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Anomalous commutator algebra for conformal quantum mechanics
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The structure of the commutator algebra for conformal quantum mechanics is considered. Specifically, it is
shown that the emergence of a dimensional scale by renormalization implies the existence of an anomaly or
guantum-mechanical symmetry breaking, which is explicitly displayed at the level of the generators of the
S0O2,1) conformal group. Correspondingly, the associated breakdown of the conservation of the dilation and
special conformal charges is derived.
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[. INTRODUCTION be regarded as the most outstanding examples of conformal
gquantum mechanics.

The concept of symmetry plays a central role in the con- Despite our recent progress in the analysis of singular
ceptual framework of modern physics. One of the most fruit-potentials in conformal quantum mechanics, the possible
ful approaches starts by identifying a symmetry, whose acbreakdown of their symmetry algebra at the quantum level
tual or potential breakdown is subsequently analyzed. A1@s not yet been systematically explored. This omission is
particular case of this process is an anomaly—a classicgorrected in the present paper, in which we introduce an
symmetry that breaks down upon regularization and renoroutline c_:f the general theory an_d detaﬂed computations for
malization[1-3]. Specifically, the existence of anomalies is € particular case of the two-dimensior&function inter-
usually associated with the need to regularize infinities tha@ction- The general theory is presented in Sec. I, where we

appear in quantum-field-theory descriptions of particle andr?]wew the alggtira:jlc g:t(r)]mmuftator Ip_rope_rues of tge rl]\loetrr]]er
extended-object interactions. In their continuum versionC1arges associated with conformat invariance and show now

. : S to characterize the corresponding anomaly at the quantum
these theories require an infinite number of degrees of freqével In Sec. 1l we display the emergence of the conformal
dom, which in turn become the source of infinities in rel'anorﬁaly for.the two-dimensionas-function potential by
evant calculations. As a consequence, regularization is Unq, ) \omenting the necessary renormalization of the bound-
avoidable and occasionally accompanied by anomalougite sector using three different regularization techniques. In
symmetry break!ng. _ _ Sec. IV we also show how to describe this anomalous sym-
In contrast with their quantum-field-theory counterparts,metry preaking for the scattering sector of the theory. Finally,
the concepts of regularization, renormalization, and anoman sec. vV we present the conclusions of our work, while in
lous symmetry breaking do not appear to be necessary toolfe Appendix we summarize the main results on the
in quantum mechanics. This “regular” behavior is usually d-dimensional radial Schdinger equation that are needed
ascribed to the finite number of degrees of freedom sufficienthroughout the paper.
to describe these systems at low energies. However, this lore
has been challenged by Jackj#] for the two-dimensional Il. ANOMALOUS COMMUTATOR ALGEBRA
S-function interaction. The strongly singular nature of this . . . . . .
potential at the origin suggests the use of regularization and In t.h's section we c9n3|der_an ar_bltrary scale—lnvgrlant
renormalization as an alternative approach to quantizing thgotentlaIV(r). From a simple dimensional argumey, it

system, which would otherwise seem not to be defined. Ir<]:an be shown that the scale invariance of the action occurs if

fact, a detailed calculation for the two-dimensional and only |f_V(r) IS h_omogeneous .Of degree_2._|n subse-
S-function potential shows that the interacting system is wellquer1t sections of this papQ/,(r) W'” be spgma.llzed to_ the
defined, butonly after renormalizatiori4,5]. The existence particular case of the two-dimension&function interaction.
of a renormalized version of the theory and the usefulness of
related field-theory concepts have been confirmed in a num-
ber of independent studi¢6—8]. Moreover, a simple argu- A straightforward analysis of the symmetries of these
ment reveals that this interaction is scale invariaft but a  scale-invariant potentials under time reparametrizations
dimensional parameter survives regularization and renormakhows the existence of three Noether charges. The corre-
ization due to dimensional transmutati¢@]. In addition, sponding quantum-mechanical generators are the Hamil-
similar techniques and concepts have been used to analyzenian
and renormalize the inverse square potentigB,10-12,

which can also be shown to be conformally invariant at the
classical leve[13,14]. These scale-invariant potentials may

A. SO(2,1) commutator algebra

2

_H=P
Ny=H= 550 +V(r), (1)
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the dilation operator arises as to where this symmetry breaking manifests in the
commutator algebra of the operatqdy—(3). In this paper

N,=D=tH— %(p- f4rep), @) mihs:ct))vgstitaégrnemrgggircation of the algelirh is encoded
and the special conformal operator [D,H]=—iAH+[D,H]exrar (5)
t M which acquires an “extra” piece whose expectation values
Ng=K=t?H— S(pr+r-p)+ jrzv (3 will be computed below. Then, Eq&l)—(3) imply that
which are expected to satisfy the @) Lie algebra[15] [K,H]=—2iAD + 2t[D,H ] exirar
[D,H]reguia™ —i7H, [D,K]=iAK—t’[D,H]exira (6)

