
Cleveland State University
EngagedScholarship@CSU

ETD Archive

2018

Evolutionary Optimization for Safe Navigation of
an Autonomous Robot in Cluttered Dynamic
Unknown Environments
Arash Roshanineshat
Cleveland State University

Follow this and additional works at: https://engagedscholarship.csuohio.edu/etdarchive

Part of the Electrical and Computer Engineering Commons
How does access to this work benefit you? Let us know!

This Thesis is brought to you for free and open access by EngagedScholarship@CSU. It has been accepted for inclusion in ETD Archive by an
authorized administrator of EngagedScholarship@CSU. For more information, please contact library.es@csuohio.edu.

Recommended Citation
Roshanineshat, Arash, "Evolutionary Optimization for Safe Navigation of an Autonomous Robot in Cluttered Dynamic Unknown
Environments" (2018). ETD Archive. 1081.
https://engagedscholarship.csuohio.edu/etdarchive/1081

https://engagedscholarship.csuohio.edu?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engagedscholarship.csuohio.edu/etdarchive?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.csuohio.edu/engaged/
https://engagedscholarship.csuohio.edu/etdarchive/1081?utm_source=engagedscholarship.csuohio.edu%2Fetdarchive%2F1081&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library.es@csuohio.edu

Evolutionary Optimization for Safe Navigation of an

Autonomous Robot in Cluttered Dynamic Unknown

Environments

ARASH ROSHANINESHAT

Bachelor of Science in Electrical Engineering

University of Zanjan

June 2015

submitted in partial fulfillment of requirements for the degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

at the

CLEVELAND STATE UNIVERSITY

August 2018

We hereby approve this thesis for

ARASH ROSHANINESHAT

Candidate for the Master of Science in Electrical Engineering degree for the

Department of Electrical Engineering and Computer Science

and the CLEVELAND STATE UNIVERSITY’S

College of Graduate Studies by

Thesis Chairperson, Dr. Dan Simon

Department & Date

Thesis Committee Member, Dr. Lili Dong

Department & Date

Thesis Committee Member, Dr. Mohammad Shokrolah Shirazi

Department & Date

Student’s Date of Defense: June 18, 2018

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor, Prof. Dan Simon, for

his continuous, invaluable guidance and patience in my work. His motivation, creative

problem-solving skills and immense knowledge were gifts that I hope I can embody. I

thank Taylor Barto, Saman Khademi, Seyed Fakoorian, Haniye Mohammadi, Donald

Ebeigbe and Mohamed Abdelhady for their help and support throughout my project

and research as lab mates, and for being there when I needed them. I also would like to

thank Dr. Jonathan Weintroub for mentoring my internship at Harvard-Smithsonian,

and Dr. Richard Prestage for advising my internship at National Radio Astronomy

Observatory. I appreciate their encouragement and support for my projects, which

helped me develop programming and problem-solving skills. I want to thank Saba,

Leili, Ashkan and my friends at Cleveland State University for providing joy and

laughter at the right time when I needed them. I thank the people at the IEEE

section of Cleveland State University who let me be involved in several robotic and

volunteering opportunities. Last but most of all, I would like to thank my parents

and my sister, who always tried to sacrificially help and support me through the years

and who were there for me even though I am thousands of miles away.

Evolutionary Optimization for Safe Navigation of an Autonomous Robot

in Cluttered Dynamic Unknown Environments

ARASH ROSHANINESHAT

ABSTRACT

We present a path planning approach based on probabilistic methods for a robot

to navigate in a cluttered, dynamic, unknown environment. There are dynamic obsta-

cles moving around and static obstacles located in the map. The robot does not have

any prior information about them but should be able to navigate through the map

beginning from a known starting point and safely ending at a known target point.

The only information the robot has is the location of the starting point and the target

point and it uses sensory information to collect information about its surroundings.

Our method is compared to the D* Lite algorithm and results are presented. In the

last section, the parameters of the robot are optimized using biogeography-based op-

timization (BBO). This is an efficient multivariable optimizer and it is shown that

the results of optimization achieve significant improvement in robot navigation per-

formance. In this thesis, we show that using evolutionary optimization methods like

BBO can reduce the risk of collision and the navigation time by about 25% each.

The resulting risk of collision indicates safe navigation by the robot which leads to

the conclusion that this is a feasible method for real-world robots.

iv

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

I. INTRODUCTION . 1

II. PROBABILISTIC PATH PLANNING 7

2.1. Radar System . 9

2.1.1. Circular Obstacles . 12

2.1.2. Obstacles composed of straight lines 14

2.2. Target Distribution dT . 16

2.3. Obstacle Distribution dO . 17

2.4. Final target distribution dF . 19

2.5. Memory Distribution dM . 22

2.6. Final Robot Steering Direction: Combining dM and dF 24

III. The D* ALGORITHM . 27

3.1. Algorithm . 27

3.2. Lifelong Planning A* (LPA*) . 30

3.3. D* Lite . 33

3.4. Experimental Results . 36

IV. BIOGEOGRAPHY-BASED OPTIMIZATION 39

v

V. SIMULATION RESULTS . 44

5.1. Only Dynamic Obstacles, No Bouncing after Collisions 44

5.2. Only Dynamic Obstacles, With Bouncing 47

5.3. Simple Maze with Dynamic Obstacles 52

5.4. Map with Rooms . 55

VI. CONCLUSION . 60

BIBLIOGRAPHY . 62

APPENDICES

A. Box2D Library . 67

B. Simple and Fast Multimedia Library 69

vi

LIST OF TABLES

Table Page

I. Speed modes; see Figure 10 for regions. 21

II. Memory size comparison for various lengths of time for which the robot

will save previously visited points. The nominal value in this thesis is 8

seconds. 24

III. Functions of priority vertices queue U 31

IV. Comparison between D* Lite and the probabilistic method 38

V. Optimized parameters for the map of Figure 23. TS stands for time step. 47

VI. Optimized parameters for the map of Figure 28. TS stands for time step. 51

VII. Optimized parameters for the map of Figure 33. TS stands for time step. 53

VIII. Optimized parameters for the map of Figure 38. TS stands for time step. 58

vii

LIST OF FIGURES

Figure Page

1. Sample map with static obstacles in black and dynamic obstacles in pink.

Dark gray shows the radar range, the red symbol in the upper right shows

the target point and the blue line shows the path of the robot starting

from the initial point at the lower left, which is marked in green. . . . 8

2. Laser beam rays are denoted as R1, R2, · · · , Rn. The approximate inter-

section points of the radar with the obstacle are denoted as PT , which,

because of the radar resolution, is not the same as the exact intersection

point P . νn is the angle of laser beam n with the horizontal axis. 10

3. A sample ray of the laser beam and the steps that the simulator uses to

check whether each point along the beam is free space or occupied by an

obstacle. 12

4. Intersection of a line segment, which denotes the robot radar beam, and

a circular obstacle. 13

5. The corners of a rectangular obstacle are denoted as C1, C2, C3 and C4.

The positions of the corners are know to the simulator. The intersections

of the beam ray R and the obstacle are denoted as Z1 and Z2. 15

6. Sample memory array returned by the radar system. This memory array

contains 360 entries, one for each degree of radar resolution. 16

7. Two target distributions with different σ values. 17

8. Obstacle distribution d′. There are two types of regions in this figure: A

indicates the existence of obstacles at the given angles, and B indicates

that there are no obstacles at the given angles. 19

viii

9. Example of final target distribution construction. The original target

distribution is green and the obstacle distribution is red. The solid line

is the final target distribution and is constructed by taking the minimum

value of the original target distribution and the obstacle distribution. . . 20

10. Different speed mode regions that the robot uses to change its speed

according to the position of the closest obstacle. 21

11. Memory queue in which previously visited coordinates are stored. 22

12. Illustration of memory points (MPs). The dashed lines show the direction

of the repulsive force imparted to the robot by each MP. 23

13. Memory distribution based on recently visited locations. 23

14. Illustration of dF and dM vectors and their weighted summation vector,

which is the final robot steering direction. 25

15. Illustration of how the speed of the robot changes with time based on

sensed obstacles. 26

16. Illustration of how the robot moves toward the target while avoiding

obstacles. 26

17. Sample tile map and A* navigation. The robot’s initial point is indicated

with an R and the target point is indicated with a T . State O shows a

tile in the graph whose state (open or closed) the robot does not know.

Gray static obstacles are known to the robot prior to path planning.

Arrows show the optimum path to the target point as computed by the

A* algorithm based on prior knowledge of the map. 29

18. An updated version of Figure 17 using D* Lite. The arrows have been

been updated and the blocked gate between the two obstacles has been

resolved. 35

19. Maps used to compare the results for the probabilistic method and the

D* Lite algorithm . 37

ix

20. Biogeography migration of species to islands with lower habitat suitability

index . 40

21. Depiction of how the time and collision cost functions are combined. The

first m elements all have a time cost function less than a given threshold

and are then sorted according to the number of collisions. The last n−m

elements all have a time cost function greater than the threshold and are

sorted according to time. 42

22. Block diagram of BBO algorithm . 43

23. This map shows the robot and a sample trajectory from the starting point

to the target point. The map contains only dynamic obstacles. In this

map there is no bouncing after collisions. 45

24. Distance from the robot to the target as a function of time for a sample

simulation of the map of Figure 23. 46

25. Robot speed as a function of time for a sample simulation of the map of

Figure 23. 46

26. The number of collisions for Figure 23 improves by optimizing the path

planning algorithm parameters with BBO. The number of collisions is

averaged over eight Monte Carlo simulations. 48

27. The number of time steps required to reach the target in Figure 23 im-

proves by optimizing the path planning algorithm parameters with BBO.

The number of collisions is averaged over eight Monte Carlo simulations. 48

28. This map shows the robot and a sample trajectory from the starting point

to the target point. The map contains only dynamic obstacles. In this

map there is bouncing after collisions. 49

29. Distance from the robot to the target as a function of time for a sample

simulation of the map of Figure 28. 49

x

30. Robot speed as a function of time for a sample simulation of the map of

Figure 28. 50

31. The number of collisions for Figure 28 improves by optimizing the path

planning algorithm parameters with BBO. The number of collisions is

averaged over eight Monte Carlo simulations. 51

32. The number of time steps required to reach the target in Figure 28 im-

proves by optimizing the path planning algorithm parameters with BBO.

The number of collisions is averaged over eight Monte Carlo simulations. 52

33. This map shows the robot and a sample trajectory from the starting point

to the target point. The map contains only dynamic obstacles. Bouncing

after collisions is enabled. 53

34. Distance from the robot to the target as a function of time for a sample

simulation of the map of Figure 33. 54

35. Robot speed as a function of time for a sample simulation of the map of

Figure 33. 54

36. The number of collisions for Figure 33 improves by optimizing the path

planning algorithm parameters with BBO. The number of collisions is

averaged over eight Monte Carlo simulations. 55

37. The number of time steps required to reach the target in Figure 33 im-

proves by optimizing the path planning algorithm parameters with BBO.

