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Abstract

Force plates for human movement analysis provide accurate measurements when 

mounted rigidly on an inertial reference frame. Large measurement errors oc

cur, however, when the force plate is accelerated, or tilted relative to gravity. 

This prohibits the use of force plates in human perturbation studies with con

trolled surface movements, or in conditions where the foundation is moving or 

not sufficiently rigid. Here we present a linear model to predict the inertial and 

gravitational artifacts using accelerometer signals. The model is first calibrated 

with data collected from random movements of the unloaded system and then 

used to compensate for the errors in another trial. The method was tested 

experimentally on an instrumented force treadmill capable of dynamic medio- 

lateral translation and sagittal pitch. The compensation was evaluated in five 

experimental conditions, including platform motions induced by actuators, by 

motor vibration, and by human ground reaction forces. In the test that included 

all sources of platform motion, the root-mean-square (RMS) errors were 39. 0 

N and 15. 3 Nm in force and moment, before compensation, and 1. 6 N and 1. 1 

N m, after compensation. A sensitivity analysis was performed to determine the 

effect on estimating joint moments during human gait. Joint moment errors in 

hip, knee, and ankle were initially 53. 80 Nm, 32. 69 Nm, and 19. 10 Nm, and
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reduced to 1. 67 Nm, 1. 37 Nm, and 1. 13 Nm with our method. It was con- 

cluded that the compensation method can reduce the inertial and gravitational 

artifacts to an acceptable level for human gait analysis.

Keywords: biomechanics, instrumentation, gait, inertial artifacts, surface 

perturbation

Word Count: 3337

1.  Introduction

Force plates and instrumented treadmills are commonly used to measure 

ground reaction forces (GRF) for clinical movement analysis, sports perfor

mance, or research on human movement. The combination of motion capture 

and force plate data allow for the calculation of joint moments through inverse 

dynamic analysis. Recently, instrumented treadmills have become equipped 

with actuators to translate and rotate the walking surface, for either virtual re

ality applications or for testing human response to perturbations. Acceleration 

of the force plate creates large inertial artifacts in the GRF measurement, be- 

cause a large moving mass is located between the force of interest (foot/ground 

interface) and the load cells. Additionally, when the frame is tilted, its gravi- 

tational mass starts contributing to the horizontal GRF signals. The problem 

is especially severe in an instrumented treadmill, where the moving mass in- 

cludes the treadmill frame, motor, and belts. These large errors in GRF data 

make it impossible to perform standard inverse dynamics in these conditions 

because the joint moment calculations are based on inaccurate force measure

ments. The same problem also occurs when the force plate foundation is not 

sufficiently rigid, or in a moving vehicle in order to study the biomechanics of 

driving.

Although the problem is noteworthy in human movement analysis, it exists 

in any load measurement system where the force of interest and the load cells are 

separated by a moving mass. This includes certain applications in high-speed



material testing and in force-controlled robots (Hessling, 2009; Dixon, 1990). 

The work presented in this paper will be applicable in those fields as well.

In principle, the inertial and gravitational forces can be estimated and com

pensated using rigid body dynamics. This requires knowledge of the mass, iner

tia matrix, acceleration, angular acceleration, angular velocity, and orientation 

of the frame. This has been successfully done for one-dimensional linear mo

tion such as in materials testing or a sliding force plate (Hessling, 2009; Dixon, 

1990; Pagnacco et al., 2000; Yang and Pai, 2006). While it is straightforward 

to extend this approach into a six degree of freedom (DOF) load measurement, 

it becomes impractical due to the requirement to estimate full 3D motion rela

tive to an inertial reference frame, and the use of nonlinear models (Berme and 

Guler, 2012a, b; Hou et al., 2009; van den Bogert et al., 1996). Furthermore, 

mass and inertial properties of the frame must be known (Preuss and Fung, 

2004). Some of the existing methods neglect the effect of rotation and are lim- 

ited to compensating for errors due to vibrations within the building or floor 

(Boschetti et al., 2013).

In this paper, we introduce a simple linear, accelerometer-based compensa

tion method for a fully general inertial and gravitational compensation of force 

plate data. The linear model is based on the principle that an accelerometer 

directly measures the inertial and gravitational force on its internal test mass. 

With a sufficient number of accelerometers, attached at different locations, the 

total inertial and gravitational artifact of all mass elements in the moving frame 

will be a linear combination of accelerometer signals (Zappa et al., 2001). The 

method will be presented and evaluated on an instrumented treadmill in various 

experimental conditions.

