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ARTICLE

ACCOUNTABLE ALGORITHMS

JOSHUA A. KROLL, JOANNA HUEY, SOLON BAROCAS, EDWARD W.
FELTEN, JOEL R. REIDENBERG, DAVID G. ROBINSON

& HARLAN YUt

Many important decisions historically made by people are now made by
computers. Algorithms count votes, approve loan and credit card applications, target
citizens or neighborhoods for police scrutiny, select taxpayers for IRS audit, grant or
deny immigration visas, and more.

The accountability mechanisms and legal standards that govern such decision
processes have not kept pace with technology. The tools currently available to
policymakers, legislators, and courts were developed to oversee human decisionmakers
and often fail when applied to computers instead. For example, how do you judge the
intent of a piece of software? Because automated decision systems can return potentially
incorrect, unjustified, or unfair results, additional approaches are needed to make
such systems accountable and governable. This Article reveals a new technological
toolkit to verify that automated decisions comply with key standards of legalfairness.

We challenge the dominant position in the legal literature that transparency will
solve these problems. Disclosure of source code is often neither necessary (because of
alternative techniques from computer science) nor sufficient (because of the issues
analyzing code) to demonstrate the fairness of a process. Furthermore, transparency
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may be undesirable, such as when it discloses private information or permits tax
cheats or terrorists to game the systems determining audits or security screening.

The central issue is how to assure the interests of citizens, and society as a whole,
in making these processes more accountable. This Article argues that technology is
creating new opportunities-subtler and more flexible than total transparency-to
design decisionmaking algorithms so that they better align with legal and policy
objectives. Doing so will improve not only the current governance of automated
decisions, but also-in certain cases-the governance of decisionmaking in general.
The implicit (or explicit) biases of human decisionmakers can be difficult to find and
root out, but we can peer into the "brain" of an algorithm: computational processes
and purpose specifications can be declared prior to use and verified afterward.

The technological tools introduced in this Article apply widely. They can be used
in designing decisionmaking processes from both the private and public sectors, and
they can be tailored to verify different characteristics as desired by decisionmakers,
regulators, or the public. By forcing a more careful consideration of the effects of
decision rules, they also engender policy discussions and closer looks at legal standards.
As such, these tools have far-reaching implications throughout law and society.

Part I of this Article provides an accessible and concise introduction to

foundational computer science techniques that can be used to verify and demonstrate
compliance with key standards of legal fairness for automated decisions without
revealing key attributes of the decisions or the processes by which the decisions were
reached. Part H1 then describes how these techniques can assure that decisions are
made with the key governance attribute of procedural regularity, meaning that
decisions are made under an announced set of rules consistently applied in each case.
We demonstrate how this approach could be used to redesign and resolve issues with
the State Department's diversity visa lottery. In Part I, we go further and explore
how other computational techniques can assure that automated decisions preserve
fidelity to substantive legal and policy choices. We show how these tools may be used
to assure that certain kinds of unjust discrimination are avoided and that automated
decision processes behave in ways that comport with the social or legal standards that
govern the decision. We also show how automated decisionmaking may even
complicate existing doctrines of disparate treatment and disparate impact, and we
discuss some recent computer science work on detecting and removing discrimination
in algorithms, especially in the context of big data and machine learning. And lastly,
in Part IV we propose an agenda to further synergistic collaboration between
computer science, law, and policy to advance the design of automated decision
processes for accountability.

INTRODUCTION .............................................. 636
I. How COMPUTER SCIENTISTS BUILD AND EVALUATE

SOFTWARE .......................................... ...... 642
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INTRODUCTION

Many important decisions that were historically made by people are now
made by computer systems': votes are counted; voter rolls are purged; loan
and credit card applications are approved;2 welfare and financial aid decisions
are made;3 taxpayers are chosen for audits; citizens or neighborhoods are
targeted for police scrutiny;4 air travelers are selected for search;5 and visas
are granted or denied. The efficiency and accuracy of automated decisionmaking
ensures that its domain will continue to expand. Even mundane activities now
involve complex computerized decisions: everything from cars to home
appliances now regularly executes computer code as part of its normal operation.

However, the accountability mechanisms and legal standards that govern
decision processes have not kept pace with technology. The tools currently
available to policymakers, legislators, and courts were developed primarily to
oversee human decisionmakers. Many observers have argued that our current
frameworks are not well-adapted for situations in which a potentially incorrect,6
unjustified,7 or unfair8 outcome emerges from a computer. Citizens, and society
as a whole, have an interest in making these processes more accountable. If
these new inventions are to be made governable, this gap must be bridged.

1 In this Article, we use the term "computer system" where others have used the term

"algorithm." See, e.g., FRANK PASQUALE, THE BLACK Box SOCIETY: THE SECRET ALGORITHMS

THAT CONTROL MONEY AND INFORMATION (2015). This allows us to separate the concept of a

computerized decision from the actual machine that effects it. See infra note 14 for a more detailed

explanation.

2 See, e.g., Calyx - More Than just an LOS, CALYX SOFTWARE (Mar. 2013), http://www.calyx

software.com/company/newsletters/13-o3.html [https://perma.cc/E93L-8UGD] (noting that Calyx

offers clients an automated underwriting system to vet loan applications for approval against

predetermined guidelines).
3 See Virginia Eubanks, Caseworkers v. Computers, POPTECH (Dec. 11, 2013, 3:1o PM), http://

virginiaeubanks.wordpress.com/2013/12/11/caseworkers-vs-computers [https://perma.cc/37VG-GQC6]

(describing and critiquing several states' efforts to automate welfare eligibility determinations).
4 See DAVID ROBINSON, HARLAN YU & AARON RIEKE, CIVIL RIGHTS, BIG DATA, AND OUR

ALGORITHMIC FUTURE 18-19 (2014), http://bigdata.fairness.io/wp-content/uploads/2014/11/Civil
Rights BigData and Our Algorithmic-Future vt.1.pdf [https://perma.cc/UL3G-3MQ7] (describing

the Chicago Police Department's "'Custom Notification Program,' which sends police (or sometimes

mails letters) to peoples' homes to offer social services and a tailored warning").
5 See Notice of Modified Privacy Act System of Records, 78 Fed. Reg. 55,270, 55,271 (Sept. to,

2013) ("[T]he passenger prescreening computer system will conduct risk-based analysis of passenger

data.... TSA will then review this information using intelligence-driven, risk-based analysis to

determine whether individual passengers will receive expedited, standard, or enhanced screening. . . .").
6 See Danielle Keats Citron, Technological Due Process, 85 WASH. U. L. REV. 1249, 1256 (2008)

(describing systemic errors in the automated eligibility determinations for federal benefits programs).
7 See id. at 1256-57 (noting the "crudeness" of algorithms designed to identify potential

terrorists that yield a high rate of false positives).
8 See Solon Barocas & Andrew D. Selbst, Big Data's Disparate Impact, t04 CALIF. L. REV. 671,

677 (2016) ("[D]ata mining holds the potential to unduly discount members of legally protected

classes and to place them at systematic relative disadvantage.").
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In this Article, we describe how authorities can demonstrate-and how
the public at large and oversight bodies can verify-that automated decisions
comply with key standards of legal fairness. We consider two approaches: ex
ante approaches aiming to establish that the decision process works as expected
(which are commonly studied by technologists and computer scientists), and ex
post approaches once decisions have been made, such as review and oversight
(which are common in existing governance structures). Our proposals aim to
use the tools of the first approach to guarantee that the second approach can
function effectively. Specifically, we describe how technical tools for verifying
the correctness of computer systems can be used to ensure that appropriate
evidence exists for later oversight.

We begin with an accessible and concise introduction to the computer
science concepts on which our argument relies, drawn from the fields of
software verification, testing, and cryptography. Our argument builds on the
fact that technologists can and do verify for themselves that software systems
work in accordance with known designs. No computer system is built and
deployed in the world shrouded in total mystery.9 While we do not advocate
any specific liability regime for the creators of computer systems, we outline
the range of tools that computer scientists and other technologists already
use, and show how those tools can ensure that a system meets specific policy
goals. In particular, while some of these tools provide assurances only to the
system's designer or operator, other established methods could be leveraged to
convince a broader audience, including regulators or even the general public.

The tools available during the design and construction of a computer
system are far more powerful and expressive than those that can be bolted on
to an existing system after one has been built. We argue that, in many
instances, designing a system for accountability can enable stakeholders to
reach accountability goals that could not be achieved by imposing new
transparency requirements on existing system designs.

We show that computer systems can be designed to prove to oversight
authorities and the public that decisions were made under an announced set of
rules consistently applied in each case, a condition we call procedural regularity.
The techniques we describe to ensure procedural regularity can be extended to
demonstrate adherence to certain kinds of substantive policy choices, such as
blindness to a particular attribute (e.g., race in credit underwriting). Procedural
regularity ensures that a decision was made using consistently applied standards

9 Although some machine learning systems produce results that are difficult to predict in advance

and well beyond traditional interpretation, the choice to field such a system instead of one which can

be interpreted and governed is itself a decision about the system's design. While we do not advocate

that any approach should be forbidden for any specific problem, we aim to show that advanced tools

exist that provide the desired functionality while also permitting oversight and review.
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and practices. It does not, however, guarantee that such practices are themselves
good policy. Ensuring that a decision procedure is well justified or relies on
sound reasoning is a separate challenge from achieving procedural regularity.
While procedural regularity is a well-understood and generally desirable
property for automated and nonautomated governance systems alike, it is
merely one principle around which we can investigate a system's fairness.

It is common, for example, to ask whether a computer system avoids
certain kinds of unjust discrimination, even when such systems are blind to
certain attributes (e.g., gender in automated hiring decisions). We later
expand our discussion and show how emerging computational techniques can
assure that automated decisions satisfy other notions of fairness that are not
merely procedural, but actively consider a system's effects. We describe in
particular detail techniques for avoiding discrimination, even in machine
learning systems that derive their decision rules from data rather than from
code written by a programmer. And finally, we propose next steps to further
the emerging and critically important collaboration between computer
scientists and policymakers.

Legal scholars have argued for twenty years that automated processing
requires more transparency,10 but it is far from obvious what form such
transparency should take. Perhaps the most obvious approach is to disclose a
system's source code, but this is at best a partial solution to the problem of
accountability for automated decisions. The source code of computer systems
is illegible to nonexperts. In fact, even experts often struggle to understand
what software code will do, as inspecting source code is a very limited way of
predicting how a computer program will behave.11 Machine learning, one
increasingly popular approach to automated decisionmaking, is particularly
ill-suited to source code analysis because it involves situations where the
decisional rule itself emerges automatically from the specific data under
analysis, sometimes in ways that no human can explain.12 In this case, source
code alone teaches a reviewer very little, since the code only exposes the
machine learning method used and not the data-driven decision rule.

10 See, e.g., Citron, supra note 6, at 1253 (describing automated decisionmaking as "adjudicat[ion]

in secret"); Paul Schwartz, Data Processing and Government Administration: The Failure of the American

Legal Response to the Computer, 43 HASTINGS L.J. 1321, 1323-25 (1992) ("So long as government

bureaucracy relies on the technical treatment of personal information, the law must pay attention to

the structure of data processing . . . .There are three essential elements to this response: structuring

transparent data processing systems; granting limited procedural and substantive rights . . . and

creating independent governmental monitoring of data processing systems." (emphasis omitted)).

11 See infra subsection I.A.t (discussing static analysis).

12 See Stanford Univ., Machine Learning, COURSERA, https://www.coursera.org/learn/

machine-learning/home/info [https://perma.cc/L7KF-CDY4] ("Machine learning is the science of

getting computers to act without being explicitly programmed.").
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Moreover, in many of the instances that people care about, full
transparency will not be possible. The process for deciding which tax returns
to audit, or whom to pull aside for secondary security screening at the airport,
may need to be partly opaque to prevent tax cheats or terrorists from gaming
the system. When the decision being regulated is a commercial one, such as
an offer of credit, transparency may be undesirable because it defeats the
legitimate protection of consumer data, commercial proprietary information,
or trade secrets. Finally, when an explanation of how a rule operates requires
disclosing the data under analysis and those data are private or sensitive (e.g.,
in adjudicating a commercial offer of credit, a lender reviews detailed
financial information about the applicant), disclosure of the data may be
undesirable or even legally barred.

Furthermore, making the rule transparent-whether through source code
disclosure or otherwise-may still fail to resolve the concerns of many
participants. No matter how much transparency surrounds a rule, people can
still wonder whether the disclosed rule was actually used to reach a decision
in their own cases. Particularly where an element of randomness is involved
in the process, a person audited or patted down may wonder: was I really
chosen by the rule, or has some bureaucrat singled me out on a whim? But
full disclosure of how particular decisions were reached is often unattractive
because the decisions themselves often incorporate sensitive health, financial,
or other private information either as input, output, or both (for example, an
individual's tax audit status may be sensitive or protected on its own, but it
may also imply details about that individual's financial data).

Even full disclosure of a decision's provenance to that decision's subject can
be problematic. Most individuals are ill-equipped to review how computerized
decisions are made, even if those decisions are reached transparently. Further,
the purpose of computer-mediated decisionmaking is to bring decisions an
element of scale, where the same rules are ostensibly applied to a large
number of individual cases or are applied extremely quickly. Individuals
auditing their own decisions (or experts assisting them) would be both
inundated with the need to review the rules applied to them and often able
to generalize their conclusions to the results of others, raising the same
disclosure concerns described above. That is, while transparency of a rule
makes reviewing the basis of decisions more possible, it is not a substitute for
individualized review of particular decisions.13

13 Even when experts can pool investigative effort across many decisions, there is no guarantee

that the basis for decisions will be interpretable or that problems of fairness or even overt special

treatment for certain people will be discovered. Further, a regime based on individuals auditing their

own decisions cannot adequately address departures from an established rule, which favor the

individual auditing her own outcome, or properties of the rule, which can only be examined across

individuals (such as nondiscrimination).
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Fortunately, technology is creating new opportunities-more subtle and
flexible than total transparency-to make automated decisionmaking more
accountable to legal and policy objectives. Although the current governance
of automated decisionmaking is underdeveloped, computerized processes can
be designed for governance and accountability. Doing so will improve not only
the current governance of computer systems, but also-in certain cases-the
governance of decisionmaking in general.

This Article argues that in order for a computer system to function in an
accountable way-either while operating an important civic process or merely
engaging in routine commerce-accountability must be part of the system's
design from the start. Designers of such systems, and the nontechnical
stakeholders who often oversee or control system design, must begin with
oversight and accountability in mind. We offer examples of currently available
tools that could aid in that design, as well as suggestions for dealing with the
apparent mismatch between policy ambiguity and technical precision.

In Part I of this Article, we provide an accessible introduction to how
computer scientists build and evaluate computer systems and the software
and algorithms14 that comprise them. In particular, we describe how computer

14 In this Article, we limit our use of the word "algorithm" to its usage in computer science, where

it refers to a well-defined set of steps for accomplishing a certain goal. In other contexts, where other

authors have used the term "algorithm," we describe "automated decision processes" reflecting "decision

policies" implemented by pieces of "software," all comprising "computer systems." Our adoption of the

phrase "computer systems" was suggested by (and originally due to) Helen Nissenbaum, and we are

grateful for the precision it provides. See generally Batya Friedman & Helen Nissenbaum, Bias in

Computer Systems, 14 ACM TRANSACTIONS ON INFO. SYSTEMS 330 (1996).

The term "algorithm" is assigned disparate technical meanings in the literatures of computer

science and other fields. The computer scientist Donald Knuth famously defined algorithms as

separate from mathematical formulae in that (i) they must "always terminate after a finite number

of steps;" (2) "[e]ach step of an algorithm must be precisely defined; the actions to be carried out

must be rigorously and unambiguously specified for each case;" (3) input to the algorithm is

"quantities that are given to it initially before the algorithm begins;" (4) an algorithm's output is

"quantities that have a specified relation to the inputs;" and (5) the operations to be performed in

the algorithm "must all be sufficiently basic that they can in principle be done exactly and in a finite

length of time by someone using pencil and paper." iDONALD E. KNUTH, THE ART OF COMPUTER

PROGRAMMING: FUNDAMENTAL ALGORITHMS 4-6 (1968). Similarly and more simply, a widely used

computer science textbook defines an algorithm as "any well-defined computational procedure that

takes some value, or set of values, as input and produces some value, or set of values, as output." THOMAS

H. CORMEN ET AL., INTRODUCTIONTO ALGORITHMS to (2d ed. 2001).

By contrast, communications scholar Christian Sandvig says that "'algorithm' refers to the

overall process" by which some human actor uses a computer to do something, including decisions

made by humans as to what the computer should do, choices made during implementation, and even

choices about how algorithms are represented and marketed to the public. Christian Sandvig, Seeing

the Sort: he Aesthetic and Industrial Defense of "he Algorithm," MEDIA-N, http://median.newmedia

caucus.org/art-infrastructures-information/seeing-the-sort-the-aesthetic-and-industrial-defense-of-

the-algorithm [https://perma.cc/29E4-S44S]. Sandvig argues that even algorithms as simple as

sorting "have their own public relations" and are inherently human in their decisions. Id.
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scientists evaluate a program to verify that it has desired properties and
discuss the value of randomness in the construction of many computer
systems. We characterize what sorts of properties of a computer system can be
tested and describe one of the fundamental truths of computer science-that
there are some properties of computer systems which cannot be tested
completely. We observe that computer systems fielded in the real world are
(or at least should be) tested regularly during creation, deployment, and
operation, merely to establish that they are actually functional.

Part II examines how to design computer systems for procedural regularity,
a key governance principle enshrined in law and public policy in many
societies. We consider how participants, decision subjects, and observers can be
assured that each individual decision was made according to the same
procedure-for example, how observers can be assured that the decisionmaker
is not choosing outcomes on a whim while merely claiming to follow an
announced rule. We describe why mere disclosure of a piece of source code
can be impractical or insufficient for these ends. Indeed, without full
transparency-including source code, input data, and the full operating
environment of the software-even the disclosure of audit logs showing what
a program did while it was running provides no guarantee that the disclosed
information actually reflects a computer system's behavior.15 In order to move
beyond the need for full transparency, we focus on tools that can communicate
partial information about secret processes, so that accountability and
oversight continue to function even when policy interests, personal privacy,
trade secrets, or other concerns protect a computer system, a piece of
software, its inputs, its outputs, or its environment from disclosure. Putting
it all together, we provide an illustrative example of how to redesign an
existing, legally mandated automated decisionmaking system-the State
Department's Diversity Visa Lottery-so that it is provably accountable.

Another communications scholar, Nicholas Diakopoulos, defines algorithms in the narrow sense

as "a series of steps undertaken in order to solve a particular problem or accomplish a defined

outcome," but also considers them in the broad sense, saying that "algorithms can arguably make

mistakes and operate with biases," which does not make sense for the narrower technical definition.

Nicholas Diakopoulos, Algorithmic Accountability: journalistic Investigation of Computational Power

Structures, 3 DIGITAL JOURNALISM 398, 398, 400 (2015). This confusion is common in much of the

literature on algorithms and accountability, which we describe throughout this Article. To avoid

confusion, this Article adopts the precise definition of the word "algorithm" from computer science

and, following Friedman and Nissenbaum, refers to the broader concept of an automated system

deployed in a social or human context as a "computer system."
15 The environment of a computer system includes anything it might interact with. For

example, an outside observer will need to know what other software was running on a particular

computer to ensure that nothing modified the behavior of the disclosed program. Some programs

also observe (and change their behavior based on) the state of the computer they are running on

(such as which files were or were not present or what other programs were running), the time they

were run, or even the configuration of hardware on the system on which they were run.
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Part III considers the broader question of how to assess a computer
system's compliance with policy principles that go beyond procedural
regularity. These broader properties include determining whether automated
decision systems treat people (including protected groups) in ways that
comport with the social or legal standards that govern the decision being
made.16 This broadening raises the issue of translating a policy principle into
a property of the system. Certain substantive policy choices translate easily:
for example, prespecified rules such as blindness to a sensitive attribute.17
Defining other policy objectives, such as a general notion of nondiscrimination,
however, is a more complicated and fraught affair, particularly when systems
rely on machine learning rather than decision rules explicitly predetermined by
humans. We explore in particular the discriminatory effect that automated
decisionmaking can have, noting real-world examples of newfound risks and
describing some system properties that may align with policy goals. Finally, we
observe how automated decisionmaking may complicate the existing doctrine
of disparate treatment and disparate impact.

Part IV concludes by calling for increased collaboration between computer
scientists and policymakers to develop and apply technical tools for the
governance of computer systems. Given the ever-widening reach of automated
decisions, computer scientists need to understand the policy challenges of
oversight, and policymakers need to understand where new and emerging
software tools can help address those challenges. We offer recommendations
for bridging the gap between technologists' desire for specificity and the
policy process's need for ambiguity. As a first step, we urge policymakers to
recognize that accountability is feasible even when the details of a computer
system are not fully known or must be kept secret. We also argue that the
ambiguities, contradictions, and uncertainties of the policy process need not
discourage computer scientists from engaging constructively in it.

I. How COMPUTER SCIENTISTS BUILD AND EVALUATE SOFTWARE

Fundamentally, computers are general purpose machines that can be
programmed to do any computational task, though they lack the desirable
specificity and limitations of physical devices.18 Engineers often seek strong

16 This type of evaluation depends upon having already verified procedural regularity: if it

cannot be determined that a particular algorithm was used to make a decision, it is fruitless to try

to verify properties of that algorithm.

17 A concrete example would be the requirement that a decision only account for certain

information for certain purposes, as in a system for screening job applicants that is allowed to take

the gender of applicants as input, but only for the purpose of keeping informational statistics and

not for making screening decisions.
18 For example, hydraulically operated control surfaces in a vehicle will telegraph resistance to

the operator when they are close to a dangerous configuration, but the same controls operated by a
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digital evidence that a computer system is working as intended. Such evidence
may be persuasive for the system's creator or operator, for a predesignated
group of receivers such as an oversight authority, or for the public at large. In
many cases, systems are carefully evaluated and tested before they make it to
the real world. Evidence that is convincing to the public and sufficiently
nonsensitive to be disclosed widely is the most effective and desirable for
ensuring accountability.

In this Part, we examine how computer scientists think about software
assurance, how software is built and tested in the software industry, and what
tools are available to get assurances about an individual piece of software or
a large computer system. Thus, this Part provides a brief and accessible map
of key concepts and offers some insight into how computer scientists think
about and approach these challenges.

A. Assessing Computer Systems

In general, a computer program is something that takes a set of inputs and
produces a set of outputs. All too often, programs fail to work as their authors
intended because the programs have bugs or make assumptions about the
input data that are not always true. Programmers often structure or design
programs with an eye toward evaluation and testing in order to avoid or
minimize these pitfalls.19 Many respected and popular approaches to software
engineering are based on the idea that code should be written in ways that
make it easier to analyze.20 For example, the programmer can:

* Organize the code into modules that can be evaluated separately and
then combined.21

* Test these modules for proper functionality both individually and in
groups, possibly even testing the entire computer system end-to-
end. Such testing generally involves writing test cases, or expected
scenarios in which each module will run, and may involve running

computer can omit feedback, allowing the computer to request configurations of actuators that are

beyond their tolerances. This is a problem especially in the design of robotic arms and fly-by-wire

systems for aircraft.

