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SO(2,1) conformal anomaly: Beyond contact interactions
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3Department of Physics, University of San Francisco, San Francisco, California 94117-1080, USA
(Received 25 February 2003; published 3 July 2003

The existence of anomalous symmetry-breaking solutions of th@,$ommutator algebra is explicitly
extended beyond the case of scale-invariant contact interactions. In particular, the failure of the conservation
laws of the dilation and special conformal charges is displayed for the two-dimensional inverse square poten-
tial. As a consequence, this anomaly appears to be a generic feature of conformal quantum mechanics and not
merely an artifact of contact interactions. Moreover, a renormalization procedure traces the emergence of this
conformal anomaly to the ultraviolet sector of the theory, within which lies the apparent singularity.
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[. INTRODUCTION tions satisfy a set of classical symmetries under time rep-
arametrization$22,30. The associated quantum-mechanical
The relevance of conformal quantum mechanics has beegenerators are the Hamiltoniat, the dilation operatoD
recognized for decadefl] in the context of the scale- =tH—A/2, in which A=(p-r+r-p)/2, and the special
invariant Hamiltonian dynamic$2] of the inverse square conformal operatoK=2tD —t?H + Mr?/2; these generators
potential, which is characterized by an @) commutator Yyield an S@2,1) Lie algebra[31] at the “classical” level
algebra. A formally identical symmetry algebra was discov-
ered for the magnetic monopdl8], the magnetic vortejd],
and the two-dimensional contact interact[®). Remarkably,
this algebra has also been identified within the maximal
“Schrodinger group” of symmetries of nonrelativistic field
theories[6] and related applicatiorn¥,8].

Most importantly, the central role played by conformal oppropriate anomalous modifications of this “regular” alge-
quantum mechanics in theoretical physics has been highsra will be discussed below, when the theory is quantized.
lighted in recent years in a wide variety of problems. First, The main purpose of this paper is to explore the quantum
insights into the physics of black holes have been dirECt%ymmetry breaking of the algebta) for the inverse square
gleaned from the concept of near-horizon(8@ conformal  otential. The existence of thnformal anomalyvas first
invariance{9—11], as well as from its supersymmetric exten- yacognized for the two-dimensional contact interaction by
sions[12-16. This is in large part due to the remarkable jngirect methods in the seminal work of R¢] and was
connections provided by the AdS/CFT corresponddi@®  recently confirmed by a direct calculation at the level of the
In addition, the ubiquity of the Calogero moddi8], from  ¢ommutator algebra in Ref§30,32. Even though a draft of
black holeg19] to applicat_ions in gonQensed-matter ph_ysicsthe more general theory was developed3A], the proof of
[20,21), has led to alternative applications of a formally iden-its actual realization for the all-important inverse square po-
tical algebra of conformal generators. Finally, the use ofenial is still lacking. This is the problem to which we now

field-theory renormalization techniques has promoted novelym our attention, for the particular case of spatial dimen-
methods for the treatment of singular interactions, includingsjonajity d=2.

those within the conformal quantum mechanics class, by
means of Hamiltoniar{5,22—-24 as well as path-integral . ULTRAVIOLET ORIGIN OF THE ANOMALY FOR THE

technique§27-29. TWO-DIMENSIONAL INVERSE SQUARE POTENTIAL
The underlying property common to all the problems

mentioned above is the presence of a particular conformal The inverse square potential is of fundamental importance
symmetry after an appropriateduction framework is ap- because of its applications to black holgs-16], nuclear
plied. As such, this is a particular realization of conformalphysics26,33], and molecular physid$84]. Even though the
invariance for an effective (8 1)-dimensional field. It is the existence of this conformal anomaly had been anticipated by
corresponding reduced problem that is described within thether indirect argumentg34], in this work we present the
conformal quantum mechanics class, typically withedfiec-  first conclusive direct computation at the level of the com-
tive Hamiltonian H=p?2M+V(r), or with many-body mutator algebrdl). More precisely, as the next step towards
generalizations thereof. In particular, in its reduced form, aestablishing a more general framework, we show that the
conformally invariant interaction is characterized by an in-two-dimensional case of the inverse square potential con-
teraction potentiaM(r) that is a homogeneous function of firms the conclusions drawn in Rg80]. The advantage of
degree—2. This property alone implies that these interac-this particular dimensionality lies in the remarkable similari-