The number of collisions is averaged over eight Monte Carlo simulations. 56

38. This map shows the robot and a sample trajectory from the starting point

to the target point. The map contains several rooms in which the robot

tends to get stuck. Bouncing after collisions is enabled. 56

39. Distance from the robot to the target as a function of time for a sample

simulation of the map of Figure 38. 57

xi

40. Robot speed as a function of time for a sample simulation of the map of

Figure 38. 58

41. The number of collisions for Figure 38 improves by optimizing the path

planning algorithm parameters with BBO. The number of collisions is

averaged over eight Monte Carlo simulations. 59

42. The number of time steps required to reach the target in Figure 38 im-

proves by optimizing the path planning algorithm parameters with BBO.

The number of collisions is averaged over eight Monte Carlo simulations. 59

43. Overview of an object decleration in Box2D 68

44. Block diagram of the operation of the SFML 70

xii

CHAPTER I

INTRODUCTION

Mobile robots have been become increasingly popular in automated indus-

trial environments. Surveillance, Mars explorers, and underwater exploration are

other applications of mobile robots. In many situations, the robot doesn’t have prior

knowledge about the environment and providing this information is either difficult

or impossible. In all of these applications collision-free path planning is an impor-

tant necessity. Furthermore, using a robot in any of the aforementioned situations

is acceptable only if the robot provides high efficiency and low cost. High efficiency

can defined as fast customer service, low power consumption and low maintenance

costs. Therefore, the robot should have the ability to autonomously find a path with

a minimum risk of collision and high efficiency with no knowledge, or with minimum

knowledge, about the surrounding environment. This chapter reviews previous work

and research that has been done to make robot navigation safe and efficient.

Path planning algorithms are also used in applications other than robot navi-

gation. In [25], the authors used path planning algorithms to find hierarchical routes

for networks in wireless mobile communication. The authors in [6] used sampling-

based path planning algorithms to define flexible molecular models as conformational

filters with energy refinement to provide a geometric interpretation of constraints

affecting molecular motion. They claimed that they developed new techniques for

better exploitation of the geometric path information provided in the first filtering

1

stage. Kinematic chains are introduced in [23] as a ubiquitous representation of bi-

ological macro-molecule motion. In both robotic and biological applications of path

planning, methods can benefit from a collision detection system. In [23] the authors

used various benchmarks in their research and claim to have found a novel kinematic

chain representation for fast detection of self-collision. Furthermore, they concluded

that their approach can be used in both robotics and molecular biology. Collision

detection is also important in computer animation. When several graphical objects

move on a computer screen, they may interfere with each other and need to react

appropriately. This is especially important if we want to have realistic collision be-

havior. Detecting collisions accurately is a time consuming process so designing a

dynamic simulation system is required to handle this issue [26].

The motion planning problem involves searching in the configuration space of

a complex geometric rigid body that connects a starting point to a destination point

through a collision free path [22]. This path should satisfy the constraints imposed

by other rigid bodies or obstacles in the environment. There are complete methods to

solve general problems [30, 3] but they are known for their computational complexity

and computing demands. So this limits the possibly of using them for even low-

dimensional configuration spaces. In [22], the authors conclude that a randomized

approach called rapidly-exploring random trees (RRTs) in single-query motion plan-

ning yields good performance for a wide range of problems and applications. They

claim that their method is probabilistically complete and is suitable for incremental

distance computation algorithms. In [22] the authors improve the robot’s behavior

by optimizing the RRT step sizes.

Service robots in uncertain environments have become very popular in the

last few years. A variety of systems exist in places like hospitals, office buildings,

department stores, and museums. As mentioned earlier, for robots to be capable

team members and helpful assistants, especially in dynamic human-populated envi-

2

ronments, they need to navigate efficiently and safely. Recall that efficiency is defined

as the ability of a robot to reach a target point from a starting position in a prior

unknown environment in a short time period, and safety is defined as the number of

collisions a robot may have with obstacles (e.g., humans) during navigation to the

target point. Robot motion planning in dynamic environments has recently received

substantial attention due to the advent of autonomous cars and the growing interest

in social, service, and assistive robots.

In [9], the authors focus on learning a robot path for ease of movement, and

detecting and avoiding obstacles using a single camera and a laser source. In [28]

the authors propose a hybrid potential field, which can be computed in real time,

to navigate in a dynamic environment with 50 randomly moving obstacles. A fuzzy

inference system with an accelerate / break module is developed in [35] for real-time

navigation of autonomous underwater vehicles in both static and dynamic three-

dimensional environments while automatically avoiding the dynamic obstacles using

sonar, along with virtual acceleration and velocity in both the horizontal and vertical

plane. In [17], a fuzzy truck control system for obstacle avoidance with reasonably

good trajectory is proposed, using 33 fuzzy inference rules for steering control and 13

rules for speed control. In [13], two fuzzy logic controllers for steering and velocity

control of an autonomous vehicle are divided into seven control modules. This leads

to the generation of a path to the target point, including desired orientation, while

avoiding collisions with obstacles, driving the vehicle through mazes, and controlling

the velocity based on the obstacles in the map and based on the need to navigate

around sharp corners.

A novel algorithm for collision free navigation in complex dynamic environ-

ments with moving obstacles is proposed in [29]. The algorithm considers an inte-

grated representation of the environment by approximating the shape of the obsta-

cles in the map by circles and polygons. This reduces the required computational

3

effort and increases the speed of the simulations. The navigation algorithm provides

minimum-distance path planning through a crowd of moving or stationary obsta-

cles [29].

An efficient stereovision-based motion compensation method for moving robots

is presented in [15] using the disparity map and three modules: segmentation, feature

extraction, and estimation. In the segmentation module, the authors propose the use

of extended type-2 fuzzy information theory to recognize the obstacles. Fuzzy logic is

used to implement the design and coordination [36] of a memory grid and to develop a

minimum risk method for robot navigation, and is able to avoid collision with obsta-

cles in different scenarios, such as long walls, large concave and recursive UU-shaped

regions, unstructured regions, cluttered regions, and maze-like obstacles that repre-

sent dynamic indoor environments. In [1] a fuzzy logic controller is developed based

on the Mamdani-type fuzzy method for robot navigation and obstacle avoidance in a

cluttered environment. A fuzzy controller with three inputs and a single output pro-

vides safe navigation for the robot motion in a static environment while taking into

account the accuracy of the measurements of its position, distance to the obstacles

and the goal point, speed, orientation, and the rate of change of its heading angle.

The authors in [1] describe a fast and reliable method of obstacle avoidance for both

for outdoor and indoor navigation. The method is applicable in various mobile robotic

systems regardless of whic sensors are used and is based on two complementary ap-

proaches: non-complex implementation and human-like smooth steering. In [37] a

conceptual approach is considered based on fuzzy logic to solve the local navigation

and obstacle avoidance problem for multi-link robots. The fuzzy rule-based approach

is considered as an on-line local navigation method for the generation of instantaneous

collision-free trajectories.

The above papers use fuzzy approaches, but there has also been research with

probabilistic approaches. In [16], the authors proposed a method in which a multi-

4

degree of freedom robot uses two-step path planning: the first step uses a probabilistic

method to generate all possible paths between its configurations, and the next step,

the query phase, connects the generated paths between two nodes and selects the best

path. This method was experimentally demonstrated with pre-known static maps.

Rapidly-exploring random trees(RRTs) are introduced in [22]. RRTs incrementally

generate new nodes from the starting node to the ending node. The nodes explore

the map using simple greedy heuristics.

Path planning algorithms can be optimized using different algorithms. In

general, optimization means selecting the best variables relative to some criterion

from a set of available options. Selecting the best variables will cause a function

called the cost function to be maximized or minimized.

Many approaches have been developed to optimize motion planning algo-

rithms. Common motion planning algorithms produce inefficient trajectories for high

dimensional and complex dynamics [8, 18, 5]. There are various methods for optimiza-

tion; genetic algorithms, particle swarm optimization (PSO) and biogeography-based

optimization (BBO) are a few of them. In this thesis, BBO is used as the optimiza-

tion method. PSO individuals tend to clump together, but BBO doesn’t have that

limitation [31].

There are uncertainties in all evolutionary algorithms. The first type of un-

certainty is caused by the noise of the cost function evalution, which can have many

different sources, such as noise from measurement sensors. The second type of un-

certainty is caused by the nondeterministic behavior of the environment. This means

that environmental parameters change with time and optimization should be robust

enough to adapt to new parameters. The environment can vary after the optimum

values are found, but the optimum parameter values should still give satisfactory

results. The third type of uncertainty comes from the approximation of the cost

function. The cost function is estimated by the most feasible and appropriate form

5

(meta-model) due to the complexity and difficulty of using the actual cost function.

This will add errors and uncertainties. For the last type of uncertainty, systems need

to be continuously optimized. The optimizer should be able to track the optimum pa-

rameter values over time. The challenge here is to use previously generated optimum

values to speed up the new optimization process [14].

Contribution of this Research

In this research, a probabilistic method is introduced for path planning. This

method is fast, real-time and can be extended to various types of autonomous robots.

It can be used for autonomous underwater exploration and the same algorithm can

used for autonomous drones. The robot uses a minimal amount of memory.

To optimize the path planning algorithm, the parameters of the method are

tuned using biogeography-based optimization (BBO). The BBO method in this re-

search optimizes 14 parameters for the path planning algorithm.

6

CHAPTER II

PROBABILISTIC PATH PLANNING

This chapter describes our new probabilistic path planning algorithm. The

path planning problem is set in a two dimensional map, in which the robot is trying

to move from a starting point to an arbitrary but known target point. The robot does

not have prior knowledge about the shape, location and size of the obstacles in the

map and so it begins by hypothesizing that the path to the target point is a straight

line from its current location.

The map is treated as a continuous environment and the location of the ob-

stacles and the robot is determined in (x, y) coordinates. The map contains dynamic

and static obstacles, an example of which is shown in Figure 1. The robot is equipped

with a 360◦ range-limited radar sensor that is used to find the distance to the obstacles

around the robot. The radar system is explained in detail in the next section. The

robot also has the ability to instantaneously change its velocity to avoid collisions.

The objective of the robot is to find a minimum-time trajectory starting from

the initial point on the map to the target point while minimizing the probability of

collision with the static and dynamic obstacles.

We assume for now that the robot has a perfect sense of its current location

as well as the location of the target point. The robot will determine the heading

angle α with which to reach the target point if there were no obstacles in the way.

However, there are might be unknown obstacles on the way and the robot needs

7

Figure 1: Sample map with static obstacles in black and dynamic obstacles in pink.
Dark gray shows the radar range, the red symbol in the upper right shows the target
point and the blue line shows the path of the robot starting from the initial point at
the lower left, which is marked in green.

to react accordingly. So, in our algorithm, the robot creates a normal Gaussian

distribution dT centered at α with a dynamic adjustable standard deviation σ. The

robot uses a function fθ to return the argument of the maximum value of an input

distribution as the best angle to travel to avoid colliding with obstacles. The output

of fθ with dT as its input is clearly α.

fθ(dT) = argmax(dT) = α (2.1)

The probabilistic algorithm dictates that the robot choose an angle Θ to direct

the robot to the target point in a way that has the lowest probability of colliding with

an obstacle, or in other words, has the highest probability of reaching the destination

without a collision. To find Θ, we construct three distributions; one is dT as mentioned

above, which we call the target distribution. The target distribution is created on the

basis of the current location of the robot and the target point is Gaussian with center

8

α. The second distribution is called the obstacle distribution, dO, and is created

based on the obstacles detected by the robot’s radar. The third distribution is called

the memory distribution, dM , and uses locations that have been previously visited by

the robot to create a Gaussian distribution. This distribution helps the robot escape

rooms or blocked areas by backtracking.