19 See ANDREW HUNT & DAVID THOMAS, THE PRAGMATIC PROGRAMMER: FROM

JOURNEYMANTO MASTER 196 (2000) (describing a "[c]ulture of [t]esting" in which programmers
should plan on testing since a "little forethought can go a long way toward minimizing maintenance

costs and help-desk calls"); see also id. at 41 (advocating for an "orthogonally designed and implemented

system" because it "is easier to test").
20 In particular, Test Driven Development (TDD) is a software engineering methodology

practiced by many major software companies. For a general description of how TDD integrates

automated testing into software design, see KENT BECK, TEST-DRIVEN DEVELOPMENT: BY

EXAMPLE (2003).
21 See HUNT & THOMAS, supra note 19, at 34-43.
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test cases each time the software is changed to avoid introducing new
bugs or taking away functionality unintentionally.22

* Annotate the code with assertions, simple statements about the code
that describe error conditions under which the program should crash
immediately. Assertions are intended to be true if the program is
running as expected. They become false when something is amiss
and cause the program to crash (with an error message) rather than
continuing in an errant state. In this way, assertions are a special kind
of program error-a point at which a piece of software considers its
internal state and its environment, and stops if these do not match
what had been assumed by the program's author.23

* Provide a detailed description specifying the program's behavior
along with a machine-checkable proof that the code satisfies this
specification. This differs from using assertions in that the proof
guarantees ahead of time that the program will work as intended in
all cases (or, equivalently, that an assertion of the facts covered by the
proof will never fail to be true). When feasible, this approach is the
most helpful thing a programmer can do to facilitate testing because
it can provide real proof (rather than just circumstantial evidence or
evidence linked to a particular point in a program's execution, as with
assertions) that the whole program operates as expected.24

These techniques are illustrative examples from a larger toolbox. Testing
and verification of software and the development of tools to facilitate it
comprise a rich and active subfield of computer science research. A thriving

22 See STEVE MCCONNELL, CODE COMPLETE: A PRACTICAL HANDBOOK OF SOFTWARE

CONSTRUCTION 528 (2d ed. 2004) (explaining regression testing after each change in code); see also

id. at 499-533 (discussing testing and test cases).

23 This technique derives from i HERMAN H. GOLDSTINE & JOHN VON NEUMANN,

PLANNING AND CODING OF PROBLEMS FOR AN ELECTRONIC COMPUTING INSTRUMENT

(1947), but it is now a widely used technique. For a historical perspective, see Lori A. Clarke &

David S. Rosenblum, A Historical Perspective on Runtime Assertion Checking in Software Development,

31 ACM SIGSOFT SOFTWARE ENGINEERING NOTES 25 (2006).
24 A simple example is a technique called model checking, which is usually applied to computer

hardware designs, in which the property desired and the hardware or program are represented as

logical formulae and an automated tool performs an exhaustive search (i.e., tries all possible inputs)

to check whether those formulae are inconsistent. See generally EDMUND M. CLARKE, JR. ET AL.,

MODEL CHECKING (t999). An even simpler example comes from the concept of types in

programming languages, which associate the data values on which the program operates into

descriptive classes and provide rules for how those classes should interact. For example, it should

not be possible to add mathematically a number like "42" to a string of text like "Hello, World!"

Because both kinds of data are represented inside the computer as bits and bytes, without a type

system, the computer would be free to try executing this nonsensical behavior, which might lead to

bugs. Type systems can help programmers avoid mistakes and express extremely complex relationships

among the data processed by the program. For a more thorough explanation of type systems and model

checking, see BENJAMIN C. PIERCE, TYPES AND PROGRAMMING LANGUAGES (2002).
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industry builds tools to assist in the development of software, and there is a
constant debate about the practice of software engineering in the technology
industry more broadly. Below, we give a brief taxonomy of this area, as well
as some examples of tools, expectable results, and limitations of each category.
We conclude this Section by describing why testing code after it has been
written, however extensively, cannot provide true assurance of how the
system works, because any analysis of an existing computer program is
inherently and fundamentally incomplete. This incompleteness implies that
observers can never be certain that a computer system has a desired property
unless that system has been designed to guarantee that property.

When technologists evaluate computer systems, they attempt to establish
invariants, or facts about a program's behavior that are always true regardless
of a program's internal state or the input data the program receives.25

Invariants can cover details as small as the behavior of a single line of code
but can also express complex properties of entire programs, such as which
users have access to which data or under what conditions the program can
crash. By structuring code modules and programs in a way that makes it easy
to establish simple invariants, it is possible to build an entire computer system
for which important desirable invariants can be proved.26 Together, the set of
invariants that a program should have make up its specification.27

25 See HUNT & THOMAS, supra note 19, at 11o; C.A.R. Hoare, An Axiomatic Basis for Computer

Programming, COMM. ACM, Oct. 1969, at 576, 576, 577-80 (providing a foundational examination

of how to prove properties of a program).

26 See Hoare, supra note 25, at 576-80.
27 Specifications can be formal and written in a specification language, in which case they are

rather like computer programs unto themselves. For example, the early models of core internet

technology were written in a language called LOTOS, built for that purpose. See Tommaso

Bolognesi & Ed Brinksma, Introduction to the ISO Specification Language LOTOS, 14 COMPUTER

NETWORKS & ISDN SYSTEMS 25, 25 (1987) ("LOTOS is a specification language that has been

specifically developed for the formal description of the OSI (Open Systems Interconnection)

architecture .... ). Other common specification languages in practical use include Z and UML. It

is even possible to build an executable program by compiling such a specification into a programming

language or directly into machine code, an area of computer science research known as program

synthesis. See Zohar Manna & Richard Waldinger, A Deductive Approach to Program Synthesis, 2 ACM

TRANSACTIONS ON PROGRAMMING LANGUAGES & SYSTEMS 90, 90 (1980) ("Program synthesis

is the systematic derivation of a program from a given specification."). Research has shown that when

the language in which a program or specification is written more closely matches a human-readable

description of the program's design goals, programs are written with fewer bugs. See Michael C.
McFarland et al., The High-Level Synthesis of Digital Systems, 78 PROC. IEEE 301 (1990)

(summarizing early "high-level language" oriented program synthesis); see also MCCONNELL, supra

note 22, at 457 (arguing that reducing the complexity of code so that it is more comprehensible to

humans increases reliability and reduces errors). Specifications can also be informal and take the

form of anything from a mental model of a system in the mind of a programmer to a detailed written

document describing all goals and use cases for a system. The world of industrial software

development is full of paradigms and best practices for producing specifications and building code

that meets them.
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Software code is, ultimately, a rigid and exact description of itself: the
code both describes and causes the computer's behavior when it runs.28 In
contrast, public policies and laws are characteristically imprecise, often
deliberately so. 29 Thus, even when a well-designed piece of software does
assure certain properties, there will always remain some room to debate
whether those assurances match the requirements of public policy. The
methods described in this Article are designed to forward, rather than to
foreclose, debates about what laws mean and how they ought to work. Our
approach aims to empower the policy process by empowering the policymaker's
tools for dealing with ambiguity and lack of precision, namely review and
oversight. We wish to show that software does work as described, allowing a
reviewer to determine precisely which properties of the software created a
particular rule enforced for a particular decision. Further, if a precise
specification of a policy does exist, we wish to show that the software which
claims to implement that policy in fact does so.

The specification of a system is a critical question for assessment, and
system implementers should be prepared to describe the invariants that their
system provides. Verification allows the claims of a system's implementer to
constitute evidence that the software in question in fact satisfies those
claims.30 Without strong evidence of a computer system's correctness, even
the author of that system cannot reliably claim that it will behave according
to a desired policy, and no policymaker or overseer should believe such a
claim. For example, a medical radiation device with a software control module
was approved for use on patients based on the manufacturer's claims, but a
subtle bug in the software allowed it to administer unsafe levels of radiation,
which resulted in six accidents and three deaths.31

Computer scientists evaluate programs using two testing methodologies:
(1) static methods, which look at the code without running the program; and
(2) dynamic methods, which run the program and assess the outputs for

28 See DAVID A. PATTERSON & JOHN L. HENNESSY, COMPUTER ORGANIZATION AND
DESIGN: THE HARDWARE/SOFTWARE INTERFACE 13-16 (5th ed. 2014) (describing the translation

of software code into instructions that can be executed by hardware).

29 See, e.g., Joseph A. Grundfest & A.C. Pritchard, Statutes with Multiple Personality Disorders: he
Value ofAmbiguity in Statutory Design and Interpretation, 54 STAN. L. REV. 627, 628 (2002) (explaining

how legislators often obscure the meaning of a statute to allow for multiple interpretations).
30 See CARLO GHEZZI ET AL., FUNDAMENTALS OF SOFTWARE ENGINEERING 269-73 (2d

ed. 2002).

31 The commission reviewing the accidents determined that overconfidence on the part of

engineers and operators led to both a failure to prevent the problem in the first place and a failure

to recognize it as a problem even after multiple accidents had occurred. For an overview, see NANCY

LEVESON, Medical Devices: he Therac-25, in SAFEWARE: SYSTEM SAFETY AND COMPUTERS app.

(1995), an update of the earlier article, Nancy G. Leveson & Clark S. Turner, An Investigation of the

nerac-25 Accidents, COMPUTER, July 1993, at 18.
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particular inputs or the state of the program as it is running.32 Dynamic
methods can be divided into (a) observational methods in which an analyst can
see how the program runs in the field with its natural inputs; and (b) testing
methods, which are more powerful, where an analyst chooses inputs and
submits them to the program.33

1. Static Analysis: Review from Source Code Alone

Reading source code allows an analyst to learn a great deal about how a
program works, but it has some major limitations. Code can be complicated
or obfuscated, and even expert analysis often misses eventual problems with
the behavior of the program. For example, the Heartbleed security flaw was
a potentially catastrophic vulnerability for most internet users that was caused
by a common programming error-but that error made it through an open
source vetting process and then sat unnoticed for two years, even though
anyone was free to read and analyze the code during that time.34 While there
exist automated tools for discovering bugs in source code, even best-of-breed
commercial solutions designed to discover exactly this class of error did not
find the Heartbleed bug because its structure was subtly different from what
automated tools had been designed to recognize.3s This experience underscores
how difficult it can be to find small and simple mistakes. More complex errors
evade scrutiny even more easily.

Further, static methods, on their own, say nothing about how a program
interacts with its environment.36 A program that examines any sort of
external data, even the time of day, may have different behavior when run in
different contexts. For example, it has long been programming practice to use
the time of day as the starting value for a chaotic function designed to produce
random numbers in programs that do statistical sampling.37 Such programs
naturally choose a different sample of data based on the time of day when

32 See GARY MCGRAw, SOFTWARE SECURITY: BUILDING SECURITY IN 179 (2oo6) ("Static

analysis tools can vet software code, either in source or binary form, in an attempt to identify

common implementation-level bugs such as buffer overflows. Dynamic analysis tools can observe a

system as it executes.").
33 See id. ("Dynamic analysis tools ... can submit malformed, malicious, and random data to a

system's entry points in an attempt to uncover faults-a process commonly referred to as fuzzing.").
34 Edward W. Felten & Joshua A. Kroll, Heartbleed Shows Government Must Lead on Internet

Security, SCI. Aim. (Apr. t6, 2014), http://www.scientificamerican.com/article/heartbleed-shows-

government-must-lead-on-internet-security [https://perma.cc/QLN4 -TUQM].
35 Id.

36 See McGRAw, supra note 32, at 201 (describing software security problems related to

malicious user inputs, register settings, environment variables, file contents, network configuration,

and other outside factors).
37 This practice dates back at least as far as the 1989 standard for the C programming language,

ANSI X3 .i59 -i9 89 .
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they were started, meaning that their output cannot be reproduced unless the
time is explicitly represented as an input to the program.

Depending on the technology used to implement a program, static
analysis might lead to incomplete or incorrect conclusions simply because it
fails to consider the dependencies-that is, the other software that a given
program needs in order to operate correctly.38 For some technologies, the
same line of code can have radically different meanings based on the version
of even a single dependency.39 Because of this, it is necessary for static

analysis to cover a large portion of any system, and to include at least some

dynamic information about how a program will be run.

Within limits, static methods can be very useful in establishing facts about

a program, such as the nature of the data it takes in, the kind of output it can

produce, the general shape of the program, and the technologies involved in

the program's implementation.40 In particular, static analysis can reveal the

kinds of inputs that might cause the program to behave in particular ways.41

Analysts can use this insight to test the program on different types of inputs.

Advanced analysis can, in some cases, determine aspects of a program's

behavior and establish program invariants, or facts about the program's

38 See, e.g., Managing Software Dependencies, GOV.UK SERVICE MANUAL, https://www.gov.uk/

service-manual/technology/managing-software-dependencies [https://perma.cc/3BA8-CXED] ("Most

digital services will rely on some third party code from other software to work properly. This is

called a dependency.").
39 For example, it is common to reuse "library" code, which provides generic functionality and

can be shared across many programs. GHEZZI ET AL., supra note 30. Library functions can be very

different from version to version, meaning that running a program with a different version of the

same library can radically change its behavior. It can even change programs that fail to run at all into

running, working programs. Because Microsoft Windows refers to its system libraries as "Dynamic

Linked Libraries," developers often call this "DLL Hell." Rick Anderson, he End of DLL Hell,
MICROSOFT (Jan. 11, 2000), https://web.archive.org/web/20081022192553/http://msdn.microsoft.com/

en-us/library/ms8nt694.aspx [https://perma.cc/WNQ2-AKW9]. Further, in some programming

languages, such as PHP, the meaning of certain statements is configurable. See he Configuration File,

PHP, http://php.net/manual/en/configuration.file.php) [https://perma.cc/9LFC-62D9] (describing

configuration of PHP).
40 See MCGRAW, supra note 32, at to6, to9 (describing both the benefits and limitations of

static code analysis).
41 In programming languages, the most basic structure for expressing behavior that depends

on a value is a conditional statement, often written as ifX then Yelse Z. A conditional statement will

execute certain code (Y) if the condition (X) is met and different code (Z) if the condition is not

met. Static analysis can reveal where a program has conditional logic, even if it may not always be

able to determine which branch of the conditional logic will actually be executed. For example, static

analysis of conditional logic might show an analyst that a program behaves one way for inputs less

than a threshold and another way otherwise, or that it behaves differently in some particular special

case. Generalizing this analysis can allow analysts to break the inputs of a program into classes and

evaluate how the program behaves on each class. For an overview of logical constructs in computer

programs, see HAROLD ABELSON ET AL., STRUCTURE AND INTERPRETATION OF COMPUTER

PROGRAMS (2d ed. 1996), which describes the elements of programs and how they can be combined

and manipulated, and explains conditional expressions and predicates in section 1.1.6.
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behavior which are true regardless of what input data the program receives.42
Programs that are specially designed to take advantage of more advanced
analysis techniques can enable an analyst to use static methods to prove
formally complex invariants about the program's behavior.43 On the simplest
level, some programming languages are designed to prevent certain classes of
mistakes. For example, some are designed in such a way that it is impossible
to make the mistake that caused the Heartbleed bug.44 These techniques have
also been deployed in the aviation industry, for example, to ensure that the
software that provides guidance functionality on rockets, airplanes, satellites,
and scientific probes does not ever crash, as software failures have caused the
loss of several vehicles in the past.45 More advanced versions of these techniques
may eventually lead to strong invariants being much more commonly and less
expensively used in a wider range of applications.

Transparency advocates often claim that by reviewing a program's disclosed
source code, an analyst will be able to determine how a program behaves.46
Indeed, the very idea that transparency allows outsiders to understand how a
system functions is predicated on the usefulness of static analysis. But this
claim is belied by the extraordinary difficulty of identifying even genuinely
malicious code ("malware"), a task which has spawned a multibillion-dollar

42 See Hoare, supra note 25, at 576-80.

43 See generally Vijay D'Silva et al., A Survey of Automated Techniques for Formal Software

Verification, 27 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN INTEGRATED CIRCUITS &

SYSTEMS 1165, 1165 (2oo8) ("Formal verification tools can provide a guarantee that a design is free

of specific flaws. This paper surveys algorithms that perform automatic static analysis of software to

detect programming errors or prove their absence.").
44 Since Heartbleed was caused by improper access to the program's main memory, see Felten

& Kroll, supra note 34, computer scientists refer to the property that a program has no such improper

access as "memory safety." For a discussion of the formal meaning of software safety, see PIERCE,

supra note 24, at 95-80. For an approachable description of possible memory safety issues in software,

see Erik Poll, Lecture Notes on Language-Based Security ch. 3, https://www.cs.ru.nl/E.Poll/papers/

language based security.pdf [https://perma.cc/YJ23-6PG6]. Several modern programming languages

are memory safe, including some, such as Java, that are widely used in industrial software

development. However, while any system could be written in a memory safe language, developers

often choose memory unsafe languages for performance and other reasons.
45 Both the Ariane 5 and Mars Polar Lander crashed due to software failures. See J.L. LIONS,

CHAIRMAN, ARIANE 501 INQUIRY BD., ARIANE 5: FLIGHT 501 FAILURE (1996); James Gleick, Little

Bug, Big Bang, N.Y. TIMES MAG. (Dec. t, 1996), http://www.nytimes.com/1996/12/o1/magazine/

little-bug-big-bang.html [https://perma.cc/D4JE-V7K2]; see also ARDEN ALBEE ET AL., JPL

SPECIAL REVIEW BD., REPORT ON THE LOSS OF THE MARS POLAR LANDER AND DEEP SPACE

2 MISSIONS (2000), http://spaceflight.nasa.gov/spacenews/releases/2ooo/mpl/mpl report_1.pdf[https:

//perma.cc/RE9Z-PX6L]. Similarly, a software configuration error caused the crash of an Airbus

A4 ooM military transport. Sean Gallagher, Airbus Confirms Software Configuration Error Caused Plane

Crash, ARS TECHNICA (June 1, 2015), http://arstechnica.com/information-technology/2O15/o6/

airbus-confirms-software-configuration-error-caused-plane-crash [https://perma.cc/X9A4 -X9CH].
46 See FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT

CONTROL MONEY AND INFORMATION 40 (2015).
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industry based largely on the careful review of code samples collected across
the internet.47 Of course, under some circumstances, transparency can also
use dynamic methods such as emulating disclosed code on disclosed input
data. We discuss transparency further in Part II.

2. Dynamic Testing: Examining a Program's Actual Behavior

By running a program, dynamic testing can provide insights not available
through static source code review. But again, there are limits. While static
methods may fail to reveal what a program will do, dynamic methods are
limited by the finite number of inputs that can be tested or outputs that can
be observed. This is important because decision policies tend to have many
more possible inputs than a dynamic analysis can observe or test.48 Dynamic
methods, including structured auditing of possible inputs, can explore only a
small subset of those potential inputs.49 Therefore, no amount of dynamic
testing can make an observer certain that he or she knows what the computer
would do in some other situation that has yet to be tested.50

Dynamic testing can be divided into "black-box testing," which considers
only the inputs and outputs of a system or component, and "white-box

47 Malware analysis can also be dynamic. A common approach is to run the code under

examination inside an emulator and then examine whether or not it attempts to modify security-

restricted portions of the system's configuration. For an overview, see Manuel Egele et al., A Survey on

Automated Dynamic Malware-Analysis Techniques and Tools, 44 ACM COMPUTING SURVEYS 6 (2012).
48 Computer scientists call this problem "Combinatorial Explosion." It is a fundamental

problem in computing affecting all but the very simplest programs. Edward Tsang, Combinational

Explosion, U. ESSEX (May 12, 2005), http://cswww.essex.ac.uk/CSP/ComputationalFinanceTeaching/

CombinatorialExplosion.html [https://perma.cc/R7 KE- 4BJD].
49 Even auditing techniques that involve significant automation may not be able to cover the

full range of possible input data if that range cannot be limited in advance to a small enough size to

be searched effectively. For programmers testing their own software, achieving complete coverage

of a program's behavior by testing alone is considered impossible. Indeed, if testing for the correct

behavior of a program were possible at a modest cost, then there would be no bugs in modern

software. For a formal version of this argument, see H.G. Rice, Classes ofRecursively Enumerable Sets

and Their Decision Problems, 74 TRANSACTIONS AM. MATHEMATICAL SOC'Y 358 (1953).
50 Computer security experts often worry about so-called "back doors," which are unnoticed

modifications to software that cause it to behave in unexpected, malicious ways when presented with

certain special inputs known only to an attacker. There are even annual contests in which the organizers
"propose a challenge to coders to solve a simple data processing problem, but with covert malicious

behavior. Examples include miscounting votes, shaving money from financial transactions, or leaking

information to an eavesdropper. The main goal, however, is to write source code that easily passes visual

inspection by other programmers." THE UNDERHANDED C CONTEST, http://www.underhanded-c.

org/_page id 2.html [https://perma.cc/82N4 -FBDP]. Back doors have been discovered sitting

undetected for many years in commercial, security-focused infrastructure products subject to significant

expert review, including the Juniper NetScreen line of devices. See Matthew Green, On the Juniper

Backdoor, FEW THOUGHTS ON CRYPTOGRAPHIC ENGINEERING (Dec. 22, 2015), http://blog.crypto

graphyengineering.com/2015/12/22/on-juniper-backdoor [https://perma.cc/M7S8-SCM4] (describing the

unauthorized code that created a security vulnerability in the Juniper devices).
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testing," in which the structure of the system's internals is used to design test
cases. Intuitively, white-box evaluation is more powerful, since any test that
can be performed in a black-box setting can also be performed in a white-box
setting, but white-box evaluation can suggest more robust test cases by
showing an analyst when multiple tests will yield the same behavior or what
inputs are likely to trigger differences in the output.51 White-box analysis also
helps the developers and operators of a system determine how to monitor its
operation so that deviations from expected behavior (e.g., unforeseen bugs,
security compromise, abuse, and other unexpected behavior) can be detected
and remedied.52

Even structured "audits" of software systems, in which systems are
provided with related inputs and analyzed for differential behavior, cannot
provide complete coverage of a program's behavior for the same reason: this
methodology explains little about what happens to inputs which have not
been tested, even those that differ very slightly.53 Additionally, auditing that

treats a system as a black box tells an analyst very little about why differential
behavior was observed. A computer program could treat two inputs very
differently because it has been explicitly designed to use special case logic for
one or both, because those inputs naturally fall into different decision
categories, or because the decision rule in use is very sensitive to small
changes in its input.