[DaH]reguIar: —ifiH,
[K:H]regular: —2i#hD,

[DaK]reguIar:iﬁK- 1)
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ties that the inverse square potential and #finction in-  to Eq.(5). In short, the origin of this conformal anomaly can
teraction exhibit ford=2. Not only is the dimensionality the be conclusively traced to the apparent singularity at the ori-
same, but both interactions are characterized by a vanishingjn, which lies within the ultraviolet sector of the theory.
critical coupling, and the corresponding expressions for the In the following sections, we will regularize the theory

anomalous terms can be considerably simplified. using an ultraviolet real-space regulator.
The fundamental quantity encoding the nature of the
anomaly is[30] lll. REAL-SPACE REGULARIZATION OF THE INVERSE

SQUARE POTENTIAL

1
A(r)EE[DH]JFH: Real-space regularization of the ultraviolet physics is

implemented by an appropriate modification of the interac-
wherel is the identity operator anél,=r-V stands for the tion for r<a. This procedure amounts to the introduction of
Eulerian derivative. In particular, the two-dimensional form a regular potentiaV/=)(r) for r<a, where it succinctly de-
of Eq. (2) simplifies to scribes the short-distance physics. Moreover, in order to
maintain the intrinsic physics of the inverse square potential,
the core interactio’/(<)(r) should implement a continuous
transition from the long- to the short-distance phygig8s;
i.e., it should satisfy the continuity requiremewt=)(r =a)
For the case of the two-dimensional inverse square potentiak —g/a. The simplest and most convenient choice is af-

1
1+ E&}V(r), (2

1
A(r)=EV~{rV(r)}. 3

the Hamiltonian forded by a finite square well=)(r)=—gé(a—r)/a?, so
) that the unregularized Hamiltonia(#) undergoes the re-
_h 9 placement
H= o0 2 4)
PP g g
is conformally invariant, withh = 2Mg/#2 being the dimen- H—Ha=5y ~ r—ze(r —a)- ?9(3_ r, ©)

sionless form of the coupling constant. Then, the formal two-

dimensional identity in which 6(z) stands for the Heaviside function. Then, for a

; wave function\lf(r)=e'm‘f’u‘m|(r)/\/F, the corresponding re-
V.[F =2mw8@)(r) (5)  duced radial Schdinger equation is given by
2
implies that d_+ ﬂ + f(a-r)
dr? | A2 a?
A(r)y=—gms@(r), (6)
12—\6(r—a)—1/4

whose expectation value for a normalized stalt¢ becomes - 2 u(r)=0, (10

d
E<D>¢=(A(r)>w= —gwf d?r5@(r)|w(r)[2. (7)  inwhichl=|m|, with m being the usual quantum number. A
bound-state solutionE<0) to Eq.(10) can be written in

Equation(7) can be used to shed light on the nature of theterms of Bessel functiorise],

possible conformal symmetry breaking. Specifically, two im- ~ ~
portant features are immediately apparent: Ri(r)= u(r) _ [{JiCkr),Ni(kr)} for r<a, (11)
(i) The correct evaluation of Eq7) requires an appropri- ! Jr {lig(kr),Kip(kr)} for r>a,

ate regularization procedure, because of the well-known van-

ishing or asymptotically free value gf This behavior com-  \where the effective coupling becomes
petes against the logarithmic singularity of tlemormalized

ground-state wave functio¥ (r) at the origin[22,23,25, 0=0,=\\—1?, (12)
K the energy parameters are
W (gey(1) = —=Ko(KT), 8) P
N
~, 2M A
where k= \2M|E 4|/%i. Consequently, Eq(7) has to be K :? E+¥ (13

regularized concurrently with other observables in the theory.