[K,H]regua= —2i2D, [D,K]iequa— 7K. (4  as follows by straightforward application of the canonical
commutator relations. Thus, the extra terms in E§s.and

In Eq. (4) the qualification “regular” emphasizes that the (6) extend the commutator algeb{4) and spoil the conser-
commutators follow from a naive computation in which their vation laws of the Noether chargé and(3), as dictated by
anomalous behavior is not explicitly considered. These scakheir time evolution
ing and commutator properties have been shown to apply to
the two-dimensionals-function interaction[4] and the in- dA  JA
verse square potentigl3,14], and are also shared by the dt - gt
magnetic monopolgl6] and the magnetic vortg 7]. These
representative examples of conformal quantum mechanids the Heisenberg picture. In particular, the Heisenberg equa-
and their associated $20)1) symmetry have also been rec- tions (7) imply that
ognized in the study of a number of nonrelativistic limits of

1
+ o AH] @

quantum field theoriegl8,19. More generally, the same ba- dD 1 dK 2t

sic results apply to the entire class of homogeneous poten- dat i [D.H]exta dt _in [D.Hlextra: (8
tials of degree—2, which are both scale and conformally

invariant. The next step in our construction is the remarkable find-

The usual interpretation of scale invariance is summarizeéhg that the modified commutator algebra and the corre-
by the first commutator in Eq4), which shows that the scale sponding relationg8) can be evaluated in a representation-
dimension ofH is —1. This scale dimension is, in fact, the independent manner. This is achieved again by the use of the
“time dimension” 7 corresponding to the dimensional- canonical commutators, which imply that
analysis resulfH]=7"1, in units such that=1 and M
=1. For an arbitrary interaction, in these units, the spatial [p-r+r-pH]=2iA{2T-&V(r)}, 9
length dimension isC=7%2 Moreover, for the particular _ o
case of a scale-invariant theory, i.e., for a potentigt) ~ WhereT=H—V is the kinetic energy operator and the sym-
homogeneous of degree2, the “naive algebra” and scaling bol
[H]=71! are satisfied directly from the symmetry, when

other subtleties are ignorefi7]. That is precisely the &=r-v (10
ggn(a:)smnal-analyas interpretation of the first commutator mstands for the “Eulerian derivative,” which—when applied

The main goal of our paper is to show the emergence oﬁj a homo_geneous function—selec_ts the correct degree of
correction terms in Eq4) due to dimensional transmutation omogeneity. Th? gxpresgoﬁV(r) IS a formal operator
[9], as manifested by the presence of a dimensionful renoI;_ienvatlve that coincides with the corresponding elementary

malization parametdi7,8,10,11. In fact, this is the origin of f‘:ounter?art mtth’il post,ltltk))n dre%prejintatl?r?. Tther:, the
an experimental realization of a quantum anomaly in mo- anomaly operator”A(r), to be defined from the extra term

lecular physicq20], whose underlying mechanism has also[D'H]extrain Eq. (5), can be computed from Eq&2) and(9),

been studied within a path-integral appro&2h—23. whence
1 1 1
B. Anomalous commutators A(r)= E[DiH]extraE E[D,H]-i— H=|1+ > EV(r),
In what follows we will consider the nonperturbative defi- (12

nition of the Hilbert space for conformally-invariant poten-

tials, according to the framework of Ref4,7,8,11,22 This  wherel is the identity operator. An alternative useful expres-
can be achieved by properly renormalizing the theory in thesion of this anomaly11) in d dimensions is

strong-coupling regime, with the introduction of a scale- 1 .
breaking parameter. However, if the &) conformal sym- — Tid_ v,

metry is violated upon renormalization, then the question Aln) 2(d V(N + 2 Vir vin}. (12

045018-2



ANOMALOUS COMMUTATOR ALGEBRA FOR CONFORMA. . .. PHYSICAL REVIEW D 67, 045018 (2003

Despite their deceivingly simple appearance, Eqd) (1) If the symmetry is strictly maintained, theniz dA/dt
and (12) still fail to make the anomalous behavior explicit. =[A,H]#0, so that Eq.(14) implies that([A,H])y
This is due to the fact that the conformal anomaly can be  #0. This is precisely what would happen with the dila-
reduced to the breakdown of the naive scaling properties of tion chargeD and conformal chargk, if the commuta-