One extremely straightforward and very commonly used form of dynamic
program review comes from the practice of logging, or recording certain
program actions in a file either immediately before or immediately after they
have taken place.54 Analysis of log messages is among the easiest and is
perhaps the most common type of functional review performed on most
software programs. However, analyzing program logs requires that programs
be written to log when they perform events which might be interesting for
analysis (and that they log enough information about those events to actually
perform the analysis in question).55 And because logs are just like other files
on a computer, they can easily be modified and rewritten to contain a
sequence of events that bears no relation to what a system's software actually

51 See McGRAw, supra note 32, at to6, to9 (describing both the benefits and limitations of

static code analysis).
52 See SLAWEK LIGUS, EFFECTIVE MONITORING AND ALERTING 1-2 (2012) (describing how

to perform monitoring effectively, as opposed to verifying a system's behavior through testing alone).
53 See infra note 58 and accompanying text.
54 Logging is now sufficiently common to be a basic feature of most programming languages. For

an overview of early uses, see Ronald E. Rice & Christine L. Borgman, The Use of Computer-Monitored

Data in Information Science and Communication Research, 34 J. Am. SOC'Y INFO. SC. 247 (1983).
55 See, e.g., Bernard J. Jansen, Search Log Analysis: What It Is, What's Been Done, How to Do It, 28

LIBR. & INFO. SC. RES. 407 (2006).
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did. Because of this, audit logs meant to record sensitive actions requiring
reliable review are generally access controlled or sent to special restricted
remote systems dedicated to receiving logging data.56

3. The Fundamental Limit of Testing: Noncomputability

Testing of any kind is, however, a fundamentally limited approach to
determining whether any fact about a computer system is true or untrue.
There are some surprising limitations to the ability to evaluate code statically
or dynamically. Counterintuitively, the power of computers is generally
limited by a concept that computer scientists call noncomputability.57 In short,
certain types of problems cannot be solved by any computer program in any
finite amount of time. There are many examples of noncomputable problems,
but the most famous is Alan Turing's "Halting Problem," which asks whether
a given program will finish running ("halt") and return an answer on a given
input or will run forever on that input. No algorithm can solve this problem
for every program and every input.58 As a corollary, no testing regime can
establish any property for all possible programs, since no regime can even
determine whether all programs will actually terminate.59 A related theorem,
proposed by Rice, strongly limits the theoretical effectiveness of testing,
saying that for any nontrivial property of a program's behavior, no algorithm
can always establish whether a program under analysis has that property.60

Any such algorithm must get some cases wrong even if the algorithm can do
both static and dynamic analyses of the program.61 However, testing can be
very useful in establishing certain specific invariants on restricted classes of
programs, and can be made much more useful when programs are designed

56 A common feature of security breaches of computer systems is that attackers will rewrite

logs to prevent investigation into how the attack was carried out or who did it. See ERIC COLE ET
AL., NETWORK SECURITY BIBLE 198 (2005) (noting that the "early stages of an attack often deal

with deleting and disabling logging"). Modifying logs in this way can even allow attackers to avoid

losing access to a compromised system once the compromise has been detected, since it obscures

what steps must be taken to remediate the intrusion. See generally id. (describing how security breaches

happen, how they are investigated, and how attackers try to cover the traces of their activity).
57 See 2 MICHAEL SIPSER, INTRODUCTION TO THE THEORY OF COMPUTATION 201 (2006)

(noting the existence of "computationally unsolvable problems").
58 See A.M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem, 42

PROC. LONDON MATHEMATICAL SOC'Y 230, 259-63 (1937) (proving that the Hilbert

Entscheidungsproblem has no solution); see also A.M. Turing, On Computable Numbers, with an

Application to the Entscheidungsproblem. A Correction, 43 PROC. LONDON MATHEMATICAL SOC'Y

544, 544-46 (1937) (providing a correction to the original proof).
59 To see why this is so, imagine writing a new program which halts if it decides that the

program it is testing has a certain property, and which runs forever otherwise. For a more detailed

version of this argument, see SIPSER, supra note 57, at 219, 241, 243 (discussing Rice's Theorem).
60 Rice, supra note 49.
61 Id.
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to facilitate the use of testing to establish those invariants. That is, while
testing is not guaranteed to work in general, it can often be useful in specific
cases, especially when those cases have been designed to facilitate testing.

While both static and dynamic methods are after-the-fact assessments, as
they take the computer system and its design as a given, using both approaches
together is often helpful. If an analyst can establish through static methods
that a program behaves identically over some class of inputs,62 the analyst can
test a single input from that class and infer the program behavior for the rest
of the class. However, not every computer program will be able to be fully
analyzed, even with such a combination of methods.

B. The Importance of Randomness

Randomness is essential to the design of many computer systems, so any
approach to accountability must grapple with it.63 However, when
randomness is used, it is easy to lose accountability, since by definition any
outcome which a randomized process could have produced is at least facially
consistent with the design of that process.64 Accountability for randomized

62 This can be done, for example, by noting where in a program's source code it considers input

values and changes its behavior. See infra note 67 and accompanying text.
63 In fact, there is suggestive theoretical evidence that the power of randomness may be

fundamental: there are problems for which the best known randomized algorithm performs much

better than the best known deterministic algorithm. For example, the well-studied "multi-armed

bandit" problem in statistics has seen wide application in the field of machine learning, where

randomized decisionmaking strategies are provably more efficient than nonrandomized ones. See,

e.g.,J.C. Gittins, Bandit Processes and Dynamic Allocation Indices, 4 1J. ROYAL STAT. SoC'Y 148,148 (1979)
(providing a formal mathematical definition of the multi-armed bandit problem); see also RICHARD S.
SUTTON & ANDREW G. BARTO, REINFORCEMENT LEARNING 26 (1998) (providing a general

overview of the usefulness of the multi-armed bandit problem in machine learning applications).

Even outside of machine learning, there are strong indications in computer science theory that

certain problems can be solved efficiently only via randomized techniques. Although it is obvious

that every efficient algorithm also has an efficient randomized version (which is just rewritten to

take some random bits as input and ignore them), it is conjectured but not known that the converse

is not true, namely that every efficient randomized algorithm also has a deterministic version that

solves the same problem with comparable efficiency. For a summary of work in this area, see Leonid

A. Levin, Randomness and Nondeterminism, 1994 PROC. INT'L CONGRESS MATHEMATICIANS 1418.
Many important problems, from finding prime numbers (which is necessary for much modern

cryptography), to estimating the volume of an object (which is useful in computer graphics and

vision algorithms), to most machine learning, had well-understood randomized algorithms that

solved them long before they had efficient deterministic solutions (many still do not have any known

efficient and deterministic algorithms).
64 For example, a winning lottery ticket with the numbers "1 2 3 4 5" is just as likely to be

correct as any other ticket, and yet it seems strikingly unlikely. In a similar way, it will always be

necessary when randomness is involved in a process to ensure that even outcomes that are "correct"

in the sense that the system could have produced them are also correct in the sense that they fulfill
the goals which necessitated randomness in the first place (e.g., in a lottery, that the winning ticket

numbers not be known in advance of their selection and not be influenced by the lottery operators).
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processes must determine why randomness was needed and determine that
the source of that randomness and its incorporation into the process under
scrutiny meets those goals.

The most intuitive benefit of randomness in a decision policy is that it
helps prevent strategic behavior-i.e., "gaming" of a system. When a tax
examiner, for example, uses software to choose who is audited, randomization
makes it impossible for a taxpayer to be sure whether or not he or she will be
audited. Those who are evading taxes, in particular, face an unknown risk of
detection, which can be minimized but not eliminated, and do not know
whether, or when, they should prepare to be audited. Similarly, if additional
security screening is applied at random to those crossing a checkpoint, or if
the procedures at the checkpoint are changed at random on a day-to-day basis,
a smuggler or attacker cannot be as prepared as if the procedures were fully
known in advance.65 Additionally, studies of the performance of human
guards have shown that randomization in procedures reduces boredom,
thereby improving vigilance.66

The card game of poker illustrates a second benefit: randomness can
obscure secret information. A good poker player has secret information-how
good her cards are-that affects how she will bet. By occasionally bluffing, she
randomizes her behavior and makes it more difficult for opponents to infer
the quality of her hand.

In situations where a scarce or limited resource must be apportioned to
equally deserving recipients such that not all qualified applicants can receive
a share, randomness can help by fairly apportioning resources to participants
in a way that cannot be controlled or predicted by those in control of the
resource. For example, the Diversity Visa Lottery, considered in Part II, is a
case where a random lottery allocates a scarce resource-a limited number of
visas to live and work in the United States. Randomness as a source of fairness
requires two attributes: first, the outcome must not be controlled by the
system's operator, or else the randomness serves little purpose when
compared to a model where the system's operator just chooses the winners;
and second, the outcome must not be predictable, or else the operator of such
a system could put its favored winners into certain slots or slip them "winning

65 See, e.g., James Pita et al., Deployed ARMOR Protection: he Application of a Game heoretic
Model for Security at the Los Angeles International Airport, 2oo8 PROC. 7TH INT'L CONF. ON
AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS: INDUSTRY & APPLICATIONS TRACK 125
(describing a software system that uses a game-theoretic randomized model to improve the

efficiency of police and federal air marshal patrols at the Los Angeles International Airport).
66 See, e.g., RICHARD I. THACKRAY ET AL., FAA Civ. AEROMEDICAL INST., PHYSIOLOGICAL,

SUBJECTIVE, AND PERFORMANCE CORRELATES OF REPORTED BOREDOM AND MONOTONY

WHILE PERFORMING A SIMULATED RADAR CONTROL TASK (1975) (discussing the improvement of

performance through increased unpredictability in procedures).
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tickets" prior to the system's operation. Further, it is important that the

random choices made when the system is run be binding upon the system's

operator, so that the system cannot be run many times to control the eventual

output by shopping for a favorable result among many actual runs of the

system. We explore precisely how to address these issues below.

Many machine learning systems use randomization as part of their normal

operation. It turns out that guessing randomly and adjusting the probability

of each class of output often leads to much better performance than trying to

determine the absolute best decision at any point.67

Finally, randomization can give computers more flexibility to perform

well in unexpected environments. Consider how the Roomba robot is

programmed to vacuum rooms.68 If rules of motion were hard-coded in the

software controlling the robot, an unusual furniture configuration might lead

to the Roomba getting stuck in a corner or under a table or repeatedly following

the same path without cleaning the rest of the room. Adding in randomized

motion allows it to escape these patterns and work more effectively without

the need to code in all possible room configurations. By allowing for unknowns,
randomized strategies can avoid worst-case outcomes with high probability,
no matter how unfriendly the environment turns out to be.69

However, poorly designed randomization can lead to unaccountable

automated decisions. If a decision depends on a randomly selected value, then

any outcome consistent with some possible value of the random choice, no

matter how unlikely, must be considered valid. Concretely, if a decision is

67 The use of randomization is found throughout artificial intelligence and machine learning. For

a survey of the field, see STUART RUSSELL & PETER NORVIG, ARTIFICIAL INTELLIGENCE: A

MODERN APPROACH (1995). Some models naturally depend on randomness. See, e.g., KEVIN B. KORB

& ANN E. NICHOLSON, BAYESIAN ARTIFICIAL INTELLIGENCE § 1.1 (2004) (describing a model of

probabilistic reasoning that depends on reckoning with randomness). Other methods simply use

randomness as an efficient way to explore a large space of possible strategies, in which case it is generally

necessary to try to build a model many times, evaluate the differences, and report back an estimate of

confidence in the system's correct construction. See Volodya Vovk et al., Machine-Learning Applications

of Algorithmic Randomness, 1999 PROC. 16TH INT'L CONF. ON MACHINE LEARNING 444 (describing

one approach to integrating randomness to improve a machine learning model).
68 For a description of the Roomba's movement algorithm, see Ja-Young Sung et al., "My Roomba

Is Rambo": Intimate Home Appliances, 2007 PROC. 9TH INT'L CONF. ON UBIQUITOUS

COMPUTING 145, 152, which refers to "the randomness of Roomba's movement-generated by an

algorithm designed to promote Roomba's passage across all sections of the space being cleaned."
69 More concretely, one study showed that computer-generated teaching plans customized to

particular students can be less effective than lesson plans without customization if the software

model used to tailor lessons to individual performance is trained on large groups that do not capture

individual-specific patterns. This failure of "big data" methods trained on large groups of students

to properly capture the quirks of a "small data" situation (such as a classroom-sized group of

students) can be avoided by adding random deviations from the model's prediction and tracking the

results of these deviations. See, e.g., Yun-En Liu et al., Trading Off Scientific Knowledge and User

Learning with Multi-Armed Bandits, 2014 PROC. 7TH INT'L CONF. ON EDUC. DATA MINING 16t
(observing the introduction of small changes on result prediction).
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based on the outcome of a coin flip, even if the coin is biased to land heads
up 99 times out of loo, a result based on a tails up flip cannot be shown to be
improper, since one out of every oo results will be derived from the value of
tails. A corrupt decisionmaker could influence this supposedly random choice,
picking the value of the coin consistent with its preferred outcome, or could
flip many coins and then assign the value of each flip to the set of decisions
he has to make (perhaps by changing the order in which he considers
decisions) in such a way as to pick the outcomes he desires. Random choices
generated by a computer system can also be remade by re-running a program
until the outputs match a preferred outcome. Without designing the computer
system to demonstrate that this is not happening, it is very hard for a
decisionmaker to prove that he has not done this. The speed of automated
decisionmaking only increases this risk; while physical randomization of balls
in a tumbler can only produce a small number of values per hour of effort, a
computer can try thousands or millions of outcomes in a matter of minutes.

Additionally, a randomized process is not easily reproduced. For example, if
it depends on interaction with its environment (e.g., the operating system on
which it is running, its human user, or a database with rapidly changing records),
its behavior may be altered in a nondeterministic way since that environment
can change between runs.70 One unwieldy solution to this problem is to capture
all of the environment in which a program runs, so that this environment can be
replayed by an analyst. However, this solution does not address how to verify all
of the reasons that randomness might be needed in a process.

II. DESIGNING COMPUTER SYSTEMS FOR PROCEDURAL REGULARITY

The first goal in any plan to govern automated decisionmaking should be
to enable the people overseeing the process-whether they are government
officials, corporate executives, or members of the public-to know how a
computer system makes decisions (or, at the very least, that it makes decisions
based on some rule, even if that rule is not fully disclosed). A baseline
requirement in most contexts is procedural regularity: each participant will
know that the same procedure was applied to her and that the procedure was
not designed in a way that disadvantages her specifically.71 This baseline

70 One specific example is a program that chooses a random value based on the time that it has

been running but takes different amounts of time to run based on what other programs are running

on the same physical computer system.
71 For example, a tax auditing risk assessment should not single out individuals either by name

or by identifying characteristics. If a process added extra weight to filers of a particular postal code,

gender, and birth month, this could be enough to single out individuals in many cases. See, e.g., Paul

Ohm, Broken Promises of Privacy: Responding to the Surprising Failure of Anonymization, 57 UCLA L.

REV. 1701, 1716-27 (2010) (showing that an individual's identity may be reverse-engineered from a

small number of data points).
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requirement draws on the Fourteenth Amendment principle of procedural
due process. Ever since a seminal nineteenth century case, the Supreme
Court has articulated that procedural fairness or due process requires rules to
be generally applicable and not designed for individual cases.72 Similarly,
federal statutes articulate the requirement for procedural regularity in
administrative agency actions.73 These principles are also enshrined in the
Federal Rules of Civil Procedure for civil litigation.74

In this Part, we will demonstrate that the tools of computer science can
guarantee important elements of procedural regularity when they are
incorporated in the initial design of computer systems. Specifically, these
tools can assure that:

* The same policy or rule was used to render each decision.
* The decision policy was fully specified (and this choice of policy was

recorded reliably) before the particular decision subjects were
known, reducing the ability to design the process to disadvantage a
particular individual.

* Each decision is reproducible from the specified decision policy and
the inputs for that decision.

* If a decision requires any randomly chosen inputs, those inputs are
beyond the control of any interested party.

After describing these properties and showing how they can be
implemented, we will apply them to a case study-the Diversity Visa Lottery
at the State Department-where application of these tools could greatly
improve the legitimacy and fairness of an automated decision procedure.

A. Transparency and Its Limits

A naive solution to the problem of verifying procedural regularity is to
demand transparency of the source code as well as inputs and outputs for the
relevant decisions; if all of these elements are public, it seems easy to
determine whether procedural regularity was satisfied. Indeed, full or partial
transparency can be a helpful tool for governance in many cases,75 and
transparency has often been suggested as a remedy to accountability issues

72 See Marchant v. Pa. R.R., 153 U.S. 380, 386 (1894) (holding that the plaintiff had due process
because "her rights were measured, not by laws made to affect her individually, but by general

provisions of law applicable to all those in like condition").
73 See Administrative Procedure Act, 5 U.S.C. §§ 55I-59 (2012) (prescribing exhaustive

procedural requirements for most levels of federal administrative agency action).
74 See FED. R. Civ. P. i (noting that the rules apply "in all civil actions and proceedings ... to

secure the just ... determination of every action and proceeding" (emphasis added)).
75 See Danielle Keats Citron & Frank Pasquale, The Scored Society: Due Process for Automated

Predictions, 89 WASH. L. REV. 1, 8 (2014) (arguing that "transparency of scoring systems is essential").
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for computerized systems.76 However, transparency alone is not sufficient to
provide accountability in all cases.

First and foremost, it is often necessary to keep secret the elements of a
decision policy, the computer systems that implement it, key inputs, or the
outcome. Keeping aspects of a decision policy secret can help prevent
strategic "gaming" of a system. For example, the IRS may look for signs in
tax returns that are highly correlated with tax evasion based on returns
previously audited.77 But if the public knows exactly which things on a tax
return are treated as telltale signs of fraud, tax cheats may adjust their
behavior and the signs may lose their predictive value for the agency.
Moreover, when the decision being regulated is a commercial one, such as a
decision to offer credit, a business's legitimate interest in protecting proprietary
information or guarding trade secrets like the underwriting formula may be
incompatible with full transparency. And in many contexts, an automated
decision may use as inputs, or will create as an output, sensitive or private
data that should not be broadly shared to protect business interests, privacy,
or the integrity of law enforcement or investigative methods. In some cases,
especially with financial or medical data, disclosure may be barred or limited
by statutes or regulations.78 Finally, in many situations-such as scoring
consumers for credit or insurance risk-the purpose of the automated
decision process is to determine something not directly measurable, such as
the risk of defaulting on credit or claiming a loss on an insurance policy.
Because these values cannot be measured directly, they are computed from
proxy variables such as a consumer's credit history, income, or personal
attributes. Consumers who understand these actuarial processes would be
rational in attempting to control the input proxy variables, which in turn
could render the scoring process less useful in elucidating unmeasurable
risk.79 Secrecy discourages strategic behavior by participants in the system
and prevents violations of legal restrictions on disclosure of data.

76 See 14 C.F.R. § 255-4 (2015) (requiring transparency for airline reservation system display

information); Frank Pasquale, Beyond Innovation and Competition: The Need for Qualified Transparency
in Internet Intermediaries, 104 Nw. U. L. REV. 1o5, 160-61 (2010) (suggesting transparency in

broadband networks to hold carriers accountable for potential favoritism and discrimination).
77 See Jeff Reeves, IRS Red Flags: How to Avoid a Tax Audit, USA TODAY (Mar. 15, 2015, 12:o8

PM), http://www.usatoday.com/story/money/personalfinance/2o14/o3/15/irs-tax-audit/5864023 [https://

perma.cc/BFW5-DG34] (identifying characteristics of tax returns that trigger IRS audit).
78 See, e.g., 45 C.F.R. § 164.502 (2015) (restricting the disclosure of personally identifiable

information collected by health care providers).
79 In particular, consumers are rational to modify proxy variables that control their perceived

risk when those variables are cheaper or easier to manipulate than the gain obtained via better

treatment by the decision system. Intuitively, if proxy variables are weak and easy to alter or

sometimes poorly correlated with the feature being measured (e.g., standardized test scores as a

measure of student learning), they are more likely to be gamed than features which are highly
proximate to the value being estimated, or which are difficult or expensive to alter (e.g., annual
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Second, while transparency allows for the testing strategies described
earlier (i.e., static and dynamic tests including auditing), those methods are
often insufficient to verify properties of software systems if these systems
have not been designed with future evaluation and accountability in mind.80

Third, for decision processes that involve some element of randomness,
even full transparency-of the system's source code, its inputs, its operating
environment, and its results-does not foreclose the possibility that an
outcome could be improperly fixed in an undetectable way, as described in
Section I.C.81 A classic lottery provides an excellent example. A perfectly
transparent algorithm that uses a random number generator to assign a
number to each participant and has the participants with the lowest numbers
win will yield results that cannot be reproduced or verified because the
random number generator will produce different random numbers each time.
Reviewing the code alone, or even together with the data fed into it and the
environment in which it was operated, does not tell us that it was actually used
to produce a particular result. By design, the process produces unpredictable
results that are not reproducible.

Fourth and finally, systems that change over time cannot be fully
understood through transparency alone. System designers regularly change
complicated automated decision processes-such as search engine ranking
methodology,82 spam filter rules,83 intrusion detection system methods,84 or

income as a measure of creditworthiness in a particular transaction). See generally CATHY O'NEIL,

WEAPONS OF MATH DESTRUCTION: HOW BIG DATA INCREASES INEQUALITY AND THREATENS

DEMOCRACY (2016). In economic policymaking, this is sometimes known as Goodhart's Law,

popularly formulated as "[w]hen a measure becomes a target, it ceases to be a good measure";

Goodhart formulated it more formally as "[a]ny observed statistical regularity will tend to collapse

once pressure is placed upon it for control purposes." C.A.E. Goodhart, Problems of Monetary

Management: The UK. Experience, in 1 PAPERS IN MONETARY ECONOMICS (1976). Hardt and his

co-authors have developed adversarial methods for designing automated decision and classification

systems that remain robust even in the face of gaming. See Moritz Hardt et al., Strategic Classification,

PROC. 2016 ACM CONF. ON INNOVATIONS THEORETICAL COMPUTER SCI. 111 (discussing

methods to strengthen classification models).
80 See supra Part I.
81 There are ways to incorporate randomness that can be replicated. See infra subsection II.C. 4 .
82 For a list of updates to one search engine, see Google: Algorithm Updates, SEARCH ENGINE

LAND, http://searchengineland.com/library/google/google-algorithm-updates [https://perma.cc/XV

4 Z-AFF 9 ].
83 Many spam filters work by keeping a list of bad terms, email addresses, and computers from

which to block messages. The most widely used "blacklist" is produced by the organization

Spamhaus. See SBL Advisory, SPAMHAUS, https://www.spamhaus.org/sbl [https://perma.cc/V9LN-

EPK9 ] (describing the Spamhaus Block List Advisory, "a database of IP addresses from which

Spamhaus does not recommend the acceptance of electronic mail").
84 Intrusion detection systems work in a similar way, using a set of "signatures" to identify bad

network traffic from attackers. See Karen Kent Frederick, Network Intrusion Detection Signatures, Part

One, SYMANTEC (Dec. 19, 2001), https://www.symantec.com/connect/articles/network-intrusion-
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the algorithms that select website ads-in response to strategic behavior by
participants in the system. 85 Computer systems that choose social media posts
to display to users might respond to user behavior. "Online" machine learning
systems can update their model for predictions after each decision, incorporating
each new observation as part of their training data. Even knowing the source
code and data for such systems is not enough to replicate or predict their
behavior-we also must know precisely how and when they interacted or will
interact with their environment. Whether updates to the system are effected
by human engineers and operators (e.g., a search engine engineer modifies
the software used to rank pages) or by a machine learning system (e.g., the
search engine's software discovers that users more often click the second link
for a certain query instead of the first, so it reverses their order), transparency
alone does little to explain either why any particular decision was made or
how fairly the system operates across bases of users or classes of queries. With
such systems, there is the added risk that the rule disclosed is obsolete by the
time it can be analyzed. Online machine learning systems update their
decision rules after every query, meaning that any disclosure will be obsolete
as soon as it is made.