(i) The existence of an anomalyonvanishing value of
Eq. (7)] arises from the “singularity” at the origin, which is
encoded in the function. The presence of this generalized
function can be physically interpreted as representing the 2_ E (14)
“core” of the interaction near the singular point, according h?
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and the symbof{,} stands for linear combination. In EL1l)  Therefore, the corresponding expectation value for a renor-
the regular boundary conditions at the origin and at infinitymalized and normalized staf#) becomes
lead to the particular selection

d . < >
B (k)  for r<a, gi(Dhw= ;@O[<Aa(r>>&,;+<Aa<r>>£p;]. (22

P(r)=em?x (15
A|Ki®(Kr) fOI’ I’>a, i .
In Eq. (22), |¥,) is the regularized counterpart ¢¥), as

where the relative values of and B, can be determined given in Eq.(15). Furthermore(.A,(r)){) stands for the

from the continuity condition contribution to the expectation value from the ultraviolet re-
gion (r<a), for j=<; and from the regionr>a, for
B)Ji(ka)=AKg(xa). (16 1=>- Remarkably, Eq(21) shows that
In addition, the continuity of the logarithmic derivative rat (Aa(r)>$p?=0, (23)

=a provides the equation for the energy eigenvalues

which confirms thabnly the singularity at the origin can be

' T / the source of the conformal anomaly. As a consequence,
~Ji(ka)  Kjg(xa) an y g

~ =K .
Ji(ka)  Kie(ka)

d
Gi(Dhy=lim (Ay(n)§)
Furthermore, the values @ andB, can be fixed from the t a—0 é
normalization condition
a ~
:—27T|im352J drr[3,(kn) 1% (29
0

|
a— 0a2

1=j d2r| W (r)|?

This expression for the anomaly can be most easily inter-

<\ Kio(ka)|? -~ preted by rewriting it in the form
=AR27Kk % Kig(ka)+| =| | —=—| F(ka) |,
k J|(ka) d
18 (P
where the functions . \(a) 7TA|2 Zj(ia) ,
=Elim{ { = ~——[Kie(ka)]( |,
- a—o\ | (ka)?) | «? | [[J(ka)]?
Ko(ka)= | dzdkio(2)T 19 o5
and as follows from Eqgs(14), (16), and(24). In Eq.(25), Eis the
finite renormalized value of the energy associated \ith,
andA(a) is the running coupling constant. Correspondingly,
~  [ka 2 the anomalous time derivative of E@®5) is scaled with the
Jilka)= fo dzZJ(2)] (20 pound-state energly of the statgdW'). Moreover, as we will
show below, upon renormalization, each one of the three
are conveniently defined. Equatiofisd), (19), and(20) will additional factors enclosed in braces is asymptotically equal

be further simplified when the theory is renormalized into one(with respect to the limit—0). As a result,
Sec. V.

d
IV. CALCULATION OF THE CONFORMAL ANOMALY &< D)y=E, (26)

We are now ready to start the computation of the regular- , . : . S ;
ized anomaly. First, from Eqé3), (5), and(9), the conformal which agrees with the expected answer: the right-hand side

anomaly manifests as the failure of the dilation operator toOf Eq. (26) becomes the energy of the stationary normalized

ield a zero time derivative; explicitl, the regularized coun- > o0
rerpart of Ea.(7 is obtained with the repfacement Finally, once the value of the anomalous commutator
terpart of Eq.(7) is obtained with the replacement

[D,H] has been identified, the corresponding value of the
commutatof K,H] is determined30], with

A(r)— Aa(r) = —gms(r)6(r —a) - %a(a—r).
a

d d
2 gr(K)w=2t 5 (D)y=2tE. (27)
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V. RENORMALIZATION for a finite energy leveE. The second additional factor in