the potential. This fact is clearly displayed by EdJ), tors were exactly given by Eq4). Reciprocally, this
which shows that the dilation charge is conserved and scale statement is logically equivalent to the condition that, if
invariance is maintained whef}V(r)=—2 V(r), an equa- a state| W) is found for which([A,H])y=0, then the

tion that amounts to Euler’s theorem for a homogeneous po-  symmetry is necessarily broken.
tential of degree-2. Thus, one is naively tempted to state 2) If there existnormalized stationary statdd), then
that the conformal anomaly vanishes for the class of scale-
invariant p'otentials... However, as we will show below, this ([AH])y=0 (15)
homogeneity condition is violatedhe breakdown of Euler’s
theorem can be traced to the singular behavior of the poten- .
tial and its associated wave functions at the origin par- IS @S0 @ necessary condition. As a consequence, when Eq.
ticular, the existence of a nonvanishing anomaly can be ex(14) is satisfied, the symmetry is violated, with
plicitly shown by considering the corresponding expectation
values with normalized stat¢¥). E(A) _ <%> (16)
In subsequent sections we are going to apply these ge- de v ot q,'
neric concepts to the two-dimensior&function interaction.
More precisely, we will show that the expressions in H85.  For the dilation and conformal charges, this is only possible

and (11)—(13) are indeed nontrivial due to the singular be- through the extra piece in E¢), which should guarantee a
havior of the wave function at the origin. This means tiat:  sybtle chain of identities

the additional termi D,H ]qy in the commutatofD,H], as

defined in Eq.(5), is not identically equal to zerdji) rel- IA

evant expectation values of this extra tefbB,H ],y have ih<ﬁ> =([AH]lexradw=—( [AHlrequapw. (17
nonzero values. Furthermore, this program can be most eas- v

ily accomplished by computing the expectation value o .
where each individual term is not zero.

d In particular, the scheme discussed in pdR)tabove ap-
a(DNz(A(r)N plies directly to the ground stafd o), whenever it exists.
Then, Eq.(16) [with A=D defined in Eq(2)] implies that
1(d 2)(V(n) 1f drV(r)E|W(r)|? d
= A - r ! r r r r y
(13
whereE go=(H)w
In the next few sections, we will verify Eq18) for the

two-dimensionals-function interaction by an explicit com-
putation of the anomalous correction terms. In other words,
C. Properties of symmetry generators and their expectation we will show that this potential exhibits a conformal quan-

in which a vanishing boundary term at infinity is dropped,
after integration by parts.

values tum anomaly.
Before applying Eq(13) and related concepts to particu-
lar potentials, we will first summarize a number of well- lll. THE TWO-DIMENSIONAL  §FUNCTION
known albeit insightful results about quantum-mechanical INTERACTION

expectation values. These will help interpret the values taken
by the conformal anomaly within a familiar framework.
Specifically, consider a generatér of a symmetrythat
satisfies the nontrivial conditionA/dt+0. Let us also as- 52
sume that a mechanism is provided for the existence of a S = (2)
. L . V(r)=go'(r)=— —N6“(r). 19
state| W) that yields a nonvanishing expectation value (N=go(n 2M (r) (19

In this section we will consider a two-dimensional
S-function interaction

% 20 (14) In addition to defining the interaction potential, Eq9) in-
atl, ' troduces a dimensionless coupling For the interaction
(19), the conformal anomaly defined in E@L3), with d

For the important cases considered in this paperD or ~ — 2 IS given by the formal expression

A=K, this mechanism happens to be renormalization. Then, d
from general properties of quantum-mechanical states, the - __9 2 @ 2
following statements can be made: dt<D>‘I’ droBnE[W (NI 20

2
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As we will see next, Eq(20) is ill defined and requires an defined problem. Of the many possible real-space regulariza-
appropriate procedure of regularization and renormalizationtjon techniques, here it proves convenient to introduce a
to be performed simultaneously with the determination ofcircular-well potential

states and observables.

The conformal anomaly discussed in this paper is mani- 6(a—r) 12N 6(a—r)
fested by the existence of a nonzero value for the right-hand V(r)~g =
side of Egs. (8), (11)—(13), and (20). For the two-
dimensional delta-function interaction, a naive argument . . .
would suggest that this time derivative in EQO) is indeed In which 6(¢) stands for the Heaviside function.

identically equal to zero, becaust’)(r) selects a zero value Dug to the central' nature of E.(QA')’ the results summa-
in r-V. However, this line of reasoning assumes that théIzed in the Appendix can be directly applied. The corre-

state§ W) have a regular behavior at the origin—a condition sponding Schriinger equation for the reduced radial wave

that is explicitly violated upon renormalization in the pres- functionu(r) is given by
ence of the interactiofiL9). More precisely, even though the