2.1 Radar System

The robot does not know anything about its environment except the informa-

tion that it obtains from its radar. The robot is equipped with a 360◦ radar that it

uses to obtain information about its surrounding area, including both static and dy-

namic obstacles. Each time step, the radar rotates once and collects 360 data points,

one data point per degree. That is, the radar is configured with a 1◦ resolution.

This arrangement is shown in Figure 2. The robot coordinates are denoted

as [XR, YR]. In practice, the laser beam emits a ray and as the ray bounces from

an obstacle, the sensor measures the distance based on the elapsed time. However,

in simulation, the distance of the robot to an obstacle is calculated with geometric

equations.

Although the robot has no prior information about the obstacles or the en-

vironment, the simulator has complete information for all objects in the simulation.

So the robot emits the laser beam and then the simulation program provides the

distance to each obstacle. This approach makes it possible to have modular code that

can be easily ported and converted to a real-world application. Because the path

planning algorithm does not need to know anything about how its radar works, the

robot can simply request the distance to the closest obstacle at a specific angle and

then wait for the answer from either the simulator or the radar module. Therefore,

the obstacle distance can be generated using either the simulator or a real-world laser

beam sensor.

9

Figure 2: Laser beam rays are denoted as R1, R2, · · · , Rn. The approximate inter-
section points of the radar with the obstacle are denoted as PT , which, because of the
radar resolution, is not the same as the exact intersection point P . νn is the angle of
laser beam n with the horizontal axis.

In our simulations, three methods were simulated to calculate the distances

from the robot to the obstacles. In the first method the map is digitized to create

a grid-based environment. The second method considers a continuous-space (infinite

resolution) map and characterizes the objects as simple mathematical shapes. Then,

using mathematical formulas, the intersection of the beam and each object is com-

puted. In the third method, to increase the simulation speed, a physics engine library

is used, which computes the intersection of the beam ray and the objects using opti-

mized ray-casting algorithms. Each of these methods are explained in more detail in

the following.

In Figure 2 the location of each circular obstacle and its radius is known. To

calculate the intersection of the laser beams (denoted as {R1, R2, · · · , Rn} at angles

{ν1, ν2, · · · , νn}) and the circular obstacle, the simulator creates a right triangle as in

Figure 3. The sides of this triangle are shown as YO,j, XO,j, SO,j, where j ∈ {0, 1, ..., n}

and n is the number of steps and is defined experimentally. {SO,j} denotes the steps

10

that the simulator uses to see if the radar beam is intersecting with free space or

an obstacle. n in figure 3 equals to 6. Line segments start from the robot and the

following equation is used to find the coordinate of each radar step:

Yo,j = sin(ν)ξ
j

n
+ yR

Xo,j = cos(ν)ξ
j

n
+ xR

(2.2)

for j = 0, 1, · · · , n, where ξ is the maximum range of the radar beam, which in our

experiments equals 10 meters. It also should be noted that in the Equation 2.2, the

maximum value of j
n

is 1. If SO,j is located on an obstacle, the simulator returns

ξ × j
n

as the distance returned by the laser beam ray. This method requires the

map to be implemented as a grid-based environment. Low resolutions will result in

faster computation time but the movement of the robot and the obstacles may not be

smooth, so the algorithm may not be extendable to real-world applications. Higher

resolution maps would result in higher memory usage and slower computation speed.

A map with the size 800× 600 pixels and a resolution of 1 step per pixel would take

about 20 seconds to be processed. Furthermore, grid-based maps are prone to errors,

as shown in Figure 2, where yellow marks denoted as PT indicate the locations that

this method can report, which are not accurate since their coordinates are estimated

only to within a given resolution. The need to implement a map with both near-

perfect resolution and fast simulation speed was the motivation for a new solution

and method, as explained below.

To achieve perfect radar range resolution, the grid approach was removed

from the simulation. Rather than going through steps in Figure 3, mathematical

equations were used to compute distance. In order to accomplish this, the obstacles

were categorized into one of two types: circular obstacles, and obstacles composed of

straight lines. These cases are discussed in the following sections.

11

Figure 3: A sample ray of the laser beam and the steps that the simulator uses to
check whether each point along the beam is free space or occupied by an obstacle.

2.1.1 Circular Obstacles

In order to show a circular obstacle on a map, we need the coordinates of

the center and the radius of the obstacle. For a circular obstacle, these two values

are stored in a variable in memory. The center of the obstacle is denoted as C{x, y}

and the radius is denoted as CR. The location of the robot in Figure 4 is denoted as

[xR, yR] and is known to both the robot and the simulator. To calculate the distance

from the robot to the obstacle, we first find the line equation of the laser beam in the

form of y = mx+ n. Denoting the angle of the beam as ν, we have the equations

m = tan(ν)

n = yR −mxR

y = mx+ n

(2.3)

where yR and xR are the coordinates of the robot. We also need to know the extent

of the laser beam, which location we denote as Q and whose coordinates we denote

as [XQ, YQ], as shown in Figure 4. The following equation shows how to compute the

coordinates of Q.

xQ = cos(ν)ξ + xR

yQ = sin(ν)ξ + yR

(2.4)

12

where ξ is the radar radius.

Figure 4: Intersection of a line segment, which denotes the robot radar beam, and a
circular obstacle.

For convenience we denote all points relative to the center of the obstacle. We

can find the intersections using the following equations:

dX = xQ − xR

dY = yQ − yR

D =
√
d2X + d2Y

Dt =

∣∣∣∣∣∣∣
xR xQ

yR yQ

∣∣∣∣∣∣∣
∆ = R2D2 −Dt

[OX1,X2] =
DtdY ± dX

√
∆

D2

[OY 1,Y 2] = −DtdX ± dY
√

∆

D2

(2.5)

where R is the radius of the obstacle. If ∆ is negative there is no intersection, if

∆ = 0 there is one intersection, and if ∆ ≥ 0 there are two intersections. If there

is more than one intersection, O1 and O2 in Figure 4, the intersection point that is

closer to the robot provides the desired distance measurement.

13

2.1.2 Obstacles composed of straight lines

The other obstacles in the simulator are obstacles with straight lines, such as

rectangles. Figure 5 illustrates this type of obstacle. In Figure 5, C1, C2, C3 and C4

are the coordinates of the corners of the rectangular obstacle. To find the coordinates

of the intersections of the radar beam with the rectangle, which are shown as Z1 and

Z2, the simulator compares each line segment of the obstacle with the laser beam

ray and then saves those lines that intersect with the laser beam. In the next step,

the simulator finds the distance from the robot to the intersections and selects the

intersection point that is closest to the robot as the robot-obstacle distance. Here is

an example for Figure 5.

1. Does line segment C1− C2 intersect with R? True

2. Does line segment C2− C3 intersect with R? False

3. Does line segment C3− C4 intersect with R? False

4. Does line segment C4− C1 intersect with R? True

5. Find the intersection of C1− C2 and R and call it Z2

6. Find the intersection of C4− C1 and R and call it Z1

7. Return min(distance(Robot, Z1), distance(Robot, Z2))

The aforementioned types of obstacles can be combined to make different

obstacles with various shapes. Using the methods above, the resolution of the radar

is mathematically perfect and doesn’t depend on the resolution of the map. Other

advantages of this method are that it is faster than grid-based maps and requires very

small memory since the simulator needs to store just a few properties of the obstacles

and not all of their coordinates. However, this method could be further improved

by limiting the intersection calculations so that the simulator doesn’t compute the

14

Figure 5: The corners of a rectangular obstacle are denoted as C1, C2, C3 and C4.
The positions of the corners are know to the simulator. The intersections of the beam
ray R and the obstacle are denoted as Z1 and Z2.

intersection of the ray with all obstacles in the map. Nevertheless, by using a non-

optimized version of the algorithm the simulation speed was improved from 20 seconds

with the grid-based approach to approximately 8 seconds.

Having optimizing the simulation, different physics engine libraries were used

in this research. The Box2D [4] physics engine was used for the ray-casting of the

radar system and for handling collisions. Box2D uses an optimized code to create a

virtual world and simulate the physics of the objects in the world. So the obstacles

were converted from mathematically defined objects to objects in the format required

by Box2D. Box2D also uses metric units which makes the behavior of the autonomous

agent more natural and portable to real-world applications. The radius of the radar

in our simulation is 10 meters. Also, the use of this library significantly improved the

simulation time from 8 seconds to about 3 seconds.

To conclude, the radar system calculates the distance of the nearest obstacle

in 1◦ increments and stores the distances in an array. The array looks like Figure 6.

Distance is normalized to the range [0, 1]. This means that if there is no obstacle

in a certain direction, the distance is 1, and if an obstacle is touching the robot,

the distance is 0. The memory array has 360 blocks for each step of the radar laser

beam. This number can be increased or decreased. However, the value of 360 was

15

chosen because it returns a result with appropriate resolution without increasing the

simulation time unnecessarily. Increasing the number of blocks, or decreasing the

step size to a value less than 1◦, would help the robot detect smaller obstacles. In

our simulations, the obstacles’ size is not tiny so our current radar resolution can be

used without being worried about missing an obstacles with the radar.

Figure 6: Sample memory array returned by the radar system. This memory array
contains 360 entries, one for each degree of radar resolution.

2.2 Target Distribution dT

To construct dT , the robot ignores all obstacles. The distribution domain is

[0, 2π) and is defined as

dT (φ) =
A√
2πσ2

T

e
− (φ−α)2

2σ2
T φ ∈ [0, 2π) (2.6)

where A is the distribution’s dynamic amplitude coefficient; in our experiments, A =

1. α is the angle toward the target and is computed by the robot, and σT is the

standard deviation and is a user-selectable parameter. Figure 7 shows two target

distributions with two different values for σ.

Changing σT will impact the robot’s behavior. Smaller values will force the

robot to choose a path close to the obstacles, and higher values will give the robot

16

Figure 7: Two target distributions with different σ values.

a greater higher turning radius around the obstacles, resulting in a safer trajectory

with less risk of collision. However, a greater avoidance of the obstacles will result

in a greater travel distance to the target, which will result in an increase in traveling

time. BBO will be used to optimize the value for σT , as explained in the next chapter.

2.3 Obstacle Distribution dO

The obstacle distribution is constructed by the 360◦ radar sensor on the robot. The

radar system was explained in section 2.1. The obstacle distribution dO is a function

of the distance sensed by the radar to the nearest obstacle at each angular position

around the robot. The output of fθ in Equation 2.1 for input dO will return an

angle at which the robot has the lowest probability of colliding with an obstacle. In

Section 2.1 it was explained that the radar distance array contains normalized values

17

for distance. We define the following equation for d′O, which normalizes dO:

d′O =
dO
γ

(2.7)

where γ is a coefficient that affects how sensitive the robot is to obstacles. If γ is large

the robot will be less sensitive. In our experiments, the value of γ is the maximum

range of the radar, which results in

max(d′O(φ)) = 1, φ ∈ [0, 2π) (2.8)

The minimum value of dO is zero, which occurs when an obstacle is touching the

robot. In our experiments this happens rarely since the robot tends to move away

from obstacles. In our experiments, this happens only if the speed of an obstacle is

higher than that of the robot. In the following sections, the speed of the robot is

discussed in more detail. There are some situations where the maximum speed of the

robot is less than the speed of the obstacles, which could easily result in a collision.

