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Anomaly in conformal quantum mechanics: From molecular physics to black holes
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A number of physical systems exhibit a particular form of asymptotic conformal invariance: within a
particular domain of distances, they are characterized by a long-range conformal intefmetiose square
potentia), the apparent absence of dimensional scales, and d8,8Q@ymmetry algebra. Examples from
molecular physics to black holes are provided and discussed within a unified treatment. When such systems are
physically realized in the appropriate strong-coupling regime, the occurrence of quantum symmetry breaking is
possible. This anomaly is revealed by the failure of the symmetry generators to close the algebra in a manner
shown to be independent of the renormalization procedure.

DOI: 10.1103/PhysRevD.68.125013 PACS nuntder11.10.Gh, 03.65.Fd, 11.25.Hf, 11.30.Qc

[. INTRODUCTION problems, from molecular physics to black holes, &indto
show the details of the breakdown of the commutator algebra
An anomaly is defined as the symmetry breaking of a(1) for the long-range conformal interaction. In Sec. Il we
classical invariance at the quantum level. This intriguingintroduce a number of examples that can be regarded as
phenomenon has played a crucial role in theoretical physicghysical realizations of conformal quantum mechanics. In
since its discovery in the 19604&]. In addition to its use in  Sec. lll we show that the origin of the anomaly can be traced
particle phenomenology of the standard mofl and its  to the short-distance singular behavior of the conformal in-
extensions, it has been a fruitful tool for the study of confor-teraction. In Sec. IV we introduce a generic class of real-
mal invariance in string theor}3]. space regulators, within the philosophy of the effective-field
Surprisingly, the presence of an infinite number of degreegheory program. In Sec. V we compute the anomaly for the
of freedom does not appear to be a prerequisite for the emeregularized theory and show that it is independent of the
gence of anomalies. This fact was first recognized within aletails of the ultraviolet physics, and in Sec. VI we comment
model with conformal invariance: the two-dimensional con-on various renormalization frameworks. After the conclu-
tact interaction in quantum mechani¢4]. In conformal sions in Sec. VII, we summarize a number of technical re-
guantum mechanics, a physical system is classically invarisults: a derivation of the anisotropic generalization of the
ant under the most general combination of the following timeconformal long-range interactiofAppendix A); a study of
reparametrizations: time translations, generated by th#terdimensional dependen¢&ppendix B); a derivation of
HamiltonianH; scale transformations, generated by the dila-the near-horizon properties of black hol@gpendix Q; and
tion operatorD=tH—(p-r+r-p)/4; and translations of re- a derivation of useful integral identitigg&ppendix D).
ciprocal time, generated by the special conformal operator
K=2tD —t?H+mr?/2. These generators define the noncom- Il. RELEVANT PHYSICAL APPLICATIONS
pact SO(2,13=SL(2R) Lie algebra[5]
In recent years, diverse examples of systems have been
[D,H]=—iAH, [K,H]=—-2i4D, [D,K]=i%K. studied from the viewpoint of the conformal alget¢fa, as-
(1) sumed to be a representation of an approximate symmetry
within specific scale domains. In the applicable conformally

This symmetry algebra has also been recognized in the frd8variant domain, the relevant physics is described by a
nonrelativistic particld6], the inverse square potentd,g], ~ d-dimensionakeffectiveHamiltonian

the magnetic monopolg9], the magnetic vortex10], and
various nonrelativistic quantum field theorigg11,13. Fur-
thermore, conformal quantum mechanics has been fertile
ground for the study of singular potentials and renormaliza-
tion, using Hamiltonian[13-15 as well as path integral \hich involves a long-range conformal interaction; or, alter-

methods[16]. Most importantly, a variety of physical real- natively, by its anisotropic counterpart
izations of conformal quantum mechanics have been recently
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identified, as discussed in the next section. 2
The main goals of this paper afg to illustrate the rel- H= P~ gF(Q)’ 3)
evance of conformal quantum mechanics for several physical 2m g2
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where Q) stands for the angular variables aRq{2) is a where)\gﬁ)zvgﬁ for each eigenvalue of the angular equa-
generic anisotropy factor that accounts for the angular depenion. When this outline is implemented, according to the pro-
dence. Equationi3) is discussed in Appendix A. cedure of Ref[17] or its generalization of Appendix A, the

In the problems considered below=2mg/#? is the di-  existence of a critical dipole momem*) for binding is
mensionless form of the coupling constant ame-(d predicted; the order of magnitude of its “conformal value,”
—2)/2; furthermore, the choick=1=2m will be made for \®*)~1.279, orp*)~1.625D, has been verified in numer-
the problem involving black holes. In all cases, the strong-ous experimentgl8,19. In particular, when binding occurs,
coupling regime[14] is defined by the conditioy=g*), extended states known as dipole-bound anions are formed.
with a critical dimensionless coupling®)=\(*)=(1+1)2  These conclusions have also been confirmed by detalled
(for angular momenturh), when the Hamiltonian mod&R) initio calculationqd 18,19 and by studies that incorporate the
is adopted14]. In addition, in the strong-coupling regime, as effects of rotational degrees of freedd20], which also
deduced in Sec. lll, an uncontrolled oscillatory behavior ofmodify slightly the value op™).
the Bessel functions of imaginary ordé® makes the con- In short, the central issue in this analysis—also shared by
formal system singular and regularization is called for. Thethe other physical realizations discussed in this paper—is the
characteristic paramete® =\ —(I+ )2 strictly corre- existence of a conformally invariant domain whose ultravio-
sponds to the Hamiltoniaf®); in physical applications, such let boundary leads to the anomalous emergence of bound

as those of Secs. Il A, II B, and Il C, we will define states via renormalization. As a result, these states break the
original conformal symmetry of the model and modify the
0=0 4= ‘/}\eff_}\e(?f)! (4) ~ commutatorg1), as we will show in the next few sections.