, (24)
ma? 2M a2

regularizedwave functions satisfy the regular boundary con- dz 2™ o(a—r)| 12—1/4 0
ditions (A9) and(A10), therenormalizedwave functions ac- ?Jr K2 + a2 | r2 u(r)=0,
quire a logarithmic singularity at the origin. For example, the (25)

Hilbert subspace of normalized bound states of the two-
dimensional §-function interaction reduces to the one- ;

; ; _ in which | =|m|, wheremis the usual quantum number. The
dimensional space spanned by the renormalized ground stal8 ,nd-state solutionB<0) to Eq. (25) can be written in

[4.7.8,23 terms of Bessel functiong4],
K ~ ~
q’(gs)(r):\/_; Ko(xr), (21) u(ry [ ikn), NiGkn} o for r<a,
R|(r)ET= {li(xr), K|(kr)} for r>a, (26
where
52,2 where the curly bracket§,} stand for linear combination,
E(gs=— TR, (220  while
while the running coupling constagt asymptotically van- T(Z—ﬂ Et L 27)
ishes. Specifically, the behavior of the wave functi@i) Cp2 a2
near the origin is dictated Hy24]
(z—0) 7 and
Ko(z) = — |n(§ +y|[14+0(z%)], (23
2M
. k?=—— E. (28)
wherey stands for the Euler-Mascheroni constant. Thus, the h2

integral in Eq.(20) fails to vanish identically and confirms

Quence, £0(20) sl defined at he fevelof the renormalized e [e9uIar boundary conditons at the origsee the Ap-
d = endi¥ and at infinity lead to the selection df(kr) and

quantities, but can be evaluated by going back to the regu; hile th tinuity of the | thmic derivati ¢
larized theory and taking the appropriate limit of its regular- 1(xT), while the continuity of the logarthmic derivative a
r=a provides the eigenvalue equation

ized counterpart.

In what follows we will regularize Eq(20) using three _
distinct technigues—and each one involves defining the ~ J/(ka) K| (ka)
regulz_arized potential, as well as the corres.pon_ding running J,(ka) K K,(ka) '
coupling constant\: (i) real-space regularization with a !
circular-well potential;(ii) real-space regularization with a ) ) o
radial 5-function potential; andiii) dimensional regulariza- " Which the primes denote derivatives. o
tion. As we will see, subtle cancellations within each one of € neéxtstep is the renormalization of the system. This is

the regularization methods combine to reproduce the sam@'Plemented by finding the behavior of the running coupling
final answer(18). constant from the consistency requirement that the eigen-

value equatior{29) admit afinite ground-state energy, when
a—0. As the analysis in Ref8] shows, this system can only
sustain a bound state in tisechannel; this fact is confirmed

Real-space regularization provides a scheme whereby thgy Eq. (29), which admits a nontrivial solution in the limit
short-distance physics is appropriately modified faea  a—0 only forl =0. Correspondingly, the ground-state wave
(wherea is a real-space regulajorso as to yield a well- function becomes

(29

A. Real-space regularization with a circular-well potential

045018-4
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BJo(kr) forr<a, and
(e =1 AKy(xr) forr>a, (30 - (% 1. ~
7B [faz1aa =5 F+o@), (@
where the ratio betweef andB can be determined from the
additional continuity condition with
BJy(ka)=AKq(xa). (32 ‘t=ka. (38)
For that particular channel €£0), Eqgs.(27) and(29), com-  Thus, Eq.(35) implies that
bined with the small-argument behavior of Bessel functions
[in particular, Eq.(23)], provide the desired running of the (a—0) 4
coupling constant A = —{1+0(kaln[«a])}. (39
N
(a-0) -
Na) = — [in(xal2)+ 7] {1+0([In(ka)]~1)}. Now we proceed to calculate the conformal anomaly via

the regularized version of EqL3). For the two-dimensional
é-function interaction, this is accomplished by using the
. , . regularized potentia(24), in conjunction with the regular-
meE\(/]ér(iilzb)léhe hierarchy of correction terms with respect to ized wave function, Eqs(30), (34), and (39), and running

coupling (32). Then,

(32

é=«ka (33 q

1
—(D)y =~ —f d?rV(r)&| W g(1)|?
yields the three categori@([In £]1,%n &,&9), including the dt (@ 2 T
corresponding higher orders; of these terms, the first is the

dominant one. The order notation is used in E8R) and h? 2\B? (%

thereafter, in order to keep track of all corrections with re- =M _EZ fo dzz3(2)EJ0(2)

spect to small arguments and regularizing parameters. This

procedure is suggested by the ill-defined nature of the formal (@-0)

expressior(_ZO), which calls for a redefin.ition of each fe}ctor _ E(gs){lJro([m(Ka)]fl)},

before the limita— 0 is taken. However, it should be pointed (40)

out that the corresponding series are typically going to be

convergent rather than simply asymptotic, despite our referas follows from Eqs(22) and(27), as well as from the small-

ence to asymptotic approximations. argument behavior ofly(z); in Eq. (40), &, is the one-
For the computation of the anomal3), the values of the  dimensional(radial) generalization of Eq(10). Finally, tak-