B. Auditing and Its Limits

Beyond transparency, auditing is another strategy for verifying how a
computer system works. An audit treats the decision process as a black box
whose inputs and outputs are visible but whose inner workings are unseen. 86
The approach has a long history in offline contexts, such as testing for
discrimination in retail car negotiations.87 For retail car negotiations, the
transparency of the bargaining process for the purchase of a car is insufficient
to determine if different prices are offered based on race or gender.88

In computer science, auditing refers to "an independent evaluation of
conformance of software products and processes to applicable regulations,

detection-signatures-part-one [https://perma.cc/Q9XY-TQCA] (discussing signatures for network

intrusion detection systems).

85 See JURE LESKOVEC ET AL., MINING OF MASSIVE DATA SETS ch. 8 (2d ed. 2014).
86 See generally Christian Sandvig et al., Auditing Algorithms: Research Methods for Detecting

Discrimination on Internet Platforms (May 22, 2014), http://www-personal.umich.edu/~csandvig/

research/Auditing%2oAlgorithms%20-%2oSandvig%20-%2olCA%202014%2oData%2oand%2oDiscr

imination%2oPreconference.pdf [https://perma.cc/DSSD-3JYS] (describing algorithm audits and

reviewing possible audit study designs).
87 See Ian Ayres, Fair Driving: Gender and Race Discrimination in Retail Car Negotiations, 104

HARV. L. REV. 817, 818 (1991) (using auditing to determine "[w]hether the process of negotiating

for a new car disadvantages women and minorities").
88 See id. at 827-28 (observing that women and minorities received worse prices than white

males even when using the same negotiation strategy).
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standards, guidelines, plans, specifications, and procedures."89 Auditing is
intended to reveal whether the appropriate procedures were followed and to
uncover any tampering with a computer system's operation. For example,
there is a substantial body of literature in computer science that addresses
audits of electronic voting systems,90 and security experts generally agree that
proper auditing is necessary but insufficient to assure secure computer-aided
voting systems.

Computer scientists, however, have shown that black-box evaluation of
systems is the least powerful of a set of available methods for understanding
and verifying system behavior.91 Even for measuring demonstrable properties
of software systems, such as testing whether a system functions as desired
without bugs, it is much more powerful to be able to understand the design
of that system and test it in smaller, simpler pieces.92 Approaches that attempt
to review system failures simply by looking at how the output responds to
changes in input are limited by either an inability to attribute a cause to those
changes or an inability to interpret whether or why a change is significant.93
Instead, software developers regularly use other, more powerful evaluation
techniques.94 These include white-box testing (in which a the person doing a
test can see the system's code and uses that knowledge to more effectively search
for bugs) and using programming languages that automatically preclude certain
types of mistakes.95

89 IEEE Computer Society, IEEE Std 1028 - IEEE Standard for Software Reviews and Audits

§ 8.t (Aug. 15, 2oo8), http://ieeexplore.ieee.org/document/46o1584 [https://perma.cc/WLD6-VPUN].

90 See Joseph Lorenzo Hall, Election Auditing Bibliography (Feb. 12, 2010), https://

josephhall.org/eamath/bib.pdf [https://perma.cc/L397 -AATD] (collecting scholarly literature

discussing audits in elections).

91 Specifically, white-box testing, in which an analyst has access to the source code under test,

is generally considered to be superior; even in cases where the basic testing approach does not make

use of the structure of the software (e.g., so-called "fuzz testing" where a program is subjected to

randomly generated input), testing benefits from some access to the structure of programs. See supra

note 51 and accompanying text. Also, consider the difficulties encountered in one such audit study.

The authors show a causal relationship between changing sensitive, protected attributes (e.g.,

gender) and the advertisements presented to a user (e.g., advertisements for high-paying jobs). See

Amit Datta et al., Automated Experiments on Ad Privacy Settings: A Tale of Opacity, Choice, and

Discrimination, 2015 PROC. PRIVACY ENHANCING TECHNOLOGIES 92, lo5-o6. However, the

methodology is unable to identify the mechanism of this causation or even whether the results

discovered will generalize beyond the data seen in the study. Id. at 105.
92 See supra notes 20-23 and accompanying text on approaches to structuring software.
93 For example, if the output of a system is an error or other failure such as a crash, it is not

obvious to an analyst how to modify the output to learn much at all.
94 See supra Section I.A.

95 See supra note 24 and accompanying text.
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C. Technical Tools for Procedural Regularity

As we demonstrated above, transparency and auditing often do not suffice
for accountability. In this Section, we introduce computational methods that
can provide accountability for procedural regularity even when some
information is kept secret. These methods can be used alongside transparency
and auditing when appropriate and apply to all computer systems.96

Our approach harnesses the power of computational methods and does
not take the design of the computer system as a given. Instead, we explicitly
advocate for systems to be designed to use methods such as the ones described
here. Nor do we give up on governance when all or part of a computer system
must remain secret. We rely on several advanced techniques from computer
science to enable the governance of secret decision systems: software
verification, cryptographic commitments, zero-knowledge proofs, and fair
random choices. Counterintuitively, even when a piece of software or the data
input to it is secret, these methods can guarantee that the software and inputs
satisfy the requirements for procedural regularity. They can verify that the
same decision policy was used for each decision, that the policy was
determined and recorded before inputs were known, and that the outcomes
are reproducible. Just because a given computer system or piece of software
is secret does not mean that nothing about that system can be known.

1. Software Verification

Software verification is a set of techniques for proving mathematically that
software has certain properties, either by analyzing existing code or by building
software using specialized tools for extracting proved correct invariants. It has
been a promising field for many decades, and while many benefits are realized
in research prototypes today, these methods are finding increasing industrial
adoption, especially in sectors where software is safety- or security-critical and
in domains with strong liability regimes.97 While the complete verification of

96 While the methods we propose are general, they can be inefficient for certain applications.

The cost of providing a certain level of accountability must be considered as part of the design of

any policy requirement. For more detail, see Kroll, infra note 118.
97 While software verification has been embraced by the aviation and industrial control sectors

and for some financial applications (for example, the hedge fund Jane Street regularly touts its use

of formal software analysis in recruiting materials sent to computer science students), it has yet to

see much adoption in the critical fields of healthcare and automotive control. See Jean Souyris et al.,

Formal Verification ofAvionics Software Products, 2009 PROC. 2ND WORLD CONGRESS ON FORMAL
METHODS 532 (describing the use of software verification at Airbus); Norbert Volker & Bernd J.
Kramer, Automated Verification of Function Block-Based Industrial Control Systems, 42 SC. COMPUTER

PROGRAMMING 101 (2002). Indeed, researchers have effected compromises of embedded healthcare

devices such as pacemakers. See, e.g., Daniel Halperin et al., Pacemakers and Implantable Cardiac

Defibrillators: Software Radio Attacks and Zero-Power Defenses, 2oo8 IEEE SYMP. ON SECURITY &
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any program is an expensive undertaking largely reserved to technologists
versed in this particular area, it is important as a matter of policy to
understand the options that are available so that costs and benefits can be
weighed and acted upon.

Unlike static analysis, which aims to examine already-written code for bugs
or deviations from its specification, or software testing, which aims to verify
that software meets a specific set of functional requirements by explicitly
executing the software in a particular configuration, software verification aims
to prove invariants about a program mathematically, using logic to reason about
a program's behavior under all conditions.98 Verified programs come with a
mathematically checkable proof demonstrating that they have certain invariants,
rendering testing for those invariants unnecessary since the proof implies that
such tests will always pass.99

There are many ways to verify software. For instance, a program can be
carefully annotated using formal logic to determine its behavior in a precise
manner, though this can be expensive and will not always yield the desired

PRIVACY 129, 141 (finding that implantable cardioverter defibrillators are "potentially susceptible to

malicious attacks that violate the privacy of patient information" and "may experience malicious

alteration to the integrity of information or state"). News reports also indicate that former Vice

President Dick Cheney had the remote software update functionality on his pacemaker disabled so

that updating the software would require surgery, ostensibly in order to prevent remote compromise

of his life-critical implant. Andrea Peterson, Yes, Terrorists Could Have Hacked Dick Cheney's Heart,

WASH. POST (Oct. 21, 2013), https://www.washingtonpost.com/news/the-switch/wp/wp/2013/10/21/

yes-terrorists-could-have-hacked-dick-cheneys-heart [https://perma.cc/VYSS-6XR6].

Additionally, researchers have also demonstrated spectacular compromises of automobile

control systems, including disabling brakes, controlling steering and acceleration, and completely

cutting engine power. See Karl Koscher et al., Experimental Security Analysis of a Modern Automobile,

2010 IEEE SYMP. ON SECURITY & PRIVACY 447 (performing early analyses of the security of

automobile computers); see also Stephen Checkoway et al., Comprehensive Experimental Analyses of

Automotive Attack Surfaces, 2011 PROC. 20TH USENIX CONF. ON SECURITY 77 (same). Subsequently,

researchers have demonstrated problems in other models, including luxury models with significant

telematics capabilities and remote software upgrade capability, showing that active maintenance of

these software systems does not completely defend against attacks. See, e.g., Jonathan M. Gitlin,

Man Hacks Tesla Firmware, Finds New Model, Has Car Remotely Downgraded, ARS TECHNICA (Mar.

8, 2016, 11:36 AM), http://arstechnica.com/cars/2o16/o3/man-hacks-tesla-firmware-finds-new-model-

has-car-remotely-downgraded [https://perma.cc/R9CS-9RTY] (describing an incident where a Tesla

car model was hacked despite frequent software updates). Problems with spontaneous acceleration

in many Toyota vehicles were later traced to software issues. See Phil Koopman, A Case Study of

Toyota Unintended Acceleration and Software Safety (Sept. 18, 2014), https://users.ece.cmu.edu/

~koopman/pubs/koopmani4_toyota ua slides.pdf [https://perma.cc/VP9T-VYMF] (presenting a

detailed analysis of the issue). And of course, Volkswagen designed its engine control software to

defeat an emissions testing regime. For a complete timeline of the Environmental Protection

Agency's actions on this matter, see Volkswagen Light Duty Diesel Vehicle Violations for Model Years

2009-2016, EPA.GOV, https://www.epa.gov/vw [https://perma.cc/C83U-UZLG] (last updated

Nov. 7, 2016).

98 See supra Section I.A.

99 See supra notes 25-27 and accompanying text.
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invariants;oo a program can be certified by another program that translates it

to a form guaranteed to have the desired property;101 a program can be

exhaustively tested for all possible inputs to ensure that an invariant is never

violated;102 or a program can be built using tools that allow for the careful

specification of invariants (and proofs of those invariants).103 Researchers

have even verified entire operating systems using these techniques.104

Verification can be communicated to clients in a number of ways: so called

proof-carrying code comes with a machine-checkable proof of its verified

invariants, which can be checked by a user just prior to running the

100 For one of the earliest approaches to representing programs as statements in formal logic, see

Hoare, supra note 25, at 576-80. While Hoare's techniques form the basis of many modern methods,

some methods attempt to build software that is correct by virtue of its construction, rather than

analyzing software that has already been written. For an overview of different approaches and their

tradeoffs, see B. BIRARD ET AL., SYSTEMS AND SOFTWARE VERIFICATION: MODEL-CHECIGNG
TECHNIQUES AND TOOLS (2001). For a classic reference on how to include these techniques in the

software engineering process, see GHEZZI ET AL., supra note 30.
101 These tools are known as "certifying compilers." The advantage of a certifying compiler is

that one need only expend effort verifying the certifying compiler itself, not the software being

compiled, in order to prove that the desired invariant holds for the compiled software. For a

description of the original concept and a first implementation, see George C. Necula & Peter Lee,

The Design and Implementation of a Certifying Compiler, 33 ACM SIGPLAN NOTICES 333 (1998).
There are many examples of certified compiler systems. See, e.g., Joshua A. Kroll et al., Portable

Software Fault Isolation, 2014 PROC. IEEE 27TH COMPUTER SECURITY FOUND. SYMP. 18
(describing a certifying software fault isolation compiler built out of CompCert's certified back end).

102 This technique, known as "model checking," could also be described as a form of static

analysis. Model checking aims to verify an invariant by finding a counterexample (an input to the

program which makes the invariant untrue and hence not an invariant). If a counterexample can be

found, the program has a demonstrable bug. If no counterexample can be found, that invariant has

been verified. See also supra note 24 (discussing model checking).
103 Several such programming languages exist, though one of the more successful toolkits in

active research is the proof assistant Coq, which allows for writing complex programs and theorems

and invariants about those programs in such a way that the proved-correct programs can be

"extracted" into executable code. For an introduction to Coq, see ADAM CHLIPALA, CERTIFIED

PROGRAMMING WITH DEPENDENT TYPES: A PRAGMATIC INTRODUCTION TO THE COQ

PROOF ASSISTANT (2013), and YVES BERTOT & PIERRE CASTERAN, INTERACTIVE THEOREM

PROVING AND PROGRAM DEVELOPMENT: COQ'ART: THE CALCULUS OF INDUCTIVE

CONSTRUCTIONS (2004), which describe advanced programming techniques. Several large and

complex programs have been written in Coq, which demonstrates that it is a robust tool capable of

supporting nontrivial development tasks and proofs of correctness about those tasks. Perhaps the

most famous of these was the proof of the "four-color theorem," which states that any map can be

drawn using only four colors such that no border on the map uses the same color for the regions on

both sides of the border. Georges Gonthier, Formal Proof-The Four-Color Theorem, 55 NOTICES

AMS 1382 (2oo8). Similar tools include a theorem prover for programs written in ANSI Common

Lisp 2 and the interactive theorem prover Isabelle. See Lawrence C. Paulson, The Foundation of a

Generic Theorem Prover, 5 J. AUTOMATED REASONING 363 (1989) (describing the design and

implementation of Isabelle).
104 See Gerwin Klein et al., seL4: Formal Verification of an OS Kernel, 2009 PROC. ACM

SIGOPS 22ND SYMP. ON OPERATING SYSTEMS PRINCIPLES 207 (documenting the verification of

the seL4 microkernel).
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program;105 a user can recompute the analysis used to generate the proof; or
the truth of the proof can be confirmed by an entity the user trusts, with
cryptography used to guarantee that the version a user is running matches the
version that was verified.106

However, just because a program has been verified or proven correct does
not mean that it has been vetted at all for correctness or compliance with a
policy. Verification typically constitutes a proof that the software object in
use matches its specification, but this analysis says nothing about whether the
specification is sufficiently detailed, correct, lawful, or socially acceptable, or
constitutes good policy. Software verification is a rapidly developing field,
and the costs of building fully verified software will likely drop precipitously
in the coming decades, leading to wide adoption in the software industry due
to the benefits of reduced security exposure and the elimination of many
types of software bugs.

2. Cryptographic Commitments

A cryptographic commitment is the digital equivalent of a sealed document
held by a third party or in a safe place. It is possible to compute a commitment
for any digital object (e.g., a file, a document, the contents of a search engine's
index at a particular time, or any string of bytes). Commitments are a kind of
promise that binds the committer to a specific value for the object being
committed to (i.e., the object inside the envelope) such that the object can
later be revealed and anyone can verify that the commitment corresponds to
that digital object.107 In this way, as in the envelope analogy, an observer can

be certain that the object was not changed since the commitment was issued
and that the committer did indeed know the value of the object at the time the
commitment was made (e.g., the source code to a program or the contents of a
document or computer file). Importantly, secure cryptographic commitments

105 See, e.g., George C. Necula & Peter Lee, Safe Kernel Extensions Without Run-Time Checking,

1996 PROC. 2ND UNENIX SYMP. ON OPERATING SYs. DESIGN & IMPLEMENTATION 229
(describing the concept of proof-carrying code and a first implementation with applications to

operating system security); see also George C. Necula, Proof-Carrying Code Design and

Implementation., in PROOF AND SYSTEM RELIABILITY 261 (H. Schwichtenberg & R. Steibruggen

eds., 2002) (giving a detailed overview of the concepts of proof-carrying code and their development

over time).
106 This approach would consist of the certifying authority making a cryptographically signed

statement that it had verified the proof for a binary with a certain cryptographic hash value and the

distribution of a signed copy of that piece of software. For an overview of code signing systems, see

Code Signing, CERTIFICATE AUTHORITY SECURITY COUNCIL, https://casecurity.org/wp-content/

uploads/2o13/1o/CASC-Code-Signing.pdf [https://perma.cc/DZU8-TA36].
107 See Ariel Hamlin et al., Cryptography for Big Data Security, in BIG DATA: STORAGE,

SHARING, AND SECURITY 267 (Fei Hu ed., 2016) (describing cryptographic commitments as a

method of verification).
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are also hiding, meaning that knowledge of the commitment (or possession of
the envelope in the analogy) does not confer information about the contents.
This gives rise to the sealed document analogy: once an object is "inside" the
sealed envelope, an observer cannot see it nor can anyone change it. However,
unlike physical envelopes, commitments can be published, transmitted, copied,
and shared at very low cost and do not need to be guarded to prevent
tampering. In practice, cryptographic commitments are much smaller than the
digital objects they represent.108 Because of this, commitments can be used to
lock in knowledge of a secret (say, an undisclosed decision policy) at a certain
time (say, by publishing it or sending it to an oversight body) without revealing
the contents of the secret, while still allowing the secret to be disclosed later
(e.g., in a court case under a discovery order) and guaranteeing that the secret
was not changed in the interim (for example, that the decision policy was not
modified from one that was explicitly discriminatory to one that was neutral).109

When a commitment is computed from a digital object, the commitment
also yields an opening key, which can be used to verify the commitment.110

Importantly, a commitment can only be verified using the precise digital
object and opening key related to its computation; it is computationally
implausible for anyone to discover either another digital object or another
opening key which will allow the commitment to verify properly. In the
envelope metaphor, this is tantamount to proof that neither the envelope nor
the document inside the envelope was replaced clandestinely with a different
envelope or document. Any digital object (e.g., a file, document, or any string
of bytes) can have a commitment and an opening key such that it is (1) impossible
to deduce the original object from the commitment alone; (2) possible to
verify, given the opening key, that the original object corresponds to the

108 See id. at 267 (noting that commitments can be smaller than the statements to which they

relate). A typical commitment will be 128 or 256 bytes, regardless of the size of the committed

object. See INFO. TECH. LAB., NAT'L INST. OF STANDARDS & TECH., FIPS PUB 180-4, SECURE
HASH STANDARD (2015) (describing the hash algorithms accepted for government computer

applications, which provide widely used standards in industry).

109 As a curiosity, we remark that the popular board game Diplomacy is essentially based on

physical world commitments: each player negotiates a set of moves for the next round of the game,

but then these moves are written on paper and passed secretly to a game master who stores them in

an envelope. Once all players have entered their moves, the moves are revealed and taken

simultaneously. This commitment mechanism allows players to simulate simultaneous moves

without any risk that a player will fall behind or change their moves in a particular round in response

to their perception of what another player is doing in that round. However, the commitment

mechanism alone does not prevent players from entering incorrect or impossible moves, writing

nonsense on their paper instead of moves, or simply refusing to enter a move at all (the game master,

however, enforces that all moves placed into the envelope are correct and all players must trust her

to do this to ensure that the game is not spoiled). Below, in the section on zero-knowledge proofs,

we describe how techniques from computer science can address the role of the game master purely

through computation without the need for an entity trusted by all players of the game.

110 See ODED GOLDREICH, FOUNDATIONS OF CRYPTOGRAPHY - A PRIMER 19 (2005).
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commitment; and (3) impossible to generate a fake object and fake opening
key such that using the (real) commitment and the fake opening key will
reveal the fake object.

Cryptographic commitments have useful implications for procedural
regularity in automated decisions. They can be used to ensure that the same
decision policy was used for each of many decisions. They can ensure that
rules implemented in software were fully determined at a specific moment in
time. This means a government agency or other organization can commit to
the assertions that (1) the particular decision policy was used and (2) the
particular data were used as input to the decision policy (or that a particular
outcome from the policy was computed from the input data). The agency can
prove the assertions by taking its secret source code, the private input data,
and the private computed decision outcome and computing a commitment
and opening key (or a separate commitment and opening key for each policy
version, input, or decision). The company or agency making an automated
decision would then publish the commitment or commitments publicly and in
a way that establishes a reliable publication date, perhaps in a venue such as a
newspaper or the Federal Register. Later, the agency could prove that it had
the source code, input data, or computed results at the time of commitment by
revealing the source code and the opening key to an oversight body such as a
court. This technique assures that the software implementing the decision
policy was determined and recorded prior to the publication of the
commitment, which can be useful in demonstrating that neither the software
nor the decision policy were influenced by later information or events.

By themselves, however, cryptographic commitments do not prevent the
committer from lying and generating a fake commitment that it cannot open
at all or from destroying (or refusing to disclose) the information that allows
a valid commitment to be opened. In either case, when the time comes to
reveal the contents of the commitment, it will be demonstrable that the
committer has misbehaved. However, an observer does not know the nature of
the misbehavior. The committer may not have a correct opening key (analogous
to having sealed an unintelligible or irrelevant document in a physical
envelope) or may want to lie about what was in the original file (analogous to
discovering that the contents of the envelope may be embarrassing under
scrutiny of oversight). In either case, an oversight authority might punish the
committer for lying and assume the worst about the contents of the missing
file.111 However, it would be preferable to be able to avoid this scenario
altogether, which we can do with another tool known as zero-knowledge proofs.

11 A parallel to this assumption is a spoliation inference, which sanctions a party who

withholds, tampers, or destroys evidence by assuming that the missing or changed evidence was

unfavorable to the spoliator. See Fed. R. Civ. P. 37 (e)(2)(A) (providing that if electronically stored
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3. Zero-Knowledge Proofs

A zero-knowledge proof is a cryptographic tool that allows a decisionmaker,
as part of a cryptographic commitment, to prove that the decision policy that
was actually used (or the particular decision reached in a certain case) has a
certain property, but without having to reveal either how that property is
known or what the decision policy actually is.112

For example, consider how money flows in an escrow transaction.
Traditionally, an escrow agent holds payment until certain conditions are met.
Once they are, the agent attests to this fact and disburses the money according
to a predetermined schedule. Zero-knowledge proofs can allow escrow without
a trusted agent. Suppose that an independent sales contractor wishes to
certify that she has remitted appropriate taxes from her sales to be paid by a
counterparty, but without revealing precisely how much she was able to sell
an item for. Using a zero-knowledge proof, she can demonstrate that sufficient
taxes were paid without disclosing her sales prices or earnings to a third party.