This simple fact alone captures the essence of the observed

which will turn out to be crucial in parametrizing the anoma- cfitical dipole moment in polar molecules and leads to an
lous physics of the conformal system in the presence of Symanalytical prediction for the energies of the conformal states,
metry breaking. In discussing these realizations, we will ex-2s discussed in Sec. VI and Appendix A.

plicitly use a subscript to emphasize the effective nature of

the parameter of Ed4)—as arising from a reduction frame- B. Near-horizon black hole physics

work._The_same notational convention will apply to the di- A generic class of applications of conformal quantum me-
mensionality (lef). AS shown in Appendix B, even when -panics arises from the near-horizon conformal invariance of
|nterd|menS|onaI.equalencgs are mtroduced, the value qf|5ck holes, its impact on their thermodynamiizg], and its
the parametef4) is adimensional invariant extension to superconformal quantum mechar2g]. In
particular, analyses based on the Hamiltonianhave been

A. Dipole-bound anions and anisotropic conformal interaction  used to explore horizon stat€®3,24] and to shed light on
black hole thermodynamicg24]. Another class of current
applicationd25] involves a many-body generalization of Eq.
(2): the Calogero model, which has also been directly linked
to black holeg26]. These remarkable connections seem to
gonfirm the conjecture that it is the horizon itself that en-
codes the quantum properties of a black H&@®].

In this context, we consider the spherically symmetric
Reissner-Nordstro geometry inD spacetime dimensions,
dvhose metric

The three-dimensionald(z=3 or vez=1/2) interaction
between an electrofchargeQ= —e) and a polar molecule
(dipole momentp) was the first physical application to be
recognized as a realization of this anomfly]. When the
molecule is modeled as a point dipole, this interaction can b
effectively described with an anisotropic long-range confor-
mal interaction of the fornt3): V(r)= —g cosé/r?, in which
the polar angled is subtended from the direction of the di-
pole moment. For this potential, the dimensionless couplin
is A= —2mK.pQ/%2=p/p,, with mbeing the reduced mass d?=—f(n)d+[f(r)] *dr2+r2dQp_, 6)
of the system and, the electrostatic constant. Thus, the
relevant scale for phenomenological analyses is provided b minimally coupled to a scalar field®(x) with action (
pPo=~1.271D (whereD stands for the Debye =1 andz=1)

As shown in Appendix A, in some sense, the generic an-
isotropic conformal interactioii3)—of which the electron- 1 ,
molec?JIe interaction is a particular case—can be reduced to S=- Ef d°x\=g[g""3,®a,®+m*®%].  (7)
an effective isotropicconformal interaction for the zero
angular-momentum channfdee Eq(A7)]; this corresponds In Eq. (6), dQp_, stands for the metric on the uniD(
to an effective Hamiltonian of the typ@), with an appro- —2)-sphere, f(r)=1—2(aM/r)D*3+(bQ/r)2(D*3), and
priate effective coupling\s¢. More precisely, this equiva- the lengthsa,, andbq are determined from the mabsand
lence is achieved, after separation of variables in sphericalhargeQ of the black hole respectivelj28]. In this ap-
coordinates, at the level of the radial equation. In additionproach, the conformal structure is revealed by a two-step
the corresponding value &fy is identical to the eigenvalue procedure discussed in Appendix C and consisting@fa
v of the angular equation, which is a function of the dipolereduction to an effective Schdmger-like equation, to be
coupling\. The effective conformal paramet&) becomes analyzed in its frequency«) components(b) the introduc-

5 tion of a near-horizon expansion in the variabler—r
Oert= VY~ Verr (5 [with r=r. being the roots of (r)=0, andr.=r_]. Two
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distinct scenarios emerge from this reduction: the extremadj (= 2d for the internal dynamics of the three-body system
and nonextremal cases, whep=r_ andr,#r_, respec- (as the total number of coordinates id,3utd of them are
tively. We will omit any discussion of the extremal case, eliminated in favor of the center-of-mass coordinat&€on-
which is known to pose a number of conceptual difficultiessequently, when a hyperspherical adiabatic expar{§ghis
and is otherwise beyond the scope of the framework precombined with a Faddeev decomposition of the wave func-
sented in this paper. As for the nonextremal case, the followtion [33], a reduction to al.z= 2d realization of our confor-
ing facts arise from this reduction: mal model(2) is obtained. These conclusions can be gleaned
(i) The ensuing effective problem is described by an in-from the conformal nature of the effective adiabatic poten-
teraction tials Veg(r) arising from this reduction framewoifld0],

(near horizon

-2
V(x)  x —x72 ) veﬁ(r>=—% Netr=(d=1)°+ 0%,  deg=2d,

which is conformally invariant with respect to the near- (10)
horizon coordinate.

(if) The effective Hamiltonian, still being @&dimensional  where go4 and A are related as described after ES).
realization of the conformal interaction, does not have thdncidentally, due to the interdimensional equivalence of Ap-
usual form corresponding to the radial part of a multidimen-pendix B, this result is often quoted in its one-dimensional
sional Schrdinger problem. In particular, the angular mo- reduced form[from Eq. (B4)], N(d=1)=\g—(d—1)?
mentum variables appear at a higher order in the neart 1/4=@®2,+ 1/4. For example, for the all-important case of
horizon expansion. ordinary three-dimensional spaca&les=6 and g =4

(iii) The coupling constarX. is supercritical for all non-  + @2, Furthermore, the coupling constant in E40) de-
zero frequencies. This can be seen from Egll), which  pends upon the physical parameters defining the system:

implies that when the scattering lengths are large, it is function of the
three ratios of particle masses. In particular, for the lowest
o angular eigenvalue of a three-body three-dimensional system
O=—. 9 ; . . i i )
1/ (ry)| of identical bosons with zero-range two-particle interactions,

the characteristic conformal parametdy is approximately
The conclusion from this procedure is that the relevant physgiven by the solution of the transcendental equafi@e]
ics occurs in the strong-coupling regime, in which the frame-

work discussed in this paper can be applied. 8 sinl‘( 776eff> _ \/§eﬁcosr< 772eff) ' (11)

C. Other applications i
. . . so that ®.4~1.006, which corresponds to the strong-
While Secs. Il A and Il B conform to the title of this pa- coupling regime.

per, applications in other areas of physics are also likely. |5 ghort, the essential feature shared by the problems dis-
Among these, the Efimov effef9,30 stands out. This ef-  cyssed above is the existence of gffectivedescription in
fect is expected to arise in a three-body system with shortgerms of S@2,1) conformal invariance, which results from a
range interactions, in which at least two of the two-bodyprescripedreductionframework. We now turn our attention
subsystems have virtual or bousdtates near zero energy. o this generic effective problem, characterized by the
As in the case of the dipole-bound anions of Sec. Il A, thesgyamjltonian of Eq.(2). As different dimensionalities are re-
are spatially exte_nde_d and weakly bound states. Unfortuquired for the applications to which E) refers, we will
nately, the combination of phenomenological parametergnalyze this problem for the arbitragrdimensional case.

needed to form these states, together with their weaklyyyr goal is to investigate and characterize the possible real-
bound nature, has defied experimental detection to date,aiion of a conformal anomaly within this scope.