Figure 8 shows a sample obstacle distribution (d′) with maximum distance 1, which

means there are no obstacles in that direction; these directions are indicated in the

figure with the symbol B. If the distribution value is less than 1 in some direction,

indicated with an A in the figure, an obstacle is detected within the radar range in

that direction.

The simplest situation in simulation considers the robot as a point with zero

radius. However, in the real world, the robot has a nonzero dimension. In order to

establish a safe margin when the robot tries to go around the corner of an obstacle,

we define a threshold JdF which shifts the obstacle distribution down. This means

the robot treats the obstacles as closer than their real positions. The value of this

parameter is a function of the robot dimensions but is determined experimentally and

is optimized later in this thesis.

18

Figure 8: Obstacle distribution d′. There are two types of regions in this figure: A
indicates the existence of obstacles at the given angles, and B indicates that there are
no obstacles at the given angles.

2.4 Final target distribution dF

The algorithm uses dT and d′O to construct the final target distribution dF ,

which tells the robot which direction to choose to prevent colliding with obstacles

while still moving as directly as possible toward the target. The algorithm constructs

dF by taking the minimum value of dT and d′0 at each angle φ ∈ [0, 2π):

dF (φ) = min(dT , d
′
O), φ ∈ [0, 2π) (2.9)

By using the minimum operation to construct the final target distribution, directions

toward obstacles have a lower distribution value, and directions away from obstacles

have a higher distribution value. The fθ function, described earlier, can be used to

find Θ, which is the argument of the maximum value of dF , which will be the most

favorable angle for a trajectory that is both safe and in the direction of the target

point. Figure 9 shows an example of dF .

19

Figure 9: Example of final target distribution construction. The original target dis-
tribution is green and the obstacle distribution is red. The solid line is the final target
distribution and is constructed by taking the minimum value of the original target
distribution and the obstacle distribution.

The robot also changes its speed depending on the location of the closest

obstacle. Figure 10 depicts the speed algorithm of the robot. The robot has five

speed modes: very slow (S1), slow (S2), normal (S3), fast(S4), and very fast (S5).

The velocity of each speed mode will be optimized by the BBO algorithm. The robot

changes its speed based on the location of the nearest obstacle according to Figure 10.

In Figure 10, the robot is shown as a black filled circle in the middle of the

figure, and the direction of motion is toward the top of the page and is shown with

an arrow. The radius of the largest circle is L, which is the maximum range of the

360◦ radar. As the robot navigates and passes obstacles, some obstacles might enter

the regions A, B, C, or D. If the closest obstacle is in region A, the robot will choose

speed mode S2. Region B is associated with speed mode S1, and regions C, D, E,

and F are associated with speed modes S5, S4, S3, and S3 respectively. If there is an

obstacle in region E or F the robot will ignore them and will continue with normal

speed S3. Region B is a symmetric arc with angle 2θ2 and is taken from a circle

20

centered on the robot with radius rB. Likewise, region C is a symmetric arc with

angle 360−2θ1 and is taken from a circle centered on the robot with radius rC . rB and

rC are independent and belong to [0, L]. Parameters θ1, θ2, rB and rC are empirically

determined and highly affect the safety of the robot. They will be optimized later in

this thesis with the BBO algorithm. The parameters are summarized in Table I.

Figure 10: Different speed mode regions that the robot uses to change its speed
according to the position of the closest obstacle.

Location of closest obstacle Radius Speed mode

Region A L (radar range) S2 (Slow)
Region B rB S1 (Very Slow)
Region C rC S5 (Very Fast)
Region D L (radar range) S4 (Fast)
Region E L (radar range) S3 (Normal)
Region F L (radar range) S3 (Normal)

Table I: Speed modes; see Figure 10 for regions.

21

2.5 Memory Distribution dM

The final target distribution dF constructed in the previous section is highly

goal-oriented. In complex maps, like mazes or buildings with multiple rooms, the

robot might not be able to reach the target without backtracking (that is, returning

to regions or rooms that it has already visited). However, current global robot path

planners require the robot to have a memory to store previously visited locations on

the map. Building the map or reconstructing the map can also be implemented with

our algorithm, but this is not our goal since we want to develop an algorithm that

uses as little memory as possible. Our algorithm’s memory is a queue that can save

up to 500 previously visited coordinates. When the number of time steps exceeds

500, the earliest elements are discarded. The robot uses this queue to escape rooms

or corners in which it might become stuck. This allows the robot to escape rooms

and to backtrack through previously visited regions. Figure 11 depicts the memory

queue. Note that the number of memory blocks in the queue can be changed and can

be optimized. However, in our simulations, the number of the blocks is constant and

is equal to 500.

Figure 11: Memory queue in which previously visited coordinates are stored.

The robot saves the previously visited coordinates in memory as it navigates.

These saved coordinates create a repulsive force. If the robot gets trapped in a room

or a dead end, the memory points that are saved in that area become more dense.

This will cause the robot to backtrack and escape from that area. The direction of

the repulsive force follows a Gaussian distribution centered at the mean of directions

of the memory points with standard deviation σM , which will be optimized later in

this thesis with BBO.

22

Figure 12 shows an example of the robot and the memory points (MPs) stored

in the queue (fewer than 500 for the sake of illustration). Figure 13 shows a Gaussian

distribution based on the MPs. As shown in Figure 13, the MP in the middle has the

highest weight.

Figure 12: Illustration of memory points (MPs). The dashed lines show the direction
of the repulsive force imparted to the robot by each MP.

Figure 13: Memory distribution based on recently visited locations.

The navigation algorithm executes at 60 Hertz, so the 500-point memory queue

contains data for the previous 8 seconds, approximately. The distance traveled in 8

23

seconds depends on the speed of the robot. In a real-world application, 8 seconds

might not be long enough for the memory queue and the size of the queue might need

to be adjusted. Each memory block will occupy 8 bytes. As mentioned above, the

robot uses 500 blocks for the queue, so the total memory requirement is 8 bytes × 500

= 4000 bytes. This amount of memory is available in almost any embedded system.

Table II compares the memory size required to store the coordinates of recently visited

locations. This table shows that the required memory is appropriate even if we want

to save 30 minutes worth of previously visited locations. However, the goal of this

method is to keep the memory requirements as small as possible so that the algorithm

is suitable even for small embedded systems.

Time Size

8 sec 3.75 KBytes
16 sec 7.5 KBytes
64 sec 30 KBytes
10 min 281.25 KBytes
30 min 843.75 KBytes
1 hour 1687.5 KBytes

Table II: Memory size comparison for various lengths of time for which the robot will
save previously visited points. The nominal value in this thesis is 8 seconds.

2.6 Final Robot Steering Direction: Combining dM and dF

At this point we have steering angles from the memory distribution and the

final target distribution. We call these steering angles VdF and VdM respectively.

In order to determine the final robot steering direction, the robot uses the memory

vector only if necessary, so the memory vector has a lower weight than the final target

vector on the final robot steering direction. To implement this idea, we assign weights

to the two steering vectors: PdF for VdF , and PdM for VdM . The appropriate values

for the weights are determined empirically and in our experiments are optimized by

BBO. The resultant vector is calculated by summing the two weighted VdF and VdM

24

vectors, and we call the resultant vector VR. Figure 14 illustrates a VR calculation. In

the figure, VdF shows the final target steering direction as determined by the target

location and the obstacles, and VdM shows the steering direction as indicated by the

robot’s memory to avoid previously visited coordinates.

Figure 14: Illustration of dF and dM vectors and their weighted summation vector,
which is the final robot steering direction.

Figure 15 shows an example of how the speed changes with time as the robot

navigates. The speed of the robot is changes between 4 and 10 units, since most of

the time obstacles are detected in front of the robot so the robot slows down to avoid

collisions. For the same simulation, Figure 16 shows how the distance to the target

changes with time. If there were no obstacles on the map, the distance curve would

be the dashed line in the figure. However, the obstacles make the robot veer from the

straight path to avoid collisions.

25

Figure 15: Illustration of how the speed of the robot changes with time based on
sensed obstacles.

Figure 16: Illustration of how the robot moves toward the target while avoiding
obstacles.

26

CHAPTER III

The D* ALGORITHM

The D* algorithm is based on the A* algorithm, which is a heuristic, robust,

reliable path planning method that has been used in many applications [7, 10, 12]. The

A* algorithm [27] searches for the best path through an environment by examining all

possible paths from a known starting location to the known destination. A* considers

a cost function like f(n) = g(n) + h(n) where n is the current graph number, f(n)

is the cost to be minimized, g(n) is the cost from the starting graph to graph n, and

h(n) is the heuristic that estimates the cost from graph n to the destination. One

of the most ubiquitous path planning methods is D* [20, 32], or dynamic A*, which

is a heuristic path planning method for dynamic environments. The D* algorithm is

designed to plan the optimum trajectory for a robot as the robot moves through a

map in real time. In this chapter, D* will be explained and compared to our newly

proposed probabilistic method from the previous chapter.

3.1 Algorithm

The D* algorithm is a generalized version of A* and can be viewed as an

attempt to find a sequence of state transitions through a graph. The graph node

in our experiments is the position of a robot in some environment. The optimum

path is the path, among all possible paths through the graph, for which the sum

of transition costs is minimal. If any path through the graph is found to be not

27

optimal, the path is regenerated by the path planning algorithm. The cost of the

robot states in the path can be defined as any measurable value, like distance, energy,

time, etc. In the D* algorithm the robot uses a sensor to obtain information about

the map. The map is partially known to the robot and the robot can re-plan its

trajectory as it moves through the map. To generate the initial candidate optimum

path, several methods have been published, such as the initial A* path and the

distance-based initial path [24, 27]. In this research the distance-based initial path

was implemented [24]. There are other methods that have been designed to improve

the path of a robot in a graph based map, but they become highly inefficient in

high resolution maps with a large number of graph nodes [2, 38]. D* provides an

improvement over the previously mentioned algorithms because it can handle large

maps by updating only the parts of the map that are required for the current steering

decision of the robot.

D* works by first generating a path to the target point using the A* algorithm

and begins moving toward the target point using that path. Figure 17 shows a map

with the robot indicated with the green R and the target point with a red T . The

gray areas are obstacles that are known prior by the robot. The arrows in the map

show the steering directions generated by the A* algorithm. Note that the robot can

move diagonally. If the robot follows the arrows, it will lead the robot to the target

point. However, the tile indicated with O means that the robot is not aware if that

tile is blocked or open. Based on the direction of the arrows, the robot will go between

the obstacles and will arrive at the tile indicated with O.