Another classic example used in teaching cryptography posits that two
millionaires are out to lunch and they agree that the richer of them should
pay the bill. However, neither is willing to disclose the amount of her wealth
to the other. A zero-knowledge proof allows them both to learn who is
wealthier (and thus who should pay the restaurant tab) without revealing how
much either is worth.

A zero-knowledge proof works with cryptographic commitments to verify
procedural regularity in the following manner. If a decisionmaker makes a trio
of commitments, A, B, and C, where A is a commitment to the decision policy,
B is a commitment to the inputs that were used in a particular case, and C is a
commitment to the decision actually reached in that case, then zero-knowledge
proofs let the public verify that A, B, and C really do correspond to each other.
In other words, the decisionmaker can prove that, when the committed policy
A is applied to the committed input data B, the result is the committed
outcome C. This allows decisionmakers to build audit logs, which can be
verified by the public to confirm that the decisionmaker applied the
appropriate policy to the correct input in order to reach the stated outcome,
all without revealing the decision policy itself and without revealing private
data that might be included in the input or outcome.

Later, if the outcome is challenged, a court or other oversight body can
compel the decisionmaker to reveal the actual policy and input used and can
verify that it matches the published commitment, effectively providing digital

information is lost because a party, intending to deprive the other party of the information, failed

to take reasonable steps to preserve it, the court may "presume that the lost information was

unfavorable to the party").

112 See GOLDREICH, supra note 11o, at t6.
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evidence that the decisionmaker was honest about its announced decision. By
using a commitment to the same policy in decisions for multiple decision
subjects, a decisionmaker can demonstrate that it is applying a consistent policy
across those subjects. Such zero-knowledge proofs can be enhanced to test parts
of the decision policy, either by exhibiting properties of the input-output
relation (e.g., that a credit score would have been the same if the subject's
gender were reversed) or properties of the policy itself (e.g., that the policy
only uses certain inputs for certain purposes).

4. Fair Random Choices

Where random choices are part of a decisionmaking process, the fairness
of the randomness used in those computer systems should be verifiable.
Poorly designed randomization can lead to unaccountable automated
decisions. The decisionmaker could influence the supposedly random choices
or could generate many sets of random values and then pick the set that gives
its preferred outcome. Additionally, a randomized process is not easily
reproduced. For example, if it depends on interaction with its environment
(e.g., the operating system on which it is running or its human user), its
behavior may be altered in a nondeterministic way since that environment
can change between runs.113

Automated decision processes must therefore be designed from the
beginning to allow for oversight of the decisionmaker and to avoid problems
with unpredictable behavior. To solve this problem, a decisionmaker could
demonstrate that any unpredictable behavior or random choices in the
software does not affect the eventual output; for example, a program designed
to find the top of a hill (i.e., optimize some objective) can start at any
randomly chosen point and take any arbitrary path upwards and will still
ultimately return the same maximum value.114

More often, the random choices made by an automated decision process
will affect the results. In these cases, the software implementing the decision

113 One example is a program that chooses a random value based on the time that it has been

running but takes different amounts of time to run based on other programs that are running on the

same physical computer system.
114 In general, this approach will only find the top of some crest, which may or may not be the

highest point on a hill (for instance, if a mountain has two peaks, one much higher than the other).

Randomness helps fix this problem, however, since an algorithm can start climbing the hill at many

different randomly chosen points and verify that they all reach the same highest point. Additionally,

for many important problems, one can prove that only a certain limited number of optimal (i.e.,

highest or lowest) values exist. That is, if an analyst knows that the hill has only one peak, then

which path a program takes to the top is irrelevant. For a description of the gradient descent

approach to optimization and other approaches, see RICHARD 0. DUDA ET AL., PATTERN

CLASSIFICATION 224-27 (2d ed. 2001).
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can always be redesigned to replace the set of random choices made by the
software with a small, recorded random input (a seed value) from which any
necessary random values can be computed in a deterministic, pseudorandom
way. In this way, the decisionmaking process can be replayed so long as the
seed is known and the randomness of the input is completely captured by the
randomness of the seed. Using this technique, a decisionmaker would not
have to generate a new random choice each time a random value is needed by
a piece of software (such choices can be made by a cryptographic algorithm
that uses the seed to yield reproducible values), nor know in advance how
many random choices must be made. This technique allows software that
makes random choices, such as a lottery, to be made fully reproducible and
reviewable. Unlike capturing the entire environment, as was discussed above,
this technique reduces the relevant portion of the environment to a very small
and manageable value (the seed) while preserving the benefits of using
randomness in the system.

If this technique is used, we also must prevent the decisionmaker from
tampering with the seed value, as it fully determines all random data accessed
by the program implementing the decision policy. Several methods can aid in
ensuring the fair choice of seed values. A public procedure can be used to
select a random value: for example, rolling dice or picking ping pong balls
from the sort of device used by state lotteries.115 Alternatively, the seed value
could be provided by a trusted third party, such as the random "beacon"
operated by the U.S. National Institute of Standards and Technology
(NIST).116 In addition, it is possible for a set of mutually distrustful parties

115 Currently known strategies for generating public random values ("randomness beacons")

all have advantages as well as disadvantages-dice could be weighted; ping pong balls could be put

in the freezer and the cold ones picked out of the machine. The National Institute of Standards and

Technology runs a randomness beacon that has come under scrutiny because of distrust of the

National Security Agency. To minimize these types of issues, the algorithm designer should pick

the source of randomness most likely to be trusted by participants, which may vary. The algorithm

designer could choose to collect many sources of random choices and mix them together to maximize

the number of participants who will trust the randomness of the chosen seed. However, even

physical sources of randomness that have not been tampered with have failed to be accountable for

their goals in unexpected ways; for instance, the 1969 lottery for selecting draftees by birthday was

later shown to be biased, with a disproportionate number of selectees coming from months early in

the year. For a detailed overview of the problem and its causes, see Joan R. Rosenblatt & James J.
Filliben, Randomization and the Draft Lottery, SCIENCE, Jan. 22, 1971, at 3o6.

116 Computer science refers to a trusted third-party source of randomness as a "beacon." The

best known beacon is operated by the NIST, which publishes new random data every few minutes,

ostensibly based on the measurement of quantum mechanical randomness via a device maintained

in a NIST lab. NIST Randomness Beacon, NAT'L INST. STANDARDS & TECH., http://www.nist.gov/

itl/csd/ct/nist-beacon.cfm [https://perma.cc/UNT3-6N6P] (last updated Sept. 21, 2016). Recent

revelations about NIST's role in allowing the U.S. National Security Agency to undermine the

security of random number generation techniques standardized by NIST have led to some distrust

of the NIST beacon, although it may be trustworthy in some applications. NIST standardized the
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(possibly including decision subjects themselves) to engage in an interaction
that produces a value that is unpredictable so long as at least one participant
provided random input.117 Perhaps the best option is to mix together

randomness (sometimes called entropy) from many different sources. The
simplest form of this practice would involve a decision subject entering a short
random number as part of the input for their decision (e.g., on an application
form). Then, the decisionmaker would generate a seed value for each decision
by combining this known-to-the-subject, personal random value with (1) a
pre-chosen random value to which the decisionmaker publicly committed to
using far in advance of seeing the personal random value, and (2) a unique
identifier for the particular decision or decision subject that is difficult to
change (e.g., the social security number of the participant). In order to foster
maximum confidence that random choices are not improperly influenced, the
decisionmaker should derive them using a combination of (1) a random value
from a trusted third-party; (2) a random value chosen by the decisionmaker
and possibly kept secret; (3) a participant- or decision-specific identifier that
cannot be changed or controlled by the decisionmaker, such as a social
security number, identification number, or other immutable piece of the
subject's name or data; and (4) a value chosen by the decisionmaker. Since
these values are either outside of the decisionmaker's control or are known,
fixed, and subsequently verifiable before the inputs to a decision are known,
using these methods gives assurance that the decisionmaker is not skewing
the results by controlling the selection of random values.118

Duel EC Deterministic Random Bit Generator (DUAL-EC) in SP 8oo-9oA in 2007. At that time,

cryptographers already knew the standard could accommodate a "backdoor," or secret vulnerability.

See Dan Shumow & Niels Ferguson, On the Possibility of a Back Door in the NIST SP800-9o Dual

Ec Prng (2007), http://rump2007.cr.yp.to/15-shumow.pdf [https://perma.cc/VC7 G-G23G]. Later, it

was discovered that the NSA had very likely made use of this mechanism to create a backdoor in the

standard itself. See Daniel J. Bernstein et al., Dual EC: A Standardized Back Door, in THE NEW
CODEBREAKERS 256 (2016). Other beacon implementations have been proposed, including beacons

based on "cryptocurrencies" such as Bitcoin. See, e.g., Joseph Bonneau et al., On Bitcoin as a Public

Randomness Source, https://eprint.iacr.org/2o15/toi5.pdf [https://perma.cc/XQ38-FJ3H] (outlining a

specific alternate proposal involving the use of Bitcoin as a source of publicly verifiable randomness).

117 Computer science has methods to simulate a trusted third party making a random choice.

These methods require the cooperation of many mutually distrustful parties, such that as long as

any one party chooses randomly, the overall choice is random. By selecting many participants in this

process, one can maximize the number of people who will believe that the chosen value is in fact beyond

undue influence. For an easy-to-follow introduction to these methods, see Manuel Blum, Coin Flipping

by Telephone: A Protocolfor Solving Impossible Problems, 15 ACM SIGACT NEWS 23 (1983).
118 When the fairness of random choices is key to the accountability of a decision process, great

care must be taken in determining the source of random seed values, as many very subtle

accountability problems are possible. For example, by changing the order in which decisions are

taken, the decisionmaker can effectively "shop" for desirable random values by computing future

deterministic pseudorandom values and picking the order of decisions based on its preference for

which decisions receive which random choices. To prevent this, it may also be necessary to require
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Where random choices are part of a decisionmaking process, the fairness
of the randomness (i.e., the consistency with the goal for which randomness
was deployed in a particular system) used in those decisions should be
verifiable. This can be achieved by relying on a small random seed and
verifying its source. Once a random seed has been chosen in a satisfactory
manner, it is still necessary to verify that the seed was in fact used in later
decisions. 119 This can be accomplished by the techniques we describe.

D. Applying Technical Tools Generally

Our general strategy in designing systems accountable for their procedural
regularity is to require systems to create cryptographic commitments as digital
evidence of their actions. Systems can be designed to publish commitments
describing what they will do (i.e., a commitment to the decision policy
enforced by the system, as represented by source code) before they are fielded
and commitments describing what they actually did (i.e., a commitment to
the inputs120 and outputs of any particular decision) after they are fielded.
Zero-knowledge proofs can be used to ensure that these commitments actually
correspond to the actions taken by a system.121 Indeed, it is possible to use
zero-knowledge proofs to verify, for each decision, that the committed-to
decision policy applied to the committed-to inputs yields the committed-to
outputs.122 These zero-knowledge proofs could either be made public or

provided to the system's decision subjects along with their results.
By disclosing commitments instead of source code or inputs and outputs,

system operators can fully explain what their systems do without actually
disclosing how those systems work up front. Later, if it becomes necessary to

that the decisionmaker take decisions in a particular order or that the decisionmaker commit to the

order in which it will take decisions in advance of the seed being chosen. For a detailed description

of the problems with randomness "shopping" and post-selection by a decision authority, see Joshua

Alexander Kroll, Accountable Algorithms (Sept. 2015) (unpublished Ph.D. dissertation, Princeton

University) (on file with author).

119 For example, several state lotteries have been defrauded by insiders who were able to control

what random values the lottery system used to decide winners. Specifically, an employee of the

Multi-State Lottery Association (MUSL) was convicted of installing software on the system that

controlled the random drawing and using the information gleaned by the software to purchase

winning tickets for the association's "Hot Lotto" game. See Grant Rodgers, Hot Lotto Rigger Sentenced

to lo Years, DES MOINES REG. (Sept. 9, 2015, 7:12 PM), http://www.desmoinesregister.com/story/

news/crime-and-courts/2o15/o9/o9/convicted-hot-lotto-rigger-sentenced-to-years/71924916 [https://

perma.cc/U26A-8VMD] (describing the Iowa lottery fraud sentencing).

120 Note that, for these commitments to function, systems must also be designed to be fully
reproducible, capturing all interactions with their environments as explicit inputs that can then be

contained in published commitments. The use of seed values for randomization, discussed above in

subsection II.C. 4 , offers one example of ensuring reproducibility.
121 The approach here was introduced in Kroll, supra note 118.
122 Id.
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review the actions or decision policy of a system during a court case or
regulatory action, system operators can disclose the contents of their
commitments (that is, source code, inputs, and outputs), possibly under a
protective regime. If it is possible to disclose these values publicly, then system
operators may also choose (or be required) to do so. However, whether these
data are disclosed or not, the published commitments and zero-knowledge
proofs allow overseers and the public at large to verify that the decisions of
some authority actually correspond to a specific predetermined policy rather
than the arbitrary whim of a decisionmaker. Further, by observing that all
decisions arise from the same policy, anyone reviewing these commitments
can be certain that the policy was used for all decisions simply by checking
that the commitments to the decision policy are consistent across decisions.

By requiring commitments to be published far in advance of any decision,
it is possible to ensure that the particulars of a decision policy were chosen
independently of the factors in the decisions it would render. For example, a
decision policy that selects which individuals will receive a tax audit should
be based on the risk of tax evasion, which in turn can be inferred by properties
of the tax return itself. However, a corrupt tax authority could pick out
individuals for audit and guess the particulars of their tax return data, then
tailor the audit decision policy accordingly. Further, if a policy must be
approved in advance by some oversight or certification body, the policy would
need to be decided on and implemented in software far enough in advance to
admit certification or review. Finally, if such certification does take place,
subjects of the policy's decisions (or overseers of those decisions) can be
certain after the fact that the policy which was certified is the policy which
was actually used in practice.123

To the extent that the invariants of interest in a computer system are simple
enough to compute, their truth can be attested by the same zero-knowledge
proofs that attest to the relationship between the code, the inputs, and the
outputs. Because powerful, modern, zero-knowledge techniques can be applied
to any code, they can also be applied to code that performs the analysis of these

123 Electronic voting systems have suffered from such problems in practice. In many

jurisdictions, voting system software must be certified before it can be used in polling places.

Systems are tested by the Election Assistance Commission (EAC), an independent commission

created by the 2002 Help America Vote Act. See Testing and Certification Program, U.S. ELECTION

ASSISTANCE COMMISSION, http://www.eac.gov/testing and certification [https://perma.cc/8DFX-

LTYD] (detailing the EAC's testing and certification regime). However, in many cases, updated,

uncertified software has been used in place of certified versions because of pressure to include

updated functionality or bug fixes. See, e.g., Fitrakis v. Husted, No. 2:12-cv-1015, 2012 WL 5411381
(S.D. Ohio Nov. 6, 2012) (involving a suit arising out of updates to voting systems immediately

prior to the 2012 presidential election in Ohio).
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invariants, and the execution of that code can be considered as part of the
operation of the system.124

Simply publishing commitments to the inputs and outputs of a system
rather than making them transparent will not solve all of the issues with
transparency brought up in Part I. However, it can address the need for
legitimate secrecy of the system, its inputs, or its outputs. Because it is
possible, using these methods, to verify that a particular input and a particular
decision policy correspond to a particular output, it is not strictly necessary
to see these values in order to investigate the system's procedural regularity.

We describe how certification of procedural regularity can be done for
randomized software, such as software implementing a lottery, in greater
detail in Section II.E below. Later, in Part III, we explain how these tools can
extend to certify other, more complicated invariant properties of interest,
enabling proof that a system comports with substantive goals or principles
beyond simple procedural regularity.

E. Applying Technical Tools to Reform the Diversity Visa Lottery

Armed with these tools, we can turn to the question of how to ensure the
procedural regularity of automated decisionmaking. To illustrate how
designing a computer system can make it more accountable, we will apply the
methods described above to a case study: the Diversity Visa Lottery (DVL)
operated by the U.S. Department of State.

1. Current DVL Procedure

The DVL is run annually by the State Department to grant U.S.
permanent resident visas ("green cards") to 5o,ooo immigrants from around
the world. The process, prescribed by 8 U.S.C. § 1153(c), is intended to increase
the national and regional diversity of immigrants to the United States by
granting visas to a sample of people from countries otherwise underrepresented
in the immigrant population.

The annual DVL process operates as follows.125 Would-be immigrants

apply to be entered in the lottery, applicants are grouped according to their
country of birth, and countries are assigned to one of six regional groups.
Within each group, applicants are put into a rank-ordered list in a random
order (the lottery step). The Attorney General then calculates the number of

124 For example, suppose that we wish to demonstrate that a decision would be the same if the

subject's gender were reversed. The software implementing the decision could simply compute the

decision with a different gender for each subject and confirm that the same result is reached in each case.
125 See generally Immigration and Nationality Act § 203(c), 8 U.S.C. § 1153(c) (2012); U.S.

DEP'T OF STATE, FOREIGN AFFAIRS MANUAL ch. 9, § 502.6.
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applicants to accept from each region using a formula based on the number
of immigrants to the United States in recent years from each other region.
The calculated number of applicants is selected from the top of each group's
rank-ordered list. These "winners" are screened for eligibility to enter the
United States, and they receive visas if they are eligible. In some years,
additional winners are selected so that all statutorily available visas can
eventually be awarded, even if some applicants fail the screening process,
drop out, or fail to proceed with their visa application.126

Questions have been raised about the correctness and accountability of
this process. Would-be immigrants sometimes question whether the process
is truly random or, as some suspect, is manipulated in favor of individuals or
groups favored by the U.S. government. This suspicion, in turn, may subject
DVL winners to reprisals, on the theory that winning the DVL is evidence of
having collaborated secretly with U.S. agencies or interests.

There have also been undeniable failures in carrying out the DVL process.
For example, the 2012 DVL initially reported incorrect results due to
programming errors coupled with lax management.127 An accountable
implementation of the DVL could address both issues by demonstrating that
there is no favoritism in the process and by making it easy for outsiders to
check that the process was executed correctly.

2. Transparency Is Not Enough

The DVL is an automated decision system for which transparency alone
cannot solve its problems. First, the software implementing the decisions
appears to be written in an irreproducible way.128 The system relies on the
computer's operating system to provide random numbers; thus, attempts to
replicate the program's execution at another time or on another computer will
yield different random numbers and therefore a different DVL result.
Notably, no amount of reading, analyzing, or testing of the software can
remedy the nonreplicability of this software.

Second, the privacy interests of participants bar full transparency. People
who apply to the DVL do not want their information, or even the fact that
they applied, to be published. However, such publication is needed for the
process to be verified through transparency and auditing. The State

126 Visa Bulletin for June 2015, U.S. DEP'T ST. BUREAU CONSULATE AFF., https://travel.state.

gov/content/visas/en/law-and-policy/bulletin/2o15/visa-bulletin-for-june-2o15.html [https://perma.cc/

7 H7 L-SJKX].
127 Memorandum from Howard W. Geisel, Deputy Inspector Gen., U.S. Dep't of State,

Review of the FY 2012 Diversity Visa Program Selection Process, ISP-I-12-01 (Oct. 13, 2011), https://
oig.state.gov/system/files/17633o.pdf [https://perma.cc/4 FWM-URYJ].

128 Id.
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Department could try to work around this problem by assigning an opaque
record ID to each applicant and then having the lottery choose record IDs
rather than applicants, but lottery operators could manipulate the outcome
by retroactively assigning winning record IDs to people they wanted to favor.
Further, it would be difficult to verify that no extra record IDs corresponding
to actual participants had been added.

3. Designing the DVL for Accountability

Instead of this inherently unverifiable approach, we propose a technical
solution for building an accountable version of the DVL.129 Using the
techniques we have described, the State Department can demonstrate that it
is running a fair lottery among a hidden set of participants. 130

We can solve the nonreplicability problem by choosing a random seed, as
described previously. The third-party generating the random value used to
create the seed could be one or more trusted NGOs, or applicants could
provide a "PIN" on their applications.

Recall that the decision policy for the DVL is fixed in statute and hence
publicly known. To provide oversight, the State Department could publish in
the Federal Register a commitment to its software source code (far in advance
of any decisions being made) and a commitment to all the inputs (i.e., to each
data element in an application for the US visa) used to create the rank-ordered
list and calculate the cut-off points. The State Department would also need to
provide a zero-knowledge proof showing that applying the committed-to
software to the committed-to inputs produces the announced lottery results.
The proof should also demonstrate that the commitment to the software
published in advance of all decisions is a commitment to the same software
as the one used in each individual decision. These actions would bind the
State Department to its choices of software, source code, and applicant data;
ensure that the commitment to the software was not a fake; and prove that
the same procedure was used to render each decision. Subsequent auditing
by an oversight body should establish that the source code in the commitment
faithfully implements the policy specified by statute (the code should be
designed to enable this).

129 A full technical analysis is beyond the scope of this Article.
130 Note that it is less straightforward to prove that the set of participants actually considered

in the lottery matches the set of individuals who applied to be included. For example, the operator

of the lottery might insert "shills," or lottery entries that do not correspond to any real applicant,

and if one of these applications were to be chosen, that place could be given improperly to anyone

of the Department's choosing. It is technically nontrivial to prove that no extra applications were

considered; studies of end-to-end secure voting protocols provide methods to do so. See, e.g., Daniel

Sandler et al., VoteBox: A Tamper-Evident, Verifiable Electronic Voting System, 2oo8 PROC. 17TH CONF.
ON SECURITY SYMP. 349 (enunciating the measures necessary to make electronic voting secure).
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Finally, the State Department should determine an adequate method for
generating a random seed to be used in the lottery step. This method should
guarantee to the public that it is not possible for the State Department to
choose winners by rearranging applications.131 This could be accomplished by
combining random data chosen at a public ceremony (as is done for state
lotteries); alternatively, the State Department could cooperate with interested
NGOs to produce a verifiable random seed with a random value selected
exclusively by the State Department (and published prior to the ceremony and
any lottery applications) along with something that identifies a particular
lottery entry uniquely (e.g., the applicant's full application data, reduced by
cryptographic hash, to a small numeric value). Depending on the implementation
and application, the State Department could also include randomness
selected by DVL applicants on their application, which could be harvested
passively by tracking mouse movements during the application process.132

Once these steps are taken, each applicant can be assured that the State
Department's decision on his application is fully explainable. If the applicant
has questions regarding the process or a governmental overseer wants to audit
it, the decisions will be replicable, and, if necessary, the secret source code
and secret input data (including the random choices made in the lottery step)
can be revealed and verified-by a court or auditing agency-to be the proper
code and data used to render the decision.133

These solutions depend on both redesigning the software code (a
technical solution) and adopting procedures relating to how the software
program is used (a legal or policy solution). They must be deployed during
the design of the decision process and cannot salvage a poorly designed
system after the fact. In hindsight, it should not be surprising that the path
to accountability for computational processes requires some redesign of the
processes themselves. The same is true for noncomputational administrative
processes, where the most accountable processes are those that are designed
with accountability in mind.