Nonetheless, this effect is regarded as relevant in the descrip-
tion of the three-body nucleon interacti¢B1]. The most
outstanding feature of these three-body interactions in three
spatial dimensions is the fact that these problems are reduced
to an effective equation with a long-range conformal interac- Conformal symmetry is guaranteed at the quantum level
tion in the strong-coupling regime. In terms of possible ex-when the naive scaling of operators, described by the algebra
perimental detection, this effect is currently being studied for(1), is maintained. A measure of the deviation from this scal-
the description of various systems, including helium trimersing is afforded by the “anomaly]34]

and nuclear three-body halg30].

IIl. CONFORMAL ANOMALY AND SHORT-DISTANCE
PHYSICS

The conformal nature of the effective interaction, for the 1 1
three-body systems described above, can be deduced as fol- Alr)= @[D'H]JFH: 1+ §5r}v(r) (12)
lows. Typically, one starts by introducing hyperspherical co-
ordinates with hyperradius=r, in a d.s-dimensional con- d—2
figuration space for the internal degrees of freedom; if the Ty, m (13)
one-particle dynamics occurs indedimensional space, then 2 rd-2
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(valid for arbitraryd spatial dimensions in which 1 is the IV. REGULARIZATION AND RENORMALIZATION:
identity operator and,=r-V. At first sight, the right-hand THE EFFECTIVE-FIELD THEORY PROGRAM

side of Eq.(12) appears to be zero for any scale-invariant

- L . The Hamiltonian(2), in the strong-coupling regime, de-
potential; however, upon closer examination, this apparent _ . . S i
. . ) scribes an effective system with singular behavior for short-
cancellation may break down at0, where the interaction

is singular. Equationél2) and(13) can be directly applied to distance scales. This interpretation, in which regularization

any of the interactions within the conformal quantum me-and renormalization are mandatory, is inspired by the
Y . d effective-field theory prograi86]. The required regulariza-
chanics class, and reduce to the familiar results known fo

the two-dimensional contact interactig4,35. However, fion procedure is implemented in real space, where the ultra-

. X . ) . violet physics is replaced over length scalesa. The effec-
the most interesting case Is provided by the HamiltoriBn tive theory that comes out of this renormalization is expected
whose symmetry breaking can be made apparent by meal

) ’ ) i o do1 'S be applicable within a domain of energies of magnitude
of the (d)formgl d-dimensional identity V-[r/r®"] |g|<E ,=#22ma?. The scaleE, defines an approximate
=04-,6(r), in whichQq_, is the surface area of the unit |imit of the conformal regime from the ultraviolet side; ef-

(d—1)-spheres’~*; then, fectively, this limit prevents the singular interaction from
yielding unphysical divergent results for supercritical cou-
A(r)=—g—Qd_lrd*25(d)(r) (14) pling.
2 ' Specifically, we consider a generic class of regularization

schemes that explicitly modify the ultraviolet physics; each
Despite its misleading appearance, this termaidentically ~ scheme is described by a potenN&r)(r), for r<a, where
equal to zero, due to the singular nature of the interaction & is a small real-space regulator. An appropriate procedure
r=0. The recognition of this remarkable singular term, asfor the selection of solutions of this singular conformal in-
well as of its regularized and renormalized counterpartsteraction was proposed in R¢87], using a constant poten-
leads to the central result of our paper: the proof of the extial for r<a. Our approach is based on a generalization of
istence of a conformal anomaly. this method, in which a core interactio=)(r) is intro-
However, two important points should be clarified. First, duced.
Eq. (14) is merely a formal identity, whose physical meaning Incidentally, in this section, we consider a cor&~)(r)
can only be manifested through appropriate integral expres=\/(<)(r) with central symmetry/(<)(r). Even though this
sions. Second, the coordinate singularity highlights the needondition is not strictly necessary, it leads to a tractable deri-
to determine the behavior of the wave function near0.  vation. Moreover, it is also consistent with the original rota-
Therefore, nontrivial consequences of Eid) can only be tional invariance of the isotropic singular interaction and
displayed by the expectation value with a normalized stateaptures the singular behavior of the potential, which origi-
|P), nates from its radial dependenc¢even in the anisotropic
g 0 case. The generalization for an anisotropic conformal inter-
d-1 action is nontrivial, but when this interaction is reduced to an
GiPrv=(AM)y=-9— f dr S () r e (r)% effective radial problem, the procedure developed in this sec-
(150  tion can be applied.
The core interaction is subject to the conditions of finite-
A similar analysis applies to the anisotropic interaction ofness
Eq. (3); in this case,

e h? N
d —e<Vo=min[VI(n)]=—5—-— (17)
= 2m a2
5(D)w=(AM)y
and continuous matching with the external inverse square

Qg-q potential atr =a,

=—g fddra(d>(r)|rvxp(r)|2|:(ﬂ).

