates binding. The ensuing
quantum symmetry breaking within this framework captures
the essence of the observed critical dipole moment for the
formation of dipole-bound anions.

Moreover, the tools developed in this paper, as exempli-
fied by Eqs. �16�–�22�, show that this conformal framework:

�1� permits the extraction of universal properties for
physical problems with a conformally invariant domain; and

�2� provides a description of dipole-bound anions in
which model-dependent and model-independent contribu-
tions can be conveniently organized.

In principle, this generalized conformal framework could
be used as the starting point of a systematic approximation
scheme for the description of dipole-bound molecular an-
ions. The estimate �21� is a typical illustration of this: its
numerical coefficients could be further refined by an im-
proved matching of the conformal domain with the infrared
and ultraviolet sectors, as well as by considering higher or-
ders �with respect to l�. Thus our problem is similar to that
encountered in many other areas of physics, in which a ze-
roth order approximation captures the essential ingredients,
which are to be subsequently improved upon by the use of
miscellaneous approximation techniques.

Most intriguingly, our approach exhibits many similarities
with the recently developed chiral-Lagrangian program for
nuclear physics �27,28�, in which the underlying chiral sym-
metry from QCD provides a guiding principle within a
power-counting scheme that selects the terms in the Lagrang-
ian for nucleons and pions—with the first terms capturing the
dominant, model-independent contributions. Likewise, our
conformal framework, based on the SO�2,1� invariance and
the use of effective-field theory concepts, is a discriminating
scheme to elucidate the dominant model-independent fea-
tures of the molecular anions and similar systems with a
conformally invariant domain; in this context, it would be
interesting to develop the analog of the chiral power-
counting scheme.
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