131 Random choices in the DVL must be demonstrably random even to nonparticipants so

that winners can plausibly claim that they were chosen by lottery and not because of sympathy

for U.S. interests.

132 See supra note 117 and accompanying text.
133 In fact, just as the applicant can be convinced that his decision is explainable without seeing

the secret algorithm or secret inputs, an oversight body can be convinced that particular decisions

were made correctly without seeing the applicant's inputs, which might contain sensitive data like

health records or tax returns. Thus, subsequent auditing is rendered more useful and more acceptable

to participants, as it can determine the basis for every decision without revealing sensitive information.

2017] 677



University of Pennsylvania Law Review

III. DESIGNING ALGORITHMS TO ASSURE FIDELITY TO

SUBSTANTIVE POLICY CHOICES

In Part I, we described methods that permit certification of properties of
computer systems, and in Part II, we demonstrated how those methods can
ensure that automated decisions are reached in accordance with agreed upon
rules, a goal we called procedural regularity. In this Part, we examine how
those methods could be used to certify other system properties that
policymakers desire. Accountability demands not only that we certify that a
policy was applied evenly across all subjects, but also that those subjects can
be certain that the policy furthers other substantive goals or principles. A
subject may want to know: Is the rule correctly implemented? Is it moral,
legal, and ethical? Does it operate in the aggregate with fidelity to substantive
policy choices?

We focus here on the goal of nondiscrimination,134 in part because specific,
additional technical tools have developed to assist with it, and in part because
the use of automated decisionmaking already has raised concerns about
discrimination and the ability of current legal frameworks to deal with
technological change.135 The well-established potential for unfairness in
systems that use machine learning, in which the decision rule itself is not
programmed by a human but rather inferred from data, has heightened these
discrimination concerns. However, what makes a rule unacceptably
discriminatory against some person or group is a fundamental and contested
question. We do not address that question here, much less claim to resolve it
with computational precision. Instead, we describe how an emerging body of
computer science techniques may be used to avoid outcomes that could be
considered discriminatory.

Fidelity to policy choices like nondiscrimination is a more complicated
goal than procedural regularity, and the solutions that currently exist to
address it are less robust. Technical tools offer ways to ameliorate these
problems, but they generally require a well-defined notion of what sort of
fairness they are supposed to be enforcing. In this Part, we outline a few
proposed well-defined notions. We present these techniques as examples of
system properties that could be certified using the techniques described in

134 The word "discrimination" carries a very different meaning in engineering conversations

than it does in public policy. Among computer scientists, the word is a value-neutral synonym for

differentiation or classification: a computer scientist might ask, for example, how well a facial

recognition algorithm successfully discriminates between human faces and inanimate objects. But,

for policymakers, "discrimination" is most often a term of art for invidious, unacceptable distinctions

among people-distinctions that either are, or reasonably might be, morally or legally prohibited.

We use the latter meaning here.

135 See PASQUALE, supra note 46, at 8-9 (describing the problem of discrimination through the

use of automated decisionmaking).
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Part I, but we do not necessarily advocate for any of them; ultimately,
policymakers must decide whether these properties or others square with
nondiscrimination goals.

In addition, the precision of computer code often brings into sharp focus
the tensions within current legal frameworks for antidiscrimination. Computers
favor hard and fast rules over the types of standards and balancing tests often
found in our common law system and civil rights law. While these
characteristics of the current legal approach suggest that doctrinal reform may
be necessary to apply computerized decisionmaking in an area, we are not
advocating a policy regime entirely made of bright-line rules or predetermined
fairness criteria. In fact, we believe that investigations of fairness should always
be in the purview of ex post review processes. Instead, we offer an overview
of the problem of algorithmic discrimination, the current state of the related
technical tools, and the relationship of these tools to existing legal
frameworks. We describe the types of properties that can be specified in
advance and certified to be in force, even if none of the properties is sufficient
on its own to guarantee compliance with a policy regime. Our aim is to both
elucidate the current state of the art and suggest directions for further
research and action.

A. Machine Learning, Policy Choices, and Discriminatory Effects

We focus here on decisions developed through machine learning-on
situations where a machine has been "trained" through exposure to a large
quantity of data and infers a rule from the patterns it observes. Computers
are especially well-suited to discover patterns in these input-output pairs that
can then guide future decisionmaking. In contrast to human-made rules, these
rules for decisionmaking are induced from historical examples-they are,
quite literally, rules learned by example. Humans orchestrate a computerized
rule-creation process, rather than imparting the rules directly. These kinds of
decisions raise problems for the methods described in Part I because the
system's designer does not fix the decision rule directly, and, as a result, the
rule cannot directly be verified in the manner we have described. Instead, for
the tools to show that such systems meet policy goals, policymakers must
determine the substantive properties that the systems should have, and, if
such properties exist, the tools of Parts I and II can then be used to
demonstrate that techniques for certifying such properties are in use and
implementers can then design the systems to allow the certification of these
properties and permit the type of accountability we have proposed above.

Machine learning is an increasingly common approach to solving problems
that once seemed computationally intractable due to their complexity (e.g.,
object recognition in a photograph). The recent movement of software systems
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into a growing number of domains owes primarily to successful applications
of machine learning, which is thus the primary focus of our analysis.

A significant concern about automated decisionmaking is that it may
simultaneously systematize and conceal discrimination. Because it can be
difficult to predict the effects of a rule in advance (especially for large,
complicated rules or rules that are machine-derived from data), regulators
and observers may be unable to tell that a rule has discriminatory effects. In
addition, decisions made by computers may enjoy an undeserved assumption
of fairness or objectivity.136 However, the design and implementation of
automated decision systems can be vulnerable to a variety of problems that
can result in systematically faulty and biased determinations.137

These decision rules are machine-made and follow mathematically from
input data, but the lessons they embody may be biased or unfair nevertheless.
Below, we describe a few illustrative ways that models, or decision rules
derived from data, generated through machine learning, may turn out to be
discriminatory. We adapt a taxonomy laid out in previous work by Solon
Barocas and Andrew D. Selbst38 and make use of the "catalog of discriminatory
evils" of machine learning systems laid out by Hardt39 and Dwork et al.140

First, algorithms that include some type of machine learning can lead to
discriminatory results if the algorithms are trained on historical examples that
reflect past prejudice or implicit bias, or on data that offer a statistically
distorted picture of groups comprising the overall population. Tainted
training data would be a problem, for example, if a program to select among
job applicants is trained on the previous hiring decisions made by humans,
and those previous decisions were themselves biased.141 Statistical distortion,

136 See Paul Schwartz, Data Processing and Government Administration: The Failure of the

American Legal Response to the Computer, 43 HASTINGS L.J. 1321,1342 (1992) (describing the deference

that individuals give to computer results as the "seductive precision of output").
137 See id. at 1342-43 (noting that the computer creates "new ways to conceal ignorance and

subjectivity" because people overestimate its "accuracy and applicability").
138 See Barocas & Selbst, supra note 8 (describing a taxonomy that isolates specific technical

issues to create a decisionmaking model that may disparately impact protected classes).
139 Moritz A.W. Hardt, A Study of Privacy and Fairness in Sensitive Data Analysis (Nov. 2011)

(unpublished Ph.D. dissertation, Princeton University) (on file with author).
140 Cynthia Dwork et al., Fairness Through Awareness, 2012 PROC. 3RD INNOVATIONS

THEORETICAL COMPUTER SC. CONF. 214.
141 See Barocas & Selbst, supra note 8, at 682 (citing Stella Lowry & Gordon Macpherson, A

Blot on the Profession, 296 BRIT. MED. J. 657, 657 (1988)) (describing how a hospital developed a

computer program to sort medical school students based on previous decisions that had disfavored

racial minorities and women). Another example is a Google algorithm that showed ads for arrest

records much more frequently when black-identifying names were searched than when white-

identifying names were searched-likely because users clicked more often on arrest record ads for

black-identifying names and the algorithm learns from this behavior with the purpose of maximizing

click-throughs. Id. at 682-83 (citing Latanya Sweeney, Discrimination in Online Ad Delivery, COMM.
ACM, May 2013, at 44, 47 (2013)).
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even if free of malice, can produce similarly troubling effects: consider, for
example, an algorithm that instructs police to stop and frisk pedestrians. If
this algorithm has been trained on a dataset that overrepresents the incidence
of crime among certain groups (because these groups have historically been
the target of disproportionate enforcement), the algorithm may direct police
to detain members of these groups at a disproportionately high rate (and
nonmembers at a disproportionately low rate). Such was the case with the
New York City Police Department's stop-and-frisk program, for which data
from 2004 to 2012 showed that 83% of the stops were of black or Hispanic
persons and io% were of white persons in a resident population that was 52%
black or Hispanic and 33% white. 142 Note that the overrepresentation of black
and Hispanic people in this sample may lead an algorithm to associate
typically black or Hispanic traits with stops that lead to crime prevention,
simply because those characteristics are overrepresented in the population
that was stopped.143

Second, machine learning models can build in discrimination through
choices in how models are constructed. Of particular concern are choices
about which data models should consider, a problem computer scientists call
feature selection. Three types of choices about inputs could be of concern: using
membership in a protected class directly as an input (e.g., decisions that take
gender into account explicitly); considering an insufficiently rich set of
factors to assess members of a protected class with the same degree of
accuracy as nonmembers (e.g., in a hiring application, if fewer women have
been hired previously, data about female employees might be less reliable
than data about male employees); and relying on factors that happen to serve
as proxies for class membership (e.g., women who leave a job to have children
lower the average job tenure for all women, causing this metric to be a known
proxy for gender in hiring applications). Eliminating proxies can be difficult,
because proxy variables often contain other useful information that an analyst
wishes the model to consider (for example, zip codes may indicate both race
and differentials in local policy that is of legitimate interest to a lender). The
case against using a proxy is clearer when alternative inputs could yield
equally effective results with fewer disadvantages to protected class members.
A problem of insufficiently rich data might be remedied in some cases by
gathering more data or more features, but if discrimination is already
systemic, new data will retain the discriminatory impact. While it is tempting

142 David Rudovsky & Lawrence Rosenthal, Debate: The Constitutionality of Stop-and-Frisk in

New York City, 162 U. PA. L. REV. ONLINE 117, 120-21 (2013).
143 The underrepresentation of white people would likely cause the opposite effect, though it

could be counter-balanced if, say, the police stopped a subset of white people who were significantly
more likely to be engaged in criminal behavior.
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to say that technical tools could allow perfect enforcement of a rule barring
the use of protected attributes, this may in fact be an undesirable policy
regime. As previously noted, there may be cases where allowing an algorithm
to consider protected class status can actually make outcomes fairer. This may
require a doctrinal shift, as, in many cases, consideration of protected status
in a decision is presumptively a legal harm.

Third and finally, there is the problem of "masking": intentional
discrimination disguised as one of the above-mentioned forms of unintentional
discrimination. A prejudiced decisionmaker could skew the training data or
pick proxies for protected classes with the intent of generating discriminatory
results.144 More pernicious masking could occur at the level of designing a
machine learning model, which is a very human-driven, exploratory process.145

B. Technical Tools for Nondiscrimination

As mentioned in the previous Part, transparency and after-the-fact
auditing can only go so far in preventing undesired results. Ideally, those
types of ex post analyses should be used in tandem with powerful ex ante
techniques during the design of the algorithm. The general strategy we
proposed in Section II.D-publishing commitments and using zero-knowledge
proofs to ensure that commitments correspond to the system's decisionmaking
actions-can certify any property of the decision algorithm that can be checked
by a second examination algorithm.146 Such properties can be verified by
making the examination algorithm public and giving a zero-knowledge proof
that, if the examination algorithm were run on the secret decision algorithm,
it would report that the decision algorithm has the desired property. The
question then is which, if any, properties policymakers would want to build
into particular decision systems.

A simple example of such a property would be the exclusion of a certain
input from the decisionmaking process. A decisionmaker could show that a
particular algorithm does not directly use sensitive or prohibited classes of
information, such as gender, race, religion, or medical status.

The use of machine learning adds another wrinkle because decision rules
evolve on the fly-they are not specified directly, but are inferred from the
data. However, the absence of static, predetermined decision rules does not
necessarily preclude the use of our certification strategy. Computer scientists,

144 See Barocas & Selbst, supra note 8, at 692-93 (describing ways to intentionally bias data

collection in order to generate a preferred result).
145 In other words, the machine learning model would be intentionally coded to develop bias.
146 Such an algorithm might be a tool for verifying properties of software or simply a software

test. See supra Part I (discussing software testing and software verification in greater detail).
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including Hardt,147 Dwork et al.,148 and others, have developed techniques
that formalize fairness in such a way that they can constrain the machine
learning process so that learned decision rules have specific well-defined
fairness properties. These methods also can be incorporated in the design of
systems such that their inclusion in the decisionmaking process implies the
incorporation of fairness properties that can be certified and proven.149

We describe three such methods below. First, decision systems can
incorporate randomness to maximize the gain of learning from experience.
Second, computer science offers many emerging approaches to maximize
fairness, defined in a variety of ways, in machine learning systems. At a high
level, all of these definitions reduce to the proposition that similarly situated
people should be treated similarly, without regard to sensitive attributes. As
we shall see, simple blindness to these attributes is not sufficient to guarantee
even this simplified notion of fairness. Finally, related ideas from differential
privacy can also be used to guarantee that protected status could not have
been a substantial factor in certain decisions.

Those who use algorithmic decisionmaking today regularly make assertions
about properties of these algorithms without proving them. This likely occurs
because they are required by law to disclose certain facts about their decision
process to regulators and consumers,150 they simply want to generate good
will, or they demonstrate better behavior than a competitor. But without
proof, these assertions are just words on paper, subject to challenge by
skeptical regulators and disbelief by skeptical consumers. This skepticism is
not entirely unfounded: these assertions have proved false in the past. Digital
evidence, such as zero-knowledge proofs, gives a direct connection between
the fact being asserted and the technical mechanism of decisionmaking. This
proof provides the consumer with a high assurance that the assertion
proffered relates meaningfully to the facts on the ground.

1. Learning from Experience

As mentioned in Section I.B, incorporating randomness into an algorithm
can give it flexibility to operate outside of the environment for which it was
designed. Similarly, randomness can prevent hidden biases in the design or

147 Hardt, supra note 139.

148 Dwork et al., supra note 140.
149 We concentrate on certification and proof of a system property to an overseer, observer, or

participant. However, these tools are also valuable for compliance (since proofs can certify to the

implementer of a system that the system is working as intended) and for demonstration that a

decisionmaker will be able to show how and why he or she used certain data after the fact in case of

an audit or dispute.
150 See, e.g., 12 C.F.R §§ 203.4-5 (2015) (providing requirements for the compilation,

disclosure, and reporting of loan data).
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deployment of an algorithm from leading to consistent discriminatory
outcomes. There is a large and rich literature on how to maximally learn from
previous data and how to use random choices to ensure that a model is as
faithful as possible to the real world.151

Consider a machine learning algorithm for hiring that is trained using a
biased set of initial data indicating that women are weak candidates, even
though gender does not predict job performance among the full population.
If the resulting model would hire mostly men, the algorithm for hiring can
create a self-fulfilling prophecy in which it finds that characteristics of
successful hires correlate strongly with proxies for gender. But, if the
algorithm is designed to incorporate an element of randomness such that
some candidates who are not predicted to do well get hired (and have their
performance tracked), the validity of the initial assumptions can be tested and
the accuracy and fairness of the entire system will benefit over time. By
occasionally guessing about candidates for whom the model cannot make
confident predictions, the model can gather additional data and evolve to
become more faithful to the real world.

Similarly, randomness is often necessary when training machine learning
models. Models may become too specialized or specific to the data used for
training, a problem called "overfitting." Making random choices during the
model's training process can prevent this problem. Likewise, models may find
a decision rule is well-suited for some portion of the input, but not the best
rule overall. Randomness can also help avoid this bias. Consider, for example,
a credit-scoring model trained initially on a biased set of data that underrates
the creditworthiness of a minority group. Even if the model is the best
possible decision rule for a majority of the population similar to the biased
input data, the model may unfairly deny access to credit to members of that
minority group. In addition to the discrimination, the use of this model would
deny creditors business opportunities with the unfairly rejected individuals.
Here again, designing the model to occasionally guess randomly, while
tracking expected versus actual performance, could improve the model's
faithfulness to the population on which it is actually used rather than the
biased population on which it was trained. The information from this
injection of randomness can be fed back to the model to improve the accuracy
and fairness of the system overall.

151 This literature is divided between the machine learning research community in computer

science and the study of optimal decisionmaking in statistics. See supra note 63.
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2. Fair Machine Learning

One commonly understood way to demonstrate that a decision process is
independent of sensitive attributes is to preclude the use of those sensitive
attributes from consideration. For example, race, gender, and income may be
excluded from a decisionmaking process to assert that the process is "race-blind,"
"gender-blind," or "income-blind."152 From a technical perspective, however, this
approach is naive. Blindness to a sensitive attribute has long been recognized as
an insufficient approach to making a process fair. The excluded or "protected"
attributes can often be implicit in other nonexcluded attributes. For example,
even when race is excluded as a valid criterion for a credit decision, redlining
may occur when a zip code is used as proxy that closely aligns with race. 153

This type of input "blindness" is insufficient to assure fairness and
compliance with substantive policy choices. Although there are many
conceptions of what defines fairness, we consider here a definition of fairness
in which similarly situated people are given similar treatment-that is, a fair
process will give similar participants a similar probability of receiving each
possible outcome. This is the core principle of a developing literature on fair
classification in machine learning, an area first formalized by Dwork, Hardt,
Pitassi, Reingold, and Zemel.154 This work stems from a longer line of
research on mechanisms for data privacy.155 We further describe the
relationship between fairness in the use of data and privacy below.

The principle that similar people should be treated similarly is often
called individualfairness, and it is distinct from group fairness in the sense that
a process can be fair for individuals without being fair for groups.1 5 6 Although

it is almost certainly more policy-salient, group fairness is more difficult to
define and achieve. The most commonly studied notion of group fairness is
statistical parity, the idea that an equal fraction of each group should receive

152 See, e.g., 12 C.F.R. § 1002.5 (b) (2015) ("A creditor shall not inquire about the race, color,

religion, national origin, or sex of an applicant or any other person in connection with a credit

transaction."); id. § 1002.6(b)( 9 ) ("[A] creditor shall not consider race, color, religion, national

origin, or sex (or an applicant's or other person's decision not to provide the information) in any

aspect of a credit transaction.").
153 See Jessica Silver-Greenberg, New York Accuses Evans Bank of Redlining, N.Y. TIMES:

DEALBOOK (Sept. 2, 2014), http://dealbook.nytimes.com/2014/09/02/new-york-set-to-accuse-evans-

bank-of-redlining [https://perma.cc/3YFA-6N4J] (detailing a redlining accusation in great detail).
154 Dwork et al., supra note 14o.
155 Specifically, the work of Dwork et al. is a generalization of ideas originally presented in

Cynthia Dwork, Differential PriVacy, 2oo6 PROC. 33RD INT'L COLLOQUIUM ON AUTOMATA,

LANGUAGES & PROGRAMMING 1. As discussed below, fairness can be viewed as the property that

sensitive or protected status attributes cannot be inferred from decision outcomes, which is very

much a privacy property.

156 Sometimes, a more restrictive notion of individual fairness implies group fairness. Id.
Intuitively, this is because if people who are sufficiently similar are treated sufficiently similarly,

there is no way to construct a minority of people who are treated in a systematically different way.
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each possible outcome. While statistical parity seems like a desirable policy
because it eliminates redundant or proxy encodings of sensitive attributes, it
is an imperfect notion of fairness. For example, statistical parity says nothing
about whether a process addresses the "right" subset of a group. Imagine an
advertisement for an expensive resort: we would not expect that showing the
advertisement to the same number of people in each income bracket would
lead to the same number of people clicking on the ad or buying the associated
product. For example, a malicious advertiser wishing to exclude a minority
group from a resort could design its advertising program to maximize the
likelihood of conversion for the desired group while minimizing the likelihood
that the ad will result in a sale to the disfavored group. In the same vein, if a
company aimed to improve the diversity of its staff by offering the same
proportion of interviews to candidates with minority backgrounds as are
minority candidate applications, that is no guarantee that the number of
people hired will reflect the population of applicants or the population in
general. And the company could hide discriminatory practices by inviting
only unqualified members of the minority group to apply, effectively creating
a self-fulfilling prophecy for decision rules established by machine learning.

The work of Dwork et al. identifies an additional interesting problem with
the "fairness through blindness" approach: by remaining blind to sensitive
attributes, a classification rule can select exactly the opposite of what is
intended.157 Consider, for example, a system that classifies profiles in a social
network as representing either real or fake people based on the uniqueness of
their names. In European cultures, from which a majority of the profiles
come, names are built by making choices from a relatively small set of possible
first and last names, so a name which is unique across this population might
be suspected to be fake. However, other cultures (especially Native American
cultures) value unique names, so it is common for people in these cultures to
have names that are not shared with anyone else. Since a majority of accounts
will come from the majority of the population, for which unique names are
rare, any classification based on the uniqueness of names will inherently
classify real minority profiles as fake at a higher rate than majority profiles,158
and may also misidentify fake profiles using names drawn from the minority
population as real. This unfairness could be remedied if the system were
"aware" of the minority status of a name under consideration, since then the

157 See Dwork et al., supra note 140.
158 That is, the minority group will have a higher false positive rate.
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algorithm could know whether the implication of a unique name is that a
profile is very likely to be fake or very likely to be real.159

This insight explains why the approach taken by Dwork et al. is to enforce
similar probabilities of each possible outcome on similar people, requiring
that the aggregate difference in probability of any individual receiving any
particular outcome be limited.160 Specifically, Dwork et al. require that this
difference in chance of outcome be less than the difference between
individuals subject to classification.161 This requires a mathematically precise
notion of how "different" people are, which might be a score of some kind or
might naturally arise from the data in question.162 This notion of similarity
must also capture all relevant features, including possibly sensitive or protective
attributes such as minority status, gender, or medical history. Because this
approach requires the collection and explicit use of sensitive attributes, the
work describes its definition of fairness as fairness through awareness.163 While
the work of Dwork et al. provides only a theoretical framework for building
fair classifiers, others have used it to build practical systems that perform
almost as well as classifiers that are not modified for fairness.

The work of Dwork et al. also provides the theoretical basis for a notion
of fair affirmative action, the idea that imposing an external constraint on the
number of people from particular subgroups who are given particular
classifications should have a minimal impact on the principle that similar
people are treated similarly. This provides a technique for forcing a fairness
requirement such as statistical parity even when it will not arise naturally
from some classifier.