The final required step is the renormalization of the sys—Eq' (25) has a limiting value of one because

tem. This is implemented by finding the behavior of the run-
ning coupling constant from the consistency requirement that

—0
Eq. (17) admit afinite bound-state energy, when-0. From Ao(a: )—{1+o(:<a)}. (33
the small-argument expansion of the Macdonald function J
(z—0) p This can be deduced from Eq&l8), (19), and (20), for |
Kie(z) = = O sinh(70) =0, ka<1, and®~ka<1, which collectively imply that

2Kie(ka)=1+0(0?) and 27 _,(ka)=071+0(0?)].

«sinl ©® In(; +y )[1+O(zz)], (28) Finally, the third additional factor in Eq25) becomes
Eq. (17) becomes Ji(ka)
———[Kio(xa)]?
B [Ji(ka)]
z (@=0)_ J/(ka) 5 P
Ocotf OfIn| |+ = ka—=—[1+0([«a]?)]. @=0 [0 Sina
{olnl3] 3Ky O] - 2| ||~ 5 11+0(87)]
(29)
(a—0)
The renormalization condition consists in taking the limit = 1+0(02). (34)
a—0, with a running coupling(a) to be determined self-
consistently so thak remains fixed, thus guaranteeing a fi-  In closing, this renormalization procedure, based on the
nite energy. As argued in Ref24] and[25], Eq.(29) isill  modification of the ultraviolet behavior, shows that the

defined unles® (a) has the appropriate logarithmic running ground state wave function reduces to Eg).in the limit a
—0. However, as discussed in Sec. Il, for the computation
(a—0) of the anomaly, this limit can only be taken as the last step,
O(a)x—[In(xa)]"* — 0. (300  after all expressions have been properly regularized. In this
paper we have shown that the ensuing procedure is imple-
In other words, this behavior drives the couplingowards mented at the level of E¢25) and yields the anticipated
its critical value, which is exactly zero fat=2; in particu- answer, Eq(26).
lar, whenl =0, X (a)=02%(a)@~9 0. Once this running be-
havior sets in, the only bound state that survives the renor-
malization process will occur for=0, because the other
channels [(#0) will be automatically placed in the weak- In conclusion, we have shown the existence of a confor-
coupling regime, for which binding is suppresgea,25. In mal anomaly of the SQ@,1) algebra associated with the dy-
addition, this analysis shows that binding will always occurnamics of the two-dimensional inverse square potential. The
for d=2, when the critical coupling is zero; this fact alone corresponding violations of the conservation laws of the di-
places the two-dimensional case in a unique position. Morelation and special conformal charges follow patterns very
over, the conditior(29) for the energy eigenvalues becomessimilar to those encountered earlier for contact interactions.
In particular, this work is closely related to the conformal
a-0 @ interactions of maximal physical relevance, involved in ap-

VI. CONCLUSIONS

cot(@ In E) +vy|] = —=[1+0(®?%], (31 Pplications from molecular physics to the physics of black
2 2 holes. Consequently, this analysis leads to new insights into

the emergence of anomalies within the framework of confor-
which logically enforces the limits cars(a:>0)0 and _mal guantum mechani_cs. Finally, these ideas can be general-
(a—0) ized beyond the two-dimensional case and for a more general
Isina] — 1, wherea=0[In(z2)+ v]. modification of the ultraviolet physics; additional details are
We are now ready to prove the fact that the three addiin progress and will be reported elsewhere.
tional factors in Eq.(25) are asymptotically equal to one.
First, Eq.(13) implies that ka)?=\+O([«a]?), in which
A=072 is the leading logarithmic term with respect &
according to Eq(30); thus, This research was supported in part by an Advanced Re-
search Grant from the Texas Higher Education Coordinating
\(a) @0 Board and by the University of San Francisco Faculty De-
_ -1, (32) velopment Fund. One of u&G.N.J.A) gratefully acknowl-
(ka)? edges the generous support from the World Laboratory.
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