2.  Methods

2. 1.  Compensation Method

In a 6-DOF load measurement, three-dimensional force and moment are the 

variables of interest. The compensation model assumes that the effect of gravity



where C is a 6 x (N + 1) matrix of model coefficients. Note that the model in

cludes a constant term for each load variable (the last column of C) which will 

be used by the calibration to remove any static offsets that may be present in 

the load cell signals. It is not necessary to calibrate the accelerometers. Neither 

is it necessary to separate the accelerometer information into acceleration and 

gravitational effects. In fact, it is essential that such a separation is not per

formed because inertial artifacts arise from the combination of the two (van den 

Bogert et al., 1996). Raw accelerometer signals should be used.

The model must be calibrated by a system identification experiment, in 

which no external load is applied, and the load cells will only measure the 

artifacts. This is best done with random movements of the frame, to explore 

the entire space of potential artifacts. During this experiment, K samples of 

force and moment data are collected, along with accelerometer data. First, 

the data is arranged into matrices A (accelerometer signals) and F (force and 

moment data):

and inertia on each of the six load signals, when expressed in the local reference 

frame of the sensor, is a static linear function of N accelerometer signals:



and the model coefficients C are determined through a least-squares solution of 

the overdetermined system of linear equations:

ACτ = F (4)

The calibration was coded in Matlab (version 2016a) as well as in C++. In 

Matlab, QR decomposition was used to obtain the least-squares solution, which 

is implemented as the ’’backslash” operator:

C = (A∖F)' (5)

In C++, model coefficients were determined through linear regression using the 

Shark library (Igel et al., 2008). It was verified that the results were identical 

in both implementations.

2. 2.  Experimental Validation

Experiments were performed on a split-belt instrumented treadmill capa

ble of actuated mediolateral translation (sway) along the X-axis, and sagittal 

pitch in the YZ-plane (V-Gait, Motekforce Link, Amsterdam, Figure 1). Each 

belt assembly, including motors, has a mass of about 150 kg which is located 

between the load cells and the walking surface. Two triaxial accelerometers 

(4030 2G range, Measurement Specialties) were mounted on the side of the 

treadmill (posterior-left and anterior-right), separated by 1. 30 m in both the 

lateral and anterior/posterior directions (Euclidean distance of 1. 83 m). Zappa 

(Zappa et al., 2001) proved that four non-coplanar accelerometers are sufficient 

to uniquely determine the acceleration at each point in a rigid body. Since there 

are only two actuated degrees of freedom (DOF, pitch and sway) in this appli

cation, only two accelerometers are required to detect the range of movements.

Sway and pitch signals were commanded to the treadmill using D-Flow 3. 24 

(Motekforce Link, Amsterdam). GRFs from the right belt, and accelerometer 

data, were directly acquired in the data acquisition unit of an optical motion 

capture system (Nexus 1. 8. 5, Vicon). All files were exported in C3D files for 

further offline analysis. Sampling rate was 1000Hz. All signals were filtered



with a 2nd order low-pass Butterworth filter with a cut-off frequency of 6 Hz, 

which is typically used for inverse dynamic analysis of walking (Winter, 1990; 

van den Bogert et al., 2013). After filtering, the first full second of data was 

removed to eliminate the filter startup effect.

The 6×7 model coefficient matrix C was calibrated using a 60-second un

loaded trial in which the treadmill surface was randomly translated and rotated. 

Zero-mean Gaussian white noise signals were generated with a sampling time 

of 3. 3 ms and RMS amplitudes of 0. 707 m∣s2 and 127 o∕s2 for sway and pitch, 

respectively, in MATLAB Simulink (Mathworks, Natick, MA, USA), as shown 

in Figure 2. The signals were twice-integrated to obtain smooth treadmill dis

placements with realizable accelerations. Integration drift was eliminated by 

processing the input signals through high-pass filters (2nd order Butterworth) 

with a passband edge frequency of 0. 21 Hz. Upper and lower limits were im

posed on the signals, thereby restricting the translation and rotation movements 

to the maximum of ±0. 05 m displacement and ±10° pitch angle.

The calibrated model was evaluated in five tests where the platform was 

moved without load applied to the right force plate. The tests included plat

form motions induced by actuators, by motor vibration, and by human ground 

reaction force impacts. In Trial 1, the treadmill was subjected to 60 seconds 

of random pitch and sway movement generated by the same procedure as the 

calibration trial, but with a different random number seed. Trial 2 had the same 

random movement, but with the treadmill belts running at 1. 3 m/s to evaluate 

the effect of motor vibration. Trial 3 again contains the same random move

ment as Trial 1 and 2, but with a subject walking on the left belt at 1. 3 m/s. 