ay=vC)a)= — 2
(16) Vi=)(a)=V'\")(a) g/a“. (18
It should be noticed that these restrictions imply thgt 0
It should be noticed that the intermediate steps leading t¢r x>0, and thak =\ + s, wheres>0 is the dimensionless
Egs. (15 and(16) are based on formal identities involving energy difference between the minimuvig and the match-
the d-dimensiqnalﬁ fU.nCtion. FOI’ the Unregularized inVerse |ng Va'ue(18)_ In addition7 in th|s approach, the energies for
square potential, the integrals in E¢55) and(16) select the  the interior problem will be conveniently redefined from the
limit r—0 of the productr"¥(r), which is known to be  minimum valueV,; specifically,
proportional to a Bessel function of orde®, with ® de-
fined in Eq. (4). This limit is ill defined in the strong- U=V (r)—V,, E=E-V,. (19
coupling regime, due to the uncontrolled oscillatory behavior
of the Bessel functions of imaginary order. Consequently, a For the spherically symmetric long-range conformal inter-
regularization procedure is called fanter alia, this proce- action of Eq.(2), central symmetry leads to the separable
dure will assign a meaningful value to Eq45) and(16). solution
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yl (Q)v(r) 5 where we have conveniently redefined the logarithmic de-
¥(r)=——"—, f dQq 1|Yim(Q)[?=Qq4_1, rivatives from£ (5)(£)=EInKie(8], with | £g= 0l 0¢, and
' (20  Similarly for LX) in terms ofw,, (£,k). Explicitly,
Eq. (28) takes the form

in which Y,,() stands for the ultraspherical harmonics on
s9-1 [38], which have been conveniently redefined with a
normalization integral equal to the solid anddg_;. Then,
the corresponding effective radial ScHioger equation for
v(r) becomes

Qg 1[BLK 27, (EK) +A? k 2Kio(6)]=1, (29

in which the normalization constants can be chosen to be
real, and where

® 1a [, e o Kio( &)= | dzdo(2) (30
ﬁ‘f‘;a'ﬁ' — r2 _V(r) U(r)— , ( )
and
where V(r)=2mV(r)/#? and k?=2mE/#2. In particular, B
for bound statesk=ix and Eq.(21) provides solutions of >7 zfi T2
© v (=B, ,w,,(kr;k) forr=a, 2 Equations(26) and (29) then provide the values of the con-
r)y= .
a v(>)(r)=A|,VKi@(Kr) forr=a, stantsA, , andB, ,; for example,
2 ~=.12 -1/2
in which K;g(2) is the Macdonald functiop39], and where 5 ___ % & (EX)+ Wi ,(£5K) Kio(£)
T e o = 7o T U wi e |2 Kie(& |
k is defined fromE=7%<k</2m, so thatk=+/— k“—V),, with Og-q & i0
Vo=2mV,/%2<0. The regularizing core is arbitrary and (32)
wi,(kr:k) is a particular real solution in that region, For reasons that will become clear in the next section, it is
) 5 convenient to rewrite Eq9.30) and (31) in an alternative
d_ 1 E+ P (I+ V) —u(r) | twy, (krK)=0 way, using the generalized Lommel integrals of Appendix D.
dr2  rdr v ’ First, the integral defined by E§30), which applies to the

(23 external domainr(=a), can be expressed as

where U(r)=W(r)—V,;, as an examplew,.,(kr;k) is a
Bessel function of orddr+ » when the potentia¥(<)(r) is a
constant.

The solution(22) can be completely determined by en- where
forcing the following three additional physical conditions: (>) ) 2L o2 2
(@ continuity atr =a of the radial wave function(b) conti- (H=[Lig’()]°+ O£ (34)
nuity atr = a of the logarithmic derivative of the radial wave
function; and(c) normalization of the wave function. In what Similarly, the integral defined by E¢31), which applies to
follows, these conditions will be stated using the auxiharythe internal domainr(<a), takes the form

1 >
Kio(€)= 5[Kie(§12M{(é), (33

parameters o -
L - T ER =5 Wi EOPMITUER) +U 4 (EK),
é=«ka, ¢&=Kka, (24 (35
which satisfy Eq.(19), i.e., where
Frees @ MEE=LEERPHE- 1+~ PUER)
Consequently, these conditiof@—(c) become, respectively, (36)
~ and
Bl,VW|+V(§;k):Al,vKi@)(g)! (26)
zoo [ il 12 e oo
(<)(§ k) £(>)(§) (27) ul-%—v(g!k)_ fodziwl+v(z!k)] (l—’— 282 U(ka) )
(37

and[cf. Eq. (20)] . -
with U=U/E and &,=zd/9z. The Lommel integral relation
(33) appears to be simpler than E®5) because of the ab-

sence of an extra coté(z;k) in the external domain.

f ddr|\1f(r)|2=9d,lf:drr|v(r)|2=1, (28

125013-5
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In addition, the continuity conditions of the potential, Eq. cludes the origin, when applied to any homogeneous poten-
(18), and of the logarithmic derivatives, EQR7), imply the  tial of degree—2 (a defining characteristic of the external

equality of the “matching functions(34) and(36), i.e., conformal interactiohn
. Once Eq.(42) is established, the anomaly can be com-
Mff’v(g; k)=/\/li(@>))(§). (38) puted from the contribution arising from the ultraviolet do-
mainr<a,

As a corollary, a combined Lommel relation can be obtained

by elimination of the matching functions from Eqg&33) d 1
and (35, O = [ anl 1458 v [wan

(43

wi (BB
Kio(£) Kie(¢). (39 |, Eq. (43), V(r)=V)(r) can be replaced using E(L9),
andWV ,(r) using Eqs(20) and(22); when these substitutions
Even though the implementation of a renormalization pro-are made and the dimensionless variabl@n Eq. (24) is
cedure is a necessary condition for the emergence of thitroduced, Eq(43) becomes
conformal anomaly, the actual details of this procedure are

T (ER—U . (EK)=

not explicitly required. It suffices to know that these details d Qq4_1B2, (7 3

are to be consistently derived from Eq24)—(39), which d—(D)q,zT’Vf dz4w,; (z,k)]?

permit the exact evaluation of all relevant expectation values, t k 0

and by enforcing the finiteness of a particular bound state 1 ,

energy. x[ 1+ 5&|| Vot U = H (44)

V. COMPUTATION OF THE CONFORMAL ANOMALY o ] ]
Despite its cumbersome appearance, the integral in(4.

The value of the anomalous part of the commutatorcan be easily evaluated once the definitié8® and(37) are
[D,H] is given as the “anomalyA(r) in Eq.(12). In Sec. introduced, so that
11, this quantity was computed for the unregularized inverse

square potential in terms of the formal identity4); this 1 d 10, ,B2
expression, in turn, led to an ill-defined expectation value — — (D)= —Z—ZW[Voﬁ+V(~§§~k)+~EM+y(E;T<)]
(15). This difficulty can be overcome when the singular con- E dt E k
formal interaction is regularized according to the generic (45)
scheme introduced in Sec. IV. Then, EG2) will in prin-
ciple yield two different contributions: one for<a and one Qd,lBﬁV 2 ~
for r=a, with the latter being of the forni14); thus, T2 ?ﬂﬂ(é;k)
Aa(n)=|1 15 V(=)
(D =|| 1% 55 VM A=) +{a+xam—w+xamﬂ, (46)
Qg d—2 «(d) .
95T ov(r)o(r—a), (40 whereV, was replaced through the relati6to) or (25), and