D* has been extensively used in real robots [34]. D* star works by creating an

OPEN list that includes two type of states: RAISE and LOWER. The RAISE states

mean that the path cost will be increased and the LOWER states mean that the path

cost will be reduced by redirecting the arrows to a new path. RAISE states increase

the cost of each state by starting from a blocked state O and then sweeping outward

28

Figure 17: Sample tile map and A* navigation. The robot’s initial point is indicated
with an R and the target point is indicated with a T . State O shows a tile in the
graph whose state (open or closed) the robot does not know. Gray static obstacles
are known to the robot prior to path planning. Arrows show the optimum path to
the target point as computed by the A* algorithm based on prior knowledge of the
map.

to activate the neighboring LOWER states. LOWER states compute the cost and

change the direction of the arrows. D*, like A* [32], can use focused heuristics to

achieve cost estimation that helps the robot arrive at its destination with a lower

cost, less memory, and less computing power.

The D* algorithm consists of three main functions: PROCESS-STATE, MODIFY-COST

and MOVE-ROBOT. PROCESS-STATE is the first step of the algorithm and finds

an preliminary path to the target point. As the robot moves through its environment,

29

MODIFY-COST computes new cost values for different states. If there is a state with

a high cost in the pre-computed path, this function puts the state in the OPEN list

and maintains the RAISE and LOWER states of all affected states. In the last step,

function MOVE-ROBOT causes the robot to move in the optimally defined direction.

A detailed explanation of the D* algorithm is provided in [33].

In order to enhance the D* algorithm’s computational effort, it was modi-

fied [19, 21] using the lifelong planning A* algorithm to create a new algorithm called

D* Lite. Although D* was implemented in this thesis, it was found to be compu-

tationally inefficient so we instead use D* Lite, which will be explained later in this

chapter.

3.2 Lifelong Planning A* (LPA*)

LPA* is an enhanced and incremental version of A* and applies A* to a finite

graph whose edge costs increase or decrease over time. Algorithm 1 shows the LPA*

algorithm. S indicates the finite set of vertices of the graph. Succ(s) ⊂ S indicates

the successors of the current vertex (s ∈ S) of the graph. Successors are vertices

that are accessible and reachable from the current vertex. Pred(s) ⊂ S denotes the

predecessors of the current vertex. Predecessors are vertices from which the current

vertex (s ∈ S) can be reached. c(s, s′) represents the cost of moving from vertex s to

vertex s′, s ∈ Succ(s). g∗(s) denotes the shortest path from sstart to s ∈ S. LPA*

always finds the shortest path between sstart and sgoal assuming knowledge of the

graph topology and costs. Like A*, LPA* uses heuristics, denoted as h(s, sgoal), to

approximate the distances to the goal vertex, where s ∈ S [34]. The heuristics should

obey the triangle inequality:

h(sgoal, sgoal) = 0

h(s, sgoal) ≤ c(s, s′) + h(s′, sgoal)

(3.1)

30

Furthermore, the type of queue U will impact the behavior of the algorithm and is a

priority queue. The LPA* functions are summarized in Table III.

Function Description

U.Top() Returns the vertex with the smallest priority in the queue U
U.TopKey() Returns the smallest priority in the queue U
U.Pop() Returns the smallest priority in the queue U and deletes it
U.Insert(s, k) Inserts vertex s in queue U and sets the priority to k
U.Update(s, k) Updates the priority of vertex s in the queue U to k
U.Remove(s) Removes vertex s from queue U

Table III: Functions of priority vertices queue U

If queue U is EMPTY the function U.TopKey(·) returns [∞,∞]. The variable

rhs(s) in Algorithm 1 is defined as

rhs(s) =

0, if s = sstart

mins′∈Pred(s)(g(s′) + c(s′, s)), otherwise

(3.2)

rhs(s) is function that looks ahead to obtain better information for g-values. LPA*

estimates g(s) from the starting distance of the vertex s. LPA* g-values directly

correspond to A* g-values.

Priorities in priority queue U are based on their key, k(s). The key of each

vertex consists of two components:

k(s) = [k1(s)], k2(s)]

k1(s) = min(g(s), rhs(s)) + h(s, sgoal)

k2(s) = min(g(s), rhs(s))

(3.3)

where k1(s) corresponds to the f function of the A* algorithm f = g + h. LPA* g-

values and rhs values correspond to A* g-values, and the LPA* h function corresponds

to A* h-values. k2(s) corresponds to A* g-values. Keys are sorted by their first

components, and if two keys have the same values in their first component then the

31

second component is compared. Vertices in priority queue U are expanded starting

with the smallest key.

Algorithm 1 Lifelong Planning A*

1: procedure CalculateKey(s)
2: return [min(g(s), rhs(s)) + h(s); min(g(s), rhs(s))]
3: end procedure
4: procedure Initialize
5: U = ∅
6: for all s ∈ S, rhs(s) = g(s) =∞
7: rhs(sstart) = 0
8: U.Insert (sstart, [h(sstart); 0])
9: end procedure
10: procedure UpdateVertex(u)
11: if (u 6= sstart) then
12: rhs(u) = mins′∈pred(u)(g(s′) + c(s′, u))
13: end if
14: if (u ∈ U) then
15: U.Remove(u)
16: end if
17: if (g(u) 6= rhs(u)) then
18: U.Insert(u,CalculateKey(u))
19: end if
20: end procedure
21: procedure ComputeShortestPath
22: while (U.TopKey() < CalculateKey(sgoal) OR rhs(sgoal) 6= g(sgoal)) do
23: u = U.Pop()
24: if (g(u) > rhs(u)) then
25: g(u) = rhs(u)
26: for all (s ∈ Succ(u)) do
27: UpdateVertex(s)
28: end for
29: else
30: g(u) =∞
31: for all (s ∈ Succ(u)

⋃
U) do

32: UpdateVertex(s)
33: end for
34: end if
35: end while
36: end procedure
37: procedure Main(())
38: Initialize()
39: while (True) do
40: ComputeShortestPath()

32

41: Wait for changes in edge costs
42: for all (Directed edges (u, v) with changed edge costs do
43: Update the edge cost c(u, v)
44: UpdateVertex(v)
45: end for
46: end while
47: end procedure

The LPA* algorithm was implemented in C++ for this thesis. This is required

to implement D* Lite, which is described in the next section and which uses LPA*

as an efficient part of its path planning algorithm.

3.3 D* Lite

In the previous section we described the LPA* algorithm. LPA* uses the edge

costs of the graph to find the shortest path between the start vertex and the goal

vertex. The D* algorithm uses the LPA* algorithm to find the shortest path as the

robot navigates through a map. The D* algorithm is summarized in Algorithm 2. D*

Lite is a path planning algorithm that can be used in unknown environments. For

our experiments, the initial cost of each edge is 1. If there is no clear path to the

goal vertex, the cost of the edges are set to infinity. In order to implement the D*

Lite algorithm, the robot assumes that current location of the robot is sstart and then

finds the path to sgoal.

Note that LPA* finds a path from sstart to sgoal, so the g-values are estimates

from the starting point. However, in D* Lite, the direction is reversed and the g-

values are estimates from the goal point, so it finds the path from sgoal to sstart. To

address this issue in our research, when the map is not known but the immediate

surroundings of the robot is known, the location of the start and goal vertices is

exchanged in LPA*. Figure 18 shows the updated arrows as the robot navigates

through the map. D* Lite is easier to implement and debug than the D* algorithm,

and is claimed to be faster as well. So in this research, the D* Lite was implemented

33

and is compared to our newly proposed path planning method.

Algorithm 2 D* Lite

1: procedure CalculateKey(s)
2: return [min(g(s), rhs(s)) + h(s); min(g(s), rhs(s))]
3: end procedure
4: procedure Initialize
5: U = ∅
6: km = 0
7: for all s ∈ S, rhs(s) = g(s) =∞
8: rhs(sstart) = 0
9: U.Insert (sstart, [h(sstart); 0])
10: end procedure
11: procedure UpdateVertex(u)
12: if (u 6= sgoal) then
13: rhs(u) = mins′∈Succ(u)(g(s′) + c(s′, u))
14: end if
15: if (u ∈ U) then
16: U.Remove(u)
17: end if
18: if (g(u) 6= rhs(u)) then
19: U.Insert(u,CalculateKey(u))
20: end if
21: end procedure
22: procedure ComputeShortestPath
23: while (U.TopKey() < CalculateKey(sstart)ORrhs(sstart) 6= g(sstart)) do
24: kold = U.TopKey()
25: u = U.Pop()
26: if (kold < CalculateKey(u)) then
27: U.Insert(u,CalculateKey(u))
28: else if g(u) > rhs(u) then
29: g(u) = rhs(u)
30: for all s ∈ Pred(u) do
31: UpdateVertex(s)
32: end for
33: else
34: g(u) =∞
35: for all s ∈ Pred(u)

⋃
U do

36: UpdateVertex(s);
37: end for
38: end if
39: end while
40: end procedure
41: procedure Main
42: slast = sstart

34

43: Initialize()
44: ComputeShortestPath()
45: while sstart 6= sgoal do
46: /* if (g(sstart) =∞) then there is no known path */
47: sstart = argmins′∈Succ(sstart(c(sstart, s

′) + g(s′))
48: Move to sstart
49: Scan graph for changed edge costs
50: if any edge costs changed then
51: km = km + h(slast, sstart)
52: slast = sstart
53: for all directed edges (u, v) with changed edge costs do
54: Update the edge cost c(u, v)
55: UpdateV ertex(u)
56: end for
57: ComputeShortestPath()
58: end if
59: end while
60: end procedure

Figure 18: An updated version of Figure 17 using D* Lite. The arrows have been
been updated and the blocked gate between the two obstacles has been resolved.

35

3.4 Experimental Results

D* Lite is a graph-based path planner, so the resolution of the map is not

perfect. In this section there is no optimization for either the probabilistic path

planning algorithm or the D* Lite algorithm; the values of the parameters are chosen

experimentally. The D* Lite algorithm was modified to include higher costs for

vertices near obstacles so it could maintain some free space between the robot and

the obstacles. There is no optimization involved in this set of comparisons. The

number of time steps and number of collisions are recorded for both algorithms and

are presented in this section.

The size of the map is 800× 600 pixels. This corresponds to a map size of is

100 m × 75 m. In D* Lite the robot can see 80 pixels ahead and in the probabilistic

method the robot can see 10 m ahead. The sizes of the dynamic obstacles are random

and range between 56-80 pixels or 7-10 meters. The directions of their movements are

random as well and they can move in any direction. The two algorithms are tested

in this section on three maps as shown in Figure 19. Each algorithm was simulated

three times per map because of the random sizes and movements of the obstacles,

and the results are averaged. The resolution of the maps is 10 pixels. This means

that the robot will jump 10 pixels per time step in both the D* Lite and probabilistic

algorithms. The adaptive speed feature for the probabilistic method is disabled to

provide a more even comparison.

Map 1, shown in Figure 19a, contains only dynamic obstacles and no static

obstacles except the surrounding walls. The blue line shows a sample path of the robot

using the probabilistic approach and the red line shows a sample path using D* Lite.

There are nine dynamic obstacles in the map and their direction of motion is random.

We can observe that the robot paths for the two algorithms are similar. Both robots

start moving toward the target point and change their paths to avoid the dynamic

obstacles that appear in the visible radar radius. The speed of the dynamic obstacles

36

(a) Map 1 (b) Map 2

(c) Map 3

Figure 19: Maps used to compare the results for the probabilistic method and the D*
Lite algorithm

are slightly higher than the robot, which makes occasional collisions inevitable.