In Trial 4, the subject walked on the left belt with 1. 3 m/s, without pitch or 

sway motion. In this trial, the subject walked on the front half of the treadmill 

to represent the worst case of walking-induced frame motion. In Trial 5, the 

treadmill was set in a static pitch angle of 9 degrees. As the treadmill is not 

moving in this test, all artifacts are induced by gravity.

In each trial, the model was used to predict the inertial and gravitational 

force and moment artifacts from the accelerometer signals. The predicted arti-



facts were subtracted from the measured forces and moments. Since no external 

loads were applied to the right force plate, the resulting forces and moments 

would be zero if the compensation was perfect. To quantify the performance 

of the compensation method, we determine the RMS (root-mean-square) of the 

force and moment residuals. This was done on all six load variables, on all 

test trials, before filtering, after filtering, and after the compensation. This 

allowed us to quantify how much reduction in the artifacts was achieved by 

filtering alone, and how much additional reduction was achieved by the linear 

compensation model.

where Festimate = Aneasured Cτ and Λmeasured are the measured accelerome- 

ter signals.

2. 3. Sensitivity Analysis

To assess the importance of inertial and gravitational artifacts and the ef

fectiveness of the compensation, we used human gait data that was collected on 

a stationary instrumented treadmill where the artifacts were negligible (Moore 

et al., 2015). A standard sagittal plane inverse dynamic analysis was performed 

(Winter, 1990) three times. First, with the original “true” GRF data. Second, 

with inertial artifacts from Trial 3 added to the original GRF. Third, with the 

inertial artifacts from Trial 3, after compensation using the previously calibrated 

model, added to the original GRF data. Trial 3 was chosen because it is the test 

condition that includes all sources of platform motion, leading to the highest 

inertial artifact. No low-pass filtering was applied to the inertial artifacts and 

the accelerometer data that was used to compensate. However, the subsequent 

inverse dynamic analysis used a 6 Hz low-pass filter for both kinematic and force 

plate data (van den Bogert et al., 2013).



3.  Results

Figure 3 illustrates the performance of the compensation method on the first 

four seconds of Trial 3 which contains artifacts due to actuated random motions, 

human ground reaction forces, and motor vibration. Before compensation, there 

are large artifacts, especially in Fx, Fz,, Mx, and My.The artifacts in Fz and My 

are mostly gravitational and reflect low-frequency changes in pitch angle. The 

inertial contributions have higher frequencies, reflecting the sensitivity to linear 

and angular accelerations, rather than orientation. After predicting the artifacts 

from the accelerometer signals, and subtracting them from the measured loads, 

the remaining artifact is small.

For each trial, the effectiveness of the compensation was quantified by the 

RMS comparison between uncompensated and compensated force signals. Re

sults for the 5 conditions are shown in Table 1.

The largest inertial artifacts were present in Trial 3. When residuals in all 

coordinate axes were combined, the overall RMS errors were 39. 0 N and 15. 3 

N m in force and moment components, respectively, after filtering. The com

pensation reduced these errors to 1. 6 N and 1. 1 N m. The differences between 

the trials provide insight into the effect of the various mechanical inputs. The 

errors after compensation were lowest when the platform motion was entirely 

induced by the actuators (Trial 1), and increased due to vibrations caused by 

the motors that drive the belts (Trial 2). There was a slight further increase in 

Trial 3, when human ground reaction forces were applied to the moving frame. 

In Trial 4, platform motions were solely induced by human ground reaction 

forces and motor vibration. In case of a static pitch of 9 degrees (Trial 5) the 

gravitational effects were large and consistent with the downhill component of 

the gravitational force on the 150 kg platform mass. After compensation, these 

errors were reduced to less than 1 N and 1 N m. Even in the most challenging 

test cases (Trials 2, 3, 4), the compensation reduced the artifacts to values below 

2 N and 2 N m.

Figure 4 shows the human joint moments that would be obtained if the GRF



data had been affected by the inertial and gravitational artifacts from Trial 3. 

The joint moments were greatly affected, mostly by the horizontal force Fz and 

the effect was largest in the hip joint. Before compensation, the R. MS errors in 

hip, knee, and ankle moments were 53. 80 N m, 32. 69 N m, and 19. 10 N m. After 

compensation, these errors were reduced to 1. 67 Nm, 1. 37 Nm, and 1. 13 Nm, 

respectively.