E=—#%2k?/2m. Furthermore, in Eq.46), the difference
where(z) stands for the Heaviside function, is the regular-7 . ,(¢;k) — U ,(¢;k) can be evaluated employing E&9),
ized counterpart of Eq.14). Explicitly, this leads to an ex- so that
pectation value

d li<D>—Q—"’—lB—'2'—”§—2J (EK)
Fi{Dw=[{Aa(n)y) +(Aa(n)§ )], (41) Edt VT 2 |l
wi ., (£K)

where the integration range is split into the two regions: 0
<r<a andr=a. Moreover, the identically vanishing sec-
ond term

2
Kio(e) /Ci@(§)]- (47)

Finally, the coefficienB, , can be eliminated using E(B2),
(A(r)§)=0 (42)  which shows that the right-hand side of E¢7) is identi-

: cally equal to one foany bound state. This remarkable sim-
in Eq. (40) shows that the source of the conformal anomalyPlification concludes the proof that the anomaly defined in
is confined to an arbitrarily small region about the origin. EQ- (12) is indeed given by
This result can be confirmed from a straightforward replace-
ment of Eq.(12) by A(r)=—3(d—2)V(r)+3:V-{rV(r)}, E(D) =E (48)
which is identically equal to zero for any domain that ex- de’ /v
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whereE is the energy of the corresponding stationary nor-portantly, this condition is systematically applied to derive
malized state. physical predictions in a direct manner, within the prescrip-

In short, we have validated the relatig@d8—which  tions of Sec. IV. As a result, E¢49) leads to the bound-state
agrees with thdormal prediction from properties of expec- energy levelg41]

tation valueg34]. This validation has been established using omn
a generic regularization procedure. Therefore, regardless of En:EoeXF{ — _) (51)
the renormalization framework used, anomalyis gener- 0

ated. The generality of Eq48) makes it available for a
variety of physical applications, and isn@cessary condition
when the theory is renormalized

in which E;<<0 is an arbitrary proportionality constant. This
derivation also shows that, as ultraviolet physics sets in for
|E|=E, (that is, forka=1), no claim can be made as to the
nature of the states on these deeper scales.
VI. RENORMALIZATION FRAMEWORKS A few comments are in order regarding E§1). First, it
explicitly displays a breakdown of the conformal symmetry,
and related symmetry-breaking results are independent of tf the introduction of a scal¢o| and an associated se-
details of the regularization procedure. Because ofgie- ~ dU€NCE of bo_un(_j states. Second, _the St arises fr(_)m .
erality of the real-space regularization approach presented iffl€ renormalization procedure. Third, as a renormalization
this paper, these results extend the two-dimensional analysiS@/€:|Eol cannot be predicted by the conformal model and
it is to be adjusted experimentally. Fourth, once the experi-

of Ref.[40] in a number of nontrivial ways: ool B2 - _ '
(i) For arbitrary renormalization frameworks, other thanmental determination is carried out, an unambiguous predic-
tion [from Eqgs.(48) and(51)] follows,

the “intrinsic” one of Ref.[40] (see below.

In the previous section we showed that the propét8)

(ii) For any dimensionalityl. Again, the two-dimensional d(D)y
case of Ref[40] has unique features that considerably sim- -
plify the derivation within the intrinsic framework. This is Ens1 _ dt —exp< _ 2_77 (52)
particularly relevant because the physical applications that E, d(D},l,n B '

appear to be most interesting at@limensional realizations BT
of this phenomenon, witd=dxz# 2.

(i) For any bound state and angular momentum channelithin the range of applicabilityxa<1. This is in agree-
(and not just for thé=0 channel associated with the ground ment with the conclusions of phenomenological analyses of
state considered in Refg34,35,4Q). the Efimov effec{30].

In this section we highlight the relevance of these results The alternative intrinsic and core frameworks are charac-
with an overview of the real-space “effective,” “intrinsic,”  terized by the fact that the limi§= xa— 0 is strictly applied
and “core” renormalization frameworksaccording to the hefore drawing any conclusions about the physics. There-
presentation of Refl41]), and discuss their relationship to fore, in order to keep the bound-state energies analues
the present anomaly calculation. Despite their apparent diffinite, arunning coupling parameter is explicitly introduced,
ferences, these frameworks share the basic physical requirgo that Eq(49) is still maintained in this limit. The running
ment that the system is renormalized under the assumptiosarameter is either the conformal coupliggin the intrinsic
that the ultraviolet phySiCS dictates the possible existence (ﬂ'amework, or the Strengtﬁ of the regu|arizing core inter-
bound states of finite energy; the corresponding eneigies action, in the core framework.
and values ofce: \[E[ are then required to remain finite. In the case of the intrinsic framework, the dependegce

In order to facilitate the implementation of this renormal- =g(a), equivalent to® =0 (a), is enforced. This leads to
ization program, it is convenient to display the specific lim-the asymptotic running behavi@ ~0, which ensures that
iting form that Eq.(27) takes whera—0; more precisely,  the left-hand side of Eq(49) remains well defined. This

(ka<l) limiting proce(_jure Iegds to the renormalization framework of
cola,(®,xka)] ~ —L(N), (49) Refs..[13,.14]; in part!cular, Eq.(52 [wnh the condition® .
0 ~0] implies the existence of a single bound state. In its
(ca<1) original form, the renormalizg’_[ion framework of R_e_fs.
where£ O kak) ~ £)(N) and [13,14] was basgd upon a D|r|chllet pqundary condition,
which we now reinterpret as agffectiveDirichlet boundary
(Ka
In 5

with yg=—{phaseI'(1+i®)]}/® (which reduces to the
Euler-Mascheroni constant [42] in the limit ®—0).