A more direct approach to making a machine learning process fair is to
modify or select the input data in such a way that the output satisfies some
fairness property. For example, in order to make sure that a classifier does not
over-reflect the minority status of some group, we could select extra training
samples from that group or duplicate samples we already have. In either case,

159 In this case, differential treatment based on a protected status attribute improves the

performance of the automated decision system in a way that requires that the system know and make

use of the value of that attribute.
160 See Dwork et al., supra note i4o, at 215 (explaining that fairness can be captured under the

principle that "two individuals who are similar with respect to a particular task should be classified

similarly").
161 This is formalized as the proposition that the difference in probability distributions between

outcomes for each subgroup of the population being classified is less than the difference between

those groups, for a suitable measurement of the difference between groups. For technical reasons,

this particular formulation is mathematically convenient, although different bounds might also be

useful. For the formal mathematical definition, see id. at 216.
162 For example, if the physical location of subjects is a factor in classification, we might

naturally use the distance between subjects as one measure of their similarity.
163 Dwork et al., supra note i4o, at 215.
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care must be taken to avoid biasing the training process in some other way or
overfitting the model to the nonrepresentative data.

Other work focuses on fair representations of data sets. For example, we can
take data points and assign them to clusters, or groups of close-together points,
treating each cluster as a prototypical example of some portion of the original
data set. This is the approach taken by Zemel, Wu, Swersky, Pitassi, and
Dwork.164 Specifically, Zemel et al. show how to generate such prototypical
representations automatically and in a way that guarantees statistical parity
for any subgroup in the original data. In particular, the probability that any
person in the protected group is mapped to any particular prototype is equal
to the probability that any person not from the protected group is mapped to
the same prototype.1 6 5 Therefore, classification procedures which have access
only to the prototypes must necessarily not discriminate, since they cannot
tell whether the prototype primarily represents protected or unprotected
individuals. Zemel et al. test their model on many realistic data sets, including
the Heritage Health Prize data set, and determine that it performs nearly as
well as best-of-breed competing methods while ensuring substantial levels of
fairness.166 This technique allows for a kind of "fair data disclosure," in which
disclosing only the prototypes allows any sort of analysis, fair or unfair, to be
run on the data set to generate fair results.

A related approach is to use a technique from machine learning called
regularization, which involves modifying the model training process to yield
models that are more generalizable by introducing a penalty associated with
undesirable model attributes or behaviors. This approach has also led to many
useful modifications to standard tools in the machine learning repertoire,
yielding effective and efficient fair classifiers.167

The work of Zemel et al. suggests a related approach, which is also used
in practice: the approach of generatingfair synthetic data. Given any set of
data, we can generate new data such that no classifier can tell whether a
randomly chosen input was drawn from the real data or the fake data.
Furthermore, we can use approaches like that of Zemel et al. to ensure that
the new data are at once representative of the original data and also fair for
individuals or subgroups. Because synthetic data are randomly generated,
they are useful in situations where training a classifier on real data would
create privacy concerns. Also, synthetic data can be made public for others to

164 Richard Zemel et al., Learning Fair Representations, 28 PROC. 3oTH INT'L CONF. ON

MACHINE LEARNING 325 (2013).
165 Id.
166 Id.
167 See, e.g., Toshihiro Kamishima et al., Fairness-Aware Learning Through Regularization

Approach, 2011 PROC. 3RD IEEE INT'L WORKSHOP ON PRIVACY ASPECTS DATA MINING 643

(describing a model in which two types of regularizers were adopted to enforce fair classification).
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use, although care must be taken to avoid allowing others to infer facts about
the underlying real data. Such model inversion attacks68 have been

demonstrated in practice, along with other inference or deanonymization attacks
that allow sophisticated conclusions without direct access to the actual data
that give rise to the conclusions.169

All of these approaches demonstrate that it is possible to build a wide
range of definitions of fairness into a wide variety of data analysis and
classification systems, at least to the extent that a definition of fairness is
known or can be approximated in advance. There are no bright-line rules that
allow the designer or operator of a machine learning system to guarantee that
the system's behavior is compliant with antidiscrimination laws. Nor do we
believe that such rules can or even should exist. It is not for technologists to
define an ex ante notion of fairness that applies in all cases or even just for a
specific system. Rather, fairness must be determined contextually and often
must be reviewed ex post. Regardless, it is certainly not impossible to build
fairness into automated decision systems, which shows that unconstrained use
of data analysis is not always necessary. Uses of data that do not employ
methods to investigate or ensure fairness must account for their decision
policies in some other way.

Many of these approaches rely on the insufficient notion of group fairness
by statistical parity. To the extent that more technical research can help to
address the problem of unfairness in big data analysis, it is by expanding the
repertoire of definitions of group fairness that can be usefully applied in
practice and by providing better exploratory and explanatory tools for
comparing different notions of fairness. From a public policy perspective, it
would be extremely useful to system designers to have a set of rules,
standards, or best practices that explain what notions of fairness should be
used in specific real-world applications.

A complementary notion to machine learning systems that can guarantee
prespecified, formal fairness properties is the work of Rudin on machine
learning systems that are interpretable.170 Such systems generate models that
can be used to classify individuals, but also explanations for why those

168 See Matthew Fredrikson et al., Privacy in Pharmacogenetics: An End-to-End Case Study of

Personalized Warfarin Dosing, 2014 PROC. 23RD USENIX SECURITY SYMP. 17 (describing privacy

risks in which attackers can predict a patient's genetic markers if provided with the model and some

demographic information).
169 For an overview of these techniques, see Arvind Narayanan & Edward W Felten, No Silver

Bullet: De-identification Still Doesn't Work (July 9, 2014), http://randomwalker.info/publications/

no-silver-bullet-de-identification.pdf [https://perma.cc/VT2G-7ACG], and Arvind Narayanan et

al., A Precautionary Approach to Big Data Privacy (Mar. 19, 2015), http://randomwalker.info/

publications/precautionary.pdf [https://perma.cc/FQR3-2MM2].
170 Cynthia Rudin, Algorithms for Interpretable Machine Learning, 2014 20TH ACM SIGKDD

CONE. ON KNOWLEDGE DISCOVERY & DATA MINING 1519.
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classifications were made. These explanations can be reviewed later to
understand why the model behaves a certain way, and in some cases how
changes in the input data would affect the model's decision. These
explanations can be extremely valuable to experts and oversight authorities,
who wish to avoid treating models as black boxes.

3. Discrimination, Data Use, and Privacy

A different way to define whether a classification is fair is to say that we
cannot tell from the outcome whether the subject was a member of a
protected group or not. That is, if an individual's outcome does not allow us
to predict that individual's attributes any better than we could by guessing
them with no information, we can say that outcome was assigned fairly. To
see why this is so, observe the contrary: if the fact that an individual was
denied a loan from a particular bank tells you that this individual is more
likely to live in a certain neighborhood, this implies that you hold a strong
belief that the bank denies credit to residents of this neighborhood and hence
a strong belief that the bank makes decisions based on factors other than the
objective credit risk presented by applicants.

Thus, fairness can be seen as a form of an information hiding requirement
similar to privacy. If we accept that a fair decision does not allow us to infer
the attributes of a decision subject, we are forced to conclude that fairness is
protecting the privacy of those attributes.

Indeed, it is often the case that people are more concerned that their
information is used to make some decision or classify them in some way than
they are that the information is known or shared. This concern relates to the
famous conception of privacy as the "right to be let alone," in that generally
people are concerned with the idea that disclosure interrupts their enjoyment
of an "inviolate personality."171

Data use concerns also surface in the seminal work of Solove, who refers
to concerns about "exclusion" in "information processing," or the lack of
disclosure to and control by the subject of data processing and "distortion" of
a subject's reputation byway of "information dissemination."172 Solove argues
that these problems can be countered by giving subjects knowledge of and
control over their own data.173 In this framework, the predictive models of
automated systems, which might use seemingly innocuous or natural
behaviors as inputs, create anxiety on the part of data subjects. We propose a
complementary approach: if a system's designer can prove to an oversight

171 Samuel D. Warren & Louis D. Brandeis, The Right to Privacy, 4 HARV. L. REV. 193, 205 (1890).
172 Daniel J. Solove, A Taxonomy of rivacy, 154 U. PA. L. REV. 477, 521, 546 (2006).
173 See id. at 546 (detailing privacy statutes that allow individuals to access and correct

information that is maintained by government agencies).
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entity or to each data subject that the sorts of behaviors that cause these
anxieties are simply not possible behaviors of the system, then the use of these
data will be more acceptable.

We can draw an analogy between data analysis and classification problems
and the more familiar data aggregation and querying problems that are much
discussed in the privacy literature. Decisions about an individual represent
(potentially private) information about that individual (i.e., one might infer
the input data from the decision or the decision itself may be of a private
nature), and this raises concerns for privacy. In essence, privacy may be at
risk from an automated decision that reveals sensitive information just like
fairness may be at risk from an automated decision. In this analogy, a vendor
or agency using a model to draw automated decisions wants those decisions
to be as accurate as possible, corresponding to the idea in privacy that it is
the goal of a data analyst to build as complete and accurate a picture of the
data subject as is feasible.

A naive approach to making a data set private is to delete "personally
identifying information" from the data set. This is analogous to the current
practice of making data analysis fair by removing protected attributes from
the input data. However, both approaches fail to provide their promised
protections. 174 The failure in fairness is perhaps less surprising than it is in
privacy-discrimination law has known for decades about the problem of
proxy encodings of protected attributes and their use for making inferences
about protected status that may lead to adverse, discriminatory effects.175

The work of Hardt176 relates the work on fairness by Dwork et al.177 to the

work on differentialprivacy by Dwork.178 As differential privacy is a well-founded
notion of protection against inferences and the recovery of an individual identity
from "anonymous" data, so are formal fairness properties for automated decision
systems sound notions of fairness for individuals and a theoretical framework
on which to ground more complicated notions of fairness for protected groups.

174 Reidentification of individuals based on inferences from disparate data sets is a growing

and important concern that has spawned a large literature in both computer science and law. See

Ohm, supra note 71, at 1704 (arguing that developments in computer science demonstrate that "[dlata

can be either useful or perfectly anonymous but never both," and that such developments should "trigger

a sea change" in legal scholarship).
175 For example, the law explicitly forbids the (sole) use of certain attributes that are likely to

be highly correlated with protected status categories, as in protections against redlining. See, e.g., 12
C.F.R. § 1002.5 (b) (2015) ("A creditor shall not inquire about the race, color, religion, national origin,

or sex of an applicant or any other person in connection with a credit transaction."); id.

§ 1002.6(b)(9 ) ("[A] creditor shall not consider race, color, religion, national origin, or sex (or an

applicant's or other person's decision not to provide the information) in any aspect of a credit

transaction.").

176 Hardt, supra note 139.
177 Dwork et al., supra note 140.

178 Dwork, supra note 155.

2017] 691



University of Pennsylvania Law Review

The many techniques of building fair data analysis and classification
systems described above mostly require decisionmakers to have access to
protected status information, at least during the design phase of the
algorithm. However, in many cases, concerns about misuse, reuse, or abuse of
this information have led to a policy regime where decisionmakers are
explicitly barred from using such information. The deployment of these
technical tools would require a policy change.179 The techniques described
above could be used to make such a change less prone to engendering the very
real concerns of data abuses that have led to the current regime.

C. Antidiscrimination Law and Algorithmic Decisionmaking

The goal of Part II-procedural regularity-is relatively simple from a
legal standpoint. Procedural regularity is a core idea behind due process: the
state cannot single out an individual for a different procedure.180 An argument
that governance measures ensuring algorithmic procedural regularity are
required by due process is more tenuous,181 but an agency that implements
such measures will not risk violating a legal requirement.

In contrast, governance of algorithms to promote nondiscrimination runs
into the complicated field of antidiscrimination law. Here, the movement
toward a colorblind interpretation of equal protection has created friction
with the precedents involving disparate impact. We argue that, given the
current state of antidiscrimination law, designing for nondiscrimination is
important because users of algorithms may be legally barred from revising
processes to correct for discrimination after the fact, and technical tools offer
solutions to help.

1. Ricci v. DeStefano: The Tensions Between Equal Protection,
Disparate Treatment, and Disparate Impact

Antidiscrimination law is based upon both the constitutional guarantee of equal
protectionl82 and supplemental statutory protections. Modern interpretations

179 One example is the privacy regime created by the Health Insurance Portability and

Accountability Act, see supra note 78, which forbids the disclosure of certain types of covered

information beyond those for which the data subject was previously given notice and which limits

disclosure to covered entities subject to the same restrictions.
180 See, e.g., Arthur S. Miller, An Affirmative Thrust to Due Process of Law?, 30 GEO. WASH. L.

REV. 399, 403 (1962) ("Procedural due process ('adherence to procedural regularity'), as we have

often been told by Supreme Court justices, is the very cornerstone of individual liberties.").
181 See Citron, supra note 6, at 1278-13oo (arguing that current procedural protections are

inadequate for automated decisionmaking).
182 See U.S. CONST. amend. XIV, § i ("No State shall ... deny to any person within its

jurisdiction the equal protection of the laws."). The Equal Protection Clause has also been interpreted
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of the Equal Protection Clause generally have been divided into two camps:
those who believe in a color-blind Constitution-protecting individualized
assessments and eschewing any evaluations based on group status-and those
who support antisubordination attempts to remedy inequalities between
groups.183 The general trend has been toward colorblindness.184

For statutory measures, we will focus on Title VII of the Civil Rights Act
of 1964. 185 Under Title VII, remedies are available for disparate treatment-
discriminatory intent or the formal application of different rules to people of
different groups-and disparate impact-results that differ for different
groups.86 Algorithmic decisionmaking blurs the definitions of disparate
treatment and disparate impact and poses a number of open questions.187

Is it disparate treatment when the inputs used are a proxy for membership
in a protected class? Different rules are effectively applied to different groups
in this case, but that difference may have no effect on the outcomes.188 If the
people responsible for a decision know that an algorithm behaves in a way
that has disparate impact, does that mean that they intend a discriminatory
result?189 If an algorithm generates poor outcomes for a group of people, how

accurate does the algorithm need to be (and how carefully does the
decisionmaker need to test alternative algorithms) before the decisionmaker

to apply to the federal government through the Due Process Clause of the Fifth Amendment. See, e.g.,

Kenji Yoshino, he New Equal Protection, 124 HARV. L. REV. 747, 748 n.10 (2010).

183 See, e.g., Reva B. Siegel, From Colorblindness to Antibalkanization: An Emerging Ground of

Decision in Race Equality Cases, 120 YALE L.J. 1278, 1281 (2011) (describing this binary as the common

interpretation of equal protection jurisprudence).
184 See he Supreme Court, 2oo8 Term-Leading Cases, 123 HARV. L. REV. 153, 289 (2009) ("The

Court's conception of equal protection turns largely on its swing voter, Justice Kennedy, who appears

to support a moderate version of the colorblind Constitution."). But see Reva B. Siegel, he Supreme

Court, 2012 Term-Foreword: Equality Divided, 127 HARV. L. REV. 1, 6 (2013) (agreeing that "[s]hifts

in equal protection oversight . . . are continuing to grow" but arguing that these changes are "neither

colorblind nor evenhanded" because "the Court has encouraged majority claimants to make

discriminatory purpose arguments about civil rights law based on inferences the Roberts Court

would flatly deny if minority claimants were bringing discriminatory purpose challenges to the

criminal law").
185 42 U.S.C. §§ 2000e-e-17 (2012). Title VII applies to employment discrimination on the

basis of race, national origin, gender, and religion. The disparate impact framework is also used for

discrimination in housing, employment, public entity, public accommodation, and

telecommunications (with respect to people with disabilities). See Tex. Dep't of Hous. & Cmty.

Affairs v. Inclusive Cmtys. Project, Inc., 135 S. Ct. 2507 (2015) (holding that disparate impact claims

are cognizable under the Fair Housing Act); Lopez v. Pac. Mar. Ass'n, 657 F.3 d 762 (9 th Cir. 2011)

(deciding a disparate impact claim brought under the Americans with Disabilities Act).
186 See Richard Primus, The Future of Disparate Impact, to8 MICH. L. REV. 1341, 1350-51 & n.56

(2010) (describing the evolution of the "disparate impact" and "disparate treatment" terminology,

and the types of discrimination they are associated with).
187 See Barocas & Selbst, supra note 8, at 694-714 (noting the ways in which algorithmic data

mining techniques can lead to unintentional discrimination against historically prejudiced groups).
188 Id. at 695.

189 Id. at 700.
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can escape disparate impact liability because the factors used are job-related?l9o
If, as noted in subsection III.B.2, knowledge of class membership can be used
to improve the fairness of outcomes for members of all classes, should doing
so be considered disparate treatment?

These doctrines were recently considered in Ricci v. DeStefano, in which
the Supreme Court held that "before an employer can engage in intentional
discrimination for the asserted purpose of avoiding or remedying an
unintentional disparate impact, the employer must have a strong basis in
evidence to believe it will be subject to disparate-impact liability if it fails to
take the race-conscious, discriminatory action."191 At issue was the City of
New Haven's test for firefighter promotions; though the test had been
constructed in an attempt to ensure there was no discrimination by race,192
the pass rates for minorities were about half of the pass rate for whites.193 The
New Haven Civil Service Board did not certify the results of the test (and
validate the promotions) due to concerns about fairness and disparate impact
liability for the City.194

Ricci demonstrates the tension between disparate treatment and disparate
impact. Facially neutral policies can produce unequal results for protected
classes, but remedying that disparate impact would require the state to treat
people differently based on class membership, which Ricci forbids. Ricci also
hints at the difficulties in squaring the Court's move toward a colorblind
interpretation of the Equal Protection Clause and the doctrine of disparate
impact. The holding does not directly address the constitutional issue, but
Justice Scalia's concurrence does note that the "war between disparate impact
and equal protection will be waged sooner or later."195 Both of these doctrinal
tensions are of concern to lawmakers and policymakers.

2. Ricci Impels Designing for Nondiscrimination

Although Ricci has generated wide-ranging conversation about equal
protection, disparate treatment, and disparate impact, we wish to emphasize
its implications for the governance of decision algorithms for processes where
nondiscrimination is a goal. The holding in Ricci suggests that we cannot
solely rely on auditing for legal reasons in addition to the reasons discussed
in Section II.B. If an agency runs an algorithm that has a disparate impact,
correcting those results after the fact will trigger the same kind of analysis as

190 Id. at 707.

191 557 U.S. 55, 585 (2009).
192 Id. at 565.
193 Id. at 586-87.
194 Id. at 579.
195 Id. at 595-96 (Scalia, J., concurring).
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New Haven's rejection of its firefighter test results. It is even possible that
the Court will "subject some range of disparate impact compliance efforts to
strict scrutiny,"196 a high bar that will be difficult to satisfy in most cases.

The legal difficulties with correcting discriminatory algorithms ex post
make measures to design algorithms for nondiscrimination even more
important. The Court in Ricci took no issue with New Haven's process of
designing the test with an eye toward nondiscrimination, reasoning that "Title
VII does not prohibit an employer from considering, before administering a test
or practice, how to design that test or practice in order to provide a fair
opportunity for all individuals, regardless of their race."197 However, "once
that process has been established and employers have made clear their
selection criteria, they may not then invalidate the test results, thus upsetting
an employee's legitimate expectation not to be judged on the basis of race."198

The uneasy fit of algorithmic decisionmaking into the disparate treatment/
disparate impact framework does mean that someone could allege disparate
treatment because the design of the algorithm includes inputs that are a proxy
for class membership, resulting in a formal application of different rules to
different groups of people. However, such a claim would be valid against
virtually any system with a significant number of inputs. It seems more likely
that courts would reject the formal-rule subset of disparate treatment for
algorithmic decisions than that they would hold the majority of algorithmic
decisionmaking to constitute disparate treatment. In the end, incorporating
nondiscrimination in the initial design of algorithms is the safest path that
decisionmakers can take, and we should encourage the development and
deployment of technical tools to aid in that design.

IV. FOSTERING COLLABORATION ACROSS COMPUTER SCIENCE,
LAW, AND POLICY

In this Part, we consider how the types of technological assurance described
in previous Parts relate to mechanisms of oversight in law and public policy. In
technical approaches, it is traditional to have a detailed, well-defined specification
of the behavior of a system for all types of situations. In lawmaking and the
application of public policy, it is normal, and even encouraged, for rules to be
left open to interpretation, with details filled by human judgment emerging
from disputes in specific cases that are resolved after the fact. We offer
recommendations for dealing with this apparent mismatch, arguing for
greater collaboration between experts in these two different fields.

196 The Supreme Court, 2oo8 Term-Leading Cases, supra note 184, at 290.
197 Ricci, 557 U.S. at 585.
198 Id.
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We emphasize that computer scientists cannot assume that the policy
process will give them a meaningful, universal, and self-consistent theory of
fairness to use as a specification for algorithms. There are structural, political,
and jurisprudential reasons why no such theory exists today. Likewise, the
policy process would likely not accept such a theory if it were generated by
computer scientists.

At the same time, lawmakers and policymakers will need to adapt in light
of these new technologies. We highlight changes that stem from automated
decisionmaking. First, choices made when designing computer systems
embed specific policy decisions and values in those systems whether or not
they provide for accountability. Algorithms can, nevertheless, permit direct
accountability to the public or to other third parties, despite the fact that full
transparency is neither sufficient nor always necessary for accountability. For
both groups, we note that the interplay between these areas will raise new
questions and may generate new insights into what the goals of these
decisionmaking processes should be.

A. Recommendations for Computer Scientists: Design for After-the-Fact Oversight

Computer scientists may tend to think of accountability in terms of
compliance with a detailed specification set forth before the creation of an
algorithm. For example, it is typical for programmers to define bugs based on
the specification for a program-anything that differs from the specification
is a bug; anything that follows it is a feature.199

This Section is intended to inform computer scientists that no one will
remove all of the ambiguities and offer them a clear, complete specification.
Although lawmakers and policymakers can offer clarifications or other changes
to guide the work done by developers,200 drafters may be unable to remove
certain ambiguities for political reasons or be unwilling to resolve details to
meet flexibility objectives. As such, computer scientists must account for the
lack of precision-and the corresponding need for after-the-fact oversight by
courts or other reviewers-when designing decisionmaking algorithms.

A computer scientist's mindset can conflict deeply with many sources of
authority to which developers may be responsible. Public opinion and social

199 See, e.g., Michael Dubakov, Visual Specifications, MEDIUM (Oct. 26, 2013), https://medium.

com/@mdubakov/visual-specifications-d57822a4 85f [https://perma.cc/SE46-6B2C] ("No specs? No

bugs."); SF, What Is the Difference Between Bug and New Feature in Terms of Segregation of

Responsibilities?, STACKEXCHANGE (July 12, 2011, 6:51 AM), http://programmers.stackexchange.com/

questions/92081/what-is-the-difference-between-bug-and-new-feature-in-terms-of-segregation-of-re

[https://perma.cc/PPM6-HFAA] ("You could put an artificial barrier: if it's against specs, it's a bug.