(a—0)
B = —A |n(K_a +y| {1+0([In(xa)]™H}. (39 B. Real-space regulqrizatioq with a radial &-function
2 interaction

Secondly, their specific asymptotic values can be explicitlyvi dﬁg Sltearnrgt(;\i/aelét?jrl{;?g:?n{:?;gzgﬁaﬂon technique is pro-
obtained from the normalization condition y

s(r—a) A% . S(r-a)

V(r)~ =— 41
1:fd2r |\P(gs)(r)|2 (r) g 2ma a 2M 2ma (41)
<\ 2/B\2 In addition to defining the regularized potential, E¢1)
=A27k "% K(ka)+| = (—) j(~ka)] introduces two auxiliary quantitiegi) an arbitrary propor-
k/ \A tionality factora associated with a possible ambiguity in the
definition of the radialé function [25]; (ii) a reduced cou-
(a—0) . o .
= mi2AY{1+O(kaln[ xa])} (35 pling A=A/ «. As it is to be expected, the anomdB0), to

be computed later in this section, will be independent of the
undetermined “ambiguity factora.

Due to the central nature of E(t1), the formalism of the
Appendix can be directly applied again. The corresponding
K(&)= dezz[Ko(z)]2=%+O(§ln £) (36) Schr'tnjinger equation for the reduced radial wave function

¢ u,(r) is now given by

where

045018-5
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d2 2ME N 12-1/4 The running of the coupling constant is obtained by re-
—+—t 2—5(r—a)— u(r)=0. (420  placing the small-argument behavior of Bessel functigns
dr f ma particular, Eq.(23)] in Eq. (45). Then,

The bound-state solutiorE0) to Eq.(42), subject to the A(a)(@—0
regular boundary conditions at the origisee the Appendjx A (a)= =

- [|n(Ka/Z)+ i1+ O(lxalinfxa])},

and at infinity, is given by “« (51)
u(r) Bili(xr) for r<a, where the correction terms with respect to the variable
Ri(r)= _\/— =1 AK,(«kr) for r>a, (43 = «a appear in the two categori€(£2In &,£9), including the

corresponding higher orders; of these terms, the first is the
dominant one.

Finally, the conformal anomaly can be computed by re-
placing the regularized potentiéd1), the regularized wave
function[Egs.(39), (46), and(48)], and the running coupling

N (51) in Eq. (13). This computation yields
=~ 55 u@. (44 q 1
a<D>\I'(gS):_§ f dzrv(r)gr|q,(gs)(r)|2

wherex is defined just as in Sec. Il A, E¢298).
The eigenvalue equation follows from the condition de-
fining the 5-function discontinuity at =a,

dU|
dr

dU|
S dr

r=at

Therefore, with the functions defined in E4.3), the eigen-
value equation takes the explicit form

ﬁz X 4] 2
A :Wijo dré(r—a)& | W ge(r)|°.

N
<[AK| (ka)=Bl[ (ka)]=—5—AK(ka), (49 (52

2

where the primes denote derivatives. A detailed analysis ofS the wave function(46) has a discontinuous derivative
Eq. (45 shows, as in Sec. Il A, that a nontrivial solution throughr =a, the integral in Eq(52) is conveniently com-

g . . i puted by dividing the interval0,°) into the subintervals
exists only forl =0. Correspondingly, the ground-state Wave|<:[0’a] andl_=[a,=). Then,

function becomes

Blg(kr) forr<a, dE<D>‘I' = A3 4> (53
= (99) ’
Wigs(N =1 AKo(kr) for r>a, (46) t 9
where

whereA=A, andB=B,,. In addition,A andB can be deter-

mined from the continuity condition B LY .
AV = ﬂ dré(r—a)& | w2
|.