In the effective renormalization framework, the system is:0 and constanv(<)(r) [or, to be more precise, with
regularized maintaining finite values {E|<E,=#2%/2ma’. L, ) e '
This condition defines an asymptotic conformally invariant =~ |Vol2 —)\;g))(a )1, for which ¢=ka=0(®) and
domain; within that domain, the conditiora<<1 limits the  cosa(®,xa) ~ O; (ii) the generic case, characterized dby
ultraviolet applicability of this effective scheme. Most im- #2, or1#0, or V{¥)(r) not being constant, for which the

(50) condition[16] u(r=a)(a~0)0, for the reduced radial wave
function u(r)=rv(r). This result is guaranteed by the
prefactor \r, regardless of the behavior af(r). As for
v(r), two distinct cases should be considerggithe special
case characterized by the simultaneous assignnient, |

a(0,ka)=0 + 70
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7 (Ra)(ajo)@zlz and B | APPENDIX A: ANISOTROPIC LONG-RANGE
=0 _ (a—0) 1=0r=0 CONFORMAL INTERACTION AND CONFORMAL
=|Ao,-0Kie(ka)/Jo(ka)| ~ «/(ym®), leading to BEHAVIOR OF DIPOLE-BOUND ANIONS
(a—0) - ~.(a—0)
d(D)y/dt ~ 277830‘70(ka)v0/k2 ~ E, as discussed in In this appendix we show the mathematical procedure that

Ref.[40]. By contrast, for the generic caié), the analysis reduces the anisotropic inverse square potential teffat-
presented in this paper, based on the theory developed five isotropic interaction.
Sec. IV and Appendix D, is inescapab|e_ The SChrdinger equation for the Ham||t0n|d|3) can be
Finally, in the core renormalization framework, the Separated in spherical coordinates by means of
strength of the core interaction becomes a running coupling .
parameter®=N(a), but the conformal coupling remains W(r)= E(Q)u(r)
constant[15,43. As a result, Eq.(49) provides the limit- prtlz
cycle running that has been used in renormalization analyses
of the three-body probleni5,31,43. with normalization
Incidentally, the “effective” renormalization framework
d?scussed in Ref41] (gnd.summarized in this sect_mhaads f dQq_4|E(Q)2=1. (A2)
directly to a characterization of the thermodynamics of black
holes. In essence, this amounts to a reinterpretation of 't
Hooft's brick wall method 27], in which ultraviolet “new”
physics sets in within a distance of the order of the Plan
scale from the horizon. The computation of Appendix
shows that the leading behavior near the horizon is confor-
mal and nontrivial, in that the effective system is placed in
the supercritical regime. This asymptotic leading contribu-ynere
tion, governed by the effective conformal interaction, re-
quires renormalization and provides the correct thermody- A=—A2+\F(Q) (A4)
namics[44]. It should be noticed that there is atternative
treatment, based upon the method of self-adjoint extensionand A?=L?/%2 is the dimensionless squared angular mo-
which has been recently discussed in Rg23,24. mentum. The corresponding radial equation

(A1)

As a result, the angular pag () of the wave function is
oo longer a solution to Laplace’s equation on the uwit (
C—l)—spheresdfl; instead, it satisfies the modified equation

AZ(Q)=yE(Q), (A3)

2 _ .2
d“u(r) 2+L2+1/4)u(r)=0 (A5)
r

VII. CONCLUSIONS dr2

+

Realizations of the conformal anomaly involve a break-is coupled to Eq(A3) through the separation constapt

ggye? s%fowrf tﬁ:\ts?ﬁlea;ec(:uilmelr)ngg:Ez:ae. ;rgdtfyzlup)eagfe;h\geco F-quation(AS) can be compared against the radial equation
gence . f an isotropic inverse square potential, which is obtained by
formal anomaly rely upon the application of a renormaliza-

) S .another Liouville transformatiof45] of the form (A1), but
tion procedure, but are otherwise independent of the detallrsith ultraspherical harmonics instead & () and for

of the ultraviolet physics. In this sense, the results derive 72p . ) .

herein are robust and totally general. As such, they are in—.e“(r)ocr without angular dependence; the effective equa-

tended to shed light on the physics of any system with a’{|on

conformally invariant domain for which the short-distance 2 _ 2

physics dictates the existence of bound states. du(n) +| K2+ Ner— (I+v)"+1/4 u(r)=0  (A6)
In particular, the dipole-bound anions of molecular phys- dr? r2

ics and the Efimov effect are physical realizations of this, . i . L
unusual anomaly. In addition, the intriguing near-horizon' identical to Eq(A5) when the following identifications are

physics of black holes appears to suggest yet another eX('ade:

ample of this ubiquitous phenomenon; the details of the ther- g 52
modynamics arising from this conformal description will be Ver(r) = — iz geﬁzz_)\eﬁv Neli—o=7. (A7)
reported elsewhere. r m
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Consequently, EqA5) can be thought of as the radial part where

of a d-dimensionaleffective isotropicconformal interaction
for 1=0.

Furthermore, the valueg are quantized from the angular
equation(A3) and depend upon the couplingof the aniso-

tropic potential. This relationship can be made more explici

by expanding, in the ultraspherical-harmonic basis(£2),
the anisotropy factor

F(Q)=2 FinYin(€) (A8)
and the angular wave function
E(@)=2 EinYim(Q). (A9)

This decomposition yields the matrix counterpart of Eqg.

| Im,|"m’ ;|rrmrr: f de_erm(ﬂ)Y|Hmr/(ﬂ)Y|rmr(ﬂ) .
(A12)

tFinaIIy, the component&,, of the angular wave function
can be formally obtained for every eigenvalyén the usual
way, and satisfyfrom Eq. (A2)]

% |Eml2=1. (A13)

As an example of this general theory, one can consider the
particular three-dimensional case=1/2) of the electron-
polar molecule interaction described in Sec. Il A. In this
case, the matrix elementd11) become

(Im[M(y,M)[1"m”)

(A3), whence the anticipated relationship can be formally

displayed by the infinite secular determinant

D(y,N)=detM(y,\), M(y,N)=—A(N)+v],

(A10)

in which 1 is the identity matrix; the matrix elements in Eq.
(A10) are

(MM (y, MM ) =[1(1+2v) + y]6i1+ S

_)\ 2 I|m’|!m!;|HmHF|HmH,

I”,m"