If it requires changing specs ... it's a feature.").

200 See infra Section I.B.
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norms are inherently not precisely specified. The corporate requirements to
satisfy one's supervisor (or one's supervisor's supervisor) may not be clear.
Perhaps most importantly and least intuitively for computer scientists, the
operations of U.S. law and public policy also work against clear specifications.
These processes often deliberately create ambiguous laws and guidance, leaving
details-or sometimes even major concepts-open to interpretation.201

One cause of this ambiguity is the political reality of legislation.
Legislators may be unable to gather majority support to agree on the details
of a proposed law, but may be able to get a majority of votes to pass relatively
vague language that leaves various terms and conditions unspecified.202 For
example, different legislators may support conflicting specific proposals that
can be encompassed by a more general bill.203 Even legislators who do not
know precisely what they want may still object to a particular proposed detail;
each detail that caused sufficient objections would need to be stripped out of
a bill before it could become law.

Another explanation of ambiguity is that legislators may have uncertainty
about the situations to which a law or policy will apply. Drafters may worry
that they have not fully considered all of the possibilities. This creates an
incentive to build in enough flexibility to cover unexpected circumstances
that currently exist or may exist in the future.204 The U.S. Constitution is
often held up as a model in this regard: generalized provisions for governance
and individual rights continue to be applicable even as the landscape of
society changes dramatically.205

Finally, ambiguity may stem from shared uncertainty about how best to
solve even a known problem. Here, drafters may feel that they know what

201 See, e.g., Marbury v. Madison, 5 U.S. (1 Cranch) 137 (1803) (establishing the practice of
judicial review, on which the Constitution was silent); see also 47 U.S.C. § 222(C)(1) (2012) (requiring

a telecommunications carrier to get the "approval of the customer" to use or disclose customer

proprietary network information, and requiring the Federal Communications Commission to define

"approval").

202 See Victoria F. Nourse & Jane S. Schacter, The Politics of Legislative Drafting: A Congressional
Case Study, 77 N.Y.U. L. REV. 575, 593 (2002) ("Several staffers thought that pressures of time, and
the political imperative to get a bill 'done,' bred ambiguity. Indeed, one staffer emphasized that while

it was well and good to draft a bill clearly, there was no guarantee that the clear language would be
passed by the House or make it through conference.").

203 See Richard L. Hasen, Vote Buying, 88 CALIF. L. REV. 1323, 1339 (2000) (describing the

practice of "legislative logrolling").
204 See, e.g., 17 U.S.C. § 1201 (2012) (granting the Copyright Office the power to create

exemptions from the statute's prohibition on anti-circumvention).

205 See DAVID A. STRAUSS, THE LIVING CONSTITUTION (2010). Laws governing law

enforcement access to personal electronic records are often cited as a counterexample, with over-

specific provisions in the Electronic Communications Privacy Act, 18 U.S.C. §§ 2510-2704 (2012),

that fail to account for a shift in technology to a regime where most records reside with third party

service providers, not users' own computers. For a more detailed explanation, see Orin S. Kerr,

Applying the Fourth Amendment to the Internet: A General Approach, 62 STAN. L. REV. 1005 (2010).
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situations will arise but still not know how they want to deal with them. They
may, in effect, choose to delegate authority to other parties by underspecifying
particular aspects of a law or policy. Vagueness supports experimentation to
help determine what methods are most effective or desirable.206

The United States has a long history of dealing with these ambiguities
through after-the-fact and retroactive oversight by the courts.20 7 In our

common law system, ambiguities and uncertainties are left unaddressed until
there is a dispute and their resolution becomes necessary. Disagreements
about the application of a law or regulation to a specific set of facts are
resolved through cases, and the areas of ambiguity are clarified over time by
the accretion of many rulings on specific situations.208 Even when statutes and
regulations may have specific and detailed language, they are interpreted
through cases-with extensive deference often given to the expertise of
administrative agencies.209 Those cases form binding precedents that, in the
U.S. common law system, are an additional source of legal authority alongside
the statutes themselves.210 The gradual development and extension of law and
regulations through cases with specific fact patterns allows for careful
consideration of meaning and effects at a level of granularity that is usually
impossible to reach during the drafting process.211

In practice, these characteristics imply that computer scientists should
focus on creating algorithms that are reviewable, not just compliant with the
specifications that are generated in the drafting process.212 For example, this
means it would have been good for the Diversity Visa Lottery described in
Section II.E to use an algorithm that made fair, random choices and it would
be desirable for the State Department to be able to demonstrate that property
to a court or a skeptical lottery participant.213

206 A similar logic-policy experimentation among the states-is one of the principles

underlying federalism. See New State Ice Co. v. Liebmann, 285 U.S. 262, 311 (1932) (Brandeis, J.,
dissenting) (praising the ability of a state to "serve as a laboratory" for democracy).

207 See generally E. ALLAN FARNSWORTH, AN INTRODUCTION TO THE LEGAL SYSTEM OF

THE UNITED STATES (Steve Sheppard ed., 4 th ed. 2010).
208 See generally id.
209 See Chevron U.S.A. Inc. v. Nat. Res. Def. Council, Inc., 476 U.S. 837 (1984).
210 See generally FARNSWORTH, supra note 207.
211 Id.

212 Another possible conclusion is that certain algorithms should also be developed to be

flexible, permitting adaptation as new cases, laws, or regulations add to the initial specifications. The

need to adapt algorithms is discussed further in subsection I.B.t. This also reflects the current

insufficiency of building a system in accord with a particular specification, though oversight or

enforcement bodies evaluating the decision at a later point in time will still need to be able to certify

compliance with any actual specifications.

213 Algorithms offer a new opportunity for decisionmaking processes to be reviewed by
nontraditional overseers: decision recipients, members of the public, or even concerned

nongovernmental organizations. We discuss this possibility further in subsection IV.B.2.
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The technical approaches described in this Article214 provide several ways
for algorithm designers to ensure that the actual basis for a decision can be
verified later. With these tools, reviewers can check whether an algorithm
actually was used to make a particular decision,215 whether random inputs
were chosen fairly,216 and whether the algorithm comports with certain
principles specified at the time of the design.217 Essentially, these technical
tools allow continued after-the-fact evaluations of algorithms by allowing for
and assisting the judicial system's traditional role in ultimately determining
the legality of particular decisionmaking.218

Implementing the approaches described in this Article would improve the
accountability of decisionmaking algorithms dramatically, but we see that
implementation as only a first step. We encourage research into extensions of
these technical tools, as well as new techniques designed to facilitate oversight.

B. Recommendations for Lawmakers and Policymakers

The other side of the coin is that lawmakers and policymakers need to
recognize and adapt to the changes wrought by algorithmic decisionmaking.
Characteristics of algorithms offer both new opportunities and new challenges
for the development of legal regimes governing decisionmaking: algorithmic
decisionmaking can reduce the benefits of ambiguity, increase accountability to
the public, and permit greater accountability than was previously possible in
cases where aspects of the decision process remain secret.

1. Reduced Benefits of Ambiguity

Although computer scientists can build algorithms to permit after-the-fact
assessment and accountability, they cannot alter the fact that any algorithm
design will encode specific values and involve specific rules. Furthermore, the
design of a computer system may limit opportunities for after-the-fact
accountability. In other words, if a system is not designed to permit certification
of a particular characteristic, an oversight body cannot be certain that it will be
able to certify that characteristic. Both of these traits imply that automated
decisionmaking can exacerbate certain disadvantages of legal ambiguities.

In the framework set forth above,219 we identify key drivers of ambiguity:
political stalemate, uncertainty about future circumstances, and desire for

214 See supra Sections II.B, II.B.
215 See supra Section I.C.
216 See supra subsection II.C. 4 .
217 See supra subsection I.C.I.
218 Computer scientists model this after-the-fact input as an "oracle" that can be consulted only

rarely on the acceptability of the algorithm. See Kroll, supra note 118.
219 See supra Section IV.A.
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policy experimentation. Here, with respect to each of these drivers, we will
discuss how the shift to algorithmic decisionmaking diminishes the appeal of
ambiguity, and we will suggest ways of retaining the functional benefits that
ambiguity provides in the U.S. lawmaking system and ways that are more
amenable to automation.

Ambiguity stemming from political stalemate essentially passes the buck
for determining details from legislators to someone later on in the process.
These later actors tend to be more sheltered from political pressures and thus
able to make specific decisions without risking their jobs at the next election.
Judges and administrative agencies frequently fill this role. Courts are expected
to offer impartial decisions resistant to public pressure,220 and administrative
agencies are expected to retain staff who offer subject-matter expertise beyond
what is expected of legislators, despite changes in political administrations.221

However, this transfer of responsibility often works in less than ideal ways
when it comes to software systems.222 Fully automated decisionmaking may
exacerbate these problems by adding another actor to whom the responsibility
can devolve: the developer who programs the decisionmaking software.
Citron offers examples of failures in automated systems that determine
benefits eligibility, notably the airport "No Fly" lists, terrorist identifications,
and punishment for "dead-beat" parents.223 Lawmakers should consider this
possibility and avoid giving the responsibility for filling in the details of the law
to program developers because (1) the algorithms will apply broadly, affecting
all participants; (2) the program developer is unlikely to be held accountable
by the current political process; and (3) the program developer is unlikely to
have substantive expertise about the political decision being made.224

220 See, e.g., THE FEDERALIST NO. 78 (Alexander Hamilton) (laying out the philosophy that

the judiciary's role is to secure an "impartial administration of the laws"). However, the rise of

elected judges raises questions about this traditional role of the court system. See Stephen J. Choi

et al., Professionals or Politicians: he Uncertain Empirical Case for an Elected Rather Than Appointed

Judiciary (Univ. of Chi. Law Sch., John M. Olin Law & Economics Working Paper No. 357, 2007)
(finding that elected judges behave more like politicians than appointed independent judges).

221 This is the rationale of the Chevron doctrine of judicial deference to administrative agency

actions. Chevron U.S.A. Inc. v. Nat. Res. Def. Council, Inc., 476 U.S. 837 (1984).
222 For example, Citron argues that "[d]istortions in policy have been attributed to the fact

that programmers lack 'policy knowledge;" and that this leads to software that does not reflect policy

goals. Citron, supra note 6, at 1261. Ohm also reports on a comment of Felten that "[i]n technology

policy debates, lawyers put too much faith in technical solutions, while technologists put too much

faith in legal solutions." Paul Ohm, Breaking Felten's Tird Law: How Not to Fix the Internet, 87 DENV.

L. REV. ONLINE (2010), http://www.denverlawreview.org/how-to-regulate/2010/2/22/breaking-

feltens-third-law-how-not-to-fix-the-internet.html [https://perma.cc/6RGQ-KUMW] (internal

quotation marks omitted).

223 Citron, supra note 6, at 1256-57.
224 Id. at 1254-55. A distinction should be drawn here between the responsibilities given to

individual developers of particular algorithms and the responsibilities given to computer scientists

[Vol. 165: 633700



Accountable Algorithms

One potential method for restricting the discretion of developers without
requiring specifications in the legislation itself would be for administrative
agencies to publish guidance for software development. Difficulties in
translating between code choices and policy effects still would exist, but they
could be partly eased using the technical methods we have described.225 For
example, administrative agencies could work together with developers to
identify the properties they want a piece of software to possess, and the
program could then be designed to satisfy those properties and permit proof.

Ambiguity generated by uncertainty about the situational circumstances
or ambiguity motivated by a desire for policy experimentation presents a
more difficult concern. Here, the problem raised by automated decisionmaking
is that a piece of software locks in a particular interpretation of law for the
duration of its use, and, especially in government contexts, provisions to
update the software code may not be made. Worries about changing or
unexpected circumstances could be assuaged by adding sunset provisions to
software systems,226 requiring periodic review and reconsideration of the
software. Additionally, software should be designed with eventual revisions and
updates in mind. As for preserving the benefits of policy experimentation, the
traditional solution might be having multiple programs that take multiple
approaches deployed simultaneously. A more sophisticated version of this
solution is the incorporation of machine learning into decisionmaking
systems. Again, machine learning can have its own fairness pitfalls,227 and
care should be taken to consider fair machine learning methodS228 and to build
in precautions like persistent testing of the hypotheses built into the machine
learning model.229

More generally, the benefits of ambiguity decrease in the case of
algorithmic decisionmaking. Here, an uninformed programming actor may
determine the details and then apply them broadly. In addition, the choice of
algorithm cements the particular policy choices encoded in that software for

in general. Great gains can be made by improved dialogue between computer scientists and

lawmakers and policymakers about how to design algorithms to reach social goals.

225 See supra Sections II.B, III.B.

226 The effectiveness of sunset provisions in leading to actual reconsideration and change is

debatable. The inertia of the pre-existing choices can be hard to overcome. See, e.g., Mark A. Lemley

& David McGowan, Legal Implications of Network Economic Effects, 86 CALIF. L. REV. 479, 481-82
(1998) (noting that stare decisis, confusion regarding the role of theory, differing normative values,

and other factors impede the progress of the law).

227 See supra subsection III.B.t (noting that machine learning programs give predictions but

not confidence levels).
228 See supra Sections III.A-B.

229 In other words, even after a machine learning algorithm determines that a particular rule

should be used to produce particular results, it always should continue to test inputs that do not

follow that rule. See, e.g., RUSSELL & NORVIG, supra note 67.
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as long as it is used. Drafters should instead consider whether they should
increase the specificity offered by law and policy governing these algorithms
to prevent coders from filling the ambiguity.

To a certain extent, this question mirrors the rules versus standards debate
about the relative merits of laws that specify actions and their repercussions
(for example, a speed limit) and those that espouse a principle open to
interpretation (for example, "drive at a speed reasonable for the conditions").230
Rules give clarity and forewarning, while standards offer greater flexibility
for interpretation.231

Here, the question is whether drafters should include additional and
clearer specifications for developers. In practice, drafters may wish to
incorporate a set of narrow rules within a broad, overarching standard. For
example, drafters could include specifications of each of the properties that
they want a piece of software to possess and requirements that the developer
design that program in a way that renders those properties provable upon
review. Additionally, drafters might consider requiring a general statement of
purpose for the algorithm. Doing so would give the developer some flexibility
in writing the code while also ensuring that particular properties can be
checked later.

2. Accountability to the Public

Oversight is traditionally performed by courts, enforcement agencies, or
other designated entities such as government prosecutors.232 Typically, the
public and third parties have an indirect oversight role through the ability to
provide political feedback and the ability to bring lawsuits if their specific
circumstances allow.233 The use of software can alter how effectively the legal

system and the public can oversee the decisionmaking process.
In one sense, decisionmaking computer systems can enhance accountability

to the public and interested third parties by permitting greater involvement
in oversight. The technical tools we describe allow for a more direct form of
oversight by these parties. Unlike traditional legal oversight mechanisms that
generally require discovery or the gathering of internal evidence, the technical
tools may enable verifications by the public and by third parties that are

230 See, e.g., Louis Kaplow, Rules Versus Standards: An Economic Analysis, 42 DUKE L.J. 557, 562-
66 (1992) (arguing that rules are more costly to promulgate while standards are more costly on

individuals).

231 See Kathleen M. Sullivan, he Supreme Court, 1991 Term-Forward: he justices ofRules and

Standards, to6 HARV. L. REV. 22, 26 (1992) (explaining the rule versus standard choice in terms of

force of precedent, constitutional reading, and formulation of operative tests).

232 See FARNSWORTH, supra note 207.
233 The public can vote political leaders out of office and aggrieved parties can bring lawsuits

to seek vindication.
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completely independent from the organizations using the software. For
example, technologically proficient members of the public or third parties
could verify that a particular algorithm was used in a program or that the
program has particular properties. In addition, a system could be built to
enable participants to check these properties for their own outcomes so that
nontechnical users could verify these facts while the system as a whole would
be overseen by others-potentially both inside and outside of government-
who have the necessary technological expertise. As another example, third
parties could be involved in generating fair randomness.234

In contrast to the possibility for enhanced public accountability, the use
of software without the reliance on technical tools for oversight, as we have
described, can reduce accountability to the public because courts and other
policy actors are generally ill-equipped to evaluate software, thereby
hampering our traditional scrutiny of decisionmaking. The U.S. court system
is designed to protect against wrongful government actions through the
power of judicial review.235 Judicial review gives judges the power and

responsibility to determine if government actions comply with legal
obligations. Similarly, for private actions, the legal system vests judges and
regulatory agencies with the authority to determine whether those actions are
consistent with legal standards.

The use of software systems to make decisions, however, shifts these
burdens to external experts or to the organizations creating and deploying the
software. Courts and enforcement agencies are no longer able to make a
determination as to whether the rules have been properly applied or whether
fairness obligations have been met. That determination shifts to the experts
evaluating the automated decisionmaking process. One way to address this
unintended shift in responsibility is to appoint technical experts as special
masters. Courts typically appoint special masters to perform functions on
behalf of the court that require special skill or knowledge.236

Another issue that challenges public accountability is the validation of the
technical tools we have described. For courts, technical tools cannot be
accepted until their integrity and reliability are proven. Courts have long
confronted the problem of the admissibility of scientific evidence. There is a
rich literature about the standards courts should use to admit expert scientific

234 See supra note 116 (using a quantum source to generate randomness).

235 See Marbury v. Madison, 5 U.S. (i Cranch) 137, 177 (1803) ("It is emphatically the province

and duty of the judicial department to say what the law is.").

236 See, e.g., United States v. Microsoft Corp., 147 F.3d 935, 959 n.4 (D.C. Cir. 1998) (noting
Larry Lessig's role as a court-appointed special master for technical issues in the antitrust case

brought against Microsoft).
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evidence, and, even now, federal and state standards vary.237 The courts, for
example, took years during the 198os and 90s to establish and accept the
scientific validity of DNA and the methods used to isolate and test DNA.238

Even now, there are concerns that some scientific methods (e.g. matching
DNA based on mixtures of DNA) may be receiving undeserved deference
from courts and thus resulting in faulty findings of fact.239 Following much
debate, the Federal Rules of Evidence spelled out a federal standard for the
acceptability of new scientific methods in adversarial proceedings.240 In 1993,
the Supreme Court adjusted those standards to take account of factors that
include testing, peer review and publication.241 These evidentiary standards
address the validation of technical tools used to examine automated
decisionmaking, but still leave open the assurance of the technical tools'
reliability. Ordinarily, the U.S. legal system relies on the adversarial process
to assure the accuracy of findings. This attribute may be preserved by
allowing multiple experts to test software-driven processes.

3. Secrets and Accountability

Implementing automated decisionmaking in a socially and politically
acceptable way requires progress in our ability to communicate and understand
fine-grained partial information about how decisions are reached. Full
transparency (disclosing everything) is technically trivial but politically and
practically infeasible and may not be useful, as described in Section II.A.
However, disclosing nothing about the basis for a decision is socially
unacceptable and generally poses a technical challenge. Lawmakers and

237 See, e.g., Paul C. Giannelli, The Admissibility of Novel Scientific Evidence: Frye v. United

States, a Half-Century Later, 8o COLUM. L. REV. 1197 (1980) (highlighting the development of the

standards used for evidentiary scientific evidence); Heather G. Hamilton, Note, The Movement from
Frye to Daubert: Where Do the States Stand?, 38 JURIMETRICS 201 (1998) (emphasizing the lack of

uniformity of state approaches).

238 See, e.g., NAT'L RESEARCH COUNCIL, THE EVALUATION OF FORENSIC DNA EVIDENCE
166-211 (1996) (discussing the legal implications of the use of forensic DNA testing as well as the

procedural and evidentiary rules that affect such use).

239 Logan Koepke, Should Secret Code Help Convict?, MEDIUM (Mar. 24, 2016), https://medium.

com/equal-future/should-secret-code-help-convict-7c864baffeS#.j9kcwhoo [https://perma.cc/6LNW-

WN6W].

240 See FED. R. EVID. 702 ("A witness who is qualified as an expert by knowledge, skill,

experience, training, or education may testify in the form of an opinion or otherwise if ... the

expert's scientific, technical, or other specialized knowledge will help the trier of fact to understand

the evidence or to determine a fact in issue .... ).
241 See Daubert v. Merrell Dow Pharm., Inc., 509 U.S. 579, 592-95 (1993) (explaining that a

judge faced with a proffer of expert scientific testimony must assess whether the testimony's

underlying reasoning is valid, and in doing so, consider whether the technique or theory in question

can be tested and whether it has been subjected to peer review and publication).
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policymakers should remember that it is possible to make an algorithm
accountable without the evaluator having full access to the algorithm.242

U.S. law and policy often focus on transparency and sometimes even
equate oversight with transparency for the overseer.243 As such, accountability
without full transparency may seem counterintuitive. However, oversight
based on partial information occurs regularly within the legal system. Courts
prevent consideration of many types of information for various policy reasons:
disclosures of classified information may be prevented or limited to preserve
national security;244 juvenile records may be sealed because of the notion that

mistakes made in one's youth should not follow them forever;245 and other
evidence is deemed inadmissible for a multitude of reasons, including being
unscientific,246 hearsay,247 inflammatory,248 or illegally obtained.249 Thus, all of
the rules of evidence could be construed as precedent for the idea that optimal
oversight does not require full information.

There are strong policy justifications for holding back information in the
case of automated decisionmaking. Revealing software source code and input
data can expose trade secrets, violate privacy, hamper law enforcement, or
lead to gaming of the decisionmaking process.250 The advantage of computer
systems is that concealment of code and data does not imply an inability to
analyze the code and data. The technical tools we describe give lawmakers
and policymakers the ability to keep software programs and their inputs
secret while still rendering them accountable. They can implement these tools
in government-run algorithms, such as the DVL, and incentivize
nongovernmental actors to use them, perhaps by mandating use or by
requiring transparency-at least to courts-of code and inputs if they do not
employ such technical tools.

242 See supra subsections II.C. 3 -II.D.
243 See, e.g., 5 U.S.C. § 552 (2012) (requiring agencies to make government records available to

the public); i5 U.S.C. § 6803 (2012) (requiring financial institutions to provide annual privacy

notices to customers as a transparency measure).

244 See t8 U.S.C. § 798(a) (2012) (providing that the disclosure of classified government

information may result in criminal liability).
245 See, e.g., N.Y. CRIM. PROC. § 720.15 (requiring filing under seal in juvenile proceedings).

246 See FED. R. EVID. 702 (establishing the court's discretion to admit scientific evidence).

247 See FED. R. EVID. 802 (stating that hearsay evidence is inadmissible unless a federal

statute, the rules of evidence, or the Supreme Court provides otherwise).

248 See FED. R. EVID. 403 (providing for the exclusion of relevant evidence for prejudice).

249 See, e.g., 18 U.S.C. § 2515 (2012) (setting an exclusionary rule for evidence obtained through

wire tap or interception).

250 See Sections IIA-B.
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