(9s)
Blo(ka)=AKq(xa), (47)
, A2\ _
which reduces to :W—R(J)(a)grR(l)(a), (54)
(a—0) ka
B = In( > +y{1+0([«xa]?)}. (48) with j=< when r<a and j=> when r>a, while

W {(r)=RU(r) is given in Eq.(46). From Eqgs.(39) and
(46), as well as the small-argument behavior of Bessel func-

Moreover, the normalization condition gives . U
tions, the exterior integral becomes

12] d2r|q,(gs)(r)|2 h? AA2 (@=0)
A= - EKo(DKo(€) = Eqgof 1+0(£2n &)}
2
— A2 k2 [ K(ka)+| ~ I(Ka)] (49) (59
[where ¢ is defined in Eq(33)], while the interior integral
whereK(€) is defined in Eq(36), while takes the form
¢ 1 52 \B2 (a—0)
I(§)=fodzz{lo(Z)]2=§§z[1+O(§2)]- (50) A<<)———§|0(§)IO(§) = E(gXO(&4n §);
(56)

Thus, Egs.(36), (49), and (50) lead again to an expression
identical to Eq.(39). as a result,

045018-6
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d (a—0) ) In Eqg. (60) the normalization constai(e) in d=2(v+1)
Gi{Plvy = EwelltO([xalin[«xal);.  (57)  —2—¢ dimensions was obtained fronf5dzZK,(2)]?
=I'(1+p) I'(1—p)/2, and its asymptotic value is

Therefore, when the limia—0 is enforced, the conformal

anomaly(40) again agrees with the predicted value, E). (-0

Ale) = —[1+0(e)]. (62)

Jar

In dimensional regularizatiof26] the modification of the The fact that Eq(60) is the only bound state is a require-

short-distance physics is nontrivially accounted for by a di_ment of the eigenvalue equation, which follows by asking
. N . that the 5-function singularity at the origin be enforcéd].
mensional generalization of the theory—the relevant phyS|c§hhis rocedure implies the condition
is analytically continued from a given physical dimensional- P P
ity dy to d=dy— €, with e=0". For singular interactions, 2
this procedure is implemented by properly extending the po- A F(E) -1 (63)
tential fromd, to d dimensions. Even though this generali- 4 2 ’
zation is somewhat arbitrary, in this paper we follow the
convenient prescription provided in Refs,8,21,22. Ac-  which displays a simple pole at=0, making the theory
cordingly, singular for the two-dimensional unregularized case. How-
52 ever, fore=0", Eq.(63) permits the existence of the bound
sy Ty e q(d) state(60).
V(N =gu®o(r) 2M ST, 8 Renormalization is implemented by introducing the run-
ning coupling[7,8,22, which is determined in the limit
where the physical dimensions of the original theory are pre—0 from Eq.(63), i.e.,
served by changing the dimensions of the coupling according

C. Dimensional regularization

<[2M |E|
32 4w

to g—g u¢ [7]. O S na
The interactior(58) can be regarded as effectively central, Me) = 2me) 1+ 5[9 —(In4m—y)]+o(e),
so that the results of the Appendix can be applied. The cor- (64)

responding Schidinger equation for the reduced radial wave
functionu(r), in d=2v+2=2- e dimensions, is given by where y is the Euler-Mascheroni constant agé” is an
arbitrary finite part. In particular, from Eq64), the ground-
d2 2ME (I+v)2—1/4 state energy becomes
— - uy(r)=0, (59
dr?2  #? r2 !

ﬁZ 2
Eo__n#
(9s) 2M

ee”. (65)

for r #0. Equation(59) is formally identical to that of a free

particle, k.)l.Jt itis to be supplemented_ by the stringent bound- Finally, the conformal anomaly can be computed by re-

22,9510”(1'“0” enforced by thé-function singularity at the placing the regularized potentié8) and the running cou-
The bound-state solutionEK0) to Eq. (59) is a linear pling (64) in Eq. (13). Then,

combination of the Bessel functiohs, ,(«r) andK,, ,(«r). 2

As usual, the boundary condition at infinity leads to the re-—— (D) =[— soN(e) €

jection of I, ,(r). As for the modified Bessel function 9¢ () 2M

K., («r), its small-argument behavior fd= 0 leads to a 1

singular term proportional to~(**). Thus, the boundary —Ef ddrﬁ(d)(r)5r|\lf(gs)(r)|2]

condition at the origin caonly be satisfied fot=0, a result

that agrees with the conclusions drawn from real-space regu- (-0 72

larization techniques. As a consequence, the regularized ra- _ [_ o

dial wave function is of the formR(r)ocr =" K, («r), and the 2M

corresponding normalized ground-state wave function be-

€
[ 2 5(d)(r)>“’(gs>

me{ €|V (45(0)]?

comes _[5r|lp(gs)(r)|2]r:O}[1+O(E)]
14 (-0 2
€ = E F.0
W gef(1) = = e PRl = A7), wsile FO)]
(9s) 12
Vi [[(1+€/2)] —2€eF (0)lim&F (2)[1+0(e)], (66)
(60) z—0
with where Eqs(22) and(60) were applied in the final line, while
&, is the one-dimensiondtadial) generalization of Eq(10).
F(2)=z2K_ (2). (61)  The operations to be performed in E§6) at the level of the
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regularized wave functio(61) can be simplified with the use in which ¢(r)=exp(qg-r). This function¢,(r) can be in-
of Bessel-function identities. First, the small-argument ex-terpreted as the incident plane wave for a scattering experi-
pansion ment in which