=[d+21)+¥16) Smm

(I+m)(I—m)
m5v,|—15mm/

+m+1)(I—-m+1)
(21+1)(21+3)

A

which correspond to a matrix of block-diagonal form with
respect tom and tridiagonal in. Then, the secular determi-
nant (A10) factors out in the fornrD(y,\)=11,D(v,\),
with the reduced determinabx,,(y,\) in them sector; thus,

5|/'|+15mm/}, (Al4)

(A11) for givenm, the equation de¥l(y,\)=0 implies that
|
A 2
04 _ﬁ 1-m 0
2 A 2
Duyn=| @™ Y g -0, (AL5)
0 N 4—m (6+7)
V15

Equation(A15) has been used for the determination of thex<\®*), no such values produce binding; a first “binding

critical dipole momentA*)~1.279 [17] when y=y*)
=1/4. When the determinant is expandgd high order
additional roots appear for the critical conditiof*)=1/4
and for different values om. This pattern also illustrates
how one would completely solve the generic anisotropi
problem: Eq.(A15) or its generalizatiofA10) can be used
to obtain the eigenvalueg that correspond to a given cou-

Cc

eigenvalue™y, o is obtained when=\®*)| for the first root
with m=0; as the strength of the interaction increases, a
second binding eigenvalug, ; is produced for the first root
with m=1, when\~7.58 orp~9.63 D; the next eigenvalue
71,0 arises from the second root with=0; etc. Foreach
one of these values of= y; ,, an energy spectrum of con-

pling \; these eigenvalues replace the usual angular momef@rmal states is governed by E@1), with O given by Eq.
tum numbers. In the molecular physics case described abovi?)- These bound states have been observed experimentally
the values ofy can be easily evaluated numerically. When[18,19 for the case whety, s the only binding eigenvalue,
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a condition that corresponds to typical molecular dipole mo- 1 (d—2)?
ments. )\(d’:1;|':o):)\(d;|:0)+2_ 2
Most importantly, this analysis confirms that the confor-
mal anisotropic problem can bg reduceq to th'e isotropic one, Even in the special case of the equivalence described by
and the same symmetry-breaking considerations apply.  gq. (B4), the full-fledged wave functions still retain a trace
of the “physical dimensionality'd, becauséwith an obvious
APPENDIX B: DIMENSIONALITIES notation u(r)=W|y_,(r)=r" Y"2¥|(r); for example, in
AND INTERDIMENSIONAL DEPENDENCE the case of the three-dimensional Efimov effect, the full-

. o _ o fledged wave functions are of the forf(r)ocr ~52u(r),
The spatial dimensionality gk of a physical realization of reflecting the fact thatl.;=6.

conformal quantum mechanics is best characterized or de- Tpe example of the near-horizon conformal behavior of

fined as the dimension of the configuration space needed f@fjack holes presents a number of peculiar features that de-
a complete description of the dynamics within the conformalggye a separate treatment in Appendix C.

approximation. Typically, this quantity can be directly iden-

tified from the nature of the radial variable used in the de-
scription of scale and conformal symmetries.

For instance, with this convention, molecular anions can
be naturally seen as a three-dimensional realizatidg ( In this appendix we present an algebraic derivation of the
=3); the Efimov effect, in ad-dimensional one-particle conformal invariance exhibited near the horizon of a black
space, as a @ -dimensional realizationdys=2d); and the  hole.

(B4)

APPENDIX C: NEAR-HORIZON CONFORMAL
BEHAVIOR OF BLACK HOLES

near-horizon conformal physics of black holesDr=d+ 1 From Egs.(6) and (7), it follows that the equation of
spacetime dimensions, asdadimensional realizationd,y ~ motion satisfied by the scalar field in the black-hole gravita-
=d). tional background is

Of course, there is a certain degree of arbitrariness in the
selection ofdg, due to the existence of a formal relationship 1 1.
connecting problems of different dimensionalities. This can(CJ—m?)®= fau( V-99*9,®)—m?d=— TP+fP”
be seen from the reduced Sctimger-like radial equation of 9

a conformal problend2), (D—2)f 1
+(f'+f>cb'+—2AD2q>—m2q>
d2u(r) |, A=(+v)2+1/4 r
gz k H a— u(r)=0. (Bl o 1)

. o . where the dots stand for time derivatives and the primes for
Equation(B1) depends on the number of spatial dimensions__ L ; : -

L radial derivatives in the chosen coordinate description of the
only through the combinatioh+ v, a property known as

interdimensional dependenf46]. As a consequence, the ra- tia2<:;< _gsroﬁgri' mhg?ﬁi%aﬁ Iz thsee L;gllgg:qar;fotﬂetrzﬁngn;% an-
dial part of the solutions for any two conformal problems are ular v%riablles » Dy Sep
identical when their coupling constants are related by 9 '

—a it
NI =N (D)4 (1 =14+ d/2)%— (1 — 1+ d/2)2, P ) =e " em()Yim(L), €2

(B2)  Eq.(C1) turns into

f' (D—-2) 0w m o«
T+ P20 G- em=o,
r
(C3

Moreover,

@"(r)+
0(d")=0(d) (B3)

is a dimensional invarianof these formal transformations. \yith a=1(1+D—23) being the eigenvalue of the operator

Correspondingly, the conformal physics is totally determined— A ;. Equation(C3) can be further reduced, by means of

by the invariant value of this parameter. a Liouville transformatiorj45]
However, the interdimensional equivalence of EBR) is

severely limited by the fact that the full-fledged solutions  ¢(r)=g(r)u(r),

(wave functiong are not identical, because the angular mo-

menta are different in different dimensionalities. The only 17[f" (D-2)

exception to this is the formal equivalence among Its® g(f)ZEXP{ - Ef [T+ : }dr] =f V3~ (0=2)P2

angular momentum channels of problems with arbitrary di- (C4)

mensionalities(as these channels do not involve additional

dimension-dependent angular variabjes particular, an ef- g its normal or canonical form

fective one-dimensional coupling can always be introduced

for a d-dimensional problem with=0: u’(r)y+1(ryu(r)=0, (CH
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with normal invariant [(D—Z)(D—4) L@ 1
o o’ _m* [(D-2)(D-4) a]l 4 flr2
r=—»——-—|——————- —_——
f2  f 4 fr2 (I+v)2 1 o[ 4 1 1_01 c1o
T a0 2