4.  Discussion

Rotating and translating a platform equipped with load cells will introduce 

inertial artifacts in the force measurements. We developed a linear model to 

estimate these errors from accelerometers so that these errors can be compen

sated. The method was evaluated on the test case of human gait analysis on an 

instrumented treadmill undergoing movement. It was found that the errors were 

initially too large to allow a useful inverse dynamic gait analysis. The compen

sation method reduced the errors to acceptable levels within the range of noise 

typically observed in force plate signals. This makes it possible to study the 

dynamics and control of human gait during mechanical perturbations. This was 

previously only attempted for simple platform translations or rotations (Dixon, 

1990; Pagnacco et al., 2000; Preuss and Fung, 2004). Our method does not 

require measuring the kinematics of the moving frame relative to an inertial ref

erence frame and does not require knowledge of the mass properties of the frame, 

nor exact locations of the accelerometers. Furthermore, our residual forces and 

moments were far lower than those obtained on an instrumented treadmill with 

the existing methods (Preuss and Fung, 2004).

A similar accelerometer-based method was described for an application where 

load cells were used to determine the location, where a computer screen was 

touched (Roberts, 2006). In our application, the mass of the moving frame was, 

however, much larger. With a mass of 150 kg, an acceleration of only 0. 01 ms-2 

(1 mg) is sufficient to induce an inertial artifact of 1. 5 N. Reducing the artifact 

to this level required accelerometers with sufficient accuracy and resolution.



Tests were performed on a system with two actuated DOFs (pitch and sway), 

but the compensation method is completely general and can compensate for ar

tifacts due to full 6-DOF motions in all six load components, using any number 

of accelerometer signals. To reliably detect inertial artifacts during arbitrary 

3D translations and rotations, more than two triaxial accelerometers should be 

used. With only two accelerometers, an angular velocity or acceleration about 

an axis through the two accelerometers cannot be detected. Zappa’s method 

(Zappa et al., 2001) used four non-coplanar accelerometers, but did not show 

that this was necessary. It may be possible to use only three accelerometers, or a 

coplanar accelerometer configuration. Because our method uses a least-squares 

approach, any number of accelerometers can be used, and more accelerome

ters will give better results. The number of accelerometers should be selected 

based on the DOFs of the particular system. Including more accelerometers will 

more effectively reduce noise and non-rigid effects, though these additions will 

eventually have diminishing returns.

Another attractive feature of the approach is that the calibration matrix au

tomatically includes the linear transformations that are needed to predict forces 

and moments in the force plate coordinate system. Therefore, the accelerome

ters can be randomly oriented and measure data in their own coordinate system.

The compensation method is based on the assumption that the moving plat

form is a rigid body. Inertial artifacts associated with deformation or vibration 

within the frame will only be partially compensated. This explains why our 

results were slightly worse in the trials where internal vibration was introduced 

from the belt motors or human impacts. However, it may be possible to use 

a larger array of accelerometers to detect and compensate for non-rigid modes. 

Another possibility is to use and calibrate a dynamic model that can simulate 

vibrations. Treadmill frames have internal moving parts (motor and rollers) 

which will introduce additional artifacts if their speed is not constant. This 

artifact only exists in the sagittal plane moment Mx. A dynamic, 1-DOF com

pensation model was successfully developed (Hnat and van den Bogert, 2014) 

and can be added on to the techniques presented here.



During all tests, signals were low-pass filtered at 6 Hz which is typical for 

human gait analysis. When higher bandwidth is needed, the remaining error 

will be larger because more of the non-rigid motion effect will be included. 

Therefore, the performance of the compensation method must be tested for a 

specific application and bandwidth requirement.

In one of the test conditions (Trial 4), the frame was not actively moved, but 

all movements were due to the motors and human GRF. The pitch moment (Mx) 

artifact was about 10 N m, after filtering, due to a small rotational vibration 

about the pitch axis. Such a vibration is expected based on the structure of 

the machine (Figure 1). The frequency of this vibration was low enough that 

the artifact was not sufficiently attenuated by the 6 Hz low pass filter alone. 

However, the accelerometer-based compensation reduced the error to 1. 04 Nm 

which is acceptable for gait analysis. Furthermore, as our compensation method 

consists of a single matrix multiplication (and vector subtraction), it can be 

applied in real-time in combination with other real-time biomechanical models 

(van den Bogert et al., 2013).