(z—0)

Ky(2) = > [Np)(;

—g+r(_ E p ) 2M
P)\3) | [1+0O)). Uo(1)= o)+ ﬁf A G —r V() (1)
(67) (71)

leads toF (0)=1/e, with corrections of ordeO(e). Sec-

ondly, either from Eq(67) again or from the identity is the stationary-state interacting wave function for energy

E=E,=f?9?2M and q=|q|, while G\ (R;q)=
14 —i (q/2wR)¥2~*H{)_, (qR)/4 stands for the corresponding
- —[z27PKy(2)]=~— 7z (p+1) Kp+1(2), (69) causal Green’s function.
zdz In this section we assume that the applicability conditions
and approximations of Ref27] are satisfied for the treat-
one concludes thatF (£) = — £, with corrections of orders  ment with wave packets. In this context, the present deriva-

O(e,£%). Therefore, the final result is tion is at least sufficient to prove our claim of the existence
of anomalous terms in well-defined expectation values.
(e=0) _ . Then, starting with the initial conditiov0), the time evolu-
Gi{Plvy = Eeill+0(e)]+2 r'T(‘)(Kr) [1+0(e)]}  tion of the statdW(t)) is asymptotically described by
A - | T @, (72
= Egs [1+0(e)]. (69 )= (2m)¢ x(q) ¢y )

Remarkably, the limite— 0 should be taken only as the last wherew,=E,/%. In general, using a resolution of the form

step, as required by the dimensional-regularization prescrip .
tion. When this procedure is properly applied, the conforma(n) between states ,(1)) and|W(t)), the expression for

anomaly(69) again agrees with the value anticipated in Eq. he transition matrix elements of an operafobecomes

(18).
ddq// ddqr .
(W (1) A|W,(1) = J - f —— X (@)
IV. SCATTERING SECTOR FOR A TWO-DIMENSIONAL (2m) (2m)
&FUNCTION INTERACTION ile—
X x2(q") e t@a )t (g | Al ihgr).
In Sec. Il we focused our analysis on the emergence of (73

extra terms for relevant bound-state expectation values.
However, a complete characterization of the interaction rej
quires the complementary analysis in the scattering sector Q
the theory. For the two-dimension@tunction interaction,
the compatibility of the renormalization in both sectors is J g
well known; e.g., as discussed in Refd4,7,8,23. In this i D _f d“q” dvg’
section we now complete our analysis by using these com-gt (DI = (2md) (2m)
patibility requirements and consequently display the emer-
gence of an anomalous commutator algebra for scattering. R Ty

Our goal is to make use of expectation values and thereby Xx(Q") e e g
construct nonvanishing symmetry-breaking terms. Unfortu-
nately, this construction proves to be considerably more dif-
ficult than for bound states because of the nonexistence of _ ) -
scattering states that are simultaneously normalized and st@l expression which can be evaluated for a specific two-
tionary. The proper formalism to display the anomalousdimensional potentia¥/(r) from Eq.(12), whence
terms is then provided by time-dependent collision theory
[27]. In addition, we conveniently switch to the Sctimger [D,H]extra
picture as the natural way to study the time evolution of\ *'1
these wave packets.

Let ¥(r,t) be a wave packet of positive energy evolving

E particular, for the expectation value of the dilation opera-
r!

x*(a")

[DvH]extra
ih

'T//q'>1

(74)

1 2 *
v2) =5 | OV V)

in d dimensions from an initial state =— %f d2rV(N)EL s (r)(r)].
7
¥10- [ L@ 70 "~
r,0)= r),
(27r)dX VP Therefore, for the two-dimensionatfunction interaction,
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g ., . terms in the commutators of the §01) generators arise
< b lﬂq/> =- E{l//q"(o)[gr ar(1)]i=o from the dimensionally-transmuted scale of the renormalized
theory. The implication of the existence of these nonvanish-
+[gr¢;”(r)]r:0¢q,(o)} ing terms at the level of nonconserved symmetry charges
was explored and general properties of quantum-mechanical
52 averages were used to shed light on the physical meaning of
- W) 44q9"q’ our results.
A similar but considerably subtler analysis can be applied
X %, (@), (Q?), (76) to the inverse square potential in any number of dimensions;
a d the details of this procedure will be discussed elsewhere.
where Incidentally, an alternative technique that has been widely
used to deal with singular potentials is the method of self-
f =f (Q(Z))z 2_77
9= 'q \V q

E ]t adjoint extension$4]. It would be interesting to investigate
In =i (77
is the isotropic two-dimensional scattering amplit(ig&], in

q . ! : .