Map 2, shown in Figure 19b, constains both static and dynamic obstacles. The

robots try to avoid both the static obstacles and the dynamic obstacles. However, the

robot does not which obstacles are static and which ones are dynamic. The blue line

shows a sample path for the probabilistic method and the red line shows a sample

path for D* Lite. D* Lite spends less time than the probabilistic method finding the

path to the target.

Map 3, shown in Figure 19c, shows an environment with only static obstacles.

The robot needs to find the gap in the wall and successfully navigate through it. The

blue line shows a sample path for the probabilistic method and the red line shows a

sample path for D* Lite.

37

Table IV presents the overall comparison between the two algorithms. D*

Lite had better results in terms of the time required to reach the target, but the

probabilistic method resulted in fewer collisions. However, we should consider that

the maps were converted to a grid of vertices to make this comparison. For larger

maps, or for maps with higher resolution, the probabilistic method won’t have the

performance penalty that D* Lite has, but D* Lite will take more time to reach

the target point. D* Lite will also require more computing power as the number

of nodes increases, while the probabilistic method requires computing power that

is independent of the number of nodes. Overall, it appears that the probabilistic

method is more suitable for real-world applications in which collisions are a primary

consideration, and is a competitive path planning method for unknown environments

with dynamic obstacles. In the next chapter the parameters of the robot are optimized

using BBO.

D* Lite Probabilistic Method

Map Collisions Time Step Collisions Time Step

Map 1 2.34 141.67 0.34 180
Map 2 1.34 171 1 211.34
Map 3 0 151 0 266.34

Table IV: Comparison between D* Lite and the probabilistic method

38

CHAPTER IV

BIOGEOGRAPHY-BASED OPTIMIZATION

Biography-based optimization (BBO) is an optimization algorithm based on

the study of the geographical distribution of biological species. The study of bio-

geography dates back to the 19th century [31] when scientists began analyzing the

migration behaviors of species between islands and the reasons for their extinction.

BBO applies the mathematics of biogeography to engineering problems.

There are many heuristic optimization methods, such as genetic algorithms

(GAs), neural networks, fuzzy logic and particle swarm optimization. Due to the

advantages of BBO, which will be discussed in the following, BBO is the method

chosen in this research. As a general overview, habitat suitability index (HSI) is a

metric of how suitable an island is for habitation. Habitats of an island with higher

HSI tend to live longer and have a higher population than habitats in islands with

a lower HSI. Because of this, the population of an island with a high HSI tends

to emigrate to an island with a lower HSI. Figure 20 represents a map containing

different islands with population members represented by gray dots. Representatives

of these members tend to move to islands with lower HSI as discussed above.

In this research, we generate a population of islands where each individual has

multiple parameters that define its characteristics. To measure the “goodness” of a

member of the population, a cost function is defined. This cost function evaluates a

metric for each member of the population so they can be compared to each other and

39

Figure 20: Biogeography migration of species to islands with lower habitat suitability
index

sorted. Each iteration of the algorithm, a new population is generated via migration

of parameters between members. However, a specific number of elite population

members are maintained from the previous generation to prevent the loss of a good

solutions to the underlying engineering problem. The number of elite members is

empirical and affects how fast the algorithm converges to a population with optimized

parameters.

Similar to biological species, in BBO an individual member of the population

might mutate.The mutation probability is usually not high, but just as in biology

a mutation might lead to an improved phenotype, in BBO mutation might lead to

an improved member of the population. Mutation can also prevent the optimization

process from getting stuck in a local optimum.

In our application, each member of the population includes a set of parameters

to be optimized. Each parameter is initially randomly generated for each population

member in the appropriate range. In a population of size n we begin BBO with n

collections of randomly generated parameters. In our application, this corresponds

to n robots, where each robot is simulated using its own unique set of parameters.

40

We define the variable T gi to denote the number of time steps to reach the target and

Cg
i to denote the number of collisions in BBO generation g where i ∈ [1, n] is the

index of the particular member of the population. However, note that a given robot

simulation will not return the same T gi and Cg
i values because of the randomness of

the simulations; the locations and movements of the dynamic obstacles are random

and vary from one simulation to the next. To quantify the average performance of

the path planning algorithm for a given set of path planning parameters, we use

Monte-Carlo simulations for each robot:

T gi =
T gi1 + T gi2 + ...+ T giM

M
i ∈ [1, n]

Cg
i =

Cg
i1 + Cg

i2 + ...+ Cg
iM

M
i ∈ [1, n]

(4.1)

where M is the number of the Monte-Carlo iterations, i indicates the index of a

specific member of the BBO population, n is the population size and g is a specific

BBO generation number.

The robots keep track of their values of T gi and Cg
i and save them in a file as

soon as they reach the target point. Since we want to minimize both T gi and Cg
i , we

consider a cost function which includes both. However, a lower number of collisions

has a higher priority than the time to reach the target. Therefore, our first step

is to sort the population based on T gi and divide it into two sections based on an

experimental threshold Q. Then, all members that have T gi < Q, are sorted based on

Cg
i . In this way we obtain a list of members that are ordered starting from the best

(lowest) Cg
i , each of which has T gi < Q. This process is depicted in Figure 21. In the

next step we choose our elite BBO members and proceed to the next generation. This

continues for a desired number of generations, or until we stop achieving significant

improvements. Then the algorithm reports the best member of the final population

as the solution to the optimization problem.

In our simulations we set the BBO generation limit to 50 and the population

41

Figure 21: Depiction of how the time and collision cost functions are combined. The
first m elements all have a time cost function less than a given threshold and are then
sorted according to the number of collisions. The last n−m elements all have a time
cost function greater than the threshold and are sorted according to time.

size to 20, and each population member has 14 parameters that can be varied, as

discussed in the following chapter. This setup results in a total of 50 × 20 = 1000

simulations for each map to generate the optimal path planning algorithm parameters.

However, as discussed above, each time the map is generated, the dynamic obstacles

and their direction of movement is random. So to obtain average performance of the

path planning algorithm for a given set of path planning parameters, the same map

is simulated for 8 Monte-Carlo iterations. Therefore, the total number of simulations

is 8000 per hap. Figure 22 shows the block diagram of the BBO algorithm.

42

Figure 22: Block diagram of BBO algorithm

43

CHAPTER V

SIMULATION RESULTS

In this chapter, experimental results are presented. The simulations were

performed with four maps. BBO was also implemented to optimize the probabilistic

path planning algorithm parameters. In each map, the region is bounded by walls.

Walls are required to prevent the robot from navigating away from the map, and

also to prevent the simulation from crashing due to unknown memory access issues.

The target point is depicted as a red dot and the starting point is shown as a green

dot. Dynamic obstacles are blue and are defined in varying numbers and sizes for

each map. The size of each map is 100 × 100 meters. As soon as the simulation

starts, the movement directions of the dynamic obstacles are assigned randomly. In

all simulations the robot starts from the lower left corner of the map and navigates to

the target point, which is located at the top right corner of the map. In each section

in this chapter a table shows the BBO results.

5.1 Only Dynamic Obstacles, No Bouncing after Collisions

The first set of maps contain no static obstacles other than the surrounding

walls. The number of dynamic obstacles in this example is 100 and the radius of

each of these obstacles varies between 1 and 4 meters. In this map, Figure 23, there

is no bouncing after collisions. This means that if the robot hits an obstacle or if

two obstacles hit each other, they won’t bounce. Instead, based on their direction of

44

movement, they might stick to each other; or if an obstacles hits the robot, it might

stick to the robot until another obstacle hits the first obstacle to separate it from the

robot. In general, in order for the robot and obstacle to separate from each other

after a collision, one of them needs to change its direction of movement by receiving

an external force. Figure 24 shows the distance from the robot to the target point as

a function of time for a sample simulation. Figure 25 shows the speed of the robot

as a function of time for a sample simulation. The robot speed changes in order to

avoid collisions, as shown in Figure 10.

Figure 23: This map shows the robot and a sample trajectory from the starting point
to the target point. The map contains only dynamic obstacles. In this map there is
no bouncing after collisions.

BBO was also simulated on the sample map of Figure 23. BBO was performed

for 50 generations, in each generation there were 20 members and each member was

simulated with 8 Monte Carlo iterations. This resulted in a total of 8000 simulations

to optimize the path planning algorithm parameters. The optimized parameters are

shown in Table V.

Figures 26 and 27 show that as BBO progresses through successive generations,

45

Figure 24: Distance from the robot to the target as a function of time for a sample
simulation of the map of Figure 23.

Figure 25: Robot speed as a function of time for a sample simulation of the map of
Figure 23.

46

Variable Range Optimized Value Units

Target Distribution Sigma [30.0, 100.0] 99.16
Memory Distribution Sigma [70.0, 120.0] 91.88

Very Slow Speed [0.0, 2.0] 0.3 Units/TS
Slow Speed [2.0, 5.0] 2.02 Units/TS

Normal Speed [5.0, 7.0] 6.86 Units/TS
Fast Speed [8.0, 10.0] 9.99 Units/TS

Very Fast Speed [10.0, 20.0] 15.71 Units/TS
Corner Distance Threshold [10.0, 50.0] 43.02
Final Target Vector Weight [1.0, 2.0] 1.71

Memory Vector Weight [0.0, 0.25] 0.24
Front View Angle θ2 [0.0, 60.0] 36 Degrees
Back View Angle θ1 [θ2, θ2 + 60] 60 Degrees

Slow Speed Region Radius [0, 0.99] 0.11
Acceleration Speed Region Radius [0, 0.99] 0.89

Table V: Optimized parameters for the map of Figure 23. TS stands for time step.

the number of collisions and the number of time steps required to reach the target

decreases. When the number of time steps reaches about 105, which is the threshold

of the cost function discussed in Chapter IV, we see some unusual behavior in the

number of collisions. This is because of the method of generating the cost function.

As the number of time steps required to reach the target decreases to the cost function

threshold, a BBO member that is greater than the threshold decreases and becomes

the best member in the population, even though its collision count is greater than

the previous generation’s best member.

5.2 Only Dynamic Obstacles, With Bouncing

This map is the same as Figure 23; there are no static obstacles other than

the surrounding walls. There are 100 dynamic obstacles and their radii vary between

1 and 4 meters. However, bouncing is enabled in the simulation. This means the

obstacles will bounce away from the robot, wall, or other obstacle after they collide.

A physics engine is used in the simulation to accurately calculate the reaction of the

obstacles after collisions. The map is shown in 28.

47

Figure 26: The number of collisions for Figure 23 improves by optimizing the path
planning algorithm parameters with BBO. The number of collisions is averaged over
eight Monte Carlo simulations.

Figure 27: The number of time steps required to reach the target in Figure 23 improves
by optimizing the path planning algorithm parameters with BBO. The number of
collisions is averaged over eight Monte Carlo simulations.

Figure 29 shows the distance from the robot to the target point as a function

of time for a sample simulation. Figure 30 shows the speed of the robot as a function

of time for a sample simulation. The robot speed changes in order to avoid collisions,

48

Figure 28: This map shows the robot and a sample trajectory from the starting point
to the target point. The map contains only dynamic obstacles. In this map there is
bouncing after collisions.

as shown in Figure 10.