1 112 (D-2)f
B I T T

(C6)

] [with v=(d—2)/2=(D—-3)/2]. Thus, the angular
The conformal behavior of the Scliinger-like equation  momentum—together with its associated dimensionality
(C5) near the horizon can be studied by means of an exparsariable—decouples from the conformal interacti@il) in
sion in the variable the near-horizon limit. It should be noticed that we had to
rewrite Eq.(C10 in thel =0, d-dimensional format in order
X=r=ry, €N 1 present this problem within our unified conformal model
(2). Alternatively, one could write Eq(C11) in a simpler
one-dimensional reduced forifrom Eg. (B4)], N(d=1)
= Nei— 2+ 1/4= @24+ 1/4, with the same value for the di-
fl=f'(r,)#0, (C8) mensional invarian® .

with r=r, being the largest root df(r)=0. Thenonextre-
mal case is characterized by the condition

equivalent tor , #r _ . Then,
APPENDIX D: GENERALIZED LOMMEL INTEGRALS

f(r) =1 x[1+0(x)], In this appendix we derive a generalization of the Lom-

mel integralg47] for an arbitrary Sturm-Liouville problem
f'(r)=f.[1+0(x)],

f7(r)=1[1+0(x)], (C9 Lw(x)=me(x)v(x), (D1)

wheref”, =f"(r ). Thus, with corrective multiplicative fac-

tors of the order [1+0O(x)], it follows that f"/f : __[_

~f71(f\.x) and f'/f~1/x, while r~r_,, so that the only < dx

leading terms in Eq. (C6) are w?/f2~w?/(f,x)? and

f/2/(4F2)~1/(4x?). As a result, Eq(C5) is asymptotically . L _

reduced to the conformally invariant form and apply it to _the r_educed radial Sctinger equatiorf21).
These generalized integrals are needed for the exact evalua-

tion of expectation values in the anomaly calculation.
X [1+0(x)Ju(x)=0, (C10 In what follows, we rewrite the differential equatiobBl)
in the form

d
JESE +q<x>], (D2)

2

" + 1+
u”(x) 2

(f)?

where, by abuse of notation, we have replacéd by u(x).

Equation(C10) indicates the existence of asymptotic con- d ) 5
formal symmetndriven by the effective interaction GxPXV (¥ ]==[a"e()+a()]v(x),  (D3)
N eff
Vei(X)=— R with an eigenvalug.= «® and where the prime stands for a
X derivative with respect tg; moreoverp (x) can be chosen to
2 be a real function. Next, after conveniently multiplying both

(C11) sides by D(x)v'(x), and integrating them with respectxp

Netr=v2+ 0%, ®gﬂ:{

f/(ry) Eq. (D3) turns into
as follows by rewriting Eq(C10) in the d-dimensional for- ) i
mat of Eq.(B1). This proves the claims made in Sec. Il B [P(X)v'(X)] |Xi

and, in particular, Eq948) and(9). q

A final remark is in order. The effective Hamiltonian _ %2 2 2
(C10 did not fall “automatically” within the d-dimensional - J;l dxp(x)[a“e () +a(x) 15 [v(x)]%, (D4)
format of Eq.(B1). The extra terms—[(l+ v)2—1/4)]/r?,
usually obtained by reduction of a multidimensional Sehro
dinger equation in flat space, are still present, but at highein which both the lowerx,) and upper limits x,) are com-
orders in the expansion with respect to the near-horizon copletely arbitrary. Finally, after integration by parts and rear-
ordinatex; in Eq. (C6), they correspond to rangement of terms, E¢D4) leads to
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o f:zdxno(x)(_)(x)]'[v(x)]2 o f:zdxx[v(xn2
2 v ()]? 2 2 1 2 2 2 2 X2
=[0 (0T P00 | +POOLa?e(x)+a(x)] = ST PLLOO T+ [(ax)2— W0 T} 2
X1
X2 +fx2dxx[v(x)]2(u+35 W(X) (D8)
- [Faxtp0ae0r oo ©5) . 25 0,

where £L(x)=xv'(x)/v(x) and both limits are still arbitrary.

which generalizes the well-known second Lommel integralEquation(D8) is the desired generalization that can be di-
[47] of the theory of Bessel functions. A similar procedure rectly applied to the reduced Schiinger equation$21) and
could be applied for a generalization of the first Lommel(23) to derive Eqs(33) and(35), as we will show next.
integral, but this is not needed for the present purposes. First, for the interior problemr(<a), Eq.(D8) turns into

The integral relatioiD5) can be rewritten in a convenient EQ. (35), by means of the substitutions
form for the reduced radial Schdimger equatiori21), which ~
is of the generalized Bessel form X=r, a=k, X®Wx)=(1+v)%+r2ur),

v(X)=w,, (kr;K), z=kr, (D9)

> 1d

@Jr X ax Fla" =W ] v(x)=0. D8 and with integration intervate [0.¢], whereé=Kka. For this
case, wherr?l(r)—0, that is, for regular core potentials,
the behavior of the differential equation at the origin implies
that the contribution from the first term on the right-hand

side of Eq.(D8) is zero forr=0.

This is a particular case of the Sturm-Liouville equation
(D3), with density functionp(x)=x, p(x)=x, and q(x)

= —xWW(X); however, it is also true that a straightforward set Second, in a similar manner, for the exterior problam (
of two Liouville transformationg45] makes Eqs(D1) and _ ' ) ' P .

(D6) formally equivalent to each other. For E@D6), /"?‘)’ Eq. (D8) turns into Eq.(33), by means of the substi-
[P(X)q(x)]’ = —[x®W(x)]’, and the final term in EqD5)  tUtions

can be evaluated with the help of x=r, a=k=ik, X*WX)=(+v)°2—r=—-02

v(X)=K;g(«r), z=«r, (D10

d 1

—[W)x®]=2x| 1+ —SX)W(X), (D7) L o :
dx 2 and with integration intervake[ &,0], with é€=«a. Here,
the behavior of the differential equation at infinity implies
wherel is the identity operator anfl,=xd/dx, as in Sec. IV.  that the contribution from the first term on the right-hand

As a consequence, E(D5) becomes side of Eq.(D8) is also zero at that point.
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