[ the same issues using that method and to provide a compari-
(gs) son with our result$28].

which the angular dependen€¥? can be omitted. Finally, ACKNOWLEDGMENTS

from Eqgs.(74) and (76),

[DiH]extra
i
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whence it follows that

2 APPENDIX: CENTRAL POTENTIALS IN d DIMENSIONS

d h
— - 2
at{Pho=" 2y IFDF, (79 In this appendix, we summarize a few basic results for the

d-dimensional radial Schdinger equation. We only state
where those properties that are needed for the applications of the
general theory discussed in this paper. In particular, these
results are essential for the proper use of dimensional regu-
larization, even though the particular problems analyzed
herein are strictly two-dimensional.

Equations(79) and(80) can be verified in the three regu- ~ Conservation ofd-dimensional angular momentum per-
larization schemes introduced earlier and constitute the maimits the separation of the radial coordinat&om the angu-
result of this section. Just as the logarithmic behavior of Eqslar variablesQ(?. Moreover, it leads to an angular depen-
(21) and (23) was the source of the nontrivial anomalous dence proportional to the hyperspherical harmonics
commutator in the bound state sector, the singular behaviof|m(Q@). The associated wave functionW(r)

W0 o =Y, (QD)R(r) includes a radial piec&(r), which de-
Hs(2) = 1+2i[In(Z2)+y]/7 [up to termsO(z°)] in  pends upon the quantum numbeas well as the energg.

Eq. (71) yields the nontrivial expressiofr9). This final re- FurthermoreR(r) satisfies the differential equation
sult admits the following interpretation: a wave packet un-

dergoes a time evolution dictated by the linear superposition [
A@—

dzq —iwqt
X @e Jafq. (80)

]-"(t)=2f

of its initial Fourier components; as the scattering amplitude
depends upon a scalE 4
are no longer conserved.

I(1+d=2) 2M
— Ri(r)=0, (A1)

+?[E—V(r)]

r

, the ensuing symmetry charges

in which the radial Laplacian is given by
V. CONCLUSIONS

_ » @ L 9 4,0
In conclusion, we have explicitly shown the anomalous A =g
. r ar ar
nature of the commutator algebra in conformal quantum me-
chanics for the two-dimensionab-function interaction. 1 22 d—1)(d—3)
These results are supported by detailed computations per- :__[r(dfl)lz]_;_ (A2)
formed with three distinct regularization techniques in both r(d=172 gr2 4r?
the bound-state sector and the scattering sector of the inter-
acting theory. Then, it proves convenient to define the reduced radial wave

The crucial point in this anomalous behavior is that extrafunction
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u(r)=Ry(r)r@-172 (A3)

which satisfies an effective one-dimensional Sdimger
equation

d2 2™ A g
—+t—[E=-V(n]- r_2 u(r)=0,

A4
dr? % (A4)

in which the angular-momentum effective potential has a

coupling constant

A g=1(1+d=2)+(d—1)(d—3)/4= (1 +v)*—1/4,
(A5)

with

v=_-—1

5 (AB)

For the interactions discussed in this paper, &) pro-

PHYSICAL REVIEW D 67, 045018 (2003

Furthermore, Eq(A4) should be supplemented by appro-
priate boundary conditions at the origin and at infinity. First,
asymptotically with respect to—o, the bound-state solu-
tions should have a zero limit in order to satisfy the square-
integrability condition. Likewise, the scattering solutions are
subject to the usual requirement that the wave function as-
ymptotically reproduce the incident wave plus an outgoing
scattered stat/]. On the other hand, the boundary condition
atr=0 is much subtler and requires additional study.

It turns out that the boundary condition at the origin is the

key factor that determines the nature of the singularity at the
origin. As such, it is used to establish the classification of
potentials into the regular and singular families. In this

framework, both the regular and the regularized singular in-
teractions are subject to the limiting condition

r—0

r2v(r) — 0. (A8)

In particular, asymptotically with respect te-0, the wave
function is reduced to the solution of the radial part of

vides a direct transition to a differential equation of the form Lap|ace’s equation_ As a Consequence, the regu'ar boundary

d2

dr2

u(r)=0, (A7)

+(k2_ p2—1/4)
r2

whose solutioru(r)=\r Z(kr) is given in terms of Bessel
functionsZ,(kr) of orderp.

condition becomes
Ri(r)ecr!, (A9)
which is usually restated in terms of the weaker condition

u;(0)=0. (A10)
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