Figure 29: Distance from the robot to the target as a function of time for a sample
simulation of the map of Figure 28.

49

Figure 30: Robot speed as a function of time for a sample simulation of the map of
Figure 28.

BBO was also simulated on the sample map of Figure 28. BBO was performed

for 50 generations, in each generation there were 20 members and each member was

simulated with 8 Monte Carlo iterations. This resulted in a total of 8000 simulations

to optimize the path planning algorithm parameters. The optimized parameters are

shown in Table VI.

As in the previous simulation, Figures 31 and 32 show that as BBO progresses

through successive generations, the number of collisions and the number of time steps

required to reach the target decreases. When the number of time steps reaches about

105, which is the threshold of the cost function discussed in Chapter IV, we see

some unusual behavior in the number of collisions. This is because of the method

of generating the cost function. As the number of time steps required to reach the

target decreases to the cost function threshold, a BBO member that is greater than the

threshold decreases and becomes the best member in the population, even though its

collision count is greater than the previous generation’s best member. The difference

50

Variable Range Optimized Value Unit

Target Distribution Sigma [30.0, 100.0] 98.12
Memory Distribution Sigma [70.0, 120.0] 80.28

Very Slow Speed [0.0, 2.0] 0.2 Units/TS
Slow Speed [2.0, 5.0] 2.00 Units/TS

Normal Speed [5.0, 7.0] 6.5 Units/TS
Fast Speed [8.0, 10.0] 9.99 Units/TS

Very Fast Speed [10.0, 20.0] 19.43 Units/TS
Corner Distance Threshold [10.0, 50.0] 41.00
Final Target Vector Weight [1.0, 2.0] 1.91

Memory Vector Weight [0.0, 0.25] 0.17
Front View Angle θ2 [0.0, 60.0] 38 Degrees
Back View Angle θ1 [θ2, θ2 + 60] 53 Degrees

Slow Speed Region Radius [0, 0.99] 0.04
Acceleration Speed Region Radius [0, 0.99] 0.96

Table VI: Optimized parameters for the map of Figure 28. TS stands for time step.

between this simulation and the previous one is that in this one, bouncing is enabled.

This results in more collisions because the bouncing behavior of the obstacles can

cause them to hit the robot multiple times.

Figure 31: The number of collisions for Figure 28 improves by optimizing the path
planning algorithm parameters with BBO. The number of collisions is averaged over
eight Monte Carlo simulations.

51

Figure 32: The number of time steps required to reach the target in Figure 28 improves
by optimizing the path planning algorithm parameters with BBO. The number of
collisions is averaged over eight Monte Carlo simulations.

5.3 Simple Maze with Dynamic Obstacles

In this simulation the behavior of the robot is tested in a simple maze map.

The bouncing feature of the dynamic obstacles is activated. There are 50 dynamic

obstacles and their sizes range between 1 and 3 meters. The map is shown in 33.

Figure 34 shows the distance from the robot to the target point as a function

of time for a sample simulation. Figure 35 shows the speed of the robot as a function

of time for a sample simulation. The robot speed changes in order to avoid collisions,

as shown in Figure 10.

BBO was also simulated on the sample map of Figure 33. BBO was performed

for 50 generations, in each generation there were 20 members and each member was

simulated with 8 Monte Carlo iterations. This resulted in a total of 8000 simulations

to optimize the path planning algorithm parameters. The optimized parameters are

shown in Table VII.

As in the previous simulations, Figures 36 and 37 show that as BBO progresses

52

Figure 33: This map shows the robot and a sample trajectory from the starting
point to the target point. The map contains only dynamic obstacles. Bouncing after
collisions is enabled.

Variable Range Optimized Value Unit

Target Distribution Sigma [30.0, 100.0] 99.97
Memory Distribution Sigma [70.0, 120.0] 111.23

Very Slow Speed [0.0, 2.0] 0.01 Units/TS
Slow Speed [2.0, 5.0] 2.00 Units/TS

Normal Speed [5.0, 7.0] 6.88 Units/TS
Fast Speed [8.0, 10.0] 9.67 Units/TS
Very Fast [10.0, 20.0] 19.12 Units/TS

Corner Distance Threshold [10.0, 50.0] 26.00
Final Target Vector Weight [1.0, 2.0] 1.98

Memory Vector Weight [0.0, 0.25] 0.23
Front View Angle θ2 [0.0, 60.0] 58 Degrees
Back View Angle θ1 [θ2, θ2 + 60] 36 Degrees

Slow Speed Region Radius [0, 0.99] 0.23
Acceleration Speed Region Radius [0, 0.99] 0.67

Table VII: Optimized parameters for the map of Figure 33. TS stands for time step.

53

Figure 34: Distance from the robot to the target as a function of time for a sample
simulation of the map of Figure 33.

Figure 35: Robot speed as a function of time for a sample simulation of the map of
Figure 33.

54

through successive generations, the number of collisions and the number of time steps

required to reach the target decreases. The cost function threshold from Chapter IV

was changed to 1500 for this map based on trial and error. Figure 37 shows that

the distance to the target first decreases rapidly; however, when the robot needs

to backtrack through the maze, the distance increases. When the number of time

steps reaches about 1500, which is the threshold of the cost function discussed in

Chapter IV, we see some unusual behavior in the number of collisions. This is similar

to the behavior of the collision graphs in the previous simulations, although the

threshold is larger in this simulation.

Figure 36: The number of collisions for Figure 33 improves by optimizing the path
planning algorithm parameters with BBO. The number of collisions is averaged over
eight Monte Carlo simulations.

5.4 Map with Rooms

In this simulation, which is the hardest map, the robot tries to reach the target

point by escaping from local optima by using its memory, as discussed in Section 2.5.

The memory size is 500 and bouncing between obstacles is enabled. There are 15

dynamic obstacles with radii between 4 and 5 meters. The map is shown in 38.

55

Figure 37: The number of time steps required to reach the target in Figure 33 improves
by optimizing the path planning algorithm parameters with BBO. The number of
collisions is averaged over eight Monte Carlo simulations.

Figure 38: This map shows the robot and a sample trajectory from the starting point
to the target point. The map contains several rooms in which the robot tends to get
stuck. Bouncing after collisions is enabled.

56

Figure 39 shows the distance from the robot to the target point as a function

of time for a sample simulation. Figure 40 shows the speed of the robot as a function

of time for a sample simulation. The robot speed changes in order to avoid collisions,

as shown in Figure 10.

Figure 39: Distance from the robot to the target as a function of time for a sample
simulation of the map of Figure 38.

BBO was also simulated on the sample map of Figure 38. BBO was performed

for 50 generations, in each generation there were 20 members and each member was

simulated with 8 Monte Carlo iterations. This resulted in a total of 8000 simulations

to optimize the path planning algorithm parameters. The optimized parameters are

shown in Table VIII.

As in the previous simulations, Figures 41 and 42 show that as BBO progresses

through successive generations, the number of collisions and the number of time steps

required to reach the target decreases. The cost function threshold from Chapter IV

was changed to 3200 for this map based on trial and error. Figure 42 shows that

57

Figure 40: Robot speed as a function of time for a sample simulation of the map of
Figure 38.

Variable Range Optimized Value Unit

Target Distribution Sigma [30.0, 100.0] 99.99
Memory Distribution Sigma [70.0, 120.0] 116.44

Very Slow Speed [0.0, 2.0] 0.4 Units/TS
Slow Speed [2.0, 5.0] 3.1 Units/TS

Normal Speed [5.0, 7.0] 6.51 Units/TS
Fast Speed [8.0, 10.0] 9.5 Units/TS
Very Fast [10.0, 20.0] 16.12 Units/TS

Corner Distance Threshold [10.0, 50.0] 14.6
Final Target Vector Weight [1.0, 2.0] 1.6

Memory Vector Weight [0.0, 0.25] 0.22
Front View Angle θ2 [0.0, 60.0] 59 Degrees
Back View Angle θ1 [θ2, θ2 + 60] 47 Degrees

Slow Speed Region Radius [0, 0.99] 0.32
Acceleration Speed Region Radius [0, 0.99] 0.68

Table VIII: Optimized parameters for the map of Figure 38. TS stands for time step.

the distance to the target first decreases rapidly; however, when the robot needs

to backtrack through the maze, the distance increases. When the number of time

steps reaches about 3200, which is the threshold of the cost function discussed in

58

Chapter IV, we see some unusual behavior in the number of collisions. This is similar

to the behavior of the collision graphs in the previous simulations, although the

threshold is larger in this simulation.

Figure 41: The number of collisions for Figure 38 improves by optimizing the path
planning algorithm parameters with BBO. The number of collisions is averaged over
eight Monte Carlo simulations.

Figure 42: The number of time steps required to reach the target in Figure 38 improves
by optimizing the path planning algorithm parameters with BBO. The number of
collisions is averaged over eight Monte Carlo simulations.

59

CHAPTER VI

CONCLUSION

In this thesis, we developed a probabilistic path planning algorithm for robot

navigation, simulated the probabilistic method on four different types of maps, and

used BBO to optimize the parameters of the algorithm. The BBO cost function was

defined so that the robot would reach its target in an acceptable period of time while

minimizing the number of collisions. A memory algorithm was used to force the

robot to backtrack in case it got stuck in a corner or in a room. The algorithm also

includes a speed regulator so that the robot can adjust its speed to avoid collisions

with dynamic obstacles while still reaching the target as quickly as possible.

Simulation results show that BBO’s adjustment of the path planning algorithm

parameters decreases the number of collisions and time steps by about 25%. Further-

more, the path planning algorithm is fast enough for real-time implementation and

could solve all the maps in this thesis. However, path planning performance could

possibly be improved further by continually running the optimization algorithm, a

research direction which has not been pursued in this thesis.

Due to the randomness of the environment, the robot can react suddenly to

changes in the environment and vary its diretion of movement abruptly. This could be

undesirable for real robots that may be sensitive to sudden movements, or to humans

in the environment that may likewise be sensitive to sudden movements by robots in

their environment. For future work, reducing the abruptness of the robot’s movement

60

fluctuations could be considered. Typical robots usually have a considerable amount

of memory, but one of the goals of this thesis was to use as little robot memory as

possible. To improve the performance of the robot, more memory could be used in

future versions of this algorithm, especially to help the robot escape rooms and dead

ends. Implementing this method on real robot hardware could be another future

direction for this research.

61

BIBLIOGRAPHY

[1] Piotr Bigaj and Jakub Bartoszek. Low Time Complexity Collision Avoidance

Method for Autonomous Mobile Robots. In D. Filev et al., editor, Intelligent

Systems’ 2014, pages 141–152. Springer, 2015.

[2] Terrance E Boult. Updating Distance Maps when Objects Move. In Mobile

Robots II, volume 852, pages 232–240. International Society for Optics and Pho-

tonics, 1987.

[3] John Canny. The Complexity of Robot Motion Planning. MIT press, 1988.

[4] Erin Catto. Box2d: A 2d Physics Engine for Games. http://box2d.org/, 2011.

[5] Bruce A Conway. A Survey of Methods Available for the Numerical Optimiza-

tion of Continuous Dynamic Systems. Journal of Optimization Theory and

Applications, 152(2):271–306, 2012.