Traditionally, force measuring systems are designed with a natural frequency 

that is well above the frequency of interest. Our results demonstrate that this 

requirement can be relaxed, because low-frequency errors can be partially re

moved by inertial compensation. Similarly, artifacts from low frequency building 

vibrations, or from doing force measurement in moving vehicles, could be com

pensated. This reduces the need to place force measuring systems in basements 

or on a separate mechanically isolated foundation. Because accelerometers are 

inexpensive, and the compensation method is easily implemented, it may be 

wise to include inertial compensation as a standard feature on force measuring 

systems that are sensitive to inertial artifacts.

Load cells measure forces and moments in the local (moving) reference frame, 

and the compensation is carried out entirely in that reference frame. When load 

measurement is combined with motion capture performed in an inertial reference 

frame, a coordinate transformation is needed to bring the (compensated) load 

data into the inertial reference frame. This transformation requires knowledge of



the position and orientation of the moving frame. In the actuated treadmill, the 

position and orientation of the frame is known from the encoders in the position 

control system. Alternatively, optical motion capture can be used, with three 

or more motion capture markers placed on the treadmill frame (Challis, 1995).

5.  Conclusion

The proposed method is capable of reducing inertial and gravitational ar

tifacts in data obtained from a moving instrumented treadmill. For gait ap

plications, the remaining error is small enough to allow accurate joint torque 

calculations through inverse dynamic analysis.
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Figure 2: MATLAB Simulink diagram for generating random sway (mediolateral translation) 

and sagittal pitch (rotation) commands



Figure 3: Force and moment data from Trial 3. The measured inertial artifact (blue) was 
compared to the prediction from accelerometers (red). The residuals (black) are the errors 
that remain after subtracting the predicted inertial artifact. All data were 6 Hz low-pass 
filtered before processing. Note the different scales on the vertical axes.



Figure 4: Hip, knee, and ankle joint moments during walking, affected by the uncompensated 
(blue) and compensated (red) inertial artifacts from Trial 3. The compensated result is almost 
identical to the “true” result from the original data containing no platform movement (black).



Test condition Variable RMS (raw) RMS (filtered) R MS (compensated)

Fx (N) 35. 32 16. 13 0. 57

Fy (N) 9. 99 3. 91 0. 76
Trial 1: random Fz (N) 69. 62 65. 69 0. 89
pitch and sway Mx (Nm) 18. 54 13. 18 0. 76

My (Nm) 24. 82 19. 07 0. 64

Mz (Nm) 4. 50 2. 04 0. 23

Fx (N) 33. 17 16. 02 1. 28

Fy (N) 11. 61 3. 91 1. 17
Trial 2: random pitch and Fz (N) 69. 08 65. 72 1. 52
sway, 1. 3 m/s belt speed Mx (Nm) 18. 75 13. 24 1. 16

My (Nm) 24. 54 19. 04 1. 25

Mz (Nm) 4. 49 2. 05 0. 35

Fx (N) 33. 69 16. 16 1. 51

Fy (N) 20. 25 5. 19 1. 22
Trial 3: random pitch

Fz (N) 71. 45 65. 41 1. 88
and sway, 1. 3 m/s belt

Mx (Nm) 26. 11 18. 42 1. 24
speed, human walking

My (Nm) 26. 56 18. 91 1. 46

Mz (Nm) 6. 89 2. 43 0. 38

Fx (N) 12. 29 1. 31 1. 44

Fy (N) 13. 94 2. 75 1. 06

Trial 4: 1. 3 m/s belt Fz (N) 17. 89 1. 53 1. 63

speed, human walking Mx (Nm) 18. 68 9. 65 1. 04

My (Nm) 11. 68 1. 28 1. 33

Mz (Nm) 4. 43 1. 07 0. 32

Fx (N) 1. 65 1. 44 0. 42

Fy (N) 19. 46 19. 44 0. 96

Trial 5: 9° static pitch
Fz (N) 227. 33 227. 33 0. 66

Mx (Nm) 24. 87 24. 86 0. 39

My (Nm) 65. 08 65. 07 0. 38

Mz (Nm) 6. 20 6. 19 0. 33

Table 1: Root-mean-square (RMS) values of force and moment data from the unloaded force 
plate during the test trials. See text for details.

Pre-print standardized by MSL Academic Endeavors, the imprint of the 
Michael Schwarts Library at Cleveland State University, 2019


	Cleveland State University
	EngagedScholarship@CSU
	6-25-2018

	Compensation for Inertial and Gravity Effects in a Moving Force Platform
	Sandra K. Hnat
	Ben J.H. van Basten
	Antonie J. van den Bogert
	Recommended Citation


	tmp.1556898102.pdf.CEzrD