[6] Juan Cortés, Thierry Siméon, V Ruiz de Angulo, David Guieysse, Ma-

gali Remaud-Siméon, and Vinh Tran. A Path Planning Approach for

Computing Large-amplitude Motions of Flexible Molecules. Bioinformatics,

21(suppl 1):i116–i125, 2005.

[7] Shi-Gang Cui, Hui Wang, and Li Yang. A Simulation Study of A-star Algorithm

for Robot Path Planning. In 16th International Conference on Mechatronics

Technology, pages 506–510, 2012.

62

http://box2d.org/

[8] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body Motion Plan-

ning with Centroidal Dynamics and Full Kinematics. In IEEE-RAS International

Conference on Humanoid Robots, pages 295–302. IEEE, 2014.

[9] R Deepu, B Honnaraju, and S Murali. Path Generation for Robot Navigation

Using a Single Camera. Procedia Computer Science, 46:1425–1432, 2015.

[10] Frantiek Ducho, Dominik Huady, Martin Dekan, and Andrej Babinec. Optimal

Navigation for Mobile Robot in Known Environment. In Applied Mechanics and

Materials, volume 282, pages 33–38, 01 2013.

[11] Laurent Gomila. Simple and Fast Multimedia Library. https://www.sfml-dev.

org/, 2010.

[12] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A Formal Basis for the

Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems

Science and Cybernetics, 4(2):100–107, 1968.

[13] Neil Eugene Hodge, Linda Zhixia Shi, and Mohamed B Trabia. A Distributed

Fuzzy Logic Controller for an Autonomous Vehicle. Journal of Field Robotics,

21(10):499–516, 2004.

[14] Yaochu Jin and Jürgen Branke. Evolutionary Optimization in Uncertain

Environments-a Survey. IEEE Transactions on Evolutionary Computation,

9(3):303–317, 2005.

[15] Tae-Koo Kang, Huazhen Zhang, Gwi-Tae Park, and Dong W Kim. Ego-motion-

compensated Object Recognition Using Type-2 Fuzzy Set for a Moving Robot.

Neurocomputing, 120:130–140, 2013.

63

https://www.sfml-dev.org/
https://www.sfml-dev.org/

[16] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Proba-

bilistic Roadmaps for Path Planning in High-dimensional Configuration Spaces.

IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[17] Do-Hyeon Kim, Kwang-Baek Kim, and Eui-Young Cha. Fuzzy Truck Control

Scheme for Obstacle Avoidance. Neural Computing and Applications, 18(7):801–

811, 2009.

[18] Jonas Koenemann, Andrea Del Prete, Yuval Tassa, Emanuel Todorov, Olivier

Stasse, Maren Bennewitz, and Nicolas Mansard. Whole-body Model-predictive

Control Applied to the Hrp-2 Humanoid. In IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 3346–3351, 2015.

[19] Sven Koenig and Maxim Likhachev. Dˆ* Lite. AAAI Conference on Artificial

Intelligence, 476-483, 2002.

[20] Sven Koenig and Maxim Likhachev. Improved Fast Replanning for Robot Nav-

igation in Unknown Terrain. In Robotics and Automation, 2002. Proceedings.

ICRA’02. IEEE International Conference on, volume 1, pages 968–975. IEEE,

2002.

[21] Sven Koenig, Maxim Likhachev, and David Furcy. Lifelong Planning Aˆ*.

Artificial Intelligence, 155(1-2):93–146, 2004.

[22] James J Kuffner and Steven M LaValle. Rrt-connect: An Efficient Approach to

Single-query Path Planning. In IEEE International Conference on Robotics and

Automation, volume 2, pages 995–1001. IEEE, 2000.

[23] Itay Lotan, Fabian Schwarzer, Dan Halperin, and Jean-Claude Latombe.

Efficient Maintenance and Self-collision Testing for Kinematic Chains. In

Proceedings of the Eighteenth Annual Symposium on Computational Geometry,

pages 43–52. ACM, 2002.

64

[24] Tomás Lozano-Pérez and Michael A Wesley. An Algorithm for Planning

Collision-free Paths Among Polyhedral Obstacles. Communications of the ACM,

22(10):560–570, 1979.

[25] K. Manousakis, T. McAuley, R. Morera, and J. Baras. Using Multi-objective

Domain Optimization for Routing in Hierarchical Networks. In International

Conference on Wireless Networks, Communications and Mobile Computing, vol-

ume 2, pages 1460–1465 vol.2, June 2005.

[26] Matthew Moore and Jane Wilhelms. Collision Detection and Response for Com-

puter Animation. In ACM Siggraph Computer Graphics, volume 22, pages 289–

298. ACM, 1988.

[27] Nils J Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 2014.

[28] Steven Ratering and Maria Gini. Robot Navigation in a Known Environment

with Unknown Moving Obstacles. Autonomous Robots, 1(2):149–165, 1995.

[29] Andrey V Savkin and Chao Wang. Seeking a Path Through the Crowd: Robot

Navigation in Unknown Dynamic Environments with Moving Obstacles Based on

an Integrated Environment Representation. Robotics and Autonomous Systems,

62(10):1568–1580, 2014.

[30] Jacob T Schwartz and Micha Sharir. On the Piano Movers’ Problem: Iii. Coordi-

nating the Motion of Several Independent Bodies: The Special Case of Circular

Bodies Moving Amidst Polygonal Barriers. International Journal of Robotics

Research, 2(3):46–75, 1983.

[31] Dan Simon. Biogeography-based Optimization. IEEE Transactions on

Evolutionary Computation, 12(6):702–713, 2008.

65

[32] Anthony Stentz. Optimal and Efficient Path Planning for Partially-known En-

vironments. In IEEE International Conference on Robotics and Automation,

pages 3310–3317. IEEE, 1994.

[33] Anthony Stentz et al. The Focussed dˆ* Algorithm for Real-time Replanning.

In International Joint Conference on Artificial Intelligence, volume 95, pages

1652–1659, 1995.

[34] Anthony Stentz and Martial Hebert. A Complete Navigation System for Goal Ac-

quisition in Unknown Environments. Autonomous Robots, 2(2):127–145, 1995.

[35] Bing Sun, Daqi Zhu, Lisha Jiang, and Simon X Yang. A Novel Fuzzy Control

Algorithm for Three-dimensional AUV Path Planning Based on Sonar Model.

Journal of Intelligent and Fuzzy Systems, 26(6):2913–2926, 2014.

[36] Meng Wang and James NK Liu. Fuzzy Logic-based Real-time Robot Navigation

in Unknown Environment with Dead Ends. Robotics and Autonomous Systems,

56(7):625–643, 2008.

[37] Panagiotis G Zavlangas and Spyros G Tzafestas. Industrial Robot Navigation

and Obstacle Avoidance Employing Fuzzy Logic. Journal of Intelligent and

Robotic Systems, 27(1-2):85–97, 2000.

[38] Alexander Zelinsky. A Mobile Robot Exploration Algorithm. IEEE Transactions

on Robotics and Automation, 8(6):707–717, 1992.

66

APPENDIX A

Box2D Library

Box2D is a ubiquitous and free cross-platform two-dimensional physics engine

designed for the C++ programming language. It was first introduced in 2006 at GDC

2006 by Erin Catto [4]. A physics engine simulates the behavior of objects to make

them behave in a real-life way. Box2D has been used in many games designed for

different platforms like Android, PC, iOS and Flash. Furthermore, Box2D can be

used in wide range of simulation applications to simulate the physics of particles and

to visualize the dynamics of the systems. As another feature, this library allows

developers to build a collision detection system. In this research, Box2D was used

to simulate the detection of collisions and also to simulatethe real behavior of the

obstacles in the environment.

Box2D uses metric units and can handle large distance values. In our ex-

periments it produced results for a large number of obstacles and large rooms in a

considerably short time. The other feature of this library is the high accuracy of the

simulation. This means that when the robot moves between two locations, we can be

sure that it won’t run over the top of any obstacles.

Simulating the ray-casting of a laser beam can require very expensive com-

putational effort and a lot of CPU resources. In our experiments, we had to do

360 ray-castings at each time step. Box2D has a highly optimized algorithm for

ray-casting. So using Box2D enabled us to shorten our simulation time significantly.

Box2D objects have two important features: the first is the body of the object.

The body does not contain any information about the shape and appearance of the

object and contains more general properties like mass, velocity and location. Of

67

course, knowing these properties does not give us any information about the shape of

the object. The next feature of the Box2D object is called fixture. Fixture contains

information about the shape of the object in more detail. Figure 43 shows the block

diagram of the features of a Box2D object. Therefore, in order to create an object

the Body should first be created and then the fixture of the body should be attached

to it.

Figure 43: Overview of an object decleration in Box2D

68

APPENDIX B

Simple and Fast Multimedia Library

The Simple and Fast Multimedia Library (SFML) [11] is a free cross-platform

library to provide a simple interface for the C++ programming language to com-

municate between different parts of a PC. It provides a convenient API to program

applications that need to have access to network, hardware acceleration in 2D com-

puter graphics, sound system, and the creation and input to windows with OpenGL

contexts. In this research, SFML was used to create and handle OpenGL graphics

windows to visualize the movements of the robot and also to debug the simulation

process.

SFML is an event-based library and responds to inputs through events. There-

fore, the events need to be checked in run-time so that we can take appropriate action

based on the corresponding event. SFML is a multi-platform library and can be com-

piled for different operating systems such as Windows, Linux and Mac OS. Moreover,

different bindings for SFML have been developed so that it can be used in different

programming languages such as Python, Ruby, Java and .Net languages. Figure 44

shows the block diagram of the execution of the SFML in our experiments. At the

first step, the window is created. Then after each time step the program checks to

see if there are any events waiting to be processed in the event stack of the SFML

library. If there are any events stored, the developer can react accordingly. In our

experiments, the user could only interact with SFML to close the simulation through

events.

Showing graphics while the simulation is being executed slows down the sim-

ulation so that the graphics become a computational bottleneck in the simulation.

69

To solve this issue, a graphic enable flag variable was defined so that when the op-

timization process is executing, graphics are not shown to the user. This method

significantly increases the simulation speed.

Figure 44: Block diagram of the operation of the SFML

70

	Cleveland State University
	EngagedScholarship@CSU
	2018

	Evolutionary Optimization for Safe Navigation of an Autonomous Robot in Cluttered Dynamic Unknown Environments
	Arash Roshanineshat
	Recommended Citation

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	PROBABILISTIC PATH PLANNING
	Radar System
	Target Distribution dT
	Obstacle Distribution dO
	Final target distribution dF
	Memory Distribution dM
	Final Robot Steering Direction: Combining dM and dF

	The D* ALGORITHM
	Algorithm
	Lifelong Planning A* (LPA*)
	D* Lite
	Experimental Results

	BIOGEOGRAPHY-BASED OPTIMIZATION
	SIMULATION RESULTS
	Only Dynamic Obstacles, No Bouncing after Collisions
	Only Dynamic Obstacles, With Bouncing
	Simple Maze with Dynamic Obstacles
	Map with Rooms

	CONCLUSION
	BIBLIOGRAPHY
	Box2D Library
	A. Box2D Library

	Simple and Fast Multimedia Library
	B. Simple and Fast Multimedia Library

